[go: up one dir, main page]

WO2023189310A1 - Thermally conductive resin composition and heat dissipating member obtained by curing said composition - Google Patents

Thermally conductive resin composition and heat dissipating member obtained by curing said composition Download PDF

Info

Publication number
WO2023189310A1
WO2023189310A1 PCT/JP2023/008719 JP2023008719W WO2023189310A1 WO 2023189310 A1 WO2023189310 A1 WO 2023189310A1 JP 2023008719 W JP2023008719 W JP 2023008719W WO 2023189310 A1 WO2023189310 A1 WO 2023189310A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
resin composition
conductive resin
weight
parts
Prior art date
Application number
PCT/JP2023/008719
Other languages
French (fr)
Japanese (ja)
Inventor
寛 藤原
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202380023597.9A priority Critical patent/CN118871532A/en
Priority to JP2024511609A priority patent/JPWO2023189310A1/ja
Publication of WO2023189310A1 publication Critical patent/WO2023189310A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a thermally conductive resin composition and a heat dissipating member formed by curing the composition.
  • Patent Document 1 discloses a room temperature-curable thermally conductive silicone rubber composition that can be cured at room temperature after applying a liquid material highly filled with a thermally conductive filler to uncured silicone rubber.
  • Patent Document 2 discloses a thermally conductive material in which silicone gel contains aluminum oxide powder and zinc oxide powder with controlled particle diameters. Since these products are liquid or gel-like products, they have very good adhesion to a heating body or a heat radiating body, and are therefore suitable. However, since these products are uncured silicone rubber compositions, there is a problem in that the low molecular weight siloxane component and/or cyclic siloxane component volatilizes to a large extent during use. It has often been pointed out that silicone resins have problems in that the volatilization of cyclic siloxane, a low-molecular component, can cause contact failures in electrical parts and read failures in precision equipment such as hard disks.
  • Patent Document 3 describes (A-1) a filler component with an average particle size of 0.1 to 2 ⁇ m, (A-2) a filler component with an average particle size of 2 to 20 ⁇ m, and (A-3) a filler component with an average particle size of 20 to 20 ⁇ m.
  • a composition containing a 100 ⁇ m filler component, (B) a polyalkylene glycol having a hydrolyzable silyl group, (C) a curing catalyst, and (D) a silane coupling agent is disclosed.
  • the component (B) of this product is polyalkylene glycol alone, and although it exhibits flexibility, it has a low heat resistance and sometimes deteriorates when it comes into contact with a high-temperature heat source.
  • the present invention not only has high heat conductivity and storage stability, but also has a low possibility of contact failure due to cyclic siloxane, which is considered a problem with conventional technology, and has low viscosity, making operations such as application easy.
  • An object of the present invention is to provide a thermally conductive resin composition that can be cured at room temperature, and a heat dissipating member obtained by curing the composition.
  • One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin It is an object of the present invention to provide a thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 3 W/mK or more, and a heat dissipating member obtained by curing the composition.
  • the present inventor has completed the present invention as a result of intensive studies to solve the above problems.
  • a thermally conductive resin composition according to an embodiment of the present invention is a thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide.
  • a thermally conductive resin composition characterized in that the thermally conductive resin composition has a thermal conductivity of 3 W/mK or more after curing.
  • a heat dissipating member according to an embodiment of the present invention is a heat dissipating member obtained by curing the thermally conductive resin composition according to an embodiment of the present invention while being integrated with a heating element and/or a heat dissipating element. .
  • One aspect of the present invention is a thermally conductive resin composition that can have both high thermal conductivity and low viscosity, and has excellent curability and storage stability, and the thermally conductive resin composition comprises: It has the feature of being able to improve contact failure caused by cyclic siloxane, etc., which has been seen as a problem in the prior art.
  • the present invention can also contribute to achieving Goal 9 of the Sustainable Development Goals (SDGs) advocated by the United Nations, "Create a foundation for industry and technological innovation.”
  • SDGs Sustainable Development Goals
  • One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin
  • a thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 2 W/mK or more.
  • One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin
  • a thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 3 W/mK or more.
  • the thermal conductivity after curing of the thermally conductive resin composition is 3.1 W/mK or more, 3.2 W/mK or more, 3.3 W/mK or more, 3.4 W/mK or more, 3.5 W/mK or more. , 4.0 W/mK or more, 5.0 W/mK or more, 7.0 W/mK or more, 10 W/mK or more, or 20 W/mK or more.
  • the upper limit of the thermal conductivity after curing of the thermally conductive resin composition is not limited, and may be 50 W/mK, 40 W/mK, 30 W/mK, 20 W/mK, or 10 W/mK.
  • the binder in the present invention may be a curable liquid resin that has a reactive group in its molecule and can be cured by reaction of the reactive group.
  • binders include, for example, curable acrylic resins, curable acrylic resins such as curable methacrylic resins, curable polyether resins such as curable polypropylene oxide resins, and curable polyether resins such as curable polypropylene oxide resins.
  • curable acrylic resins curable acrylic resins such as curable methacrylic resins
  • curable polyether resins such as curable polypropylene oxide resins
  • curable polyether resins such as curable polypropylene oxide resins.
  • curable polyolefin resins typified by isobutylene resins.
  • the binder in the present invention includes, for example, a non-curing acrylic resin, a non-curing acrylic resin such as a non-curing methacrylic resin, a non-curing polypropylene oxide resin, and a non-curing polypropylene oxide resin. It can contain non-curing polyether resins such as resins, non-curing polyolefin resins such as non-curing polyisobutylene resins, and the like.
  • the reactive group examples include an epoxy group, a hydrolyzable silyl group, a vinyl group, an acryloyl group, a SiH group, a urethane group, a carbodiimide group, or a combination of a carboxylic anhydride group and an amino group.
  • Examples include reactive functional groups.
  • the binder of the present invention is preferably a polymer containing a hydrolyzable silanol group or a hydrolyzable silyl group having at least one hydroxyl group or hydrolyzable group on the silicon atom at the end of the polymer.
  • these polymers exhibit room-temperature curability and can be cured at room temperature when applied inside electronic materials, and the thermally conductive resin composition after curing has high thermal conductivity and storage stability. This is because it can exhibit heat resistance and durability.
  • curable liquid resins it is less likely to cause contamination inside electronic devices due to low molecular weight siloxane, has excellent heat resistance, can optimally control adhesive strength, and can impart toughness to cured products. It is preferable to use a curable acrylic resin or a curable polyether resin. Further, as the non-curing resin used in combination, it is preferable to use a non-curing acrylic resin from the viewpoint of imparting toughness to the resin.
  • the curable acrylic resin various known reactive acrylic resins can be used. Among these, it is preferable to use an acrylic oligomer having a reactive group at the molecular end in order to improve heat resistance. Kaneka XMAP manufactured by Kaneka Corporation is known as an example of such a curable acrylic resin.
  • curable polyether resins can be used as the curable polyether resin.
  • Kaneka MS Polymer manufactured by Kaneka Corporation is known as an example of such a reactive polypropylene oxide resin.
  • the binder of the present invention the combined use of a curable acrylic resin and a curable polyether resin imparts heat resistance and toughness to the thermally conductive resin composition, and the thermally conductive resin This is preferred because the adhesive strength of the composition can be controlled.
  • non-curing acrylic resin various known non-reactive acrylic resins can be used. Among these, it is preferable to use an acrylic oligomer that does not have a reactive group at the molecular end in order to improve toughness.
  • ARUFON registered trademark
  • resins other than the present resin may be added to the binder.
  • thermally conductive filler it is preferable to use aluminum oxide and zinc oxide as the thermally conductive filler because they can improve thermal conductivity and reduce the viscosity of the thermally conductive resin composition.
  • the aluminum oxide contained in the thermally conductive resin composition of the present invention preferably contains first particles having an average particle size D50 of 20 ⁇ m to 40 ⁇ m and second particles having an average particle size D50 of 5 ⁇ m to 19 ⁇ m. .
  • the thermal conductivity of the thermally conductive resin composition after curing can be controlled to 3 W/mK or more.
  • the average particle diameter D50 of the first particles (first aluminum oxide particles) is set to 25 ⁇ m to 35 ⁇ m
  • the average particle diameter D50 of the second particles (second aluminum oxide particles) is set to 9 ⁇ m to 18 ⁇ m.
  • the average particle diameter D50 of the first particles may be 20 ⁇ m to 37 ⁇ m, 20 ⁇ m to 35 ⁇ m, 20 ⁇ m to 30 ⁇ m, or 23 ⁇ m to 30 ⁇ m.
  • the average particle diameter D50 of the second particles may be 5 ⁇ m to 17 ⁇ m, 5 ⁇ m to 15 ⁇ m, 7 ⁇ m to 15 ⁇ m, or 9 ⁇ m to 12 ⁇ m.
  • the content of aluminum oxide contained in the thermally conductive resin composition is 30 to 50 parts by weight for the first particles and 30 parts by weight for the second particles based on 100 parts by weight of the total thermally conductive filler.
  • the amount is preferably from 45 parts by weight.
  • the thermal conductivity of the thermally conductive composition after curing can be improved.
  • the first particles are in an amount of 30 to 45 parts by weight (more specifically, 35 to 45 parts by weight)
  • the second particles are is preferably 30 to 40 parts by weight (more specifically, 35 to 40 parts by weight) in order to improve the thermal conductivity of the thermally conductive resin composition after curing.
  • the zinc oxide contained in the thermally conductive composition has an average particle size D50 of 0.1 ⁇ m to 3 ⁇ m, which improves the thermal conductivity of the thermally conductive resin composition after curing, and This is preferable for reducing the viscosity of the thermally conductive resin composition.
  • the average particle diameter D50 is 0.1 ⁇ m to 1 ⁇ m, so that zinc oxide is finely dispersed inside the thermally conductive resin composition and improves the thermal conductivity of the thermally conductive resin composition after curing. This is preferable in terms of increasing the temperature and suppressing an increase in the viscosity of the thermally conductive resin composition.
  • the upper limit of the average particle diameter D50 is not limited, and may be 0.3 ⁇ m, 0.5 ⁇ m, 0.7 ⁇ m, or 0.8 ⁇ m.
  • the content of zinc oxide contained in the thermally conductive resin composition is preferably 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler. According to the configuration, it is possible to improve the thermal conductivity of the thermally conductive resin composition after curing, and to reduce the viscosity of the thermally conductive resin composition.
  • zinc oxide is contained in the thermally conductive resin in an amount of 15 to 25 parts by weight (more specifically, 20 to 25 parts by weight) based on 100 parts by weight of the total thermally conductive filler. It is preferable to be finely dispersed inside the composition to improve the thermal conductivity of the thermally conductive resin composition after curing and to suppress an increase in the viscosity of the thermally conductive resin composition.
  • the total content of the thermally conductive filler contained in the thermally conductive resin composition is 90 parts by weight or more based on 100 parts by weight of the thermally conductive resin composition after curing of the thermally conductive resin composition. It is preferable to control the thermal conductivity of 3 W/mK or more, and more preferably 91 parts by weight or more.
  • thermally conductive fillers include carbon compounds such as graphite and diamond; metal oxides such as magnesium oxide, beryllium oxide, titanium oxide, and zirconium oxide; boron nitride, aluminum nitride, Metal nitrides such as silicon nitride; Metal carbides such as boron carbide, aluminum carbide, and silicon carbide; Metal hydroxides such as aluminum hydroxide and magnesium hydroxide; Metal carbonates such as magnesium carbonate and calcium carbonate; Crystalline silica; Organic polymer fired products such as acrylonitrile based polymer fired products, furan resin fired products, cresol resin fired products, polyvinyl chloride fired products, sugar fired products, charcoal fired products; Composite ferrite with Zn ferrite; Fe-Al- Si-based ternary alloy; metal powder; etc. can also be used in combination.
  • metal oxides such as magnesium oxide, beryllium oxide, titanium oxide, and zirconium oxide
  • thermally conductive fillers include silane coupling agents (vinylsilane, epoxysilane, (meth)acrylic silane, isocyanatosilane, chlorosilane, aminosilane, etc.), titanate coupling agents (alkoxytitanate, aminotitanate, etc.), Fatty acids (saturated fatty acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, etc.) saturated fatty acids, etc.), resin acids (abietic acid, pimaric acid, levopimaric acid, neoapitic acid, parastric acid, dehydroabietic acid, isopimaric acid, sandaracopimaric acid, colmic acid, secodehydroabietic acid, dihydroabietic acid, etc.), and Alternatively, the surface may be treated with silicone resin or the like.
  • silane coupling agents vinylsilane, epoxysilane, (
  • various additives such as a curing catalyst, a heat anti-aging agent, a plasticizer, a thixotropic agent, and a dehydrating agent for curing the thermally conductive resin composition are used depending on the purpose of the thermally conductive resin composition. It may be added as appropriate to the resin composition.
  • a curing catalyst for curing the thermally conductive resin composition for example, a carboxylic acid metal salt in which the carbon atom adjacent to the carbonyl group is a quaternary carbon is preferable because it can achieve both good curability and storage stability. .
  • carboxylic acid metal salts include tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate, hafnium carboxylate, vanadium carboxylate, and manganese carboxylate.
  • iron carboxylate, cobalt carboxylate, nickel carboxylate, and cerium carboxylate are preferred because of their high catalytic activity.
  • tin carboxylate, lead carboxylate, bismuth carboxylate, titanium carboxylate, iron carboxylate, and zirconium carboxylate are more preferred because they have high catalytic activity.
  • tin carboxylate is preferred in terms of curability and storage stability.
  • carboxylic acids having acid groups of carboxylic acid metal salts are preferred, and examples of the carboxylic acids include bivaric acid, neodecanoic acid, Most preferred are metal salts of versatic acid, 2,2-dimethyloctanoic acid, and 2-ethyl-2,5-dimethylhexanoic acid.
  • tin pivalate tin neodecanoate
  • tin versatate tin 2,2-dimethyloctanoate
  • tin 2-ethyl-2,5-dimethylhexanoate tin 2-ethyl-2,5-dimethylhexanoate
  • the carboxylic acid metal salts may be used alone or in combination of two or more.
  • the amount of these carboxylic acid metal salts is preferably about 0.1 to 30 parts by weight based on 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount of carboxylic acid metal salt is less than 0.1 parts by weight, the curing speed may be extremely slow, and the curing reaction may be difficult to proceed sufficiently. On the other hand, if the amount of carboxylic acid metal salt exceeds 30 parts by weight, the pot life may become too short, which is not preferable from the viewpoint of workability.
  • a thermal aging inhibitor for example, a hindered phenol compound
  • hindered phenol compounds include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, mono(or di- or tri)( ⁇ -methyl benzyl)phenol, 2,2'-methylenebis(4ethyl-6-tert-butylphenol), 2,2'-methylenebis(4methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6 -tert-butylphenol), 4,4'-thiobis(3-methyl-6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, triethylene glycol- Bis-[3-(3-t-butyl-5-methyl-4-hydroxypheny
  • the product names of the heat aging inhibitors are Nokrac 224, Nokrac AW, Nokrac B, Nokrac PA, Nokrac ODA, Nokrac AD-F, Nokrac CD, Nokrac TD, Nokrac 200, Nokrac SP, Nokrac SP-N, Nokrac NS.
  • the amount of the heat aging inhibitor used is preferably in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer having a crosslinkable silyl group.
  • plasticizers include phthalate esters such as dibutyl phthalate, diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate, butylbenzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, isodecyl succinate, etc.
  • non-aromatic dibasic acid esters such as butyl oleate and methyl acetylrisilinolate; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Phosphoric acid esters such as dilyphosphate and tributylphosphate; trimellitic acid esters; polystyrenes such as polystyrene and poly- ⁇ -methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, alkyldiphenyl, partially hydrogenated terphenyl , etc.; polyether polyols such as polyethylene glycol, polypropylene glycol, ethylene oxide-propylene oxide copolymer, polytetramethylene glycol; one or both or all ends of the hydroxyl groups of these polyether polyols are alkyl
  • Polyester plasticizers obtained from dibasic acids such as acids and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol; including pyromellitic acid esters and acrylic plasticizers.
  • dibasic acids such as acids and dihydric alcohols
  • examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods, cyclohexanedicarboxylates, dipentaerythritol esters, and the like.
  • the present plasticizers may be used alone or in combination of two or more types, but are not necessarily required.
  • trimellitic acid esters can increase the thermal conductivity of the thermally conductive composition after curing and improve the heat resistance. This is preferable because it can be done.
  • the product names of plasticizers are ADEKASIZER C-8, C-880, C-9N, UL-6, UL-80, UL-100 (all manufactured by ADEKA Corporation), Hexamol DINCH (BASF Corporation). ) is preferably used.
  • the thixotropic agent is not particularly limited, but includes, for example, amide wax represented by Disparon (manufactured by Kusumoto Kasei), hydrogenated castor oil, hydrogenated castor oil derivatives, fatty acid derivatives, calcium stearate, aluminum stearate, and stearin.
  • Metal soaps such as barium acid, organic compounds such as 1,3,5-tris(trialkoxysilylalkyl) isocyanurate, and inorganic compounds such as calcium carbonate, finely powdered silica, and carbon black surface-treated with fatty acids or resin acids. Examples include compounds.
  • Hydrolyzable ester compounds include trialkyl orthoformates such as trimethyl orthoformate, triethyl orthoformate, tripropyl orthoformate, and tributyl orthoformate; trimethyl orthoacetate, triethyl orthoacetate, tripropyl orthoacetate; Trialkyl orthoacetates such as tributyl orthoacetate; and compounds thereof.
  • hydrolyzable ester compounds include those having the formula R 4-n SiY n (wherein, Y is a hydrolyzable group, and R is an organic group, which may or may not contain a functional group). n is an integer from 1 to 4, preferably 3 or 4).
  • vinyltrimethoxysilane vinyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, methyltriacetoxysilane, tetramethyl orthosilicate (tetramethoxysilane or Silane compounds such as methyl silicate), tetraethyl orthosilicate (tetraethoxysilane or ethylsilicate), tetrapropyl orthosilicate, tetrabutyl orthosilicate, or partially hydrolyzed condensates thereof, ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxy Propyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane,
  • the dehydrating agent is preferably added to the thermally conductive resin composition in order to improve the storage stability of the thermally conductive resin composition. More specifically, the amount of the dehydrating agent is preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, and 0.5 to 20 parts by weight, based on 100 parts by weight of the polymer having a crosslinkable silyl group. More preferably 10 parts by weight.
  • the thermally conductive resin composition of the present invention can be prepared by mixing the above-mentioned components using a mixing device such as a dough mixer (kneader), gate mixer, planetary mixer, butterfly mixer, disperser, or three rolls. Prepared by.
  • a mixing device such as a dough mixer (kneader), gate mixer, planetary mixer, butterfly mixer, disperser, or three rolls.
  • the viscosity of the thermally conductive resin composition before curing is determined by measuring the viscosity at 23°C with a No. B viscometer (BSII viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity can be obtained by measuring the viscosity after two rotations at 10 rpm using a No. 7 rotor.
  • the viscosity of the thermally conductive resin composition of the present invention is preferably 100 Pa ⁇ s to 600 Pa ⁇ s.
  • the thickness of the film obtained from the thermally conductive resin composition can be controlled to a predetermined thickness. Furthermore, since the coating speed of the thermally conductive resin composition is increased, the takt time can be shortened.
  • the viscosity of the thermally conductive resin composition before curing is particularly preferably from 150 Pa ⁇ s to 550 Pa ⁇ s.
  • the tensile elongation rate of the thermally conductive resin composition after curing can be measured by a method based on ASTM D882.
  • the tensile elongation rate of the thermally conductive resin composition of the present invention is preferably 10% or more, particularly preferably 15% or more. Since the thermally conductive resin composition after curing has a high tensile elongation rate, when the thermally conductive resin composition is applied to a base material, cured, and then peeled off, there is no residual peeling and it can be peeled off well. Therefore, it is preferable.
  • a heat dissipation member according to one embodiment of the present invention is obtained by curing the thermally conductive resin composition according to one embodiment of the present invention in a state where it is integrated with a heating element and/or a heat dissipation body.
  • the thermally conductive resin composition of the present invention has a thermal conductivity of 3 W/mK or more after curing, it can be applied between two objects (for example, between a CPU and a coolant) to transfer the heat from the CPU to the coolant. It can function as a thermally conductive material that conducts heat more efficiently.
  • the thermally conductive resin composition of the present invention can be used as a thermal interface for transmitting heat between a heat generating material and a heat spreader or between a heat spreader and a cooling member. Furthermore, the thermally conductive resin composition of the present invention can also be used as a heat spreader itself.
  • the heat-generating material examples include, but are not particularly limited to, electronic components such as heat-generating heaters, temperature sensors, arithmetic elements, transistors, and light-emitting elements.
  • the cooling member is not particularly limited, but examples of heat dissipation materials include heat sinks such as heat dissipation fins, graphite sheets (graphite films), liquid ceramics, Peltier elements, and the like.
  • the thermally conductive resin composition of the present invention is suitably used as a thermally conductive material that dissipates heat from these heat generating materials to a cooling member, etc., and can be used as a heat dissipating material itself. Further, the heat dissipating material may serve both as a heat spreader and a cooling member.
  • the thermally conductive resin composition of the present invention can also be used as a heat dissipation material by filling it into a sealing material on a thin base chip in a mobile phone or into a shield can. be.
  • the present invention can be configured as follows.
  • a thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler contains at least aluminum oxide and zinc oxide, and after curing the thermally conductive composition.
  • a thermally conductive resin composition having a thermal conductivity of 3 W/mK or more.
  • the content of the aluminum oxide contained in the thermally conductive resin composition is such that the content of the first particles is 30 to 50 parts by weight, based on 100 parts by weight of the total thermally conductive filler.
  • the content of the zinc oxide contained in the thermally conductive resin composition is 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler.
  • the thermally conductive resin composition according to any one of [1] to [4].
  • thermoly conductive resin composition according to any one of [1] to [5], wherein the binder contains a curable acrylic resin and a curable polyether resin.
  • thermoly conductive resin composition according to any one of [1] to [5], wherein the binder contains a non-curing acrylic resin and a curable polyether resin.
  • a heat radiating member obtained by curing the thermally conductive resin composition according to any one of [1] to [9] in a state where it is integrated with a heating element and/or a heat radiating element.
  • the present invention can be configured as follows.
  • a thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler contains at least aluminum oxide and zinc oxide, and after curing the thermally conductive composition.
  • a thermally conductive resin composition having a thermal conductivity of 3 W/mK or more.
  • the content of the aluminum oxide contained in the thermally conductive resin composition is such that the content of the first particles is 30 to 50 parts by weight, based on 100 parts by weight of the total thermally conductive filler.
  • the content of the zinc oxide contained in the thermally conductive resin composition is 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler.
  • the thermally conductive resin composition according to any one of [1] to [4].
  • the binder is a reactive silicon-containing polymer having at least one hydroxyl group or hydrolyzable group on a silicon atom at the end of the polymer, and the polymer component of the reactive silicon-containing polymer is a curable acrylic resin. and a curable polypropylene oxide-based resin, the thermally conductive resin composition according to any one of [1] to [5].
  • the binder is a reactive silicon-containing polymer having at least one hydroxyl group or hydrolyzable group on the silicon atom at the end of the polymer, and the polymer component of the reactive silicon-containing polymer is a non-curing acrylic resin. and a curable polypropylene oxide-based resin, the thermally conductive resin composition according to any one of [1] to [5].
  • a heat radiating member obtained by curing the thermally conductive resin composition according to any one of [1] to [7] in a state where it is integrated with a heating element and/or a heat radiating element.
  • Example 1 As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 900 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 12 ⁇ m) as a thermally conductive filler, oxidized 950 parts by weight of aluminum (manufactured by DENKA Co., Ltd., average particle size D50, 23 ⁇ m) and 550 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 ⁇ m) were added to a 5L butterfly mixer.
  • DINCH isononyl-cyclohexane-dicarboxylate
  • aluminum oxide manufactured by DENKA Corporation, average particle size D50, 12 ⁇ m
  • oxidized 950 parts by weight of aluminum manufactured by DENKA Co.
  • the mixture was dehydrated by vacuuming while heating and kneading. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (vinyltrimethoxysilane) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostan U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 380 Pa ⁇ S.
  • the thermally conductive resin composition was poured into a 100 mm x 100 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.0 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 17%.
  • the cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.
  • Example 2 As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 850 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 12 ⁇ m) as a thermally conductive filler, oxidized 5L of 1,000 parts by weight of aluminum (manufactured by DENKA Co., Ltd., average particle size D50, 23 ⁇ m) and 500 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 ⁇ m) The mixture was heated and kneaded using a butterfly mixer while being vacuumed and dehydrated.
  • DINCH isononyl-cyclohexane-dicarboxylate
  • aluminum oxide manufactured by DENKA Corporation, average particle size D50, 12 ⁇ m
  • the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product.
  • a thermally conductive resin composition was prepared.
  • This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd.
  • the blending ratio of the thermally conductive filler is shown in Table 1.
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 420 Pa ⁇ S.
  • the thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.1 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 15%.
  • the cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.
  • Example 3 As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 950 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 9 ⁇ m) as a thermally conductive filler, oxidized 900 parts by weight of aluminum (manufactured by SHANDONG JCT ABRASIVES CO., LTD, average particle size D50, 30 ⁇ m), and 600 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 ⁇ m), The mixture was heated and kneaded using a 5L butterfly mixer while being vacuumed and dehydrated.
  • DINCH isononyl-cyclohexane-dicarboxylate
  • aluminum oxide manufactured by DENKA Corporation, average particle size D50, 9
  • the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product.
  • a thermally conductive resin composition was prepared.
  • This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd.
  • the blending ratio of the thermally conductive filler is shown in Table 1.
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 410 Pa ⁇ S.
  • the thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.2 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 18%.
  • the cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.
  • Example 4 50 parts by weight of non-curing acrylic resin ARUFON UP1020 (manufactured by Toagosei Co., Ltd.) as a binder, 50 parts by weight of curable polyether resin Kaneka thylyl resin product number SAX530 (manufactured by Kaneka Co., Ltd.), and 50 parts by weight of non-curing acrylic resin ARUFON UP1020 (manufactured by Toagosei Co., Ltd.); 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), 950 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 9 ⁇ m) as a thermally conductive filler, aluminum oxide (manufactured by SHANDONG JCT ABRASIVES CO., LTD, average particle size D50, 30 ⁇ m) 900 parts by weight, and 600 parts by weight of zinc oxide
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 420 Pa ⁇ S.
  • the thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.1 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 20%.
  • the cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.
  • DINCH di-isonony
  • the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst were mixed into the kneaded product.
  • a thermally conductive resin composition was prepared.
  • This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd.
  • the blending ratio of the thermally conductive filler is shown in Table 1.
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 710 Pa ⁇ S, and a problem occurred in the coatability of the thermally conductive resin composition.
  • B-type viscometer BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.
  • the thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 2.5 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 9%.
  • the cured sheet produced from the thermally conductive resin composition of this comparative example had a low tensile elongation rate and poor releasability after being applied to a substrate.
  • a curable polyether resin Kaneka thylyl resin SAX580 (manufactured by Kaneka Corporation) as a binder
  • DINCH di-isonon
  • the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product.
  • a thermally conductive resin composition was prepared.
  • This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd.
  • the blending ratio of the thermally conductive filler is shown in Table 1.
  • Average particle diameter D50 The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.
  • the viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 650 Pa ⁇ S, which caused a problem in the coatability of the thermally conductive resin composition.
  • the thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 2.2 W/mK.
  • the thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet.
  • the tensile elongation of this sheet was measured in accordance with ASTM D882.
  • the tensile elongation rate was 33%.
  • the cured sheet produced from the thermally conductive resin composition of this comparative example had a high tensile elongation rate and good releasability after being applied to a substrate.
  • One embodiment of the present invention can be used for a heat radiating member, and more specifically, can be used for a heat radiating member included in an electronic device (for example, a personal computer, a mobile phone, a smartphone).
  • an electronic device for example, a personal computer, a mobile phone, a smartphone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

In order to provide a thermally conductive resin composition that achieves both high thermal conductivity and low viscosity, a thermally conductive resin composition used herein comprises a binder and a thermally conductive filler, the thermally conductive resin composition being characterized in that: the thermally conductive filler contains at least aluminum oxide and zinc oxide; and the thermal conductivity of the thermally conductive composition after curing is at least 3 W/m·K.

Description

熱伝導性樹脂組成物および組成物を硬化させてなる放熱部材Thermal conductive resin composition and heat dissipation member formed by curing the composition

 本発明は、熱伝導性樹脂組成物および組成物を硬化させてなる放熱部材に関する。 The present invention relates to a thermally conductive resin composition and a heat dissipating member formed by curing the composition.

 近年、パソコン、携帯電話、スマートフォンなどの電子機器の性能向上は著しく、それは演算素子・撮像素子・発光素子・通信素子の著しい性能向上によっている。この様に電子機器の内部素子の性能向上に伴い発熱量も著しく増加し、電子機器内部の照明素子、表示機器、カメラモジュール、通信モジュールにおける放熱をどの様に行うかが重要な課題になっている。 In recent years, the performance of electronic devices such as personal computers, mobile phones, and smartphones has improved significantly, and this is due to significant improvements in the performance of arithmetic elements, image sensors, light emitting elements, and communication elements. As described above, as the performance of the internal elements of electronic devices improves, the amount of heat generated increases significantly, and how to dissipate heat from lighting elements, display devices, camera modules, and communication modules inside electronic devices has become an important issue. There is.

 特許文献1には、硬化前のシリコーンゴムに熱伝導性フィラーを高充填した液状物を塗布した後、室温で硬化させることが可能な、室温硬化型熱伝導性シリコーンゴム組成物が開示されている。また、特許文献2には、粒子径を制御した酸化アルミニウム粉末並びに、酸化亜鉛粉末をシリコーンゲルに含有させた熱伝導性材料が開示されている。これらの製品は液状物やゲル状物であるため、熱体または放熱体との密着性が非常に良好となり好適である。しかしながら、これらの製品は未硬化のシリコーンゴム組成物であることから、使用時に低分子シロキサン成分および/または環状シロキサン成分の揮発が多くなるという課題がある。シリコーン樹脂には、しばしば、低分子成分である環状シロキサンの揮発により、電気部品の接点不良を誘発したり、ハードディスクなどの精密機器の読み取り不良を誘発したりすると言う課題が指摘されている。 Patent Document 1 discloses a room temperature-curable thermally conductive silicone rubber composition that can be cured at room temperature after applying a liquid material highly filled with a thermally conductive filler to uncured silicone rubber. There is. Further, Patent Document 2 discloses a thermally conductive material in which silicone gel contains aluminum oxide powder and zinc oxide powder with controlled particle diameters. Since these products are liquid or gel-like products, they have very good adhesion to a heating body or a heat radiating body, and are therefore suitable. However, since these products are uncured silicone rubber compositions, there is a problem in that the low molecular weight siloxane component and/or cyclic siloxane component volatilizes to a large extent during use. It has often been pointed out that silicone resins have problems in that the volatilization of cyclic siloxane, a low-molecular component, can cause contact failures in electrical parts and read failures in precision equipment such as hard disks.

 また、特許文献3には、(A-1)平均粒径0.1~2μmのフィラー成分、(A-2)平均粒径2~20μmのフィラー成分、(A-3)平均粒径20~100μmのフィラー成分を含有し、(B)加水分解性シリル基を有するポリアルキレングリコール、(C)硬化触媒、(D)シランカップリング剤を含有してなる組成物が開示されている。本品は(B)成分がポリアルキレングリコール単独であり柔軟性は発現するものの、耐熱温度が低く高温の熱源と接した際に劣化する問題が発生することがあった。 Further, Patent Document 3 describes (A-1) a filler component with an average particle size of 0.1 to 2 μm, (A-2) a filler component with an average particle size of 2 to 20 μm, and (A-3) a filler component with an average particle size of 20 to 20 μm. A composition containing a 100 μm filler component, (B) a polyalkylene glycol having a hydrolyzable silyl group, (C) a curing catalyst, and (D) a silane coupling agent is disclosed. The component (B) of this product is polyalkylene glycol alone, and although it exhibits flexibility, it has a low heat resistance and sometimes deteriorates when it comes into contact with a high-temperature heat source.

日本国特開2004-352947号公報Japanese Patent Application Publication No. 2004-352947 日本国特開2011-084621号公報Japanese Patent Application Publication No. 2011-084621 国際公開第2011/125636号公報International Publication No. 2011/125636

 本発明は、高い熱伝率、および、貯蔵安定性を有するとともに、従来技術で問題視されている環状シロキサン等による接点障害の可能性が低く、低粘度であるため塗布などの操作が容易であり、さらに室温にて硬化させることが可能な、熱伝導性樹脂組成物、並びにその組成物を硬化させてなる放熱部材を提供することを目的とする。 The present invention not only has high heat conductivity and storage stability, but also has a low possibility of contact failure due to cyclic siloxane, which is considered a problem with conventional technology, and has low viscosity, making operations such as application easy. An object of the present invention is to provide a thermally conductive resin composition that can be cured at room temperature, and a heat dissipating member obtained by curing the composition.

 本発明の一態様は、バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性樹脂組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする熱伝導性樹脂組成物、ならびに、当該組成物を硬化させてなる放熱部材を提供することを目的とする。 One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin It is an object of the present invention to provide a thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 3 W/mK or more, and a heat dissipating member obtained by curing the composition.

 本発明者は、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。 The present inventor has completed the present invention as a result of intensive studies to solve the above problems.

 本発明の一実施形態に係る熱伝導性樹脂組成物は、バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性樹脂組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする、熱伝導性樹脂組成物である。 A thermally conductive resin composition according to an embodiment of the present invention is a thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide. A thermally conductive resin composition characterized in that the thermally conductive resin composition has a thermal conductivity of 3 W/mK or more after curing.

 本発明の一実施形態に係る放熱部材は、本発明の一実施形態に係る熱伝導性樹脂組成物が、発熱体および/または放熱体と一体化した状態で硬化してなる、放熱部材である。 A heat dissipating member according to an embodiment of the present invention is a heat dissipating member obtained by curing the thermally conductive resin composition according to an embodiment of the present invention while being integrated with a heating element and/or a heat dissipating element. .

 本発明の一態様は、高い熱伝導性、および、低い粘度を両立でき、優れた硬化性、および、貯蔵安定性を有する熱伝導性樹脂組成物であり、当該熱伝導性樹脂組成物は、従来技術で問題視されている環状シロキサン等による接点障害を改善することができるという特徴を有する。 One aspect of the present invention is a thermally conductive resin composition that can have both high thermal conductivity and low viscosity, and has excellent curability and storage stability, and the thermally conductive resin composition comprises: It has the feature of being able to improve contact failure caused by cyclic siloxane, etc., which has been seen as a problem in the prior art.

 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to each configuration described below, and various changes can be made within the scope of the claims, and technical means disclosed in different embodiments and examples can be applied. Embodiments and examples obtained by appropriate combinations are also included in the technical scope of the present invention. In addition, all academic literature and patent literature described in this specification are incorporated by reference herein. Furthermore, unless otherwise specified in this specification, the numerical range "A to B" is intended to mean "A or more and B or less."

 本発明は、国連が提唱する持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」等の達成にも貢献することができる。 The present invention can also contribute to achieving Goal 9 of the Sustainable Development Goals (SDGs) advocated by the United Nations, "Create a foundation for industry and technological innovation."

 本発明の一態様は、バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性樹脂組成物の硬化後の熱伝導率が、2W/mK以上であることを特徴とする熱伝導性樹脂組成物である。 One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin A thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 2 W/mK or more.

 本発明の一態様は、バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性樹脂組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする熱伝導性樹脂組成物である。 One aspect of the present invention is a thermally conductive resin composition including a binder and a thermally conductive filler, wherein the thermally conductive filler includes at least aluminum oxide and zinc oxide, and the thermally conductive resin A thermally conductive resin composition characterized in that the thermal conductivity after curing of the composition is 3 W/mK or more.

 熱伝導性樹脂組成物の硬化後の熱伝導率としては、3.1W/mK以上、3.2W/mK以上、3.3W/mK以上、3.4W/mK以上、3.5W/mK以上、4.0W/mK以上、5.0W/mK以上、7.0W/mK以上、10W/mK以上、または、20W/mK以上であってもよい。熱伝導性樹脂組成物の硬化後の熱伝導率の上限値としては、限定されず、50W/mK、40W/mK、30W/mK、20W/mK、または、10W/mKであってもよい。 The thermal conductivity after curing of the thermally conductive resin composition is 3.1 W/mK or more, 3.2 W/mK or more, 3.3 W/mK or more, 3.4 W/mK or more, 3.5 W/mK or more. , 4.0 W/mK or more, 5.0 W/mK or more, 7.0 W/mK or more, 10 W/mK or more, or 20 W/mK or more. The upper limit of the thermal conductivity after curing of the thermally conductive resin composition is not limited, and may be 50 W/mK, 40 W/mK, 30 W/mK, 20 W/mK, or 10 W/mK.

 本発明におけるバインダーは、分子内に反応性基を有し、その反応性基の反応によって硬化することが可能な硬化性液状樹脂であり得る。バインダーの具体例としては、例えば、硬化性アクリル系樹脂、硬化性メタクリル系樹脂に代表される硬化性アクリル系樹脂、硬化性ポリプロピレンオキサイド系樹脂に代表される硬化性ポリエーテル系樹脂、硬化性ポリイソブチレン系樹脂に代表される硬化性ポリオレフィン系樹脂、等が挙げられる。 The binder in the present invention may be a curable liquid resin that has a reactive group in its molecule and can be cured by reaction of the reactive group. Specific examples of binders include, for example, curable acrylic resins, curable acrylic resins such as curable methacrylic resins, curable polyether resins such as curable polypropylene oxide resins, and curable polyether resins such as curable polypropylene oxide resins. Examples include curable polyolefin resins typified by isobutylene resins.

 さらに、本発明におけるバインダーは、前記の硬化性液状樹脂に加えて、例えば、非硬化性アクリル系樹脂、非硬化性メタクリル系樹脂に代表される非硬化性アクリル系樹脂、非硬化性ポリプロピレンオキサイド系樹脂に代表される非硬化性ポリエーテル系樹脂、非硬化性ポリイソブチレン系樹脂に代表される非硬化性ポリオレフィン系樹脂、等を含有することができる。 Furthermore, in addition to the above-mentioned curable liquid resin, the binder in the present invention includes, for example, a non-curing acrylic resin, a non-curing acrylic resin such as a non-curing methacrylic resin, a non-curing polypropylene oxide resin, and a non-curing polypropylene oxide resin. It can contain non-curing polyether resins such as resins, non-curing polyolefin resins such as non-curing polyisobutylene resins, and the like.

 反応性基の具体例としては、例えば、エポキシ基、加水分解性シリル基、ビニル基、アクリロイル基、SiH基、ウレタン基、カルボジイミド基、或いは、無水カルボン酸基とアミノ基との組み合わせ、等の反応性官能基が挙げられる。 Specific examples of the reactive group include an epoxy group, a hydrolyzable silyl group, a vinyl group, an acryloyl group, a SiH group, a urethane group, a carbodiimide group, or a combination of a carboxylic anhydride group and an amino group. Examples include reactive functional groups.

 バインダーの中でも、シラノール縮合反応型の硬化性液状樹脂は室温硬化させることができるのでより好ましい。特に本発明のバインダーは、ポリマー末端のケイ素原子上に水酸基または加水分解性基を少なくとも1個有する加水分解性シラノール基、または、加水分解性シリル基を含有するポリマーであることが、好ましい。その理由は、これらのポリマーは、室温硬化性を発現し、電子材料内部へ塗布した際に室温で硬化することができ、硬化後の熱伝導性樹脂組成物の高い熱伝率、貯蔵安定性、耐熱性、および、耐久性を発現できるからである。 Among the binders, silanol condensation reaction type curable liquid resins are more preferred because they can be cured at room temperature. In particular, the binder of the present invention is preferably a polymer containing a hydrolyzable silanol group or a hydrolyzable silyl group having at least one hydroxyl group or hydrolyzable group on the silicon atom at the end of the polymer. The reason is that these polymers exhibit room-temperature curability and can be cured at room temperature when applied inside electronic materials, and the thermally conductive resin composition after curing has high thermal conductivity and storage stability. This is because it can exhibit heat resistance and durability.

 また、硬化性液状樹脂の中でも、低分子量シロキサンによる電子機器内の汚染の問題が少ないこと、耐熱性に優れていること、接着力を最適にコントロールできること、硬化物に靭性を付与できること等から、硬化性アクリル系樹脂、または、硬化性ポリエーテル系樹脂を用いることが好ましい。また、併用する非硬化系樹脂としては、非硬化性アクリル系樹脂を用いることが樹脂の靭性を付与できる観点から好ましい。 In addition, among curable liquid resins, it is less likely to cause contamination inside electronic devices due to low molecular weight siloxane, has excellent heat resistance, can optimally control adhesive strength, and can impart toughness to cured products. It is preferable to use a curable acrylic resin or a curable polyether resin. Further, as the non-curing resin used in combination, it is preferable to use a non-curing acrylic resin from the viewpoint of imparting toughness to the resin.

 硬化性アクリル系樹脂としては、公知の様々な反応性アクリル樹脂を用いることができる。この中でも、分子末端に反応性基を有するアクリル系オリゴマーを用いることが耐熱性を向上させる上で好ましい。このような硬化性アクリル系樹脂の例として、(株)カネカ製のカネカXMAPが知られている。 As the curable acrylic resin, various known reactive acrylic resins can be used. Among these, it is preferable to use an acrylic oligomer having a reactive group at the molecular end in order to improve heat resistance. Kaneka XMAP manufactured by Kaneka Corporation is known as an example of such a curable acrylic resin.

 また、硬化性ポリエーテル系樹脂としては、公知の様々な硬化性ポリエーテル系樹脂を用いることができる。この中でも、反応性ポリプロピレンオキサイド樹脂を用いることが接着力をコントロールできるので好ましい。このような反応性ポリプロピレンオキサイド樹脂の例として、(株)カネカ製のカネカMSポリマーが知られている。 Additionally, various known curable polyether resins can be used as the curable polyether resin. Among these, it is preferable to use a reactive polypropylene oxide resin because the adhesive force can be controlled. Kaneka MS Polymer manufactured by Kaneka Corporation is known as an example of such a reactive polypropylene oxide resin.

 本発明のバインダーとしては、硬化性アクリル系樹脂と硬化性ポリエーテル系樹脂とを併用することが、熱伝導性樹脂組成物に耐熱性、および、靭性を付与し、かつ、当該熱伝導性樹脂組成物の接着力をコントロールできるので好ましい。 As the binder of the present invention, the combined use of a curable acrylic resin and a curable polyether resin imparts heat resistance and toughness to the thermally conductive resin composition, and the thermally conductive resin This is preferred because the adhesive strength of the composition can be controlled.

 非硬化性アクリル系樹脂としては、公知の様々な非反応性アクリル樹脂を用いることができる。この中でも、分子末端に反応性基を有しないアクリル系オリゴマーを用いることが靭性を向上させる上で好ましい。このような非硬化性アクリル系樹脂の例として、東亞合成株式会社製のARUFON(登録商標)が知られている。また、バインダーへ、本樹脂以外の樹脂を配合しても良い。 As the non-curing acrylic resin, various known non-reactive acrylic resins can be used. Among these, it is preferable to use an acrylic oligomer that does not have a reactive group at the molecular end in order to improve toughness. ARUFON (registered trademark) manufactured by Toagosei Co., Ltd. is known as an example of such a non-curing acrylic resin. Further, resins other than the present resin may be added to the binder.

 熱伝導性充填材としては、酸化アルミニウムと酸化亜鉛とを用いることが、熱伝導率を向上させ、熱伝導性樹脂組成物の粘度を低下させることができるので好ましい。 It is preferable to use aluminum oxide and zinc oxide as the thermally conductive filler because they can improve thermal conductivity and reduce the viscosity of the thermally conductive resin composition.

 本発明の熱伝導性樹脂組成物に含まれる酸化アルミニウムは、平均粒子径D50が20μm~40μmの第一の粒子と、平均粒子径D50が5μm~19μmの第二の粒子とを含むことが好ましい。当該構成によれば、熱伝導性樹脂組成物の硬化後の熱伝導率を3W/mK以上に制御することができる。特に、第一の粒子(第一の酸化アルミニウム粒子)の平均粒子径D50を25μm~35μm、および/または、第二の粒子(第二の酸化アルミニウム粒子)の平均粒子径D50を9μm~18μmに制御することで、熱伝導性樹脂組成物の硬化後の熱伝導率をより良く3W/mK以上に制御することができる。 The aluminum oxide contained in the thermally conductive resin composition of the present invention preferably contains first particles having an average particle size D50 of 20 μm to 40 μm and second particles having an average particle size D50 of 5 μm to 19 μm. . According to this configuration, the thermal conductivity of the thermally conductive resin composition after curing can be controlled to 3 W/mK or more. In particular, the average particle diameter D50 of the first particles (first aluminum oxide particles) is set to 25 μm to 35 μm, and/or the average particle diameter D50 of the second particles (second aluminum oxide particles) is set to 9 μm to 18 μm. By controlling this, the thermal conductivity of the thermally conductive resin composition after curing can be better controlled to 3 W/mK or more.

 第一の粒子の平均粒子径D50は、20μm~37μm、20μm~35μm、20μm~30μm、または、23μm~30μmであってもよい。第二の粒子の平均粒子径D50は、5μm~17μm、5μm~15μm、7μm~15μm、または、9μm~12μmであってもよい。 The average particle diameter D50 of the first particles may be 20 μm to 37 μm, 20 μm to 35 μm, 20 μm to 30 μm, or 23 μm to 30 μm. The average particle diameter D50 of the second particles may be 5 μm to 17 μm, 5 μm to 15 μm, 7 μm to 15 μm, or 9 μm to 12 μm.

 また、熱伝導性樹脂組成物に含まれる酸化アルミニウムの含有率は、全熱伝導性充填材100重量部に対して、第一の粒子が30重量部~50重量部、第二の粒子が30重量部~45重量部であることが好ましい。当該構成によれば、熱伝導性組成物の硬化後の熱伝導率をより良く向上させることができる。特に好ましくは、全熱伝導性充填材100重量部に対して、第一の粒子が30重量部~45重量部(より具体的に、35重量部~45重量部)であり、第二の粒子が30重量部~40重量部(より具体的に、35重量部~40重量部)であることが、熱伝導性樹脂組成物の硬化後の熱伝導率を向上させる上で好ましい。 Furthermore, the content of aluminum oxide contained in the thermally conductive resin composition is 30 to 50 parts by weight for the first particles and 30 parts by weight for the second particles based on 100 parts by weight of the total thermally conductive filler. The amount is preferably from 45 parts by weight. According to the configuration, the thermal conductivity of the thermally conductive composition after curing can be improved. Particularly preferably, the first particles are in an amount of 30 to 45 parts by weight (more specifically, 35 to 45 parts by weight), and the second particles are is preferably 30 to 40 parts by weight (more specifically, 35 to 40 parts by weight) in order to improve the thermal conductivity of the thermally conductive resin composition after curing.

 本発明では前記熱伝導性組成物に含まれる酸化亜鉛が、平均粒子径D50で0.1μm~3μmであることが、熱伝導性樹脂組成物の硬化後の熱伝導率を向上させ、かつ、熱伝導性樹脂組成物の粘度を低下させる上で好ましい。特に好ましくは、平均粒子径D50が0.1μm~1μmであることが、酸化亜鉛が熱伝導性樹脂組成物の内部に微分散し、熱伝導性樹脂組成物の硬化後の熱伝導率を向上させ、かつ、熱伝導性樹脂組成物の粘度の上昇を抑える上で好ましい。平均粒子径D50の上限値は、限定されず、0.3μm、0.5μm、0.7μm、または、0.8μmであってもよい。 In the present invention, the zinc oxide contained in the thermally conductive composition has an average particle size D50 of 0.1 μm to 3 μm, which improves the thermal conductivity of the thermally conductive resin composition after curing, and This is preferable for reducing the viscosity of the thermally conductive resin composition. Particularly preferably, the average particle diameter D50 is 0.1 μm to 1 μm, so that zinc oxide is finely dispersed inside the thermally conductive resin composition and improves the thermal conductivity of the thermally conductive resin composition after curing. This is preferable in terms of increasing the temperature and suppressing an increase in the viscosity of the thermally conductive resin composition. The upper limit of the average particle diameter D50 is not limited, and may be 0.3 μm, 0.5 μm, 0.7 μm, or 0.8 μm.

 また、熱伝導性樹脂組成物に含まれる酸化亜鉛の含有率は、全熱伝導性充填材100重量部に対して、15重量部~30重量部であることが好ましい。当該構成によれば、熱伝導性樹脂組成物の硬化後の熱伝導率を向上させ、かつ、熱伝導性樹脂組成物の粘度を低下させることができる。特に好ましくは、全熱伝導性充填材100重量部に対して、15重量部~25重量部(より具体的に、20重量部~25重量部)含まれることが、酸化亜鉛が熱伝導性樹脂組成物の内部に微分散し、熱伝導性樹脂組成物の硬化後の熱伝導率を向上させ、かつ、熱伝導性樹脂組成物の粘度の上昇を抑える上で好ましい。 Furthermore, the content of zinc oxide contained in the thermally conductive resin composition is preferably 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler. According to the configuration, it is possible to improve the thermal conductivity of the thermally conductive resin composition after curing, and to reduce the viscosity of the thermally conductive resin composition. Particularly preferably, zinc oxide is contained in the thermally conductive resin in an amount of 15 to 25 parts by weight (more specifically, 20 to 25 parts by weight) based on 100 parts by weight of the total thermally conductive filler. It is preferable to be finely dispersed inside the composition to improve the thermal conductivity of the thermally conductive resin composition after curing and to suppress an increase in the viscosity of the thermally conductive resin composition.

 熱伝導性樹脂組成物に含まれる全熱伝導性充填材の含有率は、熱伝導性樹脂組成物100重量部に対して90重量部以上含まれることが、熱伝導性樹脂組成物の硬化後の熱伝導率を3W/mK以上に制御する上で好ましく、より好ましくは91重量部以上である。 The total content of the thermally conductive filler contained in the thermally conductive resin composition is 90 parts by weight or more based on 100 parts by weight of the thermally conductive resin composition after curing of the thermally conductive resin composition. It is preferable to control the thermal conductivity of 3 W/mK or more, and more preferably 91 parts by weight or more.

 また、熱伝導性充填材としては、酸化アルミニウム及び酸化亜鉛に加えて、グラファイト、ダイヤモンド等の炭素化合物;酸化マグネシウム、酸化ベリリウム、酸化チタン、酸化ジルコニウム等の金属酸化物;窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物;炭化ホウ素、炭化アルミニウム、炭化ケイ素等の金属炭化物;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;炭酸マグネシウム、炭酸カルシウム等の金属炭酸塩;結晶性シリカ;アクリロニトリル系ポリマー焼成物、フラン樹脂焼成物、クレゾール樹脂焼成物、ポリ塩化ビニル焼成物、砂糖の焼成物、木炭の焼成物等の有機性ポリマー焼成物;Znフェライトとの複合フェライト;Fe-Al-Si系三元合金;金属粉末;等を併用することもできる。 In addition to aluminum oxide and zinc oxide, thermally conductive fillers include carbon compounds such as graphite and diamond; metal oxides such as magnesium oxide, beryllium oxide, titanium oxide, and zirconium oxide; boron nitride, aluminum nitride, Metal nitrides such as silicon nitride; Metal carbides such as boron carbide, aluminum carbide, and silicon carbide; Metal hydroxides such as aluminum hydroxide and magnesium hydroxide; Metal carbonates such as magnesium carbonate and calcium carbonate; Crystalline silica; Organic polymer fired products such as acrylonitrile based polymer fired products, furan resin fired products, cresol resin fired products, polyvinyl chloride fired products, sugar fired products, charcoal fired products; Composite ferrite with Zn ferrite; Fe-Al- Si-based ternary alloy; metal powder; etc. can also be used in combination.

 また、これらの熱伝導性充填材は、シランカップリング剤(ビニルシラン、エポキシシラン、(メタ)アクリルシラン、イソシアナートシラン、クロロシラン、アミノシラン等)、チタネートカップリング剤(アルコキシチタネート、アミノチタネート等)、脂肪酸(カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸等の飽和脂肪酸、ソルビン酸、エライジン酸、オレイン酸、リノール酸、リノレン酸、エルカ酸等の不飽和脂肪酸等)、樹脂酸(アビエチン酸、ピマル酸、レボピマール酸、ネオアピチン酸、パラストリン酸、デヒドロアビエチン酸、イソピマール酸、サンダラコピマール酸、コルム酸、セコデヒドロアビエチン酸、ジヒドロアビエチン酸等)、および/または、シリコーン樹脂等により、表面が処理されていても良い。 In addition, these thermally conductive fillers include silane coupling agents (vinylsilane, epoxysilane, (meth)acrylic silane, isocyanatosilane, chlorosilane, aminosilane, etc.), titanate coupling agents (alkoxytitanate, aminotitanate, etc.), Fatty acids (saturated fatty acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, etc.) saturated fatty acids, etc.), resin acids (abietic acid, pimaric acid, levopimaric acid, neoapitic acid, parastric acid, dehydroabietic acid, isopimaric acid, sandaracopimaric acid, colmic acid, secodehydroabietic acid, dihydroabietic acid, etc.), and Alternatively, the surface may be treated with silicone resin or the like.

 なお、本発明では、熱伝導性樹脂組成物を硬化させるための硬化触媒、熱老化防止剤、可塑剤、チクソ性付与剤、脱水剤等の各種添加剤が、用途に応じて、熱伝導性樹脂組成物に対して適宜添加されていてもよい。熱伝導性樹脂組成物を硬化させるための硬化触媒として、例えば、カルボニル基に隣接する炭素原子が4級炭素であるカルボン酸金属塩が、良好な硬化性と貯蔵安定性とを両立できるので好ましい。 In addition, in the present invention, various additives such as a curing catalyst, a heat anti-aging agent, a plasticizer, a thixotropic agent, and a dehydrating agent for curing the thermally conductive resin composition are used depending on the purpose of the thermally conductive resin composition. It may be added as appropriate to the resin composition. As a curing catalyst for curing the thermally conductive resin composition, for example, a carboxylic acid metal salt in which the carbon atom adjacent to the carbonyl group is a quaternary carbon is preferable because it can achieve both good curability and storage stability. .

 カルボン酸金属塩としては、カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸カリウム、カルボン酸カルシウム、カルボン酸バリウム、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸ハフニウム、カルボン酸バナジウム、カルボン酸マンガン、カルボン酸鉄、カルボン酸コバルト、カルボン酸ニッケル、カルボン酸セリウムが、触媒活性が高いことから好ましい。更には、カルボン酸錫、カルボン酸鉛、カルボン酸ビスマス、カルボン酸チタン、カルボン酸鉄、カルボン酸ジルコニウムが、触媒活性が高いことからより好ましい。特にカルボン酸錫が、硬化性並びに貯蔵安定性の点で好ましい。また、熱伝導性樹脂組成物の内部への分散性および/または相溶解性の点で、カルボン酸金属塩の酸基を有するカルボン酸が好ましく、当該カルボン酸としては、ビバル酸、ネオデカン酸、バーサチック酸、2,2-ジメチルオクタン酸、2-エチル-2,5-ジメチルヘキサン酸の金属塩が最も好ましい。 Examples of carboxylic acid metal salts include tin carboxylate, lead carboxylate, bismuth carboxylate, potassium carboxylate, calcium carboxylate, barium carboxylate, titanium carboxylate, zirconium carboxylate, hafnium carboxylate, vanadium carboxylate, and manganese carboxylate. , iron carboxylate, cobalt carboxylate, nickel carboxylate, and cerium carboxylate are preferred because of their high catalytic activity. Furthermore, tin carboxylate, lead carboxylate, bismuth carboxylate, titanium carboxylate, iron carboxylate, and zirconium carboxylate are more preferred because they have high catalytic activity. In particular, tin carboxylate is preferred in terms of curability and storage stability. In addition, from the viewpoint of dispersibility and/or compatibility within the thermally conductive resin composition, carboxylic acids having acid groups of carboxylic acid metal salts are preferred, and examples of the carboxylic acids include bivaric acid, neodecanoic acid, Most preferred are metal salts of versatic acid, 2,2-dimethyloctanoic acid, and 2-ethyl-2,5-dimethylhexanoic acid.

 より具体的には、ピバル酸錫、ネオデカン酸錫、バーサチック酸錫、2,2-ジメチルオクタン酸錫、または、2-エチル-2,5-ジメチルヘキサン酸錫を用いることが好ましい。 More specifically, it is preferable to use tin pivalate, tin neodecanoate, tin versatate, tin 2,2-dimethyloctanoate, or tin 2-ethyl-2,5-dimethylhexanoate.

 カルボン酸金属塩は、単独で使用してもよいし、2種以上を併用してもよい。これらのカルボン酸金属塩の配合量は、架橋性シリル基を有する重合体100重量部に対して0.1~30重量部程度が好ましい。カルボン酸金属塩の配合量が0.1重量部未満であると、極端に硬化速度が遅くなる場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、カルボン酸金属塩の配合量が30重量部を越えると、ポットライフが短くなり過ぎる場合があり、作業性の点から好ましくない。 The carboxylic acid metal salts may be used alone or in combination of two or more. The amount of these carboxylic acid metal salts is preferably about 0.1 to 30 parts by weight based on 100 parts by weight of the polymer having a crosslinkable silyl group. If the amount of carboxylic acid metal salt is less than 0.1 parts by weight, the curing speed may be extremely slow, and the curing reaction may be difficult to proceed sufficiently. On the other hand, if the amount of carboxylic acid metal salt exceeds 30 parts by weight, the pot life may become too short, which is not preferable from the viewpoint of workability.

 本発明の熱伝導性樹脂組成物には、必要に応じて熱老化防止剤(例えば、ヒンダードフェノール系化合物)を添加しても良い。例えば、ヒンダードフェノール系化合物としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、モノ(又はジ又はトリ)(αメチルベンジル)フェノール、2,2’-メチレンビス(4エチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,5-ジ-tert-ブチルハイドロキノン、2,5-ジ-tert-アミルハイドロキノン、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4-2,4-ビス[(オクチルチオ)メチル]o-クレゾール、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)-ベンゾトリアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート-ポリエチレングリコール(分子量約300)の縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。 A thermal aging inhibitor (for example, a hindered phenol compound) may be added to the thermally conductive resin composition of the present invention, if necessary. For example, hindered phenol compounds include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, mono(or di- or tri)(α-methyl benzyl)phenol, 2,2'-methylenebis(4ethyl-6-tert-butylphenol), 2,2'-methylenebis(4methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6 -tert-butylphenol), 4,4'-thiobis(3-methyl-6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, triethylene glycol- Bis-[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythrityl-tetrakis[3-( 3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl- 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 3 , 5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxy benzyl) benzene, bis(ethyl 3,5-di-t-butyl-4-hydroxybenzylphosphonate) calcium, tris-(3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 2,4 -2,4-bis[(octylthio)methyl]o-cresol, N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine, tris(2,4 -di-t-butylphenyl)phosphite, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H -benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-(2 '-hydroxy-5'-t-octylphenyl)-benzotriazole, methyl-3-[3-t-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate-polyethylene glycol ( molecular weight approximately 300), hydroxyphenylbenzotriazole derivative, 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonic acid bis(1,2,2,6, 6-pentamethyl-4-piperidyl), 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.

 熱老化防止剤を商品名で言えば、ノクラック224、ノクラックAW、ノクラックB、ノクラックPA、ノクラックODA、ノクラックAD-F、ノクラックCD、ノクラックTD、ノクラック200、ノクラックSP、ノクラックSP-N、ノクラックNS-5、ノクラックNS-6、ノクラックNS-30、ノクラック300、ノクラックNS-7、ノクラックDAH(以上いずれも大内新興化学工業製)、アデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-330、アデカスタブ PEP-8、アデカスタブ AO-412S、アデカスタブ HP-10、アデカスタブ 2112、アデカスタブ 1178、アデカスタブ A-611、アデカスタブ A-612、アデカスタブ A-613、アデカスタブ AO-15、アデカスタブ AO-18、アデカスタブ AO-37,アデカスタブ CDA-1,アデカスタブ CDA-6、アデカスタブ CDA-10(以上いずれも株式会社ADEKA製)、IRGANOX-245、IRGANOX-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上いずれもBASFジャパン株式会社製)、SumilizerGM、SumilizerGA-80(以上いずれも住友化学製)等が例示できるがこれらに限定されるものではない。 The product names of the heat aging inhibitors are Nokrac 224, Nokrac AW, Nokrac B, Nokrac PA, Nokrac ODA, Nokrac AD-F, Nokrac CD, Nokrac TD, Nokrac 200, Nokrac SP, Nokrac SP-N, Nokrac NS. -5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all manufactured by Ouchi Shinko Chemical Industry), Adeka Stab AO-20, Adeka Stab AO-30, Adeka Stab AO-50, ADK STAB AO-60, ADK STAB AO-330, ADK STAB PEP-8, ADK STAB AO-412S, ADK STAB HP-10, ADK STAB 2112, ADK STAB 1178, ADK STAB A-611, ADK STAB A-612, ADK STAB A-613, Adeka Stab AO-15 , ADEKA STAB AO-18, ADEKA STAB AO-37, ADEKA STAB CDA-1, ADEKA STAB CDA-6, ADEKA STAB CDA-10 (all manufactured by ADEKA Corporation), IRGANOX-245, IRGANOX-259, IRGANOX-565, IRGANOX-101 0 , IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all manufactured by BASF Japan Co., Ltd.), S umilizerGM, SumilizerGA-80 (and above) Examples include (all manufactured by Sumitomo Chemical), but are not limited to these.

 熱老化防止剤の使用量は、架橋性シリル基を有する重合体100重量部に対して0.1~10重量部の範囲であることが好ましい。 The amount of the heat aging inhibitor used is preferably in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer having a crosslinkable silyl group.

 可塑剤としては、例えば、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;ポリスチレン、ポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;ポリエチレングリコール、ポリプロピレングリコール、エチレンオキサイド-プロピレンオキサイド共重合体、ポリテトラメチレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールの水酸基の片末端または両末端もしくは全末端をアルキルエステル基またはアルキルエーテル基などに変換したアルキル誘導体等のポリエーテル類;エポキシ化大豆油、エポキシステアリン酸ベンジル、E-PS等のエポキシ基含有可塑剤類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤類;ピロメリット酸エステル類、アクリル系可塑剤を始めとするビニル系モノマーを種々の方法で重合して得られるビニル系重合体類、シクロヘキサンジカルボキシレート類、ジペンタエリスリトールエステル類等が挙げられる。本可塑剤は、単独で使用してもよく、2種以上を併用してもよいが、必ずしも必要とするものではない。 Examples of plasticizers include phthalate esters such as dibutyl phthalate, diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate, butylbenzyl phthalate; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, isodecyl succinate, etc. non-aromatic dibasic acid esters; aliphatic esters such as butyl oleate and methyl acetylrisilinolate; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Phosphoric acid esters such as dilyphosphate and tributylphosphate; trimellitic acid esters; polystyrenes such as polystyrene and poly-α-methylstyrene; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, alkyldiphenyl, partially hydrogenated terphenyl , etc.; polyether polyols such as polyethylene glycol, polypropylene glycol, ethylene oxide-propylene oxide copolymer, polytetramethylene glycol; one or both or all ends of the hydroxyl groups of these polyether polyols are alkyl Polyethers such as alkyl derivatives converted to ester groups or alkyl ether groups; Epoxy group-containing plasticizers such as epoxidized soybean oil, benzyl epoxy stearate, and E-PS; sebacic acid, adipic acid, azelaic acid, and phthalate. Polyester plasticizers obtained from dibasic acids such as acids and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and dipropylene glycol; including pyromellitic acid esters and acrylic plasticizers. Examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods, cyclohexanedicarboxylates, dipentaerythritol esters, and the like. The present plasticizers may be used alone or in combination of two or more types, but are not necessarily required.

 中でも、トリメリット酸エステル類、ピロメリット酸エステル類、シクロヘキサンジカルボキシレート類、ジペンタエリスリトールエステル類が、熱伝導性組成物の硬化後の熱伝導率を高めて、耐熱性を向上させることができるので好ましい。可塑剤を商品名で言えば、アデカサイザー C-8、C-880、C-9N、UL-6、UL-80,UL-100(以上いずれも株式会社ADEKA製)、ヘキサモールDINCH(BASF社製)が好ましく用いられる。 Among them, trimellitic acid esters, pyromellitic acid esters, cyclohexanedicarboxylates, and dipentaerythritol esters can increase the thermal conductivity of the thermally conductive composition after curing and improve the heat resistance. This is preferable because it can be done. The product names of plasticizers are ADEKASIZER C-8, C-880, C-9N, UL-6, UL-80, UL-100 (all manufactured by ADEKA Corporation), Hexamol DINCH (BASF Corporation). ) is preferably used.

 チクソ性付与剤としては特に限定されないが、例えば、ディスパロン(楠本化成製)に代表されるアマイドワックスや水添ヒマシ油、水添ヒマシ油誘導体類、脂肪酸の誘導体、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類、1,3,5-トリス(トリアルコキシシリルアルキル)イソシアヌレート等の有機系化合物、脂肪酸や樹脂酸で表面処理した炭酸カルシウムや微粉末シリカ、カーボンブラック等の無機系化合物が挙げられる。 The thixotropic agent is not particularly limited, but includes, for example, amide wax represented by Disparon (manufactured by Kusumoto Kasei), hydrogenated castor oil, hydrogenated castor oil derivatives, fatty acid derivatives, calcium stearate, aluminum stearate, and stearin. Metal soaps such as barium acid, organic compounds such as 1,3,5-tris(trialkoxysilylalkyl) isocyanurate, and inorganic compounds such as calcium carbonate, finely powdered silica, and carbon black surface-treated with fatty acids or resin acids. Examples include compounds.

 脱水剤としては、液状の加水分解性のエステル化合物が好ましい。加水分解性のエステル化合物としては、オルトぎ酸トリメチル、オルトぎ酸トリエチル、オルトぎ酸トリプロピル、オルトぎ酸トリブチル等のオルトぎ酸トリアルキル;オルト酢酸トリメチル、オルト酢酸トリエチル、オルト酢酸トリプロピル、オルト酢酸トリブチル等のオルト酢酸トリアルキル;およびそれらの化合物から成る群から選ばれるものが挙げられる。 As the dehydrating agent, a liquid hydrolyzable ester compound is preferable. Hydrolyzable ester compounds include trialkyl orthoformates such as trimethyl orthoformate, triethyl orthoformate, tripropyl orthoformate, and tributyl orthoformate; trimethyl orthoacetate, triethyl orthoacetate, tripropyl orthoacetate; Trialkyl orthoacetates such as tributyl orthoacetate; and compounds thereof.

 それ以外の加水分解性のエステル化合物としては、更に、式R4―nSiY(式中、Yは加水分解可能な基、Rは有機基で官能基を含んでいても含まなくともよい。nは1~4の整数であり、好ましくは3または4である)で示される加水分解性有機シリコン化合物が挙げられる。その具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリアセトキシシラン、オルトケイ酸テトラメチル(テトラメトキシシランないしはメチルシリケート)、オルトケイ酸テトラエチル(テトラエトキシシランないしはエチルシリケート)、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチル等のシラン化合物またはこれらの部分加水分解縮合物、γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン等のシランカップリング剤、またはこれらの部分加水分解縮合物等が挙げられる。これらの中から1種または2種以上併用して配合することができる。 Other hydrolyzable ester compounds include those having the formula R 4-n SiY n (wherein, Y is a hydrolyzable group, and R is an organic group, which may or may not contain a functional group). n is an integer from 1 to 4, preferably 3 or 4). Specific examples include vinyltrimethoxysilane, vinyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, methyltriacetoxysilane, tetramethyl orthosilicate (tetramethoxysilane or Silane compounds such as methyl silicate), tetraethyl orthosilicate (tetraethoxysilane or ethylsilicate), tetrapropyl orthosilicate, tetrabutyl orthosilicate, or partially hydrolyzed condensates thereof, γ-aminopropyltrimethoxysilane, γ-glycidoxy Propyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, Examples include silane coupling agents such as γ-mercaptopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, and partially hydrolyzed condensates thereof. One or more of these may be used in combination.

 脱水剤は、熱伝導性樹脂組成物の貯蔵安定性を向上させる上で、熱伝導性樹脂組成物へ添加しておくことが望ましい。より具体的には、脱水剤の量は、架橋性シリル基を有する重合体100重量部に対し、0.1~30重量部が好ましく、0.3~20重量部がより好ましく、0.5~10重量部がさらに好ましい。 The dehydrating agent is preferably added to the thermally conductive resin composition in order to improve the storage stability of the thermally conductive resin composition. More specifically, the amount of the dehydrating agent is preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, and 0.5 to 20 parts by weight, based on 100 parts by weight of the polymer having a crosslinkable silyl group. More preferably 10 parts by weight.

 なお、これらの脱水剤を熱伝導性樹脂組成物への添加は、硬化性組成物を無水の状態にしてから行なうのが好ましいが、硬化性組成物が水分を含んだままの状態で行っても構わない。 Note that it is preferable to add these dehydrating agents to the thermally conductive resin composition after the curable composition is in an anhydrous state. I don't mind.

 本発明の熱伝導性樹脂組成物は、前述した成分を、ドウミキサー(ニーダー)、ゲートミキサー、プラネタリーミキサー、バタフライミキサー、ディスパ―、または、3本ロールなどの混合機器を用いて混合することによって調製される。 The thermally conductive resin composition of the present invention can be prepared by mixing the above-mentioned components using a mixing device such as a dough mixer (kneader), gate mixer, planetary mixer, butterfly mixer, disperser, or three rolls. Prepared by.

 熱伝導性樹脂組成物の硬化前の粘度は、23℃での粘度をB型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度を測定することで得られる。本発明の熱伝導性樹脂組成物の粘度は、100Pa・s~600Pa・sであることが好ましい。当該構成であれば、熱伝導性樹脂組成物を塗布した際に当該熱伝導性樹脂組成物の流出を防ぎ、熱伝導性樹脂組成物を熱体表面に塗布した際に当該熱伝導性樹脂組成物の流れ出しが起きず、熱伝導性樹脂組成物から得られるフィルムの膜厚を所定の膜厚にコントロールできる。また、熱伝導性樹脂組成物の塗布速度が早くなるため、タクトタイムを短くできる。熱伝導性樹脂組成物の硬化前の粘度は、特に好ましくは、150Pa・s~550Pa・sである。 The viscosity of the thermally conductive resin composition before curing is determined by measuring the viscosity at 23°C with a No. B viscometer (BSII viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity can be obtained by measuring the viscosity after two rotations at 10 rpm using a No. 7 rotor. The viscosity of the thermally conductive resin composition of the present invention is preferably 100 Pa·s to 600 Pa·s. With this configuration, when the thermally conductive resin composition is applied, the thermally conductive resin composition is prevented from flowing out, and when the thermally conductive resin composition is applied to the surface of the heating body, the thermally conductive resin composition is prevented from flowing out. Materials do not flow out, and the thickness of the film obtained from the thermally conductive resin composition can be controlled to a predetermined thickness. Furthermore, since the coating speed of the thermally conductive resin composition is increased, the takt time can be shortened. The viscosity of the thermally conductive resin composition before curing is particularly preferably from 150 Pa·s to 550 Pa·s.

 熱伝導性樹脂組成物の硬化後の引張伸び率は、ASTM D882に準拠した方法で測定することができる。本発明の熱伝導性樹脂組成物の引張伸び率は、10%以上であることが好ましく、特に好ましくは15%以上である。硬化後の熱伝導性樹脂組成物が高い引張伸び率を有することで、熱伝導性樹脂組成物を基材へ塗布して硬化させた後で剥離する際に、剥がれ残りが無く良好に剥離できるので好ましい。 The tensile elongation rate of the thermally conductive resin composition after curing can be measured by a method based on ASTM D882. The tensile elongation rate of the thermally conductive resin composition of the present invention is preferably 10% or more, particularly preferably 15% or more. Since the thermally conductive resin composition after curing has a high tensile elongation rate, when the thermally conductive resin composition is applied to a base material, cured, and then peeled off, there is no residual peeling and it can be peeled off well. Therefore, it is preferable.

 本発明の一態様に係る放熱部材は、本発明の一態様に係る熱伝導性樹脂組成物が、発熱体および/または放熱体と一体化した状態で硬化してなるものである。 A heat dissipation member according to one embodiment of the present invention is obtained by curing the thermally conductive resin composition according to one embodiment of the present invention in a state where it is integrated with a heating element and/or a heat dissipation body.

 本発明の熱伝導性樹脂組成物は、硬化後に3W/mK以上の熱伝導率を有するため、2つの物体間(例えば、CPUとクーラントとの間)に塗布されることで、CPUからクーラントへより効率的に熱を伝導する熱伝導性物質として機能することができる。本発明の熱伝導性樹脂組成物は、発熱材料とヒートスプレッダーとの間、または、ヒートスプレッダーと冷却部材との間にある、熱を伝えるサーマルインターフェイスとして用いることが出来る。また、本発明の熱伝導性樹脂組成物は、ヒートスプレッダー自身としても使用可能である。発熱材料としては、特に限定はされないが、発熱性のあるヒーター、温度センサ、演算素子、トランジスタ、発光素子などの電子部品等が挙げられる。冷却部材としては、特に限定はされないが、放熱材料として放熱フィン等のヒートシンク、グラファイトシート(グラファイトフィルム)、液体セラミックスやペルチェ素子等が挙げられる。本発明の熱伝導性樹脂組成物は、これらの発熱材料からの熱を冷却部材等に放散させる熱伝導性材料として好適に用いられるものであり、放熱材料自身として用いられ得る。また、当該放熱材料は、ヒートスプレッダーと冷却部材とを兼ねても構わない。また最近では携帯電話内の薄型基盤チップ上のシール材、または、シールド缶内へ本発明の熱伝導性樹脂組成物を充填し、当該熱伝導性樹脂組成物を放熱用材料としても使用可能である。 Since the thermally conductive resin composition of the present invention has a thermal conductivity of 3 W/mK or more after curing, it can be applied between two objects (for example, between a CPU and a coolant) to transfer the heat from the CPU to the coolant. It can function as a thermally conductive material that conducts heat more efficiently. The thermally conductive resin composition of the present invention can be used as a thermal interface for transmitting heat between a heat generating material and a heat spreader or between a heat spreader and a cooling member. Furthermore, the thermally conductive resin composition of the present invention can also be used as a heat spreader itself. Examples of the heat-generating material include, but are not particularly limited to, electronic components such as heat-generating heaters, temperature sensors, arithmetic elements, transistors, and light-emitting elements. The cooling member is not particularly limited, but examples of heat dissipation materials include heat sinks such as heat dissipation fins, graphite sheets (graphite films), liquid ceramics, Peltier elements, and the like. The thermally conductive resin composition of the present invention is suitably used as a thermally conductive material that dissipates heat from these heat generating materials to a cooling member, etc., and can be used as a heat dissipating material itself. Further, the heat dissipating material may serve both as a heat spreader and a cooling member. Recently, the thermally conductive resin composition of the present invention can also be used as a heat dissipation material by filling it into a sealing material on a thin base chip in a mobile phone or into a shield can. be.

 本発明は、以下のように構成することができる。 The present invention can be configured as follows.

 〔1〕バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする、熱伝導性樹脂組成物。 [1] A thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler contains at least aluminum oxide and zinc oxide, and after curing the thermally conductive composition. A thermally conductive resin composition having a thermal conductivity of 3 W/mK or more.

 〔2〕前記酸化アルミニウムは、平均粒子径D50が20μm~40μmの第一の粒子と、平均粒子径D50が5μm~19μmの第二の粒子とを含むことを特徴とする、〔1〕に記載の熱伝導性樹脂組成物。 [2] The aluminum oxide described in [1], characterized in that the aluminum oxide includes first particles having an average particle diameter D50 of 20 μm to 40 μm and second particles having an average particle diameter D50 of 5 μm to 19 μm. thermally conductive resin composition.

 〔3〕前記熱伝導性樹脂組成物に含まれる前記酸化アルミニウムの含有率が、全熱伝導性充填材100重量部に対して、前記第一の粒子が30重量部~50重量部、前記第二の粒子が30重量部~45重量部であることを特徴とする、〔2〕に記載の熱伝導性樹脂組成物。 [3] The content of the aluminum oxide contained in the thermally conductive resin composition is such that the content of the first particles is 30 to 50 parts by weight, based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition according to [2], wherein the second particle is 30 to 45 parts by weight.

 〔4〕前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛が、平均粒子径D50で0.1μm~3μmであることを特徴とする、〔1〕~〔3〕の何れかに記載の熱伝導性樹脂組成物。 [4] The heat treatment according to any one of [1] to [3], wherein the zinc oxide contained in the thermally conductive resin composition has an average particle size D50 of 0.1 μm to 3 μm. Conductive resin composition.

 〔5〕前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛の含有率が、全熱伝導性充填材100重量部に対して、15重量部~30重量部であることを特徴とする、〔1〕~〔4〕の何れかに記載の熱伝導性樹脂組成物。 [5] The content of the zinc oxide contained in the thermally conductive resin composition is 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition according to any one of [1] to [4].

 〔6〕前記バインダーが、硬化性アクリル系樹脂及び硬化性ポリエーテル系樹脂を含むことを特徴とする、〔1〕~〔5〕の何れかに記載の熱伝導性樹脂組成物。 [6] The thermally conductive resin composition according to any one of [1] to [5], wherein the binder contains a curable acrylic resin and a curable polyether resin.

 〔7〕前記バインダーが、硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、〔6〕に記載の熱伝導性樹脂組成物。 [7] The thermally conductive resin composition according to [6], wherein the binder contains a curable acrylic resin and a curable polypropylene oxide resin.

 〔8〕前記バインダーが、非硬化性アクリル系樹脂及び硬化性ポリエーテル系樹脂を含むことを特徴とする、〔1〕~〔5〕の何れかに記載の熱伝導性樹脂組成物。 [8] The thermally conductive resin composition according to any one of [1] to [5], wherein the binder contains a non-curing acrylic resin and a curable polyether resin.

 〔9〕前記バインダーが、非硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、〔8〕に記載の熱伝導性樹脂組成物。 [9] The thermally conductive resin composition according to [8], wherein the binder contains a non-curing acrylic resin and a curable polypropylene oxide resin.

 〔10〕〔1〕~〔9〕の何れかに記載の熱伝導性樹脂組成物が、発熱体および/または放熱体と一体化した状態で硬化してなる、放熱部材。 [10] A heat radiating member obtained by curing the thermally conductive resin composition according to any one of [1] to [9] in a state where it is integrated with a heating element and/or a heat radiating element.

 本発明は、以下のように構成することができる。 The present invention can be configured as follows.

 〔1〕バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、前記熱伝導性組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする、熱伝導性樹脂組成物。 [1] A thermally conductive resin composition containing a binder and a thermally conductive filler, wherein the thermally conductive filler contains at least aluminum oxide and zinc oxide, and after curing the thermally conductive composition. A thermally conductive resin composition having a thermal conductivity of 3 W/mK or more.

 〔2〕前記酸化アルミニウムは、平均粒子径D50が20μm~40μmの第一の粒子と、平均粒子径D50が5μm~19μmの第二の粒子とを含むことを特徴とする、〔1〕に記載の熱伝導性樹脂組成物。 [2] The aluminum oxide described in [1], characterized in that the aluminum oxide includes first particles having an average particle diameter D50 of 20 μm to 40 μm and second particles having an average particle diameter D50 of 5 μm to 19 μm. thermally conductive resin composition.

 〔3〕前記熱伝導性樹脂組成物に含まれる前記酸化アルミニウムの含有率が、全熱伝導性充填材100重量部に対して、前記第一の粒子が30重量部~50重量部、前記第二の粒子が30重量部~45重量部であることを特徴とする、〔2〕に記載の熱伝導性樹脂組成物。 [3] The content of the aluminum oxide contained in the thermally conductive resin composition is such that the content of the first particles is 30 to 50 parts by weight, based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition according to [2], wherein the second particle is 30 to 45 parts by weight.

 〔4〕前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛が、平均粒子径D50で0.1μm~3μmであることを特徴とする、〔1〕~〔3〕の何れかに記載の熱伝導性樹脂組成物。 [4] The heat treatment according to any one of [1] to [3], wherein the zinc oxide contained in the thermally conductive resin composition has an average particle size D50 of 0.1 μm to 3 μm. Conductive resin composition.

 〔5〕前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛の含有率が、全熱伝導性充填材100重量部に対して、15重量部~30重量部であることを特徴とする、〔1〕~〔4〕の何れかに記載の熱伝導性樹脂組成物。 [5] The content of the zinc oxide contained in the thermally conductive resin composition is 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition according to any one of [1] to [4].

 〔6〕前記バインダーが、ポリマー末端のケイ素原子上に水酸基または加水分解性基を少なくとも1個有する、反応性ケイ素含有ポリマーであり、前記反応性ケイ素含有ポリマーのポリマー成分が、硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、〔1〕~〔5〕の何れかに記載の熱伝導性樹脂組成物。 [6] The binder is a reactive silicon-containing polymer having at least one hydroxyl group or hydrolyzable group on a silicon atom at the end of the polymer, and the polymer component of the reactive silicon-containing polymer is a curable acrylic resin. and a curable polypropylene oxide-based resin, the thermally conductive resin composition according to any one of [1] to [5].

 〔7〕前記バインダーが、ポリマー末端のケイ素原子上に水酸基または加水分解性基を少なくとも1個有する反応性ケイ素含有ポリマーであり、前記反応性ケイ素含有ポリマーのポリマー成分が、非硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、〔1〕~〔5〕の何れかに記載の熱伝導性樹脂組成物。 [7] The binder is a reactive silicon-containing polymer having at least one hydroxyl group or hydrolyzable group on the silicon atom at the end of the polymer, and the polymer component of the reactive silicon-containing polymer is a non-curing acrylic resin. and a curable polypropylene oxide-based resin, the thermally conductive resin composition according to any one of [1] to [5].

 〔8〕〔1〕~〔7〕の何れかに記載の熱伝導性樹脂組成物が、発熱体および/または放熱体と一体化した状態で硬化してなる、放熱部材。 [8] A heat radiating member obtained by curing the thermally conductive resin composition according to any one of [1] to [7] in a state where it is integrated with a heating element and/or a heat radiating element.

 〔実施例1〕
 バインダーとして硬化性アクリル系樹脂 カネカXMAP樹脂((株)カネカ社製)50重量部、および硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX530((株)カネカ社製)50重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)100重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、12μm)900重量部、酸化アルミニウム(DENKA(株)製、平均粒子径D50、23μm)950重量部、および酸化亜鉛(堺化学(株)酸化亜鉛1種、平均粒子径D50、0.75μm)550重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(ビニルトリメトキシシラン)5重量部、および硬化触媒 ネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Example 1]
As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 900 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 12 μm) as a thermally conductive filler, oxidized 950 parts by weight of aluminum (manufactured by DENKA Co., Ltd., average particle size D50, 23 μm) and 550 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 μm) were added to a 5L butterfly mixer. The mixture was dehydrated by vacuuming while heating and kneading. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (vinyltrimethoxysilane) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostan U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は380Pa・Sであった。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 380 Pa·S.

 (熱伝導率)
 熱伝導性樹脂組成物を100mm×100mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は3.0W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was poured into a 100 mm x 100 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.0 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は17%であった。本実施例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が高く、基材への塗布後の剥離性が良好であった。
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 17%. The cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.

 〔実施例2〕
 バインダーとして硬化性アクリル系樹脂 カネカXMAP樹脂((株)カネカ社製)50重量部、および硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX530((株)カネカ社製)50重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)100重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、12μm)850重量部、酸化アルミニウム(DENKA(株)製、平均粒子径D50、23μm)1,000重量部、および酸化亜鉛(堺化学(株)酸化亜鉛1種、平均粒子径D50、0.75μm)500重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(A171)5重量部、および硬化触媒 ネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Example 2]
As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 850 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 12 μm) as a thermally conductive filler, oxidized 5L of 1,000 parts by weight of aluminum (manufactured by DENKA Co., Ltd., average particle size D50, 23 μm) and 500 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 μm) The mixture was heated and kneaded using a butterfly mixer while being vacuumed and dehydrated. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は420Pa・Sであった。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 420 Pa·S.

 (熱伝導率)
 熱伝導性樹脂組成物をテフロン(登録商標)板の上においた100mm×100mm×2mm厚の型枠に塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は3.1W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.1 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は15%であった。本実施例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が高く、基材への塗布後の剥離性が良好であった。
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 15%. The cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.

 〔実施例3〕
 バインダーとして硬化性アクリル系樹脂 カネカXMAP樹脂((株)カネカ社製)50重量部、および硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX530((株)カネカ社製)50重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)100重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、9μm)950重量部、酸化アルミニウム(SHANDONG JCT ABRASIVES CO., LTD製、平均粒子径D50、30μm)900重量部、および酸化亜鉛(堺化学(株)酸化亜鉛1種、平均粒子径D50、0.75μm)600重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(A171)5重量部、および硬化触媒 ネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Example 3]
As a binder, 50 parts by weight of a curable acrylic resin Kaneka - 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), and 950 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 9 μm) as a thermally conductive filler, oxidized 900 parts by weight of aluminum (manufactured by SHANDONG JCT ABRASIVES CO., LTD, average particle size D50, 30 μm), and 600 parts by weight of zinc oxide (1st class zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 μm), The mixture was heated and kneaded using a 5L butterfly mixer while being vacuumed and dehydrated. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は410Pa・Sであった。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 410 Pa·S.

 (熱伝導率)
 熱伝導性樹脂組成物をテフロン(登録商標)板の上においた100mm×100mm×2mm厚の型枠に塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は3.2W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.2 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は18%であった。本実施例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が高く、基材への塗布後の剥離性が良好であった。
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 18%. The cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.

 〔実施例4〕
 バインダーとして非硬化性アクリル系樹脂 ARUFON UP1020(東亞合成株式会社製)50重量部、および硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX530((株)カネカ社製)50重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)100重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、9μm)950重量部、酸化アルミニウム(SHANDONG JCT ABRASIVES CO., LTD製、平均粒子径D50、30μm)900重量部、および酸化亜鉛(堺化学(株)酸化亜鉛1種、平均粒子径D50、0.75μm)600重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(A171)5重量部、および硬化触媒 ネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Example 4]
50 parts by weight of non-curing acrylic resin ARUFON UP1020 (manufactured by Toagosei Co., Ltd.) as a binder, 50 parts by weight of curable polyether resin Kaneka thylyl resin product number SAX530 (manufactured by Kaneka Co., Ltd.), and 50 parts by weight of non-curing acrylic resin ARUFON UP1020 (manufactured by Toagosei Co., Ltd.); 100 parts by weight of isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF), 950 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle size D50, 9 μm) as a thermally conductive filler, aluminum oxide (manufactured by SHANDONG JCT ABRASIVES CO., LTD, average particle size D50, 30 μm) 900 parts by weight, and 600 parts by weight of zinc oxide (Sakai Chemical Co., Ltd. zinc oxide type 1, average particle size D50, 0.75 μm), 5L The mixture was heated and kneaded using a butterfly mixer while being vacuumed and dehydrated. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は420Pa・Sであった。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 420 Pa·S.

 (熱伝導率)
 熱伝導性樹脂組成物をテフロン(登録商標)板の上においた100mm×100mm×2mm厚の型枠に塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は3.1W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 3.1 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は20%であった。本実施例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が高く、基材への塗布後の剥離性が良好であった。
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 20%. The cured sheet produced from the thermally conductive resin composition of this example had a high tensile elongation rate and good releasability after being applied to a substrate.

 〔比較例1〕
 バインダーとして硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX580((株)カネカ社製)120重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)120重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、9μm)1190重量部、酸化アルミニウム(SHANDONG JCT ABRASIVES CO., LTD製、平均粒子径D50、30μm)825重量部、および酸化アルミニウム(DENKA(株)製、平均粒子径D50、0.24μm)190重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(A171)5重量部、および硬化触媒であるネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Comparative example 1]
120 parts by weight of curable polyether resin Kaneka thylyl resin SAX580 (manufactured by Kaneka Corporation) as a binder, 120 parts by weight of di-isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF Corporation) as a plasticizer, and , 1190 parts by weight of aluminum oxide (manufactured by DENKA Co., Ltd., average particle diameter D50, 9 μm) as a thermally conductive filler, 825 parts by weight of aluminum oxide (manufactured by SHANDONG JCT ABRATIVES CO., LTD., average particle diameter D50, 30 μm) , and 190 parts by weight of aluminum oxide (manufactured by DENKA Corporation, average particle diameter D50, 0.24 μm) were dehydrated by vacuuming while heating and kneading using a 5 L butterfly mixer. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) as a curing catalyst were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は710Pa・Sであり、熱伝導性樹脂組成物の塗布性に問題が発生した。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 710 Pa·S, and a problem occurred in the coatability of the thermally conductive resin composition.

 (熱伝導率)
 熱伝導性樹脂組成物をテフロン(登録商標)板の上においた100mm×100mm×2mm厚の型枠に塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は2.5W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 2.5 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は9%であった。本比較例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が低く、基材への塗布後の剥離性が悪かった。
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 9%. The cured sheet produced from the thermally conductive resin composition of this comparative example had a low tensile elongation rate and poor releasability after being applied to a substrate.

 〔比較例2〕
 バインダーとして硬化性ポリエーテル系樹脂 カネカサイリル樹脂品番SAX580((株)カネカ社製)100重量部、可塑剤としてのジ-イソノニル-シクロヘキサン-ジカルボキシレート(DINCH)(BASF社製)100重量部、並びに、熱伝導性充填材としての酸化アルミニウム(DENKA(株)製、平均粒子径D50、7μm)1200重量部、および酸化亜鉛(堺化学(株)酸化亜鉛1種、平均粒子径D50、0.75μm)550重量部を、5Lバタフライミキサーを用いて加熱混練しながら真空引きを行って脱水した。脱水完了後に混練物を冷却し、当該混錬物へ、脱水剤(A171)5重量部、および硬化触媒 ネオデカン酸スズ(日東化成(株)ネオスタンU50)5重量部を混合した。これにより、熱伝導性樹脂組成物を調製した。本製品を昭和丸筒株式会社製のハイバリアカートリッジに充填し保管した。熱伝導性充填材の配合割合は表1に記載している。
[Comparative example 2]
100 parts by weight of a curable polyether resin Kaneka thylyl resin SAX580 (manufactured by Kaneka Corporation) as a binder, 100 parts by weight of di-isononyl-cyclohexane-dicarboxylate (DINCH) (manufactured by BASF Corporation) as a plasticizer, and , 1200 parts by weight of aluminum oxide (manufactured by DENKA Co., Ltd., average particle size D50, 7 μm) as a thermally conductive filler, and zinc oxide (Type 1 zinc oxide, manufactured by Sakai Chemical Co., Ltd., average particle size D50, 0.75 μm) ) 550 parts by weight was dehydrated by evacuation while heating and kneading using a 5L butterfly mixer. After the dehydration was completed, the kneaded product was cooled, and 5 parts by weight of a dehydrating agent (A171) and 5 parts by weight of a curing catalyst tin neodecanoate (Neostane U50, manufactured by Nitto Kasei Co., Ltd.) were mixed into the kneaded product. In this way, a thermally conductive resin composition was prepared. This product was filled and stored in a high barrier cartridge manufactured by Showa Marutsutsu Co., Ltd. The blending ratio of the thermally conductive filler is shown in Table 1.

 (平均粒子径D50)
 平均粒子径D50は、マイクロトラック・ベル株式会社製マイクロトラック MT3300EX IIを用いて測定を行った。
(Average particle diameter D50)
The average particle diameter D50 was measured using Microtrac MT3300EX II manufactured by Microtrac Bell Co., Ltd.

 (粘度)
 熱伝導性樹脂組成物の23℃での粘度を、B型粘度計(東機産業(株)製BSII型粘度計)でNo.7のローターを使用し10rpmで2回転後の粘度として測定した。その結果、粘度は650Pa・Sであり、熱伝導性樹脂組成物の塗布性に問題が発生した。
(viscosity)
The viscosity of the thermally conductive resin composition at 23° C. was measured using a B-type viscometer (BSII-type viscometer manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured after two rotations at 10 rpm using a No. 7 rotor. As a result, the viscosity was 650 Pa·S, which caused a problem in the coatability of the thermally conductive resin composition.

 (熱伝導率)
 熱伝導性樹脂組成物をテフロン(登録商標)板の上においた100mm×100mm×2mm厚の型枠に塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートを15mm×15mm×2mmに切り出して、HOT DISK測定装置(京都電子(株) TPS 2500S)を用いて熱伝導率を測定した。熱伝導率は2.2W/mKであった。
(Thermal conductivity)
The thermally conductive resin composition was spread on a 100 mm x 100 mm x 2 mm thick mold placed on a Teflon (registered trademark) plate and held in an atmosphere of 23°C/50% RH for 12 hours to produce a cured sheet. did. This sheet was cut into a size of 15 mm x 15 mm x 2 mm, and the thermal conductivity was measured using a HOT DISK measuring device (TPS 2500S, manufactured by Kyoto Denshi Co., Ltd.). The thermal conductivity was 2.2 W/mK.

 (引張伸び)
 熱伝導性樹脂組成物を150mm×150mm×2mm厚の型枠に流し込み塗り広げて、23℃/50%RHの雰囲気下で12時間保持して硬化シートを作製した。本シートをASTM D882に準拠した方法にて引張伸びを測定した。引張伸び率は33%であった。本比較例の熱伝導性樹脂組成物から作製された硬化シートは、引張伸び率が高く、基材への塗布後の剥離性が良好であった。

Figure JPOXMLDOC01-appb-T000001
(Tensile elongation)
The thermally conductive resin composition was poured into a 150 mm x 150 mm x 2 mm thick mold, spread, and held in an atmosphere of 23° C./50% RH for 12 hours to produce a cured sheet. The tensile elongation of this sheet was measured in accordance with ASTM D882. The tensile elongation rate was 33%. The cured sheet produced from the thermally conductive resin composition of this comparative example had a high tensile elongation rate and good releasability after being applied to a substrate.
Figure JPOXMLDOC01-appb-T000001

 本発明の一態様は、放熱部材に利用することができ、より具体的に、電子機器(例えば、パソコン、携帯電話、スマートフォン)に備えられる放熱部材に利用することができる。

 
One embodiment of the present invention can be used for a heat radiating member, and more specifically, can be used for a heat radiating member included in an electronic device (for example, a personal computer, a mobile phone, a smartphone).

Claims (10)

 バインダーと熱伝導性充填材とを含む熱伝導性樹脂組成物であって、
 前記熱伝導性充填材が、少なくとも酸化アルミニウムと酸化亜鉛とを含み、
 前記熱伝導性組成物の硬化後の熱伝導率が、3W/mK以上であることを特徴とする、熱伝導性樹脂組成物。
A thermally conductive resin composition comprising a binder and a thermally conductive filler,
The thermally conductive filler contains at least aluminum oxide and zinc oxide,
A thermally conductive resin composition, wherein the thermally conductive composition has a thermal conductivity of 3 W/mK or more after curing.
 前記酸化アルミニウムは、平均粒子径D50が20μm~40μmの第一の粒子と、平均粒子径D50が5μm~19μmの第二の粒子とを含むことを特徴とする、請求項1に記載の熱伝導性樹脂組成物。 Thermal conduction according to claim 1, wherein the aluminum oxide includes first particles having an average particle size D50 of 20 μm to 40 μm and second particles having an average particle size D50 of 5 μm to 19 μm. resin composition.  前記熱伝導性樹脂組成物に含まれる前記酸化アルミニウムの含有率が、全熱伝導性充填材100重量部に対して、前記第一の粒子が30重量部~50重量部、前記第二の粒子が30重量部~45重量部であることを特徴とする、請求項2に記載の熱伝導性樹脂組成物。 The content of the aluminum oxide contained in the thermally conductive resin composition is such that the content of the first particles is 30 to 50 parts by weight, and the content of the aluminum oxide is 30 to 50 parts by weight, based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition according to claim 2, wherein the amount is 30 to 45 parts by weight.  前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛が、平均粒子径D50で0.1μm~3μmであることを特徴とする、請求項1に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 1, wherein the zinc oxide contained in the thermally conductive resin composition has an average particle diameter D50 of 0.1 μm to 3 μm.  前記熱伝導性樹脂組成物に含まれる前記酸化亜鉛の含有率が、全熱伝導性充填材100重量部に対して、15重量部~30重量部であることを特徴とする、請求項1に記載の熱伝導性樹脂組成物。 Claim 1, wherein the content of the zinc oxide contained in the thermally conductive resin composition is 15 parts by weight to 30 parts by weight based on 100 parts by weight of the total thermally conductive filler. The thermally conductive resin composition described above.  前記バインダーが、硬化性アクリル系樹脂及び硬化性ポリエーテル系樹脂を含むことを特徴とする、請求項1に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 1, wherein the binder contains a curable acrylic resin and a curable polyether resin.  前記バインダーが、硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、請求項6に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 6, wherein the binder contains a curable acrylic resin and a curable polypropylene oxide resin.  前記バインダーが、非硬化性アクリル系樹脂及び硬化性ポリエーテル系樹脂を含むことを特徴とする、請求項1に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 1, wherein the binder contains a non-curable acrylic resin and a curable polyether resin.  前記バインダーが、非硬化性アクリル系樹脂及び硬化性ポリプロピレンオキサイド系樹脂を含むことを特徴とする、請求項8に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 8, wherein the binder contains a non-curable acrylic resin and a curable polypropylene oxide resin.  請求項1~9の何れか1項に記載の熱伝導性樹脂組成物が、発熱体および/または放熱体と一体化した状態で硬化してなる、放熱部材。 A heat dissipating member obtained by curing the thermally conductive resin composition according to any one of claims 1 to 9 while being integrated with a heating element and/or a heat dissipating element.
PCT/JP2023/008719 2022-03-28 2023-03-08 Thermally conductive resin composition and heat dissipating member obtained by curing said composition WO2023189310A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380023597.9A CN118871532A (en) 2022-03-28 2023-03-08 Thermally conductive resin composition and heat dissipation component obtained by curing the composition
JP2024511609A JPWO2023189310A1 (en) 2022-03-28 2023-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052310 2022-03-28
JP2022-052310 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189310A1 true WO2023189310A1 (en) 2023-10-05

Family

ID=88201451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008719 WO2023189310A1 (en) 2022-03-28 2023-03-08 Thermally conductive resin composition and heat dissipating member obtained by curing said composition

Country Status (3)

Country Link
JP (1) JPWO2023189310A1 (en)
CN (1) CN118871532A (en)
WO (1) WO2023189310A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021069A (en) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd Heat-radiating filler composition, resin composition, heat-radiating grease and heat-radiating coating composition
WO2020153217A1 (en) * 2019-01-24 2020-07-30 信越化学工業株式会社 Highly thermally conductive silicone composition and method for producing same
WO2021109051A1 (en) * 2019-12-05 2021-06-10 Dow Silicones Corporation Highly thermally conductive flowable silicone composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021069A (en) * 2009-07-14 2011-02-03 Sakai Chem Ind Co Ltd Heat-radiating filler composition, resin composition, heat-radiating grease and heat-radiating coating composition
WO2020153217A1 (en) * 2019-01-24 2020-07-30 信越化学工業株式会社 Highly thermally conductive silicone composition and method for producing same
WO2021109051A1 (en) * 2019-12-05 2021-06-10 Dow Silicones Corporation Highly thermally conductive flowable silicone composition

Also Published As

Publication number Publication date
JPWO2023189310A1 (en) 2023-10-05
CN118871532A (en) 2024-10-29

Similar Documents

Publication Publication Date Title
TWI744361B (en) Thermal conductive polysiloxane composition
JP5607298B2 (en) Thermal conductive material
CN104813758B (en) Heat-radiating structure
TWI601249B (en) Cooling structure
JP6656792B2 (en) Liquid resin composition for electronic component and electronic component device
TWI853961B (en) Thermally conductive polysiloxane composition
JP2014024958A (en) Curable composition
JP4629475B2 (en) Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the composition
JP5828835B2 (en) Thermally conductive moisture curable resin composition
JP2010111870A (en) Curable composition and sealing material for multilayered glass
JP6732145B1 (en) Thermally conductive resin composition, thermal conductive sheet and manufacturing method
JP2024511976A (en) One-component thermally conductive ambient temperature curable material
JP2016079230A (en) Heat storage-type heat-conductive curable composition and heat storage-type heat-conductive resin hardened material
JP2013127034A (en) Epoxy resin composition for sealing sheet-like electronic parts and electronic part device using the same
WO2023189310A1 (en) Thermally conductive resin composition and heat dissipating member obtained by curing said composition
KR20210122237A (en) thermal interface material
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JPWO2013051721A1 (en) Thermally conductive composition for low outgas
JP2012188507A (en) Composition for heat dissipation sheet and heat dissipation sheet formed by curing the same
JP2024137971A (en) Resin composition for heat dissipating gap filler, heat dissipating gap filler and article
JP2002363429A (en) Heat-conductive composition
JP5909911B2 (en) Liquid resin composition and semiconductor device
JPWO2020008567A1 (en) Heat conductive resin composition, heat conductive sheet, and method for manufacturing heat conductive sheet
JP5917993B2 (en) Bonded body containing thermally conductive resin
JP2014001254A (en) Heat conductive material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380023597.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23779337

Country of ref document: EP

Kind code of ref document: A1