[go: up one dir, main page]

WO2023190031A1 - Excavator, control system for excavator, and remote operation system for excavator - Google Patents

Excavator, control system for excavator, and remote operation system for excavator Download PDF

Info

Publication number
WO2023190031A1
WO2023190031A1 PCT/JP2023/011501 JP2023011501W WO2023190031A1 WO 2023190031 A1 WO2023190031 A1 WO 2023190031A1 JP 2023011501 W JP2023011501 W JP 2023011501W WO 2023190031 A1 WO2023190031 A1 WO 2023190031A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
excavator
controller
movement
attachment
Prior art date
Application number
PCT/JP2023/011501
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 塚本
和俊 橋本
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to EP23780042.0A priority Critical patent/EP4502300A1/en
Priority to CN202380016727.6A priority patent/CN118541525A/en
Priority to KR1020247022357A priority patent/KR20240168295A/en
Priority to JP2024512268A priority patent/JPWO2023190031A1/ja
Publication of WO2023190031A1 publication Critical patent/WO2023190031A1/en
Priority to US18/895,890 priority patent/US20250012052A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present disclosure relates to a shovel, a shovel control system, and a shovel remote control system.
  • An excavator includes a lower traveling body, an upper rotating body mounted on the lower traveling body, an attachment mounted on the upper rotating body, and a control device mounted on the upper rotating body. , an actuator for moving the attachment, and the control device is configured to control movement of the actuator at a predetermined work site.
  • the above-mentioned shovel can more reliably prevent contact between the attachment and objects existing around the attachment.
  • FIG. 1 is a side view of an excavator according to an embodiment of the present disclosure.
  • FIG. 1 is a top view of an excavator according to an embodiment of the present disclosure. It is a diagram showing an example of the configuration of a hydraulic system mounted on an excavator.
  • FIG. 3 is a diagram of a portion of the hydraulic system related to the operation of the arm cylinder.
  • FIG. 3 is a diagram showing a configuration example of a discharge amount control function. It is a figure explaining an example of the contents of a reference table. 3 is a flowchart of an example of operation restriction processing.
  • FIG. 7 is a diagram illustrating another example of the contents of a reference table.
  • FIG. 2 is a perspective view of an excavator performing crane work.
  • FIG. 2 is a side view of an excavator performing deep digging work. It is a figure which shows an example of an operating state screen. It is a figure which shows another example of an operating state screen.
  • FIG. 1 is a schematic diagram showing a configuration example of a control system for an excavator.
  • FIG. 1 is a side view of the shovel 100
  • FIG. 2 is a top view of the shovel 100.
  • the lower traveling body 1 of the excavator 100 includes a crawler 1C as a driven body.
  • the crawler 1C is driven by a traveling hydraulic motor 2M mounted on the lower traveling body 1.
  • the traveling hydraulic motor 2M may be a traveling motor generator serving as an electric actuator.
  • the crawler 1C includes a left crawler 1CL and a right crawler 1CR.
  • the left crawler 1CL is driven by a left travel hydraulic motor 2ML
  • the right crawler 1CR is driven by a right travel hydraulic motor 2MR. Since the lower traveling body 1 is driven by the crawler 1C, it functions as a driven body.
  • An upper rotating body 3 is rotatably mounted on the lower traveling body 1 via a rotating mechanism 2.
  • the swing mechanism 2 as a driven body is driven by a swing hydraulic motor 2A mounted on the upper swing structure 3.
  • the swing hydraulic motor 2A may be a swing motor generator serving as an electric actuator.
  • the upper rotating body 3 is driven by the rotating mechanism 2, and thus functions as a driven body.
  • a boom 4 as a driven body is attached to the upper revolving body 3.
  • An arm 5 as a driven body is attached to the tip of the boom 4, and a bucket 6 as a driven body and an end attachment is attached to the tip of the arm 5.
  • the end attachment is a member attached to the tip of the arm 5, and may be a breaker, a grapple, a lifting magnet, or the like.
  • the boom 4, the arm 5, and the bucket 6 constitute a digging attachment that is an example of the attachment AT.
  • the boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9.
  • a boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1 detects the rotation angle of the boom 4.
  • the boom angle sensor S1 is an acceleration sensor, and can detect a boom angle that is a rotation angle of the boom 4 with respect to the upper rotating structure 3. For example, the boom angle becomes the minimum angle when the boom 4 is lowered the most, and increases as the boom 4 is raised.
  • the arm angle sensor S2 detects the rotation angle of the arm 5.
  • the arm angle sensor S2 is an acceleration sensor, and can detect the arm angle, which is the rotation angle of the arm 5 with respect to the boom 4. For example, the arm angle becomes the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.
  • the bucket angle sensor S3 detects the rotation angle of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor, and can detect the bucket angle, which is the rotation angle of the bucket 6 with respect to the arm 5. For example, the bucket angle becomes the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.
  • the boom angle sensor S1, arm angle sensor S2, and bucket angle sensor S3 each include a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotary encoder that detects the rotation angle around the connecting pin. , a gyro sensor, a combination of an acceleration sensor and a gyro sensor, or the like.
  • the upper revolving body 3 is provided with a cabin 10 as a driver's cab, and is equipped with a power source such as an engine 11.
  • the power source may be a hydrogen engine or an electric motor.
  • an outdoor alarm 45A, an object detection device 70, a positioning device 85, a body tilt sensor S4, a turning angular velocity sensor S5, and the like are attached to the upper revolving body 3.
  • an operating device 26, a controller 30, a display device 40, an indoor alarm 45B, and the like are provided inside the cabin 10, an operating device 26, a controller 30, a display device 40, an indoor alarm 45B, and the like are provided.
  • the side of the upper revolving structure 3 to which the boom 4 is attached is referred to as the front
  • the side to which the counterweight is attached is referred to as the rear.
  • the controller 30 is an example of a processing circuit, and functions as a control device for controlling the excavator 100.
  • the controller 30 is composed of a computer including a CPU, RAM, NVRAM, ROM, and the like. Then, the controller 30 reads a program corresponding to each function from the ROM, loads it into the RAM, and causes the CPU to execute the corresponding process.
  • the display device 40 is configured to display image information.
  • the display device 40 is an organic EL display, and is configured to be able to present image information to the operator of the shovel 100.
  • the outdoor alarm 45A is configured to output sound toward the outside of the cabin 10.
  • the outdoor alarm 45A is an outdoor speaker and is configured to output a sound to draw the attention of workers working around the shovel 100.
  • the indoor alarm 45B is configured to output sound toward the interior of the cabin 10.
  • the indoor alarm 45B is an indoor speaker and is configured to output a sound to draw the attention of the operator operating the shovel 100.
  • the object detection device 70 is configured to detect objects existing around the excavator 100.
  • the object is, for example, a person, an animal, a vehicle, a construction machine, a building, or a hole.
  • the object detection device 70 is, for example, an ultrasonic sensor, a millimeter wave radar, an imaging device, an infrared sensor, or the like.
  • the imaging device is, for example, a monocular camera, a stereo camera, a LIDAR, or a distance image sensor.
  • the object detection device 70 includes an attachment camera 70A attached to the attachment AT, a rear camera 70B attached to the rear end of the upper surface of the upper rotating body 3, a front camera 70F attached to the front end of the upper surface of the cabin 10, It includes a left camera 70L attached to the left end of the upper surface of the upper revolving structure 3, and a right camera 70R attached to the right end of the upper surface of the upper revolving structure 3.
  • the attachment cameras 70A include a first camera 70A1 attached to the bucket cylinder 9, a second camera 70A2 attached to the left side of the arm 5, and a third camera 70A3 attached to the right side of the arm 5. including.
  • the attachment camera 70A may be any one or two of the first camera 70A1 to third camera 70A3, and may include a camera attached to the back of the arm 5.
  • the device may include a camera attached to the ventral surface of the device.
  • the attachment camera 70A may be omitted.
  • the object detection device 70 may be configured to be able to detect a predetermined object (for example, a person) within a predetermined area set around the excavator 100.
  • a predetermined object for example, a person
  • the object detection device 70 may be configured to be able to distinguish between humans and objects other than humans and detect them.
  • the positioning device 85 is configured to measure the position of the excavator 100.
  • the positioning device 85 is a GNSS receiver incorporating an electronic compass, and calculates and outputs the latitude, longitude, and altitude of the excavator 100 based on the received GNSS signal, and also calculates and outputs the latitude, longitude, and altitude of the excavator 100. Calculate and output.
  • the body inclination sensor S4 is configured to detect the inclination of the upper revolving body 3 with respect to a predetermined plane.
  • the body inclination sensor S4 is an acceleration sensor that detects the inclination angle around the longitudinal axis and the inclination angle around the left-right axis of the upper rotating structure 3 with respect to the horizontal plane.
  • the longitudinal axis and the lateral axis of the upper revolving body 3 are orthogonal to each other and pass through the center point of the shovel, which is a point on the pivot axis of the shovel 100.
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper rotating structure 3.
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like.
  • the turning angular velocity sensor S5 may be configured to output at least one of the turning speed and the turning angle. In this case, at least one of the turning speed and the turning angle may be calculated from the turning angular velocity.
  • attitude sensor S1 any combination of boom angle sensor S1, arm angle sensor S2, bucket angle sensor S3, body tilt sensor S4, and turning angular velocity sensor S5 will also be collectively referred to as attitude sensor.
  • FIG. 3 is a diagram showing a configuration example of a hydraulic system mounted on the excavator 100.
  • FIG. 3 shows the mechanical power transmission system, hydraulic oil lines, pilot lines, and electrical control system as double lines, solid lines, dashed lines, and dotted lines, respectively.
  • the hydraulic system of the excavator 100 mainly includes an engine 11, a pump regulator 13, a main pump 14, a pilot pump 15, a control valve unit 17, an operating device 26, a discharge pressure sensor 28, an operating sensor 29, a controller 30, and a control valve 60. Including etc.
  • the hydraulic system circulates hydraulic oil from a main pump 14 driven by an engine 11 to a hydraulic oil tank via a center bypass line CB or a parallel line PC.
  • the engine 11 is a driving source for the excavator 100.
  • the engine 11 is, for example, a diesel engine that operates to maintain a predetermined rotation speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15, respectively.
  • the main pump 14 is configured to supply hydraulic oil to the control valve unit 17 via a hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the pump regulator 13 is configured to control the discharge amount of the main pump 14.
  • the pump regulator 13 controls the discharge amount (displaced volume) of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 in accordance with a control command from the controller 30.
  • the pilot pump 15 is configured to supply hydraulic oil to hydraulic control equipment including the operating device 26 via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pump 15 may be omitted.
  • the functions performed by the pilot pump 15 may be realized by the main pump 14. That is, in addition to the function of supplying hydraulic oil to the control valve unit 17, the main pump 14 also operates the operating device 26, the proportional valve 31 (see FIG. 4), etc. after reducing the pressure of the hydraulic oil by throttling or the like. It may also have a function of supplying oil.
  • the control valve unit 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • control valve unit 17 includes control valves 171-176.
  • the control valve 175 includes a control valve 175L and a control valve 175R
  • the control valve 176 includes a control valve 176L and a control valve 1756.
  • the control valve unit 17 can selectively supply the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control the flow rate of hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left travel hydraulic motor 2ML, a right travel hydraulic motor 2MR, and a swing hydraulic motor 2A.
  • the operating device 26 is a device used by the operator to operate the actuator.
  • the actuator includes at least one of a hydraulic actuator and an electric actuator.
  • the operating device 26 supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the pilot line.
  • the pressure (pilot pressure) of the hydraulic fluid supplied to each of the pilot ports is a pressure that corresponds to the direction and amount of operation of the lever or pedal (not shown) of the operating device 26 corresponding to each of the hydraulic actuators. It is.
  • the discharge pressure sensor 28 is configured to detect the discharge pressure of the main pump 14. In this embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operation sensor 29 is configured to detect the content of the operation of the operating device 26 by the operator.
  • the operation sensor 29 is an angle sensor that detects the operation direction and operation amount of the lever or pedal of the operation device 26 corresponding to each of the actuators in the form of an angle, and sends the detected value to the controller 30. Output.
  • the operation details of the operating device 26 may be detected using a sensor other than the angle sensor.
  • the main pump 14 includes a left main pump 14L and a right main pump 14R.
  • the left main pump 14L circulates the hydraulic oil to the hydraulic oil tank via the left center bypass line CBL or the left parallel line PCL
  • the right main pump 14R circulates the hydraulic oil through the right center bypass line CBR or the right parallel line PCR.
  • the hydraulic oil is circulated through to the hydraulic oil tank.
  • the left center bypass line CBL is a hydraulic oil line that passes through the control valves 171, 173, 175L, and 176L arranged in the control valve unit 17.
  • the right center bypass line CBR is a hydraulic oil line that passes through control valves 172, 174, 175R, and 176R arranged in the control valve unit 17.
  • the control valve 171 supplies the hydraulic oil discharged by the left main pump 14L to the left travel hydraulic motor 2ML, and discharges the hydraulic oil discharged by the left travel hydraulic motor 2ML to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 172 supplies the hydraulic oil discharged by the right main pump 14R to the right traveling hydraulic motor 2MR, and discharges the hydraulic oil discharged by the right traveling hydraulic motor 2MR to the hydraulic oil tank. It is a spool valve that switches the flow.
  • the control valve 173 controls the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the swing hydraulic motor 2A, and to discharge the hydraulic oil discharged by the swing hydraulic motor 2A to the hydraulic oil tank. It is a switching spool valve.
  • the control valve 174 is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the bucket cylinder 9 and to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .
  • the control valve 175L is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged by the left main pump 14L to the boom cylinder 7.
  • the control valve 175R is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the boom cylinder 7 and to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .
  • the control valve 176L is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the arm cylinder 8 and to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the control valve 176R is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the arm cylinder 8 and to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .
  • the left parallel line PCL is a hydraulic oil line parallel to the left center bypass line CBL.
  • the left parallel line PCL supplies hydraulic oil to a downstream control valve when the flow of hydraulic oil through the left center bypass line CBL is restricted or blocked by any of the control valves 171, 173, or 175L.
  • the right parallel pipe PCR is a hydraulic oil line parallel to the right center bypass pipe CBR.
  • the right parallel line PCR supplies hydraulic oil to a more downstream control valve when the flow of hydraulic oil through the right center bypass line CBR is restricted or blocked by any of the control valves 172, 174, or 175R. can.
  • the pump regulator 13 includes a left pump regulator 13L and a right pump regulator 13R.
  • the left pump regulator 13L controls the discharge amount (displaced volume) of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the discharge pressure of the left main pump 14L.
  • the left pump regulator 13L adjusts the swash plate tilt angle of the left main pump 14L to reduce the discharge amount (displaced volume), for example, in response to an increase in the discharge pressure of the left main pump 14L.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R, and a travel lever 26D.
  • the travel lever 26D includes a left travel lever 26DL and a right travel lever 26DR.
  • the left operating lever 26L is used for turning operations and operating the arm 5.
  • the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 176 using hydraulic oil discharged by the pilot pump 15.
  • a control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 173 using hydraulic oil discharged by the pilot pump 15 .
  • hydraulic oil is introduced into the right pilot port of the control valve 176L, and hydraulic oil is introduced into the left pilot port of the control valve 176R.
  • hydraulic oil is introduced into the left pilot port of the control valve 176L, and hydraulic oil is introduced into the right pilot port of the control valve 176R.
  • hydraulic oil is introduced into the left pilot port of the control valve 173, and when it is operated in the right rotation direction, the right pilot port of the control valve 173 is introduced. introduce hydraulic oil.
  • the right operating lever 26R is used to operate the boom 4 and the bucket 6.
  • the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 175 using hydraulic oil discharged by the pilot pump 15.
  • a control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 174 using hydraulic oil discharged by the pilot pump 15 .
  • hydraulic oil is introduced into the right pilot port of the control valve 175R.
  • hydraulic oil is introduced into the right pilot port of the control valve 175L, and hydraulic oil is introduced into the left pilot port of the control valve 175R.
  • the right operating lever 26R causes hydraulic oil to be introduced into the right pilot port of the control valve 174 when operated in the bucket closing direction, and into the left pilot port of the control valve 174 when operated in the bucket opening direction. Introduce hydraulic oil.
  • the travel lever 26D is used to operate the crawler 1C.
  • the left travel lever 26DL is used to operate the left crawler 1CL.
  • the left travel lever 26DL may be configured to work in conjunction with a left travel pedal.
  • the control pressure corresponding to the lever operation amount is introduced into the pilot port of the control valve 171 using hydraulic oil discharged by the pilot pump 15.
  • the right travel lever 26DR is used to operate the right crawler 1CR.
  • the right travel lever 26DR may be configured to work in conjunction with the right travel pedal.
  • the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 172 using hydraulic oil discharged by the pilot pump 15.
  • the discharge pressure sensor 28 includes a left discharge pressure sensor 28L and a right discharge pressure sensor 28R.
  • the left discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30. The same applies to the right discharge pressure sensor 28R.
  • the operation sensor 29 includes operation sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR.
  • the operation sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30.
  • the operation details include, for example, the direction of lever operation and the amount of lever operation (lever operation angle).
  • the operation sensor 29LB detects in the form of an angle the content of the left-right direction operation of the left operation lever 26L by the operator, and outputs the detected value to the controller 30.
  • the operation sensor 29RA detects the content of the operation of the right operation lever 26R by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30.
  • the operation sensor 29RB detects in the form of an angle the content of the operation of the right operation lever 26R by the operator in the left-right direction, and outputs the detected value to the controller 30.
  • the operation sensor 29DL detects the content of the operation of the left running lever 26DL by the operator in the front-rear direction in the form of an angle, and outputs the detected value to the controller 30.
  • the operation sensor 29DR detects the content of the operation of the right traveling lever 26DR by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30.
  • the controller 30 receives the output of the operation sensor 29, outputs a control command to the pump regulator 13 as necessary, and changes the discharge amount of the main pump 14.
  • the aperture 18 includes a left aperture 18L and a right aperture 18R
  • the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.
  • a left throttle 18L is arranged between the most downstream control valve 176L and the hydraulic oil tank. Therefore, the flow of the hydraulic oil discharged by the left main pump 14L is restricted by the left throttle 18L.
  • the left throttle 18L generates a control pressure for controlling the left pump regulator 13L.
  • the left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30.
  • the controller 30 controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to this control pressure.
  • the controller 30 decreases the discharge amount of the left main pump 14L as the control pressure becomes larger, and increases the discharge amount of the left main pump 14L as the control pressure becomes smaller.
  • the discharge amount of the right main pump 14R is similarly controlled.
  • the hydraulic oil discharged by the left main pump 14L passes through the left center bypass pipe CBL and flows to the left side.
  • the aperture reaches 18L.
  • the flow of hydraulic oil discharged by the left main pump 14L increases the control pressure generated upstream of the left throttle 18L.
  • the controller 30 reduces the discharge amount of the left main pump 14L to the minimum allowable discharge amount, and suppresses pressure loss (pumping loss) when the discharged hydraulic fluid passes through the left center bypass pipe CBL.
  • the hydraulic oil discharged by the left main pump 14L flows into the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. Then, the flow of hydraulic oil discharged by the left main pump 14L reduces or disappears in the amount reaching the left throttle 18L, thereby lowering the control pressure generated upstream of the left throttle 18L.
  • the controller 30 increases the discharge amount of the left main pump 14L, allows sufficient hydraulic oil to flow into the hydraulic actuator to be operated, and ensures the drive of the hydraulic actuator to be operated. Note that the controller 30 similarly controls the discharge amount of the right main pump 14R.
  • the hydraulic system of FIG. 3 can suppress wasteful energy consumption in the main pump 14 in the standby state.
  • the wasteful energy consumption includes pumping loss caused by the hydraulic fluid discharged by the main pump 14 in the center bypass pipe CB.
  • the hydraulic system shown in FIG. 3 can reliably supply necessary and sufficient hydraulic oil from the main pump 14 to the hydraulic actuator to be operated.
  • the control valve 60 is configured to switch the operating device 26 between a valid state and a disabled state.
  • the valid state of the operating device 26 is a state in which the operator can move the related driven body by operating the operating device 26, and the disabled state of the operating device 26 is a state in which the operator can move the related driven body by operating the operating device 26. It is in a state where the related driven body cannot be moved even if the
  • control valve 60 is a solenoid valve that can switch between a communication state and a cutoff state of the pilot line CD1 that connects the pilot pump 15 and the operating device 26.
  • control valve 60 is configured to switch the pilot line CD1 between a communication state and a cutoff state in response to a command from the controller 30.
  • the control valve 60 may be configured to operate in conjunction with a gate lock lever (not shown). Specifically, the pilot line CD1 may be configured to be in a cutoff state when the gate lock lever is pushed down, and to be in a communication state when the gate lock lever is pulled up. However, the control valve 60 may be a different electromagnetic valve from the electromagnetic valve that can switch between a communication state and a cutoff state of the pilot line CD1 in conjunction with the gate lock lever.
  • FIG. 4 is a diagram showing a part of the hydraulic system. Specifically, FIG. 4 is an extracted diagram of the hydraulic system portion related to the operation of the arm cylinder 8. As shown in FIG. Note that the following explanation with reference to FIG. 4 relates to the operation of the arm cylinder 8, but it also applies to the boom cylinder 7, the bucket cylinder 9, the swing hydraulic motor 2A, the left travel hydraulic motor 2ML, the right travel hydraulic motor 2MR, etc. The same applies to the operation of other actuators.
  • the hydraulic system includes a proportional valve 31.
  • Proportional valve 31 includes proportional valves 31AL and 31AR.
  • the proportional valve 31 functions as a control valve for machine control.
  • the proportional valve 31 is arranged in a conduit connecting the pilot pump 15 and a pilot port of a corresponding control valve in the control valve unit 17, and is configured to be able to change the flow area of the conduit.
  • the proportional valve 31 operates according to a control command output by the controller 30. Therefore, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the proportional valve 31, regardless of the operation of the operating device 26 by the operator. can.
  • the controller 30 can then cause the pilot pressure generated by the proportional valve 31 to act on the pilot port of the corresponding control valve.
  • the controller 30 can operate the hydraulic actuator corresponding to the specific operating device 26 even when the specific operating device 26 is not operated. Further, even if a specific operating device 26 is being operated, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to that specific operating device 26.
  • the left operating lever 26L is used to operate the arm 5. Specifically, the left operating lever 26L uses the hydraulic oil discharged by the pilot pump 15 to apply pilot pressure to the pilot port of the control valve 176 in accordance with the operation in the longitudinal direction. More specifically, when the left operating lever 26L is operated in the arm closing direction (rearward direction), the left operating lever 26L applies pilot pressure according to the operating amount to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R. Let it work. Further, when the left operating lever 26L is operated in the arm opening direction (forward direction), a pilot pressure corresponding to the operating amount is applied to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.
  • the operating device 26 is provided with a switch SW1.
  • the switch SW1 is a push button switch provided at the tip of the left operating lever 26L. The operator can operate the left operating lever 26L while pressing the switch SW1.
  • the switch SW1 may be provided on the right operating lever 26R, or may be provided at another position within the cabin 10.
  • the operation sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-back direction, and outputs the detected value to the controller 30.
  • the proportional valve 31AL operates according to a control command (current command) output by the controller 30. Then, the pilot pressure is adjusted by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL.
  • the proportional valve 31AR operates according to a control command (current command) output by the controller 30. Then, the pilot pressure is adjusted by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR.
  • the pilot pressure of the proportional valve 31AL can be adjusted so that the control valve 176L and the control valve 176R can be stopped at any valve position.
  • the pilot pressure of the proportional valve 31AR can be adjusted so that the control valve 176L and the control valve 176R can be stopped at any valve position.
  • the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL in response to the arm closing operation by the operator. can.
  • the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL, regardless of the arm closing operation by the operator. can. That is, the controller 30 can close the arm 5 in response to the arm closing operation by the operator or regardless of the arm closing operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR in response to the arm opening operation by the operator.
  • the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR, regardless of the arm opening operation by the operator. can. That is, the controller 30 can open the arm 5 in response to the arm opening operation by the operator or independently of the arm opening operation by the operator.
  • the controller 30 can control the closing side pilot port of the control valve 176 (the left pilot port of the control valve 176L) as needed even when the operator performs an arm closing operation.
  • the closing operation of the arm 5 can be forcibly stopped by reducing the pilot pressure acting on the right pilot port of the control valve 176R. The same applies to the case where the opening operation of the arm 5 is forcibly stopped when the operator is performing the arm opening operation.
  • the controller 30 controls the proportional valve 31AR as necessary even when the operator performs an arm closing operation, and controls the proportional valve 31AR on the opposite side of the closing side pilot port of the control valve 176.
  • the arm 5 may be forcibly stopped. The same applies to the case where the opening operation of the arm 5 is forcibly stopped when the operator is performing an arm opening operation.
  • an electric operation lever as the form of the operation device 26
  • a hydraulic operation lever may be adopted instead of an electric operation lever.
  • the lever operation amount of the hydraulic operation lever may be detected in the form of an angle by an angle sensor and input to the controller 30.
  • a solenoid valve may be disposed between the operating device 26 as a hydraulic operating lever and the pilot port of each control valve. The solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • each control valve may be comprised of an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in response to an electric signal from the controller 30 corresponding to the amount of lever operation of the electric operation lever.
  • FIG. 5 shows a configuration example of the controller 30 that implements the discharge amount control function.
  • the controller 30 includes a power control section 30A, an energy saving control section 30B, a minimum value selection section 30C, a maximum value setting section 30D, and a current command output section 30E.
  • the power control unit 30A is a control unit that implements power control, which is one of the functions of controlling the discharge amount of the main pump 14, and derives a command value Qd of the discharge amount Q based on the discharge pressure Pd of the main pump 14. It is configured as follows.
  • the discharge amount Q is, for example, a displacement volume that is the amount of hydraulic oil discharged by the main pump 14 when the rotation shaft of the main pump 14 makes one rotation.
  • the discharge amount Q may be the amount of hydraulic oil discharged by the main pump 14 per unit time (for example, one minute).
  • the power control adjusts the discharge amount of the main pump 14 so that the absorbed power (absorbed horsepower) expressed as the product of the discharge amount and the discharge pressure of the main pump 14 is equal to or less than the output power (output horsepower) of the engine 11. It is a function.
  • the power control unit 30A acquires the discharge pressure Pd output by the discharge pressure sensor 28. Then, the power control unit 30A refers to the reference table and derives the command value Qd corresponding to the obtained discharge pressure Pd.
  • the reference table is a reference table related to a PQ diagram that retains the correspondence relationship between the allowable maximum absorption power (for example, allowable maximum absorption horsepower), discharge pressure Pd, and command value Qd of the main pump 14 so that it can be referenced, and is stored in a nonvolatile storage device. is stored in advance.
  • the power control unit 30A uniquely determines the command value Qd by referring to a reference table using the preset allowable maximum absorption horsepower of the main pump 14 and the discharge pressure Pd output by the discharge pressure sensor 28 as a search key. can be determined.
  • the energy saving control section 30B is a control section that implements negative control, which is one of the functions of controlling the discharge amount of the main pump 14, and is configured to derive a command value Qn of the discharge amount based on the control pressure Pn. ing.
  • the energy saving control unit 30B acquires the control pressure Pn output by the control pressure sensor 19. Then, the energy saving control unit 30B refers to the reference table and derives the command value Qn corresponding to the acquired control pressure Pn.
  • the reference table is a reference table that retains the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn so that it can be referenced, and is stored in advance in a non-volatile storage device.
  • the minimum value selection unit 30C is configured to select and output the minimum value from a plurality of input values. In this embodiment, the minimum value selection unit 30C is configured to output the smaller of the command value Qd and the command value Qn as the final command value Qf.
  • the command value Qn derived by the energy saving control unit 30B is typically selected by the minimum value selection unit 30C when relatively low-load work such as finishing work, leveling work, or traveling work is performed. . That is, the command value Qn is selected when the low-load work characteristic is adopted.
  • the command value Qd derived by the power control section 30A is typically selected by the minimum value selection section 30C when relatively high-load work such as excavation work is performed. That is, the command value Qd is selected when high load work characteristics are adopted. In this way, the command value Qd selected by the minimum value selection unit 30C determines whether the main pump 14 is controlled based on the low-load work characteristics or the high-load work characteristics.
  • the maximum value setting unit 30D is configured to output the maximum command value Qmax.
  • the maximum command value Qmax is a command value corresponding to the maximum discharge amount of the main pump 14.
  • the maximum value setting section 30D is configured to output the maximum command value Qmax stored in advance in a nonvolatile storage device or the like to the current command output section 30E.
  • the current command output section 30E is configured to output a current command to the pump regulator 13.
  • the current command output section 30E outputs a current command I derived from the final command value Qf outputted by the minimum value selection section 30C and the maximum command value Qmax outputted from the maximum value setting section 30D to the pump regulator 13. Output for.
  • the current command output unit 30E may output the current command I derived based on the final command value Qf to the pump regulator 13.
  • the maximum value setting section 30D may be omitted.
  • the controller 30 controls the discharge amount of the main pump 14.
  • the controller 30 separately controls the discharge amount of the left main pump 14L and the right main pump 14R.
  • the controller 30 controls the discharge pressure of the left main pump 14L detected by the left discharge pressure sensor 28L, and the control pressure which is the pressure of hydraulic fluid in the left center bypass pipe CBL detected by the left control pressure sensor 19L. Based on this, a current command for the left pump regulator 13L is derived.
  • the controller 30 controls the discharge amount of the left main pump 14L by outputting a current command to the left pump regulator 13L.
  • the controller 30 also operates based on the discharge pressure of the right main pump 14R detected by the right discharge pressure sensor 28R and the control pressure which is the pressure of the hydraulic oil in the right center bypass pipe CBR detected by the right control pressure sensor 19R. A current command for the right pump regulator 13R is derived. The controller 30 then controls the discharge amount of the right main pump 14R by outputting a current command to the right pump regulator 13R.
  • FIG. 6 is a diagram showing an example of the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn, which is an example of the contents of the reference table.
  • the control pressure Pn detected by the control pressure sensor 19 is plotted on the horizontal axis
  • the command value Qn is plotted on the vertical axis.
  • a polygonal line including the slope line GL indicates the relationship between the command value Qn and the control pressure Pn.
  • the command value Qn corresponds to the target discharge amount of the main pump 14.
  • the controller 30 controls the pump regulator 13 so that the actual discharge amount Q of the main pump 14 becomes the target discharge amount.
  • the reference table shown in FIG. 6 is used when controlling the respective discharge amounts of the left main pump 14L and the right main pump 14R.
  • the horizontal axis in FIG. 6 corresponds to the control pressure detected by the left control pressure sensor 19L
  • the vertical axis in FIG. 6 corresponds to the command value of the discharge amount of the left main pump 14L. do.
  • the horizontal axis in FIG. 6 corresponds to the control pressure detected by the right control pressure sensor 19R
  • the vertical axis in FIG. 6 corresponds to the command for the discharge amount of the right main pump 14R. corresponds to a value.
  • FIG. 6 is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction.
  • FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is slightly operated.
  • the fine operation is, for example, when the lever operation amount when the left operation lever 26L is in the neutral position is 0%, and the lever operation amount when the left operation lever 26L is tilted to the maximum is 100%. This means an operation with a lever operation amount of less than 20%.
  • FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is half-operated.
  • Half lever operation means, for example, operation with a lever operation amount of 20% or more and less than 80%.
  • FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is fully operated, using a chain line.
  • Full lever operation means, for example, operation with a lever operation amount of 80% or more.
  • the energy saving control unit 30B is configured to derive the command value Qn corresponding to the control pressure Pn using the slope line GL passing through the upper end point A and the lower end point B.
  • the upper end point A is a point that defines the upper end of the slope line GL, and is represented by the maximum command value Qmax and the first set pressure Px.
  • the maximum command value Qmax is the upper limit of the command value used in negative control, and is, for example, a set value corresponding to a swash plate tilt angle that is smaller than the maximum swash plate tilt angle of the main pump 14 by a predetermined angle.
  • the first set pressure Px is a set value that is set regardless of the magnitude of the lever operation amount when the left operation lever 26L is operated in the arm opening direction. In the example shown in FIG. 6, the amount of lever operation when the left operating lever 26L is operated in the arm opening direction is based on the left operating lever 26L when it is in the neutral position.
  • the angle of inclination (rotation angle) is detected by the operation sensor 29LA as an angle sensor.
  • the amount of lever operation when the left operating lever 26L is operated in the arm opening direction is determined by a device other than the angle sensor, such as a pressure sensor, acceleration sensor, angular velocity sensor, resolver, voltmeter, or ammeter. may be detected.
  • the lower end point B is a point that defines the lower end of the slope line GL, and is represented by the minimum command value Qmin and the second set pressure Py.
  • the minimum command value Qmin is the lower limit of the command value used in negative control, and is, for example, a swash plate tilt angle that is a predetermined angle larger than the minimum swash plate tilt angle of the main pump 14 (for example, a swash plate corresponding to the standby flow rate). This is the setting value corresponding to the tilt angle).
  • the second set pressure Py is a value that is set regardless of the amount of lever operation when the left operating lever 26L is operated in the arm opening direction. For example, the standby flow rate of hydraulic oil passes through the throttle 18. It corresponds to the control pressure when
  • the energy saving control unit 30B changes the control pressure Pn and the command value Qn by changing the position of the upper end point A in the vertical axis direction, that is, by changing the maximum command value Qmax. It is configured so that the correspondence relationship (flow rate control characteristics) can be adjusted.
  • the energy saving control unit 30B adjusts the position of the upper end point A when a fine operation is performed, when a half lever operation is performed, and when a full lever operation is performed. By making the values different, the correspondence between the control pressure Pn and the command value Qn (flow rate control characteristic) is adjusted to be suitable for the state of the excavator 100 at that time.
  • the energy saving control unit 30B is configured to control the energy saving control unit 30B when a fine operation is performed, when a half lever operation is performed, and when a full lever operation is performed.
  • the position of the upper end point A is changed in three stages, but the position of the upper end point A can be changed in two or four stages depending on the amount of lever operation when the left operating lever 26L is operated in the arm opening direction. It may be configured to change in the above steps, and the position of the upper end point A is changed steplessly according to the magnitude of the lever operation amount when the left operation lever 26L is operated in the arm opening direction. It may be configured as follows. Alternatively, the energy saving control unit 30B may be configured so as not to change the position of the upper end point A even if the magnitude of the lever operation amount changes.
  • the energy saving control unit 30B changes the upper end point A to the upper end point A1 (when the maximum command value Qmax is the set value Qmax1), as shown by the solid line in FIG. Point), the slope line GL is configured to become the slope line GL1.
  • the energy saving control unit 30B sets the upper end point A to the upper end point A2 (the point when the maximum command value Qmax is the set value Qmax2), as shown by the broken line in FIG.
  • the slope line GL is configured to become a slope line GL2.
  • the energy saving control unit 30B sets the upper end point A to the upper end point A3 (the point when the maximum command value Qmax is the set value Qmax3), as shown by the dashed line in FIG.
  • the slope line GL is configured to become a slope line GL3.
  • the set value Qmax3 may be, for example, a set value corresponding to the maximum swash plate tilt angle of the main pump 14.
  • the energy saving control unit 30B allows the energy to flow into the arm cylinder 8 during the arm opening operation. It is possible to suppress or prevent the amount of hydraulic oil from becoming unstable. If the amount of hydraulic oil becomes unstable, the operator will be shaken back and forth, unable to perform stable arm opening operations, and the amount of hydraulic oil flowing into the arm cylinder 8 will become unstable. This will cause further instability. In some cases, the operator may cause hunting or the like in which the rotational speed of the engine 11 becomes unstable. The energy saving control unit 30B can suppress or prevent problems such as hunting from occurring. In this way, the energy saving control section 30B can improve the operability of the arm 5.
  • the standby state means, for example, the state of the excavator 100 when the engine 11 is in operation and the operating device 26 is not operated.
  • the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the lever operation amount of the left operation lever 26L also becomes excessively large, and there is a possibility that the operator will not be able to perform a stable arm opening operation. This is because the shovel 100 swings back and forth. This rocking may cause the operator seated in the cabin 10 of the excavator 100 to be rocked back and forth, which may adversely affect the operation of the operating device 26 by the operator.
  • the upper limit of the command value Qn is the set value Qmax3. is limited to a set value Qmax1 smaller than . Therefore, the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the amount of lever operation of the left operating lever 26L is suppressed to be lower than when the slope line GL3 is adopted as the slope line GL. As a result, swinging of the shovel 100 in the front-back direction when the arm opening operation is started is suppressed, and the operator can smoothly open the arm 5.
  • the upper end point A of the slope line GL becomes higher as the lever operation amount of the left operation lever 26L increases, so that the discharge amount of the main pump 14 is not excessively restricted.
  • the energy saving control unit 30B can prevent the discharge amount Q from becoming small when the arm opening operation is performed by full lever operation.
  • the upper limit of the command value Qn is limited to the set value Qmax1, which is smaller than the set value Qmax3. That is, even though the main pump 14 is under full lever operation and the discharge amount Q should be increased as much as possible, the swash plate tilt angle cannot be increased sufficiently.
  • the energy saving control unit 30B derives the set value Qmax3 as the command value Qn when the actual control pressure Pn is the first set pressure Px.
  • the main pump 14 is controlled to have the maximum swash plate tilt angle, and can discharge hydraulic oil at the maximum discharge amount.
  • the upper limit of the command value Qn is lower than the set value Qmax3. is also limited to a small set value Qmax1. Therefore, the rate of decrease in the discharge amount of the main pump 14 with respect to the decrease in the amount of lever operation of the left operating lever 26L is suppressed to be lower than in the case where the slope line GL3 is adopted as the slope line GL. As a result, swinging of the shovel 100 in the front-back direction when decelerating the arm 5 is suppressed, and the operator can smoothly decelerate the arm 5.
  • the upper end point A of the slope line GL becomes lower as the lever operation amount of the left operation lever 26L decreases, so when the lever operation amount of the left operation lever 26L is gradually decreased, the upper end point A of the slope line GL becomes lower. The discharge amount of the pump 14 will not change suddenly.
  • the energy saving control unit 30B can prevent the discharge amount Q from becoming unstable when the arm opening operation is decelerated.
  • the controller 30 controls the discharge of the main pump 14 by changing the flow rate control characteristic of the negative control according to the operation content of the left operating lever 26L, that is, by displacing the upper end point A in the vertical axis direction.
  • the quantity Q can be controlled more flexibly.
  • the energy saving control unit 30B prevents the amount of hydraulic oil flowing into the arm cylinder 8 from becoming unstable by adjusting the slope line GL according to the lever operation amount of the left operation lever 26L. Can be suppressed or prevented. Therefore, the energy saving control unit 30B can smoothly open the arm 5 in response to, for example, operating the left operating lever 26L in the arm opening direction.
  • FIG. 7 is a flowchart of an example of the operation restriction process.
  • the controller 30 repeatedly executes this operation restriction process at a predetermined control cycle.
  • the controller 30 determines whether the operating device 26 has been operated (step ST1). In this embodiment, the controller 30 determines whether the operating device 26 has been operated based on the output of the operating sensor 29. For example, the controller 30 determines whether an arm closing operation has been performed and whether an arm opening operation has been performed based on the output of the operation sensor 29LA, and based on the output of the operation sensor 29LB, the controller 30 determines whether a left turning operation has been performed. It is determined whether or not a right turning operation has been performed. Alternatively, the controller 30 determines whether a boom raising operation has been performed and whether a boom lowering operation has been performed based on the output of the operation sensor 29RA, and performs a bucket closing operation based on the output of the operation sensor 29RB.
  • the controller 30 determines whether or not a bucket opening operation has been performed. Similarly, the controller 30 determines whether the left crawler 1CL has been operated forward and whether the left crawler 1CL has been operated backward based on the output of the operation sensor 29DL. Based on the output, it is determined whether the right crawler 1CR has been operated forward and whether the right crawler 1CR has been operated backward.
  • step ST1 If it is determined that the operating device 26 is not being operated (NO in step ST1), the controller 30 ends the current operation restriction process.
  • the controller 30 determines whether the work is being performed at a predetermined work site (step ST2). In this embodiment, the controller 30 determines whether the work is being performed at a predetermined work site based on the image acquired by the imaging device as the object detection device 70, that is, whether the excavator 100 is located at the predetermined work site. Determine. For example, when the controller 30 detects an image of a road cone, cone bar, A-type barricade, single pipe barricade, guard fence, etc. in the image acquired by the imaging device, the controller 30 determines that the work is being performed at a predetermined site. .
  • the controller 30 may determine whether the shovel 100 is located at a predetermined work site based on the output of the positioning device 85. For example, the controller 30 determines that the work is being performed at a predetermined work site when the current position of the excavator 100 is included within a geographical range preset as the range of the predetermined work site.
  • the geographical range may be defined by multiple pieces of location information (latitude, longitude, and altitude).
  • the predetermined work site is, for example, a work site located in an urban area, or a work site adjacent to a roadway, sidewalk, cliff, hole, etc.
  • the predetermined work site may be a work site where a predetermined work such as deep digging work or crane work is performed. Due to the presence of objects around the excavator 100, the predetermined work site is a circular area of the maximum working radius (centered on the rotation axis, between the reached position of the attachment AT when the attachment AT is extended to the maximum and the rotation axis).
  • the work site may be a work site where the excavator 100 performs work in an area smaller than the area represented by a circle having a radius of distance .
  • the controller 30 may determine that the work site is a work site where a predetermined work (deep digging work) is to be performed. good.
  • the controller 30 may determine that the work site is a work site where a predetermined work (crane work) is to be performed. good.
  • step ST2 If it is determined that the work is not at a predetermined work site (NO in step ST2), the controller 30 ends the current operation restriction process.
  • the controller 30 limits the movement of the driven body (step ST3).
  • the controller 30 limits the movement of the driven body by controlling the discharge amount of the main pump 14.
  • the driven body is at least one of the lower traveling body 1, the upper rotating body 3, the boom 4, the arm 5, and the bucket 6.
  • the controller 30 can restrict the movement of the driven body when the shovel 100 is located within a predetermined work site.
  • the controller 30 can suppress the operating speed when the attachment AT starts moving. Therefore, the controller 30 can more reliably prevent contact between the attachment AT and objects existing around the attachment AT, for example.
  • FIG. 8 is a diagram showing another example of the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn, which is another example of the contents of the reference table, and corresponds to FIG. 6.
  • FIG. 8 shows the flow rate control characteristics adopted when the movement of the driven body is restricted
  • FIG. 6 shows the flow rate control characteristics adopted when the movement of the driven body is not restricted.
  • the reference table shown in FIG. 8 is used when controlling the discharge amount of each of the left main pump 14L and the right main pump 14R. When controlling the discharge amount of the left main pump 14L, the horizontal axis in FIG.
  • the horizontal axis in FIG. 8 corresponds to the control pressure detected by the right control pressure sensor 19R
  • the vertical axis in FIG. 8 corresponds to the command for the discharge amount of the right main pump 14R. corresponds to a value.
  • FIG. 8 is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction, and is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction.
  • the flow rate control characteristics are shown by a solid line including a slope line GL1A.
  • FIG. 8 shows the flow rate control characteristics when the left operating lever 26L is half-operated by a broken line including the slope line GL2A.
  • FIG. 8 shows the flow rate control characteristic when the left operating lever 26L is fully operated by a dashed line including the slope line GL3A.
  • the slope line GL1A is the same as the slope line GL1 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but it differs from the diagram in that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL1 shown in FIG. In the slope line GL1 shown in FIG. 6, the rate of increase is constant.
  • the slope line GL2A is the same as the slope line GL2 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but the point is that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL2 shown in FIG.
  • the slope line GL3A is the same as the slope line GL3 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but the point is that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL3 shown in FIG.
  • the controller 30 can appropriately limit the movement of the driven body by adopting the flow rate control characteristics as shown in FIG. For example, when the excavator 100 is located at a predetermined work site, the controller 30 can suppress the opening speed of the arm 5 when the arm 5 starts to move when the arm opening operation is performed. That is, the controller 30 can prevent the arm 5 from opening at an excessively high speed when the arm opening operation is performed. Note that in the example shown in FIG. 8, even when the controller 30 limits the movement of the driven body including the arm 5, it does not limit the maximum value of the operating speed of the arm 5.
  • the controller 30 is configured such that the maximum value of the movement speed of the arm 5 when the movement of the arm 5 is restricted is the same as the maximum value of the movement speed of the arm 5 when the movement of the arm 5 is not restricted. ing. This means that if the arm opening operation by full lever operation is continued, the operating speed of the arm 5 will reach the maximum value, regardless of whether or not the movement of the arm 5 is restricted. However, when the movement of the arm 5 is restricted, the time required for the operating speed of the arm 5 to reach the maximum value is longer than when the movement of the arm 5 is not restricted.
  • FIG. 9 is a perspective view of the excavator 100 performing crane work.
  • the excavator 100 lifts up the sewer pipe BP in order to bury the sewer pipe BP in an excavated trench EX formed in the road.
  • the operator of the excavator 100 is attempting to perform a right turning operation in accordance with instructions from the sling operator FS located at the front left of the excavator 100.
  • the controller 30 continuously monitors the distance DB between the shovel 100 (bucket 6) or the sewer pipe BP and the sling worker FS based on the output of the front camera 70F.
  • the operator of the excavator 100 is trying to move the sewer pipe BP closer to the excavation groove EX by turning the upper rotating body 3 to the right using the left operating lever 26L.
  • the sling worker FS may come too close to the shovel 100 (bucket 6) or the sewer pipe BP, for example, in order to adjust the attitude of the sewer pipe BP.
  • the controller 30 when the controller 30 detects at least one image of an object such as the road cone RC, guardrail GR, utility pole EP, or sewer pipe BP in the image acquired by the front camera 70F, the controller 30 performs a predetermined It may be determined that the work is at a work site, and the movement of the driven body may be restricted.
  • the controller 30 determines that the work is being performed at a predetermined work site (a work site adjacent to a sidewalk or a roadway). It may be determined that the movement of the driven body is restricted.
  • the controller 30 when the controller 30 detects an image of a suspended load (sewage pipe BP lifted by a hook provided at the tip of the arm 5) in the image acquired by the front camera 70F, the controller 30 performs work at a predetermined work site. (crane work), and the movement of the driven body may be suppressed.
  • a suspended load sewage pipe BP lifted by a hook provided at the tip of the arm 5
  • the controller 30 performs work at a predetermined work site. (crane work), and the movement of the driven body may be suppressed.
  • Suppression of the movement of the driven body may be realized, for example, by suppressing the rise of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 6 to the flow rate control characteristic as shown in FIG. good.
  • the movement of the driven body may be suppressed by reducing the maximum operating speed of the driven body, by decreasing the relief pressure of a relief valve (not shown) provided in the center bypass pipe CB, or by reducing the pressure of the engine 11 or This may be realized by reducing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.
  • the operation mode includes, for example, an excavation mode selected when excavation work is performed, a crane mode selected when crane work is performed, and the like. In the crane mode, the amount of operation of the actuator relative to the amount of operation of the operating device 26 is smaller than in the excavation mode.
  • the controller 30 may output a shutoff command to the control valve 60 to switch the pilot line CD1 to the shutoff state. This is to disable the left operating lever 26L and stop the rotation of the swing hydraulic motor 2A.
  • the controller 30 may determine whether or not the driven body may be moved for each operation performed via the operating device 26. In this case, in the situation shown in FIG. 9, the controller 30 prohibits the turning hydraulic motor 2A from rotating in response to the operator's left turning operation, but prevents the turning hydraulic motor 2A from rotating in response to the right turning operation by the operator. Rotation of the hydraulic motor 2A is allowed. This is because it can be determined that there is no risk of the shovel 100 and the object coming too close even if the shovel 100 is turned to the right. As a result, the controller 30 can quickly bring the sewer pipe BP closer to the excavation groove EX while preventing the shovel 100 (bucket 6) or the sewer pipe BP from getting too close to the sling worker FS.
  • the controller 30 may determine that even if the shovel 100 is located at a predetermined work site, the distance DB between the shovel 100 (bucket 6) or the sewer pipe BP and the sling worker FS is less than a predetermined value.
  • the structure may be such that the movement of the driven body is not restricted until the movement of the driven body is reached.
  • the controller 30 may be configured to limit the movement of the driven object only when the driven object starts operating in a state where the distance DB is less than a predetermined value.
  • the controller 30 may be configured to notify at least one of the operator of the shovel 100 and the sling worker FS when the distance DB becomes less than a predetermined value.
  • the controller 30 determines that the distance DB has become less than a predetermined value based on the image acquired by the front camera 70F
  • the controller 30 causes each of the outdoor alarm 45A and the indoor alarm 45B to output an alarm sound. This is to draw the attention of the operator and sling worker FS.
  • the controller 30 may display image information on the display device 40 to notify that the distance DB has become less than a predetermined value to call the operator's attention. It may be lit to alert the sling operator FS.
  • the controller 30 can more reliably prevent the attachment AT from coming into contact with objects existing around the attachment AT when the shovel 100 is located at a work site where crane work is performed.
  • FIG. 10 is a side view of the shovel 100 performing deep digging work.
  • the excavator 100 moves the bucket 6 into a deep position within the hole HL in order to dig the hole HL deeply.
  • a worker WK is waiting in the hole HL near the bucket 6 to check the work status.
  • Worker WK sends a signal to the operator of shovel 100 as necessary.
  • the operator of the excavator 100 takes the earth and sand at the bottom of the hole HL into the bucket 6 according to the signal from the worker WK, and transfers the earth and sand taken into the bucket 6 to the loading platform of a dump truck DT parked near the shovel 100. Load.
  • the controller 30 continuously monitors whether the worker WK is present near the bucket 6 based on the output of the attachment camera 70A.
  • the controller 30 monitors whether the worker WK is within a predetermined distance DS from the connecting pin 6P that connects the arm 5 and the bucket 6 (within the range indicated by the broken line L1). There is. Note that the dashed line L2 in FIG. 10 represents the imaging range of the attachment camera 70A.
  • the operator of the excavator 100 attempts to take the earth and sand in the hole HL into the bucket 6 by using the operating device 26 to execute a composite operation including an arm closing operation and a bucket closing operation. At this time, the worker WK may get too close to the bucket 6, for example, to check the position (depth) of the toe of the bucket 6.
  • the controller 30 when the controller 30 detects the worker WK within a predetermined distance DS from the connecting pin 6P based on the image acquired by the attachment camera 70A, the controller 30 moves to a predetermined work site (where deep digging work is being performed).
  • the movement of the driven body may be restricted based on the determination that the work is being performed at a work site where the vehicle is operated. That is, the controller 30 may determine that the worker WK is present near the bucket 6, and may restrict the movement of the driven body.
  • the controller 30 switches the flow rate control characteristics as shown in FIG. 6 to the flow rate control characteristics as shown in FIG.
  • the rate of increase in operating speed can be suppressed. That is, the controller 30 can suppress the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the amount of operation of the operating device 26, compared to the case where the movement of the driven body is not restricted. Note that even when the movement of the driven body is restricted in this way, the controller 30 does not limit the maximum operating speed of the attachment AT (maximum command value Qmax corresponding to the maximum discharge amount of the main pump 14). There isn't.
  • the controller 30 may, for example, slow down the lowering operation of the boom 4 when the operator starts a boom lowering operation in order to move the bucket 6 located above the hole HL into the hole HL. can. That is, compared to the case where the movement of the driven body (boom 4) is not restricted, the controller 30 controls the amount of lever operation of the right operation lever 26R in the boom lowering direction until it reaches a predetermined lever operation amount. By reducing the rate of increase in the flow rate of the hydraulic oil flowing into the rod side oil chamber of the boom cylinder 7 relative to the increase, the lowering speed of the boom 4 can be limited.
  • the controller 30 also slows down the closing operation of the arm 5 when the operator starts the arm closing operation in order to excavate earth and sand at the bottom of the hole HL with the bucket 6 that has reached the bottom of the hole HL, for example. I can do it.
  • the controller 30 can slow down the raising operation of the boom 4 when, for example, the operator starts a boom raising operation to lift earth and sand taken into the bucket 6.
  • the controller 30 allows the operator to perform a complex operation including a rotation operation and a boom raising operation in order to raise the boom 4 while rotating the upper rotating structure 3 with the bucket 6 lifted above the hole HL.
  • the boom raising and turning operation (compound operation including the turning operation and the boom raising operation) is not slowed down when started. This is because the controller 30 can determine that the worker WK does not exist within the predetermined distance DS from the connecting pin 6P when the bucket 6 is lifted above the hole HL. Therefore, the operator can perform boom raising and turning operations without restrictions, and can quickly load earth and sand onto the platform of the dump truck DT without stress.
  • the controller 30 also performs a boom lowering rotation operation ( It also does not slow down the composite movement (including turning movement and boom lowering movement).
  • the object of detection does not necessarily have to be the worker WK.
  • the controller 30 may determine whether or not to restrict the operation of the actuator based on whether or not a pre-registered object other than earth and sand, such as a guardrail GR, utility pole EP, and sewer pipe BP, is detected. Furthermore, the controller 30 determines whether or not to restrict the actuator operation based on the angle (slope) of the side wall of the hole HL in FIG. may be determined. In this way, the controller 30 can improve the safety of the work site by determining whether or not it is necessary to restrict the operation of the actuator based on the presence or absence of an object in the work area.
  • the movement of the driven body can be suppressed by reducing the maximum operating speed of the driven body, by decreasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or by reducing the pressure of the engine 11 or This may be realized by reducing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.
  • the controller 30 can more reliably prevent the attachment AT from coming into contact with objects existing around the attachment AT even when the shovel 100 is located at a work site where deep digging work is performed.
  • the operation status screen which is a screen displayed on the display device 40 while the excavator 100 is in operation, will be described.
  • 11 and 12 show examples of the configuration of the operating status screen.
  • the display device 40 includes a control section 40a, an image display section 41, and an operation section 42.
  • the control unit 40a controls the image displayed on the image display unit 41.
  • the control unit 40a is composed of a computer including a CPU, a volatile storage device, a nonvolatile storage device, and the like.
  • the control unit 40a reads a program corresponding to each function from the nonvolatile storage device, loads it into the volatile storage device, and causes the CPU to execute the corresponding process.
  • the image display section 41 includes a date and time display area 41a, a driving mode display area 41b, an end attachment display area 41c, a fuel consumption display area 41d, an engine control status display area 41e, an engine operating time display area 41f, a cooling water temperature display area 41g, and a remaining fuel display area 41a. It includes an amount display area 41h, a rotation speed mode display area 41i, a urea water remaining amount display area 41j, a hydraulic oil temperature display area 41k, an air conditioner operating state display area 41m, an image display area 41n, and a menu display area 41p.
  • the driving mode display area 41b, the end attachment display area 41c, the engine control status display area 41e, the rotation speed mode display area 41i, and the air conditioner operation status display area 41m display setting status information that is information regarding the setting status of the excavator 100. It is an area.
  • the fuel consumption display area 41d, the engine operating time display area 41f, the cooling water temperature display area 41g, the remaining fuel amount display area 41h, the urea water remaining amount display area 41j, and the hydraulic oil temperature display area 41k are information regarding the operating state of the excavator 100. This is an area that displays certain operating status information.
  • the date and time display area 41a is an area that displays the current date and time.
  • the driving mode display area 41b is an area that displays the current driving mode.
  • the end attachment display area 41c is an area that displays an image representing the currently attached end attachment.
  • the fuel efficiency display area 41d is an area where fuel efficiency information calculated by the controller 30 is displayed.
  • the fuel consumption display area 41d includes an average fuel consumption display area 41d1 that displays the average fuel consumption for the entire period or an average fuel consumption for a partial period, and an instantaneous fuel consumption display area 41d2 that displays the instantaneous fuel consumption.
  • the entire period means, for example, the entire period after the shovel 100 is shipped.
  • the partial period means, for example, a period arbitrarily set by the operator.
  • the engine control state display area 41e is an area that displays the control state of the engine 11.
  • the engine operating time display area 41f is an area that displays information regarding the operating time of the engine 11.
  • the cooling water temperature display area 41g is an area that displays the current temperature state of the engine cooling water.
  • the remaining fuel amount display area 41h is an area that displays the remaining amount of fuel stored in the fuel tank.
  • the rotation speed mode display area 41i is an area where the current rotation speed mode set by the engine rotation speed adjustment dial 75 is displayed as an image.
  • the urea water remaining amount display area 41j is an area for displaying an image of the remaining amount of urea water stored in the urea water tank.
  • the hydraulic oil temperature display area 41k is an area that displays the temperature state of the hydraulic oil in the hydraulic oil tank.
  • the air conditioner operating state display area 41m includes an air outlet display area 41m1 that displays the current position of the air outlet, an operation mode display area 41m2 that displays the current operating mode, a temperature display area 41m3 that displays the current set temperature, and It includes an air volume display area 41m4 that displays the current set air volume.
  • the image display area 41n is an area where an image captured by the imaging device is displayed.
  • the image display area 41n has a first image display area 41n1 located above and a second image display area 41n2 located below.
  • the bucket peripheral image BG is arranged in the first image display area 41n1
  • the bird's-eye view image FV is arranged in the second image display area 41n2.
  • the bucket surrounding image BG may be arranged in the second image display area 41n2
  • the bird's-eye view image FV may be arranged in the first image display area 41n1.
  • the bucket peripheral image BG and the bird's-eye view image FV are arranged vertically adjacent to each other, but they may be arranged with an interval between them.
  • the bucket surrounding image BG is an image displayed when deep digging work is performed, and is an image generated based on the image acquired by the attachment camera 70A.
  • the bucket surrounding image BG may be an image that has been subjected to viewpoint conversion processing, or may be an image that has not been subjected to viewpoint conversion processing.
  • the bucket surrounding image BG includes an arm image 5G (a CG image representing the position of the arm 5), a bucket image 6G (a CG image representing the position of the bucket 6), and a worker image WG (a CG image representing the position of the bucket 6). It may also be a CG image including a CG image representing the position of the worker WK.
  • the bucket surrounding image BG includes a first bucket surrounding image BG1 (see FIG. 11) and a second bucket surrounding image BG2 (see FIG. 12).
  • the first bucket peripheral image BG1 is an image showing the inside of the hole HL, which is the target of deep digging work, when viewed from above, and the second bucket peripheral image BG2 is the target of deep digging work. It is an image showing the position inside the hole HL when the hole HL is viewed from the side.
  • the first bucket surrounding image BG1 includes an arm image 5G, a bucket image 6G, and a worker image WG.
  • an arm image 5G shows the position of the arm 5 when looking at the arm 5 from above
  • a bucket image 6G shows the position of the bucket 6 when looking at the hole HL from above
  • a worker image WG shows the position of the bucket 6 when looking at the hole HL from above.
  • the position of worker WK is shown when HL is viewed from above. The operator of the excavator 100 can recognize that the worker WK is present diagonally to the left in front of the bucket 6 within the hole HL by looking at the first bucket surrounding image BG1.
  • the second bucket surrounding image BG2 includes a shovel image 100G, a hole image HG, and a worker image WG.
  • the shovel image 100G is a CG image showing the position of the shovel 100 when viewed from the side, and includes an arm image 5G and a bucket image 6G.
  • the hole image HG is a CG image showing the position of the hole HL that is the target of deep digging work.
  • an arm image 5G shows the position of the arm 5 when looking at the work site from the side
  • a bucket image 6G shows the position of the bucket 6 when looking at the work site from the side
  • a worker image WG shows the position of the arm 5 when looking at the work site from the side.
  • the position of the worker WK is shown when the work site is viewed from the side, and the hole image HG is the position of the hole HL when the work site is viewed from the side.
  • the operator of the excavator 100 can recognize that the worker WK is present in front of the bucket 6 at approximately the same height as the bucket 6 by looking at the second bucket surrounding image BG2.
  • the bird's-eye view image FV is a virtual viewpoint image generated by the control unit 40a, and is generated based on images acquired by each of the rear camera 70B, left camera 70L, and right camera 70R. Further, in the central portion of the bird's-eye view image FV, a shovel figure GE corresponding to the shovel 100 is arranged. This is to allow the operator to intuitively grasp the positional relationship between the shovel 100 and objects existing around the shovel 100.
  • the image display area 41n is a vertically long area, but it may be a horizontally long area.
  • the image display area 41n includes an overhead image FV as a first image display area 41n1 on the left side, and a bucket peripheral image BG as a second image display area 41n2 on the right side.
  • the bird's-eye view image FV may be placed on the left side of the bucket surrounding image BG with an interval.
  • the bird's-eye view image FV may be placed on the right side of the bucket surrounding image BG.
  • the menu display area 41p has tab areas 41p1 to 41p7.
  • tab areas 41p1 to 41p7 are arranged at the bottom of the image display section 41 at intervals from each other in the left and right directions. Icons representing the content of related information are displayed in each of the tab areas 41p1 to 41p7.
  • the tab area 41p1 displays detailed menu item icons for displaying detailed menu items.
  • the icons displayed in the tab areas 41p2 to 41p7 are switched to icons associated with detailed menu items.
  • buttons for displaying information regarding the digital level are displayed.
  • the bucket surrounding image BG is switched to the first screen showing information regarding the digital level.
  • Icons for displaying information regarding information-based construction are displayed in the tab area 41p6.
  • the bucket surrounding image BG is switched to a second screen showing information regarding computerized construction.
  • Icons for displaying information regarding the crane mode are displayed in the tab area 41p7.
  • the bucket surrounding image BG is switched to a third screen showing information regarding the crane mode.
  • any of the menu screens such as the first screen, second screen, or third screen may be displayed superimposed on the bucket surrounding image BG.
  • the bucket surrounding image BG may be reduced to make room for displaying the menu screen.
  • the overhead image FV may be configured to switch to a menu screen.
  • the menu screen may be displayed superimposed on the bird's-eye view image FV.
  • the bird's-eye view image FV may be reduced to make room for displaying the menu screen.
  • icons displayed in the tab areas 41p1 to 41p7 are not limited to the above examples, and icons for displaying other information may be displayed.
  • the operation unit 42 is composed of a plurality of button-type switches that allow the operator to select tab areas 41p1 to 41p7 and input settings.
  • the operation unit 42 includes seven switches 42a1 to 42a7 arranged in the upper stage and seven switches 42b1 to 42b7 arranged in the lower stage.
  • the switches 42b1 to 42b7 are arranged below the switches 42a1 to 42a7, respectively.
  • the number, form, and arrangement of switches of the operating section 42 are not limited to the above-mentioned example.
  • the operation unit 42 may have a form that combines the functions of a plurality of button-type switches into one, such as a jog wheel or a jog switch.
  • the operation unit 42 may be configured as a member independent from the display device 40.
  • the tab areas 41p1 to 41p7 may be configured as software buttons. In this case, the operator can select any tab area by touching the tab areas 41p1 to 41p7.
  • the switch 42a1 is arranged below the tab area 41p1 in correspondence with the tab area 41p1, and functions as a switch for selecting the tab area 41p1. The same applies to each of the switches 42a2 to 42a7.
  • the switch 42b1 is a switch that switches the captured image displayed in the image display area 41n.
  • the display device 40 is configured such that each time the switch 42b1 is operated, the captured images displayed in the first image display area 41n1 of the image display area 41n are, for example, a rear image, a left image, a right image, an overhead view image FV, and a bucket periphery. It is configured to switch in the order of images BG.
  • the display device 40 may change the captured image displayed in the second image display area 41n2 of the image display area 41n each time the switch 42b1 is operated to be, for example, a rear image, a left image, a right image, an overhead image FV, and It may be configured to switch in the order of the bucket surrounding images BG.
  • the display device 40 is arranged so that the captured image displayed in the first image display area 41n1 of the image display area 41n and the captured image displayed in the second image display area 41n2 are switched each time the switch 42b1 is operated. It may be configured as follows.
  • the operator may switch the screen displayed in the first image display area 41n1 or the second image display area 41n2 by operating the switch 42b1 as the operation unit 42.
  • the operator may switch the screen displayed in the first image display area 41n1 and the second image display area 41n2 by operating the switch 42b1.
  • the display device 40 may include a separate switch for switching the screen displayed in the second image display area 41n2.
  • the switches 42b2 and 42b3 are switches that adjust the air volume of the air conditioner.
  • the operating unit 42 is configured such that when the switch 42b2 is operated, the air volume of the air conditioner decreases, and when the switch 42b3 is operated, the air volume of the air conditioner increases.
  • the switch 42b4 is a switch that turns the cooling/heating function ON/OFF.
  • the operation unit 42 is configured so that the cooling/heating function is switched between ON and OFF every time the switch 42b4 is operated.
  • the switches 42b5 and 42b6 are switches that adjust the set temperature of the air conditioner.
  • the operating unit 42 is configured such that when the switch 42b5 is operated, the set temperature is lowered, and when the switch 42b6 is operated, the set temperature is increased.
  • the switch 42b7 is a switch that changes the content of information regarding the operating time of the engine 11, which is displayed in the engine operating time display area 41f.
  • the information regarding the operating time of the engine 11 includes, for example, the cumulative operating time for the entire period, the cumulative operating time for a partial period, and the like.
  • switches 42a2 to 42a6 and 42b2 to 42b6 are configured so that numbers displayed at or near each switch can be input. Further, the switches 42a3, 42a4, 42a5, and 2b4 are configured to move the cursor to the left, up, right, and down, respectively, when the cursor is displayed on the image display section 41.
  • each of the switches 42a1 to 42a7 and 42b1 to 42b7 is merely examples.
  • Each of the switches 42a1 to 42a7 and 42b1 to 42b7 may be configured to perform other functions.
  • the excavator 100 includes the undercarriage 1, the upper revolving structure 3 mounted on the undercarriage 1, and the upper revolving structure 3 mounted on the upper revolving structure 3, as shown in FIG.
  • an attachment AT including an end attachment such as a bucket 6, a controller 30 as a control device mounted on the upper revolving body 3, and actuators such as a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 that move the attachment AT. It is equipped with.
  • the controller 30 is configured to control the movement of the actuator at a predetermined work site. Specifically, controller 30 is configured to facilitate or inhibit movement of the actuator.
  • the movement of the actuator may be promoted, for example, by promoting the start-up of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 8 to the flow rate control characteristic as shown in FIG. good.
  • the movement of the actuator can be promoted by increasing the maximum operating speed of the actuator, increasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or increasing the pressure of the engine 11 or electric motor, etc. This may be achieved by increasing the output power (rotational speed) of the power source, switching the operating mode of the excavator 100, or the like. Suppression of the movement of the actuator may be realized, for example, by suppressing the rise of the main pump 14, that is, by switching the flow control characteristic shown in FIG.
  • the movement of the actuator can be suppressed by stopping the actuator, reducing the maximum operating speed of the actuator, reducing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or reducing the pressure of the engine. 11 or by lowering the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.
  • the controller 30 can more reliably prevent the attachment from coming into contact with objects existing around the attachment. This is because the movement of the actuator can be suppressed when the excavator 100 is located at a specific work site, such as a work site in an urban area, where a worker may be forced to work near the attachment.
  • the controller 30 can promote the movement of the actuator when the excavator 100 is located at a work site other than a specific work site where a situation where a worker is forced to work near the attachment occurs. Therefore, the controller 30 can improve the working efficiency of the shovel 100 when the shovel 100 is located at a work site other than a specific work site.
  • the controller 30 determines whether or not the user is at a predetermined work site based on the information acquired by the information acquisition device, and when it is determined that the controller 30 is at a predetermined work site, the controller 30 promotes or suppresses the movement of the actuator. It may be configured as follows.
  • the information acquisition device is, for example, a positioning device 85, an imaging device, a communication device, or the like.
  • the information acquisition device may be a switch (a switch provided on the display device 40 or the like) that can be operated by the operator to inform the controller 30 that the user is at a predetermined work site.
  • the controller 30 determines whether or not the user is at a predetermined work site based on the position information acquired by the positioning device 85 as an information acquisition device, and when it is determined that the controller 30 is at the predetermined work site, the controller 30 activates the actuator. It may be configured to promote or suppress the movement of the body.
  • the controller 30 determines whether or not the user is at a predetermined work site based on an image acquired by an imaging device serving as an information acquisition device, and when determining that the controller 30 is at a predetermined work site, promotes the movement of the actuator. Alternatively, it may be configured to suppress it.
  • the controller 30 can more reliably prevent contact between the attachment and objects existing around the attachment while preventing the movement of the driven body from being excessively restricted. This is because the controller 30 can more accurately determine whether the shovel 100 is located at a predetermined work site where the movement of the driven body should be restricted. That is, this is because the controller 30 can suppress or prevent the current work site from being erroneously determined to be a predetermined work site.
  • an excavator 100 includes an undercarriage 1, an upper revolving structure 3 mounted on the undercarriage 1, and an upper revolving structure 3 mounted on the upper revolving structure 3.
  • an attachment AT including an end attachment such as a bucket 6, actuators such as a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 that move the attachment AT, and a control device that detects objects existing around the end attachment.
  • a controller 30 is provided. The controller 30 is configured to suppress movement of the actuator when an object existing around the end attachment is detected.
  • the controller 30 can more reliably prevent the attachment from coming into contact with objects existing around the attachment. Moreover, the controller 30 is configured not to stop the movement of the actuator but to suppress the movement of the actuator when an object existing around the end attachment is detected. Therefore, the operator of the shovel 100 can continue working with the shovel 100 even if there are workers around the end attachment. As a result, this configuration can suppress a decrease in the working efficiency of the shovel 100 even when there are workers around the end attachment.
  • controller 30 may be configured to detect objects existing around the end attachment based on images acquired by an imaging device attached to the attachment AT.
  • the controller 30 is configured to detect objects existing around the bucket 6 based on images acquired by an attachment camera 70A attached to the bucket cylinder 9. However, the controller 30 is located around the bucket 6 based on images obtained by at least one of the rear camera 70B, front camera 70F, left camera 70L, and right camera 70R attached to the upper revolving body 3.
  • the object may be configured to detect an object that Alternatively, the controller 30 may be configured to detect objects existing around the bucket 6 based on images acquired by an external camera installed outside the excavator 100.
  • the controller 30 uses images acquired by a camera 70D mounted on the flying object 50 or images acquired by a fixed-point camera 70P attached to a pole 55 installed at the work site. It may be configured to detect objects around the bucket 6 based on images or the like.
  • the flying object 50 is an autonomous flying object that can be flown by remote control or autopilot, and includes, for example, a multicopter, an airship, or the like.
  • the controller 30 can more reliably prevent contact between the attachment and objects existing around the attachment while preventing the movement of the driven body from being excessively restricted. This is because the controller 30 can more accurately detect whether an object exists around the end attachment. That is, this is because the controller 30 can suppress or prevent objects from being detected incorrectly.
  • controller 30 may be configured to call the attention of at least one of the operator and the worker when detecting a worker present around the end attachment.
  • the controller 30 can more reliably prevent contact between the attachment and the worker who is present around the attachment.
  • the actuator is typically a hydraulic actuator.
  • the controller 30 includes a hydraulic pump such as the main pump 14 that supplies hydraulic oil to the hydraulic actuator, control valves such as control valves 171 to 176 that control the flow rate of hydraulic oil flowing into the hydraulic actuator, and a hydraulic pump.
  • the movement of the hydraulic actuator may be promoted or suppressed by controlling the movement of at least one of the power sources such as the engine 11 that drives the hydraulic actuator.
  • the actuator may be an electric actuator.
  • FIG. 13 is a schematic diagram showing an example of the configuration of the excavator control system SYS.
  • the control system SYS is a system that controls the excavator 100.
  • the control system SYS is mainly composed of an excavator 100, a support device 200, and a management device 300.
  • the excavator 100, the support device 200, and the management device 300 are each equipped with a communication device and are connected to each other directly or indirectly via a mobile phone communication network, a satellite communication network, a short-range wireless communication network, or the like.
  • the number of shovels 100, support devices 200, and management devices 300 that constitute the control system SYS may be one or more than one.
  • the control system SYS includes one shovel 100, one support device 200, and one management device 300.
  • the support device 200 which is a device that supports control of the excavator 100, is typically a mobile terminal device, for example, a computer such as a notebook PC, a tablet PC, or a smartphone carried by a worker at a work site.
  • the support device 200 may be a computer carried by the operator of the excavator 100.
  • the support device 200 may be a fixed terminal device.
  • the management device 300 which is a device that manages various information, is typically a fixed terminal device, for example, a server computer installed in a management center or the like outside the work site.
  • the management device 300 may be a portable computer (for example, a notebook PC, a tablet PC, or a mobile terminal device such as a smartphone).
  • At least one of the support device 200 and the management device 300 may include a monitor and an operating device for remote control.
  • the shovel 100 and at least one of the support device 200 and the management device 300 constitute a remote control system for the shovel.
  • the remote operator can operate the excavator 100 using the operating device for remote control.
  • the operating device for remote control is connected to the controller 30 through a communication network such as a mobile phone communication network, a satellite communication network, or a short-range wireless communication network.
  • the control system SYS may be configured such that the user of the support device 200 can intervene in the operation of the shovel 100 by the operator of the shovel 100 or the remote operator.
  • the user of the support device 200 can, for example, intervene in the operation of the shovel 100 while observing the positional relationship between the worker WK in the hole HL and the bucket 6 of the shovel 100 near the edge of the hole HL. , the safety of the worker WK can be ensured.
  • the controller 30 may be included in the support device 200 or the management device 300. Further, all or part of the functions executed by the controller 30 may be executed by the support device 200 or the management device 300.
  • the controller 30 is configured to suppress the movement of the driven object when it is determined that the work is being performed at a predetermined work site; however, it promotes the movement of the driven object. It may be configured to do so.
  • the movement of the driven body may be promoted, for example, by promoting the start-up of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 8 to the flow rate control characteristic as shown in FIG. good.
  • the movement of the driven body can be promoted by increasing the maximum operating speed of the driven body, increasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or increasing the speed of the engine 11 or This may be realized by increasing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.
  • a hydraulic operation lever equipped with a hydraulic pilot circuit is disclosed.
  • the hydraulic oil supplied from the pilot pump 15 to the left operating lever 26L changes to the opening degree of a remote control valve that is opened and closed by tilting the left operating lever 26L in the arm opening direction.
  • a corresponding flow rate is transmitted to the pilot port of control valve 176.
  • the hydraulic oil supplied from the pilot pump 15 to the right operating lever 26R changes to the opening degree of the remote control valve that is opened and closed by tilting the right operating lever 26R in the boom raising direction. It is transmitted to the pilot port of control valve 175 at a corresponding flow rate.
  • an electric operation system equipped with an electric operation lever may be adopted instead of the hydraulic operation lever equipped with such a hydraulic pilot circuit.
  • the lever operation amount of the electric operation lever is inputted to the controller 30 as an electric signal, for example.
  • a solenoid valve is arranged between the pilot pump 15 and the pilot port of each control valve. The solenoid valve is configured to operate in response to an electrical signal from the controller 30.
  • the controller 30 can easily switch between manual control mode and automatic control mode.
  • the manual control mode is a mode in which the actuator is operated in response to a manual operation of the operating device 26 by the operator
  • the automatic control mode is a mode in which the actuator is operated regardless of the manual operation.
  • the controller 30 switches the manual control mode to the automatic control mode, the plurality of control valves (spool valves) are controlled separately according to the electric signal corresponding to the lever operation amount of one electric operation lever. Good too.
  • ...Operation sensor 30 Controller 31...Proportional valve 40...Display device 50...Flight object 55...Pole 60...Control valve 70...Object detection device 70A...Attachment Camera 70B... Rear camera 70D... Camera 70F... Front camera 70L... Left camera 70P... Fixed point camera 70R... Right camera 85... Positioning device 100... Excavator 171 ⁇ 176...Control valve 200...Support device 300...Management device CD1...Pilot line S1...Boom angle sensor S2...Arm angle sensor S3...Bucket angle sensor S4... Aircraft tilt sensor S5... Turning angular velocity sensor SYS... Control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

An excavator (100) comprises a lower traveling body (1), an upper turning body (3) mounted on the lower traveling body (1), an attachment (AT) mounted on the upper turning body (3), and an actuator that moves the attachment (AT). The excavator (100) is configured to control the movement of the actuator in a predetermined work site. The excavator (100) may be configured to expedite or restrain the movement of the actuator in the predetermined work site.

Description

ショベル、ショベルの制御システム、及び、ショベルの遠隔操作システムExcavators, excavator control systems, and excavator remote control systems

 本開示は、ショベル、ショベルの制御システム、及び、ショベルの遠隔操作システムに関する。 The present disclosure relates to a shovel, a shovel control system, and a shovel remote control system.

 従来、上部旋回体に配置されたカメラを利用して周囲を監視するショベルが知られている(特許文献1参照)。 Conventionally, excavators are known that monitor the surroundings using a camera placed on an upper revolving body (see Patent Document 1).

特開2017-147759号公報Japanese Patent Application Publication No. 2017-147759

 しかしながら、上述のショベルでは、バケット等のエンドアタッチメントの陰に隠れた物体の検知が遅れてしまうおそれがある。 However, with the above-mentioned excavator, there is a risk that detection of an object hidden behind an end attachment such as a bucket may be delayed.

 そこで、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できるショベルを提供することが望ましい。 Therefore, it is desirable to provide a shovel that can more reliably prevent contact between the attachment and objects existing around the attachment.

 本開示の実施形態に係るショベルは、下部走行体と、前記下部走行体に搭載された上部旋回体と、前記上部旋回体に搭載されたアタッチメントと、前記上部旋回体に搭載された制御装置と、前記アタッチメントを動かすアクチュエータと、を備え、前記制御装置は、所定の作業現場において前記アクチュエータの動きを制御するように構成されている。 An excavator according to an embodiment of the present disclosure includes a lower traveling body, an upper rotating body mounted on the lower traveling body, an attachment mounted on the upper rotating body, and a control device mounted on the upper rotating body. , an actuator for moving the attachment, and the control device is configured to control movement of the actuator at a predetermined work site.

 上述のショベルは、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できる。 The above-mentioned shovel can more reliably prevent contact between the attachment and objects existing around the attachment.

本開示の実施形態に係るショベルの側面図である。FIG. 1 is a side view of an excavator according to an embodiment of the present disclosure. 本開示の実施形態に係るショベルの上面図である。FIG. 1 is a top view of an excavator according to an embodiment of the present disclosure. ショベルに搭載される油圧システムの構成例を示す図である。It is a diagram showing an example of the configuration of a hydraulic system mounted on an excavator. アームシリンダの操作に関する油圧システムの一部の図である。FIG. 3 is a diagram of a portion of the hydraulic system related to the operation of the arm cylinder. 吐出量制御機能の構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a discharge amount control function. 参照テーブルの内容の一例を説明する図である。It is a figure explaining an example of the contents of a reference table. 動作制限処理の一例のフローチャートである。3 is a flowchart of an example of operation restriction processing. 参照テーブルの内容の別の一例を説明する図である。FIG. 7 is a diagram illustrating another example of the contents of a reference table. クレーン作業を行っているショベルの斜視図である。FIG. 2 is a perspective view of an excavator performing crane work. 深掘作業を行っているショベルの側面図である。FIG. 2 is a side view of an excavator performing deep digging work. 稼動状態画面の一例を示す図である。It is a figure which shows an example of an operating state screen. 稼動状態画面の別の一例を示す図である。It is a figure which shows another example of an operating state screen. ショベルの制御システムの構成例を示す概略図である。FIG. 1 is a schematic diagram showing a configuration example of a control system for an excavator.

 最初に、図1及び図2を参照して、本開示の実施形態に係る掘削機としてのショベル100について説明する。図1はショベル100の側面図であり、図2はショベル100の上面図である。 First, a shovel 100 as an excavator according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. 1 is a side view of the shovel 100, and FIG. 2 is a top view of the shovel 100.

 本実施形態では、ショベル100の下部走行体1は被駆動体としてのクローラ1Cを含む。クローラ1Cは、下部走行体1に搭載されている走行用油圧モータ2Mによって駆動される。但し、走行用油圧モータ2Mは、電動アクチュエータとしての走行用電動発電機であってもよい。具体的には、クローラ1Cは左クローラ1CL及び右クローラ1CRを含む。左クローラ1CLは左走行用油圧モータ2MLによって駆動され、右クローラ1CRは右走行用油圧モータ2MRによって駆動される。下部走行体1は、クローラ1Cによって駆動されるため、被駆動体として機能する。 In this embodiment, the lower traveling body 1 of the excavator 100 includes a crawler 1C as a driven body. The crawler 1C is driven by a traveling hydraulic motor 2M mounted on the lower traveling body 1. However, the traveling hydraulic motor 2M may be a traveling motor generator serving as an electric actuator. Specifically, the crawler 1C includes a left crawler 1CL and a right crawler 1CR. The left crawler 1CL is driven by a left travel hydraulic motor 2ML, and the right crawler 1CR is driven by a right travel hydraulic motor 2MR. Since the lower traveling body 1 is driven by the crawler 1C, it functions as a driven body.

 下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。被駆動体としての旋回機構2は、上部旋回体3に搭載されている旋回用油圧モータ2Aによって駆動される。但し、旋回用油圧モータ2Aは、電動アクチュエータとしての旋回用電動発電機であってもよい。上部旋回体3は、旋回機構2によって駆動されるため、被駆動体として機能する。 An upper rotating body 3 is rotatably mounted on the lower traveling body 1 via a rotating mechanism 2. The swing mechanism 2 as a driven body is driven by a swing hydraulic motor 2A mounted on the upper swing structure 3. However, the swing hydraulic motor 2A may be a swing motor generator serving as an electric actuator. The upper rotating body 3 is driven by the rotating mechanism 2, and thus functions as a driven body.

 上部旋回体3には被駆動体としてのブーム4が取り付けられている。ブーム4の先端には被駆動体としてのアーム5が取り付けられ、アーム5の先端に被駆動体及びエンドアタッチメントとしてのバケット6が取り付けられている。エンドアタッチメントは、アーム5の先端に取り付けられる部材であり、ブレーカ、グラップル、又はリフティングマグネット等であってもよい。ブーム4、アーム5、及びバケット6は、アタッチメントATの一例である掘削アタッチメントを構成する。ブーム4はブームシリンダ7で駆動され、アーム5はアームシリンダ8で駆動され、バケット6はバケットシリンダ9で駆動される。 A boom 4 as a driven body is attached to the upper revolving body 3. An arm 5 as a driven body is attached to the tip of the boom 4, and a bucket 6 as a driven body and an end attachment is attached to the tip of the arm 5. The end attachment is a member attached to the tip of the arm 5, and may be a breaker, a grapple, a lifting magnet, or the like. The boom 4, the arm 5, and the bucket 6 constitute a digging attachment that is an example of the attachment AT. The boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9.

 ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。 A boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.

 ブーム角度センサS1はブーム4の回動角度を検出する。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度であるブーム角度を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。 The boom angle sensor S1 detects the rotation angle of the boom 4. In this embodiment, the boom angle sensor S1 is an acceleration sensor, and can detect a boom angle that is a rotation angle of the boom 4 with respect to the upper rotating structure 3. For example, the boom angle becomes the minimum angle when the boom 4 is lowered the most, and increases as the boom 4 is raised.

 アーム角度センサS2はアーム5の回動角度を検出する。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度であるアーム角度を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。 The arm angle sensor S2 detects the rotation angle of the arm 5. In this embodiment, the arm angle sensor S2 is an acceleration sensor, and can detect the arm angle, which is the rotation angle of the arm 5 with respect to the boom 4. For example, the arm angle becomes the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.

 バケット角度センサS3はバケット6の回動角度を検出する。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度であるバケット角度を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。 The bucket angle sensor S3 detects the rotation angle of the bucket 6. In this embodiment, the bucket angle sensor S3 is an acceleration sensor, and can detect the bucket angle, which is the rotation angle of the bucket 6 with respect to the arm 5. For example, the bucket angle becomes the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.

 ブーム角度センサS1、アーム角度センサS2及びバケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、加速度センサとジャイロセンサの組み合わせ等であってもよい。 The boom angle sensor S1, arm angle sensor S2, and bucket angle sensor S3 each include a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotary encoder that detects the rotation angle around the connecting pin. , a gyro sensor, a combination of an acceleration sensor and a gyro sensor, or the like.

 上部旋回体3には、運転室としてのキャビン10が設けられ、且つ、エンジン11等の動力源が搭載されている。動力源は、水素エンジンであってもよく、電動モータであってもよい。また、上部旋回体3には、室外警報器45A、物体検知装置70、測位装置85、機体傾斜センサS4、及び旋回角速度センサS5等が取り付けられている。キャビン10の内部には、操作装置26、コントローラ30、表示装置40、及び室内警報器45B等が設けられている。なお、本書では、便宜上、上部旋回体3における、ブーム4が取り付けられている側を前方とし、カウンタウェイトが取り付けられている側を後方とする。 The upper revolving body 3 is provided with a cabin 10 as a driver's cab, and is equipped with a power source such as an engine 11. The power source may be a hydrogen engine or an electric motor. Moreover, an outdoor alarm 45A, an object detection device 70, a positioning device 85, a body tilt sensor S4, a turning angular velocity sensor S5, and the like are attached to the upper revolving body 3. Inside the cabin 10, an operating device 26, a controller 30, a display device 40, an indoor alarm 45B, and the like are provided. In this document, for convenience, the side of the upper revolving structure 3 to which the boom 4 is attached is referred to as the front, and the side to which the counterweight is attached is referred to as the rear.

 コントローラ30は、処理回路の一例であり、ショベル100を制御するための制御装置として機能する。本実施形態では、コントローラ30は、CPU、RAM、NVRAM、及びROM等を備えたコンピュータで構成されている。そして、コントローラ30は、各機能に対応するプログラムをROMから読み出してRAMにロードし、対応する処理をCPUに実行させる。 The controller 30 is an example of a processing circuit, and functions as a control device for controlling the excavator 100. In this embodiment, the controller 30 is composed of a computer including a CPU, RAM, NVRAM, ROM, and the like. Then, the controller 30 reads a program corresponding to each function from the ROM, loads it into the RAM, and causes the CPU to execute the corresponding process.

 表示装置40は、画像情報を表示できるように構成されている。図示例では、表示装置40は、有機ELディスプレイであり、ショベル100の操作者に画像情報を提示できるように構成されている。 The display device 40 is configured to display image information. In the illustrated example, the display device 40 is an organic EL display, and is configured to be able to present image information to the operator of the shovel 100.

 室外警報器45Aは、キャビン10の外部に向けて音を出力できるように構成されている。図示例では、室外警報器45Aは、室外スピーカであり、ショベル100の周囲で作業する作業者の注意を喚起するための音を出力できるように構成されている。 The outdoor alarm 45A is configured to output sound toward the outside of the cabin 10. In the illustrated example, the outdoor alarm 45A is an outdoor speaker and is configured to output a sound to draw the attention of workers working around the shovel 100.

 室内警報器45Bは、キャビン10の内部に向けて音を出力できるように構成されている。図示例では、室内警報器45Bは、室内スピーカであり、ショベル100を操作する操作者の注意を喚起するための音を出力できるように構成されている。 The indoor alarm 45B is configured to output sound toward the interior of the cabin 10. In the illustrated example, the indoor alarm 45B is an indoor speaker and is configured to output a sound to draw the attention of the operator operating the shovel 100.

 物体検知装置70は、ショベル100の周囲に存在する物体を検知するように構成されている。物体は、例えば、人、動物、車両、建設機械、建造物、又は穴等である。物体検知装置70は、例えば、超音波センサ、ミリ波レーダ、撮像装置、又は赤外線センサ等である。撮像装置は、例えば、単眼カメラ、ステレオカメラ、LIDAR、又は距離画像センサ等である。本実施形態では、物体検知装置70は、アタッチメントATに取り付けられたアタッチメントカメラ70A、上部旋回体3の上面後端に取り付けられた後方カメラ70B、キャビン10の上面前端に取り付けられた前方カメラ70F、上部旋回体3の上面左端に取り付けられた左方カメラ70L、及び上部旋回体3の上面右端に取り付けられた右方カメラ70Rを含む。図示例では、アタッチメントカメラ70Aは、バケットシリンダ9に取り付けられた第1カメラ70A1、アーム5の左側面に取り付けられた第2カメラ70A2、及び、アーム5の右側面に取り付けられた第3カメラ70A3を含む。なお、アタッチメントカメラ70Aは、第1カメラ70A1~第3カメラ70A3のうちの何れか一つ又は二つであってもよく、アーム5の背面に取り付けられたカメラを含んでいてもよく、アーム5の腹面に取り付けられたカメラを含んでいてもよい。また、アタッチメントカメラ70Aは省略されてもよい。 The object detection device 70 is configured to detect objects existing around the excavator 100. The object is, for example, a person, an animal, a vehicle, a construction machine, a building, or a hole. The object detection device 70 is, for example, an ultrasonic sensor, a millimeter wave radar, an imaging device, an infrared sensor, or the like. The imaging device is, for example, a monocular camera, a stereo camera, a LIDAR, or a distance image sensor. In this embodiment, the object detection device 70 includes an attachment camera 70A attached to the attachment AT, a rear camera 70B attached to the rear end of the upper surface of the upper rotating body 3, a front camera 70F attached to the front end of the upper surface of the cabin 10, It includes a left camera 70L attached to the left end of the upper surface of the upper revolving structure 3, and a right camera 70R attached to the right end of the upper surface of the upper revolving structure 3. In the illustrated example, the attachment cameras 70A include a first camera 70A1 attached to the bucket cylinder 9, a second camera 70A2 attached to the left side of the arm 5, and a third camera 70A3 attached to the right side of the arm 5. including. Note that the attachment camera 70A may be any one or two of the first camera 70A1 to third camera 70A3, and may include a camera attached to the back of the arm 5. The device may include a camera attached to the ventral surface of the device. Furthermore, the attachment camera 70A may be omitted.

 物体検知装置70は、ショベル100の周囲に設定された所定領域内の所定物体(例えば人)を検知できるように構成されていてもよい。例えば、物体検知装置70は、人と人以外の物体とを区別して検知できるように構成されていてもよい。 The object detection device 70 may be configured to be able to detect a predetermined object (for example, a person) within a predetermined area set around the excavator 100. For example, the object detection device 70 may be configured to be able to distinguish between humans and objects other than humans and detect them.

 測位装置85は、ショベル100の位置を計測するように構成されている。本実施形態では、測位装置85は、電子コンパスを組み込んだGNSS受信機であり、受信したGNSS信号に基づいてショベル100の緯度、経度、及び高度を算出して出力し、且つ、ショベル100の向きを算出して出力する。 The positioning device 85 is configured to measure the position of the excavator 100. In this embodiment, the positioning device 85 is a GNSS receiver incorporating an electronic compass, and calculates and outputs the latitude, longitude, and altitude of the excavator 100 based on the received GNSS signal, and also calculates and outputs the latitude, longitude, and altitude of the excavator 100. Calculate and output.

 機体傾斜センサS4は所定の平面に対する上部旋回体3の傾きを検出するように構成されている。本実施形態では、機体傾斜センサS4は、水平面に関する上部旋回体3の前後軸回りの傾斜角及び左右軸回りの傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、互いに直交してショベル100の旋回軸上の一点であるショベル中心点を通る。 The body inclination sensor S4 is configured to detect the inclination of the upper revolving body 3 with respect to a predetermined plane. In this embodiment, the body inclination sensor S4 is an acceleration sensor that detects the inclination angle around the longitudinal axis and the inclination angle around the left-right axis of the upper rotating structure 3 with respect to the horizontal plane. For example, the longitudinal axis and the lateral axis of the upper revolving body 3 are orthogonal to each other and pass through the center point of the shovel, which is a point on the pivot axis of the shovel 100.

 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ又はロータリエンコーダ等であってもよい。旋回角速度センサS5は、旋回速度及び旋回角度の少なくとも一方を出力するように構成されていてもよい。この場合、旋回速度及び旋回角度の少なくとも一方は旋回角速度から算出されてもよい。 The turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper rotating structure 3. In this embodiment, the turning angular velocity sensor S5 is a gyro sensor. The turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like. The turning angular velocity sensor S5 may be configured to output at least one of the turning speed and the turning angle. In this case, at least one of the turning speed and the turning angle may be calculated from the turning angular velocity.

 以下では、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、及び旋回角速度センサS5の任意の組み合わせは、集合的に姿勢センサとも称される。 Hereinafter, any combination of boom angle sensor S1, arm angle sensor S2, bucket angle sensor S3, body tilt sensor S4, and turning angular velocity sensor S5 will also be collectively referred to as attitude sensor.

 次に、図3を参照し、ショベル100に搭載される油圧システムの構成例について説明する。図3は、ショベル100に搭載される油圧システムの構成例を示す図である。図3は、機械的動力伝達系、作動油ライン、パイロットライン、及び電気制御系を、それぞれ二重線、実線、破線、及び点線で示している。 Next, with reference to FIG. 3, a configuration example of a hydraulic system mounted on the excavator 100 will be described. FIG. 3 is a diagram showing a configuration example of a hydraulic system mounted on the excavator 100. FIG. 3 shows the mechanical power transmission system, hydraulic oil lines, pilot lines, and electrical control system as double lines, solid lines, dashed lines, and dotted lines, respectively.

 ショベル100の油圧システムは、主に、エンジン11、ポンプレギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブユニット17、操作装置26、吐出圧センサ28、操作センサ29、コントローラ30、及び制御弁60等を含む。 The hydraulic system of the excavator 100 mainly includes an engine 11, a pump regulator 13, a main pump 14, a pilot pump 15, a control valve unit 17, an operating device 26, a discharge pressure sensor 28, an operating sensor 29, a controller 30, and a control valve 60. Including etc.

 図3において、油圧システムは、エンジン11によって駆動されるメインポンプ14から、センターバイパス管路CB又はパラレル管路PCを経て作動油タンクまで作動油を循環させている。 In FIG. 3, the hydraulic system circulates hydraulic oil from a main pump 14 driven by an engine 11 to a hydraulic oil tank via a center bypass line CB or a parallel line PC.

 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。 The engine 11 is a driving source for the excavator 100. In this embodiment, the engine 11 is, for example, a diesel engine that operates to maintain a predetermined rotation speed. The output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15, respectively.

 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給するように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。 The main pump 14 is configured to supply hydraulic oil to the control valve unit 17 via a hydraulic oil line. In this embodiment, the main pump 14 is a swash plate type variable displacement hydraulic pump.

 ポンプレギュレータ13は、メインポンプ14の吐出量を制御するように構成されている。本実施形態では、ポンプレギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量(押し退け容積)を制御する。 The pump regulator 13 is configured to control the discharge amount of the main pump 14. In this embodiment, the pump regulator 13 controls the discharge amount (displaced volume) of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 in accordance with a control command from the controller 30.

 パイロットポンプ15は、パイロットラインを介して操作装置26を含む油圧制御機器に作動油を供給するように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロットポンプ15は、省略されてもよい。この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブユニット17に作動油を供給する機能とは別に、絞り等により作動油の圧力を低下させた後で操作装置26及び比例弁31(図4参照)等に作動油を供給する機能を備えていてもよい。 The pilot pump 15 is configured to supply hydraulic oil to hydraulic control equipment including the operating device 26 via a pilot line. In this embodiment, the pilot pump 15 is a fixed displacement hydraulic pump. However, the pilot pump 15 may be omitted. In this case, the functions performed by the pilot pump 15 may be realized by the main pump 14. That is, in addition to the function of supplying hydraulic oil to the control valve unit 17, the main pump 14 also operates the operating device 26, the proportional valve 31 (see FIG. 4), etc. after reducing the pressure of the hydraulic oil by throttling or the like. It may also have a function of supplying oil.

 コントロールバルブユニット17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブユニット17は、制御弁171~176を含む。制御弁175は制御弁175L及び制御弁175Rを含み、制御弁176は制御弁176L及び制御弁1756を含む。コントロールバルブユニット17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左走行用油圧モータ2ML、右走行用油圧モータ2MR、及び旋回用油圧モータ2Aを含む。 The control valve unit 17 is a hydraulic control device that controls the hydraulic system in the excavator 100. In this embodiment, control valve unit 17 includes control valves 171-176. The control valve 175 includes a control valve 175L and a control valve 175R, and the control valve 176 includes a control valve 176L and a control valve 1756. The control valve unit 17 can selectively supply the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves 171 to 176. The control valves 171 to 176 control the flow rate of hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank. The hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left travel hydraulic motor 2ML, a right travel hydraulic motor 2MR, and a swing hydraulic motor 2A.

 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに向けて供給する。パイロットポートのそれぞれに向けて供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダル(図示せず。)の操作方向及び操作量に応じた圧力である。 The operating device 26 is a device used by the operator to operate the actuator. The actuator includes at least one of a hydraulic actuator and an electric actuator. In this embodiment, the operating device 26 supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the pilot line. The pressure (pilot pressure) of the hydraulic fluid supplied to each of the pilot ports is a pressure that corresponds to the direction and amount of operation of the lever or pedal (not shown) of the operating device 26 corresponding to each of the hydraulic actuators. It is.

 吐出圧センサ28は、メインポンプ14の吐出圧を検出するように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。 The discharge pressure sensor 28 is configured to detect the discharge pressure of the main pump 14. In this embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.

 操作センサ29は、操作者による操作装置26の操作の内容を検出するように構成されている。本実施形態では、操作センサ29は、アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を角度の形で検出する角度センサであり、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、角度センサ以外の他のセンサを用いて検出されてもよい。 The operation sensor 29 is configured to detect the content of the operation of the operating device 26 by the operator. In the present embodiment, the operation sensor 29 is an angle sensor that detects the operation direction and operation amount of the lever or pedal of the operation device 26 corresponding to each of the actuators in the form of an angle, and sends the detected value to the controller 30. Output. The operation details of the operating device 26 may be detected using a sensor other than the angle sensor.

 メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。そして、左メインポンプ14Lは、左センターバイパス管路CBL又は左パラレル管路PCLを経て作動油タンクまで作動油を循環させ、右メインポンプ14Rは、右センターバイパス管路CBR又は右パラレル管路PCRを経て作動油タンクまで作動油を循環させる。 The main pump 14 includes a left main pump 14L and a right main pump 14R. The left main pump 14L circulates the hydraulic oil to the hydraulic oil tank via the left center bypass line CBL or the left parallel line PCL, and the right main pump 14R circulates the hydraulic oil through the right center bypass line CBR or the right parallel line PCR. The hydraulic oil is circulated through to the hydraulic oil tank.

 左センターバイパス管路CBLは、コントロールバルブユニット17内に配置された制御弁171、173、175L、及び176Lを通る作動油ラインである。右センターバイパス管路CBRは、コントロールバルブユニット17内に配置された制御弁172、174、175R、及び176Rを通る作動油ラインである。 The left center bypass line CBL is a hydraulic oil line that passes through the control valves 171, 173, 175L, and 176L arranged in the control valve unit 17. The right center bypass line CBR is a hydraulic oil line that passes through control valves 172, 174, 175R, and 176R arranged in the control valve unit 17.

 制御弁171は、左メインポンプ14Lが吐出する作動油を左走行用油圧モータ2MLへ供給し、且つ、左走行用油圧モータ2MLが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 171 supplies the hydraulic oil discharged by the left main pump 14L to the left travel hydraulic motor 2ML, and discharges the hydraulic oil discharged by the left travel hydraulic motor 2ML to the hydraulic oil tank. It is a spool valve that switches the flow.

 制御弁172は、右メインポンプ14Rが吐出する作動油を右走行用油圧モータ2MRへ供給し、且つ、右走行用油圧モータ2MRが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 172 supplies the hydraulic oil discharged by the right main pump 14R to the right traveling hydraulic motor 2MR, and discharges the hydraulic oil discharged by the right traveling hydraulic motor 2MR to the hydraulic oil tank. It is a spool valve that switches the flow.

 制御弁173は、左メインポンプ14Lが吐出する作動油を旋回用油圧モータ2Aへ供給し、且つ、旋回用油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 173 controls the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the swing hydraulic motor 2A, and to discharge the hydraulic oil discharged by the swing hydraulic motor 2A to the hydraulic oil tank. It is a switching spool valve.

 制御弁174は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 174 is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the bucket cylinder 9 and to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .

 制御弁175Lは、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁175Rは、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 175L is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged by the left main pump 14L to the boom cylinder 7. The control valve 175R is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the boom cylinder 7 and to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .

 制御弁176Lは、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 176L is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the arm cylinder 8 and to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .

 制御弁176Rは、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 176R is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the right main pump 14R to the arm cylinder 8 and to discharge the hydraulic oil in the arm cylinder 8 to the hydraulic oil tank. .

 左パラレル管路PCLは、左センターバイパス管路CBLに並行する作動油ラインである。左パラレル管路PCLは、制御弁171、173、又は175Lの何れかによって左センターバイパス管路CBLを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。右パラレル管路PCRは、右センターバイパス管路CBRに並行する作動油ラインである。右パラレル管路PCRは、制御弁172、174、又は175Rの何れかによって右センターバイパス管路CBRを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。 The left parallel line PCL is a hydraulic oil line parallel to the left center bypass line CBL. The left parallel line PCL supplies hydraulic oil to a downstream control valve when the flow of hydraulic oil through the left center bypass line CBL is restricted or blocked by any of the control valves 171, 173, or 175L. can. The right parallel pipe PCR is a hydraulic oil line parallel to the right center bypass pipe CBR. The right parallel line PCR supplies hydraulic oil to a more downstream control valve when the flow of hydraulic oil through the right center bypass line CBR is restricted or blocked by any of the control valves 172, 174, or 175R. can.

 ポンプレギュレータ13は、左ポンプレギュレータ13L及び右ポンプレギュレータ13Rを含む。左ポンプレギュレータ13Lは、左メインポンプ14Lの吐出圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量(押し退け容積)を制御する。具体的には、左ポンプレギュレータ13Lは、例えば、左メインポンプ14Lの吐出圧の増大に応じて左メインポンプ14Lの斜板傾転角を調節して吐出量(押し退け容積)を減少させる。右ポンプレギュレータ13Rについても同様である。これは、吐出圧と吐出量との積で表されるメインポンプ14の吸収パワー(吸収馬力)がエンジン11の出力パワー(出力馬力)を超えないようにするためである。 The pump regulator 13 includes a left pump regulator 13L and a right pump regulator 13R. The left pump regulator 13L controls the discharge amount (displaced volume) of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to the discharge pressure of the left main pump 14L. Specifically, the left pump regulator 13L adjusts the swash plate tilt angle of the left main pump 14L to reduce the discharge amount (displaced volume), for example, in response to an increase in the discharge pressure of the left main pump 14L. The same applies to the right pump regulator 13R. This is to prevent the absorbed power (absorbed horsepower) of the main pump 14, which is represented by the product of the discharge pressure and the discharge amount, from exceeding the output power (output horsepower) of the engine 11.

 操作装置26は、左操作レバー26L、右操作レバー26R、及び走行レバー26Dを含む。走行レバー26Dは、左走行レバー26DL及び右走行レバー26DRを含む。 The operating device 26 includes a left operating lever 26L, a right operating lever 26R, and a travel lever 26D. The travel lever 26D includes a left travel lever 26DL and a right travel lever 26DR.

 左操作レバー26Lは、旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁176のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁173のパイロットポートに導入させる。 The left operating lever 26L is used for turning operations and operating the arm 5. When the left operating lever 26L is operated in the front-back direction, the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 176 using hydraulic oil discharged by the pilot pump 15. Further, when the lever is operated in the left-right direction, a control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 173 using hydraulic oil discharged by the pilot pump 15 .

 具体的には、左操作レバー26Lは、アーム閉じ方向に操作された場合に、制御弁176Lの右パイロットポートに作動油を導入させ、且つ、制御弁176Rの左パイロットポートに作動油を導入させる。また、左操作レバー26Lは、アーム開き方向に操作された場合には、制御弁176Lの左パイロットポートに作動油を導入させ、且つ、制御弁176Rの右パイロットポートに作動油を導入させる。また、左操作レバー26Lは、左旋回方向に操作された場合に、制御弁173の左パイロットポートに作動油を導入させ、右旋回方向に操作された場合に、制御弁173の右パイロットポートに作動油を導入させる。 Specifically, when the left operating lever 26L is operated in the arm closing direction, hydraulic oil is introduced into the right pilot port of the control valve 176L, and hydraulic oil is introduced into the left pilot port of the control valve 176R. . Further, when the left operating lever 26L is operated in the arm opening direction, hydraulic oil is introduced into the left pilot port of the control valve 176L, and hydraulic oil is introduced into the right pilot port of the control valve 176R. Furthermore, when the left operating lever 26L is operated in the left rotation direction, hydraulic oil is introduced into the left pilot port of the control valve 173, and when it is operated in the right rotation direction, the right pilot port of the control valve 173 is introduced. introduce hydraulic oil.

 右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁175のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁174のパイロットポートに導入させる。 The right operating lever 26R is used to operate the boom 4 and the bucket 6. When the right operating lever 26R is operated in the front-rear direction, the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 175 using hydraulic oil discharged by the pilot pump 15. Further, when the lever is operated in the left-right direction, a control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 174 using hydraulic oil discharged by the pilot pump 15 .

 具体的には、右操作レバー26Rは、ブーム下げ方向に操作された場合に、制御弁175Rの右パイロットポートに作動油を導入させる。また、右操作レバー26Rは、ブーム上げ方向に操作された場合には、制御弁175Lの右パイロットポートに作動油を導入させ、且つ、制御弁175Rの左パイロットポートに作動油を導入させる。また、右操作レバー26Rは、バケット閉じ方向に操作された場合に、制御弁174の右パイロットポートに作動油を導入させ、バケット開き方向に操作された場合に、制御弁174の左パイロットポートに作動油を導入させる。 Specifically, when the right operating lever 26R is operated in the boom lowering direction, hydraulic oil is introduced into the right pilot port of the control valve 175R. Further, when the right operating lever 26R is operated in the boom raising direction, hydraulic oil is introduced into the right pilot port of the control valve 175L, and hydraulic oil is introduced into the left pilot port of the control valve 175R. Further, the right operating lever 26R causes hydraulic oil to be introduced into the right pilot port of the control valve 174 when operated in the bucket closing direction, and into the left pilot port of the control valve 174 when operated in the bucket opening direction. Introduce hydraulic oil.

 走行レバー26Dは、クローラ1Cの操作に用いられる。具体的には、左走行レバー26DLは、左クローラ1CLの操作に用いられる。左走行レバー26DLは、左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁171のパイロットポートに導入させる。右走行レバー26DRは、右クローラ1CRの操作に用いられる。右走行レバー26DRは、右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁172のパイロットポートに導入させる。 The travel lever 26D is used to operate the crawler 1C. Specifically, the left travel lever 26DL is used to operate the left crawler 1CL. The left travel lever 26DL may be configured to work in conjunction with a left travel pedal. When the left travel lever 26DL is operated in the front-back direction, the control pressure corresponding to the lever operation amount is introduced into the pilot port of the control valve 171 using hydraulic oil discharged by the pilot pump 15. The right travel lever 26DR is used to operate the right crawler 1CR. The right travel lever 26DR may be configured to work in conjunction with the right travel pedal. When the right travel lever 26DR is operated in the front-back direction, the control pressure corresponding to the amount of lever operation is introduced into the pilot port of the control valve 172 using hydraulic oil discharged by the pilot pump 15.

 吐出圧センサ28は、左吐出圧センサ28L及び右吐出圧センサ28Rを含む。左吐出圧センサ28Lは、左メインポンプ14Lの吐出圧を検出し、検出した値をコントローラ30に対して出力する。右吐出圧センサ28Rについても同様である。 The discharge pressure sensor 28 includes a left discharge pressure sensor 28L and a right discharge pressure sensor 28R. The left discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30. The same applies to the right discharge pressure sensor 28R.

 操作センサ29は、操作センサ29LA、29LB、29RA、29RB、29DL、及び29DRを含む。操作センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。操作内容は、例えば、レバー操作方向及びレバー操作量(レバー操作角度)等である。同様に、操作センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。操作センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。操作センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。操作センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。操作センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を角度の形で検出し、検出した値をコントローラ30に対して出力する。 The operation sensor 29 includes operation sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR. The operation sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30. The operation details include, for example, the direction of lever operation and the amount of lever operation (lever operation angle). Similarly, the operation sensor 29LB detects in the form of an angle the content of the left-right direction operation of the left operation lever 26L by the operator, and outputs the detected value to the controller 30. The operation sensor 29RA detects the content of the operation of the right operation lever 26R by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30. The operation sensor 29RB detects in the form of an angle the content of the operation of the right operation lever 26R by the operator in the left-right direction, and outputs the detected value to the controller 30. The operation sensor 29DL detects the content of the operation of the left running lever 26DL by the operator in the front-rear direction in the form of an angle, and outputs the detected value to the controller 30. The operation sensor 29DR detects the content of the operation of the right traveling lever 26DR by the operator in the front-back direction in the form of an angle, and outputs the detected value to the controller 30.

 コントローラ30は、操作センサ29の出力を受信し、必要に応じてポンプレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。 The controller 30 receives the output of the operation sensor 29, outputs a control command to the pump regulator 13 as necessary, and changes the discharge amount of the main pump 14.

 ここで、絞り18と制御圧センサ19を用いたネガティブコントロール制御について説明する。絞り18は左絞り18L及び右絞り18Rを含み、制御圧センサ19は左制御圧センサ19L及び右制御圧センサ19Rを含む。 Here, negative control control using the diaphragm 18 and the control pressure sensor 19 will be explained. The aperture 18 includes a left aperture 18L and a right aperture 18R, and the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.

 左センターバイパス管路CBLには、最も下流にある制御弁176Lと作動油タンクとの間に左絞り18Lが配置されている。そのため、左メインポンプ14Lが吐出した作動油の流れは、左絞り18Lで制限される。そして、左絞り18Lは、左ポンプレギュレータ13Lを制御するための制御圧を発生させる。左制御圧センサ19Lは、この制御圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。コントローラ30は、この制御圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。コントローラ30は、この制御圧が大きいほど左メインポンプ14Lの吐出量を減少させ、この制御圧が小さいほど左メインポンプ14Lの吐出量を増大させる。右メインポンプ14Rの吐出量も同様に制御される。 In the left center bypass line CBL, a left throttle 18L is arranged between the most downstream control valve 176L and the hydraulic oil tank. Therefore, the flow of the hydraulic oil discharged by the left main pump 14L is restricted by the left throttle 18L. The left throttle 18L generates a control pressure for controlling the left pump regulator 13L. The left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30. The controller 30 controls the discharge amount of the left main pump 14L by adjusting the swash plate tilt angle of the left main pump 14L according to this control pressure. The controller 30 decreases the discharge amount of the left main pump 14L as the control pressure becomes larger, and increases the discharge amount of the left main pump 14L as the control pressure becomes smaller. The discharge amount of the right main pump 14R is similarly controlled.

 具体的には、図3で示されるようにショベル100における油圧アクチュエータが何れも操作されていない待機状態の場合、左メインポンプ14Lが吐出する作動油は、左センターバイパス管路CBLを通って左絞り18Lに至る。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lの上流で発生する制御圧を増大させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を許容最小吐出量まで減少させ、吐出した作動油が左センターバイパス管路CBLを通過する際の圧力損失(ポンピングロス)を抑制する。一方、何れかの油圧アクチュエータが操作された場合、左メインポンプ14Lが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lに至る量を減少或いは消失させ、左絞り18Lの上流で発生する制御圧を低下させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を流入させ、操作対象の油圧アクチュエータの駆動を確かなものとする。なお、コントローラ30は、右メインポンプ14Rの吐出量も同様に制御する。 Specifically, as shown in FIG. 3, when the excavator 100 is in a standby state where none of the hydraulic actuators are operated, the hydraulic oil discharged by the left main pump 14L passes through the left center bypass pipe CBL and flows to the left side. The aperture reaches 18L. The flow of hydraulic oil discharged by the left main pump 14L increases the control pressure generated upstream of the left throttle 18L. As a result, the controller 30 reduces the discharge amount of the left main pump 14L to the minimum allowable discharge amount, and suppresses pressure loss (pumping loss) when the discharged hydraulic fluid passes through the left center bypass pipe CBL. On the other hand, when any of the hydraulic actuators is operated, the hydraulic oil discharged by the left main pump 14L flows into the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. Then, the flow of hydraulic oil discharged by the left main pump 14L reduces or disappears in the amount reaching the left throttle 18L, thereby lowering the control pressure generated upstream of the left throttle 18L. As a result, the controller 30 increases the discharge amount of the left main pump 14L, allows sufficient hydraulic oil to flow into the hydraulic actuator to be operated, and ensures the drive of the hydraulic actuator to be operated. Note that the controller 30 similarly controls the discharge amount of the right main pump 14R.

 上述のような構成により、図3の油圧システムは、待機状態においては、メインポンプ14における無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14が吐出する作動油がセンターバイパス管路CBで発生させるポンピングロスを含む。また、図3の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14から必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できる。 With the above configuration, the hydraulic system of FIG. 3 can suppress wasteful energy consumption in the main pump 14 in the standby state. The wasteful energy consumption includes pumping loss caused by the hydraulic fluid discharged by the main pump 14 in the center bypass pipe CB. Furthermore, when operating a hydraulic actuator, the hydraulic system shown in FIG. 3 can reliably supply necessary and sufficient hydraulic oil from the main pump 14 to the hydraulic actuator to be operated.

 制御弁60は、操作装置26の有効状態と無効状態とを切り換えるように構成されている。操作装置26の有効状態は、操作者が操作装置26を操作することで関連する被駆動体を動かすことができる状態であり、操作装置26の無効状態は、操作者が操作装置26を操作しても関連する被駆動体を動かすことができない状態である。 The control valve 60 is configured to switch the operating device 26 between a valid state and a disabled state. The valid state of the operating device 26 is a state in which the operator can move the related driven body by operating the operating device 26, and the disabled state of the operating device 26 is a state in which the operator can move the related driven body by operating the operating device 26. It is in a state where the related driven body cannot be moved even if the

 本実施形態では、制御弁60は、パイロットポンプ15と操作装置26とを繋ぐパイロットラインCD1の連通状態と遮断状態とを切り換え可能な電磁弁である。具体的には、制御弁60は、コントローラ30からの指令に応じてパイロットラインCD1の連通状態と遮断状態とを切り換えるように構成されている。 In this embodiment, the control valve 60 is a solenoid valve that can switch between a communication state and a cutoff state of the pilot line CD1 that connects the pilot pump 15 and the operating device 26. Specifically, the control valve 60 is configured to switch the pilot line CD1 between a communication state and a cutoff state in response to a command from the controller 30.

 制御弁60は、不図示のゲートロックレバーに連動するように構成されていてもよい。具体的には、ゲートロックレバーが押し下げられたときにパイロットラインCD1を遮断状態にし、ゲートロックレバーが引き上げられたときにパイロットラインCD1を連通状態にするように構成されていてもよい。但し、制御弁60は、ゲートロックレバーに連動してパイロットラインCD1の連通状態と遮断状態とを切り換え可能な電磁弁とは別の電磁弁であってもよい。 The control valve 60 may be configured to operate in conjunction with a gate lock lever (not shown). Specifically, the pilot line CD1 may be configured to be in a cutoff state when the gate lock lever is pushed down, and to be in a communication state when the gate lock lever is pulled up. However, the control valve 60 may be a different electromagnetic valve from the electromagnetic valve that can switch between a communication state and a cutoff state of the pilot line CD1 in conjunction with the gate lock lever.

 次に、図4を参照し、コントローラ30がマシンコントロール機能によってアクチュエータを動作させるための構成について説明する。図4は、油圧システムの一部を抜き出した図である。具体的には、図4は、アームシリンダ8の操作に関する油圧システム部分を抜き出した図である。なお、図4を参照する以下の説明は、アームシリンダ8の操作に関するが、ブームシリンダ7、バケットシリンダ9、旋回用油圧モータ2A、左走行用油圧モータ2ML、又は右走行用油圧モータ2MR等の他のアクチュエータの操作に対しても同様に適用される。 Next, with reference to FIG. 4, a configuration for the controller 30 to operate the actuator using the machine control function will be described. FIG. 4 is a diagram showing a part of the hydraulic system. Specifically, FIG. 4 is an extracted diagram of the hydraulic system portion related to the operation of the arm cylinder 8. As shown in FIG. Note that the following explanation with reference to FIG. 4 relates to the operation of the arm cylinder 8, but it also applies to the boom cylinder 7, the bucket cylinder 9, the swing hydraulic motor 2A, the left travel hydraulic motor 2ML, the right travel hydraulic motor 2MR, etc. The same applies to the operation of other actuators.

 図4に示すように、油圧システムは、比例弁31を含む。比例弁31は、比例弁31AL及び31ARを含む。 As shown in FIG. 4, the hydraulic system includes a proportional valve 31. Proportional valve 31 includes proportional valves 31AL and 31AR.

 比例弁31は、マシンコントロール用制御弁として機能する。比例弁31は、パイロットポンプ15とコントロールバルブユニット17内の対応する制御弁のパイロットポートとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31を介し、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できる。そして、コントローラ30は、比例弁31が生成するパイロット圧を、対応する制御弁のパイロットポートに作用させることができる。 The proportional valve 31 functions as a control valve for machine control. The proportional valve 31 is arranged in a conduit connecting the pilot pump 15 and a pilot port of a corresponding control valve in the control valve unit 17, and is configured to be able to change the flow area of the conduit. In this embodiment, the proportional valve 31 operates according to a control command output by the controller 30. Therefore, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the proportional valve 31, regardless of the operation of the operating device 26 by the operator. can. The controller 30 can then cause the pilot pressure generated by the proportional valve 31 to act on the pilot port of the corresponding control valve.

 この構成により、コントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。 With this configuration, the controller 30 can operate the hydraulic actuator corresponding to the specific operating device 26 even when the specific operating device 26 is not operated. Further, even if a specific operating device 26 is being operated, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to that specific operating device 26.

 例えば、図4に示すように、左操作レバー26Lは、アーム5を操作するために用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁176のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、アーム閉じ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁176Lの右側パイロットポートと制御弁176Rの左側パイロットポートに作用させる。また、左操作レバー26Lは、アーム開き方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁176Lの左側パイロットポートと制御弁176Rの右側パイロットポートに作用させる。 For example, as shown in FIG. 4, the left operating lever 26L is used to operate the arm 5. Specifically, the left operating lever 26L uses the hydraulic oil discharged by the pilot pump 15 to apply pilot pressure to the pilot port of the control valve 176 in accordance with the operation in the longitudinal direction. More specifically, when the left operating lever 26L is operated in the arm closing direction (rearward direction), the left operating lever 26L applies pilot pressure according to the operating amount to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R. Let it work. Further, when the left operating lever 26L is operated in the arm opening direction (forward direction), a pilot pressure corresponding to the operating amount is applied to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.

 操作装置26にはスイッチSW1が設けられている。本実施形態では、スイッチSW1は、左操作レバー26Lの先端に設けられた押しボタンスイッチである。操作者は、スイッチSW1を押しながら左操作レバー26Lを操作できる。スイッチSW1は、右操作レバー26Rに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。 The operating device 26 is provided with a switch SW1. In this embodiment, the switch SW1 is a push button switch provided at the tip of the left operating lever 26L. The operator can operate the left operating lever 26L while pressing the switch SW1. The switch SW1 may be provided on the right operating lever 26R, or may be provided at another position within the cabin 10.

 操作センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。 The operation sensor 29LA detects the content of the operation of the left operation lever 26L by the operator in the front-back direction, and outputs the detected value to the controller 30.

 比例弁31ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31ALを介して制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31ARを介して制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ALは、制御弁176L及び制御弁176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。同様に、比例弁31ARは、制御弁176L及び制御弁176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。 The proportional valve 31AL operates according to a control command (current command) output by the controller 30. Then, the pilot pressure is adjusted by the hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL. The proportional valve 31AR operates according to a control command (current command) output by the controller 30. Then, the pilot pressure is adjusted by the hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR. The pilot pressure of the proportional valve 31AL can be adjusted so that the control valve 176L and the control valve 176R can be stopped at any valve position. Similarly, the pilot pressure of the proportional valve 31AR can be adjusted so that the control valve 176L and the control valve 176R can be stopped at any valve position.

 この構成により、コントローラ30は、操作者によるアーム閉じ操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。また、コントローラ30は、操作者によるアーム閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるアーム閉じ操作に応じ、或いは、操作者によるアーム閉じ操作とは無関係に、アーム5を閉じることができる。 With this configuration, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL in response to the arm closing operation by the operator. can. In addition, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL, regardless of the arm closing operation by the operator. can. That is, the controller 30 can close the arm 5 in response to the arm closing operation by the operator or regardless of the arm closing operation by the operator.

 また、コントローラ30は、操作者によるアーム開き操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。また、コントローラ30は、操作者によるアーム開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるアーム開き操作に応じ、或いは、操作者によるアーム開き操作とは無関係に、アーム5を開くことができる。 Further, the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR in response to the arm opening operation by the operator. In addition, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR, regardless of the arm opening operation by the operator. can. That is, the controller 30 can open the arm 5 in response to the arm opening operation by the operator or independently of the arm opening operation by the operator.

 また、この構成により、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、制御弁176の閉じ側のパイロットポート(制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポート)に作用するパイロット圧を減圧し、アーム5の閉じ動作を強制的に停止させることができる。操作者によるアーム開き操作が行われているときにアーム5の開き動作を強制的に停止させる場合についても同様である。 Further, with this configuration, the controller 30 can control the closing side pilot port of the control valve 176 (the left pilot port of the control valve 176L) as needed even when the operator performs an arm closing operation. The closing operation of the arm 5 can be forcibly stopped by reducing the pilot pressure acting on the right pilot port of the control valve 176R. The same applies to the case where the opening operation of the arm 5 is forcibly stopped when the operator is performing the arm opening operation.

 或いは、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁176の閉じ側のパイロットポートの反対側にある、制御弁176の開き側のパイロットポート(制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポート)に作用するパイロット圧を増大させ、制御弁176を強制的に中立位置に戻すことで、アーム5の閉じ動作を強制的に停止させてもよい。操作者によるアーム開き操作が行われている場合にアーム5の開き動作を強制的に停止させる場合についても同様である。 Alternatively, the controller 30 controls the proportional valve 31AR as necessary even when the operator performs an arm closing operation, and controls the proportional valve 31AR on the opposite side of the closing side pilot port of the control valve 176. The arm 5 may be forcibly stopped. The same applies to the case where the opening operation of the arm 5 is forcibly stopped when the operator is performing an arm opening operation.

 また、図を参照しながらの説明を省略するが、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる場合、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる場合、及び、操作者による旋回操作が行われている場合に上部旋回体3の旋回動作を強制的に停止させる場合についても同様である。また、操作者による走行操作が行われている場合に下部走行体1の走行動作を強制的に停止させる場合についても同様である。 Although explanations with reference to the figures are omitted, when the operator is performing a boom raising operation or a boom lowering operation and the operation of the boom 4 is forcibly stopped, the bucket closing operation by the operator or When the operation of the bucket 6 is forcibly stopped when the bucket opening operation is being performed, and when the turning operation of the upper rotating structure 3 is forcibly stopped when the operator is performing the turning operation The same applies to The same applies to the case where the traveling operation of the lower traveling body 1 is forcibly stopped when the operator is performing a traveling operation.

 また、操作装置26の形態として電気式操作レバーに関する説明を記載したが、電気式操作レバーではなく油圧式操作レバーが採用されてもよい。この場合、油圧式操作レバーのレバー操作量は、角度センサによって角度の形で検出されてコントローラ30へ入力されてもよい。また、油圧式操作レバーとしての操作装置26と各制御弁のパイロットポートとの間には電磁弁が配置されてもよい。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、油圧式操作レバーとしての操作装置26を用いた手動操作が行われると、操作装置26は、レバー操作量に応じてパイロット圧を増減させることで各制御弁を移動させることができる。また、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。 Further, although the description has been given regarding an electric operation lever as the form of the operation device 26, a hydraulic operation lever may be adopted instead of an electric operation lever. In this case, the lever operation amount of the hydraulic operation lever may be detected in the form of an angle by an angle sensor and input to the controller 30. Furthermore, a solenoid valve may be disposed between the operating device 26 as a hydraulic operating lever and the pilot port of each control valve. The solenoid valve is configured to operate in response to an electrical signal from the controller 30. With this configuration, when manual operation is performed using the operating device 26 as a hydraulic operating lever, the operating device 26 can move each control valve by increasing or decreasing the pilot pressure according to the amount of lever operation. . Moreover, each control valve may be comprised of an electromagnetic spool valve. In this case, the electromagnetic spool valve operates in response to an electric signal from the controller 30 corresponding to the amount of lever operation of the electric operation lever.

 次に、図5を参照し、コントローラ30がメインポンプ14の吐出量を制御する機能(以下、「吐出量制御機能」とする。)の一例について説明する。図5は、吐出量制御機能を実現するコントローラ30の構成例を示す。本実施形態では、コントローラ30は、パワー制御部30A、省エネルギ制御部30B、最小値選択部30C、最大値設定部30D、及び電流指令出力部30Eを有する。 Next, with reference to FIG. 5, an example of the function of the controller 30 to control the discharge amount of the main pump 14 (hereinafter referred to as "discharge amount control function") will be described. FIG. 5 shows a configuration example of the controller 30 that implements the discharge amount control function. In this embodiment, the controller 30 includes a power control section 30A, an energy saving control section 30B, a minimum value selection section 30C, a maximum value setting section 30D, and a current command output section 30E.

 パワー制御部30Aは、メインポンプ14の吐出量を制御する機能の1つであるパワーコントロールを実現する制御部であり、メインポンプ14の吐出圧Pdに基づいて吐出量Qの指令値Qdを導き出すように構成されている。吐出量Qは、例えば、メインポンプ14の回転軸が一回転する際にメインポンプ14が吐出する作動油の量である押し退け容積である。但し、吐出量Qは、単位時間(例えば一分間)当たりにメインポンプ14が吐出する作動油の量であってもよい。パワーコントロールは、メインポンプ14の吐出量と吐出圧との積で表される吸収パワー(吸収馬力)がエンジン11の出力パワー(出力馬力)以下となるようにメインポンプ14の吐出量を調整する機能である。本実施形態では、パワー制御部30Aは、吐出圧センサ28が出力する吐出圧Pdを取得する。そして、パワー制御部30Aは、参照テーブルを参照し、取得した吐出圧Pdに対応する指令値Qdを導き出す。参照テーブルは、メインポンプ14の許容最大吸収パワー(例えば許容最大吸収馬力)と吐出圧Pdと指令値Qdとの対応関係を参照可能に保持するPQ線図に関する参照テーブルであり、不揮発性記憶装置に予め記憶されている。パワー制御部30Aは、例えば、予め設定されているメインポンプ14の許容最大吸収馬力と吐出圧センサ28が出力する吐出圧Pdとを検索キーとして参照テーブルを参照することで、指令値Qdを一意に決定できる。 The power control unit 30A is a control unit that implements power control, which is one of the functions of controlling the discharge amount of the main pump 14, and derives a command value Qd of the discharge amount Q based on the discharge pressure Pd of the main pump 14. It is configured as follows. The discharge amount Q is, for example, a displacement volume that is the amount of hydraulic oil discharged by the main pump 14 when the rotation shaft of the main pump 14 makes one rotation. However, the discharge amount Q may be the amount of hydraulic oil discharged by the main pump 14 per unit time (for example, one minute). The power control adjusts the discharge amount of the main pump 14 so that the absorbed power (absorbed horsepower) expressed as the product of the discharge amount and the discharge pressure of the main pump 14 is equal to or less than the output power (output horsepower) of the engine 11. It is a function. In this embodiment, the power control unit 30A acquires the discharge pressure Pd output by the discharge pressure sensor 28. Then, the power control unit 30A refers to the reference table and derives the command value Qd corresponding to the obtained discharge pressure Pd. The reference table is a reference table related to a PQ diagram that retains the correspondence relationship between the allowable maximum absorption power (for example, allowable maximum absorption horsepower), discharge pressure Pd, and command value Qd of the main pump 14 so that it can be referenced, and is stored in a nonvolatile storage device. is stored in advance. For example, the power control unit 30A uniquely determines the command value Qd by referring to a reference table using the preset allowable maximum absorption horsepower of the main pump 14 and the discharge pressure Pd output by the discharge pressure sensor 28 as a search key. can be determined.

 省エネルギ制御部30Bは、メインポンプ14の吐出量を制御する機能の1つであるネガティブコントロールを実現する制御部であり、制御圧Pnに基づいて吐出量の指令値Qnを導き出すように構成されている。本実施形態では、省エネルギ制御部30Bは、制御圧センサ19が出力する制御圧Pnを取得する。そして、省エネルギ制御部30Bは、参照テーブルを参照し、取得した制御圧Pnに対応する指令値Qnを導き出す。参照テーブルは、制御圧Pnと指令値Qnとの対応関係(流量制御特性)を参照可能に保持する参照テーブルであり、不揮発性記憶装置に予め記憶されている。 The energy saving control section 30B is a control section that implements negative control, which is one of the functions of controlling the discharge amount of the main pump 14, and is configured to derive a command value Qn of the discharge amount based on the control pressure Pn. ing. In this embodiment, the energy saving control unit 30B acquires the control pressure Pn output by the control pressure sensor 19. Then, the energy saving control unit 30B refers to the reference table and derives the command value Qn corresponding to the acquired control pressure Pn. The reference table is a reference table that retains the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn so that it can be referenced, and is stored in advance in a non-volatile storage device.

 最小値選択部30Cは、複数の入力値から最小値を選択して出力するように構成されている。本実施形態では、最小値選択部30Cは、指令値Qdと指令値Qnのうちの小さい方を最終指令値Qfとして出力するように構成されている。 The minimum value selection unit 30C is configured to select and output the minimum value from a plurality of input values. In this embodiment, the minimum value selection unit 30C is configured to output the smaller of the command value Qd and the command value Qn as the final command value Qf.

 省エネルギ制御部30Bが導き出す指令値Qnは、典型的には、仕上げ作業、均し作業、又は走行作業等の比較的低負荷の作業が行われる場合に、最小値選択部30Cによって選択される。すなわち、指令値Qnは、低負荷作業特性が採用されるときに選択される。一方で、パワー制御部30Aが導き出す指令値Qdは、典型的には、掘削作業等の比較的高負荷の作業が行われる場合に、最小値選択部30Cによって選択される。すなわち、指令値Qdは、高負荷作業特性が採用されるときに選択される。このように、最小値選択部30Cによって選択される指令値Qdにより、メインポンプ14は、低負荷作業特性に基づいて制御されるか高負荷作業特性に基づいて制御されるかが決定される。 The command value Qn derived by the energy saving control unit 30B is typically selected by the minimum value selection unit 30C when relatively low-load work such as finishing work, leveling work, or traveling work is performed. . That is, the command value Qn is selected when the low-load work characteristic is adopted. On the other hand, the command value Qd derived by the power control section 30A is typically selected by the minimum value selection section 30C when relatively high-load work such as excavation work is performed. That is, the command value Qd is selected when high load work characteristics are adopted. In this way, the command value Qd selected by the minimum value selection unit 30C determines whether the main pump 14 is controlled based on the low-load work characteristics or the high-load work characteristics.

 最大値設定部30Dは、最大指令値Qmaxを出力するように構成されている。最大指令値Qmaxは、メインポンプ14の最大吐出量に対応する指令値である。本実施形態では、最大値設定部30Dは、不揮発性記憶装置等に予め記憶されている最大指令値Qmaxを電流指令出力部30Eに出力するように構成されている。 The maximum value setting unit 30D is configured to output the maximum command value Qmax. The maximum command value Qmax is a command value corresponding to the maximum discharge amount of the main pump 14. In this embodiment, the maximum value setting section 30D is configured to output the maximum command value Qmax stored in advance in a nonvolatile storage device or the like to the current command output section 30E.

 電流指令出力部30Eは、ポンプレギュレータ13に対して電流指令を出力するように構成されている。本実施形態では、電流指令出力部30Eは、最小値選択部30Cが出力する最終指令値Qfと最大値設定部30Dが出力する最大指令値Qmaxとに基づいて導き出される電流指令Iをポンプレギュレータ13に対して出力する。なお、電流指令出力部30Eは、最終指令値Qfに基づいて導き出される電流指令Iをポンプレギュレータ13に対して出力してもよい。この場合、最大値設定部30Dは省略されてもよい。 The current command output section 30E is configured to output a current command to the pump regulator 13. In the present embodiment, the current command output section 30E outputs a current command I derived from the final command value Qf outputted by the minimum value selection section 30C and the maximum command value Qmax outputted from the maximum value setting section 30D to the pump regulator 13. Output for. Note that the current command output unit 30E may output the current command I derived based on the final command value Qf to the pump regulator 13. In this case, the maximum value setting section 30D may be omitted.

 このようにして、コントローラ30は、メインポンプ14の吐出量を制御する。図示例では、コントローラ30は、左メインポンプ14Lの吐出量と右メインポンプ14Rの吐出量とを別々に制御する。具体的には、コントローラ30は、左吐出圧センサ28Lが検出する左メインポンプ14Lの吐出圧と、左制御圧センサ19Lが検出する左センターバイパス管路CBLにおける作動油の圧力である制御圧とに基づいて左ポンプレギュレータ13Lに対する電流指令を導き出す。そして、コントローラ30は、左ポンプレギュレータ13Lに対して電流指令を出力することによって左メインポンプ14Lの吐出量を制御する。また、コントローラ30は、右吐出圧センサ28Rが検出する右メインポンプ14Rの吐出圧と、右制御圧センサ19Rが検出する右センターバイパス管路CBRにおける作動油の圧力である制御圧とに基づいて右ポンプレギュレータ13Rに対する電流指令を導き出す。そして、コントローラ30は、右ポンプレギュレータ13Rに対して電流指令を出力することによって右メインポンプ14Rの吐出量を制御する。 In this way, the controller 30 controls the discharge amount of the main pump 14. In the illustrated example, the controller 30 separately controls the discharge amount of the left main pump 14L and the right main pump 14R. Specifically, the controller 30 controls the discharge pressure of the left main pump 14L detected by the left discharge pressure sensor 28L, and the control pressure which is the pressure of hydraulic fluid in the left center bypass pipe CBL detected by the left control pressure sensor 19L. Based on this, a current command for the left pump regulator 13L is derived. The controller 30 then controls the discharge amount of the left main pump 14L by outputting a current command to the left pump regulator 13L. The controller 30 also operates based on the discharge pressure of the right main pump 14R detected by the right discharge pressure sensor 28R and the control pressure which is the pressure of the hydraulic oil in the right center bypass pipe CBR detected by the right control pressure sensor 19R. A current command for the right pump regulator 13R is derived. The controller 30 then controls the discharge amount of the right main pump 14R by outputting a current command to the right pump regulator 13R.

 次に、図6を参照し、省エネルギ制御部30Bが参照する参照テーブルの内容の一例について説明する。図6は、参照テーブルの内容の一例である、制御圧Pnと指令値Qnとの対応関係(流量制御特性)の一例を示す図である。具体的には、図6は、制御圧センサ19が検出する制御圧Pnを横軸に配し、指令値Qnを縦軸に配している。傾斜線GLを含む折れ線は、指令値Qnと制御圧Pnとの関係を示している。指令値Qnは、メインポンプ14の目標吐出量に相当する。コントローラ30は、メインポンプ14の実際の吐出量Qが目標吐出量となるようにポンプレギュレータ13を制御する。図6に示す参照テーブルは、左メインポンプ14L及び右メインポンプ14Rのそれぞれの吐出量を制御する際に利用される。左メインポンプ14Lの吐出量の制御に際しては、図6の横軸は左制御圧センサ19Lが検出する制御圧に対応し、図6の縦軸は左メインポンプ14Lの吐出量の指令値に対応する。同様に、右メインポンプ14Rの吐出量の制御に際しては、図6の横軸は右制御圧センサ19Rが検出する制御圧に対応し、図6の縦軸は右メインポンプ14Rの吐出量の指令値に対応する。 Next, with reference to FIG. 6, an example of the contents of the reference table referred to by the energy saving control unit 30B will be described. FIG. 6 is a diagram showing an example of the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn, which is an example of the contents of the reference table. Specifically, in FIG. 6, the control pressure Pn detected by the control pressure sensor 19 is plotted on the horizontal axis, and the command value Qn is plotted on the vertical axis. A polygonal line including the slope line GL indicates the relationship between the command value Qn and the control pressure Pn. The command value Qn corresponds to the target discharge amount of the main pump 14. The controller 30 controls the pump regulator 13 so that the actual discharge amount Q of the main pump 14 becomes the target discharge amount. The reference table shown in FIG. 6 is used when controlling the respective discharge amounts of the left main pump 14L and the right main pump 14R. When controlling the discharge amount of the left main pump 14L, the horizontal axis in FIG. 6 corresponds to the control pressure detected by the left control pressure sensor 19L, and the vertical axis in FIG. 6 corresponds to the command value of the discharge amount of the left main pump 14L. do. Similarly, when controlling the discharge amount of the right main pump 14R, the horizontal axis in FIG. 6 corresponds to the control pressure detected by the right control pressure sensor 19R, and the vertical axis in FIG. 6 corresponds to the command for the discharge amount of the right main pump 14R. corresponds to a value.

 より具体的には、図6は、左操作レバー26Lがアーム開き方向に操作されているときに参照される参照テーブルの内容を示す図である。図6は、左操作レバー26Lが微操作されているときの制御圧Pnと指令値Qnとの対応関係(流量制御特性)を実線で示している。微操作は、例えば、左操作レバー26Lが中立位置にあるときのレバー操作量を0%とし、左操作レバー26Lが最大限に傾けられているときのレバー操作量を100%としたときの、20%未満のレバー操作量での操作を意味する。また、図6は、左操作レバー26Lがハーフレバー操作されているときの制御圧Pnと指令値Qnとの対応関係(流量制御特性)を破線で示している。ハーフレバー操作は、例えば、20%以上80%未満のレバー操作量での操作を意味する。同様に、図6は、左操作レバー26Lがフルレバー操作されているときの制御圧Pnと指令値Qnとの対応関係(流量制御特性)を一点鎖線で示している。フルレバー操作は、例えば、80%以上のレバー操作量での操作を意味する。 More specifically, FIG. 6 is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction. FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is slightly operated. The fine operation is, for example, when the lever operation amount when the left operation lever 26L is in the neutral position is 0%, and the lever operation amount when the left operation lever 26L is tilted to the maximum is 100%. This means an operation with a lever operation amount of less than 20%. Moreover, FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is half-operated. Half lever operation means, for example, operation with a lever operation amount of 20% or more and less than 80%. Similarly, FIG. 6 shows the correspondence relationship (flow rate control characteristic) between the control pressure Pn and the command value Qn when the left operating lever 26L is fully operated, using a chain line. Full lever operation means, for example, operation with a lever operation amount of 80% or more.

 本実施形態では、省エネルギ制御部30Bは、上端点A及び下端点Bを通る傾斜線GLを利用して制御圧Pnに対応する指令値Qnを導き出すように構成されている。 In this embodiment, the energy saving control unit 30B is configured to derive the command value Qn corresponding to the control pressure Pn using the slope line GL passing through the upper end point A and the lower end point B.

 上端点Aは、傾斜線GLの上端を定める点であり、最大指令値Qmaxと、第1設定圧Pxとによって表される。最大指令値Qmaxは、ネガティブコントロールで使用される指令値の上限であり、例えば、メインポンプ14の最大斜板傾転角より所定角度だけ小さい斜板傾転角に対応する設定値である。第1設定圧Pxは、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさとは無関係に設定される設定値である。なお、図6に示す例では、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさは、中立位置にあるときの左操作レバー26Lを基準とする左操作レバー26Lの傾斜角(回動角)の大きさであり、角度センサとしての操作センサ29LAによって検出される。但し、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさは、圧力センサ、加速度センサ、角速度センサ、レゾルバ、電圧計、又は電流計等、角度センサ以外の装置によって検出されてもよい。 The upper end point A is a point that defines the upper end of the slope line GL, and is represented by the maximum command value Qmax and the first set pressure Px. The maximum command value Qmax is the upper limit of the command value used in negative control, and is, for example, a set value corresponding to a swash plate tilt angle that is smaller than the maximum swash plate tilt angle of the main pump 14 by a predetermined angle. The first set pressure Px is a set value that is set regardless of the magnitude of the lever operation amount when the left operation lever 26L is operated in the arm opening direction. In the example shown in FIG. 6, the amount of lever operation when the left operating lever 26L is operated in the arm opening direction is based on the left operating lever 26L when it is in the neutral position. The angle of inclination (rotation angle) is detected by the operation sensor 29LA as an angle sensor. However, the amount of lever operation when the left operating lever 26L is operated in the arm opening direction is determined by a device other than the angle sensor, such as a pressure sensor, acceleration sensor, angular velocity sensor, resolver, voltmeter, or ammeter. may be detected.

 下端点Bは、傾斜線GLの下端を定める点であり、最小指令値Qminと、第2設定圧Pyとによって表される。最小指令値Qminは、ネガティブコントロールで使用される指令値の下限であり、例えば、メインポンプ14の最小斜板傾転角より所定角度だけ大きい斜板傾転角(例えばスタンバイ流量に対応する斜板傾転角)に対応する設定値である。第2設定圧Pyは、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさとは無関係に設定される値であり、例えば、スタンバイ流量の作動油が絞り18を通過するときの制御圧に対応している。 The lower end point B is a point that defines the lower end of the slope line GL, and is represented by the minimum command value Qmin and the second set pressure Py. The minimum command value Qmin is the lower limit of the command value used in negative control, and is, for example, a swash plate tilt angle that is a predetermined angle larger than the minimum swash plate tilt angle of the main pump 14 (for example, a swash plate corresponding to the standby flow rate). This is the setting value corresponding to the tilt angle). The second set pressure Py is a value that is set regardless of the amount of lever operation when the left operating lever 26L is operated in the arm opening direction. For example, the standby flow rate of hydraulic oil passes through the throttle 18. It corresponds to the control pressure when

 図6に示す例では、省エネルギ制御部30Bは、上端点Aの位置を縦軸方向に変化させることで、すなわち、最大指令値Qmaxを変化させることで、制御圧Pnと指令値Qnとの対応関係(流量制御特性)を調整できるように構成されている。 In the example shown in FIG. 6, the energy saving control unit 30B changes the control pressure Pn and the command value Qn by changing the position of the upper end point A in the vertical axis direction, that is, by changing the maximum command value Qmax. It is configured so that the correspondence relationship (flow rate control characteristics) can be adjusted.

 具体的には、省エネルギ制御部30Bは、微操作が行われているとき、ハーフレバー操作が行われているとき、及び、フルレバー操作が行われているときのそれぞれで、上端点Aの位置を異ならせることによって、制御圧Pnと指令値Qnとの対応関係(流量制御特性)を、そのときのショベル100の状態に適したものに調整している。なお、図6に示す例では、説明の便宜上、省エネルギ制御部30Bは、微操作が行われているとき、ハーフレバー操作が行われているとき、及び、フルレバー操作が行われているときの3段階で上端点Aの位置を変化させているが、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさに応じて上端点Aの位置を2段階又は4段階以上の段階で変化させるように構成されていてもよく、左操作レバー26Lがアーム開き方向に操作されているときのレバー操作量の大きさに応じて上端点Aの位置を無段階に変化させるように構成されていてもよい。或いは、省エネルギ制御部30Bは、レバー操作量の大きさが変化しても上端点Aの位置を変化させないように構成されていてもよい。 Specifically, the energy saving control unit 30B adjusts the position of the upper end point A when a fine operation is performed, when a half lever operation is performed, and when a full lever operation is performed. By making the values different, the correspondence between the control pressure Pn and the command value Qn (flow rate control characteristic) is adjusted to be suitable for the state of the excavator 100 at that time. In the example shown in FIG. 6, for convenience of explanation, the energy saving control unit 30B is configured to control the energy saving control unit 30B when a fine operation is performed, when a half lever operation is performed, and when a full lever operation is performed. The position of the upper end point A is changed in three stages, but the position of the upper end point A can be changed in two or four stages depending on the amount of lever operation when the left operating lever 26L is operated in the arm opening direction. It may be configured to change in the above steps, and the position of the upper end point A is changed steplessly according to the magnitude of the lever operation amount when the left operation lever 26L is operated in the arm opening direction. It may be configured as follows. Alternatively, the energy saving control unit 30B may be configured so as not to change the position of the upper end point A even if the magnitude of the lever operation amount changes.

 より具体的には、省エネルギ制御部30Bは、微操作が行われているときには、図6の実線で示すように、上端点Aを上端点A1(最大指令値Qmaxが設定値Qmax1のときの点)として傾斜線GLが傾斜線GL1となるように構成されている。 More specifically, when the fine operation is being performed, the energy saving control unit 30B changes the upper end point A to the upper end point A1 (when the maximum command value Qmax is the set value Qmax1), as shown by the solid line in FIG. Point), the slope line GL is configured to become the slope line GL1.

 また、省エネルギ制御部30Bは、ハーフレバー操作が行われているときには、図6の破線で示すように、上端点Aを上端点A2(最大指令値Qmaxが設定値Qmax2のときの点)として傾斜線GLが傾斜線GL2となるように構成されている。また、省エネルギ制御部30Bは、フルレバー操作が行われているときには、図6の一点鎖線で示すように、上端点Aを上端点A3(最大指令値Qmaxが設定値Qmax3のときの点)として傾斜線GLが傾斜線GL3となるように構成されている。なお、設定値Qmax3は、例えば、メインポンプ14の最大斜板傾転角に対応する設定値であってもよい。 Furthermore, when the half lever operation is being performed, the energy saving control unit 30B sets the upper end point A to the upper end point A2 (the point when the maximum command value Qmax is the set value Qmax2), as shown by the broken line in FIG. The slope line GL is configured to become a slope line GL2. In addition, when the full lever operation is performed, the energy saving control unit 30B sets the upper end point A to the upper end point A3 (the point when the maximum command value Qmax is the set value Qmax3), as shown by the dashed line in FIG. The slope line GL is configured to become a slope line GL3. Note that the set value Qmax3 may be, for example, a set value corresponding to the maximum swash plate tilt angle of the main pump 14.

 このように左操作レバー26Lのアーム開き方向における操作量に応じて上端点Aの位置を縦軸方向に変化させることによって、省エネルギ制御部30Bは、アーム開き動作中にアームシリンダ8に流入する作動油の量が不安定化してしまうのを抑制或いは防止できる。作動油の量が不安定化してしまうと、操作者は、前後方向に体を揺す振られてしまい、安定したアーム開き操作ができなくなってしまい、アームシリンダ8に流入する作動油の量の更なる不安定化を引き起こしてしまう。場合によっては、操作者は、エンジン11の回転数が不安定になるハンチング等を引き起こしてしまう。省エネルギ制御部30Bは、このようなハンチング等の問題が生じてしまうのを抑制或いは防止できる。このように、省エネルギ制御部30Bは、アーム5の操作性を高めることができる。 By changing the position of the upper end point A in the vertical axis direction in accordance with the amount of operation of the left operating lever 26L in the arm opening direction, the energy saving control unit 30B allows the energy to flow into the arm cylinder 8 during the arm opening operation. It is possible to suppress or prevent the amount of hydraulic oil from becoming unstable. If the amount of hydraulic oil becomes unstable, the operator will be shaken back and forth, unable to perform stable arm opening operations, and the amount of hydraulic oil flowing into the arm cylinder 8 will become unstable. This will cause further instability. In some cases, the operator may cause hunting or the like in which the rotational speed of the engine 11 becomes unstable. The energy saving control unit 30B can suppress or prevent problems such as hunting from occurring. In this way, the energy saving control section 30B can improve the operability of the arm 5.

 例えば、待機状態においてアーム開き動作を開始させる場合、左操作レバー26Lがアーム開き方向に操作されているときに、絞り18を通過する作動油は減少する。メインポンプ14が吐出する作動油の大部分は、アームシリンダ8に供給されるためである。待機状態は、例えば、エンジン11の稼動中で、且つ、操作装置26が操作されていないときのショベル100の状態を意味する。 For example, when starting the arm opening operation in the standby state, the amount of hydraulic fluid passing through the throttle 18 decreases when the left operating lever 26L is operated in the arm opening direction. This is because most of the hydraulic oil discharged by the main pump 14 is supplied to the arm cylinder 8. The standby state means, for example, the state of the excavator 100 when the engine 11 is in operation and the operating device 26 is not operated.

 アームシリンダ8への作動油の供給により絞り18を通過する作動油が減少すると、制御圧Pn(ネガティブコントロール圧)も低下するため、指令値Qnは図6に示すように増加する。仮に傾斜線GLが傾斜線GL3に固定されていた場合には、指令値Qnは、傾斜線GLが傾斜線GL1に固定されていた場合よりも大きい増加率で増加し、傾斜線GL1に関する最大指令値Qmax(設定値Qmax1)よりも大きい最大指令値Qmax(設定値Qmax3)に達する。そして、左操作レバー26Lのレバー操作量の増加に対するメインポンプ14の吐出量の増加率も過度に大きくなってしまい、操作者は、安定したアーム開き操作を実行できなくなってしまうおそれがある。ショベル100が前後に揺動してしまうためである。そして、この揺動は、ショベル100のキャビン10内に着座している操作者を前後に揺さ振り、操作者による操作装置26の操作に悪影響を与えてしまう場合がある。 When the hydraulic oil passing through the throttle 18 decreases due to the supply of hydraulic oil to the arm cylinder 8, the control pressure Pn (negative control pressure) also decreases, so the command value Qn increases as shown in FIG. 6. If the slope line GL were fixed to the slope line GL3, the command value Qn would increase at a larger rate of increase than if the slope line GL was fixed to the slope line GL1, and the command value Qn would increase to the maximum command value regarding the slope line GL1. The maximum command value Qmax (set value Qmax3) is reached, which is larger than the value Qmax (set value Qmax1). Then, the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the lever operation amount of the left operation lever 26L also becomes excessively large, and there is a possibility that the operator will not be able to perform a stable arm opening operation. This is because the shovel 100 swings back and forth. This rocking may cause the operator seated in the cabin 10 of the excavator 100 to be rocked back and forth, which may adversely affect the operation of the operating device 26 by the operator.

 これに対し、アーム開き動作を開始させるときの左操作レバー26Lのレバー操作量(微操作)に対応する傾斜線GLとして傾斜線GL1が採用された場合、指令値Qnの上限は、設定値Qmax3よりも小さい設定値Qmax1に制限される。そのため、左操作レバー26Lのレバー操作量の増加に対するメインポンプ14の吐出量の増加率は、傾斜線GLとして傾斜線GL3が採用された場合に比べて低く抑えられる。その結果、アーム開き操作が開始されたときのショベル100の前後方向における揺動が抑えられ、操作者は、アーム5を滑らかに開くことができる。 On the other hand, if the slope line GL1 is adopted as the slope line GL corresponding to the amount of lever operation (fine operation) of the left operating lever 26L when starting the arm opening operation, the upper limit of the command value Qn is the set value Qmax3. is limited to a set value Qmax1 smaller than . Therefore, the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the amount of lever operation of the left operating lever 26L is suppressed to be lower than when the slope line GL3 is adopted as the slope line GL. As a result, swinging of the shovel 100 in the front-back direction when the arm opening operation is started is suppressed, and the operator can smoothly open the arm 5.

 また、傾斜線GLの上端点Aは、図6に示すように、左操作レバー26Lのレバー操作量が増加するにつれて高くなるため、メインポンプ14の吐出量が過度に制限されることもない。 Furthermore, as shown in FIG. 6, the upper end point A of the slope line GL becomes higher as the lever operation amount of the left operation lever 26L increases, so that the discharge amount of the main pump 14 is not excessively restricted.

 具体的には、省エネルギ制御部30Bは、上述のように上端点Aを変位させることにより、フルレバー操作でアーム開き動作が行われるときに吐出量Qが小さくなってしまうのを防止できる。 Specifically, by displacing the upper end point A as described above, the energy saving control unit 30B can prevent the discharge amount Q from becoming small when the arm opening operation is performed by full lever operation.

 例えば、フルレバー操作で左操作レバー26Lがアーム開き方向に操作されているときに、仮に傾斜線GLが、微操作のときに採用される傾斜線GL1に固定されていた場合、指令値Qnの上限は、設定値Qmax3より小さい設定値Qmax1に制限されてしまう。すなわち、メインポンプ14は、フルレバー操作が行われており、吐出量Qをできるだけ大きくすべき状況にあるにもかかわらず、斜板傾転角を十分に増加させることができない。 For example, when the left operating lever 26L is operated in the arm opening direction during full lever operation, if the slope line GL is fixed to the slope line GL1 used for fine operation, the upper limit of the command value Qn is limited to the set value Qmax1, which is smaller than the set value Qmax3. That is, even though the main pump 14 is under full lever operation and the discharge amount Q should be increased as much as possible, the swash plate tilt angle cannot be increased sufficiently.

 これに対し、傾斜線GLとして傾斜線GL3が採用された場合、上端点Aは、上端点A3となるように設定される。この場合、省エネルギ制御部30Bは、実際の制御圧Pnが第1設定圧Pxのときに、指令値Qnとして設定値Qmax3を導き出す。その結果、メインポンプ14は、最大斜板傾転角となるように制御され、最大吐出量で作動油を吐出できる。 On the other hand, when the slope line GL3 is adopted as the slope line GL, the upper end point A is set to be the upper end point A3. In this case, the energy saving control unit 30B derives the set value Qmax3 as the command value Qn when the actual control pressure Pn is the first set pressure Px. As a result, the main pump 14 is controlled to have the maximum swash plate tilt angle, and can discharge hydraulic oil at the maximum discharge amount.

 アーム開き中のアーム5を減速させ或いは停止させる場合についても同様である。例えば、左操作レバー26Lがフルレバー操作状態から微操作状態に戻されたときに、絞り18を通過する作動油は増加する。メインポンプ14が吐出する作動油の大部分は、センターバイパス管路CBを通じて作動油タンクT1に排出されるためである。 The same applies to the case where the arm 5 is decelerated or stopped while the arm is open. For example, when the left operating lever 26L is returned from the full lever operating state to the fine operating state, the amount of hydraulic fluid passing through the throttle 18 increases. This is because most of the hydraulic oil discharged by the main pump 14 is discharged into the hydraulic oil tank T1 through the center bypass line CB.

 絞り18を通過する作動油が増加すると、制御圧Pn(ネガティブコントロール圧)も増加するため、指令値Qnは図6に示すように減少する。仮に傾斜線GLが傾斜線GL3に固定されていた場合には、指令値Qnは、傾斜線GLが傾斜線GL1に固定されていた場合よりも大きい減少率で減少し、最小指令値Qminに達する。そして、このような傾斜線GL3の比較的大きな傾斜(減少率)のため、左操作レバー26Lのレバー操作量の減少に対するメインポンプ14の吐出量の減少率も過度に大きくなってしまい、操作者は、安定したアーム開き操作を実行できなくなってしまうおそれがある。アーム開き動作を開始させる場合と同様に、ショベル100が前後に揺動してしまうためである。 As the hydraulic oil passing through the throttle 18 increases, the control pressure Pn (negative control pressure) also increases, so the command value Qn decreases as shown in FIG. 6. If the slope line GL is fixed to the slope line GL3, the command value Qn decreases at a greater rate than when the slope line GL is fixed to the slope line GL1, and reaches the minimum command value Qmin. . Due to such a relatively large slope (reduction rate) of the slope line GL3, the reduction rate of the discharge amount of the main pump 14 with respect to the reduction in the amount of lever operation of the left operation lever 26L becomes excessively large, causing the operator to , there is a risk that it will not be possible to perform a stable arm opening operation. This is because the shovel 100 will swing back and forth in the same way as when starting the arm opening operation.

 これに対し、アーム5が停止する直前の左操作レバー26Lのレバー操作量(微操作)に対応する傾斜線GLとして傾斜線GL1が採用された場合、指令値Qnの上限は、設定値Qmax3よりも小さい設定値Qmax1に制限される。そのため、左操作レバー26Lのレバー操作量の減少に対するメインポンプ14の吐出量の減少率は、傾斜線GLとして傾斜線GL3が採用された場合に比べて低く抑えられる。その結果、アーム5を減速させるときのショベル100の前後方向における揺動が抑えられ、操作者は、アーム5を滑らかに減速させることができる。 On the other hand, if the slope line GL1 is adopted as the slope line GL corresponding to the amount of lever operation (fine operation) of the left operating lever 26L immediately before the arm 5 stops, the upper limit of the command value Qn is lower than the set value Qmax3. is also limited to a small set value Qmax1. Therefore, the rate of decrease in the discharge amount of the main pump 14 with respect to the decrease in the amount of lever operation of the left operating lever 26L is suppressed to be lower than in the case where the slope line GL3 is adopted as the slope line GL. As a result, swinging of the shovel 100 in the front-back direction when decelerating the arm 5 is suppressed, and the operator can smoothly decelerate the arm 5.

 また、傾斜線GLの上端点Aは、図6に示すように、左操作レバー26Lのレバー操作量が減少するにつれて低くなるため、左操作レバー26Lのレバー操作量を徐々に小さくするときにメインポンプ14の吐出量が急変してしまうこともない。 In addition, as shown in FIG. 6, the upper end point A of the slope line GL becomes lower as the lever operation amount of the left operation lever 26L decreases, so when the lever operation amount of the left operation lever 26L is gradually decreased, the upper end point A of the slope line GL becomes lower. The discharge amount of the pump 14 will not change suddenly.

 すなわち、省エネルギ制御部30Bは、上述のように上端点Aを変位させることによって、アーム開き動作の減速が行われるときに吐出量Qが不安定化してしまうのを防止できる。 That is, by displacing the upper end point A as described above, the energy saving control unit 30B can prevent the discharge amount Q from becoming unstable when the arm opening operation is decelerated.

 このように、コントローラ30は、左操作レバー26Lの操作内容に応じてネガティブコントロールの流量制御特性を変化させることにより、すなわち、上端点Aを縦軸方向に変位させることにより、メインポンプ14の吐出量Qをより柔軟に制御できる。具体的には、省エネルギ制御部30Bは、左操作レバー26Lのレバー操作量に応じて傾斜線GLを調整することによって、アームシリンダ8に流入する作動油の量が不安定化してしまうのを抑制或いは防止できる。そのため、省エネルギ制御部30Bは、例えば、左操作レバー26Lのアーム開き方向への操作に応じてアーム5を滑らかに開くことができる。 In this way, the controller 30 controls the discharge of the main pump 14 by changing the flow rate control characteristic of the negative control according to the operation content of the left operating lever 26L, that is, by displacing the upper end point A in the vertical axis direction. The quantity Q can be controlled more flexibly. Specifically, the energy saving control unit 30B prevents the amount of hydraulic oil flowing into the arm cylinder 8 from becoming unstable by adjusting the slope line GL according to the lever operation amount of the left operation lever 26L. Can be suppressed or prevented. Therefore, the energy saving control unit 30B can smoothly open the arm 5 in response to, for example, operating the left operating lever 26L in the arm opening direction.

 なお、図6を参照する上述の説明は、左操作レバー26Lがアーム開き方向に操作されているときに関するが、左操作レバー26Lがアーム閉じ方向に操作されているとき、左操作レバー26Lが左右方向に操作されているとき、右操作レバー26Rが前後方向に操作されているとき、右操作レバー26Rが左右方向に操作されているとき、走行レバー26Dが前後方向に操作されているとき、及び、走行ペダルが前後方向に操作されているときにも同様に適用される。 Note that the above description with reference to FIG. 6 relates to when the left operating lever 26L is operated in the arm opening direction, but when the left operating lever 26L is operated in the arm closing direction, the left operating lever 26L is When the right operating lever 26R is operated in the front-back direction, When the right operating lever 26R is operated in the left-right direction, When the travel lever 26D is operated in the front-back direction, , the same applies when the travel pedal is operated in the longitudinal direction.

 次に、図7を参照し、コントローラ30が被駆動体の動きを制限する処理(以下、「動作制限処理」とする。)について説明する。図7は、動作制限処理の一例のフローチャートである。コントローラ30は、所定の制御周期で繰り返しこの動作制限処理を実行する。 Next, with reference to FIG. 7, a process in which the controller 30 limits the movement of the driven body (hereinafter referred to as "motion restriction process") will be described. FIG. 7 is a flowchart of an example of the operation restriction process. The controller 30 repeatedly executes this operation restriction process at a predetermined control cycle.

 最初に、コントローラ30は、操作装置26が操作されたか否かを判定する(ステップST1)。本実施形態では、コントローラ30は、操作センサ29の出力に基づいて操作装置26が操作されたか否かを判定する。例えば、コントローラ30は、操作センサ29LAの出力に基づき、アーム閉じ操作が行われたか否か、及び、アーム開き操作が行われたか否かを判定し、操作センサ29LBの出力に基づき、左旋回操作が行われたか否か、及び、右旋回操作が行われたか否かを判定する。或いは、コントローラ30は、操作センサ29RAの出力に基づき、ブーム上げ操作が行われたか否か、及び、ブーム下げ操作が行われたか否かを判定し、操作センサ29RBの出力に基づき、バケット閉じ操作が行われたか否か、及び、バケット開き操作が行われたか否かを判定する。同様に、コントローラ30は、操作センサ29DLの出力に基づき、左クローラ1CLの前進操作が行われたか否か、及び、左クローラ1CLの後進操作が行われたか否かを判定し、操作センサ29DRの出力に基づき、右クローラ1CRの前進操作が行われたか否か、及び、右クローラ1CRの後進操作が行われたか否かを判定する。 First, the controller 30 determines whether the operating device 26 has been operated (step ST1). In this embodiment, the controller 30 determines whether the operating device 26 has been operated based on the output of the operating sensor 29. For example, the controller 30 determines whether an arm closing operation has been performed and whether an arm opening operation has been performed based on the output of the operation sensor 29LA, and based on the output of the operation sensor 29LB, the controller 30 determines whether a left turning operation has been performed. It is determined whether or not a right turning operation has been performed. Alternatively, the controller 30 determines whether a boom raising operation has been performed and whether a boom lowering operation has been performed based on the output of the operation sensor 29RA, and performs a bucket closing operation based on the output of the operation sensor 29RB. It is determined whether or not a bucket opening operation has been performed. Similarly, the controller 30 determines whether the left crawler 1CL has been operated forward and whether the left crawler 1CL has been operated backward based on the output of the operation sensor 29DL. Based on the output, it is determined whether the right crawler 1CR has been operated forward and whether the right crawler 1CR has been operated backward.

 操作装置26が操作されていないと判定した場合(ステップST1のNO)、コントローラ30は、今回の動作制限処理を終了させる。 If it is determined that the operating device 26 is not being operated (NO in step ST1), the controller 30 ends the current operation restriction process.

 操作装置26が操作されたと判定した場合(ステップST1のYES)、コントローラ30は、所定の作業現場での作業か否かを判定する(ステップST2)。本実施形態では、コントローラ30は、物体検知装置70としての撮像装置が取得した画像に基づいて所定の現場での作業か否か、すなわち、ショベル100が所定の作業現場に位置しているか否かを判定する。例えば、コントローラ30は、撮像装置が取得した画像内にロードコーン、コーンバー、A型バリケード、単管バリケード、又はガードフェンス等の画像を検知した場合に、所定の現場での作業であると判定する。なお、コントローラ30は、測位装置85の出力に基づいてショベル100が所定の作業現場に位置しているか否かを判定してもよい。例えば、コントローラ30は、所定の作業現場の範囲として予め設定された地理的範囲内にショベル100の現在位置が含まれる場合に、所定の現場での作業であると判定する。この場合、地理的範囲は、複数の位置情報(緯度、経度、及び高度)によって定められてもよい。 If it is determined that the operating device 26 has been operated (YES in step ST1), the controller 30 determines whether the work is being performed at a predetermined work site (step ST2). In this embodiment, the controller 30 determines whether the work is being performed at a predetermined work site based on the image acquired by the imaging device as the object detection device 70, that is, whether the excavator 100 is located at the predetermined work site. Determine. For example, when the controller 30 detects an image of a road cone, cone bar, A-type barricade, single pipe barricade, guard fence, etc. in the image acquired by the imaging device, the controller 30 determines that the work is being performed at a predetermined site. . Note that the controller 30 may determine whether the shovel 100 is located at a predetermined work site based on the output of the positioning device 85. For example, the controller 30 determines that the work is being performed at a predetermined work site when the current position of the excavator 100 is included within a geographical range preset as the range of the predetermined work site. In this case, the geographical range may be defined by multiple pieces of location information (latitude, longitude, and altitude).

 所定の作業現場は、例えば、市街地にある作業現場、又は、車道、歩道、崖、若しくは穴等に隣接している作業現場等である。或いは、所定の作業現場は、深掘作業又はクレーン作業等の所定の作業が行われる作業現場であってもよい。所定の作業現場は、ショベル100の周囲の物体の存在により、最大作業半径の円領域(旋回軸を中心とし、アタッチメントATを最大限伸張させたときのアタッチメントATの到達位置と旋回軸との間の距離を半径とする円で表される領域)よりも小さい領域でショベル100による作業が行われる作業現場であってもよい。この場合、コントローラ30は、撮像装置が取得した画像内に所定の深さよりも深い穴の画像を検知した場合に、所定の作業(深掘作業)が行われる作業現場であると判定してもよい。或いは、コントローラ30は、撮像装置が取得した画像内に、アタッチメントATによって吊り上げられた吊り荷の画像を検知した場合に、所定の作業(クレーン作業)が行われる作業現場であると判定してもよい。 The predetermined work site is, for example, a work site located in an urban area, or a work site adjacent to a roadway, sidewalk, cliff, hole, etc. Alternatively, the predetermined work site may be a work site where a predetermined work such as deep digging work or crane work is performed. Due to the presence of objects around the excavator 100, the predetermined work site is a circular area of the maximum working radius (centered on the rotation axis, between the reached position of the attachment AT when the attachment AT is extended to the maximum and the rotation axis). The work site may be a work site where the excavator 100 performs work in an area smaller than the area represented by a circle having a radius of distance . In this case, if the controller 30 detects an image of a hole deeper than a predetermined depth in the image acquired by the imaging device, the controller 30 may determine that the work site is a work site where a predetermined work (deep digging work) is to be performed. good. Alternatively, when the controller 30 detects an image of a suspended load lifted by the attachment AT in the image acquired by the imaging device, the controller 30 may determine that the work site is a work site where a predetermined work (crane work) is to be performed. good.

 所定の作業現場での作業でないと判定した場合(ステップST2のNO)、コントローラ30は、今回の動作制限処理を終了させる。 If it is determined that the work is not at a predetermined work site (NO in step ST2), the controller 30 ends the current operation restriction process.

 所定の作業現場での作業であると判定した場合(ステップST2のYES)、コントローラ30は、被駆動体の動きを制限する(ステップST3)。本実施形態では、コントローラ30は、メインポンプ14の吐出量を制御することによって被駆動体の動きを制限する。被駆動体は、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6のうちの少なくとも一つである。 If it is determined that the work is performed at a predetermined work site (YES in step ST2), the controller 30 limits the movement of the driven body (step ST3). In this embodiment, the controller 30 limits the movement of the driven body by controlling the discharge amount of the main pump 14. The driven body is at least one of the lower traveling body 1, the upper rotating body 3, the boom 4, the arm 5, and the bucket 6.

 この構成により、コントローラ30は、ショベル100が所定の作業現場内に位置しているときに、被駆動体の動きを制限できる。例えば、コントローラ30は、アタッチメントATが動き出すときの動作速度を抑制できる。そのため、コントローラ30は、例えば、アタッチメントATとアタッチメントATの周囲に存在する物体との接触をより確実に防止できる。 With this configuration, the controller 30 can restrict the movement of the driven body when the shovel 100 is located within a predetermined work site. For example, the controller 30 can suppress the operating speed when the attachment AT starts moving. Therefore, the controller 30 can more reliably prevent contact between the attachment AT and objects existing around the attachment AT, for example.

 次に、図8を参照し、省エネルギ制御部30Bが参照する参照テーブルの内容の別の一例について説明する。図8は、参照テーブルの内容の別の一例である、制御圧Pnと指令値Qnとの対応関係(流量制御特性)の別の一例を示す図であり、図6に対応している。具体的には、図8は、被駆動体の動きを制限する場合に採用される流量制御特性を示し、図6は、被駆動体の動きを制限しない場合に採用される流量制御特性を示す。図8に示す参照テーブルは、左メインポンプ14L及び右メインポンプ14Rのそれぞれの吐出量を制御する際に利用される。左メインポンプ14Lの吐出量の制御に際しては、図8の横軸は左制御圧センサ19Lが検出する制御圧に対応し、図8の縦軸は左メインポンプ14Lの吐出量の指令値に対応する。同様に、右メインポンプ14Rの吐出量の制御に際しては、図8の横軸は右制御圧センサ19Rが検出する制御圧に対応し、図8の縦軸は右メインポンプ14Rの吐出量の指令値に対応する。 Next, with reference to FIG. 8, another example of the contents of the reference table referenced by the energy saving control unit 30B will be described. FIG. 8 is a diagram showing another example of the correspondence relationship (flow rate control characteristics) between the control pressure Pn and the command value Qn, which is another example of the contents of the reference table, and corresponds to FIG. 6. Specifically, FIG. 8 shows the flow rate control characteristics adopted when the movement of the driven body is restricted, and FIG. 6 shows the flow rate control characteristics adopted when the movement of the driven body is not restricted. . The reference table shown in FIG. 8 is used when controlling the discharge amount of each of the left main pump 14L and the right main pump 14R. When controlling the discharge amount of the left main pump 14L, the horizontal axis in FIG. 8 corresponds to the control pressure detected by the left control pressure sensor 19L, and the vertical axis in FIG. 8 corresponds to the command value of the discharge amount of the left main pump 14L. do. Similarly, when controlling the discharge amount of the right main pump 14R, the horizontal axis in FIG. 8 corresponds to the control pressure detected by the right control pressure sensor 19R, and the vertical axis in FIG. 8 corresponds to the command for the discharge amount of the right main pump 14R. corresponds to a value.

 より具体的には、図8は、左操作レバー26Lがアーム開き方向に操作されているときに参照される参照テーブルの内容を示す図であり、左操作レバー26Lが微操作されているときの流量制御特性を、傾斜線GL1Aを含む実線で示している。また、図8は、左操作レバー26Lがハーフレバー操作されているときの流量制御特性を、傾斜線GL2Aを含む破線で示している。また、図8は、左操作レバー26Lがフルレバー操作されているときの流量制御特性を、傾斜線GL3Aを含む一点鎖線で示している。 More specifically, FIG. 8 is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction, and is a diagram showing the contents of the reference table that is referred to when the left operating lever 26L is operated in the arm opening direction. The flow rate control characteristics are shown by a solid line including a slope line GL1A. Further, FIG. 8 shows the flow rate control characteristics when the left operating lever 26L is half-operated by a broken line including the slope line GL2A. Moreover, FIG. 8 shows the flow rate control characteristic when the left operating lever 26L is fully operated by a dashed line including the slope line GL3A.

 傾斜線GL1Aは、制御圧Pnが低下するにつれて指令値Qnが増加する傾向に関しては図6に示す傾斜線GL1と同じであるが、制御圧Pnが低下するほどその増加率が大きくなる点において図6に示す傾斜線GL1と異なる。図6に示す傾斜線GL1では、その増加率は一定である。また、傾斜線GL2Aは、制御圧Pnが低下するにつれて指令値Qnが増加する傾向に関しては図6に示す傾斜線GL2と同じであるが、制御圧Pnが低下するほどその増加率が大きくなる点において図6に示す傾斜線GL2と異なる。また、傾斜線GL3Aは、制御圧Pnが低下するにつれて指令値Qnが増加する傾向に関しては図6に示す傾斜線GL3と同じであるが、制御圧Pnが低下するほどその増加率が大きくなる点において図6に示す傾斜線GL3と異なる。 The slope line GL1A is the same as the slope line GL1 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but it differs from the diagram in that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL1 shown in FIG. In the slope line GL1 shown in FIG. 6, the rate of increase is constant. The slope line GL2A is the same as the slope line GL2 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but the point is that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL2 shown in FIG. The slope line GL3A is the same as the slope line GL3 shown in FIG. 6 in terms of the tendency for the command value Qn to increase as the control pressure Pn decreases, but the point is that the rate of increase increases as the control pressure Pn decreases. This is different from the slope line GL3 shown in FIG.

 コントローラ30は、図8に示すような流量制御特性を採用することにより、被駆動体の動きを適切に制限できる。例えば、コントローラ30は、ショベル100が所定の作業現場に位置しているときには、アーム開き操作が行われたときにアーム5が動き出すときのアーム5の開き速度を抑制できる。すなわち、コントローラ30は、アーム開き操作が行われたときにアーム5が過度に大きな速度で開いてしまうのを抑制できる。なお、図8に示す例では、コントローラ30は、アーム5を含む被駆動体の動きを制限する場合であっても、アーム5の動作速度の最大値を制限することはない。すなわち、コントローラ30は、アーム5の動きを制限する場合のアーム5の動作速度の最大値が、アーム5の動きを制限しない場合のアーム5の動作速度の最大値と同じになるように構成されている。これは、フルレバー操作によるアーム開き操作が継続されると、アーム5の動きが制限されているか否かにかかわらず、アーム5の動作速度が最大値に達することを意味する。但し、アーム5の動きが制限されている場合のアーム5の動作速度が最大値に達するまでに要する時間は、アーム5の動きが制限されていない場合よりも長い。 The controller 30 can appropriately limit the movement of the driven body by adopting the flow rate control characteristics as shown in FIG. For example, when the excavator 100 is located at a predetermined work site, the controller 30 can suppress the opening speed of the arm 5 when the arm 5 starts to move when the arm opening operation is performed. That is, the controller 30 can prevent the arm 5 from opening at an excessively high speed when the arm opening operation is performed. Note that in the example shown in FIG. 8, even when the controller 30 limits the movement of the driven body including the arm 5, it does not limit the maximum value of the operating speed of the arm 5. That is, the controller 30 is configured such that the maximum value of the movement speed of the arm 5 when the movement of the arm 5 is restricted is the same as the maximum value of the movement speed of the arm 5 when the movement of the arm 5 is not restricted. ing. This means that if the arm opening operation by full lever operation is continued, the operating speed of the arm 5 will reach the maximum value, regardless of whether or not the movement of the arm 5 is restricted. However, when the movement of the arm 5 is restricted, the time required for the operating speed of the arm 5 to reach the maximum value is longer than when the movement of the arm 5 is not restricted.

 次に、図9を参照し、動作制限処理によって被駆動体の動きが制限される場面の一例について説明する。図9は、クレーン作業を行っているショベル100の斜視図である。 Next, with reference to FIG. 9, an example of a scene where the movement of the driven body is restricted by the movement restriction process will be described. FIG. 9 is a perspective view of the excavator 100 performing crane work.

 図9に示す例では、ショベル100は、道路に形成された掘削溝EXに下水管BPを埋設するため、下水管BPを持ち上げている。ショベル100の操作者は、ショベル100の左前方にいる玉掛作業者FSの指示に従って右旋回操作を行おうとしている。コントローラ30は、前方カメラ70Fの出力に基づいてショベル100(バケット6)又は下水管BPと玉掛作業者FSとの間の距離DBを継続的に監視している。ショベル100の操作者は、左操作レバー26Lを用いて上部旋回体3を右旋回させて下水管BPを掘削溝EXに近づけようとしている。このとき、玉掛作業者FSは、例えば下水管BPの姿勢調整等のため、ショベル100(バケット6)又は下水管BPに接近し過ぎてしまう場合がある。 In the example shown in FIG. 9, the excavator 100 lifts up the sewer pipe BP in order to bury the sewer pipe BP in an excavated trench EX formed in the road. The operator of the excavator 100 is attempting to perform a right turning operation in accordance with instructions from the sling operator FS located at the front left of the excavator 100. The controller 30 continuously monitors the distance DB between the shovel 100 (bucket 6) or the sewer pipe BP and the sling worker FS based on the output of the front camera 70F. The operator of the excavator 100 is trying to move the sewer pipe BP closer to the excavation groove EX by turning the upper rotating body 3 to the right using the left operating lever 26L. At this time, the sling worker FS may come too close to the shovel 100 (bucket 6) or the sewer pipe BP, for example, in order to adjust the attitude of the sewer pipe BP.

 このような状況において、コントローラ30は、前方カメラ70Fが取得した画像内でロードコーンRC、ガードレールGR、電柱EP、及び、下水管BP等の物体の少なくとも一つの画像を検知したときに、所定の作業現場での作業であると判定し、被駆動体の動きを制限してもよい。 In such a situation, when the controller 30 detects at least one image of an object such as the road cone RC, guardrail GR, utility pole EP, or sewer pipe BP in the image acquired by the front camera 70F, the controller 30 performs a predetermined It may be determined that the work is at a work site, and the movement of the driven body may be restricted.

 具体的には、コントローラ30は、前方カメラ70Fが取得した画像内でガードレールGR又は電柱EPの画像を検知したときに、所定の作業現場(歩道又は車道に隣接する作業現場)での作業であると判定し、被駆動体の動きを制限してもよい。 Specifically, when the controller 30 detects an image of the guardrail GR or utility pole EP in the image acquired by the front camera 70F, the controller 30 determines that the work is being performed at a predetermined work site (a work site adjacent to a sidewalk or a roadway). It may be determined that the movement of the driven body is restricted.

 或いは、コントローラ30は、前方カメラ70Fが取得した画像内で吊り荷(アーム5の先端に設けられたフックによって吊り上げられた下水管BP)の画像を検知したときに、所定の作業現場での作業(クレーン作業)であると判定し、被駆動体の動きを抑制してもよい。 Alternatively, when the controller 30 detects an image of a suspended load (sewage pipe BP lifted by a hook provided at the tip of the arm 5) in the image acquired by the front camera 70F, the controller 30 performs work at a predetermined work site. (crane work), and the movement of the driven body may be suppressed.

 被駆動体の動きの抑制は、例えば、メインポンプ14の立ち上がりを抑制すること、すなわち、図6に示すような流量制御特性を図8に示すような流量制御特性に切り換えることによって実現されてもよい。或いは、被駆動体の動きの抑制は、被駆動体の最大動作速度を低下させること、センターバイパス管路CBに設けられたリリーフ弁(図示せず)のリリーフ圧を低下させること、エンジン11又は電動モータ等の動力源の出力パワー(回転数)を低下させること、又は、ショベル100の運転モードを切り換えること等によって実現されてもよい。運転モードは、例えば、掘削作業が行われる際に選択される掘削モード、及び、クレーン作業が行われる際に選択されるクレーンモード等を含む。クレーンモードでは、掘削モードに比べ、操作装置26の操作量に対するアクチュエータの動作量が小さくなる。 Suppression of the movement of the driven body may be realized, for example, by suppressing the rise of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 6 to the flow rate control characteristic as shown in FIG. good. Alternatively, the movement of the driven body may be suppressed by reducing the maximum operating speed of the driven body, by decreasing the relief pressure of a relief valve (not shown) provided in the center bypass pipe CB, or by reducing the pressure of the engine 11 or This may be realized by reducing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100. The operation mode includes, for example, an excavation mode selected when excavation work is performed, a crane mode selected when crane work is performed, and the like. In the crane mode, the amount of operation of the actuator relative to the amount of operation of the operating device 26 is smaller than in the excavation mode.

 なお、コントローラ30は、距離DBが所定値未満になっている状態では、左旋回操作が行われると、制御弁60に遮断指令を出力してパイロットラインCD1を遮断状態に切り換えてもよい。左操作レバー26Lを無効状態にして旋回用油圧モータ2Aの回転を停止させるためである。 Note that in a state where the distance DB is less than a predetermined value, when a left turning operation is performed, the controller 30 may output a shutoff command to the control valve 60 to switch the pilot line CD1 to the shutoff state. This is to disable the left operating lever 26L and stop the rotation of the swing hydraulic motor 2A.

 ショベル100の周囲に物体が存在する場合にショベル100の動きが一律に制限されてしまう構成では、左旋回操作ばかりでなく右旋回操作までもが無効とされてしまう。そこで、コントローラ30は、操作装置26を介して行われた操作毎に被駆動体を動かしてもよいか否かを判定してもよい。この場合、コントローラ30は、図9に示すような状況において、操作者による左旋回操作に応じた旋回用油圧モータ2Aの回転を禁止しながらも、操作者による右旋回操作に応じた旋回用油圧モータ2Aの回転を許容できる。ショベル100を右旋回させたとしてもショベル100と物体とが接近し過ぎるおそれはないと判定できるためである。その結果、コントローラ30は、ショベル100(バケット6)又は下水管BPと玉掛作業者FSとが接近し過ぎてしまうのを防止しながら、下水管BPを速やかに掘削溝EXに近づけることができる。 In a configuration where the movement of the shovel 100 is uniformly restricted when objects exist around the shovel 100, not only the left turning operation but also the right turning operation will be invalidated. Therefore, the controller 30 may determine whether or not the driven body may be moved for each operation performed via the operating device 26. In this case, in the situation shown in FIG. 9, the controller 30 prohibits the turning hydraulic motor 2A from rotating in response to the operator's left turning operation, but prevents the turning hydraulic motor 2A from rotating in response to the right turning operation by the operator. Rotation of the hydraulic motor 2A is allowed. This is because it can be determined that there is no risk of the shovel 100 and the object coming too close even if the shovel 100 is turned to the right. As a result, the controller 30 can quickly bring the sewer pipe BP closer to the excavation groove EX while preventing the shovel 100 (bucket 6) or the sewer pipe BP from getting too close to the sling worker FS.

 或いは、コントローラ30は、ショベル100が所定の作業現場に位置している場合であっても、ショベル100(バケット6)又は下水管BPと玉掛作業者FSとの間の距離DBが所定値未満となるまでは、被駆動体の動きを制限しないように構成されていてもよい。すなわち、コントローラ30は、距離DBが所定値未満になっている状態で被駆動体の動作を開始させる場合に限り、被駆動体の動きを制限するように構成されていてもよい。 Alternatively, the controller 30 may determine that even if the shovel 100 is located at a predetermined work site, the distance DB between the shovel 100 (bucket 6) or the sewer pipe BP and the sling worker FS is less than a predetermined value. The structure may be such that the movement of the driven body is not restricted until the movement of the driven body is reached. In other words, the controller 30 may be configured to limit the movement of the driven object only when the driven object starts operating in a state where the distance DB is less than a predetermined value.

 また、コントローラ30は、距離DBが所定値未満になったときに、ショベル100の操作者及び玉掛作業者FSの少なくとも一方にその旨を知らせるように構成されていてもよい。図示例では、コントローラ30は、前方カメラ70Fが取得する画像に基づいて距離DBが所定値未満になったと判定したときに、室外警報器45A及び室内警報器45Bのそれぞれから警報音を出力させる。操作者及び玉掛作業者FSの注意を喚起するためである。なお、コントローラ30は、距離DBが所定値未満になったことを知らせる画像情報を表示装置40に表示させて操作者の注意を喚起してもよく、キャビン10の外部に取り付けられた回転灯を点灯させて玉掛作業者FSの注意を喚起してもよい。 Further, the controller 30 may be configured to notify at least one of the operator of the shovel 100 and the sling worker FS when the distance DB becomes less than a predetermined value. In the illustrated example, when the controller 30 determines that the distance DB has become less than a predetermined value based on the image acquired by the front camera 70F, the controller 30 causes each of the outdoor alarm 45A and the indoor alarm 45B to output an alarm sound. This is to draw the attention of the operator and sling worker FS. Note that the controller 30 may display image information on the display device 40 to notify that the distance DB has become less than a predetermined value to call the operator's attention. It may be lit to alert the sling operator FS.

 上述の構成により、コントローラ30は、クレーン作業が行われる作業現場にショベル100が位置する場合、アタッチメントATとアタッチメントATの周囲に存在する物体との接触をより確実に防止できる。 With the above configuration, the controller 30 can more reliably prevent the attachment AT from coming into contact with objects existing around the attachment AT when the shovel 100 is located at a work site where crane work is performed.

 次に、図10を参照し、動作制限処理によって被駆動体の動きが制限される場面の別の一例について説明する。図10は、深掘作業を行っているショベル100の側面図である。 Next, with reference to FIG. 10, another example of a scene where the movement of the driven body is restricted by the movement restriction process will be described. FIG. 10 is a side view of the shovel 100 performing deep digging work.

 図10に示す例では、ショベル100は、穴HLを深掘りするため、バケット6を穴HL内の深い位置に進入させている。穴HL内には、バケット6の近傍で作業状況を確認するために作業者WKが待機している。作業者WKは、必要に応じて、ショベル100の操作者に合図を送る。ショベル100の操作者は、作業者WKの合図に従って穴HLの底にある土砂をバケット6内に取り込み、バケット6内に取り込んだ土砂をショベル100の近傍に停車しているダンプトラックDTの荷台に積み込む。コントローラ30は、アタッチメントカメラ70Aの出力に基づいてバケット6の近傍に作業者WKが存在するか否かを継続的に監視している。図示例では、コントローラ30は、アーム5とバケット6とを連結する連結ピン6Pから所定距離DSの範囲内(破線L1で示される範囲内)に作業者WKが存在するか否かを監視している。なお、図10の一点鎖線L2は、アタッチメントカメラ70Aの撮像範囲を表している。 In the example shown in FIG. 10, the excavator 100 moves the bucket 6 into a deep position within the hole HL in order to dig the hole HL deeply. A worker WK is waiting in the hole HL near the bucket 6 to check the work status. Worker WK sends a signal to the operator of shovel 100 as necessary. The operator of the excavator 100 takes the earth and sand at the bottom of the hole HL into the bucket 6 according to the signal from the worker WK, and transfers the earth and sand taken into the bucket 6 to the loading platform of a dump truck DT parked near the shovel 100. Load. The controller 30 continuously monitors whether the worker WK is present near the bucket 6 based on the output of the attachment camera 70A. In the illustrated example, the controller 30 monitors whether the worker WK is within a predetermined distance DS from the connecting pin 6P that connects the arm 5 and the bucket 6 (within the range indicated by the broken line L1). There is. Note that the dashed line L2 in FIG. 10 represents the imaging range of the attachment camera 70A.

 ショベル100の操作者は、操作装置26を用いてアーム閉じ動作及びバケット閉じ動作を含む複合動作を実行して穴HL内にある土砂をバケット6内に取り込もうとしている。このとき、作業者WKは、例えばバケット6の爪先の位置(深さ)の確認等のため、バケット6に接近し過ぎてしまう場合がある。 The operator of the excavator 100 attempts to take the earth and sand in the hole HL into the bucket 6 by using the operating device 26 to execute a composite operation including an arm closing operation and a bucket closing operation. At this time, the worker WK may get too close to the bucket 6, for example, to check the position (depth) of the toe of the bucket 6.

 このような状況において、コントローラ30は、アタッチメントカメラ70Aが取得した画像に基づいて連結ピン6Pから所定距離DSの範囲内で作業者WKを検知したときに、所定の作業現場(深掘作業が行われる作業現場)での作業であると判定し、被駆動体の動きを制限してもよい。すなわち、コントローラ30は、バケット6の近くに作業者WKが存在すると判定し、被駆動体の動きを制限してもよい。 In such a situation, when the controller 30 detects the worker WK within a predetermined distance DS from the connecting pin 6P based on the image acquired by the attachment camera 70A, the controller 30 moves to a predetermined work site (where deep digging work is being performed). The movement of the driven body may be restricted based on the determination that the work is being performed at a work site where the vehicle is operated. That is, the controller 30 may determine that the worker WK is present near the bucket 6, and may restrict the movement of the driven body.

 図示例では、コントローラ30は、図6に示すような流量制御特性を図8に示すような流量制御特性に切り換えることにより、被駆動体の動きを制限しない場合に比べ、アタッチメントATが動き始めるときの動作速度の増加率を抑制できる。すなわち、コントローラ30は、被駆動体の動きを制限しない場合に比べ、操作装置26の操作量の増加に対するメインポンプ14の吐出量の増加率を抑制できる。なお、このように被駆動体の動きを制限する場合であっても、コントローラ30は、アタッチメントATの最大動作速度(メインポンプ14の最大吐出量に対応する最大指令値Qmax)に制限を加えることはない。 In the illustrated example, the controller 30 switches the flow rate control characteristics as shown in FIG. 6 to the flow rate control characteristics as shown in FIG. The rate of increase in operating speed can be suppressed. That is, the controller 30 can suppress the rate of increase in the discharge amount of the main pump 14 with respect to the increase in the amount of operation of the operating device 26, compared to the case where the movement of the driven body is not restricted. Note that even when the movement of the driven body is restricted in this way, the controller 30 does not limit the maximum operating speed of the attachment AT (maximum command value Qmax corresponding to the maximum discharge amount of the main pump 14). There isn't.

 具体的には、コントローラ30は、例えば、穴HLの上空に位置するバケット6を穴HL内に進入させるために操作者がブーム下げ操作を開始したときのブーム4の下降動作を鈍化させることができる。すなわち、コントローラ30は、被駆動体(ブーム4)の動きを制限しない場合に比べ、右操作レバー26Rのブーム下げ方向におけるレバー操作量が所定のレバー操作量に達するまでは、そのレバー操作量の増加に対する、ブームシリンダ7のロッド側油室に流入する作動油の流量の増加率を低減させることにより、ブーム4の下降速度を制限できる。 Specifically, the controller 30 may, for example, slow down the lowering operation of the boom 4 when the operator starts a boom lowering operation in order to move the bucket 6 located above the hole HL into the hole HL. can. That is, compared to the case where the movement of the driven body (boom 4) is not restricted, the controller 30 controls the amount of lever operation of the right operation lever 26R in the boom lowering direction until it reaches a predetermined lever operation amount. By reducing the rate of increase in the flow rate of the hydraulic oil flowing into the rod side oil chamber of the boom cylinder 7 relative to the increase, the lowering speed of the boom 4 can be limited.

 また、コントローラ30は、例えば、穴HLの底に達したバケット6によって穴HLの底にある土砂を掘削するために操作者がアーム閉じ操作を開始したときのアーム5の閉じ動作を鈍化させることができる。同様に、コントローラ30は、例えば、バケット6内に取り込まれた土砂を持ち上げるために操作者がブーム上げ操作を開始したときのブーム4の上昇動作を鈍化させることができる。 The controller 30 also slows down the closing operation of the arm 5 when the operator starts the arm closing operation in order to excavate earth and sand at the bottom of the hole HL with the bucket 6 that has reached the bottom of the hole HL, for example. I can do it. Similarly, the controller 30 can slow down the raising operation of the boom 4 when, for example, the operator starts a boom raising operation to lift earth and sand taken into the bucket 6.

 一方で、コントローラ30は、バケット6が穴HLの上空に持ち上げられた状態で上部旋回体3を旋回させながらブーム4を上昇させるために操作者が旋回操作とブーム上げ操作とを含む複合操作を開始したときのブーム上げ旋回動作(旋回動作とブーム上げ動作とを含む複合動作)を鈍化させることはない。コントローラ30は、バケット6が穴HLの上空に持ち上げられた状態では、連結ピン6Pから所定距離DSの範囲内に作業者WKが存在しないと判定できるためである。そのため、操作者は、制限のないブーム上げ旋回動作を実行でき、ダンプトラックDTの荷台へ土砂を積み込む作業をストレスなく迅速に行うことができる。また、コントローラ30は、ダンプトラックDTの荷台の上空から穴HLの上空までバケット6を移動させるために操作者が旋回操作とブーム下げ操作とを含む複合操作を開始したときのブーム下げ旋回動作(旋回動作とブーム下げ動作とを含む複合動作)を鈍化させることもない。検知の対象は必ずしも作業者WKでなくともよい。例えば、コントローラ30は、ガードレールGR、電柱EP、及び、下水管BP等の土砂以外の予め登録された物体を検知したか否かに基づいてアクチュエータの動作制限の要否を判定してもよい。更に、コントローラ30は、図10の穴HLの横壁の角度(スロープ)、安全装置の有無(トレンチボックスの有無等)、ショベルの動作に伴う振動の有無等に基づいてアクチュエータの動作制限の要否を判定してもよい。このように、コントローラ30は、作業領域における物体の有無等に基づいてアクチュエータの動作制限の要否を判定することで、作業現場の安全性を向上させることができる。 On the other hand, the controller 30 allows the operator to perform a complex operation including a rotation operation and a boom raising operation in order to raise the boom 4 while rotating the upper rotating structure 3 with the bucket 6 lifted above the hole HL. The boom raising and turning operation (compound operation including the turning operation and the boom raising operation) is not slowed down when started. This is because the controller 30 can determine that the worker WK does not exist within the predetermined distance DS from the connecting pin 6P when the bucket 6 is lifted above the hole HL. Therefore, the operator can perform boom raising and turning operations without restrictions, and can quickly load earth and sand onto the platform of the dump truck DT without stress. The controller 30 also performs a boom lowering rotation operation ( It also does not slow down the composite movement (including turning movement and boom lowering movement). The object of detection does not necessarily have to be the worker WK. For example, the controller 30 may determine whether or not to restrict the operation of the actuator based on whether or not a pre-registered object other than earth and sand, such as a guardrail GR, utility pole EP, and sewer pipe BP, is detected. Furthermore, the controller 30 determines whether or not to restrict the actuator operation based on the angle (slope) of the side wall of the hole HL in FIG. may be determined. In this way, the controller 30 can improve the safety of the work site by determining whether or not it is necessary to restrict the operation of the actuator based on the presence or absence of an object in the work area.

 なお、被駆動体の動きの抑制は、被駆動体の最大動作速度を低下させること、センターバイパス管路CBに設けられたリリーフ弁(図示せず)のリリーフ圧を低下させること、エンジン11又は電動モータ等の動力源の出力パワー(回転数)を低下させること、又は、ショベル100の運転モードを切り換えること等によって実現されてもよい。 Note that the movement of the driven body can be suppressed by reducing the maximum operating speed of the driven body, by decreasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or by reducing the pressure of the engine 11 or This may be realized by reducing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.

 上述の構成により、コントローラ30は、深掘作業が行われる作業現場にショベル100が位置する場合であっても、アタッチメントATとアタッチメントATの周囲に存在する物体との接触をより確実に防止できる。 With the above configuration, the controller 30 can more reliably prevent the attachment AT from coming into contact with objects existing around the attachment AT even when the shovel 100 is located at a work site where deep digging work is performed.

 次に、図11及び図12を参照し、ショベル100の稼動中に表示装置40に表示される画面である稼動状態画面について説明する。図11及び図12は、稼動状態画面の構成例を示す。 Next, with reference to FIGS. 11 and 12, the operation status screen, which is a screen displayed on the display device 40 while the excavator 100 is in operation, will be described. 11 and 12 show examples of the configuration of the operating status screen.

 表示装置40は、制御部40a、画像表示部41、及び操作部42を有する。制御部40aは、画像表示部41に表示される画像を制御する。本実施形態では、制御部40aは、CPU、揮発性記憶装置、及び不揮発性記憶装置等を備えたコンピュータで構成されている。この場合、制御部40aは、各機能に対応するプログラムを不揮発性記憶装置から読み出して揮発性記憶装置に読み込み、対応する処理をCPUに実行させる。 The display device 40 includes a control section 40a, an image display section 41, and an operation section 42. The control unit 40a controls the image displayed on the image display unit 41. In this embodiment, the control unit 40a is composed of a computer including a CPU, a volatile storage device, a nonvolatile storage device, and the like. In this case, the control unit 40a reads a program corresponding to each function from the nonvolatile storage device, loads it into the volatile storage device, and causes the CPU to execute the corresponding process.

 画像表示部41は、日時表示領域41a、走行モード表示領域41b、エンドアタッチメント表示領域41c、燃費表示領域41d、エンジン制御状態表示領域41e、エンジン稼動時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、回転数モード表示領域41i、尿素水残量表示領域41j、作動油温表示領域41k、エアコン運転状態表示領域41m、画像表示領域41n、及びメニュー表示領域41pを含む。 The image display section 41 includes a date and time display area 41a, a driving mode display area 41b, an end attachment display area 41c, a fuel consumption display area 41d, an engine control status display area 41e, an engine operating time display area 41f, a cooling water temperature display area 41g, and a remaining fuel display area 41a. It includes an amount display area 41h, a rotation speed mode display area 41i, a urea water remaining amount display area 41j, a hydraulic oil temperature display area 41k, an air conditioner operating state display area 41m, an image display area 41n, and a menu display area 41p.

 走行モード表示領域41b、エンドアタッチメント表示領域41c、エンジン制御状態表示領域41e、回転数モード表示領域41i、及びエアコン運転状態表示領域41mは、ショベル100の設定状態に関する情報である設定状態情報を表示する領域である。燃費表示領域41d、エンジン稼動時間表示領域41f、冷却水温表示領域41g、燃料残量表示領域41h、尿素水残量表示領域41j、及び作動油温表示領域41kは、ショベル100の稼動状態に関する情報である稼動状態情報を表示する領域である。 The driving mode display area 41b, the end attachment display area 41c, the engine control status display area 41e, the rotation speed mode display area 41i, and the air conditioner operation status display area 41m display setting status information that is information regarding the setting status of the excavator 100. It is an area. The fuel consumption display area 41d, the engine operating time display area 41f, the cooling water temperature display area 41g, the remaining fuel amount display area 41h, the urea water remaining amount display area 41j, and the hydraulic oil temperature display area 41k are information regarding the operating state of the excavator 100. This is an area that displays certain operating status information.

 日時表示領域41aは、現在の日時を表示する領域である。走行モード表示領域41bは、現在の走行モードを表示する領域である。エンドアタッチメント表示領域41cは、現在装着されているエンドアタッチメントを表す画像を表示する領域である。燃費表示領域41dは、コントローラ30によって算出された燃費情報を表示する領域である。燃費表示領域41dは、全期間に関する平均燃費又は一部期間に関する平均燃費を表示する平均燃費表示領域41d1、及び、瞬間燃費を表示する瞬間燃費表示領域41d2を含む。全期間は、例えば、ショベル100が出荷された後の全期間を意味する。一部期間は、例えば、操作者が任意に設定した期間を意味する。 The date and time display area 41a is an area that displays the current date and time. The driving mode display area 41b is an area that displays the current driving mode. The end attachment display area 41c is an area that displays an image representing the currently attached end attachment. The fuel efficiency display area 41d is an area where fuel efficiency information calculated by the controller 30 is displayed. The fuel consumption display area 41d includes an average fuel consumption display area 41d1 that displays the average fuel consumption for the entire period or an average fuel consumption for a partial period, and an instantaneous fuel consumption display area 41d2 that displays the instantaneous fuel consumption. The entire period means, for example, the entire period after the shovel 100 is shipped. The partial period means, for example, a period arbitrarily set by the operator.

 エンジン制御状態表示領域41eは、エンジン11の制御状態を表示する領域である。エンジン稼動時間表示領域41fは、エンジン11の稼動時間に関する情報を表示する領域である。冷却水温表示領域41gは、現在のエンジン冷却水の温度状態を表示する領域である。燃料残量表示領域41hは、燃料タンクに貯蔵されている燃料の残量状態を表示する領域である。回転数モード表示領域41iは、エンジン回転数調整ダイヤル75によって設定された現在の回転数モードを画像で表示する領域である。尿素水残量表示領域41jは、尿素水タンクに貯蔵されている尿素水の残量状態を画像で表示する領域である。作動油温表示領域41kは、作動油タンク内の作動油の温度状態を表示する領域である。 The engine control state display area 41e is an area that displays the control state of the engine 11. The engine operating time display area 41f is an area that displays information regarding the operating time of the engine 11. The cooling water temperature display area 41g is an area that displays the current temperature state of the engine cooling water. The remaining fuel amount display area 41h is an area that displays the remaining amount of fuel stored in the fuel tank. The rotation speed mode display area 41i is an area where the current rotation speed mode set by the engine rotation speed adjustment dial 75 is displayed as an image. The urea water remaining amount display area 41j is an area for displaying an image of the remaining amount of urea water stored in the urea water tank. The hydraulic oil temperature display area 41k is an area that displays the temperature state of the hydraulic oil in the hydraulic oil tank.

 エアコン運転状態表示領域41mは、現在の吹出口の位置を表示する吹出口表示領域41m1、現在の運転モードを表示する運転モード表示領域41m2、現在の設定温度を表示する温度表示領域41m3、及び、現在の設定風量を表示する風量表示領域41m4を含む。 The air conditioner operating state display area 41m includes an air outlet display area 41m1 that displays the current position of the air outlet, an operation mode display area 41m2 that displays the current operating mode, a temperature display area 41m3 that displays the current set temperature, and It includes an air volume display area 41m4 that displays the current set air volume.

 画像表示領域41nは、撮像装置が撮像した画像を表示する領域である。画像表示領域41nは、上方に位置する第1画像表示領域41n1と下方に位置する第2画像表示領域41n2を有する。図11及び図12に示す例では、バケット周辺画像BGを第1画像表示領域41n1に配置し、且つ、俯瞰画像FVを第2画像表示領域41n2に配置している。但し、画像表示領域41nは、バケット周辺画像BGを第2画像表示領域41n2に配置し、且つ、俯瞰画像FVを第1画像表示領域41n1に配置してもよい。また、図11及び図12に示す例では、バケット周辺画像BGと俯瞰画像FVとは上下に隣接して配置されているが、間隔を空けて配置されていてもよい。 The image display area 41n is an area where an image captured by the imaging device is displayed. The image display area 41n has a first image display area 41n1 located above and a second image display area 41n2 located below. In the example shown in FIGS. 11 and 12, the bucket peripheral image BG is arranged in the first image display area 41n1, and the bird's-eye view image FV is arranged in the second image display area 41n2. However, in the image display area 41n, the bucket surrounding image BG may be arranged in the second image display area 41n2, and the bird's-eye view image FV may be arranged in the first image display area 41n1. Further, in the examples shown in FIGS. 11 and 12, the bucket peripheral image BG and the bird's-eye view image FV are arranged vertically adjacent to each other, but they may be arranged with an interval between them.

 バケット周辺画像BGは、深掘作業が行われるときに表示される画像であり、アタッチメントカメラ70Aが取得した画像に基づいて生成される画像である。バケット周辺画像BGは、視点変換処理が施された画像であってもよく、視点変換処理が施されていない画像であってもよい。また、バケット周辺画像BGは、アーム画像5G(アーム5の位置を表すCG画像)、バケット画像6G(バケット6の位置を表すCG画像)、及び、作業者画像WG(バケット6の周囲で作業している作業者WKの位置を表すCG画像)を含むCG画像であってもよい。 The bucket surrounding image BG is an image displayed when deep digging work is performed, and is an image generated based on the image acquired by the attachment camera 70A. The bucket surrounding image BG may be an image that has been subjected to viewpoint conversion processing, or may be an image that has not been subjected to viewpoint conversion processing. In addition, the bucket surrounding image BG includes an arm image 5G (a CG image representing the position of the arm 5), a bucket image 6G (a CG image representing the position of the bucket 6), and a worker image WG (a CG image representing the position of the bucket 6). It may also be a CG image including a CG image representing the position of the worker WK.

 図示例では、バケット周辺画像BGは、第1バケット周辺画像BG1(図11参照)及び第2バケット周辺画像BG2(図12参照)を含む。第1バケット周辺画像BG1は、深掘作業の対象となる穴HLを上から見たときの穴HL内の様子を示す画像であり、第2バケット周辺画像BG2は、深掘作業の対象となる穴HLを横から見たときの穴HL内の位置を示す画像である。 In the illustrated example, the bucket surrounding image BG includes a first bucket surrounding image BG1 (see FIG. 11) and a second bucket surrounding image BG2 (see FIG. 12). The first bucket peripheral image BG1 is an image showing the inside of the hole HL, which is the target of deep digging work, when viewed from above, and the second bucket peripheral image BG2 is the target of deep digging work. It is an image showing the position inside the hole HL when the hole HL is viewed from the side.

 第1バケット周辺画像BG1は、図11に示すように、アーム画像5G、バケット画像6G、及び作業者画像WGを含む。図11では、アーム画像5Gはアーム5を上から見たときのアーム5の位置を示し、バケット画像6Gは穴HLを上から見たときのバケット6の位置を示し、作業者画像WGは穴HLを上から見たときの作業者WKの位置を示す。ショベル100の操作者は、第1バケット周辺画像BG1を見ることで、穴HL内でバケット6の左斜め前方に作業者WKが存在していることを認識できる。 As shown in FIG. 11, the first bucket surrounding image BG1 includes an arm image 5G, a bucket image 6G, and a worker image WG. In FIG. 11, an arm image 5G shows the position of the arm 5 when looking at the arm 5 from above, a bucket image 6G shows the position of the bucket 6 when looking at the hole HL from above, and a worker image WG shows the position of the bucket 6 when looking at the hole HL from above. The position of worker WK is shown when HL is viewed from above. The operator of the excavator 100 can recognize that the worker WK is present diagonally to the left in front of the bucket 6 within the hole HL by looking at the first bucket surrounding image BG1.

 第2バケット周辺画像BG2は、図12に示すように、ショベル画像100G、穴画像HG、及び作業者画像WGを含む。ショベル画像100Gは、ショベル100を横から見たときのショベル100の位置を示すCG画像であり、アーム画像5G及びバケット画像6Gを含む。穴画像HGは、深掘作業の対象となる穴HLの位置を示すCG画像である。図12では、アーム画像5Gは作業現場を横から見たときのアーム5の位置を示し、バケット画像6Gは作業現場を横から見たときのバケット6の位置を示し、作業者画像WGは作業現場を横から見たときの作業者WKの位置を示し、穴画像HGは作業現場を横から見たときの穴HLの位置を示す。ショベル100の操作者は、第2バケット周辺画像BG2を見ることで、バケット6と略同じ高さでバケット6の前方に作業者WKが存在していることを認識できる。 As shown in FIG. 12, the second bucket surrounding image BG2 includes a shovel image 100G, a hole image HG, and a worker image WG. The shovel image 100G is a CG image showing the position of the shovel 100 when viewed from the side, and includes an arm image 5G and a bucket image 6G. The hole image HG is a CG image showing the position of the hole HL that is the target of deep digging work. In FIG. 12, an arm image 5G shows the position of the arm 5 when looking at the work site from the side, a bucket image 6G shows the position of the bucket 6 when looking at the work site from the side, and a worker image WG shows the position of the arm 5 when looking at the work site from the side. The position of the worker WK is shown when the work site is viewed from the side, and the hole image HG is the position of the hole HL when the work site is viewed from the side. The operator of the excavator 100 can recognize that the worker WK is present in front of the bucket 6 at approximately the same height as the bucket 6 by looking at the second bucket surrounding image BG2.

 俯瞰画像FVは、制御部40aによって生成される仮想視点画像であり、後方カメラ70B、左方カメラ70L、及び右方カメラ70Rのそれぞれが取得した画像に基づいて生成される。また、俯瞰画像FVの中央部分には、ショベル100に対応するショベル図形GEが配置されている。ショベル100とショベル100の周囲に存在する物体との位置関係を操作者により直感的に把握させるためである。 The bird's-eye view image FV is a virtual viewpoint image generated by the control unit 40a, and is generated based on images acquired by each of the rear camera 70B, left camera 70L, and right camera 70R. Further, in the central portion of the bird's-eye view image FV, a shovel figure GE corresponding to the shovel 100 is arranged. This is to allow the operator to intuitively grasp the positional relationship between the shovel 100 and objects existing around the shovel 100.

 図11及び図12に示す例では、画像表示領域41nは、縦長の領域であるが、横長の領域であってもよい。画像表示領域41nが横長の領域である場合、画像表示領域41nは、左側に第1画像表示領域41n1として俯瞰画像FVを含み、右側に第2画像表示領域41n2としてバケット周辺画像BGを含んでいてもよい。この場合、俯瞰画像FVは、バケット周辺画像BGの左側に間隔を空けて配置されていてもよい。或いは、俯瞰画像FVは、バケット周辺画像BGの右側に配置されていてもよい。 In the examples shown in FIGS. 11 and 12, the image display area 41n is a vertically long area, but it may be a horizontally long area. When the image display area 41n is a horizontally long area, the image display area 41n includes an overhead image FV as a first image display area 41n1 on the left side, and a bucket peripheral image BG as a second image display area 41n2 on the right side. Good too. In this case, the bird's-eye view image FV may be placed on the left side of the bucket surrounding image BG with an interval. Alternatively, the bird's-eye view image FV may be placed on the right side of the bucket surrounding image BG.

 メニュー表示領域41pは、タブ領域41p1~41p7を有する。図11及び図12に示す例では、画像表示部41の最下部に、タブ領域41p1~41p7が左右に互いに間隔を空けて配置されている。タブ領域41p1~41p7のそれぞれには、関連する情報の内容を表すアイコンが表示されている。 The menu display area 41p has tab areas 41p1 to 41p7. In the example shown in FIGS. 11 and 12, tab areas 41p1 to 41p7 are arranged at the bottom of the image display section 41 at intervals from each other in the left and right directions. Icons representing the content of related information are displayed in each of the tab areas 41p1 to 41p7.

 タブ領域41p1には、メニュー詳細項目を表示するためのメニュー詳細項目アイコンが表示されている。操作者によりタブ領域41p1が選択されると、タブ領域41p2~41p7に表示されているアイコンがメニュー詳細項目に関連付けられたアイコンに切り換わる。 The tab area 41p1 displays detailed menu item icons for displaying detailed menu items. When the operator selects the tab area 41p1, the icons displayed in the tab areas 41p2 to 41p7 are switched to icons associated with detailed menu items.

 タブ領域41p4には、デジタル水準器に関する情報を表示するためのアイコンが表示されている。操作者によりタブ領域41p4が選択されると、バケット周辺画像BGがデジタル水準器に関する情報を示す第1画面に切り換わる。 In the tab area 41p4, icons for displaying information regarding the digital level are displayed. When the operator selects the tab area 41p4, the bucket surrounding image BG is switched to the first screen showing information regarding the digital level.

 タブ領域41p6には、情報化施工に関する情報を表示するためのアイコンが表示されている。操作者によりタブ領域41p6が選択されると、バケット周辺画像BGが情報化施工に関する情報を示す第2画面に切り換わる。 Icons for displaying information regarding information-based construction are displayed in the tab area 41p6. When the operator selects the tab area 41p6, the bucket surrounding image BG is switched to a second screen showing information regarding computerized construction.

 タブ領域41p7には、クレーンモードに関する情報を表示するためのアイコンが表示されている。操作者によりタブ領域41p7が選択されると、バケット周辺画像BGがクレーンモードに関する情報を示す第3画面に切り換わる。 Icons for displaying information regarding the crane mode are displayed in the tab area 41p7. When the operator selects the tab area 41p7, the bucket surrounding image BG is switched to a third screen showing information regarding the crane mode.

 但し、第1画面、第2画面、又は第3画面等のメニュー画面は何れも、バケット周辺画像BG上に重畳表示されてもよい。或いは、バケット周辺画像BGは、メニュー画面を表示するための場所を空けるように縮小されてもよい。或いは、俯瞰画像FVがメニュー画面に切り換わるように構成されていてもよい。或いは、メニュー画面は、俯瞰画像FV上に重畳表示されてもよい。或いは、俯瞰画像FVは、メニュー画面を表示するための場所を空けるように縮小されてもよい。 However, any of the menu screens such as the first screen, second screen, or third screen may be displayed superimposed on the bucket surrounding image BG. Alternatively, the bucket surrounding image BG may be reduced to make room for displaying the menu screen. Alternatively, the overhead image FV may be configured to switch to a menu screen. Alternatively, the menu screen may be displayed superimposed on the bird's-eye view image FV. Alternatively, the bird's-eye view image FV may be reduced to make room for displaying the menu screen.

 図11及び図12に示す例では、タブ領域41p2、41p3、及び41p5には、アイコンが表示されていない。このため、操作者によりタブ領域41p2、41p3、又は41p5が操作されても、画像表示部41に表示される画像に変化は生じない。 In the examples shown in FIGS. 11 and 12, no icons are displayed in the tab areas 41p2, 41p3, and 41p5. Therefore, even if the operator operates the tab areas 41p2, 41p3, or 41p5, the image displayed on the image display section 41 does not change.

 なお、タブ領域41p1~41p7に表示されるアイコンは上記した例に限定されるものではなく、他の情報を表示するためのアイコンが表示されていてもよい。 Note that the icons displayed in the tab areas 41p1 to 41p7 are not limited to the above examples, and icons for displaying other information may be displayed.

 図11及び図12に示す例では、操作部42は、操作者がタブ領域41p1~41p7の選択、及び、設定入力等を行うための複数のボタン式のスイッチにより構成されている。具体的には、操作部42は、上段に配置された7つのスイッチ42a1~42a7と、下段に配置された7つのスイッチ42b1~42b7とを含む。スイッチ42b1~42b7は、スイッチ42a1~42a7のそれぞれの下方に配置されている。但し、操作部42のスイッチの数、形態、及び配置は、上記した例に限定されるものではない。例えば、操作部42は、ジョグホイール又はジョグスイッチ等のように、複数のボタン式のスイッチの機能を1つにまとめた形態であってもよい。また、操作部42は、表示装置40から独立した部材として構成されていてもよい。また、タブ領域41p1~41p7は、ソフトウェアボタンとして構成されていてもよい。この場合、操作者は、タブ領域41p1~41p7をタッチ操作することで任意のタブ領域を選択できる。 In the example shown in FIGS. 11 and 12, the operation unit 42 is composed of a plurality of button-type switches that allow the operator to select tab areas 41p1 to 41p7 and input settings. Specifically, the operation unit 42 includes seven switches 42a1 to 42a7 arranged in the upper stage and seven switches 42b1 to 42b7 arranged in the lower stage. The switches 42b1 to 42b7 are arranged below the switches 42a1 to 42a7, respectively. However, the number, form, and arrangement of switches of the operating section 42 are not limited to the above-mentioned example. For example, the operation unit 42 may have a form that combines the functions of a plurality of button-type switches into one, such as a jog wheel or a jog switch. Further, the operation unit 42 may be configured as a member independent from the display device 40. Furthermore, the tab areas 41p1 to 41p7 may be configured as software buttons. In this case, the operator can select any tab area by touching the tab areas 41p1 to 41p7.

 図11及び図12に示す例では、スイッチ42a1は、タブ領域41p1の下方に、タブ領域41p1に対応して配置されており、タブ領域41p1を選択するスイッチとして機能する。スイッチ42a2~42a7のそれぞれについても同様である。 In the example shown in FIGS. 11 and 12, the switch 42a1 is arranged below the tab area 41p1 in correspondence with the tab area 41p1, and functions as a switch for selecting the tab area 41p1. The same applies to each of the switches 42a2 to 42a7.

 この構成により、操作者は、タブ領域41p1~41p7のうちの所望の1つを選択する際にスイッチ42a1~42a7の何れを操作すればよいのかを直感的に認識できる。 With this configuration, the operator can intuitively recognize which of the switches 42a1 to 42a7 should be operated when selecting a desired one of the tab areas 41p1 to 41p7.

 スイッチ42b1は、画像表示領域41nに表示される撮像画像を切り換えるスイッチである。表示装置40は、スイッチ42b1が操作される毎に画像表示領域41nの第1画像表示領域41n1に表示される撮像画像が、例えば、後画像、左画像、右画像、俯瞰画像FV、及びバケット周辺画像BGの順で切り換わるように構成されている。或いは、表示装置40は、スイッチ42b1が操作される毎に画像表示領域41nの第2画像表示領域41n2に表示される撮像画像が、例えば、後画像、左画像、右画像、俯瞰画像FV、及びバケット周辺画像BGの順で切り換わるように構成されていてもよい。或いは、表示装置40は、スイッチ42b1が操作される毎に画像表示領域41nの第1画像表示領域41n1に表示される撮像画像と第2画像表示領域41n2に表示される撮像画像とが入れ換わるように構成されていてもよい。 The switch 42b1 is a switch that switches the captured image displayed in the image display area 41n. The display device 40 is configured such that each time the switch 42b1 is operated, the captured images displayed in the first image display area 41n1 of the image display area 41n are, for example, a rear image, a left image, a right image, an overhead view image FV, and a bucket periphery. It is configured to switch in the order of images BG. Alternatively, the display device 40 may change the captured image displayed in the second image display area 41n2 of the image display area 41n each time the switch 42b1 is operated to be, for example, a rear image, a left image, a right image, an overhead image FV, and It may be configured to switch in the order of the bucket surrounding images BG. Alternatively, the display device 40 is arranged so that the captured image displayed in the first image display area 41n1 of the image display area 41n and the captured image displayed in the second image display area 41n2 are switched each time the switch 42b1 is operated. It may be configured as follows.

 このように、操作者は、操作部42としてのスイッチ42b1を操作することで、第1画像表示領域41n1又は第2画像表示領域41n2に表示される画面を切り換えてもよい。或いは、操作者は、スイッチ42b1を操作することで、第1画像表示領域41n1と第2画像表示領域41n2に表示される画面を切り換えてもよい。表示装置40は、第2画像表示領域41n2に表示される画面を切り換えるためのスイッチを別に備えていてもよい。 In this way, the operator may switch the screen displayed in the first image display area 41n1 or the second image display area 41n2 by operating the switch 42b1 as the operation unit 42. Alternatively, the operator may switch the screen displayed in the first image display area 41n1 and the second image display area 41n2 by operating the switch 42b1. The display device 40 may include a separate switch for switching the screen displayed in the second image display area 41n2.

 スイッチ42b2及び42b3は、エアコンの風量を調節するスイッチである。図11及び図12に示す例では、操作部42は、スイッチ42b2が操作されるとエアコンの風量が小さくなり、スイッチ42b3が操作されるとエアコンの風量が大きくなるように構成されている。 The switches 42b2 and 42b3 are switches that adjust the air volume of the air conditioner. In the example shown in FIGS. 11 and 12, the operating unit 42 is configured such that when the switch 42b2 is operated, the air volume of the air conditioner decreases, and when the switch 42b3 is operated, the air volume of the air conditioner increases.

 スイッチ42b4は、冷房・暖房機能のON・OFFを切り換えるスイッチである。図11及び図12に示す例では、操作部42は、スイッチ42b4が操作される毎に冷房・暖房機能のON・OFFが切り換わるように構成されている。 The switch 42b4 is a switch that turns the cooling/heating function ON/OFF. In the example shown in FIGS. 11 and 12, the operation unit 42 is configured so that the cooling/heating function is switched between ON and OFF every time the switch 42b4 is operated.

 スイッチ42b5及び42b6は、エアコンの設定温度を調節するスイッチである。図11及び図12に示す例では、操作部42は、スイッチ42b5が操作されると設定温度が低くなり、スイッチ42b6が操作されると設定温度が高くなるように構成されている。 The switches 42b5 and 42b6 are switches that adjust the set temperature of the air conditioner. In the example shown in FIGS. 11 and 12, the operating unit 42 is configured such that when the switch 42b5 is operated, the set temperature is lowered, and when the switch 42b6 is operated, the set temperature is increased.

 スイッチ42b7は、エンジン稼動時間表示領域41fに表示される、エンジン11の稼動時間に関する情報の内容を切り換えるスイッチである。エンジン11の稼動時間に関する情報は、例えば、全期間に関する累積稼動時間及び一部期間に関する累積稼動時間等を含む。 The switch 42b7 is a switch that changes the content of information regarding the operating time of the engine 11, which is displayed in the engine operating time display area 41f. The information regarding the operating time of the engine 11 includes, for example, the cumulative operating time for the entire period, the cumulative operating time for a partial period, and the like.

 また、スイッチ42a2~42a6及び42b2~42b6は、それぞれのスイッチ又はスイッチ近傍に表示された数字を入力できるように構成されている。また、スイッチ42a3、42a4、42a5、2b4は、画像表示部41にカーソルが表示された際、カーソルをそれぞれ左、上、右、下に移動させることができるように構成されている。 Further, the switches 42a2 to 42a6 and 42b2 to 42b6 are configured so that numbers displayed at or near each switch can be input. Further, the switches 42a3, 42a4, 42a5, and 2b4 are configured to move the cursor to the left, up, right, and down, respectively, when the cursor is displayed on the image display section 41.

 なお、スイッチ42a1~42a7及び42b1~42b7のそれぞれに与えられた上述の機能は一例である。スイッチ42a1~42a7及び42b1~42b7のそれぞれは、他の機能が実行できるように構成されていてもよい。 Note that the above-mentioned functions given to each of the switches 42a1 to 42a7 and 42b1 to 42b7 are merely examples. Each of the switches 42a1 to 42a7 and 42b1 to 42b7 may be configured to perform other functions.

 上述のように、本開示の実施形態に係るショベル100は、図1に示すように、下部走行体1と、下部走行体1に搭載された上部旋回体3と、上部旋回体3に搭載された、バケット6等のエンドアタッチメントを含むアタッチメントATと、上部旋回体3に搭載された制御装置としてのコントローラ30と、アタッチメントATを動かす、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等のアクチュエータと、を備えている。そして、コントローラ30は、所定の作業現場においてアクチュエータの動きを制御するように構成されている。具体的には、コントローラ30は、アクチュエータの動きを促進し或いは抑制するように構成されている。また、アクチュエータの動きの促進は、例えば、メインポンプ14の立ち上がりを促進すること、すなわち、図8に示すような流量制御特性を図6に示すような流量制御特性に切り換えることによって実現されてもよい。或いは、アクチュエータの動きの促進は、アクチュエータの最大動作速度を増大させること、センターバイパス管路CBに設けられたリリーフ弁(図示せず)のリリーフ圧を増大させること、エンジン11又は電動モータ等の動力源の出力パワー(回転数)を増大させること、又は、ショベル100の運転モードを切り換えること等によって実現されてもよい。アクチュエータの動きの抑制は、例えば、メインポンプ14の立ち上がりを抑制すること、すなわち、図6に示すような流量制御特性を図8に示すような流量制御特性に切り換えることによって実現されてもよい。或いは、アクチュエータの動きの抑制は、アクチュエータを停止させること、アクチュエータの最大動作速度を低下させること、センターバイパス管路CBに設けられたリリーフ弁(図示せず)のリリーフ圧を低下させること、エンジン11又は電動モータ等の動力源の出力パワー(回転数)を低下させること、又は、ショベル100の運転モードを切り換えること等によって実現されてもよい。 As described above, the excavator 100 according to the embodiment of the present disclosure includes the undercarriage 1, the upper revolving structure 3 mounted on the undercarriage 1, and the upper revolving structure 3 mounted on the upper revolving structure 3, as shown in FIG. In addition, an attachment AT including an end attachment such as a bucket 6, a controller 30 as a control device mounted on the upper revolving body 3, and actuators such as a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 that move the attachment AT. It is equipped with. The controller 30 is configured to control the movement of the actuator at a predetermined work site. Specifically, controller 30 is configured to facilitate or inhibit movement of the actuator. Further, the movement of the actuator may be promoted, for example, by promoting the start-up of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 8 to the flow rate control characteristic as shown in FIG. good. Alternatively, the movement of the actuator can be promoted by increasing the maximum operating speed of the actuator, increasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or increasing the pressure of the engine 11 or electric motor, etc. This may be achieved by increasing the output power (rotational speed) of the power source, switching the operating mode of the excavator 100, or the like. Suppression of the movement of the actuator may be realized, for example, by suppressing the rise of the main pump 14, that is, by switching the flow control characteristic shown in FIG. 6 to the flow control characteristic shown in FIG. 8. Alternatively, the movement of the actuator can be suppressed by stopping the actuator, reducing the maximum operating speed of the actuator, reducing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or reducing the pressure of the engine. 11 or by lowering the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.

 この構成により、コントローラ30は、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できる。市街地にある作業現場等、アタッチメントの近傍で作業者が作業せざるを得ない状況が発生し得る特定の作業現場にショベル100が位置する場合にアクチュエータの動きを抑制できるためである。その一方で、コントローラ30は、アタッチメントの近傍で作業者が作業せざるを得ない状況が発生し得る特定の作業現場以外の作業現場にショベル100が位置する場合にはアクチュエータの動きを促進できる。そのため、コントローラ30は、特定の作業現場以外の作業現場にショベル100が位置する場合には、ショベル100の作業効率を高めることができる。 With this configuration, the controller 30 can more reliably prevent the attachment from coming into contact with objects existing around the attachment. This is because the movement of the actuator can be suppressed when the excavator 100 is located at a specific work site, such as a work site in an urban area, where a worker may be forced to work near the attachment. On the other hand, the controller 30 can promote the movement of the actuator when the excavator 100 is located at a work site other than a specific work site where a situation where a worker is forced to work near the attachment occurs. Therefore, the controller 30 can improve the working efficiency of the shovel 100 when the shovel 100 is located at a work site other than a specific work site.

 なお、コントローラ30は、情報取得装置が取得した情報に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、アクチュエータの動きを促進し或いは抑制するように構成されていてもよい。情報取得装置は、例えば、測位装置85、撮像装置、又は通信装置等である。情報取得装置は、所定の作業現場にいることをコントローラ30に伝えるために操作者が操作可能なスイッチ(表示装置40等に設けられたスイッチ)であってもよい。 Note that the controller 30 determines whether or not the user is at a predetermined work site based on the information acquired by the information acquisition device, and when it is determined that the controller 30 is at a predetermined work site, the controller 30 promotes or suppresses the movement of the actuator. It may be configured as follows. The information acquisition device is, for example, a positioning device 85, an imaging device, a communication device, or the like. The information acquisition device may be a switch (a switch provided on the display device 40 or the like) that can be operated by the operator to inform the controller 30 that the user is at a predetermined work site.

 具体的には、コントローラ30は、情報取得装置としての測位装置85が取得した位置情報に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、アクチュエータの動きを促進し或いは抑制するように構成されていてもよい。 Specifically, the controller 30 determines whether or not the user is at a predetermined work site based on the position information acquired by the positioning device 85 as an information acquisition device, and when it is determined that the controller 30 is at the predetermined work site, the controller 30 activates the actuator. It may be configured to promote or suppress the movement of the body.

 或いは、コントローラ30は、情報取得装置としての撮像装置が取得した画像に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、アクチュエータの動きを促進し或いは抑制するように構成されていてもよい。 Alternatively, the controller 30 determines whether or not the user is at a predetermined work site based on an image acquired by an imaging device serving as an information acquisition device, and when determining that the controller 30 is at a predetermined work site, promotes the movement of the actuator. Alternatively, it may be configured to suppress it.

 この構成により、コントローラ30は、被駆動体の動きが過度に制限されてしまうのを防止しながらも、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できる。コントローラ30は、被駆動体の動きが制限されるべき所定の作業現場にショベル100が位置しているか否かをより正確に判定できるためである。すなわち、コントローラ30は、現在の作業現場が誤って所定の作業現場であると判定されてしまうのを抑制或いは防止できるためである。 With this configuration, the controller 30 can more reliably prevent contact between the attachment and objects existing around the attachment while preventing the movement of the driven body from being excessively restricted. This is because the controller 30 can more accurately determine whether the shovel 100 is located at a predetermined work site where the movement of the driven body should be restricted. That is, this is because the controller 30 can suppress or prevent the current work site from being erroneously determined to be a predetermined work site.

 また、本開示の別の実施形態に係るショベル100は、図1に示すように、下部走行体1と、下部走行体1に搭載された上部旋回体3と、上部旋回体3に搭載された、バケット6等のエンドアタッチメントを含むアタッチメントATと、アタッチメントATを動かす、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等のアクチュエータと、エンドアタッチメントの周囲に存在する物体を検知する制御装置としてのコントローラ30と、を備えている。そして、コントローラ30は、エンドアタッチメントの周囲に存在する物体を検知したときに、アクチュエータの動きを抑制するように構成されている。 Further, as shown in FIG. 1, an excavator 100 according to another embodiment of the present disclosure includes an undercarriage 1, an upper revolving structure 3 mounted on the undercarriage 1, and an upper revolving structure 3 mounted on the upper revolving structure 3. , an attachment AT including an end attachment such as a bucket 6, actuators such as a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 that move the attachment AT, and a control device that detects objects existing around the end attachment. A controller 30 is provided. The controller 30 is configured to suppress movement of the actuator when an object existing around the end attachment is detected.

 この構成により、コントローラ30は、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できる。また、コントローラ30は、エンドアタッチメントの周囲に存在する物体を検知した場合にアクチュエータの動きを停止させるのではなく、アクチュエータの動きを抑制するように構成されている。そのため、ショベル100の操作者は、エンドアタッチメントの周囲に作業者が存在する場合であっても、ショベル100による作業を継続させることができる。その結果、この構成は、エンドアタッチメントの周囲に作業者が存在する場合であっても、ショベル100の作業効率の低下を抑制できる。 With this configuration, the controller 30 can more reliably prevent the attachment from coming into contact with objects existing around the attachment. Moreover, the controller 30 is configured not to stop the movement of the actuator but to suppress the movement of the actuator when an object existing around the end attachment is detected. Therefore, the operator of the shovel 100 can continue working with the shovel 100 even if there are workers around the end attachment. As a result, this configuration can suppress a decrease in the working efficiency of the shovel 100 even when there are workers around the end attachment.

 なお、コントローラ30は、アタッチメントATに取り付けられた撮像装置が取得する画像に基づいてエンドアタッチメントの周囲に存在する物体を検知するように構成されていてもよい。 Note that the controller 30 may be configured to detect objects existing around the end attachment based on images acquired by an imaging device attached to the attachment AT.

 図10に示す例では、コントローラ30は、バケットシリンダ9に取り付けられたアタッチメントカメラ70Aが取得する画像に基づいてバケット6の周囲に存在する物体を検知するように構成されている。但し、コントローラ30は、上部旋回体3に取り付けられた後方カメラ70B、前方カメラ70F、左方カメラ70L、及び右方カメラ70Rのうちの少なくとも一つが取得する画像に基づいてバケット6の周囲に存在する物体を検知するように構成されていてもよい。或いは、コントローラ30は、ショベル100の外部に設置された外部カメラが取得する画像に基づいてバケット6の周囲に存在する物体を検知するように構成されていてもよい。具体的には、コントローラ30は、図10に示すように、飛行体50に搭載されたカメラ70Dが取得する画像、又は、作業現場に設置されたポール55に取り付けられた定点カメラ70Pが取得する画像等に基づいてバケット6の周囲に存在する物体を検知するように構成されていてもよい。飛行体50は、遠隔操作又は自動操縦により飛行させることができる自律式飛行体であり、例えば、マルチコプタ、又は飛行船等を含む。 In the example shown in FIG. 10, the controller 30 is configured to detect objects existing around the bucket 6 based on images acquired by an attachment camera 70A attached to the bucket cylinder 9. However, the controller 30 is located around the bucket 6 based on images obtained by at least one of the rear camera 70B, front camera 70F, left camera 70L, and right camera 70R attached to the upper revolving body 3. The object may be configured to detect an object that Alternatively, the controller 30 may be configured to detect objects existing around the bucket 6 based on images acquired by an external camera installed outside the excavator 100. Specifically, as shown in FIG. 10, the controller 30 uses images acquired by a camera 70D mounted on the flying object 50 or images acquired by a fixed-point camera 70P attached to a pole 55 installed at the work site. It may be configured to detect objects around the bucket 6 based on images or the like. The flying object 50 is an autonomous flying object that can be flown by remote control or autopilot, and includes, for example, a multicopter, an airship, or the like.

 この構成により、コントローラ30は、被駆動体の動きが過度に制限されてしまうのを防止しながらも、アタッチメントとアタッチメントの周囲に存在する物体との接触をより確実に防止できる。コントローラ30は、エンドアタッチメントの周囲に物体が存在するか否かをより正確に検知できるためである。すなわち、コントローラ30は、物体が誤って検知されてしまうのを抑制或いは防止できるためである。 With this configuration, the controller 30 can more reliably prevent contact between the attachment and objects existing around the attachment while preventing the movement of the driven body from being excessively restricted. This is because the controller 30 can more accurately detect whether an object exists around the end attachment. That is, this is because the controller 30 can suppress or prevent objects from being detected incorrectly.

 また、コントローラ30は、エンドアタッチメントの周囲に存在する作業者を検知した場合に、操作者及びその作業者の少なくとも一方の注意を喚起するように構成されていてもよい。 Furthermore, the controller 30 may be configured to call the attention of at least one of the operator and the worker when detecting a worker present around the end attachment.

 この構成により、コントローラ30は、アタッチメントとアタッチメントの周囲に存在する作業者との接触をより確実に防止できる。 With this configuration, the controller 30 can more reliably prevent contact between the attachment and the worker who is present around the attachment.

 なお、アクチュエータは、典型的には、油圧アクチュエータである。そして、コントローラ30は、油圧アクチュエータに作動油を供給するメインポンプ14等の油圧ポンプ、油圧アクチュエータに流入する作動油の流量を制御する制御弁171~制御弁176等の制御弁、及び、油圧ポンプを駆動するエンジン11等の動力源のうちの少なくとも一つの動きを制御することによって油圧アクチュエータの動きを促進し或いは抑制するように構成されていてもよい。但し、アクチュエータは、電動アクチュエータであってもよい。 Note that the actuator is typically a hydraulic actuator. The controller 30 includes a hydraulic pump such as the main pump 14 that supplies hydraulic oil to the hydraulic actuator, control valves such as control valves 171 to 176 that control the flow rate of hydraulic oil flowing into the hydraulic actuator, and a hydraulic pump. The movement of the hydraulic actuator may be promoted or suppressed by controlling the movement of at least one of the power sources such as the engine 11 that drives the hydraulic actuator. However, the actuator may be an electric actuator.

 また、ショベル100が取得する情報は、図13に示すようなショベルの制御システムSYSを通じ、管理者及び他のショベルの操作者等と共有されてもよい。図13は、ショベルの制御システムSYSの構成例を示す概略図である。制御システムSYSは、ショベル100を制御するシステムである。本実施形態では、制御システムSYSは、主に、ショベル100、支援装置200、及び管理装置300で構成される。ショベル100、支援装置200、及び管理装置300のそれぞれは、通信装置を備え、携帯電話通信網、衛星通信網、又は近距離無線通信網等を介して互いに直接的に或いは間接的に接続されている。制御システムSYSを構成するショベル100、支援装置200、及び管理装置300は、それぞれ1台であってもよく、複数台であってもよい。図13の例では、制御システムSYSは、1台のショベル100と、1台の支援装置200と、1台の管理装置300とを含む。 Additionally, the information acquired by the excavator 100 may be shared with the administrator, other excavator operators, etc. through the excavator control system SYS as shown in FIG. FIG. 13 is a schematic diagram showing an example of the configuration of the excavator control system SYS. The control system SYS is a system that controls the excavator 100. In this embodiment, the control system SYS is mainly composed of an excavator 100, a support device 200, and a management device 300. The excavator 100, the support device 200, and the management device 300 are each equipped with a communication device and are connected to each other directly or indirectly via a mobile phone communication network, a satellite communication network, a short-range wireless communication network, or the like. There is. The number of shovels 100, support devices 200, and management devices 300 that constitute the control system SYS may be one or more than one. In the example of FIG. 13, the control system SYS includes one shovel 100, one support device 200, and one management device 300.

 ショベル100の制御を支援する装置である支援装置200は、典型的には携帯端末装置であり、例えば、作業現場にいる作業者等が携帯するノートPC、タブレットPC又はスマートフォン等のコンピュータである。支援装置200は、ショベル100の操作者が携帯するコンピュータであってもよい。但し、支援装置200は、固定端末装置であってもよい。 The support device 200, which is a device that supports control of the excavator 100, is typically a mobile terminal device, for example, a computer such as a notebook PC, a tablet PC, or a smartphone carried by a worker at a work site. The support device 200 may be a computer carried by the operator of the excavator 100. However, the support device 200 may be a fixed terminal device.

 各種情報を管理する装置である管理装置300は、典型的には固定端末装置であり、例えば、作業現場外の管理センタ等に設置されるサーバコンピュータである。管理装置300は、可搬性のコンピュータ(例えば、ノートPC、タブレットPC又はスマートフォン等の携帯端末装置)であってもよい。 The management device 300, which is a device that manages various information, is typically a fixed terminal device, for example, a server computer installed in a management center or the like outside the work site. The management device 300 may be a portable computer (for example, a notebook PC, a tablet PC, or a mobile terminal device such as a smartphone).

 支援装置200及び管理装置300の少なくとも一方は、モニタと遠隔操作用の操作装置とを備えていてもよい。この場合、ショベル100と支援装置200及び管理装置300の少なくとも一方とはショベルの遠隔操作システムを構成する。そして、遠隔操作者は、遠隔操作用の操作装置を用いつつ、ショベル100を操作できる。遠隔操作用の操作装置は、例えば、携帯電話通信網、衛星通信網、又は近距離無線通信網等の通信網を通じ、コントローラ30に接続される。この構成では、制御システムSYSは、支援装置200の利用者が、ショベル100の操作者又は遠隔操作者によるショベル100の操作に介入できるように構成されていてもよい。この場合、支援装置200の利用者は、例えば、穴HLの縁の近くで、穴HL内にいる作業者WKとショベル100のバケット6との位置関係を見ながら、ショベル100の操作に介入でき、作業者WKの安全を図ることができる。 At least one of the support device 200 and the management device 300 may include a monitor and an operating device for remote control. In this case, the shovel 100 and at least one of the support device 200 and the management device 300 constitute a remote control system for the shovel. Then, the remote operator can operate the excavator 100 using the operating device for remote control. The operating device for remote control is connected to the controller 30 through a communication network such as a mobile phone communication network, a satellite communication network, or a short-range wireless communication network. In this configuration, the control system SYS may be configured such that the user of the support device 200 can intervene in the operation of the shovel 100 by the operator of the shovel 100 or the remote operator. In this case, the user of the support device 200 can, for example, intervene in the operation of the shovel 100 while observing the positional relationship between the worker WK in the hole HL and the bucket 6 of the shovel 100 near the edge of the hole HL. , the safety of the worker WK can be ensured.

 コントローラ30は、支援装置200に含まれていてもよく、管理装置300に含まれていてもよい。また、コントローラ30が実行する機能の全部又は一部は、支援装置200で実行されてもよく、管理装置300で実行されてもよい。 The controller 30 may be included in the support device 200 or the management device 300. Further, all or part of the functions executed by the controller 30 may be executed by the support device 200 or the management device 300.

 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはなく、後述する実施形態に制限されることもない。上述した又は後述する実施形態は、本発明の範囲を逸脱することなしに、種々の変形又は置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the embodiments described above, nor is it limited to the embodiments described below. Various modifications or substitutions may be made to the embodiments described above or below without departing from the scope of the present invention. Further, features described separately can be combined as long as no technical contradiction occurs.

 例えば、上述の実施形態では、コントローラ30は、所定の作業現場での作業であると判定した場合に、被駆動体の動きを抑制するように構成されているが、被駆動体の動きを促進するように構成されていてもよい。 For example, in the above-described embodiment, the controller 30 is configured to suppress the movement of the driven object when it is determined that the work is being performed at a predetermined work site; however, it promotes the movement of the driven object. It may be configured to do so.

 被駆動体の動きの促進は、例えば、メインポンプ14の立ち上がりを促進すること、すなわち、図8に示すような流量制御特性を図6に示すような流量制御特性に切り換えることによって実現されてもよい。或いは、被駆動体の動きの促進は、被駆動体の最大動作速度を増大させること、センターバイパス管路CBに設けられたリリーフ弁(図示せず)のリリーフ圧を増大させること、エンジン11又は電動モータ等の動力源の出力パワー(回転数)を増大させること、又は、ショベル100の運転モードを切り換えること等によって実現されてもよい。 The movement of the driven body may be promoted, for example, by promoting the start-up of the main pump 14, that is, by switching the flow rate control characteristic as shown in FIG. 8 to the flow rate control characteristic as shown in FIG. good. Alternatively, the movement of the driven body can be promoted by increasing the maximum operating speed of the driven body, increasing the relief pressure of a relief valve (not shown) provided in the center bypass conduit CB, or increasing the speed of the engine 11 or This may be realized by increasing the output power (rotational speed) of a power source such as an electric motor, or by switching the operating mode of the excavator 100.

 また、上述の実施形態では、油圧式パイロット回路を備えた油圧式操作レバーが開示されている。例えば、左操作レバー26Lに関する油圧式パイロット回路では、パイロットポンプ15から左操作レバー26Lへ供給される作動油が、左操作レバー26Lのアーム開き方向への傾倒によって開閉されるリモコン弁の開度に応じた流量で、制御弁176のパイロットポートへ伝達される。或いは、右操作レバー26Rに関する油圧式パイロット回路では、パイロットポンプ15から右操作レバー26Rへ供給される作動油が、右操作レバー26Rのブーム上げ方向への傾倒によって開閉されるリモコン弁の開度に応じた流量で、制御弁175のパイロットポートへ伝達される。 Furthermore, in the above-described embodiments, a hydraulic operation lever equipped with a hydraulic pilot circuit is disclosed. For example, in a hydraulic pilot circuit related to the left operating lever 26L, the hydraulic oil supplied from the pilot pump 15 to the left operating lever 26L changes to the opening degree of a remote control valve that is opened and closed by tilting the left operating lever 26L in the arm opening direction. A corresponding flow rate is transmitted to the pilot port of control valve 176. Alternatively, in the hydraulic pilot circuit related to the right operating lever 26R, the hydraulic oil supplied from the pilot pump 15 to the right operating lever 26R changes to the opening degree of the remote control valve that is opened and closed by tilting the right operating lever 26R in the boom raising direction. It is transmitted to the pilot port of control valve 175 at a corresponding flow rate.

 但し、このような油圧式パイロット回路を備えた油圧式操作レバーではなく、電気式操作レバーを備えた電気式操作システムが採用されてもよい。この場合、電気式操作レバーのレバー操作量は、例えば、電気信号としてコントローラ30へ入力される。また、パイロットポンプ15と各制御弁のパイロットポートとの間には電磁弁が配置される。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、電気式操作レバーを用いた手動操作が行われると、コントローラ30は、レバー操作量に対応する電気信号によって電磁弁を制御してパイロット圧を増減させることで各制御弁(各スプール弁)を所望の位置に移動させることができる。 However, instead of the hydraulic operation lever equipped with such a hydraulic pilot circuit, an electric operation system equipped with an electric operation lever may be adopted. In this case, the lever operation amount of the electric operation lever is inputted to the controller 30 as an electric signal, for example. Further, a solenoid valve is arranged between the pilot pump 15 and the pilot port of each control valve. The solenoid valve is configured to operate in response to an electrical signal from the controller 30. With this configuration, when manual operation using the electric operation lever is performed, the controller 30 controls each control valve (each spool valve) can be moved to the desired position.

 電気式操作レバーを備えた電気式操作システムが採用された場合、コントローラ30は、手動制御モードと自動制御モードとを容易に切り換えることができる。手動制御モードは、操作者による操作装置26に対する手動操作に応じてアクチュエータを動作させるモードであり、自動制御モードは、手動操作とは無関係にアクチュエータを動作させるモードである。そして、コントローラ30が手動制御モードを自動制御モードに切り換えた場合、複数の制御弁(スプール弁)は、1つの電気式操作レバーのレバー操作量に対応する電気信号に応じて別々に制御されてもよい。 If an electric operation system with an electric operation lever is employed, the controller 30 can easily switch between manual control mode and automatic control mode. The manual control mode is a mode in which the actuator is operated in response to a manual operation of the operating device 26 by the operator, and the automatic control mode is a mode in which the actuator is operated regardless of the manual operation. When the controller 30 switches the manual control mode to the automatic control mode, the plurality of control valves (spool valves) are controlled separately according to the electric signal corresponding to the lever operation amount of one electric operation lever. Good too.

 本願は、2022年3月31日に出願した日本国特許出願2022-061307号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese patent application No. 2022-061307 filed on March 31, 2022, and the entire contents of this Japanese patent application are incorporated by reference into this application.

 1・・・下部走行体 1C・・・クローラ 1CL・・・左クローラ 1CR・・・右クローラ 2・・・旋回機構 2A・・・旋回用油圧モータ 2M・・・走行用油圧モータ 2ML・・・左走行用油圧モータ 2MR・・・右走行用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・ポンプレギュレータ 14・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブユニット 18・・・絞り 19・・・制御圧センサ 26・・・操作装置 26D・・・走行レバー 26DL・・・左走行レバー 26DR・・・右走行レバー 26L・・・左操作レバー 26R・・・右操作レバー 28・・・吐出圧センサ 29・・・操作センサ 30・・・コントローラ 31・・・比例弁 40・・・表示装置 50・・・飛行体 55・・・ポール 60・・・制御弁 70・・・物体検知装置 70A・・・アタッチメントカメラ 70B・・・後方カメラ 70D・・・カメラ 70F・・・前方カメラ 70L・・・左方カメラ 70P・・・定点カメラ 70R・・・右方カメラ 85・・・測位装置 100・・・ショベル 171~176・・・制御弁 200・・・支援装置 300・・・管理装置 CD1・・・パイロットライン S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ SYS・・・制御システム 1... Lower traveling body 1C... Crawler 1CL... Left crawler 1CR... Right crawler 2... Turning mechanism 2A... Hydraulic motor for turning 2M... Hydraulic motor for traveling 2ML... Hydraulic motor for left travel 2MR... Hydraulic motor for right travel 3... Upper revolving body 4... Boom 5... Arm 6... Bucket 7... Boom cylinder 8... Arm cylinder 9. ... Bucket cylinder 10 ... Cabin 11 ... Engine 13 ... Pump regulator 14 ... Main pump 15 ... Pilot pump 17 ... Control valve unit 18 ... Throttle 19 ... Control pressure Sensor 26... Operating device 26D... Travel lever 26DL... Left traveling lever 26DR... Right traveling lever 26L... Left operating lever 26R... Right operating lever 28... Discharge pressure sensor 29. ...Operation sensor 30...Controller 31...Proportional valve 40...Display device 50...Flight object 55...Pole 60...Control valve 70...Object detection device 70A...Attachment Camera 70B... Rear camera 70D... Camera 70F... Front camera 70L... Left camera 70P... Fixed point camera 70R... Right camera 85... Positioning device 100... Excavator 171 ~176...Control valve 200...Support device 300...Management device CD1...Pilot line S1...Boom angle sensor S2...Arm angle sensor S3...Bucket angle sensor S4... Aircraft tilt sensor S5... Turning angular velocity sensor SYS... Control system

Claims (13)

 下部走行体と、
 前記下部走行体に搭載された上部旋回体と、
 前記上部旋回体に搭載されたアタッチメントと、
 前記アタッチメントを動かすアクチュエータと、を備え、
 所定の作業現場において前記アクチュエータの動きを制御するように構成されている、
 ショベル。
a lower running body;
an upper revolving body mounted on the lower traveling body;
an attachment mounted on the upper revolving body;
an actuator that moves the attachment;
configured to control movement of the actuator at a predetermined work site;
shovel.
 所定の作業現場において前記アクチュエータの動きを促進し或いは抑制するように構成されている、
 請求項1に記載のショベル。
configured to promote or inhibit movement of the actuator at a predetermined work site;
The excavator according to claim 1.
 エンドアタッチメントの周囲に存在する物体を検知したときに、前記アクチュエータの動きを抑制するように構成されている、
 請求項1に記載のショベル。
configured to suppress movement of the actuator when an object existing around the end attachment is detected;
The excavator according to claim 1.
 情報取得装置が取得した情報に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、前記アクチュエータの動きを促進し或いは抑制する、
 請求項1に記載のショベル。
Determining whether or not the person is at a predetermined work site based on the information acquired by the information acquisition device, and promoting or suppressing the movement of the actuator when it is determined that the person is at the predetermined work site.
The excavator according to claim 1.
 前記情報取得装置としての測位装置が取得した位置情報に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、前記アクチュエータの動きを促進し或いは抑制する、
 請求項4に記載のショベル。
Determine whether or not you are at a predetermined work site based on position information acquired by the positioning device as the information acquisition device, and if it is determined that you are at the predetermined work site, promote or suppress the movement of the actuator. ,
The excavator according to claim 4.
 前記情報取得装置としての撮像装置が取得した画像に基づいて所定の作業現場にいるか否かを判定し、所定の作業現場にいると判定した場合に、前記アクチュエータの動きを促進し或いは抑制する、
 請求項4に記載のショベル。
Determining whether or not the person is at a predetermined work site based on an image acquired by the imaging device as the information acquisition device, and promoting or suppressing the movement of the actuator when it is determined that the person is at the predetermined work site.
The excavator according to claim 4.
 前記アタッチメントに取り付けられた撮像装置が取得する画像に基づいて前記エンドアタッチメントの周囲に存在する物体を検知する、
 請求項3に記載のショベル。
detecting objects existing around the end attachment based on images acquired by an imaging device attached to the attachment;
The excavator according to claim 3.
 前記エンドアタッチメントの周囲に存在する作業者を検知した場合に、操作者及び該作業者の少なくとも一方の注意を喚起する、
 請求項3に記載のショベル。
When detecting a worker present around the end attachment, calling the attention of at least one of the operator and the worker;
The excavator according to claim 3.
 前記アクチュエータは油圧アクチュエータであり、
 前記油圧アクチュエータに作動油を供給する油圧ポンプ、前記油圧アクチュエータに流入する作動油の流量を制御する制御弁、及び、前記油圧ポンプを駆動する動力源のうちの少なくとも一つの動きを制御することによって前記油圧アクチュエータの動きを促進し或いは抑制する、
 請求項1に記載のショベル。
The actuator is a hydraulic actuator,
By controlling the movement of at least one of a hydraulic pump that supplies hydraulic oil to the hydraulic actuator, a control valve that controls the flow rate of hydraulic oil flowing into the hydraulic actuator, and a power source that drives the hydraulic pump. promoting or inhibiting movement of the hydraulic actuator;
The excavator according to claim 1.
 前記アクチュエータの最大動作速度を増大させること、センターバイパス管路に設けられたリリーフ弁のリリーフ圧を増大させること、動力源の出力パワーを増大させること、又は、ショベルの運転モードを切り換えることによって前記アクチュエータの動きを促進する、
 請求項1に記載のショベル。
By increasing the maximum operating speed of the actuator, increasing the relief pressure of a relief valve provided in the center bypass line, increasing the output power of the power source, or switching the operating mode of the excavator. Promote actuator movement,
The excavator according to claim 1.
 前記アクチュエータを停止させること、前記アクチュエータの最大動作速度を低下させること、センターバイパス管路に設けられたリリーフ弁のリリーフ圧を低下させること、動力源の出力パワーを低下させること、又は、ショベルの運転モードを切り換えることによって前記アクチュエータの動きを抑制する、
 請求項1に記載のショベル。
Stopping the actuator, reducing the maximum operating speed of the actuator, reducing the relief pressure of a relief valve provided in the center bypass pipe, reducing the output power of the power source, or reducing the output power of the excavator. suppressing the movement of the actuator by switching the operation mode;
The excavator according to claim 1.
 下部走行体と、前記下部走行体に搭載された上部旋回体と、前記上部旋回体に搭載されたアタッチメントと、前記アタッチメントを動かすアクチュエータと、を備えるショベルの制御システムであって、
 所定の作業現場において、エンドアタッチメントの周囲に存在する物体を検知したときに、前記アクチュエータの動きを抑制するように構成されている、
 ショベルの制御システム。
An excavator control system comprising: an undercarriage; an upper revolving body mounted on the lower revolving body; an attachment mounted on the upper revolving body; and an actuator that moves the attachment.
configured to suppress movement of the actuator when an object existing around the end attachment is detected at a predetermined work site;
Excavator control system.
 下部走行体と、前記下部走行体に搭載された上部旋回体と、前記上部旋回体に搭載されたアタッチメントと、前記アタッチメントを動かすアクチュエータと、を備えるショベルの遠隔操作システムであって、
 所定の作業現場において、エンドアタッチメントの周囲に存在する物体を検知したときに、前記アクチュエータの動きを抑制するように構成されている、
 ショベルの遠隔操作システム。
A remote control system for an excavator, comprising: an undercarriage; an upper revolving body mounted on the lower revolving body; an attachment mounted on the upper revolving body; and an actuator that moves the attachment.
configured to suppress movement of the actuator when an object existing around the end attachment is detected at a predetermined work site;
Excavator remote control system.
PCT/JP2023/011501 2022-03-31 2023-03-23 Excavator, control system for excavator, and remote operation system for excavator WO2023190031A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP23780042.0A EP4502300A1 (en) 2022-03-31 2023-03-23 Excavator, control system for excavator, and remote operation system for excavator
CN202380016727.6A CN118541525A (en) 2022-03-31 2023-03-23 Shovel, control system for shovel, and remote operation system for shovel
KR1020247022357A KR20240168295A (en) 2022-03-31 2023-03-23 Shovel, shovel control system, and shovel remote operation system
JP2024512268A JPWO2023190031A1 (en) 2022-03-31 2023-03-23
US18/895,890 US20250012052A1 (en) 2022-03-31 2024-09-25 Excavator, excavator control system, and remote excavator operation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061307 2022-03-31
JP2022-061307 2022-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/895,890 Continuation US20250012052A1 (en) 2022-03-31 2024-09-25 Excavator, excavator control system, and remote excavator operation system

Publications (1)

Publication Number Publication Date
WO2023190031A1 true WO2023190031A1 (en) 2023-10-05

Family

ID=88202049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011501 WO2023190031A1 (en) 2022-03-31 2023-03-23 Excavator, control system for excavator, and remote operation system for excavator

Country Status (6)

Country Link
US (1) US20250012052A1 (en)
EP (1) EP4502300A1 (en)
JP (1) JPWO2023190031A1 (en)
KR (1) KR20240168295A (en)
CN (1) CN118541525A (en)
WO (1) WO2023190031A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144378A (en) * 2006-12-06 2008-06-26 Shin Caterpillar Mitsubishi Ltd Controller for remote controlled working machine
JP2013151830A (en) * 2012-01-25 2013-08-08 Sumitomo Heavy Ind Ltd Operation assisting device
JP2017147759A (en) 2017-05-08 2017-08-24 住友建機株式会社 Shovel
JP2019167821A (en) * 2015-12-28 2019-10-03 住友建機株式会社 Shovel and work site image processing system
JP2021131004A (en) * 2020-02-21 2021-09-09 日立建機株式会社 Work machine and control system
JP2022061307A (en) 2020-10-06 2022-04-18 鹿島建設株式会社 Joining structure and joining method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144378A (en) * 2006-12-06 2008-06-26 Shin Caterpillar Mitsubishi Ltd Controller for remote controlled working machine
JP2013151830A (en) * 2012-01-25 2013-08-08 Sumitomo Heavy Ind Ltd Operation assisting device
JP2019167821A (en) * 2015-12-28 2019-10-03 住友建機株式会社 Shovel and work site image processing system
JP2017147759A (en) 2017-05-08 2017-08-24 住友建機株式会社 Shovel
JP2021131004A (en) * 2020-02-21 2021-09-09 日立建機株式会社 Work machine and control system
JP2022061307A (en) 2020-10-06 2022-04-18 鹿島建設株式会社 Joining structure and joining method

Also Published As

Publication number Publication date
EP4502300A1 (en) 2025-02-05
US20250012052A1 (en) 2025-01-09
JPWO2023190031A1 (en) 2023-10-05
CN118541525A (en) 2024-08-23
KR20240168295A (en) 2024-11-29

Similar Documents

Publication Publication Date Title
JP7679600B2 (en) Work machine, support device for supporting work performed by the work machine, and system for managing the work machine
US20200340208A1 (en) Shovel and shovel management system
CN111868336B (en) Construction machine and information processing device
US11987957B2 (en) Shovel
WO2022210858A1 (en) Excavator
WO2020203851A1 (en) Shovel
JP2024169569A (en) Excavator
KR20230162605A (en) Shovel display device, shovel
US20240018749A1 (en) Shovel and display device for shovel
US20240018750A1 (en) Display device for shovel, shovel, and assist device for shovel
CN113677855A (en) Shovel and control device for shovel
JP2022137769A (en) Excavator, information processing equipment
JP7632799B2 (en) Excavator
JP2022157410A (en) working machine
WO2023190031A1 (en) Excavator, control system for excavator, and remote operation system for excavator
WO2022210989A1 (en) Shovel
EP3951100B1 (en) Shovel
JP2024094558A (en) Excavator
JP2024082696A (en) Shovel, operation support method and operation support program
CN118265831A (en) Construction machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380016727.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024512268

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023780042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023780042

Country of ref document: EP

Effective date: 20241031

NENP Non-entry into the national phase

Ref country code: DE