WO2023210213A1 - 熱収縮性多層フィルム、及びその製造方法 - Google Patents
熱収縮性多層フィルム、及びその製造方法 Download PDFInfo
- Publication number
- WO2023210213A1 WO2023210213A1 PCT/JP2023/011242 JP2023011242W WO2023210213A1 WO 2023210213 A1 WO2023210213 A1 WO 2023210213A1 JP 2023011242 W JP2023011242 W JP 2023011242W WO 2023210213 A1 WO2023210213 A1 WO 2023210213A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- multilayer film
- mass
- heat
- adhesive resin
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims abstract description 107
- 239000004713 Cyclic olefin copolymer Substances 0.000 claims abstract description 106
- 229920005989 resin Polymers 0.000 claims abstract description 88
- 239000011347 resin Substances 0.000 claims abstract description 88
- 239000010410 layer Substances 0.000 claims abstract description 82
- 239000002344 surface layer Substances 0.000 claims abstract description 46
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 45
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 67
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 67
- 230000004888 barrier function Effects 0.000 claims description 25
- 229920001577 copolymer Polymers 0.000 claims description 21
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 19
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 18
- 230000009477 glass transition Effects 0.000 claims description 14
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Natural products OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002952 polymeric resin Substances 0.000 claims description 9
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 claims description 2
- 239000004840 adhesive resin Substances 0.000 description 127
- 229920006223 adhesive resin Polymers 0.000 description 127
- 239000004708 Very-low-density polyethylene Substances 0.000 description 64
- 229920001866 very low density polyethylene Polymers 0.000 description 64
- 238000000034 method Methods 0.000 description 41
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 33
- 229920000954 Polyglycolide Polymers 0.000 description 32
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 32
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 32
- 239000000463 material Substances 0.000 description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000000314 lubricant Substances 0.000 description 19
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- 229920002647 polyamide Polymers 0.000 description 16
- 239000004952 Polyamide Substances 0.000 description 15
- -1 cyclic olefin Chemical class 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 238000004898 kneading Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000004064 recycling Methods 0.000 description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 8
- 229920000554 ionomer Polymers 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 8
- 239000004645 polyester resin Substances 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 229920006257 Heat-shrinkable film Polymers 0.000 description 7
- 238000004806 packaging method and process Methods 0.000 description 7
- 229920001225 polyester resin Polymers 0.000 description 7
- 239000004633 polyglycolic acid Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000005033 polyvinylidene chloride Substances 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- 239000004953 Aliphatic polyamide Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920003231 aliphatic polyamide Polymers 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 150000001733 carboxylic acid esters Chemical class 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 2
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 2
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 2
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 235000021059 hard food Nutrition 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000020995 raw meat Nutrition 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000004154 testing of material Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- PZWQOGNTADJZGH-SNAWJCMRSA-N (2e)-2-methylpenta-2,4-dienoic acid Chemical group OC(=O)C(/C)=C/C=C PZWQOGNTADJZGH-SNAWJCMRSA-N 0.000 description 1
- IVSZLXZYQVIEFR-UHFFFAOYSA-N 1,3-Dimethylbenzene Natural products CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- BJLUCDZIWWSFIB-UHFFFAOYSA-N 5-tert-butylbenzene-1,3-dicarboxylic acid Chemical compound CC(C)(C)C1=CC(C(O)=O)=CC(C(O)=O)=C1 BJLUCDZIWWSFIB-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- 101000969770 Homo sapiens Myelin protein zero-like protein 2 Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 102100021272 Myelin protein zero-like protein 2 Human genes 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 239000004687 Nylon copolymer Substances 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229920006039 crystalline polyamide Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N n-hexene Natural products CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
Definitions
- the present invention relates to a heat-shrinkable multilayer film containing a polyolefin resin and a method for producing the same.
- Heat-shrinkable films for packaging hams, sausages, and other foods have sealing properties to package the contents, mechanical properties to protect the contents, gas barrier properties to maintain freshness, and good appearance. There are multiple required properties such as shrinkage properties, and laminated films of multiple resins are widely used to meet these requirements (see, for example, Patent Documents 1 to 3).
- such heat-shrinkable multilayer films are often made of polyolefin resins (hereinafter sometimes abbreviated as "PO") that have excellent sealing properties and extrusion properties.
- the main layer includes a polyamide resin (hereinafter sometimes abbreviated as "PA”) which has excellent mechanical properties and stretchability.
- the European consortium CEFLEX is promoting packaging that contains 90% by mass or more of PO and 5% by mass or less of each resin other than PO, such as PA. It presents guidelines for making materials recyclable.
- material recycling refers to the act of reusing plastic waste after processing such as crushing and dissolving it.
- Heat-shrinkable multilayer films made by laminating PO and PA as described above often do not meet the CEFLEX guidelines, and because the resins in each layer are incompatible, they must be melted, mixed, and reused after use. Even if molding is performed, the mechanical properties and appearance will be significantly impaired due to layer separation, making it impossible to obtain practical performance as a recycled material product.
- mechanical properties mainly refer to strength against puncture with a needle, and are required to suppress pinholes that occur when packaging contents with protrusions such as bone-in meat.
- stretchability refers to stable film forming properties of inflation bubbles (second bubbles) in the inflation (triple bubble process) method described in Patent Document 2, for example.
- Heat-shrinkable multilayer films for meat packaging are often required to shrink at temperatures below 100°C. The film is formed using the process) method.
- Patent Document 2 discloses a heat-shrinkable multilayer film using a cyclic olefin copolymer (hereinafter sometimes abbreviated as COC), but the film of this document has a spherical ball with a ⁇ 2.5 tip.
- COC cyclic olefin copolymer
- a puncture test is performed using a rod at a speed of 1 mm/min, and it has a fracture resistance of 2 to 10 J/mm ( ⁇ 1 to 150 N/mm), but it is difficult to package contents with protrusions such as bone-in meat. It cannot be said that it has sufficient strength to do so.
- the film of this document is implemented in a form containing PA, and it is difficult to say that it is a film suitable for reuse.
- this document does not mention the material recyclability, stretchability, elastic modulus, use in a sealant layer, or performance (seal strength/blocking property) of a film containing COC.
- the present invention was made in view of the above problems, and an object thereof is to provide a multilayer film that is composed of 80% by mass or more of a polyolefin resin and has excellent mechanical properties and heat shrinkability.
- the present inventors have solved the above problem by providing a heat-shrinkable multilayer film in which at least one layer of the multilayer film contains a cyclic olefin copolymer, and the mass proportion of the cyclic olefin copolymer in the multilayer film is 15% by mass or more.
- the present inventors have discovered that it is possible to do this, and have completed the present invention.
- the heat-shrinkable multilayer film according to the present invention has at least three layers: an outer surface layer (a) containing a polyolefin resin, an intermediate layer (b) containing a gas barrier resin, and an inner surface layer (c) containing a polyolefin resin.
- a multilayer film comprising a cyclic olefin copolymer in at least one layer of the multilayer film, and when the total mass of the multilayer film is 100% by mass, the proportion of the mass of the polyolefin resin in the multilayer film is 80% by mass or more, and the proportion of the mass of the cyclic olefin copolymer in the multilayer film is 15% by mass or more.
- the polyolefin resin in the outer surface layer (a) and/or the inner surface layer (c) includes at least one selected from the group consisting of ultra-low density polyethylene and linear low-density polyethylene, and a cyclic olefin copolymer. It is preferable to include.
- the cyclic olefin copolymer preferably contains either or both of a cyclic olefin copolymer having a glass transition temperature of 50 to 68°C and a cyclic olefin copolymer having a glass transition temperature of -10 to 20°C.
- the gas barrier resin of the intermediate layer (b) contains at least one selected from the group consisting of a partially saponified ethylene-vinyl acetate copolymer and a glycolic acid (co)polymer resin.
- the heat-shrinkable multilayer film preferably has a tensile modulus in the transverse direction (TD) of 200 to 600 MPa.
- the surface temperature of the resin immediately before stretching in the TD direction (position ⁇ in FIG. 1) is 75 to 90°C, and the lower shoulder forming part of the inflation bubble ( The surface temperature of the resin at the position ⁇ in FIG. 1 is lower by 5 to 30° C. than the surface temperature of the resin immediately before stretching in the TD direction.
- the heat-shrinkable multilayer film of the present invention is composed of 80% by mass or more of polyolefin resin, and has excellent mechanical properties and heat-shrinkability. Therefore, it is possible to obtain a heat-shrinkable multilayer film that can be used as a packaging material that is pinhole resistant even for contents having protrusions, even though it is an environmentally friendly packaging film.
- FIG. 1 is a diagram schematically showing a manufacturing apparatus for a heat-shrinkable multilayer film according to the present invention.
- the heat-shrinkable multilayer film according to the present invention has at least three layers: an outer surface layer (a) containing a polyolefin resin, an intermediate layer (b) containing a gas barrier resin, and an inner surface layer (c) containing a polyolefin resin.
- a multilayer film comprising a cyclic olefin copolymer in at least one layer of the multilayer film, and when the total mass of the multilayer film is 100% by mass, the proportion of the mass of the polyolefin resin in the multilayer film is 80% by mass or more, and the proportion of the mass of the cyclic olefin copolymer in the multilayer film is 15% by mass or more.
- the olefin as used in the present invention refers to a hydrocarbon having a double bond represented by the formula C n H 2n .
- a cyclic olefin refers to a hydrocarbon that has a cyclic structure formed of carbon atoms and has a carbon-carbon double bond in the ring structure, and the number of carbon-carbon double bonds is 1. It may be one or more than one (however, aromatic rings are not included).
- a homopolymer or copolymer containing 50 mol% or more of structural units derived from an olefin and/or a cyclic olefin is defined as a polyolefin resin.
- the heat-shrinkable multilayer film according to the present invention contains a cyclic olefin copolymer in at least one layer of the multilayer film.
- the outer surface layer (a) and/or the inner surface layer (c) contain a cyclic olefin copolymer, and it is more preferable that the inner surface layer (c) contains a cyclic olefin copolymer.
- the proportion of the mass of the polyolefin resin in the multilayer film is 80% by mass or more from the viewpoint of material recyclability,
- the content is preferably 90% by mass or more, more preferably 95% by mass or more. If the mass ratio of the polyolefin resin is less than the above range, material recyclability will be impaired due to incompatibility with components other than the polyolefin resin.
- the mass ratio of PO polyolefin resin
- Mass ratio of polyolefin resin 100 ⁇ (total of “density ⁇ thickness” of layers containing polyolefin resin) / (total of “density ⁇ thickness” of all layers)
- mass ratio (mass%) of PO is described as "PO mass ratio (wt%)".
- density the density of a layer in which two or more types of resins are blended is the sum of the densities obtained by multiplying the density of the resin by the mixing ratio of the resin.
- the proportion of the mass of the cyclic olefin copolymer in the multilayer film is 15% by mass or more, preferably 15 to 80% by mass, when the total mass of the multilayer film is 100% by mass. , more preferably 15 to 50% by weight, most preferably 16 to 29% by weight. If the mass proportion of the cyclic olefin copolymer is less than 15% by mass, the tensile strength during stretching is poor and it is difficult to form a film stably, and if it is greater than 80% by mass, the flexibility of the film tends to be impaired. .
- the mass ratio of COC (cyclic olefin copolymer) can be calculated from the following formula.
- Mass ratio (%) of cyclic olefin copolymer 100 x (sum of "density x thickness x COC mixing ratio" of layers containing COC) / (sum of "density x thickness” of all layers)
- the mass ratio (mass%) of COC is described as “COC mass ratio (wt%)".
- the "density" of a layer in which two or more types of resins are blended is the sum of the densities obtained by multiplying the density of the resin by the mixing ratio of the resin.
- “stretching” in the present invention refers to a biaxial stretching step in forming a heat-shrinkable film.
- Typical biaxial stretching methods include the tenter method and the inflation method.
- the process of forming a heat-shrinkable film is not limited to either of these methods, but from a cost perspective, the inflation method is particularly preferred. is preferred.
- the inflation method includes a direct method (direct inflation) in which fluid is directly poured into a molten resin extruded into a tubular shape, and a method in which the molten resin extruded into a tubular shape is once cooled and solidified as described in Patent Document 2.
- the tubular drawing method involves the steps of heating this tubular body to an appropriate temperature and stretching it in the machine direction (MD) and transverse direction (TD) while introducing a fluid inside the tubular body.
- the tubular stretching method is particularly preferred as the method for forming the heat-shrinkable film.
- the tubular stretching method is sometimes divided into double bubble inflation (double bubble process) and triple bubble inflation (triple bubble process) depending on the number of bubbles formed during the film forming process. The difference between the two is the heat treatment process after biaxial stretching, and either film forming method can be used, but triple bubble inflation tends to have better dimensional stability of the heat-shrinkable film. is more preferable.
- the outer surface layer (a) contains a polyolefin resin as a thermoplastic resin in order to provide excellent shrinkage properties, barrier properties against water vapor, and suitability for material recycling.
- the PO polyolefin resin
- ethylene homopolymer for example, ethylene homopolymer; propylene homopolymer; carbon number of VLDPE (very low density polyethylene), LLDPE (linear low density polyethylene), etc.
- Copolymers of 2 to 8 ⁇ -olefins propylene-ethylene copolymers, propylene-ethylene-butene-1 copolymers, EVA (ethylene-vinyl acetate copolymers), EAA (ethylene-acrylic acid copolymers) ), EMAA (ethylene-methacrylic acid copolymer), EMA (ethylene-methyl acrylate copolymer), EEA (ethylene-ethyl acrylate copolymer), EBA (ethylene-butyl acrylate copolymer), etc.
- Examples include polyolefin copolymers, including cyclic olefin copolymers. These polyolefin resins may be used alone or in combination of two or more. Of these, LLDPE or VLDPE are particularly preferred, including resins produced by Ziegler-Natta type reaction catalysts and resins produced by metallocene or single-site reaction catalysts.
- a mixture of COC and at least one selected from VLDPE and LLDPE can be used.
- the density of LLDPE or VLDPE is preferably 0.880 to 0.920 g/cm 3 , more preferably 0.890 to 0.915 g/cm 3 .
- the melt flow index (MI) of LLDPE or VLDPE is preferably 0.5 to 7.0 g/10 min, more preferably 1.0 to 5.0 g/10 min, and even more preferably 3.2 to 4.0 g/10 min. preferable.
- MI melt flow index
- the film maintains its puncture strength, has excellent fluidity during melting, and tends to be able to reduce variations in film thickness.
- An example of this is a product sold under the name "Evolue" by Prime Polymer Co., Ltd. In this product, the ⁇ -olefin other than ethylene is 1-hexene. Note that MI was measured at 190°C in accordance with JIS K 7210.
- the COC in the outer surface layer (a) is a resin having structural units derived from a cyclic olefin and structural units derived from an olefin other than the cyclic olefin, such as ethylene.
- cyclic olefins include norbornene and its derivatives (e.g., 2-norbornene, 5-methyl-2-norbornene); cyclopentadiene and its derivatives (e.g., dicyclopentadiene, 2,3-dihydrocyclopentadiene), and the like. However, it is not limited to these.
- olefins other than cyclic olefins include, but are not limited to, ⁇ -olefins such as ethylene, propylene, and butylene.
- the COC in the outer surface layer (a) contains, for example, 60 to 90 mol%, preferably 65 to 85 mol%, of structural units derived from ethylene, and 5 to 5 mol% of structural units derived from cyclic olefin. Those containing up to 45 mol%, preferably 10 to 40 mol% can be used.
- the glass transition point (Tg) of COC was obtained by dynamic mechanical analysis (DMA) in tensile mode at a heating rate of 5°C/min, a frequency of 62.8 rad/sec, and a strain of 0.1%. It is measured from the peak temperature of the loss modulus E" of the data obtained, and the value is preferably 50 to 68°C. If the glass transition point is within the above range, in the film stretching process, the part just before stretching in the TD direction (inflation The surface temperature of the resin at the part immediately before the formation of the lower shoulder of the bubble (position ⁇ in Figure 1) is 75 to 90°C, and the surface temperature of the resin at the part where the lower shoulder of the inflation bubble is formed (position ⁇ in Figure 1) is 75 to 90°C.
- DMA dynamic mechanical analysis
- the internal pressure of the fluid blown into the inside of the tubular body during stretching can be sufficiently suppressed.
- Tensile stress tensile strength
- films tend to be able to be stably formed by the triple bubble inflation method.
- the glass transition point is lower than 50°C, the tensile strength during stretching is poor, and films can be stably formed.
- the elastic modulus of the film tends to be small and the mechanical suitability during filling tends to be poor.
- the glass transition point is higher than 68°C, the resin temperature during stretching may be lowered. As the orientation becomes smaller, the hot water shrinkage rate tends to decrease.In addition, the elongation at break during the puncture test tends to decrease.
- the melt flow index (MI) of COC is preferably 0.5 to 5.0 g/10 min, more preferably 0.8 to 4.0 g/10 min, and even more preferably 1.0 to 3.0 g/10 min.
- MI melt flow index
- the MI is lower than 0.5 g/10 min, the fluidity when melted tends to deteriorate, resulting in uneven film thickness and poor productivity.
- the MI is higher than 5.0 g/10 min, the film is There is a possibility that the elongation at break will deteriorate when the material is pierced with a protrusion like this.
- COC is sold under the name "TOPAS" by Polyplastics, for example. Note that MI was measured at 190°C in accordance with JIS K 7210.
- the polyolefin resin in the outer surface layer (a) has a melting point of 80 to 170°C as measured by DSC (differential scanning calorimetry) at a temperature increase rate of 10°C/min in accordance with JIS K 7121.
- the temperature is preferably 95 to 160°C. If the melting point is lower than 80° C., the multilayer film will lack heat resistance, and problems such as melting during shrinkage in hot water and sticking to the sealing base during heat sealing will likely occur. On the other hand, if the temperature is higher than 170°C, the temperature during melting and kneading tends to be high when recycling used heat-shrinkable multilayer films, resulting in recycled products becoming yellowish due to thermal deterioration. It tends to become easier.
- the gas barrier property in the present invention refers to the difficulty of permeation of oxygen gas
- the gas barrier resin in the present invention has an oxygen permeability per 25 ⁇ m of resin film at 23° C. and 0% RH of 0. 01 to 300 cm 3 /m 2 ⁇ day ⁇ atm, preferably 0.05 to 200 cm 3 /m 2 ⁇ day ⁇ atm, most preferably 0.1 to 100 cm 3 /m 2 ⁇ day ⁇ atm.
- the gas barrier resin in the intermediate layer (b) is a partially saponified ethylene-vinyl acetate copolymer called ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as EVOH), or a glycolic acid (co)polymer.
- Polymer resin hereinafter sometimes abbreviated as PGA
- PVDC vinylidene chloride copolymer
- PVA polyvinyl alcohol
- metaxylene diamine and adipic acid obtained from the polycondensation reaction.
- crystalline polyamide (MXD6) aliphatic polyamide (PA) resin (for example, nylon 6, etc.), amorphous aromatic polyamide resin (for example, nylon 6I-6T, etc.), polyacrylonitrile copolymer (PAN) , polyethylene terephthalate (PET), etc.
- the intermediate layer (b) is preferably made of a resin that provides excellent barrier properties against oxygen in order to prevent oxidative deterioration of the packaged object.
- the preferred gas barrier resin for the intermediate layer (b) is EVOH, particularly EVOH having an ethylene content of 20 to 60 mol%, preferably 30 to 50 mol%, and a saponification degree of 95% or more.
- EVOH is sold by Kuraray Co., Ltd. under the name "EVAL", for example.
- a preferred gas barrier resin for the intermediate layer (b) is a glycolic acid (co)polymer resin.
- the glycolic acid (co)polymer resin include polyglycolic acid homopolymers and polyglycolic acid copolymers.
- the glycolic acid (co)polymer resin is formed from polyglycolic acid containing repeating units represented by the following general formula in a proportion of 60% by mass or more, and It is more preferably formed from polyglycolic acid containing units in a proportion of 70% by mass or more, and preferably formed from polyglycolic acid containing the above repeating units in a proportion of 80% by mass or more. is particularly preferred.
- the glycolic acid (co)polymer resin has a lower oxygen gas permeability per unit thickness than other gas barrier resins such as EVOH and PVDC, so even if the thickness of the intermediate layer (b) is made thinner, It can exhibit gas barrier properties that are suitable for practical use. As a result, the volume ratio of the polyolefin layer can be increased, which can be expected to improve recyclability.
- glycolic acid (co)polymer resin is a hydrolyzable resin, and its molecular chains are randomly cut by hydrolysis and the molecular weight decreases, and when the molecular weight becomes so low that it cannot maintain its strength, it collapses. It is known that when the molecular weight decreases further, it dissolves in water.
- the inner surface layer (c) contains a polyolefin resin as a sealable thermoplastic resin.
- the inner surface layer (c) is preferably made of a resin that has excellent heat-sealing properties among the properties required for a heat-shrinkable multilayer film, but in addition, it also has mechanical properties, shrinkage properties, and barrier properties against water vapor. It is more preferable that the material has material recycling suitability.
- the resin used for the inner surface layer (c) can be selected from the same polyolefin resins as those listed for the outer surface layer (a), but in particular, DSC differential scanning calorimetry according to JIS K 7121 A resin having a melting point of 80 to 150°C, preferably 95 to 130°C, obtained by measuring a temperature increase rate of 10°C/min, is preferable in consideration of heat sealability. If the melting point of the film is lower than 80°C, the inner surface layer (c) tends to stick together (blocking), and if it is higher than 150°C, the temperature at which sealing is possible becomes high, and the stretchability in triple bubble inflation is reduced. tends to inhibit Additionally, additives such as lubricants can be added within a range that does not impede the transparency of the film.
- a mixture of at least one selected from VLDPE and LLDPE and COC can be used in order to suppress adhesion (blocking) between the inner surface layers (c).
- the mass ratio (mixing ratio) of COC in the mixture is preferably 1 to 70% by mass, more preferably 20 to 60% by mass, and even more preferably 40 to 50% by mass.
- the mass of COC is less than 1% by mass, the adhesion suppressing effect tends to be poor, and when it is more than 70% by mass, the heat sealability tends to decrease.
- the COC used for the inner surface layer (c) can be selected from the same COCs as mentioned for the outer surface layer (a), for example, a COC with a glass transition temperature of 50 to 68° C. can be used. . Further, in order to improve the heat sealability of the inner surface layer (c) at low temperatures, COC having a glass transition point of 0 to 10° C. may be further blended. That is, either or both of COC having a glass transition temperature of 50 to 68°C and COC having a glass transition temperature of -10 to 20°C can be used.
- the mass ratio (mixing ratio) of COC with a glass transition point of 0 to 10°C is preferably 5 to 30 mass%, and 10 to 20 mass%, when the resin constituting the inner surface layer (c) is 100 mass%. is more preferable. If the amount of COC with a glass transition point of 0 to 10° C. is less than 5% by mass, the effect of improving low-temperature heat sealability tends to be poor, and if it is more than 30% by mass, the effect of suppressing blocking tends to decrease.
- the heat-shrinkable multilayer film of the present invention essentially includes the above-mentioned outer surface layer (a) containing a polyolefin resin, an intermediate layer (b) containing a gas barrier resin, and an inner surface layer (c) containing a polyolefin resin.
- other layers (z) may be added to the intermediate layer other than the intermediate layer (b) containing gas barrier resin as necessary. can be included.
- a layer containing the polyolefin resin is preferable.
- an adhesive resin layer can be provided.
- Adhesive resins include EVA, EEA, acid-modified polyolefins (sole or copolymers of olefins, and reaction products with unsaturated carboxylic acids such as maleic acid and fumaric acid, acid anhydrides, esters, or metal salts), etc.
- EVA EVA
- EEA acid-modified polyolefins
- reaction products with unsaturated carboxylic acids such as maleic acid and fumaric acid, acid anhydrides, esters, or metal salts
- acid-modified VLDPE, acid-modified LLDPE, acid-modified EVA), etc. can be used.
- Suitable examples include olefin resins modified with acids such as maleic acid, or anhydrides thereof.
- the melting point of the thermoplastic resin selected for the other layer (z) is preferably 40 to 170°C, more preferably 50 to 160°C. If the melting point is lower than 40°C, the heat resistance of the multilayer film tends to deteriorate, and if it is higher than 170°C, the temperature during melting and kneading becomes high when recycling the used heat-shrinkable multilayer film. As a result, recycled products tend to take on a yellowish tinge due to thermal deterioration.
- an organic lubricant an inorganic lubricant (anti-blocking agent), and/or an antistatic agent can be added to any layer.
- Organic and/or inorganic lubricants are used in the inner surface layer (c ) or preferably included in the outer surface layer (a). Furthermore, if necessary, the inner and outer surfaces of the film can be powdered with corn starch or the like.
- organic lubricants examples include hydrocarbon lubricants, fatty acid lubricants, fatty acid amide lubricants, ester lubricants, and metal soaps.
- the organic lubricant may be liquid or solid.
- fatty acid amide lubricants and metal soaps are preferably used because they have excellent compatibility with polyolefin resins.
- the organic lubricant is preferably used in a desired layer in an amount of 0.1 to 0.2% by mass.
- the inorganic lubricant anti-blocking agent
- a known inorganic filler added to the resin for the purpose of suppressing adhesion between films such as talc, diatomaceous earth, silica, zeolite, calcium carbonate, aluminosilicate, etc.
- talc diatomaceous earth
- silica silica
- zeolite calcium carbonate
- aluminosilicate etc.
- silica, aluminosilicate, zeolite, etc. are preferably used from the viewpoint of refractive index and dispersibility.
- the median volume average particle diameter D50 of the inorganic lubricant as measured by the Coulter Counter method is preferably 0.5 to 10 ⁇ m, more preferably 1 to 7 ⁇ m. It is more preferable to use an inorganic lubricant having the above-mentioned average particle size, with the part having a particle size exceeding 10 ⁇ m cut off.
- the amount of the inorganic lubricant added in the desired layer is, for example, 0.05 to 2% by weight, particularly preferably 0.1 to 1% by weight.
- the organic or inorganic lubricant can be added to the desired resin layer as a masterbatch containing the lubricant in the resin constituting the desired layer or a resin having an affinity thereto at a concentration of, for example, about 1 to 10% by mass. It is preferable to add it to
- surfactants are preferably used.
- surfactants it is possible to use anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants and mixtures thereof.
- the antistatic agent can be added in an amount of 0.05 to 2% by mass based on the resin of the layer to be added, if necessary.
- the heat-shrinkable multilayer film of the present invention is desirably formed into a film having a final thickness of 10 to 150 ⁇ m, particularly 30 to 120 ⁇ m, by laminating each layer and stretching.
- the outer surface layer (a) has a thickness of, for example, 0.5 to 50 ⁇ m, preferably 0.5 to 30 ⁇ m, and more preferably 0.5 to 20 ⁇ m.
- the intermediate layer (b) preferably has a thickness of 0.5 to 30 ⁇ m, particularly 1 to 10 ⁇ m. If the thickness of the intermediate layer (b) made of gas barrier resin is thinner than 0.5 ⁇ m, the effect of improving the oxygen barrier tends to be poor, and if it is thicker than 30 ⁇ m, it becomes difficult to stretch the multilayer film, and the material recyclability is reduced.
- the inner surface layer (c) preferably has a thickness of 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, in order to impart necessary and sufficient sealing strength to the multilayer film.
- a plurality of adhesive resin layers can be provided, but the thickness of each layer is preferably 0.5 to 15 ⁇ m.
- the intermediate layer (b) when using a glycolic acid (co)polymer resin for the intermediate layer (b), the intermediate layer (b) has a thickness of 0.1 to 30 ⁇ m, preferably 0.2 to 10 ⁇ m, since it has excellent oxygen gas barrier properties. It may be as thick as .
- the oxygen gas permeability (O 2 TR) of the heat-shrinkable multilayer film used in the present invention is measured at a temperature of 23% using an oxygen permeability tester ("OX-TRAN 2/20" manufactured by MOCON) in accordance with JIS K 7126. The measurement was carried out under the conditions of 80% relative humidity on both sides.
- the oxygen gas permeability of the heat-shrinkable multilayer film is preferably 1 to 100 cm 3 /m 2 ⁇ day ⁇ atm, and 1 to 80 cm 3 /m 2 ⁇ day ⁇ atm. More preferably, it is 1 to 60 cm 3 /m 2 ⁇ day ⁇ atm.
- the oxygen gas permeability exceeds 100 cm 3 /m 2 ⁇ day ⁇ atm, storage stability decreases due to oxidative deterioration, and raw meat tends to be unable to be stored for 40 days at 5° C. or lower when packaged.
- the heat-shrinkable multilayer film of the present invention is a sample fixed at a speed of 50 mm/min using a piercing pin having a hemispherical tip with a radius of curvature of 0.5 mm in an atmosphere of 23° C. and 50% RH.
- the value obtained by puncturing from the inner surface layer of the material and dividing the measured value (N) at the maximum point up to breakage by the thickness ( ⁇ m) (piercing strength per unit thickness) is 0.20 to 0.50N. / ⁇ m, more preferably 0.22 to 0.45N/ ⁇ m, and most preferably 0.30 to 0.40N/ ⁇ m.
- the puncture strength is less than 0.20 N/ ⁇ m, especially when distributing packages containing protrusions such as bone-in meat or hard foods, it will prevent the occurrence of bag breakage and pinholes due to impact such as dropping. Therefore, a larger thickness tends to be required, which is undesirable from the viewpoint of cost and film formability.
- the puncture strength is greater than 0.50 N/ ⁇ m, the rigidity of the film becomes high, which improves the bag-making properties during secondary processing using the film and the unsealability of the package when filling the contents. This is not preferable from the viewpoint of workability.
- the heat-shrinkable multilayer film of the present invention has a hot water shrinkage rate of 40 to 60% in either MD (longitudinal direction)/TD (transverse direction) after being immersed in hot water at a temperature of 80°C for 10 seconds; It is preferably 43 to 55%. If the hot water shrinkage rate is lower than 40%, depending on the size and shape of the unwrapped object, it may not be possible to tightly fit the contents, and it may not be possible to package it beautifully. Moreover, if it is larger than 60%, the contents will be excessively tightened, and drips (blood) will tend to occur when packaging meat, for example.
- the heat-shrinkable multilayer film of the present invention preferably has a tensile modulus in the TD direction of 200 to 600 MPa, more preferably 300 to 550 MPa.
- the elastic modulus is lower than 200 MPa, the mechanical suitability during filling with contents tends to be poor, and when it is higher than 600 MPa, it tends to be hard and have poor followability to the contents.
- the tensile modulus in the TD direction is a value measured by the method described in Examples below.
- the heat-shrinkable multilayer film of the present invention contains a polyamide resin
- material recyclability becomes poor due to incompatibility with the polyolefin resin.
- the ratio of the thickness of the layer containing polyamide to the total layer is preferably less than 10%, more preferably less than 5%. Preferably, less than 2% is more preferable.
- Polyamide inhibits hot water shrinkage, so if it is 10% or more, the MD (longitudinal direction) or TD (transverse direction) hot water shrinkage rate of the film after immersing it in hot water at a temperature of 80°C for 10 seconds is 40%. % or more tends to be difficult.
- polyamide resin aliphatic polyamide resins and amorphous aromatic polyamide resins are preferably used.
- aliphatic polyamide resins include polyamide 6 (nylon 6) polymer, polyamide 6-66 (nylon 6-66) copolymer, polyamide 6-69 (nylon 6-69) copolymer, polyamide 6-12 ( Nylon 6-12) copolymer and polyamide 6-66-12 (nylon 6-66-12) copolymer are preferably used.
- amorphous aromatic polyamide resin for example, a polycondensate of isophthalic acid and terephthalic acid with an aliphatic diamine as a main acid component is used.
- an isophthalic acid component of 40 mol% or more and 98 mol% or less and a terephthalic acid component of 2 mol% or more and 60 mol% or less is preferably used.
- an amorphous nylon copolymer in which the aliphatic diamine consists of hexamethylene alone and is commonly referred to as nylon 6I-6T (Ny6I-6T) is preferably used.
- the heat-shrinkable multilayer film of the present invention contains a polyester resin, material recyclability becomes poor due to incompatibility with the polyolefin resin.
- the ratio of the thickness of the layer containing polyester to all layers is preferably less than 10%, and more preferably less than 5%, when the total thickness of all layers is 100%. Preferably, less than 2% is more preferable. If the polyester resin content is 10% or more, when a heat-shrinkable multilayer film is melt-kneaded for material recycling, the haze value and internal haze value of the recycled sheet tend to increase due to incompatibility with polyolefin. It is in.
- the polyester resin for example, an aliphatic polyester resin and an aromatic polyester resin are used, and the dicarboxylic acid component used in this polyester resin may be any one that can be obtained by a normal manufacturing method.
- Examples include naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, and cyclohexane dicarboxylic acid, and two or more types may be used.
- the diol component used in the polyester resin may be any diol component as long as polyester can be obtained by a normal manufacturing method, such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, diethylene glycol, Examples include polyalkylene glycol, 1,4-cyclohexanedimethanol, 2-alkyl-1,3-propanediol, 1,4-butanediol, and two or more types may be used.
- the heat-shrinkable multilayer film of the present invention preferably does not contain an ionomer and an electron beam crosslinked layer.
- Ionomers are unfavorable from a cost standpoint, and tend to have low puncture strength and elastic modulus per thickness, and electron beam crosslinked layers tend to gel when melted, which tends to impede material recyclability.
- the heat-shrinkable multilayer film of the present invention contains an ionomer resin
- the ionomer resin accounts for The thickness ratio of the included layer is preferably less than 20%, more preferably less than 10%, and most preferably less than 5%.
- the puncture strength per unit thickness decreases, so when distributing packages containing protrusions or hard foods, bags may break or pinholes may occur due to impacts such as drops. In order to suppress this, a larger thickness tends to be required, which is undesirable from the viewpoint of cost and film formability.
- the base polymer of the ionomer resin is an ethylene-unsaturated carboxylic acid copolymer or an ethylene-ethylenically unsaturated carboxylic acid-ethylenically unsaturated carboxylic acid ester terpolymer (preferably an ethylene-ethylenically unsaturated carboxylic acid ester copolymer).
- Examples include resins in which the carboxyl groups in these copolymers are neutralized with cations using a carboxylic acid-ethylenically unsaturated carboxylic acid ester terpolymer.
- the unsaturated carboxylic acid is preferably methacrylic acid or acrylic acid
- the unsaturated carboxylic acid ester is preferably an alkyl ester of methacrylic acid or acrylic acid having 1 to 6 carbon atoms.
- the terpolymer is preferably ethylene-methacrylic acid (or acrylic acid)-methacrylic acid alkyl ester (or acrylic acid alkyl ester) such as ethylene-methacrylic acid-acrylic acid isobutyl ester.
- the cations include Na + , K + , Li + , Cs + , Ag + , Hg + , Cu + , Mg 2+ , Zn 2+ , Be 2+ , Ca 2+ , Ba 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Sn 2+ , Pb 2+ , Fe 2+ , Co 2+ , Ni 2+ , Al 3+ , Sc 3+ , Fe 3+ , Y 3+ and other metal ions, organic amines, and the like.
- Na + , K + , Ca 2+ , and Zn 2+ are preferred.
- the heat-shrinkable multilayer film of the present invention suppresses deterioration of appearance due to resin deterioration (decomposition/gelation) and layer separation when the collected material is melt-molded for reuse, and has excellent material recyclability. It is characterized by
- the heat-shrinkable multilayer film of the present invention is obtained by kneading the film as it is in a melt-kneading machine, and then molding the film into a sheet with a thickness of 70 to 120 ⁇ m using a press machine at a pressure of 150 kgf/ cm2 .
- ) is preferably 1 to 85%, more preferably 1 to 80%, as a value (HA) per 100 ⁇ m sheet thickness.
- the haze value (HA) in the present invention is preferably smaller, and if it is larger than 85%, the appearance of the recycled material product will be impaired.
- the heat-shrinkable multilayer film of the present invention has an internal haze value of a sheet formed by kneading the film as it is in a melt-kneading machine and then forming it into a sheet with a thickness of 70 to 120 ⁇ m using a press machine at a pressure of 150 kgf/cm 2 .
- the internal haze value (HI) in the present invention is greater than 80%, the compatibility of the resin contained in the sheet may be extremely poor, and the mechanical properties tend to be poor.
- the heat-shrinkable multilayer film of the present invention is obtained by kneading the film as it is in a melt-kneading machine, and then forming it into a sheet with a thickness of 70 to 120 ⁇ m using a press machine at a pressure of 150 kgf/cm 2 .
- the b * ) value is 1 to 10, more preferably 1 to 8, and most preferably 1 to 6 as a value per 100 ⁇ m sheet thickness (BY).
- BY sheet thickness
- haze value haze value
- HI internal haze value
- BY b * value
- COC2 means a different type of COC from COC.
- LLDPE+COC/adhesive resin/EVOH/adhesive resin/LLDPE (2) LLDPE/adhesive resin/EVOH/adhesive resin/LLDPE+COC (3) LLDPE/adhesive resin/EVOH/adhesive resin/LLDPE+COC+COC2 (4) LLDPE+COC/adhesive resin/LLDPE/adhesive resin/EVOH/adhesive resin/LLDPE (5) LLDPE/adhesive resin/LLDPE+COC/adhesive resin/EVOH/adhesive resin/LLDPE (6) LLDPE/adhesive resin/LLDPE/adhesive resin/LLDPE/adhesive resin/LLDPE (6) LLDPE/adhesive resin/LLDPE/adhesive resin/LLDPE/adhes
- the heat-shrinkable multilayer film according to the present invention includes, for example, The molten resin is coextruded into a tubular shape, and from at least three layers: an outer surface layer (a) containing a polyolefin resin, an intermediate layer (b) containing a gas barrier resin, and an inner surface layer (c) containing a polyolefin resin.
- a step of forming a tubular body The tubular body is cooled to a temperature below the melting point of the resin, and then the tubular body is reheated to a temperature below the melting point of the resin, and the tubular body is drawn out in the longitudinal direction (MD) while a fluid is introduced into the tubular body.
- the biaxially stretched film is folded, and then heat treatment is performed from the outer surface side of the biaxially stretched film while introducing a fluid into the inside of the biaxially stretched film, and at the same time as the heat treatment, a relaxation (shrinkage) treatment is performed in the longitudinal and transverse directions.
- TD transverse direction
- a relaxation (shrinkage) treatment is performed in the longitudinal and transverse directions.
- It can be manufactured by a method including steps.
- the surface temperature of the resin of the tubular body immediately before stretching in the TD direction is 75 to 90°C
- the lower shoulder forming part of the inflation bubble The surface temperature of the resin at the position ⁇ in FIG. 1 is preferably lower than the surface temperature of the resin immediately before stretching in the TD direction by 5 to 30°C.
- the heat-shrinkable multilayer film of the present invention can be manufactured using, for example, the apparatus shown in FIG.
- the apparatus shown in FIG. 1 for example, soybean oil, fatty acid ester of glycerin, A tubular body (parison) 3 having an outer surface layer, an intermediate layer, and an inner surface layer is coextruded while enclosing an opening agent such as propylene glycol, and the molten tubular body 3 immediately after coextrusion is bathed in a water bath 4. While cooling the resin to below the melting point of the main resin in each layer, preferably below 20°C, more preferably below 15°C, it is flattened by pinch rollers 5 and taken off.
- the flat body 3a (multilayer film) taken over is sealed with an opening agent such as soybean oil, fatty acid ester of glycerin, propylene glycol, etc. as necessary, and the flat body 3a is filled with the main resin that occupies each layer.
- the heated flat body 3b is then drawn upward.
- the fluid air introduced between the pair of pinch rollers 7 and 8 forms a bubble-shaped tubular body 3c from the flat body 3b, and the cooling medium blows out from the air ring device at 10 to 30°C at 5 to 20 m/s.
- simultaneous biaxial stretching is carried out in the machine direction (machine direction, MD) and the direction perpendicular to the machine direction (transverse direction, TD).
- the surface temperature of the tubular body 3c immediately before stretching in the TD direction was measured using an infrared thermography (Teledyne FLIR LLC "FLIR E4") with emissivity set to 0.83.
- the temperature is preferably ⁇ 90°C, more preferably 80 ⁇ 88°C. If the surface temperature immediately before stretching in the TD direction is lower than 75°C, the yield point stress of the tubular body 3c is large, and the internal pressure of the enclosed fluid air increases, which tends to make stretching difficult. If it is higher, it tends to be difficult to stop stretching in the TD direction.
- the surface temperature of the lower shoulder forming portion position ⁇ in FIG.
- the tubular body 3c may be cooled within a range of 5 to 30° C. from the portion immediately before stretching in the TD direction (position ⁇ in FIG. 1). Preferably, it is more preferably cooled to a temperature in the range of 10 to 20°C. When the temperature is lower than 5°C, the tubular body 3c tends to burst easily, and when it is higher than 30°C, the width of the tubular body 3c tends to become smaller.
- the stretching ratio is calculated based on the following formula, and is preferably 2.0 to 4.0 times in both directions, more preferably 2.5 to 3.5 times, particularly preferably 2.8 to 3.5 times. .
- Formula 1: Longitudinal direction (MD) stretch ratio Pick-up speed of pinch roller 8 / Pick-up speed of pinch roller 7
- Formula 2: Transverse direction (TD) stretch ratio Width of flat body 3d / Width of flat body 3b
- the stretched flat body 3d is pulled out downward, and fluid air introduced between the pair of pinch rollers 10 and 11 causes the flat body 3d to form a bubble-shaped tubular body 3e again, and is held in the heat treatment cylinder 12. .
- steam is blown alone or together with air from the outlet 13 of the heat treatment cylinder 12, and the tubular body 3e under heat treatment is heated preferably at a temperature of 50°C or more and 100°C or less, more preferably 60°C or more and 95°C or less.
- the heat treatment is performed for 1 second or more and 20 seconds or less, more preferably 1.5 seconds or more and 10 seconds or less.
- the tubular body 3e undergoing heat treatment is relaxed (shrinked) so that the relaxation rate in the longitudinal direction (MD) and transverse direction (TD) is preferably 2% or more and 40% or less, more preferably 5% or more and 30% or less.
- the bidirectional relaxation rate is calculated based on the following formula.
- Formula 4: Transverse direction (TD) relaxation rate (1-(width of flat body 3f/width of flat body 3d)) x 100 (%)
- the flat body 3f after such relaxation heat treatment corresponds to the heat-shrinkable multilayer film of the present invention, and is wound up on the winding roll 14.
- the layer structure is LLDPE1/MA-g-PE/EVA1/MA-g-PE/EVOH/MA-g-PE/LLDPE1+COC1 (50% by mass + 50% by mass) from the outside to the inside.
- Each resin was extruded using a plurality of extruders, and the molten resins were introduced into an annular die, where they were melted and bonded to form the above layered structure, and coextruded.
- the molten tubular body flowing out from the die outlet was rapidly cooled to 10 to 25°C in a water bath to form a flat body with a flat width of 157 mm and a thickness of 270 ⁇ m.
- the flat body was passed through a hot water bath controlled at 90°C ⁇ 5°C, and then formed into a bubble-shaped tubular film, which was then blown into a bubble while being cooled with a cooling medium blowing out from an air ring at 20°C and 15 m/s.
- the film was simultaneously biaxially stretched at a stretching ratio of 2.4 times in the machine direction (MD) and 2.8 times in the transverse direction (TD).
- MD machine direction
- TD transverse direction
- the surface temperature of the tubular body immediately before stretching in the TD direction is 80°C
- the temperature at the lower shoulder of the tubular body is 65°C
- the surface temperature was 15° C. lower than the surface temperature immediately before stretching in the TD direction.
- the biaxially stretched film was heat treated with an IR heat treatment heater at 360° C. while relaxing (shrinking) it by 3% in the machine direction and 6% in the transverse direction to produce a biaxially stretched film (heat-shrinkable multilayer film).
- the layer structure of the obtained biaxially stretched film, the thickness ( ⁇ m) of the whole and each layer, the proportion of the mass of the polyolefin resin and the cyclic olefin copolymer in the whole, and whether or not it can be stretched by the inflation method were determined using other examples and comparative examples. They are summarized in Table 2 along with those of .
- Examples 2 to 5 Comparative Example 1
- Various biaxially stretched films were obtained in the same manner as in Example 1, except that the layer structure was changed as shown in Table 2. Note that in Comparative Example 1, biaxial stretching could not be performed by the inflation method, and a biaxially stretched film (heat-shrinkable multilayer film) could not be obtained.
- the flat body was passed through a hot water bath at 87°C, and then made into a bubble-shaped tubular film, and while cooling in an air ring at 22°C, it was expanded by 3.0 times in the machine direction (MD) and horizontally. Simultaneous biaxial stretching was carried out in the direction (TD) at a stretching ratio of 3.1 times.
- the biaxially stretched film was guided into a heat treatment tower having a cylinder length of about 2 m to form a bubble-shaped tubular film, heated to 70°C by steam jetted from the wiping outlet, and heated to 6% in the longitudinal direction. The film was heat-treated while being relaxed (shrinked) by 6% in the transverse direction to produce a biaxially stretched film (heat-shrinkable multilayer film).
- each resin is extruded through multiple extruders so that the layer structure is VLDPE/EVA2/EMA/PVDC/EMA/EVA2/EVA3 from the outside to the inside, and the molten resin is passed through an annular die. They were then melted and bonded so as to have the above layered structure, and coextruded.
- the molten tubular body flowing out from the die outlet was rapidly cooled to 12° C. in a water bath to form a flat body.
- the flat body was irradiated with an electron beam from the outside of the flat body in an electron beam irradiation device with an accelerating voltage of 300 KeV to give an irradiation dose of 80 kgy.
- Puncture strength In accordance with JIS Z 1707, in an atmosphere of 23°C and 50% RH, a Tensilon universal material testing machine ( Using the "RTC-1210 model” manufactured by Orientech Co., Ltd., the stabbing pin is pierced from the inner surface layer of the fixed sample at a speed of 50 mm/min, and the measured value (N ) divided by the thickness ( ⁇ m) was defined as the puncture strength from the inner surface layer side.
- Hot water shrinkage rate A film sample marked at a distance of 10 cm in the machine direction (longitudinal direction, MD) and the direction perpendicular to the machine direction (transverse direction, TD) was heated in hot water adjusted to 80°C. After immersing it in water for 10 seconds, it was taken out and immediately cooled with water at room temperature (25 ⁇ 5°C). Thereafter, the marked distance was measured, and the ratio of the reduction value from 10 cm to the original length of 10 cm was expressed as a percentage in both the vertical and horizontal directions. One sample was tested five times, and the average value in each of the machine direction (MD) and transverse direction (TD) was determined and used as the hot water shrinkage rate.
- MD machine direction
- TD transverse direction
- This sample was press-molded using a compression molding machine ("AYSR.5" manufactured by Kindo Metal Industry Co., Ltd.) at a pressure of 150 kgf/cm 2 for a preheating time of 1 minute and a pressurization time of 1 minute to form a sheet.
- the thickness of each sheet was measured: 97 ⁇ m for Example 1, 110 ⁇ m for Example 2, 104 ⁇ m for Example 3, 100 ⁇ m for Example 4, 83 ⁇ m for Example 5, 84 ⁇ m for Comparative Example 2, and 115 ⁇ m for Comparative Example 3. It became.
- the temperature during Laboplastomill and compression molding was 190°C for Examples 1 to 4 and Comparative Example 3, and 240°C for Example 5 and Comparative Example 2.
- the setting of this temperature is based on the melting point of the resin with the highest melting point contained in the multilayer film, and is preferably a reference temperature of +10°C or more and 60°C or less, more preferably +15°C or more and 50°C or less, and +20°C or more and 35°C or less. The following are most preferred. If the set temperature is lower than the standard temperature +10°C, unmelted resin tends to remain as foreign matter in the sheet, and if it is higher than the standard temperature +60°C, the molded sheet is likely to be colored due to resin decomposition.
- the resin with the highest melting point in Examples 1 to 4 was EVOH (157°C), PGA in Example 5 (220°C), Co-PET (220°C) in Comparative Example 2, and PVDC (160°C) in Comparative Example 3. ).
- the melting point was measured according to JIS K 7121 using a DSC (differential scanning calorimeter) at a temperature increase rate of 10° C./min.
- the degree of haze (haze value) of the obtained sheet was measured according to JIS K 7136 using a HazeMeter (NDH7000 manufactured by Nippon Denshoku Industries Co., Ltd.) using a light source D65. Further, using the same HazeMeter, silicon was applied to the surface of the film and the internal haze value was measured.
- the b * value of the obtained sheet was measured using a spectrophotometer ("SE7700" manufactured by Nippon Denshoku Kogyo Co., Ltd.) using a light source D65 and a white plate placed on the sheet in accordance with JIS K 7373 by the reflection method. did.
- the b * value was used as an index of yellowness of the sheet.
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
ポリオレフィン系樹脂の質量の割合(質量%)=100×(ポリオレフィン系樹脂を含む層の「密度×厚み」の合計)/(すべての層の「密度×厚み」の合計)
後述の表2において、POの質量の割合(質量%)は「PO質量比(wt%)」として記載した。
ただし、2種以上の樹脂がブレンドされた層の「密度」とは、当該樹脂の密度に当該樹脂の混合比を乗じた密度の和とした。
環状オレフィンコポリマーの質量の割合(%)=100×(COCを含む層の「密度×厚み×COC混合比」の合計)/(すべての層の「密度×厚み」の合計)
後述の表2において、COCの質量の割合(質量%)は「COC質量比(wt%)」として記載した。
ただし、2種以上の樹脂がブレンドされた層の「密度」とは、当該樹脂の密度に当該樹脂の混合比を乗じた密度の和とした。
なお、本発明における「延伸」とは、熱収縮性フィルムの製膜における、二軸延伸の工程を示す。代表的な二軸延伸の方法は、テンター法とインフレーション法が挙げられ、熱収縮性フィルムを製膜する工程は、これらのいずれかの方法に限定はされないが、コストの観点から、特にインフレーション法が好ましい。また、インフレーション法は、管状に押し出された溶融樹脂に直接流体を入れるダイレクト法(ダイレクトインフレーション)と、特許文献2に記載されているような、管状に押し出された溶融樹脂を一度冷却固化して管状体を形成した後、この管状体を適切な温度に加熱し、管状体内部に流体を入れながら縦方向(MD)および横方向(TD)に延伸する工程を含むチューブラー延伸法(チューブラー二軸延伸)に分けられるが、熱収縮性フィルムの製膜方法は、特にチューブラー延伸法が好ましい。熱収縮性フィルムを製膜する工程として、チューブラー延伸法を用いることで、テンター法やダイレクト法と比較して、延伸時の応力が高い傾向にあるため、優れた収縮率の熱収縮性フィルムが製膜できる傾向にある。チューブラー二軸延伸は、製膜工程の中で形成されるバブルの数により、ダブルバブルインフレーション(ダブルバブルプロセス)とトリプルバブルインフレーション(トリプルバブルプロセス)に分けて呼称される場合がある。両者の差は二軸延伸後の熱処理工程の違いであり、どちらの製膜方法も用いることができるが、熱収縮性フィルムの寸法安定性が良好になる傾向があることから、トリプルバブルインフレーションの方がより好ましい。
環状オレフィンの例は、ノルボルネン及びその誘導体(例えば、2-ノルボルネン、5-メチル-2-ノルボルネン);シクロペンタジエン及びその誘導体(例えば、ジシクロペンタジエン、2,3-ジヒドロシクロペンタジエン)などが挙げられるが、これらに限定されるものではない。
環状オレフィン以外のオレフィンの例は、エチレン、プロピレン、ブチレンなどのα-オレフィンなどが挙げられるが、これらに限定されるものではない。
中間層(b)中のガスバリア性樹脂は、エチレン-ビニルアルコール共重合体(以下EVOHと略記することがある)と称されるエチレン-酢酸ビニル共重合体部分ケン化物、グリコール酸(共)重合体樹脂(以下、PGAと略記することがある)、塩化ビニリデン共重合体(以下、PVDCと略記することがある)、ポリビニルアルコール(PVA)、メタキシレンジアミンとアジピン酸との重縮合反応から得られる結晶性ポリアミド(MXD6)、脂肪族ポリアミド(PA)樹脂(例えば、ナイロン6など)、非晶質芳香族ポリアミド系樹脂(例えば、ナイロン6I-6Tなど)、ポリアクリロニトリル系共重合体(PAN)、ポリエチレンテレフタレート(PET)などから選択できる。中間層(b)は、被包装物の酸化劣化を防ぐため優れた酸素に対するバリア性を与える樹脂が好ましい。
また、前記グリコール酸(共)重合体樹脂は、加水分解性を有する樹脂であり、加水分解によりランダムに分子鎖が切断され低分子量化していき、強度が保持できないほど低分子量化すると崩壊し、さらに分子量低下が進むと水に溶解することが知られている。中間層(b)が加水分解した後に本発明の熱収縮性多層フィルムのリサイクルを行うことで、より高いポリオレフィン比率でリサイクルすることが可能であり、リサイクル性の向上が期待できる。
また、前記中間層(b)は、0.5~30μm、特に1~10μmであることが好ましい。ガスバリア性樹脂からなる中間層(b)の厚みが0.5μmより薄いと、酸素バリアの改善効果が乏しい傾向にあり、30μmよりも厚いと多層フィルムの延伸加工が難しくなり、かつマテリアルリサイクル性を阻害する傾向にある。
また、前記内表面層(c)は、必要十分なシール強度を多層フィルムに付与するために、0.5~50μmが好ましく、1~30μmがより好ましい。
また、接着性樹脂層は、複数設けることができるが、各層の厚さは0.5~15μmが好ましい。
なお、前記中間層(b)にグリコール酸(共)重合体樹脂を使用する場合は、酸素ガスバリア性に優れることから、中間層(b)は0.1~30μm、好ましくは0.2~10μmの厚みでもよい。
さらに、本発明の熱収縮性多層フィルムは、フィルムをそのまま溶融混錬機内で混錬後、プレス機を用いて150kgf/cm2の圧力で70~120μmの厚みにシート成形したシートの内部ヘイズ値は、シート厚み100μmあたりの値(HI)として1~80%であることが好ましく、1~75%であることがより好ましい。本発明における内部ヘイズ値(HI)が80%より大きい場合、シートに含まれる樹脂の相溶性が著しく悪い可能性があり、機械特性に劣る傾向にある。
さらに、本発明の熱収縮性多層フィルムは、フィルムをそのまま溶融混錬機内で混錬後、プレス機を用いて150kgf/cm2の圧力で70~120μmの厚みにシート成形したシートの黄色味(b*)値が、シート厚み100μmあたりの値(BY)として1~10、より好ましくは1~8、最も好ましくは1~6であることが望ましい。本発明におけるb*値(BY)は小さい方が好ましく、数値が大きいほど樹脂が分解している傾向にあり、10より大きい場合は、マテリアルリサイクル品の外観を損なう。
なお、フィルムをそのまま溶融混錬機内で混錬後、シート成形し、曇り度(ヘイズ値)、内部ヘイズ値、及び黄色味(b*)値を測定する方法は、後述の実施例に記載の方法が挙げられる。
なお、シート厚み100μmあたりのヘイズ値(HA)、内部ヘイズ値(HI)、b*値(BY)は、以下の計算式から算出できる。
100μmあたりのヘイズ値(HA)=ヘイズ値の測定値×測定したシート厚み(μm)/100
100μmあたりの内部ヘイズ値(HI)=内部ヘイズ値の測定値×測定したシート厚み(μm)/100
100μmあたりのb*値(BY)=b*値の測定値×測定したシート厚み(μm)/100
(1)LLDPE+COC/接着性樹脂/EVOH/接着性樹脂/LLDPE
(2)LLDPE/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC
(3)LLDPE/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC+COC2
(4)LLDPE+COC/接着性樹脂/LLDPE/接着性樹脂/EVOH/接着性樹脂/LLDPE
(5)LLDPE/接着性樹脂/LLDPE+COC/接着性樹脂/EVOH/接着性樹脂/LLDPE
(6)LLDPE/接着性樹脂/LLDPE/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC
(7)LLDPE/接着性樹脂/LLDPE/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC+COC2
(8)LLDPE+COC/接着性樹脂/LLDPE+COC/接着性樹脂/EVOH/接着性樹脂/LLDPE
(9)VLDPE+COC/接着性樹脂/EVOH/接着性樹脂/VLDPE
(10)VLDPE/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC
(11)VLDPE/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC+COC2
(12)VLDPE+COC/接着性樹脂/VLDPE/接着性樹脂/EVOH/接着性樹脂/VLDPE
(13)VLDPE/接着性樹脂/VLDPE+COC/接着性樹脂/EVOH/接着性樹脂/VLDPE
(14)VLDPE/接着性樹脂/VLDPE/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC
(15)VLDPE/接着性樹脂/VLDPE/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC+COC2
(16)VLDPE+COC/接着性樹脂/VLDPE+COC/接着性樹脂/EVOH/接着性樹脂/VLDPE
(17)LLDPE+COC/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/LLDPE
(18)LLDPE/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC
(19)LLDPE/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/LLDPE+COC+COC2
(20)VLDPE+COC/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/VLDPE
(21)VLDPE/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC
(22)VLDPE/接着性樹脂/EVA/接着性樹脂/EVOH/接着性樹脂/VLDPE+COC+COC2
(23)LLDPE/接着性樹脂/LLDPE+COC/接着性樹脂/PGA/接着性樹脂/LLDPE+COC
(24)LLDPE+COC/接着性樹脂/PGA/接着性樹脂/LLDPE
(25)LLDPE/接着性樹脂/PGA/接着性樹脂/LLDPE+COC
(26)LLDPE/接着性樹脂/PGA/接着性樹脂/LLDPE+COC+COC2
(27)LLDPE+COC/接着性樹脂/LLDPE/接着性樹脂/PGA/接着性樹脂/LLDPE
(28)LLDPE/接着性樹脂/LLDPE+COC/接着性樹脂/PGA/接着性樹脂/LLDPE
(29)LLDPE/接着性樹脂/LLDPE/接着性樹脂/PGA/接着性樹脂/LLDPE+COC
(30)LLDPE/接着性樹脂/LLDPE/接着性樹脂/PGA/接着性樹脂/LLDPE+COC+COC2
(31)LLDPE+COC/接着性樹脂/LLDPE+COC/接着性樹脂/PGA/接着性樹脂/LLDPE
(32)VLDPE+COC/接着性樹脂/PGA/接着性樹脂/VLDPE
(33)VLDPE/接着性樹脂/PGA/接着性樹脂/VLDPE+COC
(34)VLDPE/接着性樹脂/PGA/接着性樹脂/VLDPE+COC+COC2
(35)VLDPE+COC/接着性樹脂/VLDPE/接着性樹脂/PGA/接着性樹脂/VLDPE
(36)VLDPE/接着性樹脂/VLDPE+COC/接着性樹脂/PGA/接着性樹脂/VLDPE
(37)VLDPE/接着性樹脂/VLDPE/接着性樹脂/PGA/接着性樹脂/VLDPE+COC
(38)VLDPE/接着性樹脂/VLDPE/接着性樹脂/PGA/接着性樹脂/VLDPE+COC+COC2
(39)VLDPE+COC/接着性樹脂/VLDPE+COC/接着性樹脂/PGA/接着性樹脂/VLDPE
(40)LLDPE+COC/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/LLDPE
(41)LLDPE/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/LLDPE+COC
(42)LLDPE/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/LLDPE+COC+COC2
(43)VLDPE+COC/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/VLDPE
(44)VLDPE/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/VLDPE+COC
(45)VLDPE/接着性樹脂/EVA/接着性樹脂/PGA/接着性樹脂/VLDPE+COC+COC2
溶融された樹脂を管状に共押出し、ポリオレフィン系樹脂を含む外表面層(a)、ガスバリア性樹脂を含む中間層(b)、及びポリオレフィン系樹脂を含む内表面層(c)の少なくとも3層からなる管状体を形成する工程と、
管状体を前記樹脂の融点以下に冷却し、その後管状体を前記樹脂の融点以下の温度に再加熱し、管状体の内部に流体を入れながら管状体を縦方向(MD)に引出しつつ縦方向及び横方向(TD)に延伸して二軸延伸フィルムを形成する工程と、
次いで、二軸延伸フィルムを折り畳み、その後二軸延伸フィルムの内部に流体を入れながら、二軸延伸フィルムの外表面側から熱処理を行い、熱処理と同時に縦方向及び横方向に緩和(収縮)処理する工程を含む方法によって製造することができる。
前記二軸延伸フィルムを形成する工程では、TD方向延伸直前部(図1のαの位置)の管状体の樹脂の表面温度が75~90℃であり、インフレ―ションバブルの下部ショルダー形成部(図1のβの位置)における樹脂の表面温度が、前記TD方向延伸直前部における樹脂の表面温度よりもが5~30℃の範囲で低下することが好ましい。
次に、引き取られた扁平体3a(多層フィルム)に、必要に応じ大豆油、グリセリンの脂肪酸エステル、プロピレングリコールなどに代表される開封剤を内封しつつ、扁平体3aを各層に占める主たる樹脂の融点以下の、例えば75~95℃の温水浴6中に導入して、加熱された扁平体3bを上方に引き出す。
そして、一対のピンチローラ7及び8間に導入した流体空気により、扁平体3bからバブル状の管状体3cを形成させ、10~30℃、5~20m/sのエアリング装置から吹き出る冷却媒体で冷却しながら、機械方向(縦方向、MD)及び機械方向に垂直な方向(横方向、TD)に同時二軸延伸する。
この際、TD方向延伸直前部(図1のαの位置)の管状体3cの表面温度は、赤外線サーモグラフィー(Teledyne FLIR LLC 「FLIR E4」)で、放射率を0.83に設定した計測で75~90℃であることが好ましく、80~88℃であることがより好ましい。前記TD方向延伸直前部の表面温度が、75℃より低い場合、管状体3cの降伏点応力が大きいため、内封された流体空気の内圧が高くなるため延伸が難しくなる傾向にあり、90℃より高い場合、TD方向の延伸を止めることが難しくなる傾向にある。
また、管状体3cの下部ショルダー形成部(図1のβの位置)の表面温度は、前記TD方向延伸直前部(図1のαの位置)より5~30℃の範囲で冷却されることが好ましく、10~20℃の範囲で冷却されることがさらに好ましい。5℃より小さい場合、管状体3cが破裂しやすくなる傾向にあり、30℃より大きい場合、管状体3cの幅が小さくなる傾向にある。
延伸倍率は下記の式に基づき算出し、双方向ともに好ましくは2.0~4.0倍、より好ましくは2.5~3.5倍、特に好ましくは2.8~3.5倍とする。
式1:縦方向(MD)延伸倍率=ピンチローラ8の引き取り速度/ピンチローラ7の引き取り速度
式2:横方向(TD)延伸倍率=扁平体3dの幅/扁平体3bの幅
そして、熱処理中の管状体3eを縦方向(MD)及び横方向(TD)に緩和率が好ましくは2%以上40%以下、より好ましくは5%以上30%以下となるように緩和(収縮)させる。双方向の緩和率は下記の式に基づき算出する。
式3:縦方向(MD)緩和率=(1-(ローラ11の引き取り速度/ローラ10の引き取り速度))×100(%)
式4:横方向(TD)緩和率=(1-(扁平体3fの幅/扁平体3dの幅))×100(%)
のであり、巻き取りロール14に巻き取られる。
インフレーション装置を用い、層構成が外側から内側へ、LLDPE1/MA-g-PE/EVA1/MA-g-PE/EVOH/MA-g-PE/LLDPE1+COC1(50質量%+50質量%)となるように、各樹脂を複数の押出機でそれぞれ押出し、溶融された樹脂を環状ダイに導入し、ここで上記層構成となるように溶融接合し、共押出した。ダイ出口から流出した溶融管状体を水浴中で、10~25℃に急冷し、扁平巾157mm、厚さ270μmの扁平体とした。次いで、該扁平体を90℃±5℃にコントロールされた温水浴中を通過させた後、バブル形状の管状体フィルムとし、20℃、15m/sのエアリングから吹き出る冷却媒体で冷却しながらインフレーション法により縦方向(MD)に2.4倍、横方向(TD)に2.8倍の延伸倍率で同時二軸延伸した。この際、TD方向延伸直前部(図1のαの位置)の管状体の表面温度は80℃であり、管状体の下部ショルダー(図1のβの位置)の温度は65℃であり、前記TD方向延伸直前部の表面温度よりも15℃低い値であった。次いで、該二軸延伸フィルムを、360℃のIR熱処理ヒーターによって縦方向に3%、横方向に6%緩和(収縮)させながら熱処理し、二軸延伸フィルム(熱収縮性多層フィルム)を製造した。得られた二軸延伸フィルムの層構成、全体及び各層の厚み(μm)、全体に占めるポリオレフィン系樹脂及び環状オレフィンコポリマーの質量の割合、インフレーション法による延伸の可否を、他の実施例及び比較例のそれらとともにまとめて表2に示す。なお、比較例3の「※」は電子線架橋層であることを意味し、「延伸可否」の「〇」及び「×」はそれぞれ延伸可能及び延伸不可能であることを意味する。
ここで、表2に記載の実施例1の「PO質量比(wt%)」と「COC質量比(wt%)」の算術計算方法を例示する。
「PO質量比(wt%)」:95≒(100×(0.903×1.4+0.9×1.0+0.94×20.0+0.9×1.0+0.9×1.0+(0.903×0.5+1.01×0.5)×12.0))/(0.903×1.4+0.9×1.0+0.94×20.0+0.9×1.0+1.12×1.6+0.9×1.0+(0.903×0.5+1.01×0.5)×12.0))
「COC質量比(wt%)」:16≒(100×(0.903×0.5+1.01×0.5)×12.0×0.5))/((0.903×1.4+0.9×1.0+0.94×20.0+0.9×1.0+1.12×1.6+0.9×1.0+(0.903×0.5+1.01×0.5)×12.0))
層構成を表2に記載の通りに変更する以外は、実施例1と同様にして、各種二軸延伸フィルム(熱収縮性多層フィルム)を得た。なお、比較例1については、インフレーション法により二軸延伸することができずに、二軸延伸フィルム(熱収縮性多層フィルム)を得ることができなかった。
インフレーション装置を用い、層構成が外側から内側へ、Co-PET/MA-g-PE/PA6+A-PA(85質量%+15質量%)/EVOH/MA-g-PE/VLDPEとなるように、各樹脂を複数の押出機でそれぞれ押出し、溶融された樹脂を環状ダイに導入し、ここで上記層構成となるように溶融接合し、共押出した。ダイ出口から流出した溶融管状体を水浴中で、20℃に急冷し、フィルム状の扁平体とした。次いで、該扁平体を87℃の温水浴中を通過させた後、バブル形状の管状体フィルムとし、22℃のエアリングで冷却しながらインフレーション法により縦方向(MD)に3.0倍、横方向(TD)に3.1倍の延伸倍率で同時二軸延伸した。次いで、該二軸延伸フィルムを、約2mの筒長を有する熱処理塔中に導き、バブル形状の管状体フィルムとし、拭き出口より噴出させたスチームにより70℃に加熱し、縦方向に6%、横方向に6%緩和(収縮)させながら熱処理し、二軸延伸フィルム(熱収縮性多層フィルム)を製造した。
インフレーション装置を用い、層構成が外側から内側へ、VLDPE/EVA2/EMA/PVDC/EMA/EVA2/EVA3となるように、各樹脂を複数の押出機でそれぞれ押出し、溶融された樹脂を環状ダイに導入し、ここで上記層構成となるように溶融接合し、共押出した。ダイ出口から流出した溶融管状体を水浴中で、12℃に急冷し、扁平体とした。次いで、該扁平体を加速電圧300KeVの電子線照射装置中で扁平体の外側から電子線照射して80キログレイの照射線量を与えた。次に、82℃の温水浴中を通過させた後、バブル形状の管状体フィルムとし、15℃以上20℃以下のエアリングで冷却しながらインフレーション法により縦方向(MD)に3.1倍、横方向(TD)3.0倍の延伸倍率で同時二軸延伸し、二軸延伸フィルム(熱収縮性多層フィルム)を製造した。
以下の方法によって、実施例及び比較例で得られた熱収縮性多層フィルムの突刺し強さ、熱水収縮率、引張弾性率、及びマテリアルリサイクル性を測定した。突刺し強さは、フィルムの内表面層側から測定した。測定により得られた数値を表2に示す。
JIS Z 1707に準拠し、23℃、50%RHの雰囲気下において、曲率半径0.5mmの半球状先端部を有する突刺し用ピンを取り付けたテンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)を用いて、該突刺しピンを50mm/minの速度で、固定した試料の内表面層から突刺し、破断に至るまでの最大点の測定値(N)を厚み(μm)で割った値を、内表面層側からの突刺し強さとした。
フィルムの機械方向(縦方向、MD)及び機械方向に垂直な方向(横方向、TD)に10cmの距離で印をつけたフィルム試料を、80℃に調整した熱水に10秒間浸した後、取り出し、直ちに常温(25±5℃)の水で冷却した。その後、印をつけた距離を測定し、10cmからの減少値の元長10cmに対する割合を縦及び横方向についてそれぞれ百分率で表示した。1試料について5回試験を行い、縦方向(MD)及び横方向(TD)のそれぞれについての平均値を求め、熱水収縮率とした。
JIS K 7127に準拠し、23℃、50%RHの雰囲気下において、巾20mm、長さ130mmの短冊状のフィルム試料を、テンシロン万能材料試験機(オリエンテック社製「RTC-1210型」)にチャック間100mmになるように装着し、フィルムの機械方向(縦方向、MD)及び機械方向に垂直な方向(横方向、TD)に引張速度10mm/minで5mm伸長し、その際のひずみと荷重を測定した。得られたひずみと荷重から、JIS K 7161に従い、引張弾性率を計算した。
実施例1~5、比較例2及び3の熱収縮性多層フィルムを、混練・押出成形評価試験装置ラボプラストミル(東洋精機製作所社製「4C150型」)に投入し、ミキサー回転速度50rpm、混錬時間3分間で溶融混錬した。混錬終了後、溶融樹脂を竹べらなどで5g回収し、下から順に厚み400μmのSUS板、厚み250μmのPTFE含浸ガラスクロスシート、前記溶融混錬物5g、厚み250μmのPTFE含浸ガラスクロスシート、厚み400μmのSUS板となるように重ねてプレス用試料とした。この試料を圧縮(プレス)成型機(金藤金属工業製「AYSR.5」)にて、予熱時間1分間、加圧時間1分間、圧力150kgf/cm2でプレス成型し、シートを製膜し、各シートの厚みを測定したところ、実施例1が97μm、実施例2が110μm、実施例3が104μm、実施例4が100μm、実施例5が83μm、比較例2が84μm、比較例3が115μmとなった。ラボプラストミル及び圧縮成形時の際の温度は、実施例1~4及び比較例3は190℃、実施例5と比較例2は240℃とした。この温度の設定は、多層フィルム中に含まれる、最も融点が高い樹脂の融点を基準として、基準温度+10℃以上60℃以下が好ましく、+15℃以上50℃以下がさらに好ましく、+20℃以上35℃以下が最も好ましい。設定温度が基準温度+10℃より低いと、未溶融の樹脂がシート内に異物として残留する傾向にあり、基準温度+60℃より高いと、樹脂の分解により成形したシートが着色しやすくなる。なお、実施例1~4で最も融点が高い樹脂はEVOH(157℃)、実施例5ではPGA(220℃)、比較例2ではCo-PET(220℃)、比較例3ではPVDC(160℃)である。融点は、JIS K 7121に準拠してDSC(示差走査熱量計)により昇温速度10℃/minの条件で測定した。得られたシートの曇り度(ヘイズ値)を、HazeMeter(日本電色工業社製「NDH7000」)を用いて、光源D65を使用し、JIS K 7136に準じて測定した。また、同HazeMeterを用いて、フィルムの表面にシリコンを塗布して内部ヘイズ値を測定した。さらに、得られたシートのb*値を、Spectrophotometer(日本電色工業社製「SE7700」)を用いて、光源D65を使用し、JIS K 7373に準拠しシートに白板を載せて反射法により測定した。b*値は、シートの黄色味の指標とした。
Claims (6)
- ポリオレフィン系樹脂を含む外表面層(a)、ガスバリア性樹脂を含む中間層(b)、及びポリオレフィン系樹脂を含む内表面層(c)の少なくとも3層からなる多層フィルムであって、
前記多層フィルムの少なくとも1層に環状オレフィンコポリマーを含み、
前記多層フィルムの全質量を100質量%とした時に、
前記多層フィルムに占める前記ポリオレフィン系樹脂の質量の割合が80質量%以上であり、かつ、
前記多層フィルムに占める前記環状オレフィンコポリマーの質量の割合が15質量%以上である熱収縮性多層フィルム。 - 前記外表面層(a)及び/又は前記内表面層(c)中のポリオレフィン系樹脂が、超低密度ポリエチレン及び直鎖状低密度ポリエチレンからなる群から選択される少なくとも1種と、環状オレフィンコポリマーとを含む請求項1に記載の熱収縮性多層フィルム。
- 前記環状オレフィンコポリマーが、ガラス転移温度が50~68℃である環状オレフィンコポリマーと、ガラス転移温度が-10~20℃である環状オレフィンコポリマーとの何れか又は両方を含有する請求項2に記載の熱収縮性多層フィルム。
- 前記中間層(b)のガスバリア性樹脂が、エチレン-酢酸ビニル共重合体部分ケン化物、及び、グリコール酸(共)重合体樹脂からなる群から選択される少なくとも1種を含む請求項1に記載の熱収縮性多層フィルム。
- 横方向(TD)の引張弾性率が200~600MPaである請求項1に記載の熱収縮性多層フィルム。
- 請求項1~4のいずれか1項に記載の熱収縮性多層フィルムの製造方法であって、
TD方向延伸直前部の樹脂の表面温度が75~90℃であり、
インフレ―ションバブルの下部ショルダー形成部における樹脂の表面温度が、前記TD方向延伸直前部における樹脂の表面温度よりも5~30℃の範囲で低下する熱収縮性多層フィルムの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024517901A JPWO2023210213A1 (ja) | 2022-04-28 | 2023-03-22 | |
CN202380030796.2A CN118946461A (zh) | 2022-04-28 | 2023-03-22 | 热收缩性多层膜及其制造方法 |
EP23795960.6A EP4516503A1 (en) | 2022-04-28 | 2023-03-22 | Thermally shrinkable multilayer film and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-074263 | 2022-04-28 | ||
JP2022074263 | 2022-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023210213A1 true WO2023210213A1 (ja) | 2023-11-02 |
Family
ID=88518668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/011242 WO2023210213A1 (ja) | 2022-04-28 | 2023-03-22 | 熱収縮性多層フィルム、及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4516503A1 (ja) |
JP (1) | JPWO2023210213A1 (ja) |
CN (1) | CN118946461A (ja) |
WO (1) | WO2023210213A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201987A (ja) * | 2004-01-13 | 2005-07-28 | Fuji Seal International Inc | ストレッチシュリンクラベル |
JP2005313389A (ja) * | 2004-04-27 | 2005-11-10 | Asahi Kasei Life & Living Corp | 熱収縮性バリアフィルム |
JP2006272775A (ja) * | 2005-03-29 | 2006-10-12 | Mitsubishi Plastics Ind Ltd | 熱収縮性ポリオレフィン系積層フィルム、熱収縮性ラベル及び該ラベルを装着した容器 |
JP2007160573A (ja) * | 2005-12-09 | 2007-06-28 | Kureha Corp | 熱収縮性延伸多層フィルム、並びにそれを用いた包装材及び包装体 |
JP2007160574A (ja) * | 2005-12-09 | 2007-06-28 | Kureha Corp | 深絞り成形用熱収縮性多層フィルム及びその製造方法 |
WO2007094144A1 (ja) | 2006-02-16 | 2007-08-23 | Kureha Corporation | 熱収縮性多層フィルム及びそれを用いた包装材 |
JP2008062493A (ja) * | 2006-09-07 | 2008-03-21 | Fuji Seal International Inc | オレフィン系シュリンクフィルム |
WO2013121874A1 (ja) | 2012-02-16 | 2013-08-22 | 株式会社クレハ | 熱収縮性多層フィルム |
JP2015512801A (ja) | 2012-01-31 | 2015-04-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 環状オレフィンコポリマーを含む多層フィルム |
JP2016182674A (ja) * | 2015-03-25 | 2016-10-20 | 株式会社フジシールインターナショナル | シュリンクフィルム |
JP2020026104A (ja) * | 2018-08-14 | 2020-02-20 | 三菱ケミカル株式会社 | 熱収縮性積層フィルム、包装資材、成形品及び容器 |
-
2023
- 2023-03-22 EP EP23795960.6A patent/EP4516503A1/en active Pending
- 2023-03-22 CN CN202380030796.2A patent/CN118946461A/zh active Pending
- 2023-03-22 JP JP2024517901A patent/JPWO2023210213A1/ja active Pending
- 2023-03-22 WO PCT/JP2023/011242 patent/WO2023210213A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201987A (ja) * | 2004-01-13 | 2005-07-28 | Fuji Seal International Inc | ストレッチシュリンクラベル |
JP2005313389A (ja) * | 2004-04-27 | 2005-11-10 | Asahi Kasei Life & Living Corp | 熱収縮性バリアフィルム |
JP2006272775A (ja) * | 2005-03-29 | 2006-10-12 | Mitsubishi Plastics Ind Ltd | 熱収縮性ポリオレフィン系積層フィルム、熱収縮性ラベル及び該ラベルを装着した容器 |
JP2007160573A (ja) * | 2005-12-09 | 2007-06-28 | Kureha Corp | 熱収縮性延伸多層フィルム、並びにそれを用いた包装材及び包装体 |
JP2007160574A (ja) * | 2005-12-09 | 2007-06-28 | Kureha Corp | 深絞り成形用熱収縮性多層フィルム及びその製造方法 |
WO2007094144A1 (ja) | 2006-02-16 | 2007-08-23 | Kureha Corporation | 熱収縮性多層フィルム及びそれを用いた包装材 |
JP2008062493A (ja) * | 2006-09-07 | 2008-03-21 | Fuji Seal International Inc | オレフィン系シュリンクフィルム |
JP2015512801A (ja) | 2012-01-31 | 2015-04-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | 環状オレフィンコポリマーを含む多層フィルム |
WO2013121874A1 (ja) | 2012-02-16 | 2013-08-22 | 株式会社クレハ | 熱収縮性多層フィルム |
JP2016182674A (ja) * | 2015-03-25 | 2016-10-20 | 株式会社フジシールインターナショナル | シュリンクフィルム |
JP2020026104A (ja) * | 2018-08-14 | 2020-02-20 | 三菱ケミカル株式会社 | 熱収縮性積層フィルム、包装資材、成形品及び容器 |
Also Published As
Publication number | Publication date |
---|---|
CN118946461A (zh) | 2024-11-12 |
JPWO2023210213A1 (ja) | 2023-11-02 |
EP4516503A1 (en) | 2025-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4931319B2 (ja) | 低温耐衝撃性ポリアミド系延伸配向多層フィルムおよびその製造方法 | |
JP5956115B2 (ja) | 二軸延伸ポリブチレンテレフタレート系フィルムを含むレトルト用包材 | |
JPH0521743B2 (ja) | ||
JP6350276B2 (ja) | 二軸配向ポリアミド系樹脂フィルム | |
JPH0588674B2 (ja) | ||
EP2521651B1 (en) | Heat-shrinkable multi-layer film for deep-draw forming, and process for production thereof | |
JP2006525143A (ja) | シール適性である包装用の同時押出多層フィルム、その使用、およびその製造方法 | |
JP4553482B2 (ja) | 深絞り成形用フィルム | |
JP5315599B2 (ja) | 樹脂組成物および多層構造物 | |
JPH0645225B2 (ja) | 積層構造物 | |
EP2164898B1 (en) | Evoh blend providing improved oxygen resistance | |
JP6050574B2 (ja) | 二軸延伸ポリブチレンテレフタレート系フィルムを含む冷間成形用プレススルーパック包材 | |
JPH0471701B2 (ja) | ||
JPWO2004000934A1 (ja) | 樹脂組成物およびその多層構造体 | |
JPH0459353A (ja) | 包装用積層フィルム | |
WO2023210213A1 (ja) | 熱収縮性多層フィルム、及びその製造方法 | |
JP4817858B2 (ja) | 蓋材 | |
JP4889075B2 (ja) | 深絞り包装用多層フィルムおよびそれからなる深絞り包装用容器 | |
WO2023008364A1 (ja) | 積層フィルム及び包装袋 | |
JP7217455B2 (ja) | 二軸延伸ポリブチレンテレフタレート系フィルムを含む深絞り包装用蓋材 | |
JP2000212369A (ja) | 樹脂組成物およびその用途 | |
JP7194925B2 (ja) | 二軸延伸ポリブチレンテレフタレートフィルムを含む真空成形用又は真空圧空成形用包材 | |
JPH036425Y2 (ja) | ||
JP2007246121A (ja) | 容器包装体の製造方法 | |
JP6018754B2 (ja) | レトルトパウチ用包装材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23795960 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024517901 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380030796.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023795960 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023795960 Country of ref document: EP Effective date: 20241128 |