[go: up one dir, main page]

WO2023130444A1 - 显示面板的驱动方法及显示装置 - Google Patents

显示面板的驱动方法及显示装置 Download PDF

Info

Publication number
WO2023130444A1
WO2023130444A1 PCT/CN2022/071007 CN2022071007W WO2023130444A1 WO 2023130444 A1 WO2023130444 A1 WO 2023130444A1 CN 2022071007 W CN2022071007 W CN 2022071007W WO 2023130444 A1 WO2023130444 A1 WO 2023130444A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
target
pixel
grayscale value
pixels
Prior art date
Application number
PCT/CN2022/071007
Other languages
English (en)
French (fr)
Inventor
刘荣铖
王慧
袁威
吕炎伟
李少辉
刘建涛
Original Assignee
京东方科技集团股份有限公司
武汉京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 武汉京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/071007 priority Critical patent/WO2023130444A1/zh
Priority to CN202280000022.0A priority patent/CN116745840A/zh
Priority to US18/017,053 priority patent/US12223921B2/en
Publication of WO2023130444A1 publication Critical patent/WO2023130444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a driving method of a display panel and a display device.
  • a display such as a liquid crystal display (Liquid Crystal Display, LCD), generally includes a plurality of pixels.
  • Each pixel may include: a red sub-pixel, a green sub-pixel and a blue sub-pixel.
  • the display brightness of each sub-pixel is controlled, so as to display the color image by mixing the required displayed colors.
  • control the first sub-pixel unit in the region to input the data voltage corresponding to the first target gray scale value
  • control the second sub-pixel unit in the region Input the data voltage corresponding to the second target gray scale value
  • at least one of the first sub-pixel unit is adjacent to at least one of the second sub-pixel unit
  • the first sub-pixel unit and the second The sub-pixel units respectively include at least one sub-pixel
  • control the first sub-pixel unit in the region to input the data voltage corresponding to the second target grayscale value
  • control the second sub-pixel unit in the region to The sub-pixel unit inputs a data voltage corresponding to the first target gray scale value
  • the sub-pixels are arranged repeatedly in the order of the first sub-pixel unit and the second sub-pixel unit in the row direction and the column direction, respectively.
  • the first sub-pixel unit, the first sub-pixel unit, and the second sub-pixel unit respectively Repeat in sequence.
  • the first sub-pixel unit includes at least two sub-pixels adjacent along the row direction;
  • the second sub-pixel unit includes at least two sub-pixels adjacent along the row direction.
  • the first sub-pixel unit includes at least two sub-pixels adjacent along the column direction;
  • the second sub-pixel unit includes at least two sub-pixels adjacent along the column direction.
  • the first sub-pixel unit includes sub-pixels in N rows and M columns; where N is an integer greater than 0, and M is an integer greater than 0;
  • the second sub-pixel unit includes sub-pixels in N rows and M columns.
  • the electrodes corresponding to the data voltages input to the subpixels in the first subpixel unit and the second subpixel unit are controlled. Sex flipped once.
  • the converting the current original grayscale value into a first target grayscale value and a second target grayscale value includes:
  • the target grayscale digits are not less than the default grayscale digits number of steps.
  • the converting the current original grayscale value with the default grayscale digits into the first target grayscale value and the second target grayscale value of the target grayscale digits includes:
  • the first lookup table includes: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different first target grayscale values corresponding to the target grayscale digits, and a plurality of different second target grayscale values; and, in the first lookup table, one original grayscale value corresponds to one first target grayscale value and one second target grayscale value.
  • the display panel includes sub-pixels of a plurality of different colors
  • the first lookup table includes sub-pixels of various colors corresponding to a first target gray scale value and a second target gray scale value.
  • the converting the current original grayscale value with the default grayscale digits into the first target grayscale value and the second target grayscale value of the target grayscale digits includes:
  • the current original grayscale value from the pre-stored second lookup table, determine the current intermediate grayscale value corresponding to the current original grayscale value; wherein, the intermediate grayscale digits of the current intermediate grayscale value greater than the default gray-scale digits, and the intermediate gray-scale digits less than the target gray-scale digits;
  • the second lookup table includes: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different intermediate grayscale values corresponding to the intermediate grayscale digits, corresponding to the target A plurality of different first target gray-scale values and a plurality of different second target gray-scale values of gray-scale digits; and, in the second lookup table, one original gray-scale value corresponds to one intermediate gray
  • One intermediate grayscale value corresponds to one first target grayscale value and one second target grayscale value.
  • the display panel includes sub-pixels of a plurality of different colors
  • the second lookup table includes sub-pixels of various colors corresponding to the first target gray scale value and the second target gray scale value.
  • the method before converting the current original grayscale value into the first target grayscale value and the second target grayscale value, the method further includes:
  • the original display data of each sub-pixel in the plurality of continuous display frames determine the current original gray scale value of each sub-pixel in the plurality of continuous display frames.
  • a display panel including a source driving circuit
  • the timing controller is configured to convert the current original gray-scale value into a first target gray-scale value when sub-pixels in the same region have the same current original gray-scale value in a plurality of consecutive display frames and a second target grayscale value, and output the first target grayscale value and the second target grayscale value to the source drive circuit; wherein, the first target grayscale value is greater than the current an original grayscale value, the second target grayscale value is smaller than the current original grayscale value;
  • the source driving circuit is configured to: in a current display frame of a plurality of consecutive display frames, control the first sub-pixel unit in the region to input a data voltage corresponding to the first target grayscale value, and control The second sub-pixel unit in the area inputs the data voltage corresponding to the second target gray scale value; in the next display frame of the multiple consecutive display frames, the first sub-pixel in the area is controlled
  • the unit inputs the data voltage corresponding to the second target gray scale value, and controls the second sub-pixel unit in the region to input the data voltage corresponding to the first target gray scale value; wherein at least one of the first sub-pixels
  • the pixel unit is adjacent to at least one second sub-pixel unit; the first sub-pixel unit and the second sub-pixel unit respectively include at least one sub-pixel.
  • the timing controller stores a first look-up table
  • the first lookup table includes: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different first target grayscale values corresponding to the target grayscale digits, and a plurality of different second target grayscale values; and, in the first lookup table, one original grayscale value corresponds to one first target grayscale value and one second target grayscale value.
  • the timing controller stores a second lookup table
  • the second lookup table includes: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different intermediate grayscale values corresponding to the intermediate grayscale digits, corresponding to the target A plurality of different first target gray-scale values and a plurality of different second target gray-scale values of gray-scale digits; and, in the second lookup table, one original gray-scale value corresponds to one intermediate gray
  • One intermediate grayscale value corresponds to one first target grayscale value and one second target grayscale value.
  • the display panel includes a plurality of sub-pixels; the sub-pixels include transistors and pixel electrodes;
  • the pixel electrode includes: a first edge conductive portion and a second edge conductive portion arranged at intervals in the first direction, and a main conductor at least partially located between the first edge conductive portion and the second edge conductive portion.
  • An electric part, the main conductive part is respectively connected to the first edge conductive part and the second edge conductive part, and the main conductive part includes at least one first group of sub-conductive parts and at least one second group of sub-conductive parts , the first group of sub-conductive parts and the second group of sub-conductive parts are alternately arranged in the first direction;
  • the first group of sub-conductive parts includes a first connection bar, the first connection bar extends in the first direction and has a first surface and a second surface opposite in the second direction; the The first group of sub-conductive parts has a first slit located on the side of the first surface away from the second surface, and the end of the first slit away from the first connecting bar is an open end;
  • the second group of sub-conductive parts includes a second connecting bar located on the side of the first slit away from the first connecting bar and connected to the first group of sub-conducting parts, and the second connecting bar extending in the first direction and having a third face and a fourth face opposite in the second direction, the third face being located on a side of the fourth face close to the first face; and the The second group of sub-conductive parts has a second slit located on a side of the third surface away from the fourth surface, and an end of the second slit away from the second connecting bar is an open end.
  • the first edge conductive portion in the first sub-pixel is arranged close to the transistor, and the second edge conductive portion is arranged away from the transistor, and
  • the second connecting bar is close to the second sub-pixel of the two adjacent sub-pixels, and the first connecting bar is far away from the second sub-pixel;
  • the first edge conductive part in the second sub-pixel is arranged away from the transistor, and the second edge conductive part is arranged close to the transistor, and the second connecting bar is far away from the first of the two adjacent sub-pixels. sub-pixels, and the first connecting bar is close to the first sub-pixel.
  • the number of second electrode bars connected by the second connecting bar is different; and/or,
  • the numbers of the first electrode strips connected by the first connection strips are different.
  • the first connection bar and the second connection bar are connected through a transition part
  • the transition part has a hollow area.
  • the display panel includes multiple common electrodes; one row of sub-pixels is provided with one common electrode;
  • the display panel further includes a plurality of jumpers; two adjacent common electrodes are electrically connected through at least one of the jumpers.
  • FIG. 1 is some structural schematic diagrams of a display device provided by an embodiment of the present disclosure
  • FIG. 2 is some structural schematic diagrams of a display panel provided by an embodiment of the present disclosure
  • FIG. 3 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an equivalent structure of a pixel electrode in a display panel provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a pixel electrode in a display panel provided by an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for driving a display panel provided by an embodiment of the present disclosure
  • FIG. 7 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 8 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 9 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 10 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 11 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 12 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 13 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 14 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 15 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 16 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 17 is another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • the display device may include a display panel 100 and a timing controller 200 .
  • the display panel 100 may include a plurality of pixel units arranged in an array, a plurality of gate lines GA (for example, GA1, GA2, GA3, GA4), a plurality of data lines DA (for example, DA1, DA2, DA3), gate
  • the driving circuit 110 and the source driving circuit 120 are coupled to the gate lines GA1 , GA2 , GA3 , GA4 respectively, and the source driving circuit 120 is coupled to the data lines DA1 , DA2 , DA3 respectively.
  • the timing controller 200 may input a control signal to the gate driving circuit 110 through a level shift (Level Shift) circuit, thereby driving the gate lines GA1, GA2, GA3, GA4.
  • the timing controller 200 inputs signals to the source driving circuit 120 so that the source driving circuit 120 inputs data voltages to the data lines, thereby charging the sub-pixels SPX and causing the sub-pixels SPX to input corresponding data voltages to realize the screen display function.
  • the number of source driving circuits 120 can be set to two, wherein one source driving circuit 120 is connected to half the number of data lines, and the other source driving circuit 120 is connected to the other half of the number of data lines.
  • each pixel unit includes a plurality of sub-pixels SPX.
  • a pixel unit may include red sub-pixels, green sub-pixels and blue sub-pixels, so that red, green and blue colors can be mixed to achieve color display.
  • the pixel unit may also include red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels, so that color mixing can be performed through red, green, blue and white to achieve color display.
  • the luminous color of the sub-pixels in the pixel unit can be designed and determined according to the practical application environment, which is not limited here.
  • each sub-pixel SPX includes a transistor 01 and a pixel electrode 02 .
  • one row of sub-pixels SPX corresponds to one gate line
  • one column of sub-pixels SPX corresponds to one data line.
  • the gate of the transistor 01 is electrically connected to the corresponding gate line
  • the source of the transistor 01 is electrically connected to the corresponding data line
  • the drain of the transistor 01 is electrically connected to the pixel electrode 02.
  • the pixel array structure of the present disclosure can also be It is a double-gate structure, that is, two gate lines are set between two adjacent rows of pixels. This arrangement can reduce half of the data lines, that is, there are data lines between two adjacent columns of pixels, and some adjacent two rows of pixels.
  • the data lines are not included between the pixels in the columns, and the specific arrangement structure of the pixels and the data lines, and the arrangement of the scanning lines are not limited.
  • the display panel in the embodiments of the present disclosure may be a liquid crystal display panel.
  • a liquid crystal display panel generally includes an upper substrate and a lower substrate that are opposed to each other, and liquid crystal molecules encapsulated between the upper substrate and the lower substrate.
  • the voltage difference can form an electric field, so that the liquid crystal molecules are under the action of the electric field to deflect.
  • the liquid crystal molecules have different degrees of deflection due to electric fields of different intensities, resulting in different transmittances of the sub-pixels SPX, so that the sub-pixels SPX can achieve brightness of different gray scales, thereby realizing image display.
  • the display panel includes red sub-pixels R11-R21, green sub-pixels G11-G21, blue sub-pixels B11-B21, red sub-pixels R12-R22, green sub-pixels G12-G22, blue sub-pixels Pixels B12 to B82 are taken as an example.
  • the main conductive portion between the first edge conductive portion 101 and the second edge conductive portion 102 .
  • the main conductive part is respectively connected to the first edge conductive part 101 and the second edge conductive part 102, and the main conductive part may include at least one first group of sub-conductive parts and at least one second group of sub-conductive parts, the first group of sub-conductive parts The conductive parts and the second group of sub-conductive parts are alternately arranged in the first direction Y.
  • the first group of sub-conductive parts may include a first connecting strip 103 and a plurality of first electrode strips 104 arranged at intervals in the first direction Y.
  • the first connecting bar 103 extends in the first direction Y (that is, the length direction of the first connecting bar 103 is the first direction Y).
  • the first connecting bar 103 may have a first surface 103a and a second surface 103b facing each other in the second direction X. It should be noted that the first direction Y may intersect the second direction X.
  • the first The direction Y can be perpendicular to the second direction X (for example, the first direction Y can be the column direction F of the sub-pixel, and the second direction X can be the row direction X of the sub-pixel); and the plurality of first electrode strips 104 can be located at The first surface 103a is away from the position of the second surface 103b and connected to the first surface 103a.
  • a gap is formed between two adjacent first electrode strips 104, which can be defined as a first gap S1, and the ends of the two adjacent first electrode strips 104 away from the first connecting strip 103 are disconnected from each other, namely :
  • the end of the first slit S1 away from the first connecting bar 103 is in an open shape, wherein, for convenience of description, the end of the first slit S1 away from the first connecting bar 103 can be defined as an open end.
  • the second group of sub-conductive parts includes a second connecting bar 105 and a plurality of second electrode bars 106 arranged at intervals in the first direction Y, and the second connecting bar 105 extends in the first direction Y (ie: the first The length direction of the two connecting bars 105 is the first direction Y).
  • the second connection bar 105 may have a third surface 105a and a fourth surface 105b opposite in the second direction X, and in the second direction X, the third surface 105a of the second connection bar 105 may be located at its fourth The surface 105b is close to the side of the first surface 103a of the first connection bar 103 .
  • the third surface 105a of the second connection bar 105 can be connected to the first electrode bar 104 close to the second group of sub-conductive parts, specifically to the end of the first electrode bar 104 away from the first connection bar 103.
  • the first electrode strips 104 close to the second group of sub-conductive parts mentioned here refer to the first electrode strips 104 closest to the second group of sub-conductive parts in the first group of sub-conductive parts.
  • the plurality of second electrode strips 106 are located at a position away from the third surface 105 a of the second connection strip 105 away from the fourth surface 105 b and are connected to the third surface 105 a of the second connection strip 105 .
  • a gap is formed between two adjacent second electrode strips 106, which can be defined as a second gap S2, and the ends of the two adjacent second electrode strips 106 away from the second connecting strip 105 are disconnected from each other, namely :
  • the end of the second slit S2 far away from the second connecting bar 105 is in an open shape, wherein, for the convenience of description, the end of the second slit S2 away from the second connecting bar 105 can be defined as an open end.
  • the sum of the lengths of the first connecting bars 103 of each first group of sub-conductive parts in the pixel electrode 02 can be designed to be smaller than the sum of the lengths of the second connecting bars 105 of each second group of sub-conducting parts; it should be noted that , the length mentioned here refers to the length in its extending direction.
  • the pixel electrode 02 can be connected to the transistor 01 (as shown in FIGS. Ends of the two edge conductive portions 102 away from the second connection bar 105 may be configured to be connected to the transistor 01 .
  • the first sub-pixel (such as R11) in the first An edge conductive portion 101 is disposed close to the transistor 01, and a second edge conductive portion 102 is disposed away from the transistor 01, and the second connection bar 105 is close to the second sub-pixel (such as G11) of two adjacent sub-pixels, and the first connection bar 103 is away from the second sub-pixel (eg G11).
  • the first edge conductive portion 101 in the second sub-pixel (such as G11) is arranged away from the transistor 01, and the second edge conductive portion 102 is arranged close to the transistor 01, and
  • the second connection bar 105 is far away from the first sub-pixel (for example R11 ) of the two adjacent sub-pixels, and the first connection bar 103 is close to the first sub-pixel (for example R11 ).
  • the number of second electrode strips 106 connected by the second connection strip 105 different.
  • the number of first electrode strips 104 connected by the first connection strip 103 different.
  • multiple common electrodes are further arranged between the pixel electrode 02 and the base substrate.
  • a row of sub-pixels is provided with a common electrode;
  • the display panel further includes a plurality of bridging portions KB; two adjacent common electrodes are electrically connected through at least one bridging portion KB.
  • the first connection bar 103 and the second connection bar 105 are connected through the transition part ZB; the transition part ZB has a hollow area LB. In this way, the electrical connection performance of the first connection bar 103 and the second connection bar 105 can be improved.
  • the position of the hollow area LB can form an electric field that drives the liquid crystal to rotate.
  • the present invention includes two adjacent pixel electrodes.
  • the transition part is not on a horizontal line, for example, the transition part corresponding to the G11 pixel is farther away from the position of the transistor connected thereto than the transition part corresponding to the R11 pixel.
  • the common electrode can be strip-shaped, or the common electrode can also have multiple common sub-electrodes like pixel electrodes, and adjacent common sub-electrodes are connected by horizontal and vertical jumpers to achieve a common voltage transmission.
  • the surroundings of the first slit S1 and the second slit S2 of the pixel electrode 02 are not completely closed, that is, the end of the first slit S1 close to the second connection bar 105 is an open end. , and the end of the second slit S2 close to the first connection bar 103 is an open end.
  • the open end of the first slit S1 and the second slit The open end of S2 can be respectively adjacent to the data line DA (as shown in FIG. 2 and FIG. 5 ) on both sides of the pixel electrode 02 .
  • it can effectively reduce the range of the dark field area of liquid crystal display products, thereby improving the transmittance of liquid crystal display products and improving color shift.
  • the extension directions of the first electrode strips 104 and the second electrode strips 106 can be the same, that is, the first electrode strips 104 and the second electrode strips 106 can be in the same direction
  • the pixel electrode 02 of the present disclosure can be a single-domain structure, which can reduce the design difficulty.
  • the gap between adjacent first electrode strips 104 and second electrode strips 106 may be the aforementioned second gap S2.
  • the extension direction of the first electrode strip 104 and the first slit S1 are the same, so as to ensure the display uniformity at the first group of sub-conductive parts of the pixel electrode 02; and Both the extending directions of the first electrode strips 104 and the first slits S1 intersect the aforementioned first direction Y and second direction X, so as to reduce color shift.
  • extension direction of the second electrode strip 106 and the second slit S2 are the same to ensure the display uniformity at the second group of sub-conductive parts of the pixel electrode 02; and the extension direction of the second electrode strip 106 and the second slit S2 All intersect with the aforementioned first direction Y and second direction X, so as to reduce color shift.
  • the second electrode strip 106 of R11 is connected to the second connection strip 105 and extends toward the left
  • the first electrode strip 104 of G11 is connected to the first connection strip 103 is connected and extends to the right
  • the first electrode strip 104 of R11 is connected to the first connection strip 103 and extends to the right
  • the second electrode strip 106 of G11 is connected to the second connection strip 105 and extends to the left, such that the pixel Design to improve the problem of display color cast.
  • the display panel in the embodiment of the present disclosure is a liquid crystal display panel
  • the pixel unit includes red sub-pixels, green sub-pixels, and blue sub-pixels as an example for illustration, but readers should know that the sub-pixels included in the liquid crystal display panel
  • the colors are not limited to this.
  • Grayscale generally divides the brightness change between the darkest and the brightest into several parts for easy screen brightness control.
  • the displayed image consists of three colors of red, green, and blue, each of which can show different brightness levels, and the combination of red, green, and blue at different brightness levels can form different colors.
  • the number of gray scale bits of the liquid crystal display panel is 6 bits
  • the three colors of red, green, and blue have 64 (ie, 2 6 ) gray scales respectively, and the 64 gray scale values are 0-63 respectively.
  • the number of gray scale digits of the liquid crystal display panel is 8 bits, and the three colors of red, green, and blue have 256 (ie, 2 8 ) gray scales respectively, and the 256 gray scale values are 0-255 respectively.
  • the number of gray scale digits of the liquid crystal display panel is 10 bits, so the three colors of red, green, and blue have 1024 (ie, 2 10 ) gray scales respectively, and the 1024 gray scale values are 0-1023 respectively.
  • the number of grayscale digits of the liquid crystal display panel is 12 bits, and the three colors of red, green, and blue have 4096 (ie, 2 12 ) grayscales respectively, and the 4096 grayscale values are 0-4093 respectively.
  • the liquid crystal molecules at the sub-pixel SPX can be made to be positive, and the sub-pixel The polarity corresponding to the data voltage Vda1 in the pixel SPX is positive.
  • the liquid crystal molecules at the sub-pixel SPX can be made to have a negative polarity, and then the polarity corresponding to the data voltage Vda2 in the sub-pixel SPX is negative.
  • the common electrode voltage can be 8.3V.
  • a data voltage of 8.8V-16V is input to the pixel electrode of the sub-pixel SPX, the liquid crystal molecules at the sub-pixel SPX can be made positive, and the 8.8V-16V
  • the data voltage is a data voltage corresponding to positive polarity. If a data voltage of 0.6V-7.8V is input into the pixel electrode of the sub-pixel SPX, the liquid crystal molecules at the sub-pixel SPX can be negatively polarized, and the data voltage of 0.6V-7.8V is data corresponding to the negative polarity. Voltage.
  • the sub-pixel SPX can use the data voltage of positive polarity to realize the maximum gray scale value (that is, 255 grayscale value) brightness. If a data voltage of 0.6V is input to the pixel electrode of the sub-pixel SPX, the sub-pixel SPX can use the data voltage of negative polarity to achieve the brightness of the maximum gray scale value (ie, 255 gray scale values).
  • the common electrode voltage is 8.3V
  • the data voltage corresponding to the positive polarity of the 0 grayscale value may be 8.8V, corresponding to 0
  • the data voltage of the negative polarity of the gray scale value may be 7.8V.
  • the data voltage of the 0 grayscale value and the common electrode voltage may also be the same. In practical applications, it can be determined according to the needs of practical applications, and no limitation is made here.
  • a driving method which may include: respectively generating a first display gray-scale value and a second display gray-scale value according to the original gray-scale values of each sub-pixel of the image to be displayed, and In each display frame, use the first display gray scale value and the second display gray scale value to control one sub-pixel in the adjacent sub-pixels on the display panel to use the first display gray scale value to display higher brightness, and the other sub-pixel to use the first display gray scale value to display higher brightness.
  • the second display grayscale value displays lower brightness, wherein the first display grayscale value is greater than the second display grayscale value, so that the data voltages applied to the two adjacent sub-pixels are different. For example, as shown in FIG.
  • the red subpixel R11, the green subpixel G21, the blue subpixel B11, the red subpixel R22, the green subpixel G12, and the blue subpixel B22 adopt the The first display grayscale value shows higher brightness, and the red sub-pixel R21, green sub-pixel G11, blue sub-pixel B21, red sub-pixel R12, green sub-pixel G22, and blue sub-pixel B12 use the second display gray-scale value to display higher brightness. low brightness.
  • the red sub-pixel R11, the green sub-pixel G21, the blue sub-pixel B11, the red sub-pixel R22, the green sub-pixel G12, and the blue sub-pixel B22 also use the first display gray
  • the level value shows higher brightness
  • the red sub-pixel R21, green sub-pixel G11, blue sub-pixel B21, red sub-pixel R12, green sub-pixel G22, and blue sub-pixel B12 also use the second display gray-scale value to display lower brightness .
  • the red sub-pixel R11, the green sub-pixel G21, the blue sub-pixel B11, the red sub-pixel R22, the green sub-pixel G12, and the blue sub-pixel B22 also use the first display gray
  • the level value shows higher brightness
  • the red sub-pixel R21, green sub-pixel G11, blue sub-pixel B21, red sub-pixel R12, green sub-pixel G22, and blue sub-pixel B12 also use the second display gray-scale value to display lower brightness .
  • the sub-pixels with the same domain direction uniformly display higher or lower brightness, so that when the liquid crystal molecules correspond to the short axis, the screen will be bluish, and when the liquid crystal molecules correspond to the long axis, the screen will be yellowish. Therefore, there is a problem of color shift in left and right viewing angles.
  • An embodiment of the present disclosure provides a driving method for a display panel.
  • the display panel works in a plurality of consecutive display frames.
  • the original grayscale value can be converted into two grayscale values: the first target grayscale value and the second target grayscale value.
  • the first target gray scale value is greater than the current original gray scale value, so that the brightness displayed by the sub-pixel corresponding to the first target gray scale value is greater than the displayed brightness corresponding to the current original gray scale value.
  • the second target grayscale value is smaller than the current original grayscale value, so that the brightness displayed by the sub-pixel corresponding to the second target grayscale value is smaller than the displayed brightness corresponding to the current original grayscale value.
  • the displayed luminance corresponding to the first target grayscale value and the displayed luminance corresponding to the second target grayscale value are mixed, so as to display the brightness corresponding to the current original grayscale value.
  • the first sub-pixel unit SPX-1 in the control area inputs the data voltage corresponding to the first target gray scale value
  • the second sub-pixel unit SPX-2 in the control area inputs the data voltage corresponding to the second target gray scale value.
  • Data voltage for grayscale values is inputs the data voltage corresponding to the second target gray scale value
  • the second sub-pixel unit SPX-2 in the control area inputs the data voltage corresponding to the first target gray scale value step value data voltage.
  • the sub-pixels with brighter brightness in the current display frame can display darker brightness in the next display frame.
  • Sub-pixels with darker brightness in the current display frame will display brighter brightness in the next display frame.
  • the color cast can be improved through the combination of temporal color mixing and spatial color mixing.
  • an embodiment of the present disclosure provides a method for driving a display panel, which may include the following steps:
  • step S100 may include: receiving original display data of each sub-pixel in a plurality of consecutive display frames.
  • the original display data includes each sub-pixel in a one-to-one correspondence with a digital voltage form of a data voltage carrying a corresponding gray scale value, and the gray scale value corresponding to the data voltage is the original gray scale value.
  • the current original gray scale value of each sub-pixel in a plurality of consecutive display frames can be determined according to the original display data of each sub-pixel in a plurality of consecutive display frames.
  • the original grayscale values corresponding to the sub-pixels in this area are all grayscale values of 127, so the picture displayed in this area may be a grayscale picture.
  • the original grayscale values corresponding to the sub-pixels in this area are all grayscale values of 255, so the picture displayed in this area may be a white picture (for example, this area is displayed as a white cloud).
  • the current original grayscale value can be converted into the first target grayscale value and the second target grayscale value.
  • the first target grayscale value is greater than the current original grayscale value
  • the second target grayscale value is smaller than the current original grayscale value. For example, taking grayscale 0-255 as an example, if the current original grayscale value is 127 grayscale value, you can set the first target grayscale value to 170 grayscale value, and the second target grayscale value to 40 grayscale value .
  • the area may be the entire area of the picture displayed on the display panel, or may also be one or more areas in the partial areas of the picture displayed on the display panel, which is not limited herein.
  • the first sub-pixel unit SPX-1 in the control area inputs the data voltage corresponding to the first target grayscale value
  • the second sub-pixel unit SPX in the control area -2 Input the data voltage corresponding to the second target gray scale value.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 respectively include at least one sub-pixel.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 may include the same number of sub-pixels.
  • the number of sub-pixels included in the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 may also be different. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • At least one first sub-pixel unit SPX-1 and at least one second sub-pixel unit SPX-2 may be adjacent to each other.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 may be repeatedly arranged in sequence.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 each include one sub-pixel.
  • the red sub-pixel R11 is used as a first sub-pixel unit SPX-1
  • the red sub-pixel R21 is used as a second sub-pixel unit SPX-2
  • the red sub-pixel R31 is used as a first sub-pixel unit SPX -1.
  • the red sub-pixel R41 serves as a second sub-pixel unit SPX-2
  • the red sub-pixel R51 serves as a first sub-pixel unit SPX-1
  • the red sub-pixel R61 serves as a second sub-pixel unit SPX-2
  • the red sub-pixel R61 serves as a second sub-pixel unit SPX-2.
  • the pixel R71 serves as a first sub-pixel unit SPX-1
  • the red sub-pixel R81 serves as a second sub-pixel unit SPX-2.
  • the sub-pixels in the remaining columns can be deduced in sequence, which will not be repeated here.
  • the red sub Pixels R11, R31, R51, R71, R22, R42, R62, R82, R13, R33, R53, R73, green sub-pixels G21, G41, G61, G81, G12, G32, G52, G72, G23, G43, G63, G83, and the blue sub-pixels B11, B31, B51, B71, B22, B42, B62, B82, B13, B33, B53, B73 respectively input the data voltage corresponding to 170 grayscale values, so that the brightness displayed by these sub-pixels It is the brightness corresponding to the gray scale value of 170.
  • red sub-pixels R21, R41, R61, R81, R12, R22, R52, R72, R23, R43, R63, R83, green sub-pixels G11, G31, G51, G71, G22, G42, G62, G82, G13, G33, G53, G73, and blue sub-pixels B21, B41, B61, B81, B12, B22, B52, B72, B23, B43, B63, B83 respectively input the data voltage corresponding to 40 grayscale values, so that The brightness displayed by these sub-pixels is the brightness corresponding to 40 gray scale values.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved.
  • the first sub-pixel unit SPX-1 in the control area inputs the data voltage corresponding to the second target grayscale value
  • the second sub-pixel unit in the control area SPX-2 inputs the data voltage corresponding to the first target gray scale value.
  • the brightness of is the brightness corresponding to the gray scale value of 40.
  • red sub-pixels R21, R41, R61, R81, R12, R22, R52, R72, R23, R43, R63, R83, green sub-pixels G11, G31, G51, G71, G22, G42, G62, G82, G13, G33, G53, G73, and blue sub-pixels B21, B41, B61, B81, B12, B22, B52, B72, B23, B43, B63, B83 respectively input the data voltage corresponding to 170 grayscale values, so that The brightness displayed by these sub-pixels is the brightness corresponding to the gray scale value of 170.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved.
  • the first target grayscale value and the second target grayscale value corresponding to the subpixels in the first subpixel unit SPX-1 and the second subpixel unit SPX-2 in the display frame F_n+2 are substantially the same.
  • the first target grayscale value and the second target grayscale value corresponding to the subpixels in the first subpixel unit SPX-1 and the second subpixel unit SPX-2 are the same as those in the display frame F_n+1
  • the first target grayscale value and the second target grayscale value corresponding to the subpixels in the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 are substantially the same. The rest of the display frames can be deduced by analogy and will not be repeated here.
  • the timing controller may convert the current original grayscale value to the first target grayscale value when the current original grayscale value corresponding to the subpixels in the same area is the same in multiple consecutive display frames value and the second target grayscale value, and output the first target grayscale value and the second target grayscale value to the source driving circuit.
  • the source drive circuit receives the first target grayscale value and the second target grayscale value output by the timing controller, it can control the first sub-pixel unit in the region in the current display frame of multiple consecutive display frames SPX-1 inputs a data voltage corresponding to a first target grayscale value, and the second sub-pixel unit SPX-2 in the control region inputs a data voltage corresponding to a second target grayscale value.
  • the first sub-pixel unit SPX-1 in the control area inputs the data voltage corresponding to the second target gray scale value
  • the second sub-pixel unit SPX in the control area -2 Input the data voltage corresponding to the first target gray scale value.
  • the timing controller may directly output the current original gray scale value corresponding to the sub-pixel to the source driving circuit for the sub-pixel except the area in multiple consecutive display frames.
  • the source drive circuit receives the current original grayscale value output by the timing controller, it can control the sub-pixels outside the area to input the data voltage corresponding to the current original grayscale value in the current display frame of multiple consecutive display frames .
  • the sub-pixels except the area are controlled to input the data voltage corresponding to the current original gray scale value.
  • the timing controller may pre-determine whether the current original grayscale value corresponding to the subpixel in the same area is in the grayscale range in multiple consecutive display frames. If so, that is, the current original grayscale value corresponding to the sub-pixel in the same area is in the grayscale range, then convert the current original grayscale value into the first target grayscale value and the second target grayscale value, and convert the first target grayscale value to The gray scale value and the second target gray scale value are output to the source drive circuit, so that the source drive circuit can input the first target gray scale value corresponding to the first sub-pixel unit SPX-1 in the control area in the current display frame The data voltage corresponding to the second target gray scale value is input to the second sub-pixel unit SPX-2 in the control region.
  • the first sub-pixel unit SPX-1 in the control area inputs the data voltage corresponding to the second target gray scale value
  • the second sub-pixel unit SPX-2 in the control area inputs the data voltage corresponding to the first target gray scale value step value data voltage. If not, that is, the current original grayscale value corresponding to the sub-pixel in the same area is not in the grayscale range, the human eye is not easy to observe the afterimage problem, so the current original grayscale value corresponding to the sub-pixel is directly output to the The source driving circuit, so that after the source driving circuit receives the current original gray scale value output by the timing controller, it can control the sub-pixel input in the except area to correspond to the current original gray scale value in the current display frame of multiple consecutive display frames.
  • the sub-pixels in the control area input the data voltage corresponding to the current original gray scale value.
  • the gray scale range can be 311-180
  • the grayscale value, including the endpoint value, is less than 31 grayscale value and greater than 180 grayscale value. It is difficult for human eyes to observe and recognize mura.
  • the current original grayscale value is converted to the first target grayscale value and The driving mode of the second target gray scale value can reduce power consumption.
  • converting the current original grayscale value into the first target grayscale value and the second target grayscale value may include: converting the current original grayscale value with default grayscale digits into the target grayscale value The first target grayscale value and the second target grayscale value of digits.
  • the target gray-scale number of bits may be equal to the default gray-scale number of bits.
  • both the target gray-scale bit number and the default gray-scale bit number may be 8 bits, 10 bits, or 12 bits. Taking 8bit as an example, the 127 grayscale value of 8bit can be converted into 170 grayscale value and 40 grayscale value of 8bit.
  • the target grayscale bit number may be greater than the default grayscale bit number.
  • the target number of gray scale bits is 10 bits
  • the default number of gray scale bits is 8 bits.
  • the 127 grayscale values of 8bit can be converted into 680 grayscale values and 160 grayscale values of 10bit.
  • the first lookup table may be stored in the timing controller.
  • the first lookup table may include: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different first target grayscale values and a plurality of different second target grayscale values corresponding to the target grayscale digits grayscale value; and, in the first lookup table, an original grayscale value corresponds to a first target grayscale value and a second target grayscale value.
  • the original grayscale values in the first lookup table are the grayscale values of the default grayscale digits.
  • the first lookup table has grayscale values ranging from 0 to 255 Each grayscale value of , and the grayscale values of 0 to 255 correspond one-to-one to a first target grayscale value and a second target grayscale value.
  • Table 1 shows the first target gray-scale value L_H and the second target gray-scale value L_L corresponding to the gray-scale values of 125-130. It should be noted that the specific numerical values of the grayscale values shown in Table 1 are only for illustration. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • the first lookup table includes sub-pixels of various colors corresponding to the first target gray scale value and the second target gray scale value.
  • the first lookup table includes red sub-pixels corresponding to each original gray-scale value corresponding to the first target gray-scale value and the second target gray-scale value, green sub-pixels corresponding to the first target gray-scale value and the second target gray-scale value, And the blue sub-pixel corresponds to the first target gray scale value and the second target gray scale value.
  • Table 2 shows the first target gray-scale value LR_H and the second target gray-scale value of the red sub-pixel corresponding to the 125-130 gray-scale value value LR_L, the first target grayscale value LG_H and the second target grayscale value LG_L of the green subpixel, the first target grayscale value LB_H and the second target grayscale value LB_L of the blue subpixel.
  • the specific numerical values of the grayscale values shown in Table 1 are only for illustration. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • converting the current original grayscale value with the default grayscale digits into the first target grayscale value and the second target grayscale value with the target grayscale digits may include: according to the current original grayscale value, from the pre-stored first look-up table, determine the first target gray-scale value and the second target gray-scale value corresponding to the current original gray-scale value.
  • the first target grayscale value corresponding to the red sub-pixel can be determined to be 170 grayscale value by looking up the first lookup table, and the green subpixel corresponds to
  • the first target grayscale value of the blue subpixel is 170 grayscale value
  • the first target grayscale value corresponding to the blue subpixel is 170 grayscale value
  • the second target grayscale value corresponding to the red subpixel is 40 grayscale value
  • the green subpixel The second target grayscale value corresponding to the pixel is 40 grayscale value
  • the second target grayscale value corresponding to the blue sub-pixel is 40 grayscale value.
  • a data voltage corresponding to a grayscale value of 170 can be input to the red subpixel in the first subpixel unit SPX-1, and data corresponding to a grayscale value of 170 can be input to the green subpixel in the first subpixel unit SPX-1.
  • the blue sub-pixel in the first sub-pixel unit SPX-1 inputs a data voltage corresponding to a gray scale value of 170
  • the red sub-pixel in the second sub-pixel unit SPX-2 inputs a data voltage corresponding to a gray scale value of 40
  • the data voltage is input to the green sub-pixel in the second sub-pixel unit SPX-2 and corresponds to the data voltage of 40 grayscale values
  • the input to the blue sub-pixel in the second sub-pixel unit SPX-2 corresponds to 40 gray-scale values data voltage.
  • the display panel can be driven by frame inversion, column inversion, row inversion and dot inversion.
  • frame inversion taking frame inversion as an example, in the display frame F_n, the data voltage input by each sub-pixel may correspond to positive polarity. In the display frame F_n+1, the data voltage input by each sub-pixel may correspond to a negative polarity. In the display frame F_n+2, the data voltage input by each sub-pixel may correspond to positive polarity. In the display frame F_n+3, the data voltage input by each sub-pixel may correspond to a negative polarity.
  • the corresponding subpixels in the first sub-pixel unit SPX-1 In the display frames F_n+1 and F_n+3 in which the first sub-pixel unit SPX-1 displays relatively low brightness, the corresponding polarity of the sub-pixels in the first sub-pixel unit SPX-1 is always negative.
  • the polarity corresponding to the sub-pixels in the second sub-pixel unit SPX-2 is always for positive polarity.
  • the corresponding polarity of the sub-pixels in the first sub-pixel unit SPX-1 is always negative. This causes a color shift due to the polarization of the liquid crystal molecules.
  • the control input to the first sub-pixel unit SPX-1 and the second sub-pixel can be passed through an even number of display frames
  • the polarity corresponding to the data voltage of each sub-pixel in unit SPX-2 is flipped once.
  • two display frames may be used to control the pole corresponding to the data voltage input to each sub-pixel in the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2. Sex flipped once.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 respectively include one sub-pixel as an example, as shown in FIG. 9 , in the display frame F_n, the sub-pixels in the first row R11-B12, sub-pixels R21-B22 in the second row respectively input data voltage corresponding to positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row also input data voltage corresponding to the positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row input data voltage corresponding to the negative polarity respectively.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row also input the data voltage corresponding to the negative polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row respectively input data voltage corresponding to positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row also input data voltage corresponding to the positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row respectively input data voltage corresponding to negative polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row also input data voltage corresponding to the negative polarity.
  • the remaining processes of displaying frames can be deduced by analogy, and will not be repeated here.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 respectively include one sub-pixel as an example, in the display frames F_n ⁇ F_n+3, the sub-pixels R11 ⁇ B12, the sub-pixels R21-B22 in the second row respectively input the data voltage corresponding to the positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row respectively input data voltage corresponding to the negative polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row respectively input data voltage corresponding to the positive polarity.
  • the sub-pixels R11-B12 in the first row and the sub-pixels R21-B22 in the second row are respectively inputted with data voltage corresponding to the negative polarity.
  • control input to the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 may also pass through 6, 8 or more display frames
  • the polarity corresponding to the data voltage of each sub-pixel is reversed once, which is not limited herein.
  • the embodiments of the present disclosure provide some other driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the second lookup table may be stored in the timing controller.
  • the second lookup table includes: a plurality of different original grayscale values corresponding to the default grayscale digits, a plurality of different intermediate grayscale values corresponding to the intermediate grayscale digits, and a plurality of different grayscale values corresponding to the target grayscale digits.
  • the middle gray-scale number of bits of the current middle gray-scale value is greater than the default gray-scale number of bits, and the middle gray-scale number of bits is smaller than the target gray-scale number of bits.
  • the default gray-scale bit number may be 8 bits
  • the middle gray-scale bit number may be 10 bits
  • the target gray-scale bit number may be 12 bits.
  • one grayscale value of 8bit can be converted into a middle grayscale value of 10bit, and then the middle grayscale value of 10bit can be converted into the first target grayscale value and the second target grayscale value of 12bit, and then the 12bit grayscale value can be used
  • the first target grayscale value and the second target grayscale value control the display brightness of the subpixels in the first subpixel unit SPX-1 and the subpixels in the second subpixel unit SPX-2, so that according to the first subpixel unit SPX After the display brightness of the sub-pixels in -1 and the sub-pixels in the second sub-pixel unit SPX-2 are mixed, the brightness of 127 gray scale values of 8 bits is displayed.
  • the mixed brightness will be rough. Since the 12-bit gray scale value has a finer distinction on the brightness, if the 12-bit gray scale value is used to mix the 8-bit brightness, the mixed brightness will be more delicate and closer to the 8-bit brightness.
  • the original gray scale values in the second lookup table are the respective gray scale values of the default gray scale digits.
  • the second lookup table has each gray scale value in the gray scale values of 0 to 255, and an intermediate gray scale value corresponding to the gray scale values of 0 to 255 one by one, and a gray scale value of the second lookup table.
  • a target grayscale value and a second target grayscale value are examples of the default gray scale bits.
  • Table 3 shows the middle grayscale value L_Z corresponding to the grayscale value of 125 ⁇ 130, the first The target grayscale value L_H and the second target grayscale value L_L. It should be noted that the specific numerical values of the grayscale values shown in Table 3 are only for illustration. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • the second lookup table includes sub-pixels of various colors corresponding to the first target gray scale value and the second target gray scale value.
  • the second lookup table includes red sub-pixels corresponding to each original gray-scale value corresponding to the first target gray-scale value and the second target gray-scale value, green sub-pixels corresponding to the first target gray-scale value and the second target gray-scale value, And the blue sub-pixel corresponds to the first target gray scale value and the second target gray scale value.
  • Table 4 shows the intermediate gray-scale values L_Z, red The first target grayscale value LR_H and the second target grayscale value LR_L of the pixel, the first target grayscale value LG_H and the second target grayscale value LG_L of the green subpixel, and the first target grayscale value LB_H of the blue subpixel and the second target grayscale value LB_L.
  • the specific numerical values of the grayscale values shown in Table 4 are only examples. In practical applications, it may be determined according to requirements of practical applications, and no limitation is made here.
  • converting the current original grayscale value with the default grayscale digits into the first target grayscale value and the second target grayscale value with the target grayscale digits may include: according to the current original grayscale value, and determine the current intermediate grayscale value corresponding to the current original grayscale value from the pre-stored second lookup table. Afterwards, according to the current intermediate grayscale value, the first target grayscale value and the second target grayscale value corresponding to the current intermediate grayscale value are determined from the second lookup table. For example, referring to Table 4, when the current original grayscale value is 127 grayscale values, the current intermediate grayscale value can be determined to be 508 grayscale values by looking up the second lookup table.
  • the gray scale value of 508 it is determined that the first target gray scale value corresponding to the red sub-pixel is 2734 gray scale value, the second target gray scale value is 641 gray scale value, and the first target gray scale value corresponding to the green sub-pixel is 2734 grayscale value, the second target grayscale value is 641 grayscale value, the first target grayscale value corresponding to the blue sub-pixel is 2734 grayscale value, and the second target grayscale value is 641 grayscale value, so that The red subpixel in the first subpixel unit SPX-1 inputs a data voltage corresponding to 2734 grayscale values, and the green subpixel in the first subpixel unit SPX-1 inputs a data voltage corresponding to 2734 grayscale values.
  • the blue subpixel in the first subpixel unit SPX-1 inputs a data voltage corresponding to 2734 grayscale values
  • the red subpixel in the second subpixel unit SPX-2 inputs a data voltage corresponding to 641 grayscale values
  • Input a data voltage corresponding to 641 grayscale values to the green subpixel in the second subpixel unit SPX-2
  • the red sub-pixels R21, R12, the green sub-pixels G11, G22, and the blue sub-pixels B21, B12 can respectively input data voltages corresponding to 641 gray scale values, so that the brightness displayed by these sub-pixels can be 641 gray scale The brightness corresponding to the value. Since 2734/16 is about 170 grayscale value of 8bit, 641/16 is about 40 grayscale value, so that the brightness displayed by the sub-pixel with the input 2734 grayscale value is roughly the brightness corresponding to the 170 grayscale value, so that the input 641 The brightness displayed by the sub-pixels of the grayscale value is approximately the brightness corresponding to the grayscale value of 40.
  • the red sub-pixels R11 and R22, the green sub-pixels G21 and G12, and the blue sub-pixels B11 and B22 can respectively input data voltages corresponding to 641 gray scale values, so that these The brightness displayed by the sub-pixel is the brightness corresponding to the 641 gray scale value.
  • the red sub-pixels R21, R12, the green sub-pixels G11, G22, and the blue sub-pixels B21, B12 can respectively input data voltages corresponding to 2734 grayscale values, so that the brightness displayed by these subpixels can be 2734 grayscales The brightness corresponding to the value.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved.
  • Embodiments of the present disclosure provide still some driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 are respectively arranged repeatedly in order.
  • the first sub-pixel unit SPX-1 may include two sub-pixels adjacent along the row direction X
  • the second sub-pixel unit SPX-2 may include two adjacent sub-pixels along the row direction X. of two sub-pixels.
  • the red sub-pixel R11 and the green sub-pixel G11 serve as a first sub-pixel unit SPX-1.
  • the blue sub-pixel B11 and the red sub-pixel R12 serve as a second sub-pixel unit SPX-2.
  • the green sub-pixel G12 and the blue sub-pixel B12 serve as a first sub-pixel unit SPX-1.
  • the red sub-pixel R13 and the green sub-pixel G13 serve as a second sub-pixel unit SPX-2.
  • the red sub-pixel R21 and the green sub-pixel G21 serve as a second sub-pixel unit SPX-2.
  • the blue sub-pixel B21 and the red sub-pixel R22 serve as a first sub-pixel unit SPX-1.
  • the green sub-pixel G22 and the blue sub-pixel B22 serve as a second sub-pixel unit SPX-2.
  • the red sub-pixel R23 and the green sub-pixel G23 serve as a third sub-pixel unit. The rest of the lines are deduced in turn, and will not be repeated here.
  • Sub-pixels B21, B41, B61, B12, B32, and B52 respectively input data voltages corresponding to 2734 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 gray scale values.
  • red sub-pixels R21, R41, R61, R12, R32, R52, R13, R33, R53, green sub-pixels G21, G41, G61, G22, G42, G62, G13, G33, G53, and blue sub-pixels can be Pixels B11 , B31 , B51 , B22 , B42 , and B62 respectively input data voltages corresponding to 641 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 641 gray scale values.
  • red sub-pixels R11, R31, R51, R22, R42, R62, R23, R43, R63, green sub-pixels G11, G31, G51, G12, G32, G52, G23 can be , G43, G63, and blue sub-pixels B21, B41, B61, B12, B32, and B52 respectively input data voltages corresponding to 641 grayscale values, so that the brightness displayed by these subpixels can be the brightness corresponding to 641 grayscale values.
  • red sub-pixels R21, R41, R61, R12, R32, R52, R13, R33, R53, green sub-pixels G21, G41, G61, G22, G42, G62, G13, G33, G53, and blue sub-pixels can be Pixels B11 , B31 , B51 , B22 , B42 , and B62 respectively input data voltages corresponding to 2734 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 gray scale values.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved. And, this can also improve vertical lines.
  • first sub-pixel unit SPX-1 may also include three, four, five or more adjacent sub-pixels along the row direction X
  • the second sub-pixel unit SPX-2 may include Three, four, five or more sub-pixels adjacent to X are not limited here.
  • Embodiments of the present disclosure provide still some driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 are respectively arranged repeatedly in order.
  • the first sub-pixel unit SPX-1 includes two sub-pixels adjacent along the column direction F
  • the second sub-pixel unit SPX-2 includes two adjacent sub-pixels along the column direction F. sub-pixels.
  • the red sub-pixels R11 and R21 serve as a first sub-pixel unit SPX-1
  • the red sub-pixels R31 and R41 serve as a second sub-pixel unit SPX-2
  • the red sub-pixels R51 and R61 serve as a first sub-pixel unit SPX-2.
  • the green sub-pixels G11 and G21 serve as a second sub-pixel unit SPX-2
  • the green sub-pixels G31 and G41 serve as a first sub-pixel unit SPX-1
  • the green sub-pixels G51 and G61 serve as a second sub-pixel unit SPX-1.
  • the pixel unit SPX-2, and the rest of the columns are deduced in sequence, which will not be repeated here.
  • Sub-pixels B11, B21, B51, B61, B32, and B42 respectively input data voltages corresponding to 2734 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 gray scale values.
  • red sub-pixels R31, R41, R12, R22, R52, R62, R33, R43, green sub-pixels G11, G21, G51, G61, G32, G42, G13, G23, G53, G63, and blue sub-pixels can be Pixels B31 , B41 , B12 , B52 , and B62 respectively input data voltages corresponding to 641 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 641 gray scale values.
  • red sub-pixels R11, R21, R51, R61, R32, R42, R13, R23, R53, R63, green sub-pixels G31, G41, G12, G22, G52, G62 can be , G33, G43, and blue sub-pixels B11, B21, B51, B61, B32, and B42 respectively input data voltages corresponding to 641 grayscale values, so that the brightness displayed by these subpixels can be the brightness corresponding to 641 grayscale values.
  • red sub-pixels R31, R41, R12, R22, R52, R62, R33, R43, green sub-pixels G11, G21, G51, G61, G32, G42, G13, G23, G53, G63, and blue sub-pixels can be Pixels B31 , B41 , B12 , B52 , and B62 respectively input data voltages corresponding to 2734 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 gray scale values.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved. Also, this can also improve horizontal stripes.
  • first sub-pixel unit SPX-1 may also include three, four, five or more sub-pixels adjacent along the column direction F
  • the second sub-pixel unit SPX-2 may include The three, four, five or more sub-pixels adjacent to F are not limited here.
  • Embodiments of the present disclosure provide still some driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 are respectively arranged repeatedly in order.
  • the first sub-pixel unit SPX-1 includes sub-pixels with 2 rows and 2 columns
  • the second sub-pixel unit SPX-2 includes sub-pixels with 2 rows and 2 columns.
  • the red sub-pixels R11 and R21 and the green sub-pixels G11 and G21 may serve as a first sub-pixel unit SPX-1.
  • the blue sub-pixels B11, B21 and the red sub-pixels R12, R22 can serve as a second sub-pixel unit SPX-2.
  • the green sub-pixels G12 and G22 and the blue sub-pixels B12 and B22 can serve as a first sub-pixel unit SPX-1.
  • the red sub-pixels R13, R23 and the green sub-pixels G13, G23 can be used as a second sub-pixel unit SPX-2.
  • the red sub-pixels R31, R41 and the green sub-pixels G31, G41 can serve as a second sub-pixel unit SPX-2.
  • the red sub-pixels R51 and R61 and the green sub-pixels G51 and G61 can serve as a first sub-pixel unit SPX-1. The rest of the lines are deduced in turn, and will not be repeated here.
  • Sub-pixels B31, B12, B22, B52, and B62 respectively input data voltages corresponding to 2734 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 gray scale values.
  • red sub-pixels R11, R21, R51, R61, R32, R42, R33, R43, green sub-pixels G11, G21, G51, G61, G12, G22, G52, G62, G33, G43, and blue sub-pixels can be Pixels B31 , B12 , B22 , B52 , and B62 respectively input data voltages corresponding to 641 gray scale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 641 gray scale values.
  • red sub-pixels R11, R31, R51, R22, R42, R62, R23, R43, R63, green sub-pixels G11, G31, G51, G12, G32, G52, G23 can be , G43, G63, and blue sub-pixels B21, B41, B61, B12, B32, and B52 respectively input data voltages corresponding to 641 grayscale values, so that the brightness displayed by these subpixels can be the brightness corresponding to 641 grayscale values.
  • red sub-pixels R21, R41, R61, R12, R32, R52, R13, R33, R53, green sub-pixels G21, G41, G61, G22, G42, G62, G13, G33, G53, and blue sub-pixels can be Pixels B11 , B31 , B51 , B22 , B42 , and B62 respectively input data voltages corresponding to 2734 grayscale values, so that the brightness displayed by these sub-pixels can be the brightness corresponding to 2734 grayscale values.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved. Also, this improves mesh coarseness.
  • N may be 3, 4, 5 or other numerical values
  • M may also be 3, 4, 5 or other numerical values, which are not limited herein.
  • Embodiments of the present disclosure provide still some driving methods of the display panel, which are modified with respect to the implementation manners in the above-mentioned embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the second sub-pixel unit SPX-2, the first sub-pixel unit SPX-1, the first sub-pixel unit SPX-1, the second The sequence of the two sub-pixel units SPX-2 is repeated.
  • the first sub-pixel unit SPX-1 and the second sub-pixel unit SPX-2 may respectively include 1 sub-pixel.
  • the red sub-pixel R11 can be used as a first sub-pixel unit SPX-1
  • the green sub-pixel G11 can be used as a second sub-pixel unit SPX-2
  • the blue sub-pixel B11 can be used as a second sub-pixel unit SPX-2.
  • the red sub-pixel R12 can be used as a first sub-pixel unit SPX-1
  • the green sub-pixel G12 can be used as a first sub-pixel unit SPX-1
  • the blue sub-pixel B12 can be used as a second sub-pixel
  • the red sub-pixel R13 can be used as a second sub-pixel unit SPX-2
  • the green sub-pixel G13 can be used as a second sub-pixel unit SPX-2.
  • the red sub-pixel R11 can be used as a first sub-pixel unit SPX-1
  • the red sub-pixel R21 can be used as a second sub-pixel unit SPX-2
  • the red sub-pixel R31 can be used as a second sub-pixel Unit SPX-2
  • the red sub-pixel R41 can be used as a first sub-pixel unit SPX-1
  • the red sub-pixel R51 can be used as a first sub-pixel unit SPX-1
  • the red sub-pixel R61 can be used as a second sub-pixel unit SPX -2
  • the red sub-pixel R71 can be used as a second sub-pixel unit SPX-2
  • the red sub-pixel R81 can be used as a first sub-pixel unit SPX-1. The rest are deduced in turn, and will not be repeated here.
  • red sub-pixels R11, R41, R51, R81, R12, R42, R52, R82, R23, R33, R63, R73, green sub-pixels G21, G31, G61, G71, G12, G42, G52, G82 can be , G13, G43, G53, G83, and blue sub-pixels B21, B31, B61, B71, B22, B32, B62, B72 respectively input data voltages corresponding to 2734 grayscale values, so that the brightness displayed by these sub-pixels can be The brightness corresponding to 2734 grayscale values.
  • red sub-pixels R11, R41, R51, R81, R12, R42, R52, R82, R23, R33, R63, R73, green sub-pixels G21, G31, G61, G71 can be , G12, G42, G52, G82, G13, G43, G53, G83, and blue sub-pixels B21, B31, B61, B71, B22, B32, B62, B72 respectively input data voltages corresponding to 641 grayscale values, so that The luminance displayed by these sub-pixels is the luminance corresponding to the 641 gray scale value.
  • the brightness corresponding to the gray scale value of 170 is greater than the brightness corresponding to the gray scale value of 127
  • the brightness corresponding to the gray scale value of 40 is smaller than the brightness corresponding to the gray scale value of 127, so that two adjacent sub-pixels can be mixed by brightness to achieve 127 gray scale
  • the brightness of the value, so that the mixed brightness of this area can be displayed as the brightness of 127 grayscale values, and the color cast can be improved. And, this can also improve vertical lines.
  • first sub-pixel unit SPX-1 may also include two, three, four, five or more sub-pixels adjacent to each other along the row direction X.
  • first sub-pixel unit SPX- 1 may also include two, three, four, five or more sub-pixels adjacent along the column direction F.
  • the first sub-pixel unit SPX-1 may also include sub-pixels in N rows and M columns, which is not limited here.
  • the second sub-pixel unit SPX- 2 may also include two, three, four, five or more adjacent sub-pixels along the row direction X.
  • the second sub-pixel unit SPX- 2 may also include two, three, four, five or more sub-pixels adjacent along the column direction F.
  • the second sub-pixel unit SPX-2 may also include sub-pixels in N rows and M columns, which is not limited here.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开实施例提供的显示面板的驱动方法及显示装置,在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值;在连续的多个显示帧的当前显示帧中,控制区域中的第一子像素单元输入对应第一目标灰阶值的数据电压,以及控制区域中的第二子像素单元输入对应第二目标灰阶值的数据电压;第一子像素单元和第二子像素单元分别包括至少一个子像素;在连续的多个显示帧的下一个显示帧中,控制区域中的第一子像素单元输入对应第二目标灰阶值的数据电压,以及控制区域中的第二子像素单元输入对应第一目标灰阶值的数据电压。

Description

显示面板的驱动方法及显示装置 技术领域
本公开涉及显示技术领域,特别涉及显示面板的驱动方法及显示装置。
背景技术
在诸如液晶显示器(Liquid Crystal Display,LCD)等显示器中,一般包括多个像素。每个像素可以包括:红色子像素、绿色子像素以及蓝色子像素。通过控制每个子像素对应的显示数据,以控制每个子像素的显示亮度,从而混合出所需显示的色彩来显示彩色图像。
发明内容
本公开实施例提供的显示面板的驱动方法,包括:
在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值;其中,所述第一目标灰阶值大于所述当前原始灰阶值,所述第二目标灰阶值小于所述当前原始灰阶值;
在连续的多个显示帧的当前显示帧中,控制所述区域中的第一子像素单元输入对应所述第一目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第二目标灰阶值的数据电压;其中,至少一个所述第一子像素单元和至少一个所述第二子像素单元相邻;所述第一子像素单元和所述第二子像素单元分别包括至少一个子像素;
在连续的多个显示帧的下一个显示帧中,控制所述区域中的所述第一子像素单元输入对应所述第二目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第一目标灰阶值的数据电压。
在一些示例中,在子像素的行方向和列方向上,分别按照所述第一子像素单元、所述第二子像素单元的顺序重复排列。
在一些示例中,在子像素的行方向和列方向上,分别按照所述第二子像素单元、所述第一子像素单元、所述第一子像素单元、所述第二子像素单元的顺序重复排列。
在一些示例中,所述第一子像素单元包括沿所述行方向相邻的至少两个子像素;
所述第二子像素单元包括沿所述行方向相邻的至少两个子像素。
在一些示例中,所述第一子像素单元包括沿所述列方向相邻的至少两个子像素;
所述第二子像素单元包括沿所述列方向相邻的至少两个子像素。
在一些示例中,所述第一子像素单元包括N行M列的子像素;其中,N为大于0的整数,M为大于0的整数;
所述第二子像素单元包括N行M列的子像素。
在一些示例中,在所述连续的多个显示帧中,经过偶数个显示帧,控制输入到所述第一子像素单元和所述第二子像素单元中各子像素的数据电压对应的极性翻转一次。
在一些示例中,所述将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,包括:
将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值;其中,所述目标灰阶位数不小于所述默认灰阶位数。
在一些示例中,所述将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值,包括:
根据所述当前原始灰阶值,从预先存储的第一查找表中,确定所述当前原始灰阶值对应的所述第一目标灰阶值和所述第二目标灰阶值;
其中,所述第一查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第一查找表中,一个所述原始灰阶值对应一个 所述第一目标灰阶值和一个所述第二目标灰阶值。
在一些示例中,所述显示面板包括多种不同颜色的子像素;
所述第一查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。
在一些示例中,所述将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值,包括:
根据所述当前原始灰阶值,从预先存储的第二查找表中,确定所述当前原始灰阶值对应的当前中间灰阶值;其中,所述当前中间灰阶值的中间灰阶位数大于所述默认灰阶位数,且所述中间灰阶位数小于所述目标灰阶位数;
根据所述当前中间灰阶值,从所述第二查找表中,确定所述当前中间灰阶值对应的所述第一目标灰阶值和所述第二目标灰阶值;
其中,所述第二查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述中间灰阶位数的多个不同的中间灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第二查找表中,一个所述原始灰阶值对应一个所述中间灰阶值,一个所述中间灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
在一些示例中,所述显示面板包括多种不同颜色的子像素;
所述第二查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。
在一些示例中,在将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值之前,还包括:
接收所述连续的多个显示帧中各子像素的原始显示数据;
根据所述连续的多个显示帧中各子像素的所述原始显示数据,确定所述连续的多个显示帧中各子像素的当前原始灰阶值。
本公开实施例提供的显示装置,包括:
显示面板,包括源极驱动电路;
时序控制器,被配置为:在连续的多个显示帧中,存在同一区域中的子 像素对应的当前原始灰阶值相同时,将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,并将所述第一目标灰阶值和所述第二目标灰阶值输出给所述源极驱动电路;其中,所述第一目标灰阶值大于所述当前原始灰阶值,所述第二目标灰阶值小于所述当前原始灰阶值;
所述源极驱动电路被配置为:在连续的多个显示帧的当前显示帧中,控制所述区域中的第一子像素单元输入对应所述第一目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第二目标灰阶值的数据电压;在连续的多个显示帧的下一个显示帧中,控制所述区域中的所述第一子像素单元输入对应所述第二目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第一目标灰阶值的数据电压;其中,至少一个所述第一子像素单元和至少一个所述第二子像素单元相邻;所述第一子像素单元和所述第二子像素单元分别包括至少一个子像素。
在一些示例中,所述时序控制器存储有第一查找表;
其中,所述第一查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第一查找表中,一个所述原始灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
在一些示例中,所述时序控制器存储有第二查找表;
其中,所述第二查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述中间灰阶位数的多个不同的中间灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第二查找表中,一个所述原始灰阶值对应一个所述中间灰阶值,一个所述中间灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
在一些示例中,所述显示面板包括多个子像素;所述子像素包括晶体管和像素电极;
所述像素电极包括:在第一方向上间隔排布的第一边缘导电部和第二边缘导电部、及至少部分位于所述第一边缘导电部和所述第二边缘导电部之间 的主导电部,所述主导电部分别与所述第一边缘导电部和所述第二边缘导电部连接,所述主导电部包括至少一个第一组子导电部和至少一个第二组子导电部,所述第一组子导电部和所述第二组子导电部在所述第一方向上交替排布;
其中,所述第一组子导电部包括第一连接条,所述第一连接条在所述第一方向上延伸且其具有在第二方向上相对的第一面和第二面;所述第一组子导电部具有位于所述第一面远离所述第二面一侧的第一缝隙,所述第一缝隙远离所述第一连接条的一端为开口端;
其中,所述第二组子导电部包括位于所述第一缝隙远离所述第一连接条的一侧并与所述第一组子导电部连接的第二连接条,所述第二连接条在所述第一方向上延伸且其具有在第二方向上相对的第三面和第四面,所述第三面位于所述第四面靠近所述第一面的一侧;且所述第二组子导电部具有位于所述第三面远离所述第四面一侧的第二缝隙,所述第二缝隙远离所述第二连接条的一端为开口端。
在一些示例中,沿行方向或列方向上相邻两个子像素中,第一个子像素内的第一边缘导电部靠近所述晶体管设置,且第二边缘导电部远离所述晶体管设置,以及所述第二连接条靠近所述相邻两个子像素中的第二个子像素,且所述第一连接条远离所述第二个子像素;
所述第二个子像素内的第一边缘导电部远离所述晶体管设置,且第二边缘导电部靠近所述晶体管设置,以及所述第二连接条远离所述相邻两个子像素中的第一个子像素,且所述第一连接条靠近所述第一个子像素。
在一些示例中,所述第一个子像素和所述第二个子像素中,第二连接条连接的第二电极条的数量不同;和/或,
所述第一个子像素和所述第二个子像素中,第一连接条连接的第一电极条的数量不同。
在一些示例中,同一子像素中,所述第一连接条和所述第二连接条通过转接部连接;
所述转接部具有镂空区域。
在一些示例中,所述显示面板包括多条公共电极;一行子像素设置一条公共电极;
所述显示面板还包括多个跨接部;相邻两条公共电极通过至少一个所述跨接部电连接。
附图说明
图1为本公开实施例提供的显示装置的一些结构示意图;
图2为本公开实施例提供的显示面板的一些结构示意图;
图3为本公开实施例提供的显示面板的另一些结构示意图;
图4为本公开实施例提供的显示面板中的像素电极的等效结构示意图;
图5为本公开实施例提供的显示面板中的像素电极的具体结构示意图;
图6为本公开实施例提供的显示面板的驱动方法的流程图;
图7为本公开实施例提供的显示面板的又一些结构示意图;
图8为本公开实施例提供的显示面板的又一些结构示意图;
图9为本公开实施例提供的显示面板的又一些结构示意图;
图10为本公开实施例提供的显示面板的又一些结构示意图;
图11为本公开实施例提供的显示面板的又一些结构示意图;
图12为本公开实施例提供的显示面板的又一些结构示意图;
图13为本公开实施例提供的显示面板的又一些结构示意图;
图14为本公开实施例提供的显示面板的又一些结构示意图;
图15为本公开实施例提供的显示面板的又一些结构示意图;
图16为本公开实施例提供的显示面板的又一些结构示意图;
图17为本公开实施例提供的显示面板的又一些结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
参见图1与图2,显示装置可以包括显示面板100以及时序控制器200。其中,显示面板100可以包括多个阵列排布的像素单元,多条栅线GA(例如,GA1、GA2、GA3、GA4)、多条数据线DA(例如,DA1、DA2、DA3)、栅极驱动电路110以及源极驱动电路120。栅极驱动电路110分别与栅线GA1、GA2、GA3、GA4耦接,源极驱动电路120分别与数据线DA1、DA2、DA3耦接。其中,时序控制器200可以通过电平转换(Level Shift)电路向栅极驱动电路110输入控制信号,从而驱动栅线GA1、GA2、GA3、GA4。时序控制器200向源极驱动电路120输入信号,以使源极驱动电路120向数据线输入数据电压,从而对子像素SPX充电,使子像素SPX输入相应的数据电压,实现画面显示功能。示例性地,源极驱动电路120可以设置为2个,其中一个源极驱动电路120连接一半数量的数据线,另一个源极驱动电路120连接另一半数量的数据线。当然,源极驱动电路120也可以设置3个、4个、或更 多个,其可以根据实际应用的需求进行设计确定,在此不作限定。
示例性地,每个像素单元包括多个子像素SPX。例如,像素单元可以包括红色子像素,绿色子像素以及蓝色子像素,这样可以通过红绿蓝进行混色,以实现彩色显示。或者,像素单元也可以包括红色子像素,绿色子像素、蓝色子像素以及白色子像素,这样可以通过红绿蓝白进行混色,以实现彩色显示。当然,在实际应用中,像素单元中的子像素的发光颜色可以根据实际应用环境来设计确定,在此不作限定。
参见图2所示,每个子像素SPX中包括晶体管01和像素电极02。其中,一行子像素SPX对应一条栅线,一列子像素SPX对应一条数据线。晶体管01的栅极与对应的栅线电连接,晶体管01的源极与对应的数据线电连接,晶体管01的漏极与像素电极02电连接,需要说明的是,本公开像素阵列结构还可以是双栅结构,即相邻两行像素之间设置两条栅极线,此排布方式可以减少一半的数据线,即包含相邻两列像素之间有的数据线,有的相邻两列像素之间不包括数据线,具体像素排布结构和数据线,扫描线的排布方式不限定。
需要说明的是,本公开实施例中的显示面板可以为液晶显示面板。示例性地,液晶显示面板一般包括对盒的上基板和下基板,以及封装在上基板和下基板之间的液晶分子。在显示画面时,由于加载在各子像素SPX的像素电极上的数据电压和公共电极上的公共电极电压之间具有电压差,该电压差可以形成电场,从而使液晶分子在该电场的作用下进行偏转。由于不同强度的电场使液晶分子的偏转程度不同,从而导致子像素SPX的透过率不同,以使子像素SPX实现不同灰阶的亮度,进而实现画面显示。
在本公开实施例中,以显示面板包括红色子像素R11~R21、绿色子像素G11~G21、蓝色子像素B11~B21、红色子像素R12~R22、绿色子像素G12~G22、蓝色子像素B12~B82为例,结合图3至图5所示,像素电极02可包括在第一方向Y上间隔排布的第一边缘导电部101和第二边缘导电部102、及至少部分位于第一边缘导电部101和第二边缘导电部102之间的主导电部。此主导 电部分别与第一边缘导电部101和第二边缘导电部102连接,且主导电部可包括至少一个第一组子导电部和至少一个第二组子导电部,此第一组子导电部和第二组子导电部在第一方向Y上交替排布。
以及,第一组子导电部可包括第一连接条103和在第一方向Y上间隔排布的多个第一电极条104。此第一连接条103在第一方向Y上延伸(即:第一连接条103的长度方向为第一方向Y)。其中,第一连接条103可具有在第二方向X上相对的第一面103a和第二面103b,需要说明的是,此第一方向Y可与第二方向X相交,优选地,第一方向Y可与第二方向X相互垂直(例如,第一方向Y可以为子像素的列方向F,第二方向X可以为子像素的行方向X);而多个第一电极条104可位于第一面103a远离第二面103b的位置并与第一面103a连接。其中,相邻两第一电极条104之间形成有缝隙,其可定义为第一缝隙S1,此相邻两第一电极条104远离第一连接条103的一端呈彼此断开的状态,即:第一缝隙S1远离第一连接条103的一端呈开口状,其中,为了方便描述可将第一缝隙S1远离第一连接条103的一端定义为开口端。
以及,第二组子导电部包括第二连接条105和在第一方向Y上间隔排布的多个第二电极条106,此第二连接条105在第一方向Y上延伸(即:第二连接条105的长度方向为第一方向Y)。其中,第二连接条105可具有在第二方向X上相对的第三面105a和第四面105b,在第二方向X上,此第二连接条105的第三面105a可位于其第四面105b靠近第一连接条103的第一面103a的一侧。第二连接条105的第三面105a可与靠近第二组子导电部的第一电极条104连接,具体与第一电极条104远离第一连接条103的端部连接,应当理解的是,此处提到的靠近第二组子导电部的第一电极条104指的是第一组子导电部中离第二组子导电部最近的第一电极条104。而多个第二电极条106位于第二连接条105的第三面105a远离第四面105b的位置并与第二连接条105的第三面105a连接。其中,相邻两第二电极条106之间形成有缝隙,其可定义为第二缝隙S2,此相邻两第二电极条106远离第二连接条105的一端呈彼此断开的状态,即:第二缝隙S2远离第二连接条105的一端呈开口状, 其中,为了方便描述可将第二缝隙S2远离第二连接条105的一端定义为开口端。
以及,将像素电极02中各第一组子导电部的第一连接条103的长度之和可以设计为小于各第二组子导电部的第二连接条105的长度之和;需要说明的是,此处提到的长度指的是在其延伸方向上的长度。
以及,像素电极02可通过前述提到的第一边缘导电部101或第二边缘导电部102与晶体管01(如图2和图5所示)连接,具体地,第一边缘导电部101或第二边缘导电部102远离第二连接条105的端部可被配置为与晶体管01连接。
在本公开实施例中,如图3至图5所示,沿行方向X或列方向F上相邻两个子像素(例如R11、G11)中,第一个子像素(例如R11)内的第一边缘导电部101靠近晶体管01设置,且第二边缘导电部102远离晶体管01设置,以及第二连接条105靠近相邻两个子像素中的第二个子像素(例如G11),且第一连接条103远离第二个子像素(例如G11)。
在本公开实施例中,如图3至图5所示,第二个子像素(例如G11)内的第一边缘导电部101远离晶体管01设置,且第二边缘导电部102靠近晶体管01设置,以及第二连接条105远离相邻两个子像素中的第一个子像素(例如R11),且第一连接条103靠近第一个子像素(例如R11)。
在本公开实施例中,如图3至图5所示,第一个子像素(例如R11)和第二个子像素(例如C11)中,第二连接条105连接的第二电极条106的数量不同。
在本公开实施例中,如图3至图5所示,第一个子像素(例如R11)和第二个子像素(例如G11)中,第一连接条103连接的第一电极条104的数量不同。
在本公开实施例中,如图3至图5所示,像素电极02与衬底基板之间还设置有多条公共电极。其中,一行子像素设置一条公共电极;显示面板还包括多个跨接部KB;相邻两条公共电极通过至少一个跨接部KB电连接。以及, 同一子像素中,第一连接条103和第二连接条105通过转接部ZB连接;转接部ZB具有镂空区域LB。这样可以提高第一连接条103和第二连接条105的电连接性能,同时对于液晶显示而言,镂空区域LB所在位置可以形成驱动液晶旋转的电场,另外本发明包括相邻两个像素电极的转接部不在一条水平线上,例如G11像素对应的转接部相对于R11像素对应的转接部更远离与之相连接的晶体管的位置。
需要说明的是,公共电极可以是条形的,或者公共电极也可以是像素电极一样具有多个公共子电极,并且相邻的公共子电极通过横向和纵向的跨接部连接,以实现公共电压传输。
综上可知,在本公开的实施例中,像素电极02的第一缝隙S1和第二缝隙S2的四周并未全部封闭,即:此第一缝隙S1靠近第二连接条105的一端为开口端,且第二缝隙S2靠近第一连接条103的一端为开口端,应当理解的是,本公开实施例的像素电极02应用于显示产品中时,其第一缝隙S1的开口端和第二缝隙S2的开口端可分别与像素电极02两侧的数据线DA(如图2和图5所示)相邻。在其应用于液晶显示产品中时,可有效降低液晶显示产品暗场区的范围,从而可提升液晶显示产品透过率和改善色偏。
在本公开实施例中,如图4与图5所示,第一电极条104和第二电极条106的延伸方向可相同,即:第一电极条104和第二电极条106可在同一方向上延伸,也就是说,本公开的像素电极02可为单畴结构,这样可降低设计难度。需要说明的是,在此实施例中,相邻第一电极条104与第二电极条106之间的缝隙可为前述提到的第二缝隙S2。
在本公开实施例中,如图4与图5所示,第一电极条104和第一缝隙S1的延伸方向相同,以保证像素电极02的第一组子导电部处的显示均一性;且第一电极条104和第一缝隙S1的延伸方向均与前述提到的第一方向Y和第二方向X相交,以减小色偏。同理,第二电极条106和第二缝隙S2的延伸方向相同,以保证像素电极02的第二组子导电部处的显示均一性;且第二电极条106和第二缝隙S2的延伸方向均与前述提到的第一方向Y和第二方向X相交, 以减小色偏。继续参见图5,相邻两个像素单元中,例如R11和G11,R11的第二电极条106与第二连接条105连接且朝向左侧延伸,G11的第一电极条104与第一连接条103连接且朝向右侧延伸,R11的第一电极条104与第一连接条103连接且朝向右侧延伸,G11的第二电极条106与第二连接条105连接且朝向左侧延伸,如此像素设计改善显示色偏的问题。
需要说明的是,在本公开实施例中,仅是以像素电极采用上述结构进行举例说明的。在实际应用中,也可以使公共电极的实施方式采用上述像素电极的结构方式进行设置,在此不作限定。
下面均以本公开实施例中的显示面板为液晶显示面板,且像素单元包括红色子像素、绿色子像素、蓝色子像素为例进行说明,但是读者应知,液晶显示面板中包括的子像素的颜色并不局限于此。
灰阶,一般是将最暗与最亮之间的亮度变化区分为若干份,以便于进行屏幕亮度管控。例如,以显示的图像由红、绿、蓝三种颜色组成,其中每一个颜色都可以显现出不同的亮度级别,并且不同亮度层次的红、绿、蓝组合起来,可以形成不同的色彩。例如,液晶显示面板的灰阶位数为6bit,则红、绿、蓝这三种颜色分别具有64(即2 6)个灰阶,这64个灰阶值分别为0~63。液晶显示面板的灰阶位数为8bit,则红、绿、蓝这三种颜色分别具有256(即2 8)个灰阶,这256个灰阶值分别为0~255。液晶显示面板的灰阶位数为10bit,则红、绿、蓝这三种颜色分别具有1024(即2 10)个灰阶,这1024个灰阶值分别为0~1023。液晶显示面板的灰阶位数为12bit,则红、绿、蓝这三种颜色分别具有4096(即2 12)个灰阶,这4096个灰阶值分别为0~4093。
示例性地,以一个子像素SPX为例,在该子像素SPX的像素电极中输入的数据电压Vda1大于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为正极性,则该子像素SPX中的数据电压Vda1对应的极性为正极性。在子像素SPX的像素电极中输入的数据电压Vda2小于公共电极电压Vcom时,可以使该子像素SPX处的液晶分子为负极性,则该子像素SPX中的数据电压Vda2对应的极性为负极性。例如,公共电极电压可以为8.3V,若在该子 像素SPX的像素电极中输入了8.8V~16V的数据电压,可以使该子像素SPX处的液晶分子为正极性,则8.8V~16V的数据电压为对应正极性的数据电压。若在该子像素SPX的像素电极中输入了0.6V~7.8V的数据电压,可以使该子像素SPX处的液晶分子为负极性,则0.6V~7.8V的数据电压为对应负极性的数据电压。示例性地,以8bit的0~255灰阶为例,若在子像素SPX的像素电极中输入16V的数据电压时,该子像素SPX可以采用正极性的数据电压实现最大灰阶值(即255灰阶值)的亮度。若在子像素SPX的像素电极中输入0.6V的数据电压时,该子像素SPX可以采用负极性的数据电压实现最大灰阶值(即255灰阶值)的亮度。需要说明的是,0灰阶值的数据电压与公共电极电压之间可能具有电压差,例如,公共电极电压为8.3V,对应0灰阶值的正极性的数据电压可以为8.8V,对应0灰阶值的负极性的数据电压可以为7.8V。当然,0灰阶值的数据电压与公共电极电压也可以相同。在实际应用中,可以根据实际应用的需要进行确定,在此不作限定。
为了进一步改善色偏,提出了一种驱动方法,该驱动方法可以包括:根据待显示图像的各子像素的原始灰阶值分别产生第一显示灰阶值和第二显示灰阶值,并在每一个显示帧中,利用第一显示灰阶值和第二显示灰阶值分别控制显示面板上相邻子像素中一个子像素采用第一显示灰阶值显示较高亮度,另一个子像素采用第二显示灰阶值显示较低亮度,其中第一显示灰阶值大于第二显示灰阶值,从而使得施加至该相邻两个子像素的数据电压不相同。例如,结合图3所示,在第n个显示帧F_n中,红色子像素R11、绿色子像素G21、蓝色子像素B11、红色子像素R22、绿色子像素G12、蓝色子像素B22采用第一显示灰阶值显示较高亮度,红色子像素R21、绿色子像素G11、蓝色子像素B21、红色子像素R12、绿色子像素G22、蓝色子像素B12采用第二显示灰阶值显示较低亮度。在第n+1个显示帧F_n+1中,红色子像素R11、绿色子像素G21、蓝色子像素B11、红色子像素R22、绿色子像素G12、蓝色子像素B22也是采用第一显示灰阶值显示较高亮度,红色子像素R21、绿色子像素G11、蓝色子像素B21、红色子像素R12、绿色子像素G22、蓝色子像 素B12也是采用第二显示灰阶值显示较低亮度。在第n+2个显示帧F_n+2中,红色子像素R11、绿色子像素G21、蓝色子像素B11、红色子像素R22、绿色子像素G12、蓝色子像素B22也是采用第一显示灰阶值显示较高亮度,红色子像素R21、绿色子像素G11、蓝色子像素B21、红色子像素R12、绿色子像素G22、蓝色子像素B12也是采用第二显示灰阶值显示较低亮度。这样使得畴方向一致的子像素一致显示较高或较低亮度,这样在液晶分子对应短轴时,画面会偏蓝,在对应长轴时,画面会偏黄。因此,存在左右视角出现色偏的问题。
本公开实施例提供了显示面板的驱动方法,显示面板工作于连续的多个显示帧,在这连续的多个显示帧中,若出现同一区域中的子像素对应的当前原始灰阶值相同时,可以将原始灰阶值转换为两个灰阶值:第一目标灰阶值和第二目标灰阶值。并且第一目标灰阶值大于当前原始灰阶值,可以使子像素显示的对应第一目标灰阶值的亮度大于显示的对应当前原始灰阶值的亮度。以及,第二目标灰阶值小于当前原始灰阶值,可以使子像素显示的对应第二目标灰阶值的亮度小于显示的对应当前原始灰阶值的亮度。从而将这显示的对应第一目标灰阶值的亮度和显示的对应第二目标灰阶值的亮度进行混合,以实现显示对应当前原始灰阶值的亮度。并且,在当前显示帧中,控制区域中的第一子像素单元SPX-1输入对应第一目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第二目标灰阶值的数据电压。以及在下一个显示帧中,控制区域中的第一子像素单元SPX-1输入对应第二目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第一目标灰阶值的数据电压。这样可以使在当前显示帧亮度较亮的子像素,在下一个显示帧显示较暗亮度。在当前显示帧亮度较暗的子像素,在下一个显示帧显示较亮的亮度。这样可以通过时间混色和空间混色相结合的方式,改善色偏。
如图6所示,本公开实施例提供了显示面板的驱动方法,可以包括如下步骤:
S100、在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值。
示例性地,步骤S100,可以包括:接收连续的多个显示帧中各子像素的原始显示数据。该原始显示数据包括每一个子像素一一对应的携带有相应灰阶值的数据电压的数字电压形式,并且,该数据电压对应的灰阶值即为原始灰阶值。这样可以根据连续的多个显示帧中各子像素的原始显示数据,确定连续的多个显示帧中各子像素的当前原始灰阶值。
在本公开实施例中,可以根据这些连续的多个显示帧中各子像素的当前原始灰阶值,来确定,是否存在相同区域中子像素对应的原始灰阶值相同,若存在,则说明该区域显示的为同一灰阶的画面,易出现色偏现象。例如,该区域中的子像素对应的原始灰阶值均为127灰阶值,这样在该区域显示出的画面可能是灰阶画面。例如,该区域中的子像素对应的原始灰阶值均为255灰阶值,这样在该区域显示出的画面可能是白色画面(例如该区域显示为白云)。因此,为了改善色偏,可以将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值。并且,第一目标灰阶值大于当前原始灰阶值,且第二目标灰阶值小于当前原始灰阶值。例如,以0~255灰阶为例,若当前原始灰阶值为127灰阶值,可以将第一目标灰阶值设置为170灰阶值,第二目标灰阶值设置为40灰阶值。
需要说明的是,该区域可以为显示面板所显示画面的整个区域,或者也可以为显示面板所显示画面的部分区域中的一个或多个区域,在此不作限定。
S200、在连续的多个显示帧的当前显示帧中,控制区域中的第一子像素单元SPX-1输入对应第一目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第二目标灰阶值的数据电压。
在本公开实施例中,第一子像素单元SPX-1和第二子像素单元SPX-2分别包括至少一个子像素。例如,第一子像素单元SPX-1和第二子像素单元SPX-2包括的子像素的数量可以相同。或者,第一子像素单元SPX-1和第二 子像素单元SPX-2包括的子像素的数量也可以不同。在实际应用中,可以根据实际应用的需求进行确定,在此不作限定。
在本公开实施例中,可以使至少一个第一子像素单元SPX-1和至少一个第二子像素单元SPX-2相邻。示例性地,可以在子像素的行方向X和列方向F上,分别按照第一子像素单元SPX-1、第二子像素单元SPX-2的顺序重复排列。例如,第一子像素单元SPX-1和第二子像素单元SPX-2分别包括一个子像素。如图7所示,以红色子像素R11~R81、绿色子像素G11~G81、蓝色子像素B11~B81、红色子像素R12~R82、绿色子像素G12~G82、蓝色子像素B12~B82、红色子像素R13~R83、绿色子像素G13~G83以及蓝色子像素B13~B83组成的区域对应的当前原始灰阶值相同为例,第一行子像素中,红色子像素R11作为一个第一子像素单元SPX-1、绿色子像素G11作为一个第二子像素单元SPX-2、蓝色子像素B11作为一个第一子像素单元SPX-1、红色子像素R11作为一个第二子像素单元SPX-2、绿色子像素G12作为一个第一子像素单元SPX-1、蓝色子像素B12作为一个第二子像素单元SPX-2、红色子像素R13作为一个第一子像素单元SPX-1、绿色子像素G13作为一个第二子像素单元SPX-2、蓝色子像素B13作为一个第一子像素单元SPX-1进行排列。其余行中子像素可以依次类推,在此不作赘述。并且,第一列子像素中,红色子像素R11作为一个第一子像素单元SPX-1、红色子像素R21作为一个第二子像素单元SPX-2、红色子像素R31作为一个第一子像素单元SPX-1、红色子像素R41作为一个第二子像素单元SPX-2、红色子像素R51作为一个第一子像素单元SPX-1、红色子像素R61作为一个第二子像素单元SPX-2、红色子像素R71作为一个第一子像素单元SPX-1、红色子像素R81作为一个第二子像素单元SPX-2。其余列中子像素可以依次类推,在此不作赘述。
示例性地,以当前原始灰阶值为127、第一目标灰阶值为170以及第二目标灰阶值为40为例,结合图7所示,在当前显示帧F_n中,可以对红色子像素R11、R31、R51、R71、R22、R42、R62、R82、R13、R33、R53、R73,绿色子像素G21、G41、G61、G81、G12、G32、G52、G72、G23、G43、G63、 G83,以及蓝色子像素B11、B31、B51、B71、B22、B42、B62、B82、B13、B33、B53、B73分别输入对应170灰阶值的数据电压,这样可以使这些子像素显示的亮度为170灰阶值对应的亮度。以及,可以对红色子像素R21、R41、R61、R81、R12、R22、R52、R72、R23、R43、R63、R83,绿色子像素G11、G31、G51、G71、G22、G42、G62、G82、G13、G33、G53、G73,以及蓝色子像素B21、B41、B61、B81、B12、B22、B52、B72、B23、B43、B63、B83分别输入对应40灰阶值的数据电压,这样可以使这些子像素显示的亮度为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。
S300、在连续的多个显示帧的下一个显示帧中,控制区域中的第一子像素单元SPX-1输入对应第二目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第一目标灰阶值的数据电压。
示例性地,以当前原始灰阶值为127、第一目标灰阶值为170以及第二目标灰阶值为40为例,结合图8所示,在下一个显示帧F_n+1中,可以对红色子像素R11、R31、R51、R71、R22、R42、R62、R82、R13、R33、R53、R73,绿色子像素G21、G41、G61、G81、G12、G32、G52、G72、G23、G43、G63、G83,以及蓝色子像素B11、B31、B51、B71、B22、B42、B62、B82、B13、B33、B53、B73分别输入对应40灰阶值的数据电压,这样可以使这些子像素显示的亮度为40灰阶值对应的亮度。以及,可以对红色子像素R21、R41、R61、R81、R12、R22、R52、R72、R23、R43、R63、R83,绿色子像素G11、G31、G51、G71、G22、G42、G62、G82、G13、G33、G53、G73,以及蓝色子像素B21、B41、B61、B81、B12、B22、B52、B72、B23、B43、B63、B83分别输入对应170灰阶值的数据电压,这样可以使这些子像素显示的亮度为170灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相 邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。
在本公开实施例中,在显示帧F_n+2中第一子像素单元SPX-1和第二子像素单元SPX-2中子像素对应的第一目标灰阶值和第二目标灰阶值,与显示帧F_n中第一子像素单元SPX-1和第二子像素单元SPX-2中子像素对应的第一目标灰阶值和第二目标灰阶值基本相同。在显示帧F_n+3中第一子像素单元SPX-1和第二子像素单元SPX-2中子像素对应的第一目标灰阶值和第二目标灰阶值,与显示帧F_n+1中第一子像素单元SPX-1和第二子像素单元SPX-2中子像素对应的第一目标灰阶值和第二目标灰阶值基本相同。其余显示帧,可以依次类推,在此不作赘述。
在本公开实施例中,时序控制器可以在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,并将第一目标灰阶值和第二目标灰阶值输出给源极驱动电路。在源极驱动电路接收到时序控制器输出的第一目标灰阶值和第二目标灰阶值后,可以在连续的多个显示帧的当前显示帧中,控制区域中的第一子像素单元SPX-1输入对应第一目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第二目标灰阶值的数据电压。以及在连续的多个显示帧的下一个显示帧中,控制区域中的第一子像素单元SPX-1输入对应第二目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第一目标灰阶值的数据电压。
在本公开实施例中,时序控制器可以在连续的多个显示帧中,针对除区域外的子像素,直接将该子像素对应的当前原始灰阶值输出给源极驱动电路。在源极驱动电路接收到时序控制器输出的当前原始灰阶值后,可以在连续的多个显示帧的当前显示帧中,控制除区域外的子像素输入对应当前原始灰阶值的数据电压。以及,在连续的多个显示帧的下一个显示帧中,控制除区域外的子像素输入对应当前原始灰阶值的数据电压。
示例性地,时序控制器可以预先判断在连续的多个显示帧中,存在同一 区域中的子像素对应的当前原始灰阶值是否处于灰阶范围。若是,即存在同一区域中的子像素对应的当前原始灰阶值处于灰阶范围,则将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,并将第一目标灰阶值和第二目标灰阶值输出给源极驱动电路,以使源极驱动电路可以在当前显示帧中,控制区域中的第一子像素单元SPX-1输入对应第一目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第二目标灰阶值的数据电压。以及在下一个显示帧中,控制区域中的第一子像素单元SPX-1输入对应第二目标灰阶值的数据电压,以及控制区域中的第二子像素单元SPX-2输入对应第一目标灰阶值的数据电压。若否,即存在同一区域中的子像素对应的当前原始灰阶值不处于灰阶范围,则人眼不容易观察到残像的问题,从而将该子像素对应的当前原始灰阶值直接输出给源极驱动电路,以使源极驱动电路接收到时序控制器输出的当前原始灰阶值后,可以在连续的多个显示帧的当前显示帧中,控制除区域中的子像素输入对应当前原始灰阶值的数据电压。以及,在连续的多个显示帧的下一个显示帧中,控制区域中的子像素输入对应当前原始灰阶值的数据电压,可选的,以8bit为例,灰阶范围可以是311~180灰阶值,并且包括端点值,小于31灰阶值和大于180灰阶值人眼不易观察和识别到mura,此时可以不采用则将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值的驱动方式,可降低功耗。
在本公开实施例中,将当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,可以包括:将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值。其中,目标灰阶位数可以等于默认灰阶位数。例如,目标灰阶位数和默认灰阶位数可以均为8bit或10bit或12bit等。以8bit为例,可以将8bit的127灰阶值转换为8bit的170灰阶值和40灰阶值,此时,将170灰阶和40灰阶混合形成127灰阶,而170灰阶和40灰阶相对127灰阶而言是对电压不敏感的灰阶,对于用户而言不容易观察到残像。或者,目标灰阶位数可以大于默认灰阶位数。例如,目标灰阶位数为10bit,默认灰阶位数为8bit。以8bit为例,可以将8bit的127灰阶值转换 为10bit的680灰阶值和160灰阶值。
在本公开实施例中,可以在时序控制器中存储第一查找表。其中,第一查找表可以包括:对应默认灰阶位数的多个不同的原始灰阶值,对应目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,第一查找表中,一个原始灰阶值对应一个第一目标灰阶值和一个第二目标灰阶值。示例性地,第一查找表中的原始灰阶值为默认灰阶位数的各个灰阶值,例如,默认灰阶位数为8bit时,第一查找表中具有0~255灰阶值中的每个灰阶值,以及0~255灰阶值一一对应的一个第一目标灰阶值和一个第二目标灰阶值。例如,以目标灰阶位数和默认灰阶位数均为8bit为例,表一示意出了125~130灰阶值对应的第一目标灰阶值L_H和第二目标灰阶值L_L。需要说明的是,表一中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。
原始灰阶值 L_H L_L
125 168 38
126 169 39
127 170 40
128 171 41
129 172 42
130 173 43
表一
在本公开实施例中,第一查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。例如,第一查找表包括各个原始灰阶值对应的红色子像素对应第一目标灰阶值和第二目标灰阶值、绿色子像素对应第一目标灰阶值和第二目标灰阶值、以及蓝色子像素对应第一目标灰阶值和第二目标灰阶值。例如,以目标灰阶位数和默认灰阶位数均为8bit为例,表二示意出了 125~130灰阶值对应的红色子像素的第一目标灰阶值LR_H和第二目标灰阶值LR_L、绿色子像素的第一目标灰阶值LG_H和第二目标灰阶值LG_L、蓝色子像素的第一目标灰阶值LB_H和第二目标灰阶值LB_L。需要说明的是,表一中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。
原始灰阶值 LR_H LG_H LB_H LR_L LG_L LB_L
125 168 168 168 38 38 38
126 169 169 169 39 39 39
127 170 170 170 40 40 40
128 171 171 171 41 41 41
129 172 172 172 42 42 42
130 173 173 173 43 43 43
表二
在本公开实施例中,将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值,可以包括:根据当前原始灰阶值,从预先存储的第一查找表中,确定当前原始灰阶值对应的第一目标灰阶值和第二目标灰阶值。例如,结合表二,当前原始灰阶值为127灰阶值时,可以通过查找第一查找表,以确定出红色子像素对应的第一目标灰阶值为170灰阶值,绿色子像素对应的第一目标灰阶值为170灰阶值,蓝色子像素对应的第一目标灰阶值为170灰阶值,红色子像素对应的第二目标灰阶值为40灰阶值,绿色子像素对应的第二目标灰阶值为40灰阶值,蓝色子像素对应的第二目标灰阶值为40灰阶值。这样可以对在第一子像素单元SPX-1中的红色子像素输入对应170灰阶值的数据电压,对在第一子像素单元SPX-1中的绿色子像素输入对应170灰阶值的数据电压,对在第一子像素单元SPX-1中的蓝色子像素输入对应170灰阶值的数据电压,对在第二子像素单元SPX-2中的 红色子像素输入对应40灰阶值的数据电压,对在第二子像素单元SPX-2中的绿色子像素输入对应40灰阶值的数据电压,对在第二子像素单元SPX-2中的蓝色子像素输入对应40灰阶值的数据电压。
在本公开实施例中,可以使显示面板采用帧翻转方式、列翻转方式、行翻转方式以及点翻转方式进行驱动。示例性地,以帧翻转为例,在显示帧F_n中,可以使各子像素输入的数据电压对应正极性。在显示帧F_n+1中,可以使各子像素输入的数据电压对应负极性。在显示帧F_n+2中,可以使各子像素输入的数据电压对应正极性。在显示帧F_n+3中,可以使各子像素输入的数据电压对应负极性。然而,针对第一子像素单元SPX-1,在第一子像素单元SPX-1显示较高亮度的显示帧F_n和F_n+2中,该第一子像素单元SPX-1中的子像素对应的极性一直为正极性。在第一子像素单元SPX-1显示较低亮度的显示帧F_n+1和F_n+3中,该第一子像素单元SPX-1中的子像素对应的极性一直为负极性。并且,针对第二子像素单元SPX-2,在第热子像素单元显示较低亮度的显示帧F_n和F_n+2中,该第二子像素单元SPX-2中的子像素对应的极性一直为正极性。在第一子像素单元SPX-1显示较高亮度的显示帧F_n+1和F_n+3中,该第一子像素单元SPX-1中的子像素对应的极性一直为负极性。这样会由于液晶分子极化导致色偏。为了避免由于液晶分子极化导致色偏,在本公开实施例中,在连续的多个显示帧中,可以经过偶数个显示帧,控制输入到第一子像素单元SPX-1和第二子像素单元SPX-2中各子像素的数据电压对应的极性翻转一次。
示例性地,在连续的多个显示帧中,可以经过2个显示帧,控制输入到第一子像素单元SPX-1和第二子像素单元SPX-2中各子像素的数据电压对应的极性翻转一次。例如,以帧翻转,第一子像素单元SPX-1和第二子像素单元SPX-2分别包括一个子像素为例,结合图9所示,在显示帧F_n中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应正极性的数据电压。在显示帧F_n+1中,第一行中的子像素R11~B12,第二行中的子像素R21~B22也分别输入对应正极性的数据电压。在显示帧F_n+2中,第一 行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应负极性的数据电压。在显示帧F_n+3中,第一行中的子像素R11~B12,第二行中的子像素R21~B22也分别输入对应负极性的数据电压。在显示帧F_n+4中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应正极性的数据电压。在显示帧F_n+5中,第一行中的子像素R11~B12,第二行中的子像素R21~B22也分别输入对应正极性的数据电压。在显示帧F_n+6中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应负极性的数据电压。在显示帧F_n+7中,第一行中的子像素R11~B12,第二行中的子像素R21~B22也分别输入对应负极性的数据电压。其余显示帧的过程可以依次类推,在此不作赘述。
示例性地,在连续的多个显示帧中,也可以经过4个显示帧,控制输入到第一子像素单元SPX-1和第二子像素单元SPX-2中各子像素的数据电压对应的极性翻转一次。例如,以帧翻转,第一子像素单元SPX-1和第二子像素单元SPX-2分别包括一个子像素为例,在显示帧F_n~F_n+3中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应正极性的数据电压。在显示帧F_n+4~F_n+7中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应负极性的数据电压。在显示帧F_n+8~F_n+11中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应正极性的数据电压。在显示帧F_n+12~F_n+15中,第一行中的子像素R11~B12,第二行中的子像素R21~B22分别输入对应负极性的数据电压。其余显示帧的过程可以依次类推,在此不作赘述。
需要说明的是,在连续的多个显示帧中,也可以经过6个、8个或更多个显示帧,控制输入到第一子像素单元SPX-1和第二子像素单元SPX-2中各子像素的数据电压对应的极性翻转一次,在此不作限定。
本公开实施例提供了另一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,可以在时序控制器中存储第二查找表。其中,第二查找表包括:对应默认灰阶位数的多个不同的原始灰阶值,对应中间灰阶位数的多个不同的中间灰阶值,对应目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,第二查找表中,一个原始灰阶值对应一个中间灰阶值,一个中间灰阶值对应一个第一目标灰阶值和一个第二目标灰阶值。并且,当前中间灰阶值的中间灰阶位数大于默认灰阶位数,且中间灰阶位数小于目标灰阶位数。例如,默认灰阶位数可以为8bit,中间灰阶位数为10bit,目标灰阶位数为12bit。这样可以先将8bit的一个灰阶值转换为10bit的中间灰阶值,再将该10bit的中间灰阶值转换为12bit的第一目标灰阶值和第二目标灰阶值,然后采用12bit的第一目标灰阶值和第二目标灰阶值控制第一子像素单元SPX-1中的子像素和第二子像素单元SPX-2中的子像素显示亮度,从而根据第一子像素单元SPX-1中的子像素和第二子像素单元SPX-2中的子像素显示亮度进行混合后,显示8bit的127灰阶值的亮度。由于若直接采用8bit的灰阶值混合8bit的127灰阶值的亮度,则会导致亮度混合出来比较粗糙。由于12bit的灰阶值对亮度的区分比较细腻,采用12bit的灰阶值混合出8bit的亮度,会混合出的亮度更加细腻,更加贴近8bit的亮度。
示例性地,第二查找表中的原始灰阶值为默认灰阶位数的各个灰阶值。例如,默认灰阶位数为8bit时,第二查找表中具有0~255灰阶值中的每个灰阶值,以及0~255灰阶值一一对应的一个中间灰阶值,一个第一目标灰阶值和一个第二目标灰阶值。例如,以默认灰阶位数为8bit,中间灰阶位数为10bit,目标灰阶位数为12bit为例,表三示意出了125~130灰阶值对应的中间灰阶值L_Z、第一目标灰阶值L_H和第二目标灰阶值L_L。需要说明的是,表三中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。
原始灰阶值 L_Z L_H L_L
125 500 2693 619
126 504 2713 630
127 508 2734 641
128 512 2754 652
129 516 2774 665
130 520 2794 678
表三
在本公开实施例中,第二查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。例如,第二查找表包括各个原始灰阶值对应的红色子像素对应第一目标灰阶值和第二目标灰阶值、绿色子像素对应第一目标灰阶值和第二目标灰阶值、以及蓝色子像素对应第一目标灰阶值和第二目标灰阶值。例如,以默认灰阶位数为8bit,中间灰阶位数为10bit,目标灰阶位数为12bit为例,表四示意出了125~130灰阶值对应的中间灰阶值L_Z、红色子像素的第一目标灰阶值LR_H和第二目标灰阶值LR_L、绿色子像素的第一目标灰阶值LG_H和第二目标灰阶值LG_L、蓝色子像素的第一目标灰阶值LB_H和第二目标灰阶值LB_L。需要说明的是,表四中示意的灰阶值的具体数值仅是举例说明。在实际应用中,可以是根据实际应用的需求进行确定的,在此不作限定。
原始灰阶值 L_Z LR_H LG_H LB_H LR_L LG_L LB_L
125 500 168 168 168 38 38 38
126 504 169 169 169 39 39 39
127 508 170 170 170 40 40 40
128 512 171 171 171 41 41 41
129 516 172 172 172 42 42 42
130 520 173 173 173 43 43 43
表四
在本公开实施例中,将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值,可以包括:根据当前原始灰阶值,从预先存储的第二查找表中,确定当前原始灰阶值对应的当前中间灰阶值。之后,再根据当前中间灰阶值,从第二查找表中,确定当前中间灰阶值对应的第一目标灰阶值和第二目标灰阶值。示例性地,结合表四,当前原始灰阶值为127灰阶值时,可以通过查找第二查找表,以确定出当前中间灰阶值为508灰阶值。再根据508灰阶值,确定出红色子像素对应的第一目标灰阶值为2734灰阶值,第二目标灰阶值为641灰阶值,绿色子像素对应的第一目标灰阶值为2734灰阶值,第二目标灰阶值为641灰阶值,蓝色子像素对应的第一目标灰阶值为2734灰阶值,第二目标灰阶值为641灰阶值,这样可以对在第一子像素单元SPX-1中的红色子像素输入对应2734灰阶值的数据电压,对在第一子像素单元SPX-1中的绿色子像素输入对应2734灰阶值的数据电压,对在第一子像素单元SPX-1中的蓝色子像素输入对应2734灰阶值的数据电压,对在第二子像素单元SPX-2中的红色子像素输入对应641灰阶值的数据电压,对在第二子像素单元SPX-2中的绿色子像素输入对应641灰阶值的数据电压,对在第二子像素单元SPX-2中的蓝色子像素输入对应641灰阶值的数据电压。
示例性地,结合表四,以当前原始灰阶值为127、第一目标灰阶值为2734以及第二目标灰阶值为641为例,结合图9所示,在当前显示帧F_n中,可以对红色子像素R11、R22,绿色子像素G21、G12,以及蓝色子像素B11、B22分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。以及,可以对红色子像素R21、R12,绿色子像素G11、G22,以及蓝色子像素B21、B12分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。以及,在当前显示 帧F_n+1中,可以对红色子像素R11、R22,绿色子像素G21、G12,以及蓝色子像素B11、B22分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。以及,可以对红色子像素R21、R12,绿色子像素G11、G22,以及蓝色子像素B21、B12分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。
本公开实施例提供了又一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,在子像素的行方向X和列方向F上,分别按照第一子像素单元SPX-1、第二子像素单元SPX-2的顺序重复排列。示例性地,如图10与图11所示,第一子像素单元SPX-1可以包括沿行方向X相邻的两个子像素,第二子像素单元SPX-2可以包括沿行方向X相邻的两个子像素。例如,第一行中,红色子像素R11和绿色子像素G11作为一个第一子像素单元SPX-1。蓝色子像素B11和红色子像素R12作为一个第二子像素单元SPX-2。绿色子像素G12和蓝色子像素B12作为一个第一子像素单元SPX-1。红色子像素R13和绿色子像素G13作为一个第二子像素单元SPX-2。第二行中,红色子像素R21和绿色子像素G21作为一个第二子像素单元SPX-2。蓝色子像素B21和红色子像素R22作为一个第一子像素单元SPX-1。绿色子像素G22和蓝色子像素B22作为一个第二子像素单元SPX-2。红色子像素R23和绿色子像素G23作为一个第三子像素单元。其余行依次类推,在此不作赘述。
示例性地,结合表四,以当前原始灰阶值为127、第一目标灰阶值为2734以及第二目标灰阶值为641为例,结合图10与图11所示,在当前显示帧F_n中,可以对红色子像素R11、R31、R51、R22、R42、R62、R23、R43、R63,绿色子像素G11、G31、G51、G12、G32、G52、G23、G43、G63,以及蓝色子像素B21、B41、B61、B12、B32、B52分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。以及,可以对红色子像素R21、R41、R61、R12、R32、R52、R13、R33、R53,绿色子像素G21、G41、G61、G22、G42、G62、G13、G33、G53,以及蓝色子像素B11、B31、B51、B22、B42、B62分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。以及,在当前显示帧F_n+1中,可以对红色子像素R11、R31、R51、R22、R42、R62、R23、R43、R63,绿色子像素G11、G31、G51、G12、G32、G52、G23、G43、G63,以及蓝色子像素B21、B41、B61、B12、B32、B52分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。以及,可以对红色子像素R21、R41、R61、R12、R32、R52、R13、R33、R53,绿色子像素G21、G41、G61、G22、G42、G62、G13、G33、G53,以及蓝色子像素B11、B31、B51、B22、B42、B62分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改 善色偏。并且,这样还可以改善竖纹。
需要说明的是,第一子像素单元SPX-1也可以包括沿行方向X相邻的三个、四个、五个或更多个子像素,第二子像素单元SPX-2可以包括沿行方向X相邻的三个、四个、五个或更多个子像素,在此不作限定。
本公开实施例提供了又一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,在子像素的行方向X和列方向F上,分别按照第一子像素单元SPX-1、第二子像素单元SPX-2的顺序重复排列。示例性地,如图12与图13所示,第一子像素单元SPX-1包括沿列方向F相邻的两个子像素,第二子像素单元SPX-2包括沿列方向F相邻的两个子像素。例如,第一列中,红色子像素R11和R21作为一个第一子像素单元SPX-1,红色子像素R31和R41作为一个第二子像素单元SPX-2,红色子像素R51和R61作为一个第一子像素单元SPX-1。第二列中,绿色子像素G11和G21作为一个第二子像素单元SPX-2,绿色子像素G31和G41作为一个第一子像素单元SPX-1,绿色子像素G51和G61作为一个第二子像素单元SPX-2,其余列依次类推,在此不作赘述。
示例性地,结合表四,以当前原始灰阶值为127、第一目标灰阶值为2734以及第二目标灰阶值为641为例,结合图12与图13所示,在当前显示帧F_n中,可以对红色子像素R11、R21、R51、R61、R32、R42、R13、R23、R53、R63,绿色子像素G31、G41、G12、G22、G52、G62、G33、G43,以及蓝色子像素B11、B21、B51、B61、B32、B42分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。以及,可以对红色子像素R31、R41、R12、R22、R52、R62、R33、R43,绿色子像素G11、G21、G51、G61、G32、G42、G13、G23、G53、G63,以及蓝色子像素B31、B41、B12、B52、B62分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。由于2734/16大约为 8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。以及,在当前显示帧F_n+1中,可以对红色子像素R11、R21、R51、R61、R32、R42、R13、R23、R53、R63,绿色子像素G31、G41、G12、G22、G52、G62、G33、G43,以及蓝色子像素B11、B21、B51、B61、B32、B42分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。以及,可以对红色子像素R31、R41、R12、R22、R52、R62、R33、R43,绿色子像素G11、G21、G51、G61、G32、G42、G13、G23、G53、G63,以及蓝色子像素B31、B41、B12、B52、B62分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。并且,这样还可以改善横纹。
需要说明的是,第一子像素单元SPX-1也可以包括沿列方向F相邻的三个、四个、五个或更多个子像素,第二子像素单元SPX-2可以包括沿列方向F相邻的三个、四个、五个或更多个子像素,在此不作限定。
本公开实施例提供了又一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,在子像素的行方向X和列方向F上,分别按照第一子像素单元SPX-1、第二子像素单元SPX-2的顺序重复排列。示例性地,如图14与图15所示,第一子像素单元SPX-1包括2行2列的子像素,第二子 像素单元SPX-2包括2行2列的子像素。例如,红色子像素R11、R21以及绿色子像素G11、G21可以作为一个第一子像素单元SPX-1。蓝色子像素B11、B21以及红色子像素R12、R22可以作为一个第二子像素单元SPX-2。绿色子像素G12、G22以及蓝色子像素B12、B22可以作为一个第一子像素单元SPX-1。红色子像素R13、R23以及绿色子像素G13、G23可以作为一个第二子像素单元SPX-2。红色子像素R31、R41以及绿色子像素G31、G41可以作为一个第二子像素单元SPX-2。红色子像素R51、R61以及绿色子像素G51、G61可以作为一个第一子像素单元SPX-1。其余行依次类推,在此不作赘述。
示例性地,结合表四,以当前原始灰阶值为127、第一目标灰阶值为2734以及第二目标灰阶值为641为例,结合图14与图15所示,在当前显示帧F_n中,可以对红色子像素R11、R21、R51、R61、R32、R42、R33、R43,绿色子像素G11、G21、G51、G61、G12、G22、G52、G62、G33、G43,以及蓝色子像素B31、B12、B22、B52、B62分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。以及,可以对红色子像素R11、R21、R51、R61、R32、R42、R33、R43,绿色子像素G11、G21、G51、G61、G12、G22、G52、G62、G33、G43,以及蓝色子像素B31、B12、B22、B52、B62分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。以及,在当前显示帧F_n+1中,可以对红色子像素R11、R31、R51、R22、R42、R62、R23、R43、R63,绿色子像素G11、G31、G51、G12、G32、G52、G23、G43、G63,以及蓝色子像素B21、B41、B61、B12、B32、B52分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。以及,可以对红色子像素R21、R41、R61、R12、R32、R52、R13、R33、R53,绿色子像素G21、G41、G61、G22、G42、G62、G13、G33、G53,以及蓝色子像素B11、 B31、B51、B22、B42、B62分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。并且,这样还可以改善网格粗大。
需要说明的是,N可以为3、4、5或其他数值,M也可以为3、4、5或其他数值,在此不作限定。
本公开实施例提供了又一些显示面板的驱动方法,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,在子像素的行方向X和列方向F上,分别按照第二子像素单元SPX-2、第一子像素单元SPX-1、第一子像素单元SPX-1、第二子像素单元SPX-2的顺序重复排列。示例性地,如图16与图17所示,第一子像素单元SPX-1和第二子像素单元SPX-2可以分别包括1个子像素。例如,第一行中,红色子像素R11可以作为一个第一子像素单元SPX-1,绿色子像素G11可以作为一个第二子像素单元SPX-2,蓝色子像素B11可以作为一个第二子像素单元SPX-2,红色子像素R12可以作为一个第一子像素单元SPX-1,绿色子像素G12可以作为一个第一子像素单元SPX-1,蓝色子像素B12可以作为一个第二子像素单元SPX-2,红色子像素R13可以作为一个第二子像素单元SPX-2,绿色子像素G13可以作为一个第二子像素单元SPX-2。并且,第一列中,红色子像素R11可以作为一个第一子像素单元SPX-1,红色子像素R21可以作为一个第二子像素单元SPX-2,红色子像素R31可以作为一个第二子像素单元SPX-2,红色子像素R41可以作为一个第一子像素单元SPX-1, 红色子像素R51可以作为一个第一子像素单元SPX-1,红色子像素R61可以作为一个第二子像素单元SPX-2,红色子像素R71可以作为一个第二子像素单元SPX-2,红色子像素R81可以作为一个第一子像素单元SPX-1。其余依次类推,在此不作赘述。
示例性地,结合表四,以当前原始灰阶值为127、第一目标灰阶值为2734以及第二目标灰阶值为641为例,结合图16与图17所示,在当前显示帧F_n中,可以对红色子像素R11、R41、R51、R81、R12、R42、R52、R82、R23、R33、R63、R73,绿色子像素G21、G31、G61、G71、G12、G42、G52、G82、G13、G43、G53、G83,以及蓝色子像素B21、B31、B61、B71、B22、B32、B62、B72分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734灰阶值对应的亮度。以及,可以对红色子像素R21、R31、R61、R71、R22、R32、R62、R72、R13、R43、R53、R83,绿色子像素G11、G41、G51、G81、G22、G32、G62、G72、G23、G33、G63、G73,以及蓝色子像素B11、B41、B51、B81、B12、B42、B52、B82分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。以及,在当前显示帧F_n+1中,可以对红色子像素R11、R41、R51、R81、R12、R42、R52、R82、R23、R33、R63、R73,绿色子像素G21、G31、G61、G71、G12、G42、G52、G82、G13、G43、G53、G83,以及蓝色子像素B21、B31、B61、B71、B22、B32、B62、B72分别输入对应641灰阶值的数据电压,这样可以使这些子像素显示的亮度为641灰阶值对应的亮度。以及,可以对红色子像素R21、R31、R61、R71、R22、R32、R62、R72、R13、R43、R53、R83,绿色子像素G11、G41、G51、G81、G22、G32、G62、G72、G23、G33、G63、G73,以及蓝色子像素B11、B41、B51、B81、B12、B42、B52、B82分别输入对应2734灰阶值的数据电压,这样可以使这些子像素显示的亮度为2734 灰阶值对应的亮度。由于2734/16大约为8bit的170灰阶值,641/16大约为40灰阶值,这样可以使输入2734灰阶值的子像素显示的亮度大致为170灰阶值对应的亮度,使输入641灰阶值的子像素显示的亮度大致为40灰阶值对应的亮度。由于170灰阶值对应的亮度大于127灰阶值对应的亮度,40灰阶值对应的亮度小于127灰阶值对应的亮度,从而可以使相邻的两个子像素通过亮度混合,实现127灰阶值的亮度,从而可以使该区域显示混合后的亮度为127灰阶值的亮度,进而可以改善色偏。并且,这样还可以改善竖纹。
需要说明的是,第一子像素单元SPX-1也可以包括沿行方向X相邻的两个、三个、四个、五个或更多个子像素。或者,第一子像素单元SPX-1也可以包括沿列方向F相邻的两个、三个、四个、五个或更多个子像素。或者,第一子像素单元SPX-1也可以包括N行M列的子像素,在此不作限定。
需要说明的是,第二子像素单元SPX-2也可以包括沿行方向X相邻的两个、三个、四个、五个或更多个子像素。或者,第二子像素单元SPX-2也可以包括沿列方向F相邻的两个、三个、四个、五个或更多个子像素。或者,第二子像素单元SPX-2也可以包括N行M列的子像素,在此不作限定。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (21)

  1. 一种显示面板的驱动方法,包括:
    在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值;其中,所述第一目标灰阶值大于所述当前原始灰阶值,所述第二目标灰阶值小于所述当前原始灰阶值;
    在连续的多个显示帧的当前显示帧中,控制所述区域中的第一子像素单元输入对应所述第一目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第二目标灰阶值的数据电压;其中,至少一个所述第一子像素单元和至少一个所述第二子像素单元相邻;所述第一子像素单元和所述第二子像素单元分别包括至少一个子像素;
    在连续的多个显示帧的下一个显示帧中,控制所述区域中的所述第一子像素单元输入对应所述第二目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第一目标灰阶值的数据电压。
  2. 如权利要求1所述的显示面板的驱动方法,其中,在子像素的行方向和列方向上,分别按照所述第一子像素单元、所述第二子像素单元的顺序重复排列。
  3. 如权利要求1所述的显示面板的驱动方法,其中,在子像素的行方向和列方向上,分别按照所述第二子像素单元、所述第一子像素单元、所述第一子像素单元、所述第二子像素单元的顺序重复排列。
  4. 如权利要求2或3所述的显示面板的驱动方法,其中,所述第一子像素单元包括沿所述行方向相邻的至少两个子像素;
    所述第二子像素单元包括沿所述行方向相邻的至少两个子像素。
  5. 如权利要求2或3所述的显示面板的驱动方法,其中,所述第一子像素单元包括沿所述列方向相邻的至少两个子像素;
    所述第二子像素单元包括沿所述列方向相邻的至少两个子像素。
  6. 如权利要求2或3所述的显示面板的驱动方法,其中,所述第一子像素单元包括N行M列的子像素;其中,N为大于0的整数,M为大于0的整数;
    所述第二子像素单元包括N行M列的子像素。
  7. 如权利要求1-6任一项所述的显示面板的驱动方法,其中,在所述连续的多个显示帧中,经过偶数个显示帧,控制输入到所述第一子像素单元和所述第二子像素单元中各子像素的数据电压对应的极性翻转一次。
  8. 如权利要求1-6任一项所述的显示面板的驱动方法,其中,所述将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,包括:
    将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值;其中,所述目标灰阶位数不小于所述默认灰阶位数。
  9. 如权利要求8所述的显示面板的驱动方法,其中,所述将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目标灰阶值,包括:
    根据所述当前原始灰阶值,从预先存储的第一查找表中,确定所述当前原始灰阶值对应的所述第一目标灰阶值和所述第二目标灰阶值;
    其中,所述第一查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第一查找表中,一个所述原始灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
  10. 如权利要求9所述的显示面板的驱动方法,其中,所述显示面板包括多种不同颜色的子像素;
    所述第一查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。
  11. 如权利要求8所述的显示面板的驱动方法,其中,所述将具有默认灰阶位数的当前原始灰阶值转换为目标灰阶位数的第一目标灰阶值和第二目 标灰阶值,包括:
    根据所述当前原始灰阶值,从预先存储的第二查找表中,确定所述当前原始灰阶值对应的当前中间灰阶值;其中,所述当前中间灰阶值的中间灰阶位数大于所述默认灰阶位数,且所述中间灰阶位数小于所述目标灰阶位数;
    根据所述当前中间灰阶值,从所述第二查找表中,确定所述当前中间灰阶值对应的所述第一目标灰阶值和所述第二目标灰阶值;
    其中,所述第二查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述中间灰阶位数的多个不同的中间灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第二查找表中,一个所述原始灰阶值对应一个所述中间灰阶值,一个所述中间灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
  12. 如权利要求11所述的显示面板的驱动方法,其中,所述显示面板包括多种不同颜色的子像素;
    所述第二查找表包括各种颜色子像素对应第一目标灰阶值和第二目标灰阶值。
  13. 如权利要求1-12任一项所述的显示面板的驱动方法,其中,在将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值之前,还包括:
    接收所述连续的多个显示帧中各子像素的原始显示数据;
    根据所述连续的多个显示帧中各子像素的所述原始显示数据,确定所述连续的多个显示帧中各子像素的当前原始灰阶值。
  14. 一种显示装置,包括:
    显示面板,包括源极驱动电路;
    时序控制器,被配置为:在连续的多个显示帧中,存在同一区域中的子像素对应的当前原始灰阶值相同时,将所述当前原始灰阶值转换为第一目标灰阶值和第二目标灰阶值,并将所述第一目标灰阶值和所述第二目标灰阶值输出给所述源极驱动电路;其中,所述第一目标灰阶值大于所述当前原始灰阶值,所述第二目标灰阶值小于所述当前原始灰阶值;
    所述源极驱动电路被配置为:在连续的多个显示帧的当前显示帧中,控制所述区域中的第一子像素单元输入对应所述第一目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第二目标灰阶值的数据电压;在连续的多个显示帧的下一个显示帧中,控制所述区域中的所述第一子像素单元输入对应所述第二目标灰阶值的数据电压,以及控制所述区域中的第二子像素单元输入对应所述第一目标灰阶值的数据电压;其中,至少一个所述第一子像素单元和至少一个所述第二子像素单元相邻;所述第一子像素单元和所述第二子像素单元分别包括至少一个子像素。
  15. 如权利要求14所述的显示装置,其中,所述时序控制器存储有第一查找表;
    其中,所述第一查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第一查找表中,一个所述原始灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
  16. 如权利要求14所述的显示装置,其中,所述时序控制器存储有第二查找表;
    其中,所述第二查找表包括:对应所述默认灰阶位数的多个不同的原始灰阶值,对应所述中间灰阶位数的多个不同的中间灰阶值,对应所述目标灰阶位数的多个不同的第一目标灰阶值和多个不同的第二目标灰阶值;并且,所述第二查找表中,一个所述原始灰阶值对应一个所述中间灰阶值,一个所述中间灰阶值对应一个所述第一目标灰阶值和一个所述第二目标灰阶值。
  17. 如权利要求14-16任一项所述的显示装置,其中,所述显示面板包括多个子像素;所述子像素包括晶体管和像素电极;
    所述像素电极包括:在第一方向上间隔排布的第一边缘导电部和第二边缘导电部、及至少部分位于所述第一边缘导电部和所述第二边缘导电部之间的主导电部,所述主导电部分别与所述第一边缘导电部和所述第二边缘导电部连接,所述主导电部包括至少一个第一组子导电部和至少一个第二组子导 电部,所述第一组子导电部和所述第二组子导电部在所述第一方向上交替排布;
    其中,所述第一组子导电部包括第一连接条,所述第一连接条在所述第一方向上延伸且其具有在第二方向上相对的第一面和第二面;所述第一组子导电部具有位于所述第一面远离所述第二面一侧的第一缝隙,所述第一缝隙远离所述第一连接条的一端为开口端;
    其中,所述第二组子导电部包括位于所述第一缝隙远离所述第一连接条的一侧并与所述第一组子导电部连接的第二连接条,所述第二连接条在所述第一方向上延伸且其具有在第二方向上相对的第三面和第四面,所述第三面位于所述第四面靠近所述第一面的一侧;且所述第二组子导电部具有位于所述第三面远离所述第四面一侧的第二缝隙,所述第二缝隙远离所述第二连接条的一端为开口端。
  18. 如权利要求17所述的显示装置,其中,沿行方向或列方向上相邻两个子像素中,第一个子像素内的第一边缘导电部靠近所述晶体管设置,且第二边缘导电部远离所述晶体管设置,以及所述第二连接条靠近所述相邻两个子像素中的第二个子像素,且所述第一连接条远离所述第二个子像素;
    所述第二个子像素内的第一边缘导电部远离所述晶体管设置,且第二边缘导电部靠近所述晶体管设置,以及所述第二连接条远离所述相邻两个子像素中的第一个子像素,且所述第一连接条靠近所述第一个子像素。
  19. 如权利要求18所述的显示装置,其中,所述第一个子像素和所述第二个子像素中,第二连接条连接的第二电极条的数量不同;和/或,
    所述第一个子像素和所述第二个子像素中,第一连接条连接的第一电极条的数量不同。
  20. 如权利要求19所述的显示装置,其中,同一子像素中,所述第一连接条和所述第二连接条通过转接部连接;
    所述转接部具有镂空区域。
  21. 如权利要求20所述的显示装置,其中,所述显示面板包括多条公共 电极;一行子像素设置一条公共电极;
    所述显示面板还包括多个跨接部;相邻两条公共电极通过至少一个所述跨接部电连接。
PCT/CN2022/071007 2022-01-10 2022-01-10 显示面板的驱动方法及显示装置 WO2023130444A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/071007 WO2023130444A1 (zh) 2022-01-10 2022-01-10 显示面板的驱动方法及显示装置
CN202280000022.0A CN116745840A (zh) 2022-01-10 2022-01-10 显示面板的驱动方法及显示装置
US18/017,053 US12223921B2 (en) 2022-01-10 2022-01-10 Drive method for controlling data voltage of display panel, and display apparatus including source drive circuit for controlling data voltage of display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071007 WO2023130444A1 (zh) 2022-01-10 2022-01-10 显示面板的驱动方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023130444A1 true WO2023130444A1 (zh) 2023-07-13

Family

ID=87072884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071007 WO2023130444A1 (zh) 2022-01-10 2022-01-10 显示面板的驱动方法及显示装置

Country Status (3)

Country Link
US (1) US12223921B2 (zh)
CN (1) CN116745840A (zh)
WO (1) WO2023130444A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267463A1 (en) * 2011-10-18 2014-09-18 Sharp Kaubshiki Kaisha Display control circuit, liquid crystal display device including the same, and display control method
CN107492359A (zh) * 2017-09-18 2017-12-19 惠科股份有限公司 一种显示装置的驱动方法及显示装置
CN108766347A (zh) * 2018-06-13 2018-11-06 京东方科技集团股份有限公司 一种显示面板、其显示方法及显示装置
CN109346020A (zh) * 2018-11-26 2019-02-15 深圳市华星光电半导体显示技术有限公司 显示驱动方法及液晶显示装置
CN109671412A (zh) * 2019-02-18 2019-04-23 京东方科技集团股份有限公司 过驱动方法、装置、液晶显示面板的控制器和显示设备
CN113593491A (zh) * 2021-07-13 2021-11-02 Tcl华星光电技术有限公司 显示面板的驱动方法、显示面板及显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070035530A (ko) * 2004-06-29 2007-03-30 뉴라이트 코포레이션 개별 픽셀의 휘도를 감지 및 제어할 수 있는 고성능디스플레이 디바이스에 대한 시스템 및 방법
CN100573647C (zh) * 2005-05-16 2009-12-23 统宝香港控股有限公司 矩阵驱动方法及电路,及使用其的显示装置
TWI325512B (en) 2006-08-01 2010-06-01 Au Optronics Corp Liquid crystal display panel and method for making liquid crystal display panel
CN100565313C (zh) 2006-09-15 2009-12-02 爱普生映像元器件有限公司 液晶显示板
TW200941072A (en) 2008-03-27 2009-10-01 Wintek Corp Liquid crystal display panel
KR101269006B1 (ko) 2008-12-02 2013-05-29 엘지디스플레이 주식회사 액정표시장치
TWI424395B (zh) * 2010-07-21 2014-01-21 Chunghwa Picture Tubes Ltd 立體顯示器
JP2012128030A (ja) * 2010-12-13 2012-07-05 Canon Inc 表示装置およびその駆動方法
TWI476492B (zh) 2012-10-11 2015-03-11 Innocom Tech Shenzhen Co Ltd 畫素電極結構及使用其之顯示面板
CN104821160B (zh) 2015-05-12 2017-09-12 深圳市华星光电技术有限公司 用于控制图像显示的方法
CN105467696A (zh) 2016-01-18 2016-04-06 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN106652944B (zh) * 2016-12-23 2018-11-02 深圳市华星光电技术有限公司 一种驱动架构及液晶显示装置
CN106873261A (zh) 2016-12-30 2017-06-20 惠科股份有限公司 液晶显示面板的画素结构及其应用的显示设备
CN107463040B (zh) 2017-08-28 2020-11-10 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN109949766B (zh) * 2017-12-21 2022-03-11 咸阳彩虹光电科技有限公司 一种像素矩阵驱动方法及显示装置
CN107895568A (zh) 2017-12-28 2018-04-10 深圳市华星光电技术有限公司 液晶显示装置
CN110620129B (zh) * 2018-06-20 2022-02-01 京东方科技集团股份有限公司 显示基板、其驱动方法、显示装置及高精度金属掩模板
CN109671411B (zh) * 2019-01-30 2020-10-27 惠科股份有限公司 显示面板的驱动装置、驱动方法及显示设备
CN112835230B (zh) 2019-11-22 2023-09-08 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN112086077A (zh) 2020-09-17 2020-12-15 Tcl华星光电技术有限公司 一种阵列基板及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267463A1 (en) * 2011-10-18 2014-09-18 Sharp Kaubshiki Kaisha Display control circuit, liquid crystal display device including the same, and display control method
CN107492359A (zh) * 2017-09-18 2017-12-19 惠科股份有限公司 一种显示装置的驱动方法及显示装置
CN108766347A (zh) * 2018-06-13 2018-11-06 京东方科技集团股份有限公司 一种显示面板、其显示方法及显示装置
CN109346020A (zh) * 2018-11-26 2019-02-15 深圳市华星光电半导体显示技术有限公司 显示驱动方法及液晶显示装置
CN109671412A (zh) * 2019-02-18 2019-04-23 京东方科技集团股份有限公司 过驱动方法、装置、液晶显示面板的控制器和显示设备
CN113593491A (zh) * 2021-07-13 2021-11-02 Tcl华星光电技术有限公司 显示面板的驱动方法、显示面板及显示装置

Also Published As

Publication number Publication date
US12223921B2 (en) 2025-02-11
CN116745840A (zh) 2023-09-12
US20240249693A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
CN105957492B (zh) 显示面板及显示面板的驱动方法
CN100437719C (zh) 具有高亮度的液晶显示装置
WO2018121306A1 (zh) 液晶显示器件
US9799281B2 (en) Liquid crystal panel and driving method for the same
KR102576402B1 (ko) 액정표시장치
CN104714318A (zh) 液晶显示器及驱动其的方法
KR20050067646A (ko) 화소별 개구율 자동제어가 가능한 액정표시장치
CN108364617B (zh) 一种像素矩阵显示方法及装置
KR20090131039A (ko) 픽셀의 구동방법 및 이를 수행하기 위한 표시장치
KR102379394B1 (ko) 표시 구동 방법 및 장치
US8334865B2 (en) Method and related apparatus for improving image quality of liquid crystal display device
KR101497407B1 (ko) 액정표시장치의 구동 방법
CN109949760B (zh) 一种像素矩阵驱动方法及显示装置
CN109949761B (zh) 一种像素矩阵驱动方法及显示装置
US7911431B2 (en) Liquid crystal display device and method of driving the same
CN110599968A (zh) 一种低色偏像素矩阵显示方法及装置
WO2023050127A1 (zh) 显示面板的驱动方法、显示驱动电路及显示装置
CN108062931A (zh) 图像处理装置、显示面板以及显示装置
WO2023130444A1 (zh) 显示面板的驱动方法及显示装置
CN109949763B (zh) 一种像素矩阵驱动方法及显示装置
US20190019464A1 (en) Image display method and liquid crystal display device
WO2023103520A1 (zh) 显示面板的驱动方法及显示装置
CN104795047A (zh) 像素阵列的时间和空间混色方法
WO2023159444A1 (zh) 显示面板的驱动方法及显示装置
TWI717853B (zh) 垂直排列液晶顯示器與控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000022.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18017053

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22917915

Country of ref document: EP

Kind code of ref document: A1