[go: up one dir, main page]

WO2023173428A1 - 电池单体及其制造方法和制造设备、电池、用电设备 - Google Patents

电池单体及其制造方法和制造设备、电池、用电设备 Download PDF

Info

Publication number
WO2023173428A1
WO2023173428A1 PCT/CN2022/081788 CN2022081788W WO2023173428A1 WO 2023173428 A1 WO2023173428 A1 WO 2023173428A1 CN 2022081788 W CN2022081788 W CN 2022081788W WO 2023173428 A1 WO2023173428 A1 WO 2023173428A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
pressure relief
relief mechanism
wall
battery
Prior art date
Application number
PCT/CN2022/081788
Other languages
English (en)
French (fr)
Inventor
陈新祥
陈龙
林蹬华
黄守君
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202290000656.1U priority Critical patent/CN222980706U/zh
Priority to EP22931459.6A priority patent/EP4485657A1/en
Priority to PCT/CN2022/081788 priority patent/WO2023173428A1/zh
Publication of WO2023173428A1 publication Critical patent/WO2023173428A1/zh
Priority to US18/592,996 priority patent/US20240204341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell and its manufacturing method and manufacturing equipment, batteries, and electrical equipment.
  • Lithium-ion batteries have the advantages of small size, high energy density, long cycle life and long storage time. They are widely used in some electronic devices, electric vehicles and electric toys, such as in mobile phones, laptops and electric bicycles. , electric cars, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes and electric tools have been widely used.
  • the pressure relief mechanism on lithium-ion batteries has an important impact on the safety performance of lithium-ion batteries. For example, when a lithium-ion battery undergoes short circuit, overcharge, etc., it may cause the internal thermal runaway of the lithium-ion battery and cause the internal air pressure to rise suddenly. At this time, a pressure relief mechanism is required to release the internal air pressure outward to prevent the lithium-ion battery from being damaged. explosion occurs. Therefore, the design of the pressure relief mechanism is extremely important.
  • This application provides a battery cell, its manufacturing method and manufacturing equipment, batteries, and electrical equipment to improve the performance of the pressure relief mechanism on the battery cell.
  • a battery cell including: a casing; a plurality of electrode assemblies housed in the casing; and a pressure relief mechanism disposed on the first wall of the casing and located on the first wall of the casing. The position on the first wall is opposite to the area between two adjacent electrode assemblies among the plurality of electrode assemblies.
  • the pressure relief mechanism is used to release the pressure when the internal pressure of the battery cell exceeds a threshold value. Describe the internal pressure of the battery cell.
  • the battery cell of the present application includes a plurality of electrode assemblies, and a pressure relief mechanism is provided on the first wall of the casing of the battery cell.
  • the pressure relief mechanism is used to discharge the battery when the internal pressure of the battery cell exceeds a threshold.
  • the internal pressure of the monomer is located on the first wall at a position opposite to a region between two adjacent electrode assemblies among the plurality of electrode assemblies. In this way, when the internal pressure of the battery cell reaches the threshold, the path formed by the pressure relief mechanism for the internal pressure to be released is shorter, which is conducive to pressure relief and improves the safety of the battery cell.
  • the battery cell is a rectangular parallelepiped
  • the pressure relief mechanism is located on the first wall between the two adjacent electrode assemblies arranged along the length direction of the battery cell. The relative position of the area.
  • the battery cell may be a rectangular parallelepiped, which includes electrode assemblies arranged along the length direction. Since the shell of the battery cell is long, it is not conducive to the release of the internal pressure of the battery cell. Therefore, the pressure relief mechanism is Disposed on the first wall at a position opposite to the area between two adjacent electrode assemblies arranged along the length direction of the battery cell, the pressure relief mechanism can be used to form a pressure relief mechanism when the internal pressure of the battery cell exceeds a threshold value. An effective path is provided for the internal pressure to be released, which solves the problem that long battery cells are not easy to release pressure.
  • the electrode assembly includes a first pole piece and a second pole piece.
  • the first pole piece and the second pole piece are wound around a winding axis, and the winding axis is parallel to The length direction of the battery cell; alternatively, the electrode assembly includes a plurality of first pole pieces and a plurality of second pole pieces, and the plurality of first pole pieces and the plurality of second pole pieces are along a second The directions are alternately stacked, and the second direction is perpendicular to the length direction; or, the electrode assembly includes a first pole piece and a plurality of second pole pieces, and the first pole piece includes a plurality of laminated segments and a plurality of The bending section is used to connect two adjacent laminated sections. The plurality of second pole pieces and the plurality of laminated sections are alternately stacked along a second direction, and the second direction is perpendicular to the length direction.
  • the winding axis of the first pole piece and the second pole piece of the electrode assembly is parallel to the length direction of the battery cell, or the stacking direction of the first pole piece and the second pole piece of the electrode assembly is perpendicular to the battery
  • the pressure relief mechanism is located on the first wall at a position opposite to the area between the first electrode assembly and the second electrode assembly arranged along the length direction.
  • the two tabs of the electrode assembly are arranged on a first end face of the electrode assembly, and the first end face is perpendicular to the length direction of the battery cell, and two adjacent electrodes The tabs of the assembly face in opposite directions and both face the outside of the battery cell.
  • the tabs of two adjacent electrode assemblies can be respectively located at two end surfaces of the battery cell in the length direction, so as to facilitate connection with the electrode terminals of the battery cell.
  • the housing has a first opening and a second opening opposite to each other along the length direction of the battery cell, and the battery cell further includes a first end cover and a second end cover, The first end cap and the second end cap are used to cover the first opening and the second opening respectively.
  • the housing of the battery cell may have a first opening and a second opening along the length direction of the battery cell, and the battery cell further includes a first opening for covering the first opening and the second opening respectively.
  • the end cap and the second end cap facilitate the insertion of the electrode assembly into the case and simplify the assembly process of the battery cells.
  • the two adjacent electrode assemblies arranged along the length direction of the battery cell are insulated from each other; the first end cap is provided with the positive electrode terminal of the battery cell and The negative electrode terminal is used to draw out the electrical energy of one of the two adjacent electrode assemblies; the second end cover is provided with the positive electrode terminal and the negative electrode terminal of the battery cell, used to draw out the electric energy of one of the two adjacent electrode assemblies.
  • the positive electrode terminal and the negative electrode terminal of the battery cell are provided on both the first end cover and the second end cover. Since both the first end cover and the second end cover are provided with a set of electrode terminals, and along the The adjacent electrode assemblies arranged in the length direction of the battery cell are insulated. Therefore, the two sets of electrode terminals can conduct the current of different electrode assemblies respectively to reduce the current flowing between the electrode assemblies and reduce the heat generated by the battery cell. Improved the charge and discharge performance of battery cells.
  • the thickness of the first wall is greater than the thickness of other walls on the housing other than the first wall.
  • the thickness of the first wall used to set the pressure relief mechanism on the housing is thicker than other walls, thereby improving the welding reliability of the pressure relief mechanism and making the first wall less likely to deform, thereby making the pressure relief
  • the mechanism is less affected by creep caused by the internal pressure, thereby making the burst pressure of the pressure relief mechanism less affected by the creep, so that the pressure relief mechanism can effectively relieve the internal pressure when the internal pressure is greater than the threshold.
  • reducing the thickness of other walls also reduces the manufacturing cost of the housing.
  • the thickness of the pressure relief mechanism at an effective position is smaller than the thickness of the housing, and the effective position is a preferentially opened position of the pressure relief mechanism.
  • the pressure relief mechanism by setting the thickness of the effective position of the pressure relief mechanism to be smaller than the thickness of the casing, when the internal pressure of the battery cell is greater than the threshold, the pressure relief mechanism can be opened preferentially, thereby providing effective pressure relief. path.
  • the thickness of the pressure relief mechanism is greater than or equal to 0.01 mm and less than or equal to 0.5 mm.
  • the thickness of the pressure relief mechanism should be set taking into account the internal pressure of the battery cell. Generally, it should match the above-mentioned threshold so that the pressure relief mechanism can be opened preferentially when the internal pressure of the battery cell exceeds the threshold. For example, setting the pressure relief mechanism The thickness of the mechanism is between 0.01mm and 0.5mm.
  • the pressure relief mechanism is provided with a notch, and the thickness of the pressure relief mechanism is the residual thickness of the notch.
  • the pressure relief mechanism is provided with a notch.
  • the pressure relief mechanism is preferentially opened through the notch.
  • the manufacturing process is simple and has a better pressure relief effect.
  • the thickness of the pressure relief mechanism is the residual thickness of the notch.
  • the thickness of the first wall is greater than or equal to 0.2 mm and less than or equal to 3 mm.
  • a larger thickness of the first wall will bring additional costs.
  • a smaller thickness will easily cause the bursting pressure of the pressure relief mechanism to be affected by creep caused by the internal pressure of the battery cell. For this reason, its thickness should be set at an appropriate level. within the range, such as between 0.2mm and 3mm.
  • the thickness of other walls on the housing except the first wall is greater than or equal to 0.2 mm and less than or equal to 1 mm.
  • the thickness of the other walls on the casing except the first wall should be set within an appropriate range. within, such as between 0.2mm and 1mm.
  • the first wall is the bottom wall of the housing.
  • the first wall on which the pressure relief mechanism is provided is the bottom wall of the housing. That is to say, the pressure relief mechanism is facing downwards. In this way, when the battery is placed under the seat of the vehicle, the pressure relief mechanism can be away from the passengers. , causing the internal pressure of the battery cells to be released downward, reducing the risk of injuries to passengers.
  • a battery including a plurality of battery cells described in the first aspect or any implementation of the first aspect, and the battery cells are used to provide electrical energy.
  • an electrical device including a plurality of battery cells described in the first aspect or any implementation of the first aspect, where the battery cells are used to provide electrical energy.
  • a method for manufacturing a battery cell including: providing a housing and a plurality of electrode assemblies, a pressure relief mechanism being provided on the first wall of the housing, and the pressure relief mechanism is used to When the internal pressure of the battery cell exceeds a threshold value, release the internal pressure of the battery cell; accommodate the plurality of electrode assemblies in the housing so that the pressure relief mechanism is located on the first wall A position opposite to the area of two adjacent electrode assemblies among the plurality of electrode assemblies.
  • a battery cell manufacturing equipment including: providing a module for providing a housing and a plurality of electrode assemblies; a pressure relief mechanism is provided on the first wall of the housing; and the pressure relief mechanism A mechanism is used to release the internal pressure of the battery cell when the internal pressure of the battery cell exceeds a threshold; an assembly module is used to accommodate the plurality of electrode assemblies in the housing so that the The pressure relief mechanism is located on the first wall at a position opposite to areas of two adjacent electrode assemblies among the plurality of electrode assemblies.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the internal pressure release path of the battery cell shown in Figure 3;
  • FIG. 5 is an exploded schematic diagram of the battery cell shown in Figures 3 and 4;
  • Figure 6 is a schematic structural diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another electrode assembly according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of yet another electrode assembly according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of the first wall of the battery cell according to the embodiment of the present application.
  • Figure 11 is a cross-sectional view of the battery cell shown in Figure 10 along the A-A direction;
  • Figure 12 is an enlarged view of a partial area B of the battery cell shown in Figure 11;
  • Figure 13 is a schematic flow chart of a manufacturing method of a battery cell according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of the battery cell manufacturing equipment according to the embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • a pressure relief mechanism may be provided on the battery cell, and the pressure relief mechanism is used to relieve the internal pressure of the battery cell when the internal pressure of the battery cell reaches a threshold value.
  • a path for releasing the internal pressure can be formed through the pressure relief mechanism.
  • the pressure relief path inside the battery cell also becomes longer, which directly affects the pressure relief effect.
  • inventions of the present application provide a battery cell.
  • the battery cell includes a plurality of electrode assemblies, and a pressure relief mechanism is provided on the first wall of the casing of the battery cell, wherein the pressure relief mechanism is located on the third A position on a wall opposite to the area between two adjacent electrode assemblies in a plurality of electrode assemblies.
  • the path formed by the pressure relief mechanism for the internal pressure to be released is shorter, which is conducive to pressure relief and improves the safety of the battery cell.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may also be referred to as a battery pack.
  • the battery 10 may include multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, parallel, or mixed, where mixed connection refers to a mixture of series and parallel.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include multiple battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • Figure 2 shows a possible implementation of the box 11 in the embodiment of the present application.
  • the box 11 may include two parts, here respectively referred to as the first box part 111 and the second box part. part 112, the first box part 111 and the second box part 112 are buckled together.
  • the shapes of the first box part 111 and the second box part 112 may be determined according to the combined shapes of the plurality of battery cells 20 , and at least one of the first box part 111 and the second box part 112 has an opening.
  • both the first box part 111 and the second box part 112 may be hollow rectangular parallelepipeds and each has only one open surface.
  • the opening of the first box part 111 and the second box part The openings of 112 are arranged oppositely, and the first box part 111 and the second box part 112 are interlocked to form the box 11 with a closed chamber.
  • first box part 111 and the second box part 112 may be a hollow rectangular parallelepiped with an opening, and the other may be plate-shaped to cover the opening.
  • the second box part 112 is a hollow rectangular parallelepiped with only one surface as an open surface, and the first part 111 is plate-shaped, then the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber.
  • the chamber can be used to accommodate multiple battery cells 20 . Multiple battery cells 20 are connected in parallel, in series or in mixed combination, and then placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be described again here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery 10 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 are arranged in groups, and each group of battery cells 20 forms a battery module 200 .
  • the number of battery cells 20 included in the battery module 200 is not limited and can be set according to requirements. That is to say, multiple battery cells 20 can directly form the battery 10, or they can first form a battery module, and then the battery modules can form the battery 10.
  • FIG. 4 is a schematic diagram of the internal pressure release path of the battery cell 20 shown in FIG. 3 ;
  • FIG. 5 is an exploded schematic diagram of the battery cell 20 shown in FIGS. 3 and 4 .
  • the battery cell 20 in the embodiment of the present application includes a case 21 , a plurality of electrode assemblies 22 and a pressure relief mechanism 23 .
  • a plurality of electrode assemblies 22 are accommodated in the housing 21 .
  • the pressure relief mechanism 23 is disposed on the first wall 213 of the housing 21 and is located on the first wall 213 at a position opposite to the area between two adjacent electrode assemblies 22 among the plurality of electrode assemblies 22.
  • the pressure relief mechanism 23 is When the internal pressure of the battery cell 20 exceeds the threshold, the internal pressure of the battery cell 20 is released.
  • the battery cell 20 may include two electrode assemblies 22.
  • the two electrode assemblies 22 may be arranged along the length direction
  • the set of electrode assemblies 22 may be arranged along the thickness direction Y of the battery cell 20 , wherein each set of electrode assemblies 22 includes two electrode assemblies 22 arranged along the length direction X of the battery cell 20 ; for another example, the battery cell 20 may include There are more than two electrode assemblies 22 , and these electrode assemblies 22 are arranged along the length direction X of the battery cell 20 .
  • the battery cell 20 according to the embodiment of the present application will be described by taking the example that the battery cell 20 includes two electrode assemblies 22 and the two electrode assemblies 22 are arranged along the length direction X of the battery cell 20 .
  • the pressure relief mechanism 23 can be activated when the internal pressure of the battery cell reaches the threshold to form a path for the internal pressure to be released to release the internal pressure. pressure, thereby reducing the risk of explosion of the battery cell 20 and improving the safety of the battery cell 20 .
  • the pressure relief mechanism 23 can be provided on the first wall 213 with the first electrode assembly 221 and the second electrode assembly 221 arranged along the length direction X.
  • the regions between electrode assemblies 222 are positioned relative to each other.
  • the arrows in FIG. 4 represent the pressure relief path.
  • the pressure relief mechanism 23 is activated and releases the internal pressure to the battery cell 20 along the direction of the arrow. Externally, rapid pressure relief is achieved.
  • the two square dashed boxes in FIG. 4 represent the first electrode assembly 221 and the second electrode assembly 222 respectively.
  • the above-mentioned “activation” means that the pressure relief mechanism 23 operates, so that the internal pressure of the battery cell 20 can be released.
  • the actions caused by the pressure relief mechanism 23 include, but are not limited to, rupture, melting, splitting, etc. of at least a part of the pressure relief mechanism 23 .
  • the pressure relief mechanism 23 When the pressure relief mechanism 23 is activated, the internal pressure of the battery cell 20 will be released from the part where the pressure relief mechanism 23 is activated, and may carry high-temperature and high-pressure excretions, such as electrolyte, dissolved or split positive and negative materials. Fragments of pole pieces or separators, high-temperature and high-pressure gases or flames produced by reactions, etc.
  • the battery cell 20 may be a rectangular parallelepiped, which includes electrode assemblies 22 arranged along the length direction X.
  • the pressure relief mechanism 23 is located on the first wall 213 of the housing 21 at a position opposite to the area between two adjacent electrode assemblies arranged along the length direction X of the battery cell 20 , so that When the internal pressure of the battery cell 20 exceeds the threshold, the pressure relief mechanism 23 forms an effective path for releasing the internal pressure, thereby solving the problem that long battery cells are difficult to release pressure.
  • the battery cell 20 is a rectangular parallelepiped, which includes a first electrode assembly 221 and a second electrode assembly 222 .
  • the first electrode assembly 221 and the second electrode assembly 222 are arranged in an array along the length direction X of the battery cell 20 .
  • the pressure relief mechanism 23 is located on the first wall 213 at a position opposite to the area between the first electrode assembly 221 and the second electrode assembly 222 arranged along the length direction X.
  • an insulating sheet 24 is disposed between two adjacent electrode assemblies 22 .
  • an insulating sheet 24 is provided between the first electrode assembly 221 and the second electrode assembly 222 to reduce the possibility of contact between the first electrode assembly 221 and the second electrode assembly 222 and reduce the risk of short circuit. , improving the safety of the battery cell 20 .
  • the two tabs of the electrode assembly 22 are disposed on the first end face 223 of the electrode assembly 22 .
  • the first end face 223 is perpendicular to the length direction X of the battery cell 20 .
  • the poles of two adjacent electrode assemblies 22 The ears face in opposite directions, and both face the outside of the battery cell 20 .
  • the tabs 2212 of the first electrode assembly 221 are disposed on the first end surface 223 of the first electrode assembly 221.
  • the first end surface 223 is perpendicular to the length direction X and faces the battery cell. 20's exterior.
  • the pole tab 2212 includes a first pole tab 2212a and a second pole tab 2212b, wherein one of the first pole tab 2212a and the second pole tab 2212b is a positive pole tab, and the other is a negative pole tab.
  • the tabs of the second electrode assembly 222 are disposed on the end surface of the second electrode assembly 222 that is perpendicular to the length direction Signal.
  • the housing 21 has a first opening 2211 and a second opening 2212 opposite along the length direction X of the battery cell 20 .
  • the battery cell 20 also includes a first end cover 2121 and a The second end cap 2122, the first end cap 2121 and the second end cap 2122 are respectively used to cover the first opening 2211 and the second opening 2212.
  • the casing 21 of the battery cell 20 has a first opening 2211 and a second opening 2212 along the length direction
  • the first end cap 2121 and the second end cap 2122 of 2212 facilitate the insertion of the electrode assembly 22 into the case and simplify the assembly process of the battery cell 20 .
  • two adjacent electrode assemblies 22 arranged along the length direction , used to draw out the electrical energy of one of the two adjacent electrode assemblies 22; the second end cover 2122 is provided with the positive electrode terminal and the negative electrode terminal of the battery cell 20, used to draw out the adjacent electrode assembly 22. Electric energy of the other electrode assembly 22 of the two electrode assemblies 22 .
  • the positive electrode terminal and the negative electrode terminal of the battery cell 20 are provided on both the first end cover 2121 and the second end cover 2122, that is, a set of electrode terminals is provided on both the first end cover 2121 and the second end cover 2122, and Adjacent electrode assemblies 22 arranged along the length direction
  • the heat generated by the cell improves the charging and discharging performance of the battery cell 20 .
  • a set of electrode terminals 214 of the battery cell 20 is provided on the first end cap 2121 , including a first electrode terminal 214 a and a second electrode terminal 214 b; similarly, a set of electrode terminals 214 on the second end cap 2122 is also provided.
  • a set of electrode terminals 214 provided with the battery cell 20 includes a first electrode terminal 214a and a second electrode terminal 214b.
  • the electrode terminal 214 on the second end cap 2122 is not shown in FIG. 5 .
  • one of the first electrode terminal 214a and the second electrode terminal 214b is a positive electrode terminal, and the other is a negative electrode terminal.
  • the electrode terminals 214 on the first end cap 2121 and the electrode terminals 214 on the second end cap 2122 can respectively conduct currents of the first electrode assembly 221 and the second electrode assembly 222 to reduce the current consumption of the first electrode assembly 221 and the second electrode assembly.
  • the current flowing between 222 reduces the heat generated by the battery cell 20 and improves the charging and discharging performance of the battery cell 20 .
  • the housing 21 further includes a partition 25 covering the first wall 213 of the housing 21 to isolate the surfaces of the plurality of electrode assemblies 22 from the housing 21 .
  • the first wall 213 of the housing 21 is a wall with a smaller area on the housing 21 .
  • the first electrode assembly 221 and the second electrode assembly 222 will expand and squeeze the separator 25 covering the first wall 23 , resulting in deformation of the separator 25 and further deformation of the pressure relief mechanism 23 .
  • the smaller the area the smaller the expansion force and the smaller the degree of deformation.
  • Disposing the pressure relief mechanism 23 on the smaller first wall 213 of the housing 21 can reduce the deformation of the pressure relief mechanism 23 , reduce the risk of fatigue damage of the pressure relief mechanism 23 , and improve the safety of the battery cells 20 .
  • the embodiment of the present application does not limit the type of the electrode assembly 22 .
  • the electrode assembly 22 includes a first pole piece 224 and a second pole piece 225 .
  • the first pole piece 224 and the second pole piece 225 are wound around a winding axis, and the winding axis is parallel to the battery.
  • the sheets 225 are alternately stacked along the second direction Y, and the second direction Y is perpendicular to the length direction piece 225, the first pole piece 224 includes a plurality of laminated sections 224a and a plurality of bent sections 224b, the bent sections 224b are used to connect two adjacent laminated sections 224a, the plurality of second pole pieces 225 and the plurality of laminated sections 224a are alternately stacked along the second direction Y, and the second direction Y is perpendicular to the length direction X of the electrode assembly 22 .
  • the winding axis of the first pole piece 224 and the second pole piece 225 of the electrode assembly 22 is parallel to the length direction X of the battery cell 20 , or the stacking direction of the first pole piece 224 and the second pole piece 225 of the electrode assembly 22 Perpendicular to its length direction X, therefore, most of the gas generated by the electrode assembly 22 is discharged along the end of the first pole piece in the length direction X and the end of the second pole piece in the length direction A gap for gas to pass through will be formed between the end in the direction X and the end of the second pole piece 225 along the length direction X.
  • the pressure relief mechanism 23 is located on the first wall 213 at a position opposite to the area between the first electrode assembly 221 and the second electrode assembly 222 arranged along the length direction X.
  • the gas can Passing through the gap and acting on the pressure relief mechanism 23, the pressure relief mechanism 23 is actuated to relieve the internal pressure.
  • the electrode assembly 22 further includes an isolation film 226 for insulating and isolating the first pole piece 224 and the second pole piece 225 .
  • the first wall 213 of the housing 21 is the bottom wall of the housing 21 . That is to say, the pressure relief mechanism 23 faces downward. In this way, when the battery 10 is placed under the seat of the vehicle 1, the pressure relief mechanism 23 can be away from the passengers, so that the internal pressure of the battery cell 20 is released downward, reducing the passenger's safety. Risk of harm.
  • this application also designs the thickness of the pressure relief mechanism 23 and the housing 21. Below, a detailed description will be given with reference to FIGS. 10 to 12 .
  • FIG. 11 is a cross-sectional view of the battery cell 20 shown in FIG. 10 along the direction A-A.
  • FIG. 12 is an enlarged view of the partial area B of the battery cell 20 shown in FIG. 11 .
  • the thickness of the first wall 213 of the housing 21 is greater than the thickness of other walls on the housing 21 except the first wall 213 .
  • the thickness of the first wall 213 is greater than the thickness of the second wall 214 , the third wall 215 and the fourth wall 216 on the housing 21 except the first wall 213 .
  • the thickness of the first wall 213 on the housing 21 for disposing the pressure relief mechanism 23 is thicker than other walls on the housing 21 except the first wall 213 , the thicker first wall 213 makes the pressure relief mechanism 23
  • the welding reliability is higher, and the first wall 213 is not easily deformed, so that the pressure relief mechanism 23 is less affected by the creep caused by the internal pressure of the battery cell 20, and then the burst pressure of the pressure relief mechanism 23 is affected by the creep.
  • the effect of creep is small, so that the pressure relief mechanism 23 can effectively relieve the internal pressure when the internal pressure is greater than the threshold.
  • reducing the thickness of other walls also reduces the manufacturing cost of the housing 21 .
  • the thickness of the pressure relief mechanism 23 is smaller than the thickness of the housing 21 .
  • the thickness of the pressure relief mechanism 23 is the thickness of the effective position of the pressure relief mechanism 23 .
  • the effective position is the first opening of the pressure relief mechanism 23 . Location.
  • the thickness of the first wall 213 of the housing 21 is greater than the thickness of other walls on the housing 21 except the first wall 213 , and the thickness of the pressure relief mechanism 23 is smaller than the thickness of the first wall 213 of the housing 21 .
  • the pressure relief mechanism 23 can be opened preferentially, thereby providing an effective pressure relief path; on the other hand, increasing the thickness of the first wall 213 can improve the welding reliability of the pressure relief mechanism 23 on the first wall 213.
  • the first wall 213 is not easily deformed, so that the pressure relief mechanism 23 is less affected by creep caused by the internal pressure, and the burst pressure of the pressure relief mechanism 23 is less affected by the creep, so that the pressure relief mechanism 23 is less affected by the creep. 23 can effectively relieve the internal pressure when the internal pressure is greater than the threshold. At the same time, reducing the thickness of other walls also reduces the manufacturing cost of the housing 21 .
  • the thickness of the pressure relief mechanism 23 is the thickness at the effective position of the pressure relief mechanism 23 , and the effective position is the preferential opening position of the pressure relief mechanism 23 .
  • the pressure relief mechanism 23 is provided with a notch 231 , and the thickness of the pressure relief mechanism 23 is the residual thickness of the notch 231 .
  • the pressure relief mechanism 23 is opened preferentially through the notch 231 , which has a simple manufacturing process and has a better pressure relief effect.
  • the position of the notch 213 is the effective position of the pressure relief mechanism 23
  • the thickness of the pressure relief mechanism 23 is the residual thickness of the notch 213 .
  • the battery cell 20 includes a casing 21 and two end caps.
  • the casing 21 includes four walls, of which the thickness of the first wall 213 is greater than the thickness of the other three walls. It should be understood that when the battery cell 20 includes a case 21 and an end cover, the case 21 includes five walls, and the thickness of the first wall 213 provided with the pressure relief mechanism 23 may be greater than the thickness of the other four walls.
  • the embodiment of the present application does not limit the form of the pressure relief mechanism 23 .
  • the pressure relief mechanism 23 may be a component relatively independent of the first wall 213.
  • the first wall 213 is provided with an opening, the pressure relief mechanism 23 covers the opening, and the pressure relief mechanism 23 is provided with a notch 231; or, the pressure relief mechanism 23 is provided with a notch 231;
  • the pressing mechanism 23 may also be a notch 231 directly formed on the first wall 213 .
  • the pressure relief mechanism 23 is recessed in the first wall 213 of the housing 21, that is, buried in the first wall 213, so that During the assembly process of the pressure relief mechanism 23 and the housing 21, the impact of collision on the pressure relief mechanism 23 is avoided.
  • the thickness of the pressure relief mechanism 23 When the thickness of the pressure relief mechanism 23 is large, it may not be opened preferentially. When the thickness of the pressure relief mechanism 23 is small, assembly difficulty increases and the pressure relief mechanism 23 is easily damaged during the assembly process.
  • the thickness of the pressure relief mechanism 23 should be set taking into account the internal pressure of the battery cell 20. Generally, it should match the above-mentioned threshold, so that the pressure relief mechanism can be opened preferentially when the internal pressure of the battery cell exceeds the threshold.
  • the thickness T0 of the pressure relief mechanism 23 is greater than or equal to 0.01 mm and less than or equal to 0.5 mm.
  • the thickness T1 of the first wall is greater than or equal to 0.2 mm and less than or equal to 3 mm.
  • the thickness of the other walls on the housing 21 except the first wall 213 is greater than or equal to 0.2 mm and less than or equal to 1 mm.
  • the pressure relief mechanism 23 on the battery cell 20 is provided on the first wall 213 of the housing 21 , and the first wall 213 is the bottom wall of the housing 21 .
  • the pressure relief mechanism 23 is located on the first wall 213 at a position opposite to the area between two adjacent electrode assemblies 22 arranged along the length direction X of the battery cell 20 .
  • the pressure relief mechanism 23 is provided with notches 231 .
  • the thickness of the first wall is greater than the thickness of other walls on the housing except the first wall, and the residual thickness of the notch 231 is smaller than the thickness of the housing 21 .
  • the pressure relief mechanism 23 on the battery cell 20 in the embodiment of the present application is provided on the first wall 213 of the housing 21 and is located on the first wall 213 with the two adjacent electrode assemblies 22
  • the path formed by the pressure relief mechanism 23 for the internal pressure to be released is shorter, which is conducive to the release of pressure and makes the pressure relief mechanism 23 has better performance and improves the safety of the battery cell 20 .
  • FIG. 13 shows a schematic flow chart of a manufacturing method 300 of the battery cell 20 according to an embodiment of the present application.
  • the manufacturing method 300 includes: providing a housing 21 and a plurality of electrode assemblies 22 .
  • a pressure relief mechanism 23 is provided on the first wall 213 of the housing 21 .
  • the pressure relief mechanism 23 is used for discharging the battery cell 20 .
  • the internal pressure exceeds the threshold, the internal pressure of the battery cell 20 is released; the plurality of electrode assemblies 22 are accommodated in the housing 21 so that the pressure relief mechanism 23 is located on the first wall 213 adjacent to the plurality of electrode assemblies 22
  • the areas of the two electrode assemblies 22 are positioned relative to each other.
  • FIG. 14 shows a schematic block diagram of the manufacturing equipment 400 of the battery cell 20 according to the embodiment of the present application.
  • the device 400 includes: a providing module 410 for providing a housing 21 and a plurality of electrode assemblies.
  • a pressure relief mechanism 23 is provided on the first wall 213 of the housing 21.
  • the pressure relief mechanism 23 is used to install the battery in the battery.
  • the assembly module 420 is used to accommodate the plurality of electrode assemblies 22 in the housing 21 so that the pressure relief mechanism 23 is located on the first wall 213 A position opposite to the area of two adjacent electrode assemblies 22 among the plurality of electrode assemblies 22 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体(20)及其制造方法(300)和制造设备(400)、电池(10)、用电设备(1),以提高电池单体(20)上的泄压机构(23)的性能。所述电池单体(20)包括:壳体(21);多个电极组件(22),容纳于所述壳体(21)内;以及,泄压机构(23),设置在所述壳体(21)的第一壁(213)上,且位于所述第一壁(213)上与所述多个电极组件(22)中相邻两个电极组件(22)之间的中间区域相对的位置,所述泄压机构(23)用于在所述电池单体(20)的内部压力超过阈值时,泄放所述电池单体(20)的内部压力。

Description

电池单体及其制造方法和制造设备、电池、用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体及其制造方法和制造设备、电池、用电设备。
背景技术
锂离子电池具有体积小、能量密度高、循环使用寿命长和存储时间长等优点,在一些电子设备、电动交通工具和电动玩具等领域得到了广泛应用,例如,在手机、笔记本电脑、电动自行车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等得到了广泛的应用。
随着锂离子电池技术的不断发展,对锂离子电池的安全性能也提出了更高的要求。锂离子电池上的泄压机构对锂离子电池的安全性能有着重要影响。例如,当锂离子电池发生短路、过充等现象时,可能会导致锂离子电池内部热失控进而使内部气压骤升,此时需要泄压机构将内部气压向外泄放,从而防止锂离子电池发生爆炸。因此,泄压机构的设计极为重要。
发明内容
本申请提供一种电池单体及其制造方法和制造设备、电池、用电设备,以提高电池单体上泄压机构的性能。
第一方面,提供了一种电池单体,包括:壳体;多个电极组件,容纳于所述壳体内;以及,泄压机构,设置在所述壳体的第一壁上,且位于所述第一壁上与所述多个电极组件中相邻两个电极组件之间的区域相对的位置,所述泄压机构用于在所述电池单体的内部压力超过阈值时,泄放所述电池单体的内部压力。
本申请的电池单体包括多个电极组件,且电池单体的壳体的第一壁上设置有泄压机构,该泄压机构用于在电池单体的内部压力超过阈值时,泄放电池单体的内部压力。其中,该泄压机构位于该第一壁上与多个电极组件中相邻两个电极组件之间的区域相对的位置。这样,当电池单体的内部压力达到阈值时,通过该泄压机构形成的可 供该内部压力泄放的路径较短,有利于压力的泄放,提升了电池单体的安全性。
在一种实现方式中,所述电池单体为长方体,所述泄压机构位于所述第一壁上与沿所述电池单体的长度方向排列的所述相邻两个电极组件之间的区域相对的位置。
该实施例中,电池单体可以为长方体,其包括沿长度方向排列的电极组件,由于电池单体的壳体较长,不利于电池单体的内部压力的泄放,因此,将泄压机构设置在第一壁上与沿所述电池单体的长度方向排列的相邻两个电极组件之间的区域相对的位置,能够在电池单体的内部压力超过阈值时,通过该泄压机构形成可供该内部压力泄放的有效路径,解决了长电池单体不易泄压的问题。
在一种实现方式中,所述电极组件包括第一极片和第二极片,所述第一极片和所述第二极片绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述电池单体的长度方向;或者,所述电极组件包括多个第一极片和多个第二极片,所述多个第一极片和所述多个第二极片沿第二方向交替层叠设置,所述第二方向垂直于所述长度方向;或者,所述电极组件包括第一极片和多个第二极片,所述第一极片包括多个层叠段和多个折弯段,所述折弯段用于连接相邻的两个层叠段,所述多个第二极片与所述多个层叠段沿第二方向交替层叠设置,所述第二方向垂直于所述长度方向。
该实施例中,由于电极组件的第一极片和第二极片的卷绕轴线平行于电池单体的长度方向,或者电极组件的第一极片和第二极片的层叠方向垂直于电池单体的长度方向,电极组件产生的气体大部分沿第一极片在长度方向的端部和第二极片在长度方向的端部排出,第一极片沿长度方向的端部和第二极片沿长度方向的端部之间会形成供气体穿过的缝隙。泄压机构位于第一壁上与沿长度方向排列的第一电极组件和第二电极组件之间的区域相对的位置,当电池单体的内部压力超过阈值时,气体能够经由该缝隙穿过并作用在泄压机构上,以使泄压机构致动,从而泄放该内部压力。
在一种实现方式中,所述电极组件的两个极耳设置在所述电极组件的第一端面,所述第一端面垂直于所述电池单体的长度方向,相邻两个所述电极组件的极耳朝向相反方向,且均朝向所述电池单体的外部。
该实施例中,相邻两个电极组件的极耳可以分别位于电池单体的长度方向的两个端面,方便连接电池单体的电极端子。
在一种实现方式中,所述壳体具有沿所述电池单体的长度方向相对的第一开口和第二开口,所述电池单体还包括第一端盖和第二端盖,所述第一端盖和所述第二端 盖分别用于盖合所述第一开口和所述第二开口。
该实施例中,电池单体的壳体可以具有沿电池单体的长度方向的第一开口和第二开口,并且电池单体还包括分别用于盖合第一开口和第二开口的第一端盖和第二端盖,从而方便电极组件入壳,简化了电池单体的装配工艺。
在一种实现方式中,沿所述电池单体的长度方向排列的所述相邻两个电极组件之间绝缘设置;所述第一端盖上设置有所述电池单体的正电极端子和负电极端子,用于引出所述相邻两个电极组件中的一个电极组件的电能;所述第二端盖上设置有所述电池单体的正电极端子和负电极端子,用于引出所述相邻两个电极组件中的另一个电极组件的电能。
该实施例中,在第一端盖和第二端盖上均设置电池单体的正电极端子和负电极端子,由于第一端盖和第二端盖上均设置有一组电极端子,且沿电池单体的长度方向设置的相邻电极组件之间绝缘设置,因此,两组电极端子能够分别传导不同电极组件的电流,以减少电极组件之间流动的电流,减少电池单体产生的热量,改善了电池单体的充放电性能。
在一种实现方式中,所述第一壁的厚度大于所述壳体上除所述第一壁之外的其他壁的厚度。
该实施例中,壳体上用于设置泄压机构的第一壁的厚度相比其他壁更厚,从而提高了泄压机构的焊接可靠性,并且使第一壁不易变形,从而使泄压机构受内部压力引起的蠕变的影响较小,进而使泄压机构的爆破压力受该蠕变的影响较小,使泄压机构在该内部压力大于阈值时能够有效地泄放该内部压力。同时,减薄其他壁的厚度也降低了壳体的制造成本。
在一种实现方式中,所述泄压机构的有效位置处的厚度小于所述壳体的厚度,所述有效位置为所述泄压机构上优先打开的位置。
该实施例中,通过设置泄压机构的有效位置处的厚度小于壳体的厚度,从而在电池单体的内部压力大于阈值时,使泄压机构能够优先打开,从而提供有效的压力泄放的路径。
在一种实现方式中,所述泄压机构的厚度,大于或等于0.01mm且小于或等于0.5mm。
泄压机构的厚度较大时可能使其无法优先打开,泄压机构的厚度较小时增加了 装配难度,很容易在装配过程中损坏。泄压机构的厚度的设置应当考虑电池单体的内部压力的情况,通常,应当与上述的阈值相匹配,使得电池单体的内部压力超过该阈值时泄压机构能够优先打开,例如设置泄压机构的厚度在0.01mm至0.5mm之间。
在一种实现方式中,所述泄压机构上设置有刻痕,所述泄压机构的厚度为所述刻痕的残厚。
该实施例中,泄压机构上设置有刻痕,在电池单体的内部压力超过阈值时,该泄压机构通过该刻痕优先打开,制作工艺简单且具有较优的泄压效果。这时,该泄压机构的厚度即为该刻痕的残厚。
在一种实现方式中,所述第一壁的厚度,大于或等于0.2mm且小于或等于3mm。
第一壁的厚度较大会带来额外的成本,厚度较小又容易使泄压机构的爆破破压力受电池单体的内部压力引起的蠕变的影响,为此,应当将其厚度设置在合适的范围内,例如0.2mm至3mm之间。
在一种实现方式中,所述壳体上除所述第一壁之外的其他壁的厚度,大于或等于0.2mm且小于或等于1mm。
壳体上除第一壁之外的其他壁的厚度较大会带来额外的成本,厚度较小又无法保证电池单体的结构稳定性,为此,应当将其他壁的厚度设置在合适的范围内,例如0.2mm至1mm之间。
在一种实现方式中,所述第一壁为所述壳体的底壁。
该实施例中,设置有泄压机构的第一壁为壳体底壁,也就是说,泄压机构是朝向下的,这样,当电池放置在车辆的座位下方时,泄压机构能够远离乘客,使得电池单体的内部压力朝向下泄放,降低了乘客被伤害的风险。
第二方面,提供了一种电池,包括多个第一方面或第一方面的任一实现方式中所述的电池单体,所述电池单体用于提供电能。
第三方面,提供了一种用电设备,包括多个第一方面或第一方面的任一实现方式中所述的电池单体,所述电池单体用于提供电能。
第四方面,提供了一种电池单体的制造方法,包括:提供壳体和多个电极组件,所述壳体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力超过阈值时,泄放所述电池单体的内部压力;将所述多个电极组件容纳于所述壳 体内,以使所述泄压机构位于所述第一壁上与所述多个电极组件中相邻两个电极组件的区域相对的位置。
第五方面,提供了一种电池单体的制造设备,包括:提供模块,用于提供壳体和多个电极组件,所述壳体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力超过阈值时,泄放所述电池单体的内部压力;组装模块,用于将所述多个电极组件容纳于所述壳体内,以使所述泄压机构位于所述第一壁上与所述多个电极组件中相邻两个电极组件的区域相对的位置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例的一种车辆的结构示意图;
图2是本申请实施例的一种电池的结构示意图;
图3是本申请实施例的电池单体的结构示意图;
图4是图3所示的电池单体的内部压力的泄放路径的示意图;
图5是图3和图4所示的电池单体的爆炸示意图;
图6是本申请实施例的一种电极组件的结构示意图;
图7是本申请实施例的另一种电极组件的结构示意图;
图8是本申请实施例的再一种电极组件的结构示意图;
图9是本申请实施例的电池单体的结构示意图;
图10是本申请实施例的电池单体的第一壁的示意图;
图11是图10所示的电池单体沿A-A方向的剖视图;
图12是图11所示的电池单体的局部区域B的放大图;
图13是本申请实施例的电池单体的制造方法的示意性流程图;
图14是本申请实施例的电池单体的制造设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。
电池单体上可以设置泄压机构,该泄压机构用于在电池单体的内部压力达到阈值时泄放电池单体的内部压力。当电池单体的内部压力达到阈值时,通过泄压机构能够形成可供该内部压力泄放的路径。随着电池单体中电极组件数量的增减,电池单体内部的泄压路径也相应变长,直接影响了泄压效果。
为此,本申请实施例提供了一种电池单体,电池单体包括多个电极组件,且电池单体的外壳的第一壁上设置有泄压机构,其中,该泄压机构位于该第一壁上与多个电极组件中相邻两个电极组件之间的区域相对的位置。这样,当电池单体的内部压力达到阈值时,通过该泄压机构形成的可供该内部压力泄放的路径较短,有利于压力的泄放,提升了电池单体的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电 设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。电池10也可以称为电池包。
为了满足不同的使用电力需求,电池10可以包括多个电池单体20,多个电池单体20之间可以串联、并联或混联,其中混联是指串联和并联的混合。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现方式,如图2所示,箱体11可以包括两部分,这里分别称为第一箱体部111和第二箱体部112,第一箱体部111和第二箱体部112扣合在一起。第一箱体部111和第二箱体部112的形状可以根据多个电池单体20组合后的形状而定,第一箱体部111和第二箱体部112中至少一个具有一个开口。例如,如图2所示,第一箱体部111和第二箱体部112均可以为中空的长方体且各自只有一个面为开口面,第一箱体部111的开口和第二箱体部112的开口相对设置,并且第一箱体部111和第二箱体部112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一箱体部111和第二箱体部112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二箱体部112为中空长方体且只有一个面为开口面,第一部分111为板状,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联、串联或混联组合后,置于第一部分111和第二部分112扣合后形成的箱体11内。
在一些实施例中,电池10还可以包括其他结构,此处不再赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联、串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池10中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,将电池单体20分组设置,每组电池单体20组成电池模块200。电池模块200中包括的电池单体20的数量不限,可以根据需求设置。也就是说,多个电池单体20可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
图3至图5示出了本申请实施例的电池单体20。其中,图4为图3所示的电池单体20的内部压力的泄放路径的示意图;图5为图3和图4所示的电池单体20的爆炸示意图。
如图3至图5所示,本申请实施例的电池单体20包括壳体21、多个电极组件22和泄压机构23。其中,多个电极组件22容纳于壳体21内。泄压机构23设置在壳体21的第一壁213上,且位于第一壁213上与多个电极组件22中相邻两个电极组件22之间的区域相对的位置,泄压机构23用于在电池单体20的内部压力超过阈值时,泄放电池单体20的内部压力。
本申请实施例对电池单体20包括的多个电极组件22的数量不做限定。例如,电池单体20可以包括两个电极组件22,这时,两个电极组件22可以沿电池单体20的长度方向X排列;又例如,电池单体20可以包括多组电极组件22,多组电极组件22可以沿电池单体20的厚度方向Y排列,其中每组电极组件22中包括沿电池单体20的长度方向X排列的两个电极组件22;又例如,电池单体20可以包括多于两个的电极组件22,这些电极组件22沿电池单体20的长度方向X排列。
以下,以电池单体20包括两个电极组件22,且两个电极组件22沿电池单体20的长度方向X排列为例,描述本申请实施例的电池单体20。
当电池单体20发生热失控时,其内部压力会超过阈值,泄压机构23能够在电池单体的内部压力达到阈值时致动,形成可供该内部压力泄放的路径,以泄放内部压 力,降低电池单体20爆炸的风险,提高电池单体20的安全性。
对于本申请实施例的电池单体20,例如,如图3至图5所示,可以将泄压机构23设置在第一壁213上与沿长度方向X排列的第一电极组件221和第二电极组件222之间的区域相对的位置。其中,图4中的箭头表示压力泄放的路径,当电池单体20的内部压力大于阈值时,泄压机构23致动,并使该内部压力沿着箭头方向泄放至电池单体20的外部,实现了快速泄压。图4中的两个方形虚线框分别表示第一电极组件221和第二电极组件222。
上述的“致动”是指泄压机构23产生动作,从而使得电池单体20的内部压力得以被泄放。泄压机构23产生动作包括但不限于泄压机构23的至少一部分破裂、熔化、分裂等。泄压机构23在致动时,电池单体20的内部压力会从泄压机构23致动的部位泄放,并有可能携带高温高压的排泄物,例如电解液、被溶解或分裂的正负极极片或隔离件的碎片、反应产生的高温高压气体或者火焰等。
本申请实施例对电池单体20的形状不做限定,例如,电池单体20可以为长方体,其包括沿长度方向X排列的电极组件22。
当电池单体20为长方体时,由于电池单体20的壳体21较长,不利于电池单体20的内部压力的泄放。因此,在一种实现方式中,泄压机构23位于壳体21的第一壁213上与沿电池单体20的长度方向X排列的相邻两个电极组件之间的区域相对的位置,从而在电池单体20的内部压力超过阈值时,通过泄压机构23形成可供该内部压力泄放的有效路径,解决了长电池单体不易泄压的问题。
例如,如图3至图5所示,电池单体20为长方体,其包括第一电极组件221和第二电极组件222。第一电极组件221和第二电极组件222沿电池单体20的长度方向X排列设置。泄压机构23位于第一壁213上与沿长度方向X排列的第一电极组件221和第二电极组件222之间的区域相对的位置。
在一种实现方式中,相邻两个电极组件22之间设置有绝缘片24。例如,如图5所示,第一电极组件221和第二电极组件222之间设置有绝缘片24,以减小第一电极组件221和第二电极组件222接触的可能性,降低短路的风险,提高电池单体20的安全性。
在一种实现方式中,电极组件22的两个极耳设置在电极组件22的第一端面223,第一端面223垂直于电池单体20的长度方向X,相邻两个电极组件22的极耳朝 向相反方向,且均朝向电池单体20的外部。
例如,如图5所示第一电极组件221,第一电极组件221的极耳2212设置在第一电极组件221的第一端面223,第一端面223垂直于长度方向X,且朝向电池单体20的外部。极耳2212包括第一极耳2212a和第二极耳2212b,其中第一极耳2212a和第二极耳2212b中的一者为正极耳,另一者为负极耳。类似地,对于第二电极组件222,第二电极组件222的极耳设置在第二电极组件222的垂直于长度方向X的端面,且朝向电池单体20的外部,为了简洁,此处不再示意。
可见,通过将相邻两个电极组件22的极耳分别位于电池单体20的长度方向X的两个端面,方便连接电池单体20的电极端子214。
在一种实现方式中,如图5所示,壳体21具有沿电池单体20的长度方向X相对的第一开口2211和第二开口2212,电池单体20还包括第一端盖2121和第二端盖2122,第一端盖2121和第二端盖2122分别用于盖合第一开口2211和第二开口2212。
由于电池单体20的壳体21具有沿电池单体20的长度方向X的第一开口2211和第二开口2212,并且电池单体20还包括分别用于盖合第一开口2211和第二开口2212的第一端盖2121和第二端盖2122,因此方便电极组件22入壳,简化了电池单体20的装配工艺。
在一种实现方式中,沿电池单体20的长度方向X排列的相邻两个电极组件22之间绝缘设置;第一端盖2121上设置有电池单体20的正电极端子和负电极端子,用于引出所述相邻两个电极组件22中的一个电极组件22的电能;第二端盖2122上设置有电池单体20的正电极端子和负电极端子,用于引出所述相邻两个电极组件22中的另一个电极组件22的电能。
由于在第一端盖2121和第二端盖2122上均设置电池单体20的正电极端子和负电极端子,即第一端盖2121和第二端盖2122上均设置有一组电极端子,且沿电池单体20的长度方向X设置的相邻电极组件22之间绝缘设置,因此,两组电极端子能够分别传导不同电极组件22的电流,以减少电极组件22之间流动的电流,减少电池单体产生的热量,改善电池单体20的充放电性能。
例如,如图5所示,第一端盖2121上设置有电池单体20的一组电极端子214,包括第一电极端子214a和第二电极端子214b;类似地,第二端盖2122上也设置有电池单体20的一组电极端子214,包括第一电极端子214a和第二电极端子214b,为了简 洁,图5中未示出第二端盖2122上的电极端子214。其中,第一电极端子214a和第二电极端子214b中的一者为正电极端子,另一者为负电极端子。第一端盖2121上的电极端子214和第二端盖2122上的电极端子214能够分别传导第一电极组件221和第二电极组件222的电流,以减少第一电极组件221和第二电极组件222之间流动的电流,减少电池单体20产生的热量,改善电池单体20的充放电性能。
在一种实现方式中,如图5所示,壳体21还包括隔板25,覆盖壳体21的第一壁213,以隔离多个电极组件22的表面与壳体21。
在一种实现方式中,如图5所示,壳体21的第一壁213为壳体21上面积较小的壁。由于第一电极组件221和第二电极组件222在充电过程中会膨胀并挤覆盖于第一壁23的隔板25,造成隔板25的变形,进而引起泄压机构23的变形。其中,面积越小,受到的膨胀力越小,变形的程度也越小。将泄压机构23设置在壳体21上面积较小的第一壁213上,可以减小泄压机构23的变形,降低泄压机构23疲劳破损的风险,提高电池单体20的安全性。
本申请实施例对电极组件22的类型不做限制。例如,如图6所示,电极组件22包括第一极片224和第二极片225,第一极片224和第二极片225绕卷绕轴线卷绕设置,该卷绕轴线平行于电池单体20的长度方向X;又例如,如图7所示,电极组件22包括多个第一极片224和多个第二极片225,多个第一极片224和多个第二极片225沿第二方向Y交替层叠设置,第二方向Y垂直于电池单体20的长度方向X;再例如,如图8所示,电极组件22包括第一极片224和多个第二极片225,第一极片224包括多个层叠段224a和多个折弯段224b,折弯段224b用于连接相邻的两个层叠段224a,多个第二极片225与多个层叠段224a沿第二方向Y交替层叠设置,第二方向Y垂直于电极组件22的长度方向X。
由于电极组件22的第一极片224和第二极片225的卷绕轴线平行于电池单体20的长度方向X,或者电极组件22的第一极片224和第二极片225的层叠方向垂直于其长度方向X,因此,电极组件22产生的气体大部分沿第一极片在长度方向X的端部和第二极片在长度方向X的端部排出,第一极片224沿长度方向X的端部和第二极片225沿长度方向X的端部之间会形成供气体穿过的缝隙。泄压机构23位于第一壁213上与沿长度方向X排列的第一电极组件221和第二电极组件222之间的区域相对的位置,当电池单体20的内部压力超过阈值时,气体能够经由该缝隙穿过并作用在泄压机构23 上,以使泄压机构23致动,从而泄放该内部压力。
其中,第一极片224和第二极片225中的一者为正极极片,另一者为负极极片,图6和图7是以第二极片225为负极极片,第一极片224为正极极片为例;图8是以第二极片225为正极极片,第一极片224为负极极片为例。在一种实现方式中,如图6至图8所示,电极组件22还包括隔离膜226,用于将第一极片224和第二极片225绝缘隔离。
在一种实现方式中,如图9所示,壳体21的第一壁213为壳体21的底壁。也就是说,泄压机构23是朝向下的,这样,当电池10放置在车辆1的座位下方时,泄压机构23能够远离乘客,使得电池单体20的内部压力朝向下泄放,降低了乘客被伤害的风险。
为了进一步提升泄压机构23的性能,本申请还对泄压机构23和壳体21的厚度进行了设计。以下,结合图10至图12进行具体描述。
图10示出了第一壁213,第一壁213上设置有泄压机构23。图11为图10所示的电池单体20沿A-A方向的剖视图。图12为图11所示的电池单体20的局部区域B的放大图。
在一种实现方式中,壳体21的第一壁213的厚度大于壳体21上除第一壁213之外的其他壁的厚度。例如,如图11所示,第一壁213的厚度大于壳体21上除第一壁213之外的第二壁214、第三壁215和第四壁216的厚度。由于壳体21上用于设置泄压机构23的第一壁213的厚度,比壳体21上除第一壁213之外的其他壁更厚,较厚的第一壁213使得泄压机构23的焊接可靠性更高,并且使得第一壁213不易变形,从而使泄压机构23受电池单体20的内部压力引起的蠕变的影响较小,进而使泄压机构23的爆破压力受该蠕变的影响较小,使泄压机构23在该内部压力大于阈值时能够有效地泄放该内部压力。同时,减薄其他壁的厚度也降低了壳体21的制造成本。
在一种实现方式中,泄压机构23的厚度小于壳体21的厚度,泄压机构23的厚度为泄压机构23的有效位置处的厚度,该有效位置为泄压机构23上优先打开的位置。这样,通过设置泄压机构23的厚度小于壳体21的厚度,在电池单体20的内部压力大于阈值时,使泄压机构23能够优先打开,从而提供有效的压力泄放的路径。
例如,如图11和图12所示,壳体21的第一壁213的厚度大于壳体21上除第一壁213之外的其他壁的厚度,泄压机构23的厚度小于壳体21上除第一壁213之外的 其他壁的厚度。假设泄压机构23、第一壁213、第二壁214、第三壁215和第四壁216的厚度分别为T0、T1、T2、T3、T4,则壳体22的厚度和泄压机构23的厚度之间的关系满足T0<T2=T3=T4<T1。相应地,假设泄压机构23、第一壁213、第二壁214、第三壁215和第四壁216所能够承受的最大压力分别为P0、P1、P2、P3、P4,则P0<P2=P3=P4<P1。
可见,当壳体22的厚度和泄压机构23的厚度之间满足上述关系时,一方面,由于泄压机构23的厚度小于壳体21上其他壁的厚度,在电池单体20的内部压力大于阈值时,泄压机构23能够优先打开,从而提供有效的压力泄放的路径;另一方面,增加第一壁213的厚度可以提高泄压机构23在第一壁213上的焊接可靠性,并且使第一壁213不易变形,从而使泄压机构23受内部压力引起的蠕变的影响较小,,进而使泄压机构23的爆破压力受该蠕变的影响较小,使泄压机构23在该内部压力大于阈值时能够有效地泄放该内部压力。同时,减薄其他壁的厚度也降低了壳体21的制造成本。
这里,泄压机构23的厚度为泄压机构23的有效位置处的厚度,有效位置为泄压机构23上优先打开的位置。例如,在一种实现方式中,如图12所示,泄压机构23上设置有刻痕231,泄压机构23的厚度为刻痕231的残厚。在电池单体20的内部压力超过阈值时,该泄压机构23通过刻痕231优先打开,制作工艺简单且具有较优的泄压效果。这时,刻痕213所在的位置为泄压机构23的有效位置,泄压机构23的厚度即为刻痕213的残厚。
上述是以电池单体20包括壳体21和两个端盖为例进行描述,这时,壳体21包括四个壁,其中的第一壁213的厚度大于其他三个壁的厚度。应理解,当电池单体20包括壳体21和一个端盖时,壳体21包括五个壁,设置有泄压机构23的第一壁213的厚度,可以大于其他四个壁的厚度。
本申请实施例对泄压机构23的形态不做限定。泄压机构23可以是与第一壁213相对独立的部件,例如,第一壁213上设置有开孔,泄压机构23覆盖该开口且泄压机构23上设置有刻痕231;或者,泄压机构23也可以是直接在第一壁213上形成的刻痕231。
为了避免装配过程对泄压机构23的泄压性能造成影响,在一种实现方式中,泄压机构23内陷于壳体21的第一壁213内,即埋于第一壁213内,从而在泄压机构23与壳体21的装配过程中避免了碰撞等对泄压机构23造成的影响。
泄压机构23的厚度较大时可能使其无法优先打开,泄压机构23的厚度较小时增加了装配难度,很容易在装配过程中损坏。泄压机构23的厚度的设置应当考虑电池单体20的内部压力的情况,通常,应当与上述的阈值相匹配,使得电池单体的内部压力超过该阈值时泄压机构能够优先打开。例如,在一种实现方式中,泄压机构23的厚度T0大于或等于0.01mm且小于或等于0.5mm。
第一壁213的厚度较大会带来额外的成本,厚度较小又容易使泄压机构23的爆破破压力受电池单体20的内部压力引起的蠕变的影响,为此,应当将其厚度设置在合适的范围内。例如,在一种实现方式中,第一壁的厚度T1大于或等于0.2mm且小于或等于3mm。
壳体21上除第一壁213之外的其他壁的厚度较大会带来额外的成本,厚度较小又无法保证电池单体20的结构稳定性,为此,应当将其他壁的厚度也设置在合适的范围内。例如,在一种实现方式中,壳体21上除第一壁213之外的其他壁的厚度,大于或等于0.2mm且小于或等于1mm。
在上述电池单体20的一种可能的具体实现方式中,电池单体20上的泄压机构23设置在壳体21的第一壁213上,第一壁213为壳体21的底壁。泄压机构23位于第一壁213上与沿电池单体20的长度方向X排列的相邻两个电极组件22之间的区域相对的位置。泄压机构23上设置有刻痕231。其中,第一壁的厚度大于所述壳体上除所述第一壁之外的其他壁的厚度,且刻痕231的残厚小于壳体21的厚度。
基于上面的描述可以看出,本申请实施例的电池单体20上的泄压机构23设置在壳体21的第一壁213上,且位于第一壁213上与相邻两个电极组件22之间的区域相对的位置,当电池单体20的内部压力达到阈值时,通过泄压机构23形成的可供该内部压力泄放的路径较短,有利于压力的泄放,使泄压机构23具有更好的性能,提升了电池单体20的安全性。
上文描述了本申请实施例的电池单体20、电池10和用电设备1,下面将描述本申请实施例的电池单体20的制造方法和制造设备,其中未详细描述的部分可参见前述各实施例。
图13示出了本申请实施例的电池单体20的制造方法300的示意性流程图。如图13所示,制造方法300包括:提供壳体21和多个电极组件22,壳体21的第一壁213上设置有泄压机构23,泄压机构23用于在电池单体20的内部压力超过阈值时,泄放 电池单体20的内部压力;将多个电极组件22容纳于壳体21内,以使泄压机构23位于第一壁213上与多个电极组件22中相邻两个电极组件22的区域相对的位置。
图14示出了本申请实施例的电池单体20的制造设备400的示意性框图。如图14所示,设备400包括:提供模块410,用于提供壳体21和多个电极组件,壳体21的第一壁213上设置有泄压机构23,泄压机构23用于在电池单体2020的内部压力超过阈值时,泄放电池单体20的内部压力;组装模块420,用于将多个电极组件22容纳于壳体21内,以使泄压机构23位于第一壁213上与多个电极组件22中相邻两个电极组件22的区域相对的位置。
通过上述制造方法300和制造设备400制造出的电池单体20的结构,可以参见上述各个实现方式中的电池单体20,为了简洁,此处不再赘述。
需要说明的是,在不冲突的情况下,上述各个实现方式中的方法可以相互组合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池单体(20),包括:
    壳体(21);
    多个电极组件(22),容纳于所述壳体(21)内;以及,
    泄压机构(23),设置在所述壳体(21)的第一壁(213)上,且位于所述第一壁(213)上与所述多个电极组件(22)中相邻两个电极组件(22)之间的中间相对的位置,所述泄压机构(23)用于在所述电池单体(20)的内部压力超过阈值时,泄放所述电池单体(20)的内部压力。
  2. 根据权利要求1所述的电池单体(20),其中,所述电池单体(20)为长方体,所述泄压机构(23)位于所述第一壁(213)上与沿所述电池单体(20)的长度方向(X)排列的所述相邻两个电极组件(22)之间的区域相对的位置。
  3. 根据权利要求2所述的电池单体(20),其中,
    所述电极组件(22)包括第一极片(224)和第二极片(225),所述第一极片(224)和所述第二极片(225)绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述电池单体(20)的长度方向(X);或者,
    所述电极组件(22)包括多个第一极片(224)和多个第二极片(225),所述多个第一极片(224)和所述多个第二极片(225)沿第二方向(Y)交替层叠设置,所述第二方向(Y)垂直于所述长度方向(X);或者,
    所述电极组件(22)包括第一极片(224)和多个第二极片(225),所述第一极片(224)包括多个层叠段(224a)和多个折弯段(224b),所述折弯段(224b)用于连接相邻的两个层叠段(224a),所述多个第二极片(225)与所述多个层叠段(224a)沿第二方向(Y)交替层叠设置,所述第二方向(Y)垂直于所述长度方向(X)。
  4. 根据权利要求1至3中任一项所述的电池单体(20),其中,所述电极组件(22)的两个极耳设置在所述电极组件(22)的第一端面(223),所述第一端面(223)垂直于所述电池单体(20)的长度方向(X),相邻两个所述电极组件(22)的极耳朝向相反方向,且均朝向所述电池单体(20)的外部。
  5. 根据权利要求1至4中任一项所述的电池单体(20),其中,所述壳体(21) 具有沿所述电池单体(20)的长度方向(X)相对的第一开口(2211)和第二开口(2212),所述电池单体(20)还包括第一端盖(2121)和第二端盖(2122),所述第一端盖(2121)和所述第二端盖(2122)分别用于盖合所述第一开口(2211)和所述第二开口(2212)。
  6. 根据权利要求5所述的电池单体(20),其中,沿所述电池单体(20)的长度方向(X)排列的所述相邻两个电极组件(22)之间绝缘设置,
    所述第一端盖(2121)上设置有所述电池单体(20)的正电极端子和负电极端子,用于引出所述相邻两个电极组件(22)中的一个电极组件(22)的电能;
    所述第二端盖(2122)上设置有所述电池单体(20)的正电极端子和负电极端子,用于引出所述相邻两个电极组件(22)中的另一个电极组件(22)的电能。
  7. 根据权利要求1至6中任一项所述的电池单体(20),其中,所述第一壁(213)的厚度大于所述壳体(21)上除所述第一壁(213)之外的其他壁的厚度。
  8. 根据权利要求1至7中任一项所述的电池单体(20),其中,所述泄压机构(23)的有效位置处的厚度小于所述壳体(21)的厚度,所述有效位置为所述泄压机构(23)上优先打开的位置。
  9. 根据权利要求8所述的电池单体(20),其中,所述泄压机构(23)的厚度,大于或等于0.01mm且小于或等于0.5mm。
  10. 根据权利要求8或9所述的电池单体(20),其中,所述泄压机构(23)上设置有刻痕(231),所述泄压机构(23)的厚度为所述刻痕(231)的残厚。
  11. 根据权利要求1至10中任一项所述的电池单体(20),其中,所述第一壁(213)的厚度,大于或等于0.2mm且小于或等于3mm。
  12. 根据权利要求1至11中任一项所述的电池单体(20),其中,所述壳体(21)上除所述第一壁(213)之外的其他壁的厚度,大于或等于0.2mm且小于或等于1mm。
  13. 根据权利要求1至12中任一项所述的电池单体(20),其中,所述第一壁(213)为所述壳体(21)的底壁。
  14. 一种电池(10),包括:多个根据权利要求1至13中任一项所述的电池单体(20),所述电池单体(20)用于提供电能。
  15. 一种用电设备(1),包括:多个根据权利要求1至13中任一项所述的电池单 体(20),所述电池单体(20)用于提供电能。
  16. 一种电池单体(20)的制造方法(300),包括:
    提供壳体(21)和多个电极组件(22),所述壳体(21)的第一壁(213)上设置有泄压机构(23),所述泄压机构(23)用于在所述电池单体(20)的内部压力超过阈值时,泄放所述电池单体(20)的内部压力;
    将所述多个电极组件(22)容纳于所述壳体(21)内,以使所述泄压机构(23)位于所述第一壁(213)上与所述多个电极组件(22)中相邻两个电极组件(22)的区域相对的位置。
  17. 一种电池单体(20)的制造设备(400),包括:
    提供模块(410),用于提供壳体(21)和多个电极组件(22),所述壳体(21)的第一壁(213)上设置有泄压机构(23),所述泄压机构(23)用于在所述电池单体(20)的内部压力超过阈值时,泄放所述电池单体(20)的内部压力;
    组装模块(420),用于将所述多个电极组件(22)容纳于所述壳体(21)内,以使所述泄压机构(23)位于所述第一壁(213)上与所述多个电极组件(22)中相邻两个电极组件(22)的区域相对的位置。
PCT/CN2022/081788 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备 WO2023173428A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202290000656.1U CN222980706U (zh) 2022-03-18 2022-03-18 电池单体及其制造设备、电池、用电设备
EP22931459.6A EP4485657A1 (en) 2022-03-18 2022-03-18 Battery cell and manufacturing method and manufacturing apparatus therefor, battery, and power consuming apparatus
PCT/CN2022/081788 WO2023173428A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备
US18/592,996 US20240204341A1 (en) 2022-03-18 2024-03-01 Battery cell, battery cell manufacturing method and equipment, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081788 WO2023173428A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/592,996 Continuation US20240204341A1 (en) 2022-03-18 2024-03-01 Battery cell, battery cell manufacturing method and equipment, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023173428A1 true WO2023173428A1 (zh) 2023-09-21

Family

ID=88021980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081788 WO2023173428A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备

Country Status (4)

Country Link
US (1) US20240204341A1 (zh)
EP (1) EP4485657A1 (zh)
CN (1) CN222980706U (zh)
WO (1) WO2023173428A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178820A (ja) * 2002-11-22 2004-06-24 Matsushita Electric Ind Co Ltd 電池用封口板
JP2009004271A (ja) * 2007-06-22 2009-01-08 Kobe Steel Ltd 電池ケース
CN103227340A (zh) * 2012-01-31 2013-07-31 三星Sdi株式会社 二次电池
CN213026310U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN113169401A (zh) * 2020-03-02 2021-07-23 东莞新能安科技有限公司 电池、电池模组、电池包、电动车、储能装置和电动工具
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN215771451U (zh) * 2021-09-15 2022-02-08 合肥国轩高科动力能源有限公司 方形锂电子动力电池
CN215989095U (zh) * 2021-10-18 2022-03-08 河南省鹏辉电源有限公司 电芯壳体、电芯及电池模组
CN114171805A (zh) * 2021-12-03 2022-03-11 合肥国轩高科动力能源有限公司 一种锂离子电池结构及其装配方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178820A (ja) * 2002-11-22 2004-06-24 Matsushita Electric Ind Co Ltd 電池用封口板
JP2009004271A (ja) * 2007-06-22 2009-01-08 Kobe Steel Ltd 電池ケース
CN103227340A (zh) * 2012-01-31 2013-07-31 三星Sdi株式会社 二次电池
CN113169401A (zh) * 2020-03-02 2021-07-23 东莞新能安科技有限公司 电池、电池模组、电池包、电动车、储能装置和电动工具
CN213026310U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN215771451U (zh) * 2021-09-15 2022-02-08 合肥国轩高科动力能源有限公司 方形锂电子动力电池
CN215989095U (zh) * 2021-10-18 2022-03-08 河南省鹏辉电源有限公司 电芯壳体、电芯及电池模组
CN114171805A (zh) * 2021-12-03 2022-03-11 合肥国轩高科动力能源有限公司 一种锂离子电池结构及其装配方法

Also Published As

Publication number Publication date
EP4485657A1 (en) 2025-01-01
US20240204341A1 (en) 2024-06-20
CN222980706U (zh) 2025-06-13

Similar Documents

Publication Publication Date Title
CN217788704U (zh) 电池单体、电池和用电设备
CN213692271U (zh) 电池单体、电池及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
KR20230060517A (ko) 전지 케이스, 전지, 전기 장치, 전지의 제조 방법 및 장치
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
KR102820868B1 (ko) 배터리의 박스 본체, 배터리, 전기 장치, 배터리 제조 방법 및 장치
CN116762202A (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
CN216250906U (zh) 电池单体、电池和用电设备
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备
WO2023134479A1 (zh) 电池和用电设备
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
CN117957699A (zh) 电池单体、电池、用电设备、电池单体的制造方法和设备
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN223124177U (zh) 电池单体、电池装置、用电设备和储能设备
CN220585341U (zh) 电池单体、电池和用电装置
EP4435953A1 (en) Battery cell and manufacturing method and manufacturing system therefor, battery, and electrical device
CN220510174U (zh) 电池、用电设备和储能设备
WO2025035566A1 (zh) 电池单体、电池和用电装置
WO2024040534A1 (zh) 电池单体的壳体、电池单体、电池和用电设备
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022931459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022931459

Country of ref document: EP

Effective date: 20240926

NENP Non-entry into the national phase

Ref country code: DE