[go: up one dir, main page]

WO2023157143A1 - 無線通信方法、無線通信システム、及び送信装置 - Google Patents

無線通信方法、無線通信システム、及び送信装置 Download PDF

Info

Publication number
WO2023157143A1
WO2023157143A1 PCT/JP2022/006236 JP2022006236W WO2023157143A1 WO 2023157143 A1 WO2023157143 A1 WO 2023157143A1 JP 2022006236 W JP2022006236 W JP 2022006236W WO 2023157143 A1 WO2023157143 A1 WO 2023157143A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
shift amount
transmission data
wireless communication
random
Prior art date
Application number
PCT/JP2022/006236
Other languages
English (en)
French (fr)
Inventor
圭太 栗山
隼人 福園
利文 宮城
武 鬼沢
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2024500785A priority Critical patent/JPWO2023157143A1/ja
Priority to EP22927046.7A priority patent/EP4482094A1/en
Priority to PCT/JP2022/006236 priority patent/WO2023157143A1/ja
Priority to US18/837,194 priority patent/US20250141726A1/en
Publication of WO2023157143A1 publication Critical patent/WO2023157143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • the present invention relates to wireless communication technology.
  • the present invention relates to a radio communication technique in which transmission data is precoded on the transmitting side.
  • the transmitting side may precode the transmitted data. For example, when performing wideband transmission under a frequency selective fading environment, channel equalization is performed by precoding. As another example, multiple-input multiple-output (MIMO) systems perform stream separation by precoding.
  • MIMO multiple-input multiple-output
  • PAPR Peak to Average Power Ratio
  • a transmission signal is amplified by a power amplifier before being transmitted from an antenna, and if a signal with a high PAPR is input to the power amplifier, it may be affected by the nonlinear characteristics of the power amplifier and cause nonlinear distortion. The occurrence of nonlinear distortion in the transmitted signal may result in erroneous communication.
  • Non-Patent Document 1 discloses a technique for reducing PAPR in a wideband single-carrier MIMO system.
  • the PAPR increases.
  • One object of the present invention is to provide a technique capable of reducing PAPR when the transmission side precodes transmission data in wireless communication.
  • a first aspect relates to a wireless communication method for performing wireless communication between a transmitting device and a receiving device.
  • the wireless communication method is Phase shift amount determination processing for determining a random phase shift amount for each subcarrier of transmission data; A modulation process that modulates transmission data and further shifts the phase according to a random phase shift amount for each subcarrier; precoding processing for precoding transmission data after modulation processing; and transmission processing for transmitting transmission data after precoding processing from a transmission device to a reception device.
  • a second aspect relates to wireless communication systems.
  • a wireless communication system includes a transmitter and a receiver.
  • the transmitting device Phase shift amount determination processing for determining a random phase shift amount for each subcarrier of transmission data; A modulation process that modulates transmission data and further shifts the phase according to a random phase shift amount for each subcarrier; precoding processing for precoding transmission data after modulation processing; and a transmission process of transmitting the transmission data after the precoding process from the transmission device to the reception device.
  • a third aspect relates to a transmitting device that wirelessly communicates with a receiving device.
  • the transmitting device a phase shift amount determination unit that determines a random phase shift amount for each subcarrier of transmission data; a modulation unit that modulates the transmission data and further shifts the phase according to the random phase shift amount for each subcarrier; a precoding unit that precodes the transmission data after the modulation process; and a transmitting unit configured to transmit the transmission data after the precoding process to the receiving device.
  • the present invention it is possible to reduce the PAPR when the transmission side performs precoding on transmission data in wireless communication.
  • FIG. 1 is a conceptual diagram schematically showing the configuration of a radio communication system according to an embodiment
  • FIG. FIG. 2 is a block diagram showing a basic configuration example of a transmission device that performs precoding
  • FIG. 4 is a conceptual diagram for explaining amplification characteristics of an amplifier
  • FIG. 4 is a conceptual diagram for explaining distortion of constellation
  • FIG. 4 is a conceptual diagram for explaining the basics of phase shift according to the embodiment
  • FIG. 4 is a conceptual diagram for explaining an overview of phase shift according to the embodiment
  • FIG. 4 is a conceptual diagram for explaining an example of a random phase shift sequence according to an embodiment
  • FIG. FIG. 4 is a conceptual diagram for explaining signal addition processing according to the embodiment
  • FIG. 4 is a conceptual diagram for explaining the effect of phase shift according to the embodiment; 4 is a flow chart summarizing processing by a transmitting device according to an embodiment; 1 is a block diagram showing a first configuration example of a transmission device according to an embodiment; FIG. FIG. 10 is a block diagram showing a second configuration example of a transmission device according to an embodiment; FIG. 11 is a block diagram showing a third configuration example of a transmission device according to an embodiment; 1 is a block diagram showing a configuration example of a receiving device according to an embodiment; FIG.
  • FIG. 1 is a conceptual diagram schematically showing the configuration of a radio communication system 1 according to this embodiment.
  • a wireless communication system 1 includes a transmitter 100 and a receiver 200 .
  • the transmitting device 100 and the receiving device 200 perform wireless communication.
  • the radio communication system 1 may be a MIMO (Multiple-Input Multiple-Output) system, a SISO (Single-Input Single-Output) system, or others.
  • the radio communication system 1 may perform single-carrier transmission, or may perform multi-carrier transmission based on OFDM (Orthogonal Frequency Division Multiplexing) or the like.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission device 100 precodes the transmission data. Precoding is a well known technique. For example, when performing wideband transmission under a frequency selective fading environment, channel equalization is performed by precoding. As another example, in MIMO systems, stream separation is performed by precoding.
  • FIG. 2 is a block diagram showing a basic configuration example of the transmission device 100 that performs precoding.
  • Transmitting apparatus 100 includes modulating section 110 , precoding section 120 , D/A converting section 130 and amplifying section 140 .
  • the modulation section 110 receives transmission data (transmission signal) TD0 transmitted from the transmission device 100 to the reception device 200 .
  • Modulation section 110 performs “modulation processing” for modulating transmission data TD0 using a predetermined modulation scheme. Examples of the predetermined modulation scheme include QAM (Quadrature Amplitude Modulation), QPSK (Quadrature Phase Shift Keying), and the like.
  • Modulation section 110 outputs transmission data TD1 after modulation processing.
  • the precoding section 120 receives transmission data TD1 after modulation processing.
  • the precoding unit 120 performs a “precoding process” for precoding transmission data TD1.
  • Various examples are known as precoding weights (precoding matrices) used in precoding processing. In this embodiment, precoding weights are not particularly limited.
  • Precoding section 120 outputs transmission data TD2 after precoding processing.
  • the D/A converter 130 receives transmission data TD2 after precoding processing.
  • D/A converter 130 D/A converts transmission data TD2 and outputs transmission data TD3.
  • the amplification unit 140 receives transmission data TD3 after D/A conversion.
  • Amplification section 140 includes a power amplifier, and performs “amplification processing” for amplifying transmission data TD3.
  • the amplification section 140 performs a "transmission process" for transmitting the amplified transmission data (transmission signal) TD4 to the receiving device 200 via the antenna.
  • the amplification unit 140 also functions as a “transmission unit” that performs transmission processing.
  • FIG. 3 is a conceptual diagram for explaining the amplification characteristics of the amplification section 140.
  • the horizontal axis represents input signal power, and the vertical axis represents output signal power.
  • the amplification characteristic includes not only a linear region but also a nonlinear region, and the higher the input signal power, the stronger the influence of the nonlinear characteristic. Even if the average power is in the linear region, an input signal with a high PAPR (Peak to Average Power Ratio) is affected by nonlinear characteristics. As a result, distortion of the constellation of transmitted data may occur.
  • PAPR Peak to Average Power Ratio
  • FIG. 4 is a conceptual diagram for explaining constellation distortion of transmission data.
  • a constellation of transmission data in the case of 64QAM is shown.
  • the constellation is distorted in the nonlinear region.
  • transmitting apparatus 100 precodes transmission data. Precoding with signal superposition tends to increase PAPR. Therefore, transmission data (transmission signal) with a high PAPR is input to amplification section 140, and may be affected by nonlinear characteristics and generate nonlinear distortion. When nonlinear distortion of transmitted data occurs, there is a risk of error-prone communication.
  • the present embodiment provides a technique capable of reducing PAPR when transmitting apparatus 100 precodes transmission data.
  • the present embodiment introduces a "phase shift" described below to reduce PAPR.
  • FIG. 5 is a conceptual diagram for explaining the basics of the phase shift according to this embodiment.
  • the modulation scheme is 64QAM.
  • the modulation scheme is not limited to 64QAM.
  • the transmission device 100 (modulation section 110) performs modulation processing for modulating transmission data using a predetermined modulation scheme.
  • the transmitting apparatus 100 not only modulates the transmission data with a predetermined modulation scheme, but also adds a phase shift to the transmission data.
  • the phase shift amount is ⁇ s. That is, in the modulation process, the transmitting apparatus 100 modulates the transmission data using a predetermined modulation method, and further shifts the phase of the transmission data according to the phase shift amount ⁇ s.
  • FIG. 6 is a conceptual diagram for explaining the outline of the phase shift according to this embodiment.
  • the transmitting apparatus 100 performs multicarrier transmission based on OFDM or the like.
  • the phase shift amount ⁇ s is determined for each subcarrier of transmission data, and phase shift is performed. That is, the phase shift amount ⁇ s is determined separately for each subcarrier in the frequency direction, and the phase shift is performed according to the phase shift amount ⁇ s for each subcarrier.
  • the phase shift amount ⁇ s for each subcarrier is random. That is, transmitting apparatus 100 randomly determines phase shift amount ⁇ s for each subcarrier of transmission data.
  • Random phase shift sequence ⁇ is generated, for example, by transmitting apparatus 100 itself.
  • a random phase shift sequence ⁇ generated by another device may be provided to transmitting device 100 .
  • Information indicating the random phase shift sequence ⁇ is hereinafter referred to as "phase shift pattern PAT”.
  • Transmitter 100 acquires phase shift pattern PAT.
  • transmitting apparatus 100 determines a random phase shift amount ⁇ s for each subcarrier based on the random phase shift sequence ⁇ indicated by phase shift pattern PAT. Thereafter, transmitting apparatus 100 performs modulation processing according to the determined random phase shift amount ⁇ s, and further performs subsequent processing.
  • FIG. 7 is a conceptual diagram for explaining an example of the random phase shift sequence ⁇ according to this embodiment.
  • Phase shift processing is performed in predetermined data units (eg, frames, slots).
  • FFT Fast Fourier Transform
  • a random phase shift sequence ⁇ of signal length L is used.
  • the random phase shift sequence ⁇ includes L random phase shift amounts ⁇ 1 to ⁇ L.
  • L is an integer of 2 or more and is predetermined.
  • phase shift patterns PAT may be used.
  • a plurality of types of phase shift patterns PAT indicate different random phase shift sequences ⁇ .
  • transmitting apparatus 100 selects one of a plurality of types of phase shift patterns PAT.
  • transmitting apparatus 100 performs modulation processing using each of a plurality of types of phase shift patterns PAT, and further performs subsequent processing.
  • Transmitting apparatus 100 then calculates the PAPR of the transmission data after precoding processing by precoding section 120, and selects one of the phase shift patterns PAT with the smallest PAPR from among the plurality of types of phase shift patterns PAT.
  • transmitting apparatus 100 obtains information on reception quality (eg, BER (Bit Error Rate)) from receiving apparatus 200, and selects one of the phase shift patterns PAT with the highest reception quality. You can choose from Then, transmitting apparatus 100 determines a random phase shift amount ⁇ s for each subcarrier based on a random phase shift sequence ⁇ indicated by one selected phase shift pattern PAT. Thereafter, transmitting apparatus 100 performs modulation processing according to the determined random phase shift amount ⁇ s, and further performs subsequent processing.
  • reception quality eg, BER (Bit Error Rate)
  • the range that the random phase shift amount ⁇ s can take can be freely set. After the random phase shift amount ⁇ s is generated, rounding to integers may be performed.
  • FIG. 8 is a conceptual diagram for explaining "signal addition processing" according to the present embodiment.
  • Receiving apparatus 200 needs to estimate the random phase shift amount ⁇ s (that is, phase shift pattern PAT, random phase shift sequence ⁇ ) applied to transmission data in transmitting apparatus 100 . Therefore, transmitting apparatus 100 adds a known signal to transmission data for use by receiving apparatus 200 in the estimation. More specifically, transmitting apparatus 100 adds a known signal to the beginning or end of a predetermined data unit (eg, frame, slot). In the case of the example shown in FIG. 7 above, a known signal of signal length L is added. Alternatively, the known signal may be added to the transmitted data in the frequency domain. The added known signal is also phase-shifted according to the random phase-shift sequence ⁇ .
  • a predetermined data unit eg, frame, slot
  • the reception device 200 receives the transmission data transmitted from the transmission device 100 as reception data.
  • Receiving apparatus 200 estimates a random phase shift amount ⁇ s (that is, phase shift pattern PAT, random phase shift sequence ⁇ ) applied in transmitting apparatus 100 based on a known signal added to received data. Specifically, receiving apparatus 200 estimates the random phase shift amount ⁇ s by comparing the known signal added to the received data with the known signal held by itself. Then, receiving apparatus 200 demodulates the received data in consideration of the estimated phase shift amount ⁇ s. That is, when receiving apparatus 200 demodulates the received data, the phase is returned by the phase shift amount ⁇ s for each subcarrier of the received data.
  • ⁇ s that is, phase shift pattern PAT, random phase shift sequence ⁇
  • FIG. 9 is a conceptual diagram for explaining the effect of the phase shift according to this embodiment.
  • the distribution of symbol sequences in the constellation approaches a circular shape due to the phase shift. Since the symbol phase that becomes the peak power is shifted, the peak power is reduced when the signal is superimposed by precoding. Furthermore, since zeros are not crossed when transitioning to symbols at point-symmetrical positions, the average power increases compared to the case where no phase shift is performed. In this way, PAPR can be reduced by performing a phase shift during modulation processing of transmission data.
  • FIG. 10 is a flow chart that summarizes the processing by transmitting device 100 according to the present embodiment.
  • step S110 the transmission device 100 performs "phase shift amount determination processing". That is, transmitting apparatus 100 randomly determines phase shift amount ⁇ s for each subcarrier of transmission data. More specifically, transmitting apparatus 100 obtains a phase shift pattern PAT representing a random phase shift sequence ⁇ . Then, transmitting apparatus 100 determines a random phase shift amount ⁇ s for each subcarrier based on the random phase shift sequence ⁇ indicated by phase shift pattern PAT.
  • step S120 the transmission device 100 performs "signal addition processing" on the transmission data. More specifically, transmitting apparatus 100 adds a known signal used for estimating random phase shift amount ⁇ s in receiving apparatus 200 to transmission data.
  • step S130 the transmission device 100 performs "modulation processing" on the transmission data. More specifically, transmitting apparatus 100 modulates transmission data using a predetermined modulation scheme, and further shifts the phase according to the random phase shift amount ⁇ s for each subcarrier. At this time, the known signal added to the transmission data is also phase-shifted.
  • step S140 the transmission device 100 performs "precoding processing" on the transmission data. More specifically, transmitting apparatus 100 performs precoding on transmission data after modulation processing.
  • step S150 the transmission device 100 performs "transmission processing" for transmitting transmission data after precoding processing from the transmission device to the reception device.
  • the transmitting apparatus 100 may appropriately update the phase shift pattern PAT during communication. At the time of updating, the transmitting device 100 may reconsider all kinds of phase shift patterns PAT and select one out of all kinds of phase shift patterns PAT. Alternatively, transmitting apparatus 100 may reconsider only a certain number of phase shift patterns PAT that were relatively good last time, and select one of the certain number of phase shift patterns PAT.
  • FIG. 11 is a block diagram showing a first configuration example of the transmitting apparatus 100.
  • the transmitting apparatus 100 includes a modulating section 110A, a precoding section 120, a D/A converting section 130, an amplifying section 140, a phase shift amount determining section 150, and a signal adding section 160.
  • Modulation section 110A has a phase shift function in addition to the function of modulation section 110 shown in FIG.
  • the precoding unit 120, the D/A converting unit 130, and the amplifying unit 140 are similar to those shown in FIG.
  • phase shift amount determination unit 150 performs "phase shift amount determination processing". That is, phase shift amount determination section 150 determines a random phase shift amount ⁇ s for each subcarrier of transmission data TD0.
  • phase shift amount determination section 150 acquires phase shift pattern PAT representing random phase shift sequence ⁇ . Phase shift amount determination section 150 then determines a random phase shift amount ⁇ s for each subcarrier based on the random phase shift sequence ⁇ indicated by the phase shift pattern PAT (see FIG. 7). Further, phase shift amount determination section 150 notifies modulation section 110A of random phase shift amount ⁇ s for each subcarrier.
  • the signal addition unit 160 performs "signal addition processing". More specifically, signal adding section 160 adds a known signal used for estimating random phase shift amount ⁇ s in receiving apparatus 200 to transmission data (see FIG. 8). For example, the signal adding section 160 adds a known signal to the beginning or end of a predetermined data unit (eg, frame, slot).
  • a predetermined data unit eg, frame, slot
  • the modulation section 110A receives information on the random phase shift amount ⁇ s for each subcarrier from the phase shift amount determination section 150. In modulation processing, the modulation section 110A modulates the transmission data TD0 with a predetermined modulation method, and further shifts the phase according to a random phase shift amount ⁇ s for each subcarrier (see FIG. 7). At this time, the modulation section 110A also phase-shifts the added known signal. Modulation section 110A then outputs transmission data TD1 after modulation processing.
  • FIG. 12 is a block diagram showing a second configuration example of the transmitting apparatus 100. As shown in FIG. Descriptions that overlap with the first configuration example shown in FIG. 11 are omitted as appropriate. Transmitting apparatus 100 further includes PAPR calculating section 170 in addition to the first configuration example shown in FIG.
  • the phase shift amount determination unit 150 acquires multiple types of phase shift patterns PAT.
  • a plurality of types of phase shift patterns PAT indicate different random phase shift sequences ⁇ .
  • the phase shift amount determination unit 150 provisionally selects a plurality of types of phase shift patterns PAT one by one.
  • the phase shift amount determining section 150 determines a random phase shift amount ⁇ s for each subcarrier based on the random phase shift sequence ⁇ indicated by the temporarily selected phase shift pattern PAT. Then, phase shift amount determination section 150 notifies modulation section 110A of random phase shift amount ⁇ s for each subcarrier.
  • the modulation section 110A performs modulation processing in the same manner as in the case of the first configuration example.
  • Precoding section 120 receives transmission data TD1 after modulation processing.
  • Precoding section 120 precodes transmission data TD1 and outputs transmission data TD2.
  • the PAPR calculation unit 170 receives transmission data TD2 after precoding processing.
  • PAPR calculation section 170 calculates PAPR of transmission data TD2 in a predetermined data unit according to a predetermined calculation formula.
  • PAPR calculation section 170 outputs calculated PAPR information to phase shift amount determination section 150 .
  • the phase shift amount determination unit 150 acquires PAPR information for each of a plurality of types of phase shift patterns PAT. Then, the phase shift amount determining section 150 selects one of the phase shift patterns PAT with the minimum PAPR from the plurality of types of phase shift patterns PAT. Phase shift amount determination section 150 determines a random phase shift amount ⁇ s for each subcarrier according to one selected phase shift pattern PAT. Then, phase shift amount determination section 150 notifies modulation section 110A of the determined random phase shift amount ⁇ s for each subcarrier. Thereafter, the modulation section 110A performs modulation processing using the random phase shift amount ⁇ s notified from the phase shift amount determination section 150.
  • FIG. 13 is a block diagram showing a third configuration example of the transmission device 100. As shown in FIG. The description overlapping with the second configuration example shown in FIG. 12 will be omitted as appropriate.
  • transmission device 100 includes reception quality information acquisition section 180 instead of PAPR calculation section 170 .
  • Reception quality information acquisition section 180 acquires information on reception quality (eg, BER) of transmission data from receiving apparatus 200 .
  • Reception quality information acquisition section 180 outputs reception quality information to phase shift amount determination section 150 .
  • the phase shift amount determining section 150 acquires reception quality information for each of a plurality of types of phase shift patterns PAT. Then, phase shift amount determining section 150 selects one of the phase shift patterns PAT that provides the highest reception quality. Phase shift amount determination section 150 determines a random phase shift amount ⁇ s for each subcarrier according to one selected phase shift pattern PAT. Then, phase shift amount determination section 150 notifies modulation section 110A of the determined random phase shift amount ⁇ s for each subcarrier. Thereafter, the modulation section 110A performs modulation processing using the random phase shift amount ⁇ s notified from the phase shift amount determination section 150. FIG.
  • the transmission device 100 includes one or more processors (hereinafter simply referred to as “processors”) and one or more storage devices (hereinafter simply referred to as “storage devices”).
  • processors hereinafter simply referred to as "processors”
  • storage devices hereinafter simply referred to as “storage devices”.
  • the processor includes a CPU (Central Processing Unit).
  • the storage device stores various information necessary for processing by the processor. Examples of storage devices include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the processor may execute a control program, which is a computer program.
  • the control program is stored in the storage device.
  • the control program may be recorded on a computer-readable recording medium.
  • the functions of the processor are realized by the processor executing the control program.
  • phase shift patterns PAT prepared in advance Information on a plurality of types of phase shift patterns PAT prepared in advance is stored in the storage device.
  • Functions such as modulation section 110A, precoding section 120, phase shift amount determination section 150, signal addition section 160, PAPR calculation section 170, reception quality information acquisition section 180, etc. are realized through cooperation between the processor and the storage device. .
  • FIG. 14 is a block diagram showing a configuration example of the receiving device 200 .
  • Receiver 200 includes amplifier 210 , A/D converter 220 , and demodulator 230 .
  • the reception device 200 receives the transmission data transmitted from the transmission device 100 as reception data (reception signal) RD0.
  • Amplifying section 210 amplifies received data RD0 and outputs received data RD1.
  • A/D converter 220 A/D-converts received data RD1 and outputs received data RD2.
  • the demodulator 230 performs "demodulation processing" for demodulating the received data RD2. At this time, the demodulator 230 demodulates the received data RD2 in consideration of the phase shift amount ⁇ s.
  • demodulator 230 includes phase shift amount estimator 240 .
  • Phase shift amount estimating section 240 calculates the random phase shift amount ⁇ s (that is, phase shift pattern PAT, random phase shift sequence ⁇ ) applied in transmitting apparatus 100 based on the known signal added to received data RD2. presume. Specifically, the phase shift amount estimator 240 estimates the random phase shift amount ⁇ s by comparing the known signal added to the received data RD2 and the known signal held by itself.
  • Demodulator 230 demodulates received data RD2 in consideration of the estimated phase shift amount ⁇ s. That is, the demodulator 230 demodulates the received data RD2 by a predetermined demodulation method, and returns the phase by the phase shift amount ⁇ s for each subcarrier.
  • the receiving device 200 includes one or more processors (hereinafter simply referred to as “processors”) and one or more storage devices (hereinafter simply referred to as “storage devices”).
  • the processor may execute a control program, which is a computer program.
  • the control program is stored in the storage device.
  • the control program may be recorded on a computer-readable recording medium.
  • the functions of the processor are realized by the processor executing the control program. Functions such as the demodulator 230 and the phase shift amount estimator 240 are realized by cooperation between the processor and the storage device.
  • Radio Communication System 100 Transmitter 110, 110A Modulator 120 Precoder 130 D/A Converter 140 Amplifier 150 Phase Shift Amount Determiner 160 Signal Adder 170 PAPR Calculator 180 Reception Quality Information Acquirer 200 Receiver 210 Amplification Part 220 A/D converter 230 Demodulator 240 Phase shift amount estimator PAT Phase shift pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

無線通信方法は、送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定処理を含む。無線通信方法は、更に、送信データを変調すると共に、サブキャリア毎にランダムな位相シフト量に従って位相を更にシフトする変調処理を含む。無線通信方法は、更に、変調処理後の送信データに対してプリコーディングを行うプリコーディング処理と、プリコーディング処理後の送信データを送信装置から受信装置に送信する送信処理と、を含む。

Description

無線通信方法、無線通信システム、及び送信装置
 本発明は、無線通信技術に関する。特に、本発明は、送信側において送信データに対してプリコーディングを行う無線通信技術に関する。
 無線通信において送信側が送信データに対してプリコーディングを行う場合がある。例えば、周波数選択性フェージング環境下で広帯域伝送を行う場合に、プリコーディングによりチャネル等化が行われる。他の例として、MIMO(Multiple-Input Multiple-Output)システムでは、プリコーディングによりストリーム分離が行われる。
 送信側においてプリコーディングが行われる場合、信号重畳によりPAPR(Peak to Average Power Ratio:ピーク電力対平均電力比)が増大する。送信信号はアンテナから送信される前に電力増幅器によって増幅されるが、PAPRの高い信号が電力増幅器に入力されると、電力増幅器の非線形特性の影響を受け、非線形歪みが発生するおそれがある。送信信号の非線形歪みが発生すると、誤りの多い通信となるおそれがある。
 非特許文献1は、広帯域シングルキャリアMIMOシステムにおいてPAPRを削減する技術を開示している。
栗山他,「可変タップ長FIRビーム形成を用いた広帯域シングルキャリアMIMOシステムにおけるPAPR削減(PAPR Reduction on Wideband Single-Carrier MIMO Systems with Variable Tap-Length FIR Beamforming)」,電子情報通信学会通信ソサイエティ大会, B-5-70, 2021年9月.
 上述の通り、無線通信において送信側が送信データに対してプリコーディングを行う場合、PAPRが増大する。
 本発明の1つの目的は、無線通信において送信側が送信データに対してプリコーディングを行う場合のPAPRを低減することができる技術を提供することにある。
 第1の観点は、送信装置と受信装置との間で無線通信を行う無線通信方法に関連する。
 無線通信方法は、
 送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定処理と、
 送信データを変調すると共に、サブキャリア毎にランダムな位相シフト量に従って位相を更にシフトする変調処理と、
 変調処理後の送信データに対してプリコーディングを行うプリコーディング処理と、
 プリコーディング処理後の送信データを送信装置から受信装置に送信する送信処理と
 を含む。
 第2の観点は、無線通信システムに関連する。
 無線通信システムは、送信装置と受信装置とを備える。
 送信装置は、
 送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定処理と、
 送信データを変調すると共に、サブキャリア毎にランダムな位相シフト量に従って位相を更にシフトする変調処理と、
 変調処理後の送信データに対してプリコーディングを行うプリコーディング処理と、
 プリコーディング処理後の送信データを送信装置から受信装置に送信する送信処理と
 を実行する。
 第3の観点は、受信装置と無線通信を行う送信装置に関連する。
 送信装置は、
 送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定部と、
 前記送信データを変調すると共に、前記サブキャリア毎に前記ランダムな位相シフト量に従って位相を更にシフトする変調部と、
 前記変調処理後の前記送信データに対してプリコーディングを行うプリコーディング部と、
 前記プリコーディング処理後の前記送信データを前記受信装置に送信する送信部と
 を備える。
 本発明によれば、無線通信において送信側が送信データに対してプリコーディングを行う場合のPAPRを低減することが可能となる。
実施の形態に係る無線通信システムの構成を概略的に示す概念図である。 プリコーディングを行う送信装置の基本的な構成例を示すブロック図である。 増幅部の増幅特性を説明するための概念図である。 コンスタレーションの歪みを説明するための概念図である。 実施の形態に係る位相シフトの基本を説明するための概念図である。 実施の形態に係る位相シフトの概要を説明するための概念図である。 実施の形態に係るランダム位相シフト系列の一例を説明するための概念図である。 実施の形態に係る信号付加処理を説明するための概念図である。 実施の形態に係る位相シフトによる効果を説明するための概念図である。 実施の形態に係る送信装置による処理を要約的に示すフローチャートである。 実施の形態に係る送信装置の第1の構成例を示すブロック図である。 実施の形態に係る送信装置の第2の構成例を示すブロック図である。 実施の形態に係る送信装置の第3の構成例を示すブロック図である。 実施の形態に係る受信装置の構成例を示すブロック図である。
 添付図面を参照して、本発明の実施の形態を説明する。
 1.無線通信システムの概要
 図1は、本実施の形態に係る無線通信システム1の構成を概略的に示す概念図である。無線通信システム1は、送信装置100と受信装置200を含んでいる。送信装置100と受信装置200は、無線通信を行う。無線通信システム1は、MIMO(Multiple-Input Multiple-Output)システムであってもよいし、SISO(Single-Input Single-Output)システムであってもよいし、その他であってもよい。無線通信システム1は、シングルキャリア伝送を行ってもよいし、OFDM(Orthogonal Frequency Division Multiplexing)等に基づくマルチキャリア伝送を行ってもよい。
 送信装置100は、送信データを受信装置200に送信する前に、送信データに対してプリコーディングを行う。プリコーディングは周知技術である。例えば、周波数選択性フェージング環境下で広帯域伝送を行う場合に、プリコーディングによりチャネル等化が行われる。他の例として、MIMOシステムでは、プリコーディングによりストリーム分離が行われる。
 図2は、プリコーディングを行う送信装置100の基本的な構成例を示すブロック図である。送信装置100は、変調部110、プリコーディング部120、D/A変換部130、及び増幅部140を含んでいる。
 変調部110は、送信装置100から受信装置200に送信される送信データ(送信信号)TD0を受け取る。変調部110は、送信データTD0を所定の変調方式で変調する「変調処理」を行う。所定の変調方式としては、QAM(Quadrature Amplitude Modulation)、QPSK(Quadrature Phase Shift Keying)、等が例示される。変調部110は、変調処理後の送信データTD1を出力する。
 プリコーディング部120は、変調処理後の送信データTD1を受け取る。プリコーディング部120は、送信データTD1に対してプリコーディングを行う「プリコーディング処理」を行う。プリコーディング処理に用いられるプリコーディングウェイト(プリコーディング行列)としては、様々な例が知られている。本実施の形態では、プリコーディングウェイトは特に限定されない。プリコーディング部120は、プリコーディング処理後の送信データTD2を出力する。
 D/A変換部130は、プリコーディング処理後の送信データTD2を受け取る。D/A変換部130は、送信データTD2をD/A変換し、送信データTD3を出力する。
 増幅部140は、D/A変換後の送信データTD3を受け取る。増幅部140は、電力増幅器を含んでおり、送信データTD3を増幅する「増幅処理」を行う。
 更に、増幅部140は、増幅処理後の送信データ(送信信号)TD4をアンテナを介して受信装置200に送信する「送信処理」を行う。増幅部140は、送信処理を行う「送信部」としても機能する。
 図3は、増幅部140の増幅特性を説明するための概念図である。横軸は入力信号電力を表し、縦軸は出力信号電力を表している。図3に示されるように、増幅特性は線形領域だけでなく非線形領域も含んでおり、入力信号電力が高くなると非線形特性の影響が強くなる。平均電力が線形領域に含まれるとしても、PAPR(Peak to Average Power Ratio:ピーク電力対平均電力比)の高い入力信号は、非線形特性の影響を受ける。その結果、送信データのコンスタレーションの歪みが発生するおそれがある。
 図4は、送信データのコンスタレーションの歪みを説明するための概念図である。ここでは、一例として、64QAMの場合の送信データのコンスタレーションが示されている。線形領域ではコンスタレーションには歪みが生じていない。しかしながら、非線形領域ではコンスタレーションには歪みが生じる。
 上述の通り、本実施の形態では、送信装置100(プリコーディング部120)が、送信データに対してプリコーディングを行う。信号重畳を伴うプリコーディングは、PAPRを増大させる傾向にある。そのため、PAPRの高い送信データ(送信信号)が増幅部140に入力され、非線形特性の影響を受け、非線形歪みが発生するおそれがある。送信データの非線形歪みが発生すると、誤りの多い通信となるおそれがある。
 そこで、本実施の形態は、送信装置100が送信データに対してプリコーディングを行う場合のPAPRを低減することができる技術を提供する。本実施の形態は、PAPRを低減するために、以下に説明される「位相シフト」を導入する。
 2.位相シフトを利用したPAPR低減
 図5は、本実施の形態に係る位相シフトの基本を説明するための概念図である。ここでは、一例として、変調方式が64QAMの場合が示されている。但し、変調方式は64QAMに限定されない。
 送信装置100(変調部110)は、送信データを所定の変調方式で変調する変調処理を行う。この変調処理において、送信装置100は、所定の変調方式で送信データを変調するだけでなく、更に送信データに位相シフトを加える。位相シフト量はθsである。つまり、変調処理において、送信装置100は、所定の変調方式で送信データを変調すると共に、位相シフト量θsに従って送信データの位相を更にシフトする。
 図6は、本実施の形態に係る位相シフトの概要を説明するための概念図である。送信装置100は、OFDM等に基づくマルチキャリア伝送を行う。本実施の形態によれば、送信データのサブキャリア毎に、位相シフト量θsが決定され、位相シフトが行われる。つまり、周波数方向のサブキャリア単位で位相シフト量θsが別々に決定され、サブキャリア毎に位相シフト量θsに従って位相シフトが行われる。
 また、本実施の形態によれば、サブキャリア毎の位相シフト量θsはランダムである。つまり、送信装置100は、送信データのサブキャリア毎にランダムな位相シフト量θsを決定する。
 位相シフト量θsのランダム系列を、以下、「ランダム位相シフト系列Θ」と呼ぶ。ランダム位相シフト系列Θは、例えば、送信装置100自身によって生成される。あるいは、他の装置によって生成されたランダム位相シフト系列Θが送信装置100に提供されてもよい。ランダム位相シフト系列Θを示す情報を、以下、「位相シフトパターンPAT」と呼ぶ。送信装置100は、位相シフトパターンPATを取得する。そして、送信装置100は、位相シフトパターンPATで示されるランダム位相シフト系列Θに基づいて、サブキャリア毎のランダムな位相シフト量θsを決定する。その後、送信装置100は、決定したランダムな位相シフト量θsに従って変調処理を行い、更に後段の処理を行う。
 図7は、本実施の形態に係るランダム位相シフト系列Θの一例を説明するための概念図である。位相シフト処理は、所定のデータ単位(例:フレーム、スロット)で行われる。FFT(Fast Fourier Transform)により、周波数領域における送信データが得られる。図7に示される例では、信号長Lのランダム位相シフト系列Θが用いられる。ランダム位相シフト系列Θは、L個のランダムな位相シフト量θ1~θLを含んでいる。Lは、2以上の整数であり、予め定められる。送信装置100は、そのランダム位相シフト系列Θ(=θ1~θL)をL個のサブキャリア毎に繰り返し適用することによって、サブキャリア毎のランダムな位相シフト量θsを決定する。
 変形例として、複数種類の位相シフトパターンPATが用いられてもよい。複数種類の位相シフトパターンPATは、それぞれ異なるランダム位相シフト系列Θを示す。この場合、送信装置100は、複数種類の位相シフトパターンPATの中から1つを選択する。例えば、送信装置100は、複数種類の位相シフトパターンPATのそれぞれを用いて変調処理を行い、更に後段の処理を行う。そして、送信装置100は、プリコーディング部120によるプリコーディング処理後の送信データのPAPRを算出し、PAPRが最小となる1つを複数種類の位相シフトパターンPATの中から選択する。他の例として、送信装置100は、受信装置200から受信品質(例:BER(Bit Error Rate))の情報を取得し、受信品質が最高となる1つを複数種類の位相シフトパターンPATの中から選択してもよい。そして、送信装置100は、選択した1つの位相シフトパターンPATで示されるランダム位相シフト系列Θに基づいて、サブキャリア毎のランダムな位相シフト量θsを決定する。その後、送信装置100は、決定したランダムな位相シフト量θsに従って変調処理を行い、更に後段の処理を行う。
 尚、ランダムな位相シフト量θsが取り得る範囲は自由に設定可能である。ランダムな位相シフト量θsが生成された後、整数への丸め込みが行われてもよい。
 図8は、本実施の形態に係る「信号付加処理」を説明するための概念図である。受信装置200は、送信装置100において送信データに適用されたランダムな位相シフト量θs(つまり、位相シフトパターンPAT、ランダム位相シフト系列Θ)を推定する必要がある。そこで、送信装置100は、受信装置200がその推定に用いるための既知信号を送信データに付加する。より詳細には、送信装置100は、所定のデータ単位(例:フレーム、スロット)の先頭または末尾に既知信号を付加する。上記の図7で示された例の場合、信号長Lの既知信号が付加される。変形例として、既知信号は、周波数領域の送信データに付加されてもよい。付加された既知信号に対しても、ランダム位相シフト系列Θに従って位相シフトが行われる。
 受信装置200は、送信装置100から送信された送信データを受信データとして受信する。受信装置200は、受信データに付加されている既知信号に基づいて、送信装置100において適用されたランダムな位相シフト量θs(つまり、位相シフトパターンPAT、ランダム位相シフト系列Θ)を推定する。具体的には、受信装置200は、受信データに付加されている既知信号と自身が保持している既知信号とを対比することによって、ランダムな位相シフト量θsを推定する。そして、受信装置200は、推定された位相シフト量θsを考慮して、受信データの復調を行う。すなわち、受信装置200は、受信データを復調する際、受信データのサブキャリア毎に位相シフト量θsだけ位相を戻す。
 図9は、本実施の形態に係る位相シフトによる効果を説明するための概念図である。図9に示されるように、位相シフトにより、コンスタレーションにおけるシンボル系列の分布(シンボル分布)が円形に近づく。ピーク電力となるシンボル位相がずれるため、プリコーディングによる信号重畳時にピーク電力が減少する。更に、点対称位置のシンボルへ推移する際に零点を通過しないため、位相シフトが行われない場合と比較して平均電力が増加する。このように、送信データの変調処理時に位相シフトを行うことにより、PAPRを低減することが可能となる。
 図10は、本実施の形態に係る送信装置100による処理を要約的に示すフローチャートである。
 ステップS110において、送信装置100は、「位相シフト量決定処理」を行う。つまり、送信装置100は、送信データのサブキャリア毎にランダムな位相シフト量θsを決定する。より詳細には、送信装置100は、ランダム位相シフト系列Θを示す位相シフトパターンPATを取得する。そして、送信装置100は、位相シフトパターンPATで示されるランダム位相シフト系列Θに基づいて、サブキャリア毎のランダムな位相シフト量θsを決定する。
 ステップS120において、送信装置100は、送信データに対して「信号付加処理」を行う。より詳細には、送信装置100は、受信装置200においてランダムな位相シフト量θsを推定するために用いられる既知信号を送信データに付加する。
 ステップS130において、送信装置100は、送信データに対して「変調処理」を行う。より詳細には、送信装置100は、所定の変調方式で送信データを変調すると共に、サブキャリア毎に上記のランダムな位相シフト量θsに従って位相を更にシフトする。このとき、送信データに付加された既知信号に関しても位相シフトが行われる。
 ステップS140において、送信装置100は、送信データに対して「プリコーディング処理」を行う。より詳細には、送信装置100は、変調処理後の送信データに対してプリコーディングを行う。
 ステップS150において、送信装置100は、プリコーディング処理後の送信データを送信装置から受信装置に送信する「送信処理」を行う。
 尚、通信中に、送信装置100は、位相シフトパターンPATの更新を適宜実施してもよい。更新時、送信装置100は、全種類の位相シフトパターンPATを再度検討し、全種類の位相シフトパターンPATの中から1つを選択してもよい。あるいは、送信装置100は、前回比較的優れていた一定数の位相シフトパターンPATだけを再度検討し、それら一定数の位相シフトパターンPATの中から1つを選択してもよい。
 以上に説明されたように、本実施の形態によれば、送信データに対して位相シフトを適用することにより、プリコーディングが行われる場合のPAPRを低減することが可能となる。
 3.構成例
 以下、送信装置100及び受信装置200の構成例について説明する。
 3-1.送信装置の構成例
 3-1-1.第1の構成例
 図11は、送信装置100の第1の構成例を示すブロック図である。送信装置100は、変調部110A、プリコーディング部120、D/A変換部130、増幅部140、位相シフト量決定部150、及び信号付加部160を含んでいる。変調部110Aは、図2で示された変調部110の機能に加えて、位相シフト機能を備えている。プリコーディング部120、D/A変換部130、及び増幅部140は、図2で示されたものと同様である。
 位相シフト量決定部150は、「位相シフト量決定処理」を行う。つまり、位相シフト量決定部150は、送信データTD0のサブキャリア毎のランダムな位相シフト量θsを決定する。
 より詳細には、位相シフト量決定部150は、ランダム位相シフト系列Θを示す位相シフトパターンPATを取得する。そして、位相シフト量決定部150は、位相シフトパターンPATで示されるランダム位相シフト系列Θに基づいて、サブキャリア毎のランダムな位相シフト量θsを決定する(図7参照)。更に、位相シフト量決定部150は、サブキャリア毎のランダムな位相シフト量θsを変調部110Aに通知する。
 信号付加部160は、「信号付加処理」を行う。より詳細には、信号付加部160は、受信装置200においてランダムな位相シフト量θsを推定するために用いられる既知信号を送信データに付加する(図8参照)。例えば、信号付加部160は、所定のデータ単位(例:フレーム、スロット)の先頭または末尾に既知信号を付加する。
 変調部110Aは、サブキャリア毎のランダムな位相シフト量θsの情報を位相シフト量決定部150から受け取る。変調処理において、変調部110Aは、所定の変調方式で送信データTD0を変調すると共に、サブキャリア毎にランダムな位相シフト量θsに従って位相を更にシフトする(図7参照)。このとき、変調部110Aは、付加された既知信号に対しても位相シフトを行う。そして、変調部110Aは、変調処理後の送信データTD1を出力する。
 3-1-2.第2の構成例
 図12は、送信装置100の第2の構成例を示すブロック図である。図11で示された第1の構成例と重複する説明は適宜省略される。送信装置100は、図11で示された第1の構成例に加えて、PAPR算出部170を更に含んでいる。
 位相シフト量決定部150は、複数種類の位相シフトパターンPATを取得する。複数種類の位相シフトパターンPATは、それぞれ異なるランダム位相シフト系列Θを示す。位相シフト量決定部150は、複数種類の位相シフトパターンPATを一つずつ順番に仮選択する。位相シフト量決定部150は、仮選択した位相シフトパターンPATで示されるランダム位相シフト系列Θに基づいて、サブキャリア毎のランダムな位相シフト量θsを決定する。そして、位相シフト量決定部150は、サブキャリア毎のランダムな位相シフト量θsを変調部110Aに通知する。
 変調部110Aは、第1の構成例の場合と同様に変調処理を行う。プリコーディング部120は、変調処理後の送信データTD1を受け取る。プリコーディング部120は、送信データTD1に対してプリコーディングを行い、送信データTD2を出力する。
 PAPR算出部170は、プリコーディング処理後の送信データTD2を受け取る。PAPR算出部170は、所定の計算式に従って、所定のデータ単位の送信データTD2のPAPRを算出する。PAPR算出部170は、算出したPAPRの情報を位相シフト量決定部150に出力する。
 位相シフト量決定部150は、複数種類の位相シフトパターンPATのそれぞれの場合のPAPRの情報を取得する。そして、位相シフト量決定部150は、PAPRが最小となる1つを複数種類の位相シフトパターンPATの中から選択する。位相シフト量決定部150は、選択した1つの位相シフトパターンPATに従って、サブキャリア毎のランダムな位相シフト量θsを決定する。そして、位相シフト量決定部150は、決定したサブキャリア毎のランダムな位相シフト量θsを変調部110Aに通知する。その後、変調部110Aは、位相シフト量決定部150から通知されたランダムな位相シフト量θsを用いて変調処理を行う。
 3-1-3.第3の構成例
 図13は、送信装置100の第3の構成例を示すブロック図である。図12で示された第2の構成例と重複する説明は適宜省略される。
 第3の構成例では、送信装置100は、PAPR算出部170の代わりに受信品質情報取得部180を含んでいる。受信品質情報取得部180は、受信装置200から送信データの受信品質(例:BER)の情報を取得する。受信品質情報取得部180は、受信品質の情報を位相シフト量決定部150に出力する。
 位相シフト量決定部150は、複数種類の位相シフトパターンPATのそれぞれの場合の受信品質の情報を取得する。そして、位相シフト量決定部150は、受信品質が最高となる1つを複数種類の位相シフトパターンPATの中から選択する。位相シフト量決定部150は、選択した1つの位相シフトパターンPATに従って、サブキャリア毎のランダムな位相シフト量θsを決定する。そして、位相シフト量決定部150は、決定したサブキャリア毎のランダムな位相シフト量θsを変調部110Aに通知する。その後、変調部110Aは、位相シフト量決定部150から通知されたランダムな位相シフト量θsを用いて変調処理を行う。
 3-1-4.ハードウェア構成例
 送信装置100は、1又は複数のプロセッサ(以下、単に「プロセッサ」と呼ぶ)と1又は複数の記憶装置(以下、単に「記憶装置」と呼ぶ)を含んでいる。例えば、プロセッサは、CPU(Central Processing Unit)を含んでいる。記憶装置は、プロセッサによる処理に必要な各種情報を格納する。記憶装置としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。
 プロセッサは、コンピュータプログラムである制御プログラムを実行してもよい。制御プログラムは、記憶装置に格納される。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。プロセッサが制御プログラムを実行することにより、プロセッサの機能が実現される。
 記憶装置には、予め用意された複数種類の位相シフトパターンPATの情報が格納される。プロセッサと記憶装置との協働により、変調部110A、プリコーディング部120、位相シフト量決定部150、信号付加部160、PAPR算出部170、受信品質情報取得部180、等の機能が実現される。
 3-2.受信装置の構成例
 図14は、受信装置200の構成例を示すブロック図である。受信装置200は、増幅部210、A/D変換部220、復調部230を含んでいる。
 受信装置200は、送信装置100から送信された送信データを受信データ(受信信号)RD0として受信する。増幅部210は、受信データRD0を増幅し、受信データRD1を出力する。A/D変換部220は、受信データRD1をA/D変換し、受信データRD2を出力する。
 復調部230は、受信データRD2を復調する「復調処理」を行う。このとき、復調部230は、位相シフト量θsを考慮して受信データRD2の復調を行う。
 より詳細には、復調部230は、位相シフト量推定部240を含んでいる。位相シフト量推定部240は、受信データRD2に付加されている既知信号に基づいて、送信装置100において適用されたランダムな位相シフト量θs(つまり、位相シフトパターンPAT、ランダム位相シフト系列Θ)を推定する。具体的には、位相シフト量推定部240は、受信データRD2に付加されている既知信号と自身が保持している既知信号とを対比することによって、ランダムな位相シフト量θsを推定する。そして、復調部230は、推定された位相シフト量θsを考慮して、受信データRD2の復調を行う。すなわち、復調部230は、所定の復調方式で受信データRD2を復調すると共に、サブキャリア毎に位相シフト量θsだけ位相を戻す。
 受信装置200は、1又は複数のプロセッサ(以下、単に「プロセッサ」と呼ぶ)と1又は複数の記憶装置(以下、単に「記憶装置」と呼ぶ)を含んでいる。プロセッサは、コンピュータプログラムである制御プログラムを実行してもよい。制御プログラムは、記憶装置に格納される。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。プロセッサが制御プログラムを実行することにより、プロセッサの機能が実現される。プロセッサと記憶装置との協働により、復調部230、位相シフト量推定部240、等の機能が実現される。
   1  無線通信システム
 100  送信装置
 110,110A  変調部
 120  プリコーディング部
 130  D/A変換部
 140  増幅部
 150  位相シフト量決定部
 160  信号付加部
 170  PAPR算出部
 180  受信品質情報取得部
 200  受信装置
 210  増幅部
 220  A/D変換部
 230  復調部
 240  位相シフト量推定部
 PAT  位相シフトパターン

Claims (8)

  1.  送信装置と受信装置との間で無線通信を行う無線通信方法であって、
     送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定処理と、
     前記送信データを変調すると共に、前記サブキャリア毎に前記ランダムな位相シフト量に従って位相を更にシフトする変調処理と、
     前記変調処理後の前記送信データに対してプリコーディングを行うプリコーディング処理と、
     前記プリコーディング処理後の前記送信データを前記送信装置から前記受信装置に送信する送信処理と
     を含む
     無線通信方法。
  2.  請求項1に記載の無線通信方法であって、
     前記位相シフト決定処理は、
     前記位相シフト量のランダム系列を示す位相シフトパターンを取得することと、
     所定数のサブキャリア毎に前記ランダム系列を繰り返し適用することによって、前記サブキャリア毎の前記ランダムな位相シフト量を決定することを含む
     無線通信方法。
  3.  請求項1又は2に記載の無線通信方法であって、
     前記位相シフト量決定処理は、
     各々が前記位相シフト量のランダム系列を示す複数種類の位相シフトパターンを取得することと、
     前記複数種類の位相シフトパターンの中から、前記プリコーディング処理後の前記送信データのPAPR(Peak to Average Power Ratio)が最小となる1つ、あるいは、前記受信装置における前記送信データの受信品質が最高となる1つを選択することと、
     前記選択された位相シフトパターンで示される前記ランダム系列に基づいて、前記サブキャリア毎の前記ランダムな位相シフト量を決定することと
     を含む
     無線通信方法。
  4.  請求項1乃至3のいずれか一項に記載の無線通信方法であって、
     前記受信装置において前記ランダムな位相シフト量を推定するために用いられる既知信号を前記送信データに付加する信号付加処理を更に含む
     無線通信方法。
  5.  請求項4に記載の無線通信方法であって、
     前記送信装置から送信された前記送信データを前記受信装置において受信データとして受信する処理と、
     前記受信装置において前記既知信号に基づいて前記ランダムな位相シフト量を推定する処理と、
     前記推定された位相シフト量に基づいて前記受信データの復調を行う復調処理と
     を更に含む
     無線通信方法。
  6.  送信装置と、
     受信装置と
     を備え、
     前記送信装置は、
     送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定処理と、
     前記送信データを変調すると共に、前記サブキャリア毎に前記ランダムな位相シフト量に従って位相を更にシフトする変調処理と、
     前記変調処理後の前記送信データに対してプリコーディングを行うプリコーディング処理と、
     前記プリコーディング処理後の前記送信データを前記送信装置から前記受信装置に送信する送信処理と
     を実行する
     無線通信システム。
  7.  請求項6に記載の無線通信システムであって、
     前記送信装置は、更に、前記受信装置において前記ランダムな位相シフト量を推定するために用いられる既知信号を前記送信データに付加する信号付加処理を実行し、
     前記受信装置は、
     前記送信装置から送信された前記送信データを受信データとして受信し、
     前記既知信号に基づいて前記ランダムな位相シフト量を推定し、
     前記推定された位相シフト量に基づいて前記受信データの復調を行う
     無線通信システム。
  8.  受信装置と無線通信を行う送信装置であって、
     送信データのサブキャリア毎にランダムな位相シフト量を決定する位相シフト量決定部と、
     前記送信データを変調すると共に、前記サブキャリア毎に前記ランダムな位相シフト量に従って位相を更にシフトする変調部と、
     前記変調処理後の前記送信データに対してプリコーディングを行うプリコーディング部と、
     前記プリコーディング処理後の前記送信データを前記受信装置に送信する送信部と
     を備える
     送信装置。
PCT/JP2022/006236 2022-02-16 2022-02-16 無線通信方法、無線通信システム、及び送信装置 WO2023157143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2024500785A JPWO2023157143A1 (ja) 2022-02-16 2022-02-16
EP22927046.7A EP4482094A1 (en) 2022-02-16 2022-02-16 Wireless communication method, wireless communication system, and transmission device
PCT/JP2022/006236 WO2023157143A1 (ja) 2022-02-16 2022-02-16 無線通信方法、無線通信システム、及び送信装置
US18/837,194 US20250141726A1 (en) 2022-02-16 2022-02-16 Wireless communication method, wireless communication system, and transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006236 WO2023157143A1 (ja) 2022-02-16 2022-02-16 無線通信方法、無線通信システム、及び送信装置

Publications (1)

Publication Number Publication Date
WO2023157143A1 true WO2023157143A1 (ja) 2023-08-24

Family

ID=87577888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006236 WO2023157143A1 (ja) 2022-02-16 2022-02-16 無線通信方法、無線通信システム、及び送信装置

Country Status (4)

Country Link
US (1) US20250141726A1 (ja)
EP (1) EP4482094A1 (ja)
JP (1) JPWO2023157143A1 (ja)
WO (1) WO2023157143A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341054A (ja) * 2004-05-25 2005-12-08 Ntt Docomo Inc 送信機および送信制御方法
JP2007201951A (ja) * 2006-01-27 2007-08-09 Sanyo Electric Co Ltd 受信方法および装置
JP2009194732A (ja) * 2008-02-15 2009-08-27 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2011524146A (ja) * 2008-06-13 2011-08-25 クゥアルコム・インコーポレイテッド ピーク電力管理技法を使用したharq再送信の低減

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341054A (ja) * 2004-05-25 2005-12-08 Ntt Docomo Inc 送信機および送信制御方法
JP2007201951A (ja) * 2006-01-27 2007-08-09 Sanyo Electric Co Ltd 受信方法および装置
JP2009194732A (ja) * 2008-02-15 2009-08-27 Ntt Docomo Inc 無線通信装置及び無線通信方法
JP2011524146A (ja) * 2008-06-13 2011-08-25 クゥアルコム・インコーポレイテッド ピーク電力管理技法を使用したharq再送信の低減

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALHARBI F.S.; CHAMBERS J.A.: "A combined SLM and closed-loop QO-STBC for PAPR mitigation in MIMO-OFDM transmission", 2010 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE, IEEE, 25 August 2008 (2008-08-25), pages 1 - 4, XP032760815, ISSN: 2219-5491 *
JAE HONG LEE, SEUNG HEE HAN: "Modulation, coding and signal processing for wireless communications - An overview of peak-to-average power ratio reduction techniques for multicarrier transmission", IEEE WIRELESS COMMUNICATIONS, COORDINATED SCIENCE LABORATORY; DEPT. ELECTRICAL AND COMPUTER ENGINEERING; UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, US, vol. 12, no. 2, 1 April 2005 (2005-04-01), US , pages 56 - 65, XP011130574, ISSN: 1536-1284, DOI: 10.1109/MWC.2005.1421929 *
KURIYAMA ET AL.: "PAPR Reduction on Wideband Single-Carrier MIMO Systems with Variable Tap-Length FIR Beamforming", SOCIETY CONFERENCE OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, September 2021 (2021-09-01), pages B-5 - 70

Also Published As

Publication number Publication date
EP4482094A1 (en) 2024-12-25
JPWO2023157143A1 (ja) 2023-08-24
US20250141726A1 (en) 2025-05-01

Similar Documents

Publication Publication Date Title
JP4911780B2 (ja) 無線通信システム、受信装置及び受信方法
KR100913874B1 (ko) 직교주파수분할다중 시스템에서 부채널 간 간섭 제거 방법
US20090161784A1 (en) Transmit power allocation for adaptive multi-carrier multiplexing mimo systems
WO2009081860A1 (ja) 無線通信システム、受信装置、受信方法
CN118216086A (zh) 非线性估计、报告和补偿的方法
CN102006144A (zh) 预编码方法、装置及频域均衡方法、装置
US20080240273A1 (en) Radio transmitting apparatus and radio receiving apparatus using ofdm
KR20150101837A (ko) 이동 통신 시스템에서 신호 송수신을 위한 변조 방법 및 장치
JP4279646B2 (ja) 通信装置
JP4932389B2 (ja) 信号伝送装置および信号伝送方法
US8194768B1 (en) Channel estimation using linear phase estimation
WO2023157143A1 (ja) 無線通信方法、無線通信システム、及び送信装置
US9166841B2 (en) Receiving apparatus and receiving method
WO2023157132A1 (ja) 無線通信方法、無線通信システム、及び送信装置
WO2023157133A1 (ja) 無線通信方法、無線通信システム、及び送信装置
WO2023144887A1 (ja) 無線通信方法、無線通信システム、及び送信装置
CN113055067B (zh) 下行信号处理方法、装置及基站
US20120114055A1 (en) Receiving apparatus and method for providing input bits of fast fourier transformer according to modulation
WO2023144879A1 (ja) 無線通信方法、無線通信システム、及び送信装置
KR20150081993A (ko) Ofdm 시스템에서의 송수신 방법 및 그 장치
JP7679894B2 (ja) 無線通信方法、無線通信システム、及び送信装置
US20130129021A1 (en) Automatic gain controlling device, orthogonal frequency division multiplexing (ofdm) receiver employing high-order quadrature amplitude modulation (qam) and using automatic gain controlling device, and manufacturing method of automatic gain controlling device
Leftah et al. Efficient coded DCT-OFDM system utilizing Walsh-Hadamard transform
JP2023015780A (ja) 無線通信システム、及び無線通信方法
JP6821869B2 (ja) Ofdm受信装置およびofdm受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024500785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18837194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022927046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022927046

Country of ref document: EP

Effective date: 20240916

WWP Wipo information: published in national office

Ref document number: 18837194

Country of ref document: US