[go: up one dir, main page]

WO2023112125A1 - Internal combustion engine and transportation device - Google Patents

Internal combustion engine and transportation device Download PDF

Info

Publication number
WO2023112125A1
WO2023112125A1 PCT/JP2021/045976 JP2021045976W WO2023112125A1 WO 2023112125 A1 WO2023112125 A1 WO 2023112125A1 JP 2021045976 W JP2021045976 W JP 2021045976W WO 2023112125 A1 WO2023112125 A1 WO 2023112125A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding surface
piston
crystal silicon
silicon grains
internal combustion
Prior art date
Application number
PCT/JP2021/045976
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 村瀬
純矢 瀧山
亮太 濱本
祐樹 成合
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP21957737.6A priority Critical patent/EP4219929A4/en
Priority to PCT/JP2021/045976 priority patent/WO2023112125A1/en
Publication of WO2023112125A1 publication Critical patent/WO2023112125A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37

Definitions

  • the present disclosure relates to internal combustion engines, and more particularly to internal combustion engines having a cylinder block formed from an aluminum alloy containing silicon.
  • the present disclosure also relates to vehicles equipped with such internal combustion engines.
  • crosshatch mesh-like grooves called crosshatch are generally formed on the surface of the cylinder wall that defines the cylinder bore.
  • the unevenness of the cylinder wall surface generated in the process of forming the crosshatch prevents the formation of a uniform oil film, so partial breakage of the oil film causes an increase in frictional resistance.
  • the oil accumulated in the crosshatch remains on the surface of the cylinder wall without being scraped off by the piston rings, and is exposed to high-temperature combustion gas, evaporates or burns and is discharged as exhaust gas, reducing oil consumption. increases, which accelerates the deterioration of catalyst performance.
  • an object of the present invention is to provide an internal combustion engine having a cylinder block made of an aluminum alloy containing silicon, while ensuring seizure resistance, while maintaining the cylinder wall. to reduce frictional resistance and oil consumption.
  • a piston formed from an aluminum alloy; a cylinder block having a cylinder wall including a sliding surface on which the piston slides; with The cylinder block is made of an aluminum alloy containing silicon, and has a plurality of primary crystal silicon grains on the sliding surface,
  • the ten-point average roughness Rz JIS of the sliding surface is 0.5 ⁇ m or less,
  • the internal combustion engine, wherein the crushing rate of the plurality of primary crystal silicon grains on the sliding surface is 20% or less.
  • the ten-point average roughness Rz JIS of the sliding surface of the cylinder wall is 0.5 ⁇ m or less.
  • the unevenness of the sliding surface is so small that it can be said that the sliding surface is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved.
  • the amount of oil (lubricating oil) left behind on the piston rings and remaining on the surface of the cylinder wall is reduced, oil consumption is reduced and deterioration of catalyst performance is suppressed.
  • the unevenness of the sliding surface is small, the aggressiveness of the cylinder wall (aggressiveness to piston rings and piston skirts) is also reduced.
  • the primary crystal silicon grains of high hardness are present on the sliding surface, so the surface pressure applied to the aluminum alloy base material (matrix) is reduced, and the seizure resistance is improved. can be sufficiently secured. Furthermore, since a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.
  • the crushing rate of the primary crystal silicon grains on the sliding surface of the cylinder wall is 20% or less, the uncrushed (so to speak sound) primary crystal silicon grains slide. Exposed on the surface. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt and the piston ring is distributed to the exposed healthy primary crystal silicon grains, thereby improving the seizure resistance and wear resistance of the cylinder wall.
  • the unevenness of the sliding surface of the cylinder wall is less than 0.05 ⁇ m, so that a uniform oil film is formed on the sliding surface and the frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved.
  • the amount of oil left behind on the piston ring and remaining on the surface of the cylinder wall is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed.
  • the unevenness of the sliding surface is small, the aggressiveness of the cylinder wall (aggressiveness to piston rings and piston skirts) is also reduced.
  • the ratio of the area occupied by the primary crystal silicon grains on the sliding surface is 8% or more, the surface pressure applied to the alloy base material is reduced, so the seizure resistance and wear resistance are improved.
  • “Blank ratio” is an index of the degree of dispersion of primary crystal silicon grains. The lower the void ratio, the better the primary crystal silicon grains are dispersed. When the blank ratio of the sliding surface is 55.5% or less, the surface pressure applied to the alloy substrate is sufficiently reduced, so that the seizure resistance and wear resistance are improved.
  • the silicon content of the aluminum alloy which is the material of the cylinder block, is preferably 15% by mass or more and 25% by mass or less.
  • the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains can be crystallized, and the wear resistance of the cylinder block can be sufficiently improved.
  • the silicon content is 25% by mass or less, the strength of the cylinder block can be maintained sufficiently high.
  • the wear resistance of the cylinder block can be further improved.
  • the average crystal grain size of the primary crystal silicon grains exceeds 50 ⁇ m, the number of primary crystal silicon grains per unit area of the sliding surface is small. Therefore, a large load is applied to each of the primary crystal silicon grains during operation of the internal combustion engine, and the primary crystal silicon grains may be crushed. Fragments of the crushed primary-crystal silicon grains act as abrasive particles, which may significantly wear the sliding surface.
  • the average crystal grain size of the primary crystal silicon grains is less than 8 ⁇ m, the portion of the primary crystal silicon grains buried in the matrix is small. Therefore, during operation of the internal combustion engine, the primary crystal silicon grains are likely to fall off. Since the fallen primary crystal silicon grains act as abrasive particles, there is a possibility that the sliding surface is greatly worn.
  • the average crystal grain size of the primary crystal silicon grains is 8 ⁇ m or more and 50 ⁇ m or less, a sufficient number of primary crystal silicon grains exist per unit area of the sliding surface. Therefore, the load applied to each primary-crystal silicon grain during operation of the internal combustion engine is relatively small, so crushing of the primary-crystal silicon grains is suppressed. In addition, since the portion of the primary-crystal silicon grains embedded in the matrix is sufficiently large, the falling-off of the primary-crystal silicon grains is reduced, and wear of the sliding surface due to the falling-off primary-crystal silicon grains is also suppressed.
  • the piston has a piston body and a plurality of piston rings attached to the outer periphery of the piston body, 7.
  • the internal combustion engine according to any one of items 1 to 6, wherein each of the plurality of piston rings has a diamond-like carbon layer on its outer peripheral portion.
  • each piston ring has a diamond-like carbon layer on the outer peripheral portion, scuffing of the cylinder wall by the piston ring can be prevented more reliably.
  • the piston has a piston head and a piston skirt extending from the outer circumference of the piston head, 8.
  • the wear resistance and seizure resistance of the piston can be improved.
  • the internal combustion engine according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
  • FIG. 1 is a cross-sectional view schematically showing an engine (internal combustion engine) 100 according to an embodiment of the present invention
  • FIG. FIG. 2 is a side view schematically showing a piston 40 included in engine 100.
  • FIG. 1 is a perspective view schematically showing a cylinder block 10 included in engine 100.
  • FIG. 2 is a cross-sectional view schematically showing the vicinity of a sliding surface 12a of a cylinder wall 12; FIG. It is an example of the image of the sliding surface 12a. It is a figure for demonstrating the definition of the blank ratio of the sliding surface 12a.
  • 4 is a cross-sectional view schematically showing a piston ring 42 of the piston 40.
  • FIG. 4 is a cross-sectional view schematically showing a piston skirt 44 of the piston 40;
  • FIG. 4 is a flow chart showing a manufacturing process of the cylinder block 10.
  • FIG. 4 is a flow chart showing a manufacturing process of the cylinder block 10.
  • FIG. It is a graph which shows the relationship between the grade of a grindstone, and the crushing rate of a primary-crystal silicon grain.
  • 4 is a graph showing the roughness curve of the sliding surface of Comparative Example 1.
  • FIG. 4 is a graph showing a roughness curve of the sliding surface 12a of Example 1.
  • FIG. 5 is a graph showing oil consumption measured by a sampling method for Comparative Example 1 and Example 1.
  • FIG. 4 is a diagram schematically showing how oil OL is scraped off by a piston ring 42 on a sliding surface 12a' of a cylinder wall 12' of the engine of Comparative Example 1; 4 is a diagram schematically showing how oil OL is scraped off by a piston ring 42 on a sliding surface 12a of a cylinder wall 12 of the engine 100 of the first embodiment;
  • FIG. 5 is a graph showing measurement results of frictional mean effective pressure (FMEP) for Examples 2 to 5.
  • FIG. 4 is a graph showing FMEP reduction ratios for Examples 2 and 3 at engine speeds of 4400 rpm, 4800 rpm and 5200 rpm.
  • 10 is a graph showing the results of repeated FMEP measurements for Example 6.
  • FIG. 4 is a graph showing FMEP reduction ratios for Examples 2 and 3 at engine speeds of 4400 rpm, 4800 rpm and 5200 rpm.
  • FIG. 7 is a graph showing the results of repeated measurements of FMEP for Comparative Example 2.
  • FIG. 10 is a graph showing changes over time in wear height of barrel-shaped test pieces in an SRV test for Example 7 and Comparative Example 3.
  • FIG. 10 is a graph showing changes over time in the wear height of cylinder test pieces in an SRV test for Example 7 and Comparative Example 3.
  • FIG. 10 is a graph showing the time from the start of engine operation until seizure of the piston and cylinder occurs in Example 7 and Comparative Example 3.
  • FIG. 1 is a side view schematically showing a motorcycle 300 equipped with an engine 100; FIG.
  • a water-cooled engine will be described below as an example, the engine according to the embodiment of the present invention is not limited to a water-cooled engine, and may be an air-cooled engine.
  • the number of cylinders of the engine is not particularly limited.
  • FIG. 1 shows an engine (internal combustion engine) 100 according to an embodiment of the invention.
  • FIG. 1 is a cross-sectional view schematically showing engine 100. As shown in FIG.
  • the engine 100 includes a cylinder block 10, a cylinder head 20, and a crankcase 30, as shown in FIG.
  • Engine 100 further includes a piston 40 , a crankshaft 50 and a connecting rod (connecting rod) 60 .
  • the direction from the cylinder block 10 to the cylinder head 20 is defined as the upward direction
  • the direction from the cylinder block 10 to the crankcase 30 is defined as the downward direction.
  • a cylinder block (sometimes called a "cylinder body") 10 has a cylinder wall 12 and an outer wall 13. Cylinder wall 12 is formed to define cylinder bore 11 . The outer wall 13 surrounds the cylinder wall 12 and constitutes the outer shell of the cylinder block 10 . A water jacket 14 that retains coolant is provided between the cylinder wall 12 and the outer wall 13 .
  • the cylinder head 20 is provided on the cylinder block 10. Cylinder head 20 defines combustion chamber 70 with cylinder wall 12 and piston 40 .
  • the cylinder head 20 has an intake port 21 for introducing fuel into the combustion chamber 70 and an exhaust port 22 for discharging exhaust gas from the combustion chamber 70 .
  • An intake valve 23 is provided in the intake port 21 and an exhaust valve 24 is provided in the exhaust port 22 .
  • crankcase 30 is provided under the cylinder block 10. That is, the crankcase 30 is provided so as to be located on the side opposite to the cylinder head 20 with respect to the cylinder block 10 .
  • Crankcase 30 may be separate from cylinder block 10 or may be formed integrally with cylinder block 10 .
  • the piston 40 is housed inside the cylinder bore 11 .
  • no cylinder sleeve is fitted in the cylinder bore 11 . Therefore, the piston 40 reciprocates up and down in the cylinder bore 11 while being in contact with the inner peripheral surface 12a of the cylinder wall 12 (the surface on the cylinder bore 11 side). That is, the inner peripheral surface 12a of the cylinder wall 12 is a sliding surface on which the piston 40 slides.
  • the crankshaft 50 is housed inside the crankcase 30 .
  • the crankshaft 50 has a crankpin 51 and a crank arm 52 .
  • the connecting rod 60 has a rod-shaped rod main body 61 , a small end 62 provided at one end of the rod main body 61 , and a large end 63 provided at the other end of the rod main body 61 .
  • the connecting rod 60 connects the piston 40 and the crankshaft 50 .
  • the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 62
  • the crank pin of the crankshaft 50 is inserted into the through hole (crank pin hole) of the large end 63 .
  • 51 is inserted, thereby connecting the piston 40 and the crankshaft 50 .
  • a bearing 66 is provided between the inner peripheral surface of the big end 63 and the crank pin 51 .
  • FIG. 2 is a side view schematically showing the piston 40 of the engine 100.
  • the piston 40 (more specifically, a piston body 41 described later) is made of an aluminum alloy.
  • the piston 40 may be formed by forging or by casting.
  • the piston 40 has a piston body 41 and a plurality of piston rings 42, as shown in FIG.
  • Piston body 41 includes a piston head 43 and a piston skirt 44 .
  • the piston head 43 is located at the upper end of the piston 40.
  • a ring groove for holding the piston ring 42 is formed in the outer peripheral portion of the piston head 43 .
  • a piston skirt 44 extends downwardly from the outer periphery of the piston head 43 .
  • the piston ring 42 is attached to the outer peripheral portion of the piston body 41 , more specifically to the outer peripheral portion of the piston head 41 .
  • a configuration in which the piston 40 has three piston rings 42 is illustrated, but the number of piston rings 42 is not limited to three.
  • the upper and middle piston rings (top ring and second ring) 42a and 42b are compression rings for keeping the combustion chamber 70 airtight
  • the lower piston ring (third 42 c is an oil ring for scraping off excess oil adhering to the cylinder wall 12 .
  • the piston ring 42 is made of a metallic material (eg steel).
  • FIG. 3 is a perspective view schematically showing the cylinder block 10 of the engine 100.
  • the cylinder block 10 has the cylinder wall 12 including the sliding surface 12a and the outer wall 13, and the water jacket 14 is provided between the cylinder wall 12 and the outer wall 13.
  • the cylinder block 10 is made of an aluminum alloy containing silicon. More specifically, the cylinder block 10 is made of a hypereutectic aluminum-silicon alloy.
  • FIG. 4 is a cross-sectional view schematically showing the vicinity of the sliding surface 12a of the cylinder wall 12.
  • the cylinder wall 12 of the cylinder block 10 includes, as shown in FIG. Some of the primary crystal silicon grains 2 are exposed on the sliding surface 12a. That is, the cylinder block 10 has the primary crystal silicon grains 2 on the sliding surface 12a.
  • the cylinder wall 12 further includes a plurality of eutectic silicon grains dispersed in the matrix 1. Therefore, the cylinder block 10 may further have eutectic silicon grains on the sliding surface 12a.
  • the relatively large silicon crystal grains that first precipitate are "primary silicon grains”, and the relatively small silicon crystal grains that precipitate next are "co-crystalline”. crystalline silicon grains”.
  • the cylinder block 10 is formed so that the ten-point average roughness Rz JIS of the sliding surface 12a is within a predetermined range. Specifically, the ten-point average roughness Rz JIS of the sliding surface 12a is 0.5 ⁇ m or less over substantially the entire sliding surface 12a.
  • Ten-point average roughness Rz JIS is the altitude of the highest to fifth peaks R1, R3, R5, R7 and R9 and the average values of the elevations R2, R4, R6, R8 and R10 of the five deepest valleys.
  • the ten-point average roughness Rz JIS can be measured using a surface roughness measuring machine (for example, Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.).
  • the cylinder block 10 is formed so that the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a is within a predetermined range. Specifically, the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a is 20% or less over substantially the entire sliding surface 12a.
  • the crushing rate of the primary-crystal silicon grains 2 is the ratio of the area of the crushed portion of the primary-crystal silicon grains 2 to the area occupied by the primary-crystal silicon grains 2 on the sliding surface 12a, expressed as a percentage. A specific method for measuring the crushing rate will be described later.
  • the ten-point average roughness Rz JIS of the sliding surface 12a of the cylinder wall 12 is 0.5 ⁇ m or less. That is, the unevenness of the sliding surface 12a is so small that it can be said that the sliding surface 12a is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface 12a, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil (lubricating oil) left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed.
  • the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced.
  • the ten-point average roughness Rz JIS of the sliding surface 12a is more preferably 0.3 ⁇ m or less.
  • the surface roughness of the sliding surface 12a is reduced, there is concern that the amount of oil retained on the sliding surface 12a will be reduced and the seizure resistance will be reduced.
  • the surface pressure applied to the alloy base material (matrix) 1 is reduced, and the seizure resistance is improved. can be sufficiently secured.
  • a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.
  • the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of the cylinder wall 12 is 20% or less, the uncrushed (so to speak sound) primary crystal silicon grains 2 are Many are exposed on the sliding surface 12a. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt 44 and the piston ring 42 is distributed to the exposed healthy primary crystal silicon grains 2, so that the seizure resistance and wear resistance of the cylinder wall 12 are improved.
  • the crushing rate of the primary crystal silicon grains 2 can be measured, for example, as follows.
  • FIG. 5 is an example of an image of the sliding surface 12a.
  • the sliding surface 12a has a crushed portion 2a of the primary crystal silicon grains 2 and a non-crushed portion 2b.
  • the area S1 of the crushed portion 2a of the primary crystal silicon grain 2 is determined by binarization using image analysis software. Since the crushed portion 2a has a black appearance, it can be distinguished from the non-crushed portion 2b and the alloy substrate 1 by binarization.
  • the surface roughness of the sliding surface 12a of the cylinder wall 12 can also be represented by, for example, the arithmetic mean roughness Ra.
  • the arithmetic mean roughness Ra of the sliding surface 12a is less than 0.05 ⁇ m, for example.
  • the ratio of the area occupied by the primary crystal silicon grains 2 on the sliding surface 12a is preferably 8% or more.
  • the ratio of the area occupied by the primary crystal silicon grains 2 in the sliding surface 12a is 8% or more, the surface pressure applied to the alloy base material 1 is reduced, thereby improving the seizure resistance and wear resistance.
  • FIG. 6 is a diagram for explaining the definition of "blank rate". As shown in FIG. 6, if the sliding surface 12a is divided into a plurality of squares Sq of 0.1 mm ⁇ 0.1 mm, these squares Sq are, of course, divided into squares Sq1 where the primary crystal silicon grains 2 are present and A cell Sq2 in which no crystalline silicon grain 2 exists.
  • the "blank ratio” is the ratio (percentage) of the number of cells Sq2 in which the primary crystal silicon grains 2 do not exist with respect to the total number of cells Sq.
  • the "blank ratio" is an index of how the primary crystal silicon grains 2 are dispersed. The lower the void ratio, the better the primary crystal silicon grains 2 are dispersed. When the blank ratio of the sliding surface 12a is 55.5% or less, the surface pressure applied to the alloy base material 1 is sufficiently reduced, thereby improving the seizure resistance and wear resistance.
  • the silicon content of the aluminum alloy, which is the material of the cylinder block 10 is preferably 15% by mass or more and 25% by mass or less.
  • the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved.
  • the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high.
  • the wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 ⁇ m or more and 50 ⁇ m or less.
  • the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 ⁇ m, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn.
  • the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 ⁇ m, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.
  • the average crystal grain size of the primary crystal silicon grains 2 is 8 ⁇ m or more and 50 ⁇ m or less (more preferably 12 ⁇ m or more and 50 ⁇ m or less), a sufficient number of primary crystal silicon grains 2 per unit area of the sliding surface 12a. exist. Therefore, the load applied to each primary-crystal silicon grain 2 during operation of the engine 100 is relatively small, so crushing of the primary-crystal silicon grains 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.
  • the average crystal grain size of the eutectic silicon grains is smaller than the average crystal grain size of the primary crystal silicon grains 2 .
  • the average crystal grain size of the eutectic silicon grains is, for example, 7.5 ⁇ m or less.
  • the average crystal grain size of the primary crystal silicon grains 2 and the eutectic silicon grains can be measured as follows by performing image processing on the image of the sliding surface 12a. First, based on the area of the silicon crystal grain obtained by image processing, the diameter (equivalent diameter) of each silicon crystal grain is calculated assuming that the silicon crystal grain is a perfect circle. Specify the number (degrees) and diameter. Fine crystals with a diameter of less than 1 ⁇ m are not counted as silicon crystal grains. Based on the calculated number (frequency) and diameter of the silicon crystal grains, the grain size distribution of the silicon crystal grains is obtained. The resulting particle size distribution (histogram) contains two peaks.
  • the grain size distribution is divided into two regions with the diameter of the portion forming the valley between the two peaks as the threshold, the region corresponding to the large diameter being the grain size distribution of the primary crystal silicon grains, and the region corresponding to the small diameter being the eutectic.
  • it is the particle size distribution of silicon particles. Then, based on each particle size distribution, the average crystal grain size of the primary crystal silicon grains and the average crystal grain size of the eutectic silicon grains can be calculated.
  • FIG. 7 is a cross-sectional view showing an example configuration of the piston ring 42 of the piston 40.
  • a diamond-like carbon layer (hereinafter referred to as “DLC layer”) 42D is formed on the outer peripheral portion (outer peripheral surface) of the piston ring 42 .
  • An outer peripheral portion of the piston ring 42 is a portion that contacts the cylinder wall 12 .
  • each piston ring 42 has the DLC layer 42D on the outer peripheral portion, thereby more reliably preventing the piston rings 42 from scuffing the cylinder wall 12. can do.
  • the DLC layer 42D is preferably formed by a vapor deposition method (for example, CDV method or PVD method). There are no particular restrictions on the composition or thickness of the DLC layer 42D.
  • the thickness of the DLC layer 42D is preferably 2 ⁇ m or more in order to more reliably prevent scuffing. In terms of adhesion, the thickness of the DLC layer 42D is preferably 20 ⁇ m or less.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the piston skirt 44 of the piston 40.
  • the piston skirt 44 has a resin layer rl formed on at least part of the outer peripheral surface.
  • the resin layer rl is provided on the base material bl made of an aluminum alloy.
  • the resin layer rl includes, for example, a polymer matrix and solid lubricant particles dispersed in the polymer matrix.
  • a material for the polymer matrix for example, thermosetting polyamideimide can be suitably used, but the material is of course not limited to this.
  • the solid lubricant particles various known solid lubricant particles can be used, and for example, graphite particles and molybdenum particles can be preferably used.
  • the resin layer rl can be formed, for example, by applying a liquid resin material to the piston skirt 44 by a spray method or various printing methods (screen printing, pad printing, etc.).
  • the wear resistance and seizure resistance of the piston 40 can be improved.
  • the piston skirt 44 may have a plating layer (for example, an iron plating layer) instead of the resin layer rl.
  • the wear resistance and seizure resistance of the piston 40 can also be improved by having the plating layer formed on at least a portion of the outer peripheral surface of the piston skirt 44 . It should be noted that the piston skirt 44 may have neither the resin layer rl nor the plating layer.
  • FIG. 9 and 10 are flow charts showing the manufacturing process of the cylinder block 10.
  • step ST1 a compact made of an aluminum alloy containing silicon is prepared (step ST1).
  • This compact contains primary crystal silicon grains and eutectic silicon grains in the vicinity of the surface.
  • the step ST1 of preparing the compact includes steps ST1a to ST1e shown in FIG. 10, for example.
  • an aluminum alloy containing silicon is prepared (step ST1a).
  • the silicon content of the aluminum alloy is preferably 15% by mass or more and 25% by mass or less.
  • the aluminum content of the aluminum alloy is, for example, 73.4% by mass or more and 79.6% by mass or less.
  • the aluminum alloy may contain copper, and in that case, the copper content is, for example, 2.0% by mass or more and 5.0% by mass or less.
  • a molten metal is formed by heating and melting the prepared aluminum alloy in a melting furnace (step ST1b).
  • About 100 ppm by mass of phosphorus may be added to the aluminum alloy or molten metal before melting.
  • the aluminum alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the silicon crystal grains, so that the silicon crystal grains can be uniformly dispersed in the alloy.
  • the calcium content of the aluminum alloy to 0.01% by mass or less, the effect of refining silicon crystal grains by phosphorus can be ensured, and a metal structure with excellent wear resistance can be obtained.
  • the aluminum alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium.
  • step ST1c casting (specifically, high-pressure die casting) is performed using molten aluminum alloy (step ST1c). That is, the molten metal is cooled in the mold to form the compact. At this time, by cooling the portion of the cylinder wall 12 that will become the sliding surface 12a at a high cooling rate (for example, 4° C./sec or more and 50° C./sec or less), the silicon crystal grains that contribute to wear resistance are moved to the vicinity of the surface.
  • a molded body having This casting step ST1c can be performed, for example, using the casting apparatus disclosed in International Publication No. 2004/002658 pamphlet.
  • any one of the heat treatments called "T5", "T6” and “T7” is performed on the compact taken out from the mold (step ST1d).
  • the T5 treatment is a treatment in which the compact is rapidly cooled by water cooling or the like immediately after it is removed from the mold, then artificially aged at a specified temperature for a specified time in order to improve mechanical properties and stabilize dimensions, and then air-cooled.
  • the T6 treatment is a treatment in which the compact is removed from the mold, solution-treated at a predetermined temperature for a predetermined time, then water-cooled, then artificially aged at a predetermined temperature for a predetermined time, and then air-cooled.
  • the T7 treatment is a treatment for overaging compared to the T6 treatment, and can achieve more dimensional stabilization than the T6 treatment, but the hardness is lower than that of the T6 treatment.
  • step ST1e the molded body is subjected to predetermined machining. Specifically, the mating surface with the cylinder head 20 and the mating surface with the crankcase 30 are ground.
  • the first honing process (referred to as “rough honing process") is performed on the inner peripheral surface of the portion of the molded body that will become the cylinder wall (step ST2). Specifically, the inner peripheral surface is polished using a grindstone with a relatively small number (for example, a diamond grindstone with a number of #600).
  • a second honing process (referred to as “finish honing process") is performed on the inner peripheral surface (step ST3).
  • the inner peripheral surface is polished using a grindstone with a grit larger than that for rough honing (for example, diamond whetstone with grit #3000).
  • Rough honing and finish honing can be performed using a honing apparatus as disclosed in Japanese Patent Application Laid-Open No. 2004-268179, for example.
  • the cylinder block 10 can be obtained.
  • the number of times of the honing process is not limited to 2 illustrated here.
  • the ten-point average roughness Rz JIS of the sliding surface 12a can be controlled, and in the last honing process among the honing processes performed multiple times, the number is relatively large.
  • the ten-point average roughness Rz JIS can be made 0.5 ⁇ m or less.
  • it was found that the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a can be reduced to 20% or less by using a grindstone with a count of #3000 or more in the final honing process. .
  • FIG. 11 is a graph showing the verification results of the relationship between the number of grindstone and the crushing rate of primary crystal silicon grains. This verification was performed by performing the first honing process using a #600 diamond whetstone, and then performing the second honing process using a diamond whetstone with a predetermined grit so that the polishing depth was 4 ⁇ m or more. It was carried out by measuring the crushing rate of the primary crystal silicon grains 2 at that time.
  • the abscissa indicates the grain size of the grindstone used in the second honing treatment, and the ordinate indicates the crush rate of the primary crystal silicon grains. It can be seen from FIG. 11 that the crushing rate of the primary crystal silicon grains can be reduced to 20% or less by using a grindstone with a count of #3000 or higher.
  • an engine 100 according to an embodiment of the present invention was produced as a prototype (Example 1), and the results of verification of the oil consumption reduction effect in comparison with the engine of Comparative Example 1 will be described.
  • the cylinder block 10 of the engine 100 of Example 1 was manufactured by the manufacturing method described above.
  • two honing treatments were performed: rough honing for the purpose of forming oil grooves, and finish honing for the purpose of forming plateau portions between oil grooves. It was honed twice.
  • FIG. 12 shows the roughness curve of the sliding surface of Comparative Example 1
  • FIG. 13 shows the roughness curve of the sliding surface 12a of Example 1.
  • the ten-point average roughness Rz JIS of the sliding surface of Comparative Example 1 was 3.05 ⁇ m
  • the ten-point average roughness Rz JIS of the sliding surface 12a of Example 1 was 0.25 ⁇ m.
  • the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of Example 1 was 20% or less.
  • Fig. 14 shows the oil consumption measured by the sampling method for Comparative Example 1 and Example 1. As can be seen from FIG. 14, in Example 1, the oil consumption was reduced by 21% as compared to Comparative Example 1.
  • FIG. 15A is a diagram schematically showing how the oil OL is scraped off by the piston ring 42 on the sliding surface 12a' of the cylinder wall 12' of the engine of Comparative Example 1.
  • FIG. 15A since the surface roughness (ten-point average roughness Rz JIS ) of the sliding surface 12a′ is relatively large, much oil OL remains on the sliding surface 12a′ without being scraped off by the piston ring 42 . Since the remaining oil OL is exposed to the flame FL to evaporate or burn, a large amount of the remaining oil OL results in a large amount of oil consumption.
  • FIG. 15B is a diagram schematically showing how the oil OL is scraped off by the piston ring 42 on the sliding surface 12a of the cylinder wall 12 of the engine 100 of the first embodiment.
  • Example 1 since the ten-point average roughness Rz JIS of the sliding surface 12a is as small as 0.25 ⁇ m, it is considered that the amount of oil OL remaining on the sliding surface 12a is reduced, thereby reducing the oil consumption.
  • FIG. 16 shows the average values of the FMEP values when the engine speed is 4400 rpm, 4800 rpm and 5200 rpm. Further, in FIG. 16, the FMEP value (120.1 kPa) of the engine of Comparative Example 1 is indicated by a dashed line.
  • FIG. 17 shows the FMEP reduction rate for Examples 2 and 3 at engine speeds of 4400 rpm, 4800 rpm and 5200 rpm. It can be seen from FIG. 17 that the effect of reducing FMEP tends to be high on the low rotational speed side.
  • FIG. 18 shows the results of repeated FMEP measurements for Example 6 in which the sliding surface 12a has a ten-point average roughness Rz JIS of 0.214 ⁇ m and a crushing rate of the primary crystal silicon grains 2 is 20% or less.
  • FIG. 19 shows the results of repeated FMEP measurements for Comparative Example 2 in which the ten-point average roughness Rz JIS (after nine measurements) of the sliding surface is 0.563 ⁇ m.
  • Example 6 FMEP was reduced by 10% or more than in Comparative Example 2 at all timings.
  • the FMEP of Example 6 was reduced by 17% compared to Comparative Example 2 in the first measurement.
  • a reduction effect of 10% or more was obtained.
  • This verification was performed by a vibration friction wear test (SRV test) using a barrel-shaped test piece simulating a piston skirt and a cylinder test piece cut from a cylinder wall.
  • the SRV test was performed with Example 7 in which the ten-point average roughness Rz JIS of the sliding surface 12a was 0.124 to 0.237 (0.162 on average) ⁇ m, and the crushing rate of the primary crystal silicon grains 2 was 15%.
  • Comparative Example 3 in which the ten-point average roughness Rz JIS of the sliding surface was 1.6 to 3.2 ⁇ m.
  • the SRV test was performed by sliding the barrel test piece under a constant load at an oil temperature of 130° C. (immersion), and the wear height of the barrel test piece and the cylinder test piece was measured.
  • Fig. 20 shows the time change of the wear height of the barrel-shaped test piece. 20 that in Example 7, the wear height of the barrel-shaped test piece is smaller than in Comparative Example 3. FIG. Comparing the wear height after 60 minutes from the start of the test, in Example 7, the wear height could be reduced by 69% compared to Comparative Example 3. Thus, in Example 7, it was confirmed that the aggressiveness of the cylinder wall 12 against the opponent was reduced.
  • Fig. 21 shows the time change of the wear height of the cylinder test piece. 21 that in Example 7, the wear height of the cylinder test piece is smaller than in Comparative Example 3. FIG. Thus, in Example 7, it was confirmed that the wear resistance of the cylinder wall 12 was improved.
  • Example 7 For Example 7 and Comparative Example 3, the operation was performed under conditions that promote seizure of the cylinder and piston, and the time from the start of operation to the occurrence of seizure was measured.
  • FIG. 22 shows the measurement results of the time from the start of operation to the occurrence of seizure.
  • Example 7 As shown in FIG. 22, in Example 7, the time until seizure occurred was about 6.5 times longer than in Comparative Example 3. Therefore, in Example 7, the seizure resistance of the cylinder wall 12 was improved. confirmed.
  • FIG. 23 shows an example of a motorcycle equipped with an engine 100 according to an embodiment of the invention.
  • a motorcycle 300 shown in FIG. 23 is provided with a head pipe 302 at the front end of a body frame 301 .
  • a front fork 303 is attached to the head pipe 302 so as to swing in the lateral direction of the vehicle.
  • a front wheel 304 is rotatably supported at the lower end of the front fork 303 .
  • a seat rail 306 is attached so as to extend rearward from the upper part of the rear end of the body frame 301 .
  • a fuel tank 307 is provided on the body frame 301, and a main seat 308a and a tandem seat 308b are provided on the seat rails 306. As shown in FIG.
  • a rear arm 309 extending rearward is attached to the rear end of the body frame 301 .
  • a rear wheel 310 is rotatably supported at the rear end of the rear arm 309 .
  • the engine 100 is held in the central portion of the body frame 301 .
  • a radiator 311 is provided in front of the engine 100 .
  • An exhaust pipe 312 is connected to an exhaust port of the engine 100 and a muffler 313 is attached to the rear end of the exhaust pipe 312 .
  • a transmission 315 is connected to the engine 100 .
  • a drive sprocket 317 is attached to the output shaft 316 of the transmission 315 .
  • Drive sprocket 317 is connected to rear wheel sprocket 319 of rear wheel 310 via chain 318 .
  • Transmission 315 and chain 318 function as a transmission mechanism that transmits the power generated by engine 100 to the drive wheels.
  • the motorcycle 300 includes the engine 100 according to the embodiment of the present invention, effects such as improved fuel efficiency, reduced oil consumption, and suppressed catalyst performance deterioration can be obtained.
  • the engine according to the embodiment of the present invention is not limited to motorcycles, and is also suitable for other transportation equipment such as four-wheeled motor vehicles, three-wheeled motor vehicles, and ships. used for
  • the internal combustion engine 100 includes the piston 40 made of aluminum alloy and the cylinder block 10 having the cylinder wall 12 including the sliding surface 12a on which the piston 40 slides.
  • the cylinder block 10 is made of an aluminum alloy containing silicon, and has a plurality of primary crystal silicon grains 2 on a sliding surface 12a.
  • the ten-point average roughness Rz JIS of the sliding surface 12a is 0.5 ⁇ m or less, and the crushing rate of the plurality of primary crystal silicon grains 2 on the sliding surface 12a is 20% or less.
  • the ten-point average roughness Rz JIS of the sliding surface 12a of the cylinder wall 12 is 0.5 ⁇ m or less. That is, the unevenness of the sliding surface 12a is so small that it can be said that the sliding surface 12a is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface 12a, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved.
  • the amount of oil (lubricating oil) left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced.
  • the surface roughness of the sliding surface 12a is reduced, there is concern that the amount of oil retained on the sliding surface 12a will be reduced and the seizure resistance will be reduced.
  • the surface pressure applied to the aluminum alloy base material (matrix) 1 is reduced, Sufficient seizure resistance can be ensured.
  • a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.
  • the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of the cylinder wall 12 is 20% or less, Many grains 2 are exposed on the sliding surface 12a. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt 44 and the piston ring 42 is distributed to the exposed healthy primary crystal silicon grains 2, so that the seizure resistance and wear resistance of the cylinder wall 12 are improved.
  • the arithmetic mean roughness Ra of the sliding surface 12a is less than 0.05 ⁇ m.
  • the unevenness of the sliding surface 12a of the cylinder wall 12 is small, so that a uniform oil film is formed on the sliding surface 12a to reduce the frictional resistance. be able to. Therefore, sliding loss can be reduced and fuel efficiency can be improved.
  • the amount of oil left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed.
  • the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced.
  • the ratio of the area occupied by the plurality of primary crystal silicon grains 2 on the sliding surface 12a is 8% or more.
  • the ratio of the area occupied by the primary crystal silicon grains 2 in the sliding surface 12a is 8% or more, the surface pressure applied to the alloy base material 1 is reduced, so the seizure resistance and wear resistance are improved.
  • the sliding surface 12a is divided into a plurality of squares Sq of 0.1 mm ⁇ 0.1 mm, and the ratio of the number of squares Sq2 in which the primary crystal silicon grains 2 are not present to the total number of squares Sq is defined as the blank ratio.
  • the blank rate is 55.5% or less.
  • “Blank ratio” is an index of how the primary crystal silicon grains 2 are dispersed. The lower the void ratio, the better the primary crystal silicon grains 2 are dispersed. When the blank ratio of the sliding surface 12a is 55.5% or less, the surface pressure applied to the alloy base material 1 is sufficiently reduced, thereby improving the seizure resistance and wear resistance.
  • the cylinder block 10 is made of an aluminum alloy containing 15% by mass or more and 25% by mass or less of silicon.
  • the silicon content of the aluminum alloy, which is the material of the cylinder block 10 is preferably 15% by mass or more and 25% by mass or less.
  • the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved.
  • the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high.
  • the average crystal grain size of the plurality of primary crystal silicon grains 2 is 8 ⁇ m or more and 50 ⁇ m or less.
  • the wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 ⁇ m or more and 50 ⁇ m or less.
  • the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 ⁇ m, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the internal combustion engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn.
  • the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 ⁇ m, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the internal combustion engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.
  • the average crystal grain size of the primary crystal silicon grains 2 is 8 ⁇ m or more and 50 ⁇ m or less, a sufficient number of primary crystal silicon grains 2 are present per unit area of the sliding surface 12a. Therefore, since the load applied to each primary-crystal silicon grain 2 during operation of the internal combustion engine 100 is relatively small, crushing of the primary-crystal silicon grain 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.
  • the piston 40 has a piston body 41 and a plurality of piston rings 42 attached to the outer periphery of the piston body 41, each of the plurality of piston rings 42 having a diamond-like carbon layer on the outer periphery. 42D.
  • each piston ring 42 has a diamond-like carbon layer 42D on the outer peripheral portion, scuffing of the cylinder wall 12 by the piston ring 42 can be prevented more reliably.
  • the piston 40 has a piston head 43 and a piston skirt 44 extending from the outer peripheral portion of the piston head 43, and the piston skirt 44 is a resin layer rl or a plating layer formed on at least a portion of the outer peripheral surface. have layers.
  • the wear resistance and seizure resistance of the piston 40 can be improved.
  • a transportation device includes an internal combustion engine 100 having any of the configurations described above.
  • the internal combustion engine 100 according to the embodiment of the present invention is suitable for use in various types of transportation equipment.
  • an internal combustion engine having a cylinder block made of an aluminum alloy containing silicon it is possible to reduce frictional resistance and oil consumption of the cylinder wall while ensuring seizure resistance.
  • An internal combustion engine according to an embodiment of the present invention is suitable for use in various types of transportation equipment including motorcycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

An internal combustion engine (100) comprises a piston (40) formed of aluminum alloy and a cylinder block (10) having a cylinder wall 12 including a sliding surface (12a) on which the piston slides. The cylinder block is formed of an aluminum alloy containing silicon and has a plurality of primary crystal silicon grains (2) on the sliding surface. The ten-point average roughness RzJIS of the sliding surface is 0.5 μm or less, and the crushing rate of the plurality of primary crystal silicon grains on the sliding surface is 20% or less.

Description

内燃機関および輸送機器Internal combustion engines and transportation equipment

 本開示は、内燃機関に関し、特に、シリコンを含むアルミニウム合金から形成されたシリンダブロックを備えた内燃機関に関する。また、本開示は、そのような内燃機関を備えた輸送機器にも関する。 The present disclosure relates to internal combustion engines, and more particularly to internal combustion engines having a cylinder block formed from an aluminum alloy containing silicon. The present disclosure also relates to vehicles equipped with such internal combustion engines.

 近年、内燃機関の軽量化を目的としてシリンダブロックのアルミニウム合金化が進んでいる。シリンダブロックには高い耐摩耗性が要求されるので、シリンダブロック用のアルミニウム合金として、シリコンを多く含有するアルミニウム合金、つまり、過共晶組成のアルミニウム-シリコン系合金が有望視されている。アルミニウム-シリコン系合金から形成されたシリンダブロックでは、摺動面に位置するシリコン結晶粒が耐摩耗性の向上に寄与する。アルミニウム-シリコン系合金から形成されたシリンダブロックは、例えば特許文献1に開示されている。 In recent years, the use of aluminum alloys for cylinder blocks has been progressing for the purpose of reducing the weight of internal combustion engines. Since cylinder blocks are required to have high wear resistance, aluminum alloys containing a large amount of silicon, that is, hypereutectic aluminum-silicon alloys, are expected to be used as aluminum alloys for cylinder blocks. In a cylinder block made of an aluminum-silicon alloy, silicon crystal grains located on the sliding surface contribute to an improvement in wear resistance. A cylinder block formed from an aluminum-silicon based alloy is disclosed, for example, in US Pat.

 また、シリンダブロックの耐摩耗性や耐焼き付き性を向上させるために、一般的には、シリンダボアを画定するシリンダ壁の表面に、クロスハッチと呼ばれる網目状の溝が形成されている。クロスハッチにオイル(潤滑油)が溜まることによって、シリンダ壁とピストンスカートおよびピストンリングとの潤滑性を保つことができるので、磨耗や焼き付きを抑制することができる。 In addition, in order to improve the wear resistance and seizure resistance of the cylinder block, mesh-like grooves called crosshatch are generally formed on the surface of the cylinder wall that defines the cylinder bore. By accumulating oil (lubricating oil) in the crosshatch, it is possible to maintain lubricity between the cylinder wall and the piston skirt and piston ring, thereby suppressing wear and seizure.

国際公開第2004/002658号WO2004/002658

 しかしながら、クロスハッチを形成する過程で生成されるシリンダ壁表面の凹凸は、均一な油膜の形成を妨げるので、油膜の部分的な破断により摩擦抵抗を増大させる要因となる。また、クロスハッチ内に溜まったオイルは、ピストンリングにより掻き落とされずにシリンダ壁表面に残留し、高温の燃焼ガスに晒されて蒸発または燃焼することで排気ガスとして排出されるので、オイル消費量が増大し、それによって触媒の性能の劣化が促進される。 However, the unevenness of the cylinder wall surface generated in the process of forming the crosshatch prevents the formation of a uniform oil film, so partial breakage of the oil film causes an increase in frictional resistance. In addition, the oil accumulated in the crosshatch remains on the surface of the cylinder wall without being scraped off by the piston rings, and is exposed to high-temperature combustion gas, evaporates or burns and is discharged as exhaust gas, reducing oil consumption. increases, which accelerates the deterioration of catalyst performance.

 本発明の実施形態は、上記課題に鑑みてなされたものであり、その目的は、シリコンを含むアルミニウム合金から形成されたシリンダブロックを備えた内燃機関において、耐焼き付き性を確保しつつ、シリンダ壁の摩擦抵抗およびオイル消費量を低減することにある。 The embodiments of the present invention have been made in view of the above problems, and an object of the present invention is to provide an internal combustion engine having a cylinder block made of an aluminum alloy containing silicon, while ensuring seizure resistance, while maintaining the cylinder wall. to reduce frictional resistance and oil consumption.

 本明細書は、以下の項目に記載の内燃機関および輸送機器を開示している。 This specification discloses the internal combustion engine and transportation equipment described in the following items.

 [項目1]
 アルミニウム合金から形成されたピストンと、
 前記ピストンが摺動する摺動面を含むシリンダ壁を有するシリンダブロックと、
を備え、
 前記シリンダブロックは、シリコンを含むアルミニウム合金から形成されており、前記摺動面に複数の初晶シリコン粒を有し、
 前記摺動面の十点平均粗さRzJISは、0.5μm以下であり、
 前記摺動面における前記複数の初晶シリコン粒の破砕率は、20%以下である、内燃機関。
[Item 1]
a piston formed from an aluminum alloy;
a cylinder block having a cylinder wall including a sliding surface on which the piston slides;
with
The cylinder block is made of an aluminum alloy containing silicon, and has a plurality of primary crystal silicon grains on the sliding surface,
The ten-point average roughness Rz JIS of the sliding surface is 0.5 μm or less,
The internal combustion engine, wherein the crushing rate of the plurality of primary crystal silicon grains on the sliding surface is 20% or less.

 本発明の実施形態による内燃機関では、シリンダ壁の摺動面の十点平均粗さRzJISが0.5μm以下である。つまり、鏡面仕上げがなされていると言えるほど、摺動面の凹凸が小さい。そのため、摺動面に均一な油膜が形成され、摩擦抵抗を低減することができる。それ故、摺動ロスを低減し、燃費を向上させることができる。また、ピストンリングに掻き残されてシリンダ壁表面に残留するオイル(潤滑油)が減るので、オイル消費量が低減されるとともに触媒の性能の劣化が抑制される。さらに、摺動面の凹凸が小さいことにより、シリンダ壁の相手攻撃性(ピストンリングやピストンスカートに対する攻撃性)も低減される。 In the internal combustion engine according to the embodiment of the present invention, the ten-point average roughness Rz JIS of the sliding surface of the cylinder wall is 0.5 μm or less. In other words, the unevenness of the sliding surface is so small that it can be said that the sliding surface is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil (lubricating oil) left behind on the piston rings and remaining on the surface of the cylinder wall is reduced, oil consumption is reduced and deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface is small, the aggressiveness of the cylinder wall (aggressiveness to piston rings and piston skirts) is also reduced.

 なお、摺動面の表面粗さが小さくなると、摺動面におけるオイル保持量が減って耐焼き付き性が低下することが懸念される。しかしながら、本発明の実施形態による内燃機関では、摺動面には高硬度の初晶シリコン粒が存在しているので、アルミニウム合金基材(マトリックス)にかかる面圧が低下し、耐焼き付き性を十分に確保することができる。さらに、クロスハッチのような溝が不要であり、オイルが溝に逃げないようにすることができるので、油膜圧力が高くなって流体潤滑状態が好適に実現される。このことによっても耐焼き付き性が確保される。 It should be noted that if the surface roughness of the sliding surface is reduced, there is concern that the amount of oil retained on the sliding surface will be reduced and the seizure resistance will be reduced. However, in the internal combustion engine according to the embodiment of the present invention, the primary crystal silicon grains of high hardness are present on the sliding surface, so the surface pressure applied to the aluminum alloy base material (matrix) is reduced, and the seizure resistance is improved. can be sufficiently secured. Furthermore, since a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.

 また、本発明の実施形態による内燃機関では、シリンダ壁の摺動面における初晶シリコン粒の破砕率が20%以下であるので、破砕されていない(言わば健全な)初晶シリコン粒が摺動面に多く露出している。このことによっても、相手攻撃性が低減される。さらに、ピストンスカートやピストンリングとの接触荷重が、露出している健全な初晶シリコン粒に分散されることにより、シリンダ壁の耐焼き付き性および耐摩耗性が向上する。 Further, in the internal combustion engine according to the embodiment of the present invention, since the crushing rate of the primary crystal silicon grains on the sliding surface of the cylinder wall is 20% or less, the uncrushed (so to speak sound) primary crystal silicon grains slide. Exposed on the surface. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt and the piston ring is distributed to the exposed healthy primary crystal silicon grains, thereby improving the seizure resistance and wear resistance of the cylinder wall.

 [項目2]
 前記摺動面の算術平均粗さRaは、0.05μm未満である、項目1に記載の内燃機関。
[Item 2]
The internal combustion engine according to item 1, wherein the sliding surface has an arithmetic average roughness Ra of less than 0.05 μm.

 シリンダ壁の摺動面の算術平均粗さRaが0.05μm未満であると、摺動面の凹凸が小さいので、摺動面に均一な油膜が形成され、摩擦抵抗を低減することができる。それ故、摺動ロスを低減し、燃費を向上させることができる。また、ピストンリングに掻き残されてシリンダ壁表面に残留するオイルが減るので、オイル消費量が低減されるとともに触媒の性能の劣化が抑制される。さらに、摺動面の凹凸が小さいことにより、シリンダ壁の相手攻撃性(ピストンリングやピストンスカートに対する攻撃性)も低減される。 When the arithmetic mean roughness Ra of the sliding surface of the cylinder wall is less than 0.05 μm, the unevenness of the sliding surface is small, so that a uniform oil film is formed on the sliding surface and the frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil left behind on the piston ring and remaining on the surface of the cylinder wall is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface is small, the aggressiveness of the cylinder wall (aggressiveness to piston rings and piston skirts) is also reduced.

 [項目3]
 前記摺動面において前記複数の初晶シリコン粒が占める面積の比率は8%以上である、項目1または2に記載の内燃機関。
[Item 3]
3. The internal combustion engine according to item 1 or 2, wherein the ratio of the area occupied by the plurality of primary crystal silicon grains on the sliding surface is 8% or more.

 摺動面において初晶シリコン粒が占める面積の比率が8%以上であると、合金基材にかかる面圧が低下するので、耐焼き付き性および耐摩耗性が向上する。 When the ratio of the area occupied by the primary crystal silicon grains on the sliding surface is 8% or more, the surface pressure applied to the alloy base material is reduced, so the seizure resistance and wear resistance are improved.

 [項目4]
 前記摺動面を0.1mm×0.1mmの複数の升目に区切り、升目の総数に対する、初晶シリコン粒が存在しない升目の数の比率を、空白率と呼ぶとき、
 前記空白率が55.5%以下である、項目1から3のいずれかに記載の内燃機関。
[Item 4]
When the sliding surface is divided into a plurality of squares of 0.1 mm x 0.1 mm, and the ratio of the number of squares in which primary crystal silicon grains are not present to the total number of squares is called a blank ratio,
4. The internal combustion engine according to any one of items 1 to 3, wherein the blank rate is 55.5% or less.

 「空白率」は、初晶シリコン粒の分散具合の指標である。空白率が低いほど、初晶シリコン粒がよく分散されていることを表している。摺動面の空白率が55.5%以下であると、合金基材にかかる面圧が十分に低下するので、耐焼き付き性および耐摩耗性が向上する。 "Blank ratio" is an index of the degree of dispersion of primary crystal silicon grains. The lower the void ratio, the better the primary crystal silicon grains are dispersed. When the blank ratio of the sliding surface is 55.5% or less, the surface pressure applied to the alloy substrate is sufficiently reduced, so that the seizure resistance and wear resistance are improved.

 [項目5]
 前記シリンダブロックは、シリコンを15質量%以上25質量%以下含むアルミニウム合金から形成されている、項目1から4のいずれかに記載の内燃機関。
[Item 5]
5. The internal combustion engine according to any one of items 1 to 4, wherein the cylinder block is made of an aluminum alloy containing 15% by mass or more and 25% by mass or less of silicon.

 シリンダブロックの耐摩耗性および強度を十分に高くする観点からは、シリンダブロックの材料であるアルミニウム合金のシリコン含有率は、15質量%以上25質量%以下であることが好ましい。シリコン含有率が15質量%以上であると、初晶シリコン粒を十分に多く晶出させることができ、シリンダブロックの耐摩耗性を十分に向上させることができる。シリコン含有率が25質量%以下であると、シリンダブロックの強度を十分に高く維持することができる。 From the viewpoint of sufficiently increasing the wear resistance and strength of the cylinder block, the silicon content of the aluminum alloy, which is the material of the cylinder block, is preferably 15% by mass or more and 25% by mass or less. When the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains can be crystallized, and the wear resistance of the cylinder block can be sufficiently improved. When the silicon content is 25% by mass or less, the strength of the cylinder block can be maintained sufficiently high.

 [項目6]
 前記複数の初晶シリコン粒の平均結晶粒径は、8μm以上50μm以下である、項目1から5のいずれかに記載の内燃機関。
[Item 6]
6. The internal combustion engine according to any one of items 1 to 5, wherein the average grain size of the plurality of primary crystal silicon grains is 8 μm or more and 50 μm or less.

 初晶シリコン粒の平均結晶粒径を8μm以上50μm以下の範囲内にすることによって、シリンダブロックの耐摩耗性をいっそう向上させることができる。 By setting the average crystal grain size of the primary crystal silicon grains within the range of 8 μm or more and 50 μm or less, the wear resistance of the cylinder block can be further improved.

 初晶シリコン粒の平均結晶粒径が50μmを超える場合、摺動面の単位面積当りの初晶シリコン粒の個数が少ない。そのため、内燃機関の運転時に初晶シリコン粒のそれぞれに大きな荷重がかかり、初晶シリコン粒が破砕されることがある。破砕された初晶シリコン粒の破片は、研摩粒子として作用してしまうため、摺動面が大きく摩耗するおそれがある。 When the average crystal grain size of the primary crystal silicon grains exceeds 50 μm, the number of primary crystal silicon grains per unit area of the sliding surface is small. Therefore, a large load is applied to each of the primary crystal silicon grains during operation of the internal combustion engine, and the primary crystal silicon grains may be crushed. Fragments of the crushed primary-crystal silicon grains act as abrasive particles, which may significantly wear the sliding surface.

 また、初晶シリコン粒の平均結晶粒径が8μm未満である場合、初晶シリコン粒の、マトリックス中に埋まっている部分が小さい。そのため、内燃機関の運転時には、初晶シリコン粒の脱落が起こりやすい。脱落した初晶シリコン粒は、研摩粒子として作用してしまうため、摺動面が大きく摩耗するおそれがある。 Also, when the average crystal grain size of the primary crystal silicon grains is less than 8 μm, the portion of the primary crystal silicon grains buried in the matrix is small. Therefore, during operation of the internal combustion engine, the primary crystal silicon grains are likely to fall off. Since the fallen primary crystal silicon grains act as abrasive particles, there is a possibility that the sliding surface is greatly worn.

 これに対し、初晶シリコン粒の平均結晶粒径が8μm以上50μm以下である場合、初晶シリコン粒は摺動面の単位面積あたりに十分な数存在する。そのため、内燃機関の運転時に各初晶シリコン粒にかかる荷重は相対的に小さくなるため、初晶シリコン粒の破砕が抑制される。また、初晶シリコン粒のマトリックスに埋まっている部分が十分に大きいので、初晶シリコン粒の脱落が低減され、そのため、脱落した初晶シリコン粒による摺動面の摩耗も抑制される。 On the other hand, when the average crystal grain size of the primary crystal silicon grains is 8 μm or more and 50 μm or less, a sufficient number of primary crystal silicon grains exist per unit area of the sliding surface. Therefore, the load applied to each primary-crystal silicon grain during operation of the internal combustion engine is relatively small, so crushing of the primary-crystal silicon grains is suppressed. In addition, since the portion of the primary-crystal silicon grains embedded in the matrix is sufficiently large, the falling-off of the primary-crystal silicon grains is reduced, and wear of the sliding surface due to the falling-off primary-crystal silicon grains is also suppressed.

 [項目7]
 前記ピストンは、ピストン本体と、前記ピストン本体の外周部に取り付けられた複数のピストンリングとを有し、
 前記複数のピストンリングのそれぞれは、外周部にダイヤモンドライクカーボン層を有する、項目1から6のいずれかに記載の内燃機関。
[Item 7]
The piston has a piston body and a plurality of piston rings attached to the outer periphery of the piston body,
7. The internal combustion engine according to any one of items 1 to 6, wherein each of the plurality of piston rings has a diamond-like carbon layer on its outer peripheral portion.

 各ピストンリングが外周部にダイヤモンドライクカーボン層を有していると、シリンダ壁に対するピストンリングによるスカッフをより確実に防止することができる。 When each piston ring has a diamond-like carbon layer on the outer peripheral portion, scuffing of the cylinder wall by the piston ring can be prevented more reliably.

 [項目8]
 前記ピストンは、ピストンヘッドと、前記ピストンヘッドの外周部から延びるピストンスカートとを有し、
 前記ピストンスカートは、外周面の少なくとも一部に形成された樹脂層またはめっき層を有する、項目1から7のいずれかに記載の内燃機関。
[Item 8]
The piston has a piston head and a piston skirt extending from the outer circumference of the piston head,
8. The internal combustion engine according to any one of items 1 to 7, wherein the piston skirt has a resin layer or a plating layer formed on at least part of the outer peripheral surface.

 ピストンスカートが、外周面の少なくとも一部に形成された樹脂層またはめっき層を有していると、ピストンの耐摩耗性および耐焼き付き性を向上させることができる。 When the piston skirt has a resin layer or a plating layer formed on at least part of the outer peripheral surface, the wear resistance and seizure resistance of the piston can be improved.

 [項目9]
 項目1から8のいずれかに記載の内燃機関を備えた輸送機器。
[Item 9]
Transportation equipment provided with the internal combustion engine according to any one of items 1 to 8.

 本発明の実施形態による内燃機関は、各種の輸送機器に好適に用いられる。  The internal combustion engine according to the embodiment of the present invention is suitable for use in various types of transportation equipment.

 本発明の実施形態によると、シリコンを含むアルミニウム合金から形成されたシリンダブロックを備えた内燃機関において、耐焼き付き性を確保しつつ、シリンダ壁の摩擦抵抗およびオイル消費量を低減することができる。 According to the embodiment of the present invention, in an internal combustion engine having a cylinder block made of an aluminum alloy containing silicon, it is possible to reduce frictional resistance and oil consumption of the cylinder wall while ensuring seizure resistance.

本発明の実施形態によるエンジン(内燃機関)100を模式的に示す断面図である。1 is a cross-sectional view schematically showing an engine (internal combustion engine) 100 according to an embodiment of the present invention; FIG. エンジン100が備えるピストン40を模式的に示す側面図である。FIG. 2 is a side view schematically showing a piston 40 included in engine 100. FIG. エンジン100が備えるシリンダブロック10を模式的に示す斜視図である。1 is a perspective view schematically showing a cylinder block 10 included in engine 100. FIG. シリンダ壁12の摺動面12a近傍を模式的に示す断面図である。2 is a cross-sectional view schematically showing the vicinity of a sliding surface 12a of a cylinder wall 12; FIG. 摺動面12aの画像の一例である。It is an example of the image of the sliding surface 12a. 摺動面12aの空白率の定義を説明するための図である。It is a figure for demonstrating the definition of the blank ratio of the sliding surface 12a. ピストン40のピストンリング42を模式的に示す断面図である。4 is a cross-sectional view schematically showing a piston ring 42 of the piston 40. FIG. ピストン40のピストンスカート44を模式的に示す断面図である。4 is a cross-sectional view schematically showing a piston skirt 44 of the piston 40; FIG. シリンダブロック10の製造工程を示すフローチャートである。4 is a flow chart showing a manufacturing process of the cylinder block 10. FIG. シリンダブロック10の製造工程を示すフローチャートである。4 is a flow chart showing a manufacturing process of the cylinder block 10. FIG. 砥石の番手と初晶シリコン粒の破砕率との関係を示すグラフである。It is a graph which shows the relationship between the grade of a grindstone, and the crushing rate of a primary-crystal silicon grain. 比較例1の摺動面の粗さ曲線を示すグラフである。4 is a graph showing the roughness curve of the sliding surface of Comparative Example 1. FIG. 実施例1の摺動面12aの粗さ曲線を示すグラフである。4 is a graph showing a roughness curve of the sliding surface 12a of Example 1. FIG. 比較例1および実施例1について、抜き取り法により測定したオイル消費量を示すグラフである。5 is a graph showing oil consumption measured by a sampling method for Comparative Example 1 and Example 1. FIG. 比較例1のエンジンが有するシリンダ壁12’の摺動面12a’においてピストンリング42によりオイルOLが掻き落とされる様子を模式的に示す図である。FIG. 4 is a diagram schematically showing how oil OL is scraped off by a piston ring 42 on a sliding surface 12a' of a cylinder wall 12' of the engine of Comparative Example 1; 実施例1のエンジン100が有するシリンダ壁12の摺動面12aにおいてピストンリング42によりオイルOLが掻き落とされる様子を模式的に示す図である。4 is a diagram schematically showing how oil OL is scraped off by a piston ring 42 on a sliding surface 12a of a cylinder wall 12 of the engine 100 of the first embodiment; FIG. 実施例2~5について、摩擦平均有効圧力(FMEP)の測定結果を示すグラフである。5 is a graph showing measurement results of frictional mean effective pressure (FMEP) for Examples 2 to 5. FIG. 実施例2および3について、エンジンの回転数が4400rpm、4800rpmおよび5200rpmの場合のFMEP低減率を示すグラフである。4 is a graph showing FMEP reduction ratios for Examples 2 and 3 at engine speeds of 4400 rpm, 4800 rpm and 5200 rpm. 実施例6について、FMEPの測定を繰り返し行った結果を示すグラフである。10 is a graph showing the results of repeated FMEP measurements for Example 6. FIG. 比較例2について、FMEPの測定を繰り返し行った結果を示すグラフである。7 is a graph showing the results of repeated measurements of FMEP for Comparative Example 2. FIG. 実施例7および比較例3について、SRV試験におけるタル型テストピースの摩耗高さの時間変化を示すグラフである。10 is a graph showing changes over time in wear height of barrel-shaped test pieces in an SRV test for Example 7 and Comparative Example 3. FIG. 実施例7および比較例3について、SRV試験におけるシリンダテストピースの摩耗高さの時間変化を示すグラフである。FIG. 10 is a graph showing changes over time in the wear height of cylinder test pieces in an SRV test for Example 7 and Comparative Example 3. FIG. 実施例7および比較例3について、エンジン運転開始後からピストンとシリンダの焼き付きが発生するまでの時間を示すグラフである。10 is a graph showing the time from the start of engine operation until seizure of the piston and cylinder occurs in Example 7 and Comparative Example 3. FIG. エンジン100を備えた自動二輪車300を模式的に示す側面図である。1 is a side view schematically showing a motorcycle 300 equipped with an engine 100; FIG.

 以下、図面を参照しながら本発明の実施形態を説明する。なお、以下では水冷式のエンジンを例として説明を行うが、本発明の実施形態によるエンジンは、水冷式に限定されず、空冷式であってもよい。また、以下では単気筒のエンジンを例として説明を行うが、エンジンの気筒数は特に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although a water-cooled engine will be described below as an example, the engine according to the embodiment of the present invention is not limited to a water-cooled engine, and may be an air-cooled engine. In addition, although a single-cylinder engine will be described below as an example, the number of cylinders of the engine is not particularly limited.

 [エンジンの構成]
 図1に、本発明の実施形態によるエンジン(内燃機関)100を示す。図1は、エンジン100を模式的に示す断面図である。
[Engine configuration]
FIG. 1 shows an engine (internal combustion engine) 100 according to an embodiment of the invention. FIG. 1 is a cross-sectional view schematically showing engine 100. As shown in FIG.

 エンジン100は、図1に示すように、シリンダブロック10と、シリンダヘッド20と、クランクケース30とを備える。また、エンジン100は、ピストン40と、クランクシャフト50と、コンロッド(コネクティングロッド)60とをさらに備える。以下では、シリンダブロック10からシリンダヘッド20に向かう方向を上方向とし、シリンダブロック10からクランクケース30に向かう方向を下方向として説明を行う。 The engine 100 includes a cylinder block 10, a cylinder head 20, and a crankcase 30, as shown in FIG. Engine 100 further includes a piston 40 , a crankshaft 50 and a connecting rod (connecting rod) 60 . Hereinafter, the direction from the cylinder block 10 to the cylinder head 20 is defined as the upward direction, and the direction from the cylinder block 10 to the crankcase 30 is defined as the downward direction.

 シリンダブロック(「シリンダボディ」と呼ばれることもある)10は、シリンダ壁12と、外壁13とを有する。シリンダ壁12は、シリンダボア11を画定するように形成されている。外壁13は、シリンダ壁12を包囲し、シリンダブロック10の外郭を構成している。シリンダ壁12と外壁13との間に、冷却液を保持するウォータージャケット14が設けられている。 A cylinder block (sometimes called a "cylinder body") 10 has a cylinder wall 12 and an outer wall 13. Cylinder wall 12 is formed to define cylinder bore 11 . The outer wall 13 surrounds the cylinder wall 12 and constitutes the outer shell of the cylinder block 10 . A water jacket 14 that retains coolant is provided between the cylinder wall 12 and the outer wall 13 .

 シリンダヘッド20は、シリンダブロック10の上に設けられている。シリンダヘッド20は、シリンダ壁12およびピストン40とともに燃焼室70を画定する。シリンダヘッド20は、燃焼室70に燃料を導入するための吸気ポート21と、燃焼室70から排気ガスを排出するための排気ポート22とを有している。吸気ポート21内には、吸気弁23が設けられており、排気ポート22内には、排気弁24が設けられている。 The cylinder head 20 is provided on the cylinder block 10. Cylinder head 20 defines combustion chamber 70 with cylinder wall 12 and piston 40 . The cylinder head 20 has an intake port 21 for introducing fuel into the combustion chamber 70 and an exhaust port 22 for discharging exhaust gas from the combustion chamber 70 . An intake valve 23 is provided in the intake port 21 and an exhaust valve 24 is provided in the exhaust port 22 .

 クランクケース30は、シリンダブロック10の下に設けられている。つまり、クランクケース30は、シリンダブロック10に対してシリンダヘッド20とは反対側に位置するように設けられている。クランクケース30は、シリンダブロック10と別体であってもよいし、シリンダブロック10と一体に形成されていてもよい。 The crankcase 30 is provided under the cylinder block 10. That is, the crankcase 30 is provided so as to be located on the side opposite to the cylinder head 20 with respect to the cylinder block 10 . Crankcase 30 may be separate from cylinder block 10 or may be formed integrally with cylinder block 10 .

 ピストン40は、シリンダボア11内に収容されている。本実施形態では、シリンダボア11内にはシリンダスリーブははめ込まれていない。そのため、ピストン40は、シリンダ壁12の内周面(シリンダボア11側の表面)12aに接触した状態でシリンダボア11内を上下に往復運動する。つまり、シリンダ壁12の内周面12aは、ピストン40が摺動する摺動面である。 The piston 40 is housed inside the cylinder bore 11 . In this embodiment, no cylinder sleeve is fitted in the cylinder bore 11 . Therefore, the piston 40 reciprocates up and down in the cylinder bore 11 while being in contact with the inner peripheral surface 12a of the cylinder wall 12 (the surface on the cylinder bore 11 side). That is, the inner peripheral surface 12a of the cylinder wall 12 is a sliding surface on which the piston 40 slides.

 クランクシャフト50は、クランクケース30内に収容されている。クランクシャフト50は、クランクピン51と、クランクアーム52とを有している。 The crankshaft 50 is housed inside the crankcase 30 . The crankshaft 50 has a crankpin 51 and a crank arm 52 .

 コンロッド60は、棒状のロッド本体部61と、ロッド本体部61の一端に設けられた小端部62と、ロッド本体部61の他端に設けられた大端部63とを有する。コンロッド60は、ピストン40とクランクシャフト50とを連結する。具体的には、小端部62の貫通孔(ピストンピン孔)にピストン40のピストンピン48が挿入されているとともに、大端部63の貫通孔(クランクピン孔)にクランクシャフト50のクランクピン51が挿入されており、そのことによってピストン40とクランクシャフト50とが連結されている。大端部63の内周面とクランクピン51との間には、ベアリング66が設けられている。 The connecting rod 60 has a rod-shaped rod main body 61 , a small end 62 provided at one end of the rod main body 61 , and a large end 63 provided at the other end of the rod main body 61 . The connecting rod 60 connects the piston 40 and the crankshaft 50 . Specifically, the piston pin 48 of the piston 40 is inserted into the through hole (piston pin hole) of the small end 62 , and the crank pin of the crankshaft 50 is inserted into the through hole (crank pin hole) of the large end 63 . 51 is inserted, thereby connecting the piston 40 and the crankshaft 50 . A bearing 66 is provided between the inner peripheral surface of the big end 63 and the crank pin 51 .

 図2は、エンジン100のピストン40を模式的に示す側面図である。本実施形態では、ピストン40(より具体的には後述するピストン本体41)は、アルミニウム合金から形成されている。ピストン40は、鍛造により形成されてもよいし、鋳造により形成されてもよい。ピストン40は、図2に示すように、ピストン本体41と、複数のピストンリング42とを有する。ピストン本体41は、ピストンヘッド43と、ピストンスカート44とを含む。 FIG. 2 is a side view schematically showing the piston 40 of the engine 100. FIG. In this embodiment, the piston 40 (more specifically, a piston body 41 described later) is made of an aluminum alloy. The piston 40 may be formed by forging or by casting. The piston 40 has a piston body 41 and a plurality of piston rings 42, as shown in FIG. Piston body 41 includes a piston head 43 and a piston skirt 44 .

 ピストンヘッド43は、ピストン40の上端部に位置する。ピストンヘッド43の外周部には、ピストンリング42を保持するリング溝が形成されている。ピストンスカート44は、ピストンヘッド43の外周部から下方に延びる。 The piston head 43 is located at the upper end of the piston 40. A ring groove for holding the piston ring 42 is formed in the outer peripheral portion of the piston head 43 . A piston skirt 44 extends downwardly from the outer periphery of the piston head 43 .

 ピストンリング42は、ピストン本体41の外周部、より具体的には、ピストンヘッド41の外周部に取り付けられている。ここでは、ピストン40が3つのピストンリング42を有する構成を例示しているが、ピストンリング42の個数は3に限定されるものではない。3つのピストンリング42のうち、例えば、上側および中央のピストンリング(トップリングおよびセカンドリング)42aおよび42bは、燃焼室70の気密性を保つためのコンプレッションリングであり、下側のピストンリング(サードリング)42cは、シリンダ壁12に付着している余分なオイルをかき落とすためのオイルリングである。ピストンリング42は、金属材料(例えば鋼)から形成されている。 The piston ring 42 is attached to the outer peripheral portion of the piston body 41 , more specifically to the outer peripheral portion of the piston head 41 . Here, a configuration in which the piston 40 has three piston rings 42 is illustrated, but the number of piston rings 42 is not limited to three. Of the three piston rings 42, for example, the upper and middle piston rings (top ring and second ring) 42a and 42b are compression rings for keeping the combustion chamber 70 airtight, and the lower piston ring (third 42 c is an oil ring for scraping off excess oil adhering to the cylinder wall 12 . The piston ring 42 is made of a metallic material (eg steel).

 図3は、エンジン100のシリンダブロック10を模式的に示す斜視図である。既に説明したように、シリンダブロック10は、摺動面12aを含むシリンダ壁12と、外壁13とを有しており、シリンダ壁12と外壁13との間に、ウォータージャケット14が設けられている。本実施形態では、シリンダブロック10は、シリコンを含むアルミニウム合金から形成されている。より具体的には、シリンダブロック10は、過共晶組成のアルミニウム-シリコン系合金から形成されている。 FIG. 3 is a perspective view schematically showing the cylinder block 10 of the engine 100. FIG. As already explained, the cylinder block 10 has the cylinder wall 12 including the sliding surface 12a and the outer wall 13, and the water jacket 14 is provided between the cylinder wall 12 and the outer wall 13. . In this embodiment, the cylinder block 10 is made of an aluminum alloy containing silicon. More specifically, the cylinder block 10 is made of a hypereutectic aluminum-silicon alloy.

 図4は、シリンダ壁12の摺動面12a近傍を模式的に示す断面図である。シリンダブロック10のシリンダ壁12は、図4に示すように、アルミニウムを含む固溶体のマトリックス(合金基材)1と、マトリックス1中に分散した複数の初晶シリコン粒2とを含む。一部の初晶シリコン粒2は、摺動面12aに露出している。つまり、シリンダブロック10は、摺動面12aに初晶シリコン粒2を有している。 FIG. 4 is a cross-sectional view schematically showing the vicinity of the sliding surface 12a of the cylinder wall 12. As shown in FIG. The cylinder wall 12 of the cylinder block 10 includes, as shown in FIG. Some of the primary crystal silicon grains 2 are exposed on the sliding surface 12a. That is, the cylinder block 10 has the primary crystal silicon grains 2 on the sliding surface 12a.

 なお、ここでは図示していないが、シリンダ壁12は、マトリックス1中に分散した複数の共晶シリコン粒をさらに含んでいる。そのため、シリンダブロック10は、摺動面12aにさらに共晶シリコン粒を有していてもよい。過共晶組成のアルミニウム-シリコン系合金の溶湯を冷却したときに、最初に析出する比較的大きなシリコン結晶粒が「初晶シリコン粒」であり、次いで析出する比較的小さなシリコン結晶粒が「共晶シリコン粒」である。 Although not shown here, the cylinder wall 12 further includes a plurality of eutectic silicon grains dispersed in the matrix 1. Therefore, the cylinder block 10 may further have eutectic silicon grains on the sliding surface 12a. When a molten aluminum-silicon alloy with a hypereutectic composition is cooled, the relatively large silicon crystal grains that first precipitate are "primary silicon grains", and the relatively small silicon crystal grains that precipitate next are "co-crystalline". crystalline silicon grains”.

 本実施形態では、シリンダブロック10は、摺動面12aの十点平均粗さRzJISが所定の範囲内となるように形成されている。具体的には、摺動面12aの十点平均粗さRzJISは、摺動面12aの略全体にわたって0.5μm以下である。 In this embodiment, the cylinder block 10 is formed so that the ten-point average roughness Rz JIS of the sliding surface 12a is within a predetermined range. Specifically, the ten-point average roughness Rz JIS of the sliding surface 12a is 0.5 μm or less over substantially the entire sliding surface 12a.

 十点平均粗さRzJISは、下記式で表されるように、断面曲線からある基準長さだけを抜き取った部分において、最高から5番目までの山頂の標高R1、R3、R5、R7およびR9の平均値と、最深から5番目までの谷底の標高R2、R4、R6、R8およびR10の平均値との差の値である。十点平均粗さRzJISは、表面粗さ測定機(例えば東京精密株式会社製サーフコム1400D)を用いて測定することができる。

Figure JPOXMLDOC01-appb-M000001
Ten-point average roughness Rz JIS , as represented by the following formula, is the altitude of the highest to fifth peaks R1, R3, R5, R7 and R9 and the average values of the elevations R2, R4, R6, R8 and R10 of the five deepest valleys. The ten-point average roughness Rz JIS can be measured using a surface roughness measuring machine (for example, Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.).
Figure JPOXMLDOC01-appb-M000001

 また、本実施形態では、シリンダブロック10は、摺動面12aにおける初晶シリコン粒2の破砕率が所定の範囲内となるように形成されている。具体的には、摺動面12aにおける初晶シリコン粒2の破砕率は、摺動面12aの略全体にわたって20%以下である。初晶シリコン粒2の破砕率は、摺動面12aにおいて初晶シリコン粒2が占める面積に対する、初晶シリコン粒2の破砕した部分の面積の比を百分率で表したものである。破砕率の具体的な測定方法については、後述する。 In addition, in this embodiment, the cylinder block 10 is formed so that the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a is within a predetermined range. Specifically, the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a is 20% or less over substantially the entire sliding surface 12a. The crushing rate of the primary-crystal silicon grains 2 is the ratio of the area of the crushed portion of the primary-crystal silicon grains 2 to the area occupied by the primary-crystal silicon grains 2 on the sliding surface 12a, expressed as a percentage. A specific method for measuring the crushing rate will be described later.

 上述したように、本実施形態のエンジン100では、シリンダ壁12の摺動面12aの十点平均粗さRzJISが0.5μm以下である。つまり、鏡面仕上げがなされていると言えるほど、摺動面12aの凹凸が小さい。そのため、摺動面12aに均一な油膜が形成され、摩擦抵抗を低減することができる。それ故、摺動ロスを低減し、燃費を向上させることができる。また、ピストンリング42に掻き残されてシリンダ壁12表面に残留するオイル(潤滑油)が減るので、オイル消費量が低減されるとともに触媒の性能の劣化が抑制される。さらに、摺動面12aの凹凸が小さいことにより、シリンダ壁12の相手攻撃性(ピストンリング42やピストンスカート44に対する攻撃性)も低減される。上述した効果をいっそう高くする観点からは、摺動面12aの十点平均粗さRzJISは0.3μm以下であることがより好ましい。 As described above, in the engine 100 of the present embodiment, the ten-point average roughness Rz JIS of the sliding surface 12a of the cylinder wall 12 is 0.5 μm or less. That is, the unevenness of the sliding surface 12a is so small that it can be said that the sliding surface 12a is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface 12a, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil (lubricating oil) left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced. From the viewpoint of further enhancing the effects described above, the ten-point average roughness Rz JIS of the sliding surface 12a is more preferably 0.3 μm or less.

 なお、摺動面12aの表面粗さが小さくなると、摺動面12aにおけるオイル保持量が減って耐焼き付き性が低下することが懸念される。しかしながら、本実施形態のエンジン100では、摺動面12aには高硬度の初晶シリコン粒2が存在しているので、合金基材(マトリックス)1にかかる面圧が低下し、耐焼き付き性を十分に確保することができる。さらに、クロスハッチのような溝が不要であり、オイルが溝に逃げないようにすることができるので、油膜圧力が高くなって流体潤滑状態が好適に実現される。このことによっても耐焼き付き性が確保される。 It should be noted that if the surface roughness of the sliding surface 12a is reduced, there is concern that the amount of oil retained on the sliding surface 12a will be reduced and the seizure resistance will be reduced. However, in the engine 100 of the present embodiment, since the high-hardness primary crystal silicon grains 2 are present on the sliding surface 12a, the surface pressure applied to the alloy base material (matrix) 1 is reduced, and the seizure resistance is improved. can be sufficiently secured. Furthermore, since a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.

 また、本実施形態のエンジン100では、シリンダ壁12の摺動面12aにおける初晶シリコン粒2の破砕率が20%以下であるので、破砕されていない(言わば健全な)初晶シリコン粒2が摺動面12aに多く露出している。このことによっても、相手攻撃性が低減される。さらに、ピストンスカート44やピストンリング42との接触荷重が、露出している健全な初晶シリコン粒2に分散されることにより、シリンダ壁12の耐焼き付き性および耐摩耗性が向上する。 In addition, in the engine 100 of the present embodiment, since the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of the cylinder wall 12 is 20% or less, the uncrushed (so to speak sound) primary crystal silicon grains 2 are Many are exposed on the sliding surface 12a. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt 44 and the piston ring 42 is distributed to the exposed healthy primary crystal silicon grains 2, so that the seizure resistance and wear resistance of the cylinder wall 12 are improved.

 初晶シリコン粒2の破砕率は、例えば以下のようにして測定することができる。 The crushing rate of the primary crystal silicon grains 2 can be measured, for example, as follows.

 まず、ボアスコープを用いて摺動面12aの画像を撮影する。図5は、摺動面12aの画像の一例である。図5に示すように、摺動面12aには、初晶シリコン粒2の破砕した部分2aと、破砕していない部分2bとが存在する。次に、画像解析ソフトを用いた2値化によって、初晶シリコン粒2の破砕した部分2aの面積S1を求める。破砕した部分2aは、黒色の外観を呈するので、破砕していない部分2bおよび合金基材1と2値化により区別され得る。続いて、画像解析ソフトを用いた2値化によって、初晶シリコン粒2の面積(破砕している部分2aと破砕していない部分2bの両方を含む)S2を求める。その後、求めた面積S1およびS2から、下記式に基づいて初晶シリコン粒2の破砕率を算出する。
 初晶シリコン粒の破砕率[%]=(S1/S2)×100
First, an image of the sliding surface 12a is taken using a borescope. FIG. 5 is an example of an image of the sliding surface 12a. As shown in FIG. 5, the sliding surface 12a has a crushed portion 2a of the primary crystal silicon grains 2 and a non-crushed portion 2b. Next, the area S1 of the crushed portion 2a of the primary crystal silicon grain 2 is determined by binarization using image analysis software. Since the crushed portion 2a has a black appearance, it can be distinguished from the non-crushed portion 2b and the alloy substrate 1 by binarization. Subsequently, by binarization using image analysis software, the area S2 of the primary crystal silicon grains 2 (including both the crushed portion 2a and the uncrushed portion 2b) is obtained. After that, from the obtained areas S1 and S2, the crushing rate of the primary crystal silicon grains 2 is calculated based on the following formula.
Crushing rate of primary crystal silicon grains [%] = (S1/S2) x 100

 なお、シリンダ壁12の摺動面12aの表面粗さは、例えば算術平均粗さRaによっても表すことができる。本実施形態では、摺動面12aの算術平均粗さRaは、例えば0.05μm未満である。 The surface roughness of the sliding surface 12a of the cylinder wall 12 can also be represented by, for example, the arithmetic mean roughness Ra. In this embodiment, the arithmetic mean roughness Ra of the sliding surface 12a is less than 0.05 μm, for example.

 耐焼き付き性および耐摩耗性の観点からは、摺動面12aにおいて初晶シリコン粒2が占める面積の比率は、8%以上であることが好ましい。摺動面12aにおいて初晶シリコン粒2が占める面積の比率が8%以上であると、合金基材1にかかる面圧が低下するので、耐焼き付き性および耐摩耗性が向上する。 From the viewpoint of seizure resistance and wear resistance, the ratio of the area occupied by the primary crystal silicon grains 2 on the sliding surface 12a is preferably 8% or more. When the ratio of the area occupied by the primary crystal silicon grains 2 in the sliding surface 12a is 8% or more, the surface pressure applied to the alloy base material 1 is reduced, thereby improving the seizure resistance and wear resistance.

 摺動面12aにおいて初晶シリコン粒2が占める面積の比率は、例えば以下のようにして測定することができる。まず、ボアスコープを用いて摺動面12aの画像を撮影する。次に、画像解析ソフトを用いた2値化によって、初晶シリコン粒2の面積S2を求める。その後、求めた面積S2と、測定視野全体の面積S3とから、下記式に基づいて初晶シリコン粒2の占める面積の比率を算出することができる。
 摺動面において初晶シリコン粒が占める面積の比率[%]=(S2/S3)×100
The ratio of the area occupied by the primary crystal silicon grains 2 on the sliding surface 12a can be measured, for example, as follows. First, an image of the sliding surface 12a is taken using a borescope. Next, the area S2 of the primary crystal silicon grain 2 is determined by binarization using image analysis software. After that, the ratio of the area occupied by the primary crystal silicon grains 2 can be calculated based on the following formula from the obtained area S2 and the area S3 of the entire measurement field.
Ratio of area occupied by primary crystal silicon grains on sliding surface [%]=(S2/S3)×100

 また、摺動面12aは、「空白率」によっても評価することができる。図6は、「空白率」の定義を説明するための図である。図6に示すように、摺動面12aを0.1mm×0.1mmの複数の升目Sqに区切ると、これらの升目Sqは、当然ながら、初晶シリコン粒2が存在する升目Sq1と、初晶シリコン粒2が存在しない升目Sq2とを含んでいる。「空白率」は、升目Sqの総数に対する、初晶シリコン粒2が存在しない升目Sq2の数の比率(百分率)である。 In addition, the sliding surface 12a can also be evaluated by the "blank rate". FIG. 6 is a diagram for explaining the definition of "blank rate". As shown in FIG. 6, if the sliding surface 12a is divided into a plurality of squares Sq of 0.1 mm×0.1 mm, these squares Sq are, of course, divided into squares Sq1 where the primary crystal silicon grains 2 are present and A cell Sq2 in which no crystalline silicon grain 2 exists. The "blank ratio" is the ratio (percentage) of the number of cells Sq2 in which the primary crystal silicon grains 2 do not exist with respect to the total number of cells Sq.

 「空白率」は、初晶シリコン粒2の分散具合の指標であるといえる。空白率が低いほど、初晶シリコン粒2がよく分散されていることを表している。摺動面12aの空白率が55.5%以下であると、合金基材1にかかる面圧が十分に低下するので、耐焼き付き性および耐摩耗性が向上する。 It can be said that the "blank ratio" is an index of how the primary crystal silicon grains 2 are dispersed. The lower the void ratio, the better the primary crystal silicon grains 2 are dispersed. When the blank ratio of the sliding surface 12a is 55.5% or less, the surface pressure applied to the alloy base material 1 is sufficiently reduced, thereby improving the seizure resistance and wear resistance.

 シリンダブロック10の耐摩耗性および強度を十分に高くする観点からは、シリンダブロック10の材料であるアルミニウム合金のシリコン含有率は、15質量%以上25質量%以下であることが好ましい。シリコン含有率が15質量%以上であると、初晶シリコン粒2を十分に多く晶出させることができ、シリンダブロック10の耐摩耗性を十分に向上させることができる。シリコン含有率が25質量%以下であると、シリンダブロック10の強度を十分に高く維持することができる。 From the viewpoint of sufficiently increasing the wear resistance and strength of the cylinder block 10, the silicon content of the aluminum alloy, which is the material of the cylinder block 10, is preferably 15% by mass or more and 25% by mass or less. When the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved. When the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high.

 初晶シリコン粒2の平均結晶粒径を8μm以上50μm以下の範囲内にすることによって、シリンダブロック10の耐摩耗性をいっそう向上させることができる。初晶シリコン粒2の平均結晶粒径が50μmを超える場合、摺動面12aの単位面積当りの初晶シリコン粒2の個数が少ない。そのため、エンジン100の運転時に初晶シリコン粒2のそれぞれに大きな荷重がかかり、初晶シリコン粒2が破砕されることがある。破砕された初晶シリコン粒2の破片は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。また、初晶シリコン粒2の平均結晶粒径が8μm未満である場合、初晶シリコン粒2の、マトリックス1中に埋まっている部分が小さい。そのため、エンジン100の運転時には、初晶シリコン粒2の脱落が起こりやすい。脱落した初晶シリコン粒2は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。 The wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 μm or more and 50 μm or less. When the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 μm, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn. Further, when the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 μm, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.

 これに対し、初晶シリコン粒2の平均結晶粒径が8μm以上50μm以下(より好ましくは12μm以上50μm以下)である場合、初晶シリコン粒2は摺動面12aの単位面積あたりに十分な数存在する。そのため、エンジン100の運転時に各初晶シリコン粒2にかかる荷重は相対的に小さくなるため、初晶シリコン粒2の破砕が抑制される。また、初晶シリコン粒2のマトリックス1に埋まっている部分が十分に大きいので、初晶シリコン粒2の脱落が低減され、そのため、脱落した初晶シリコン粒2による摺動面12aの摩耗も抑制される。 On the other hand, when the average crystal grain size of the primary crystal silicon grains 2 is 8 μm or more and 50 μm or less (more preferably 12 μm or more and 50 μm or less), a sufficient number of primary crystal silicon grains 2 per unit area of the sliding surface 12a. exist. Therefore, the load applied to each primary-crystal silicon grain 2 during operation of the engine 100 is relatively small, so crushing of the primary-crystal silicon grains 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.

 共晶シリコン粒の平均結晶粒径は、初晶シリコン粒2の平均結晶粒径よりも小さい。共晶シリコン粒の平均結晶粒径は、例えば7.5μm以下である。 The average crystal grain size of the eutectic silicon grains is smaller than the average crystal grain size of the primary crystal silicon grains 2 . The average crystal grain size of the eutectic silicon grains is, for example, 7.5 μm or less.

 初晶シリコン粒2および共晶シリコン粒の平均結晶粒径の測定は、摺動面12aの画像に対する画像処理により、以下のようにして行うことができる。まず、画像処理により得られたシリコン結晶粒の面積に基づいて、シリコン結晶粒が真円であると仮定した場合における各シリコン結晶粒の直径(等価直径)を算出することにより、シリコン結晶粒の個数(度数)および直径を特定する。なお、直径が1μm未満の微細結晶は、シリコン結晶粒として算入しない。算出されたシリコン結晶粒の個数(度数)および直径に基づいて、シリコン結晶粒の粒度分布が得られる。得られる粒度分布(ヒストグラム)には、2つのピークが含まれる。2つのピークの間の谷を成す部分の直径を閾値として粒度分布を2つの領域に分け、大きな直径に対応する領域が初晶シリコン粒の粒度分布であり、小さな直径に対応する領域が共晶シリコン粒の粒度分布であるとする。そして、各粒度分布に基づいて、初晶シリコン粒の平均結晶粒径と、共晶シリコン粒の平均結晶粒径とを算出することができる。 The average crystal grain size of the primary crystal silicon grains 2 and the eutectic silicon grains can be measured as follows by performing image processing on the image of the sliding surface 12a. First, based on the area of the silicon crystal grain obtained by image processing, the diameter (equivalent diameter) of each silicon crystal grain is calculated assuming that the silicon crystal grain is a perfect circle. Specify the number (degrees) and diameter. Fine crystals with a diameter of less than 1 μm are not counted as silicon crystal grains. Based on the calculated number (frequency) and diameter of the silicon crystal grains, the grain size distribution of the silicon crystal grains is obtained. The resulting particle size distribution (histogram) contains two peaks. The grain size distribution is divided into two regions with the diameter of the portion forming the valley between the two peaks as the threshold, the region corresponding to the large diameter being the grain size distribution of the primary crystal silicon grains, and the region corresponding to the small diameter being the eutectic. Suppose it is the particle size distribution of silicon particles. Then, based on each particle size distribution, the average crystal grain size of the primary crystal silicon grains and the average crystal grain size of the eutectic silicon grains can be calculated.

 図7は、ピストン40のピストンリング42の構成の例を示す断面図である。図7に示す例では、ピストンリング42の外周部(外周面)には、ダイヤモンドライクカーボン層(以下では「DLC層」と呼ぶ。)42Dが形成されている。ピストンリング42の外周部は、シリンダ壁12に接触する部分である。ピストンリング42がDLC層42Dを有していなくてもよいが、各ピストンリング42が外周部にDLC層42Dを有していることにより、シリンダ壁12に対するピストンリング42によるスカッフをより確実に防止することができる。 FIG. 7 is a cross-sectional view showing an example configuration of the piston ring 42 of the piston 40. As shown in FIG. In the example shown in FIG. 7 , a diamond-like carbon layer (hereinafter referred to as “DLC layer”) 42D is formed on the outer peripheral portion (outer peripheral surface) of the piston ring 42 . An outer peripheral portion of the piston ring 42 is a portion that contacts the cylinder wall 12 . Although the piston rings 42 do not have to have the DLC layer 42D, each piston ring 42 has the DLC layer 42D on the outer peripheral portion, thereby more reliably preventing the piston rings 42 from scuffing the cylinder wall 12. can do.

 DLC層42Dは、蒸着法(例えばCDV法やPVD法)により好適に形成される。DLC層42Dの組成や厚さに特に制限はない。スカッフをより確実に防止する点からは、DLC層42Dの厚さは、2μm以上であることが好ましい。また、密着性の点からは、DLC層42Dの厚さは、20μm以下であることが好ましい。 The DLC layer 42D is preferably formed by a vapor deposition method (for example, CDV method or PVD method). There are no particular restrictions on the composition or thickness of the DLC layer 42D. The thickness of the DLC layer 42D is preferably 2 μm or more in order to more reliably prevent scuffing. In terms of adhesion, the thickness of the DLC layer 42D is preferably 20 μm or less.

 図8は、ピストン40のピストンスカート44の構成の例を示す断面図である。図8に示す例では、ピストンスカート44は、外周面の少なくとも一部に形成された樹脂層rlを有する。樹脂層rlは、アルミニウム合金から形成された基材bl上に、設けられている。 FIG. 8 is a cross-sectional view showing an example of the configuration of the piston skirt 44 of the piston 40. As shown in FIG. In the example shown in FIG. 8, the piston skirt 44 has a resin layer rl formed on at least part of the outer peripheral surface. The resin layer rl is provided on the base material bl made of an aluminum alloy.

 樹脂層rlは、例えば、ポリマーマトリックスと、ポリマーマトリックス中に分散された固体潤滑粒子とを含む。ポリマーマトリックスの材料としては、例えば、熱硬化性ポリアミドイミドを好適に用いることができるが、勿論、これに限定されるものではない。固体潤滑粒子としては、公知の種々の固体潤滑粒子を用いることができ、例えば、グラファイト粒子およびモリブデン粒子を好適に用いることができる。樹脂層rlは、例えば、液状体の樹脂材料をスプレー法や各種の印刷法(スクリーン印刷法やパッド印刷法など)でピストンスカート44に塗布することにより形成され得る。 The resin layer rl includes, for example, a polymer matrix and solid lubricant particles dispersed in the polymer matrix. As a material for the polymer matrix, for example, thermosetting polyamideimide can be suitably used, but the material is of course not limited to this. As the solid lubricant particles, various known solid lubricant particles can be used, and for example, graphite particles and molybdenum particles can be preferably used. The resin layer rl can be formed, for example, by applying a liquid resin material to the piston skirt 44 by a spray method or various printing methods (screen printing, pad printing, etc.).

 ピストンスカート44が、外周面の少なくとも一部に形成された樹脂層rlを有していると、ピストン40の耐摩耗性および耐焼き付き性を向上させることができる。 When the piston skirt 44 has the resin layer rl formed on at least a part of the outer peripheral surface, the wear resistance and seizure resistance of the piston 40 can be improved.

 また、ピストンスカート44は、樹脂層rlに代えてめっき層(例えば鉄めっき層)を有していてもよい。ピストンスカート44が、外周面の少なくとも一部に形成されためっき層を有していることによっても、ピストン40の耐摩耗性および耐焼き付き性を向上させることができる。なお、ピストンスカート44が、樹脂層rlおよびめっき層のいずれも有していなくてもよい。 Also, the piston skirt 44 may have a plating layer (for example, an iron plating layer) instead of the resin layer rl. The wear resistance and seizure resistance of the piston 40 can also be improved by having the plating layer formed on at least a portion of the outer peripheral surface of the piston skirt 44 . It should be noted that the piston skirt 44 may have neither the resin layer rl nor the plating layer.

 [シリンダブロックの製造方法]
 本実施形態のエンジン100が備えるシリンダブロック10の製造方法を図9および図10を参照しながら説明する。図9および図10は、シリンダブロック10の製造工程を示すフローチャートである。
[Manufacturing method of cylinder block]
A method of manufacturing the cylinder block 10 included in the engine 100 of this embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 and 10 are flow charts showing the manufacturing process of the cylinder block 10. FIG.

 まず、シリコンを含むアルミニウム合金から形成された成形体を用意する(工程ST1)。この成形体は、表面近傍に初晶シリコン粒および共晶シリコン粒を含んでいる。成形体を用意する工程ST1は、例えば、図10に示す工程ST1a~ST1eを含んでいる。 First, a compact made of an aluminum alloy containing silicon is prepared (step ST1). This compact contains primary crystal silicon grains and eutectic silicon grains in the vicinity of the surface. The step ST1 of preparing the compact includes steps ST1a to ST1e shown in FIG. 10, for example.

 まず、シリコンを含むアルミニウム合金を用意する(工程ST1a)。既に説明した理由から、アルミニウム合金のシリコン含有率は、15質量%以上25質量%以下であることが好ましい。アルミニウム合金のアルミニウム含有率は、例えば73.4質量%以上79.6質量%以下である。また、アルミニウム合金は、銅を含んでいてもよく、その場合、銅含有率は、例えば2.0質量%以上5.0質量%以下である。 First, an aluminum alloy containing silicon is prepared (step ST1a). For the reason already explained, the silicon content of the aluminum alloy is preferably 15% by mass or more and 25% by mass or less. The aluminum content of the aluminum alloy is, for example, 73.4% by mass or more and 79.6% by mass or less. Moreover, the aluminum alloy may contain copper, and in that case, the copper content is, for example, 2.0% by mass or more and 5.0% by mass or less.

 次に、用意したアルミニウム合金を溶解炉で加熱して溶解させることによって、溶湯を形成する(工程ST1b)。溶解前のアルミニウム合金あるいは溶湯には、100質量ppm程度のリンを添加してもよい。アルミニウム合金が50質量ppm以上200質量ppm以下のリンを含んでいると、シリコン結晶粒の粗大化を抑制することができるので、合金中にシリコン結晶粒を均一に分散させることができる。また、アルミニウム合金のカルシウム含有量を0.01質量%以下とすることによって、リンによるシリコン結晶粒の微細化効果を確保し、耐摩耗性に優れた金属組織を得ることができる。つまり、アルミニウム合金は、50質量ppm以上200質量ppm以下のリンと、0.01質量%以下のカルシウムとを含むことが好ましい。 Next, a molten metal is formed by heating and melting the prepared aluminum alloy in a melting furnace (step ST1b). About 100 ppm by mass of phosphorus may be added to the aluminum alloy or molten metal before melting. When the aluminum alloy contains 50 mass ppm or more and 200 mass ppm or less of phosphorus, it is possible to suppress the coarsening of the silicon crystal grains, so that the silicon crystal grains can be uniformly dispersed in the alloy. Also, by setting the calcium content of the aluminum alloy to 0.01% by mass or less, the effect of refining silicon crystal grains by phosphorus can be ensured, and a metal structure with excellent wear resistance can be obtained. In other words, the aluminum alloy preferably contains 50 mass ppm or more and 200 mass ppm or less of phosphorus and 0.01 mass% or less of calcium.

 続いて、アルミニウム合金の溶湯を用いて鋳造(具体的には高圧ダイカスト)を行う(工程ST1c)。つまり、溶湯を鋳型の中で冷却して成形体を形成する。このとき、シリンダ壁12の摺動面12aとなる部分を大きな冷却速度(例えば4℃/秒以上50℃/秒以下)で冷却することによって、耐摩耗性に寄与するシリコン結晶粒を表面近傍に有する成形体が得られる。この鋳造工程ST1cは、例えば、国際公開第2004/002658号パンフレットに開示されている鋳造装置を用いて行うことができる。 Subsequently, casting (specifically, high-pressure die casting) is performed using molten aluminum alloy (step ST1c). That is, the molten metal is cooled in the mold to form the compact. At this time, by cooling the portion of the cylinder wall 12 that will become the sliding surface 12a at a high cooling rate (for example, 4° C./sec or more and 50° C./sec or less), the silicon crystal grains that contribute to wear resistance are moved to the vicinity of the surface. A molded body having This casting step ST1c can be performed, for example, using the casting apparatus disclosed in International Publication No. 2004/002658 pamphlet.

 次に、鋳型から取り出した成形体に対し、「T5」、「T6」および「T7」と呼ばれる熱処理のうちのいずれかを行う(工程ST1d)。T5処理は、成形体を鋳型から取り出した直後に水冷等により急冷し、続いて、機械的性質の改善や寸法安定化のために所定温度で所定時間だけ人工時効し、その後空冷する処理である。T6処理は、成形体を鋳型から取り出した後に所定温度で所定時間だけ溶体化処理し、続いて水冷し、次いで所定温度で所定時間だけ人工時効処理し、その後空冷する処理である。T7処理は、T6処理に比べて過時効にする処理であり、T6処理よりも寸法安定化を図ることができるが硬度はT6処理よりも低下する。 Next, any one of the heat treatments called "T5", "T6" and "T7" is performed on the compact taken out from the mold (step ST1d). The T5 treatment is a treatment in which the compact is rapidly cooled by water cooling or the like immediately after it is removed from the mold, then artificially aged at a specified temperature for a specified time in order to improve mechanical properties and stabilize dimensions, and then air-cooled. . The T6 treatment is a treatment in which the compact is removed from the mold, solution-treated at a predetermined temperature for a predetermined time, then water-cooled, then artificially aged at a predetermined temperature for a predetermined time, and then air-cooled. The T7 treatment is a treatment for overaging compared to the T6 treatment, and can achieve more dimensional stabilization than the T6 treatment, but the hardness is lower than that of the T6 treatment.

 続いて、成形体に所定の機械加工を行う(工程ST1e)。具体的には、シリンダヘッド20との合せ面やクランクケース30との合せ面の研削等を行う。 Subsequently, the molded body is subjected to predetermined machining (step ST1e). Specifically, the mating surface with the cylinder head 20 and the mating surface with the crankcase 30 are ground.

 上述したようにして成形体を用意した後、成形体の、シリンダ壁となる部分の内周面に対して1回目のホーニング処理(「荒ホーニング処理」と呼ぶ)を行う(工程ST2)。具体的には、内周面を比較的番手の小さい砥石(例えば番手♯600のダイヤモンド砥石)を用いて研磨する。 After preparing the molded body as described above, the first honing process (referred to as "rough honing process") is performed on the inner peripheral surface of the portion of the molded body that will become the cylinder wall (step ST2). Specifically, the inner peripheral surface is polished using a grindstone with a relatively small number (for example, a diamond grindstone with a number of #600).

 その後、内周面に対して2回目のホーニング処理(「仕上ホーニング処理」と呼ぶ)を行う(工程ST3)。具体的には、内周面を荒ホーニング処理よりも番手の大きい砥石(例えば例えば番手♯3000のダイヤモンド砥石)を用いて研磨する。荒ホーニング処理および仕上ホーニング処理は、例えば特開2004-268179号公報に開示されているようなホーニング装置を用いて行うことができる。 After that, a second honing process (referred to as "finish honing process") is performed on the inner peripheral surface (step ST3). Specifically, the inner peripheral surface is polished using a grindstone with a grit larger than that for rough honing (for example, diamond whetstone with grit #3000). Rough honing and finish honing can be performed using a honing apparatus as disclosed in Japanese Patent Application Laid-Open No. 2004-268179, for example.

 このようにして、シリンダブロック10を得ることができる。なお、ホーニング処理の回数は、ここで例示した2に限定されない。ホーニング処理で用いる砥石の番手を調整することにより、摺動面12aの十点平均粗さRzJISを制御することができ、複数回行うホーニング処理のうちの最後のホーニング処理において比較的番手の大きな砥石を用いることにより、十点平均粗さRzJISを0.5μm以下にすることができる。また、本願発明者の検討によれば、最後のホーニング処理で番手♯3000以上の砥石を用いることにより、摺動面12aにおける初晶シリコン粒2の破砕率を20%以下にし得ることがわかった。 Thus, the cylinder block 10 can be obtained. In addition, the number of times of the honing process is not limited to 2 illustrated here. By adjusting the number of the grindstone used in the honing process, the ten-point average roughness Rz JIS of the sliding surface 12a can be controlled, and in the last honing process among the honing processes performed multiple times, the number is relatively large. By using a grindstone, the ten-point average roughness Rz JIS can be made 0.5 μm or less. Further, according to the study of the inventor of the present application, it was found that the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a can be reduced to 20% or less by using a grindstone with a count of #3000 or more in the final honing process. .

 図11は、砥石の番手と初晶シリコン粒の破砕率との関係の検証結果を示すグラフである。この検証は、番手♯600のダイヤモンド砥石を用いて1回目のホーニング処理を行った後、所定の番手のダイヤモンド砥石を用いて研磨深さが4μm以上となるように2回目のホーニング処理を行ったときの初晶シリコン粒2の破砕率を測定することにより行った。図11では、横軸に2回目のホーニング処理で用いる砥石の番手をとり、縦軸に初晶シリコン粒の破砕率をとっている。図11から、砥石の番手が♯3000以上であることにより、初晶シリコン粒の破砕率を20%以下にし得ることがわかる。 FIG. 11 is a graph showing the verification results of the relationship between the number of grindstone and the crushing rate of primary crystal silicon grains. This verification was performed by performing the first honing process using a #600 diamond whetstone, and then performing the second honing process using a diamond whetstone with a predetermined grit so that the polishing depth was 4 μm or more. It was carried out by measuring the crushing rate of the primary crystal silicon grains 2 at that time. In FIG. 11, the abscissa indicates the grain size of the grindstone used in the second honing treatment, and the ordinate indicates the crush rate of the primary crystal silicon grains. It can be seen from FIG. 11 that the crushing rate of the primary crystal silicon grains can be reduced to 20% or less by using a grindstone with a count of #3000 or higher.

 [効果の検証結果]
 まず、本発明の実施形態によるエンジン100を試作し(実施例1)、オイル消費量の低減効果を比較例1のエンジンと比較して検証した結果を説明する。実施例1のエンジン100のシリンダブロック10は、上述した製造方法により製造した。比較例1のエンジンのシリンダブロックを製造する際は、ホーニング処理として、油溝の形成を目的とした荒ホーニング処理、および、油溝間へのプラトー部の形成を目的とした仕上ホーニング処理の2回のホーニング処理を行った。
[Effect verification results]
First, an engine 100 according to an embodiment of the present invention was produced as a prototype (Example 1), and the results of verification of the oil consumption reduction effect in comparison with the engine of Comparative Example 1 will be described. The cylinder block 10 of the engine 100 of Example 1 was manufactured by the manufacturing method described above. When manufacturing the cylinder block of the engine of Comparative Example 1, two honing treatments were performed: rough honing for the purpose of forming oil grooves, and finish honing for the purpose of forming plateau portions between oil grooves. It was honed twice.

 図12に、比較例1の摺動面の粗さ曲線を示し、図13に、実施例1の摺動面12aの粗さ曲線を示す。図12および図13の比較から、実施例1の摺動面12aの表面粗さが、比較例1の摺動面の表面粗さよりも小さいことがわかる。比較例1の摺動面の十点平均粗さRzJISが3.05μmであったのに対し、実施例1の摺動面12aの十点平均粗さRzJISは0.25μmであった。なお、実施例1の摺動面12aにおける初晶シリコン粒2の破砕率は20%以下であった。 12 shows the roughness curve of the sliding surface of Comparative Example 1, and FIG. 13 shows the roughness curve of the sliding surface 12a of Example 1. As shown in FIG. 12 and 13, it can be seen that the surface roughness of the sliding surface 12a of Example 1 is smaller than the surface roughness of the sliding surface of Comparative Example 1. FIG. The ten-point average roughness Rz JIS of the sliding surface of Comparative Example 1 was 3.05 μm, while the ten-point average roughness Rz JIS of the sliding surface 12a of Example 1 was 0.25 μm. The crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of Example 1 was 20% or less.

 図14に、比較例1および実施例1について、抜き取り法により測定したオイル消費量を示す。図14からわかるように、実施例1では、比較例1よりもオイル消費量が21%低減された。 Fig. 14 shows the oil consumption measured by the sampling method for Comparative Example 1 and Example 1. As can be seen from FIG. 14, in Example 1, the oil consumption was reduced by 21% as compared to Comparative Example 1.

 図15Aは、比較例1のエンジンが有するシリンダ壁12’の摺動面12a’においてピストンリング42によりオイルOLが掻き落とされる様子を模式的に示す図である。比較例1では、摺動面12a’の表面粗さ(十点平均粗さRzJIS)が比較的大きいので、ピストンリング42により掻き落とされずに摺動面12a’に残留するオイルOLが多い。残留したオイルOLは、火炎FLに晒されて蒸発または燃焼するので、残留するオイルOLが多いと、オイル消費量が多くなる。 FIG. 15A is a diagram schematically showing how the oil OL is scraped off by the piston ring 42 on the sliding surface 12a' of the cylinder wall 12' of the engine of Comparative Example 1. FIG. In Comparative Example 1, since the surface roughness (ten-point average roughness Rz JIS ) of the sliding surface 12a′ is relatively large, much oil OL remains on the sliding surface 12a′ without being scraped off by the piston ring 42 . Since the remaining oil OL is exposed to the flame FL to evaporate or burn, a large amount of the remaining oil OL results in a large amount of oil consumption.

 図15Bは、実施例1のエンジン100が有するシリンダ壁12の摺動面12aにおいてピストンリング42によりオイルOLが掻き落とされる様子を模式的に示す図である。実施例1では、摺動面12aの十点平均粗さRzJISが0.25μmと小さいので、摺動面12aに残留するオイルOLが減ることによってオイル消費量が低減されたと考えられる。 FIG. 15B is a diagram schematically showing how the oil OL is scraped off by the piston ring 42 on the sliding surface 12a of the cylinder wall 12 of the engine 100 of the first embodiment. In Example 1, since the ten-point average roughness Rz JIS of the sliding surface 12a is as small as 0.25 μm, it is considered that the amount of oil OL remaining on the sliding surface 12a is reduced, thereby reducing the oil consumption.

 次に、摩擦抵抗(摩擦ロス)の低減効果を検証した結果を説明する。摺動面12aの十点平均粗さRzJISがそれぞれ0.224μm、0.334μm、0.403μm、0.496μmである実施例2、3、4および5について、摩擦平均有効圧力(FMEP:Friction Mean Effective Pressure)の測定を浮動ライナ法により行った。実施例2、3、4および5の初晶シリコン粒2の破砕率はすべて6~7%であった。FMEPは、1サイクルあたりの摩擦仕事を行程容積で割った値であり、値が大きいほど摩擦力が大きいことを表している。FMEPの測定結果を図16に示す。なお、図16では、FMEPの値として、エンジンの回転数が4400rpm、4800rpmおよび5200rpmの場合の平均値を示している。また、図16には、比較例1のエンジンのFMEP値(120.1kPa)を一点鎖線で示している。 Next, the result of verifying the effect of reducing friction resistance (friction loss) will be described. For Examples 2, 3, 4 and 5 in which the ten-point average roughness Rz JIS of the sliding surface 12a is 0.224 μm, 0.334 μm, 0.403 μm and 0.496 μm, the friction average effective pressure (FMEP: Friction Mean Effective Pressure) was measured by the floating liner method. The crushing ratios of the primary crystal silicon grains 2 of Examples 2, 3, 4 and 5 were all 6 to 7%. FMEP is a value obtained by dividing the frictional work per cycle by the stroke volume, and the larger the value, the greater the frictional force. FIG. 16 shows the measurement results of FMEP. Note that FIG. 16 shows the average values of the FMEP values when the engine speed is 4400 rpm, 4800 rpm and 5200 rpm. Further, in FIG. 16, the FMEP value (120.1 kPa) of the engine of Comparative Example 1 is indicated by a dashed line.

 図16から、十点平均粗さRzJISが小さいほど、FMEPが低減されることがわかり、実施例2~5のように、十点平均粗さRzJISが0.5μm以下であると、比較例1のFMEP値を下回ることがわかる。 From FIG. 16 , it can be seen that the smaller the ten-point average roughness Rz JIS , the more the FMEP is reduced. It can be seen that the FMEP values of Example 1 are below.

 図17に、実施例2および3について、エンジンの回転数が4400rpm、4800rpmおよび5200rpmの場合のFMEP低減率を示す。図17からは、FMEPの低減効果が、低回転数側で高い傾向があることがわかる。 FIG. 17 shows the FMEP reduction rate for Examples 2 and 3 at engine speeds of 4400 rpm, 4800 rpm and 5200 rpm. It can be seen from FIG. 17 that the effect of reducing FMEP tends to be high on the low rotational speed side.

 続いて、摩擦ロスの低減効果の持続性を検証した結果を説明する。図18に、摺動面12aの十点平均粗さRzJISが0.214μm、初晶シリコン粒2の破砕率が20%以下である実施例6について、FMEPの測定を繰り返し行った結果を示す。また、図19に、摺動面の十点平均粗さRzJIS(9回測定後)が0.563μmである比較例2について、FMEPの測定を繰り返し行った結果を示す。 Next, the results of verifying the durability of the effect of reducing friction loss will be described. FIG. 18 shows the results of repeated FMEP measurements for Example 6 in which the sliding surface 12a has a ten-point average roughness Rz JIS of 0.214 μm and a crushing rate of the primary crystal silicon grains 2 is 20% or less. . FIG. 19 shows the results of repeated FMEP measurements for Comparative Example 2 in which the ten-point average roughness Rz JIS (after nine measurements) of the sliding surface is 0.563 μm.

 図18および図19からわかるように、同じタイミング(同じ測定回数)で比較を行うと、すべてのタイミングにおいて、実施例6では、比較例2よりもFMEPが10%以上低減された。例えば、1回目の測定においては、実施例6では比較例2よりもFMEPが17%低減された。また、もっともFMEPの低減効果が小さかった10回目の測定においても10%以上(具体的には10.3%)の低減効果があった。 As can be seen from FIGS. 18 and 19, when comparing at the same timing (the same number of measurements), in Example 6, FMEP was reduced by 10% or more than in Comparative Example 2 at all timings. For example, the FMEP of Example 6 was reduced by 17% compared to Comparative Example 2 in the first measurement. Moreover, even in the tenth measurement, in which the FMEP reduction effect was the smallest, a reduction effect of 10% or more (specifically, 10.3%) was obtained.

 次に、シリンダ壁の相手攻撃性および耐摩耗性を検証した結果を説明する。この検証は、ピストンスカートを想定したタル型テストピースおよびシリンダ壁から切り出したシリンダテストピースを用いた振動摩擦摩耗試験(SRV試験)により行った。SRV試験を、摺動面12aの十点平均粗さRzJISが0.124~0.237(平均すると0.162)μm、初晶シリコン粒2の破砕率が15%である実施例7と、摺動面の十点平均粗さRzJISが1.6~3.2μmである比較例3とについて行った。SRV試験は、油温130℃(浸漬)で、タル型テストピースを一定荷重で摺動させることにより行い、タル型テストピースおよびシリンダテストピースの摩耗高さを測定した。 Next, the result of verifying the aggressiveness and wear resistance of the cylinder wall will be described. This verification was performed by a vibration friction wear test (SRV test) using a barrel-shaped test piece simulating a piston skirt and a cylinder test piece cut from a cylinder wall. The SRV test was performed with Example 7 in which the ten-point average roughness Rz JIS of the sliding surface 12a was 0.124 to 0.237 (0.162 on average) μm, and the crushing rate of the primary crystal silicon grains 2 was 15%. , and Comparative Example 3 in which the ten-point average roughness Rz JIS of the sliding surface was 1.6 to 3.2 μm. The SRV test was performed by sliding the barrel test piece under a constant load at an oil temperature of 130° C. (immersion), and the wear height of the barrel test piece and the cylinder test piece was measured.

 図20に、タル型テストピースの摩耗高さの時間変化を示す。図20から、実施例7では、比較例3よりもタル型テストピースの摩耗高さが小さいことがわかる。試験開始後60分経過時の摩耗高さを比較すると、実施例7では、比較例3よりも摩耗高さを69%低減できた。このように、実施例7ではシリンダ壁12の相手攻撃性が低減されていることが確認された。  Fig. 20 shows the time change of the wear height of the barrel-shaped test piece. 20 that in Example 7, the wear height of the barrel-shaped test piece is smaller than in Comparative Example 3. FIG. Comparing the wear height after 60 minutes from the start of the test, in Example 7, the wear height could be reduced by 69% compared to Comparative Example 3. Thus, in Example 7, it was confirmed that the aggressiveness of the cylinder wall 12 against the opponent was reduced.

 図21に、シリンダテストピースの摩耗高さの時間変化を示す。図21から、実施例7では、比較例3よりもシリンダテストピースの摩耗高さが小さいことがわかる。このように、実施例7ではシリンダ壁12の耐摩耗性が向上していることが確認された。 Fig. 21 shows the time change of the wear height of the cylinder test piece. 21 that in Example 7, the wear height of the cylinder test piece is smaller than in Comparative Example 3. FIG. Thus, in Example 7, it was confirmed that the wear resistance of the cylinder wall 12 was improved.

 実施例7および比較例3について、シリンダとピストンの焼き付きを促進する条件で運転し、運転開始から焼き付き発生までの時間を測定した。図22に、運転開始から焼き付き発生までの時間の測定結果を示す。 For Example 7 and Comparative Example 3, the operation was performed under conditions that promote seizure of the cylinder and piston, and the time from the start of operation to the occurrence of seizure was measured. FIG. 22 shows the measurement results of the time from the start of operation to the occurrence of seizure.

 図22に示すように、実施例7では、比較例3よりも焼き付きまでの時間が約6.5倍長かったことから、実施例7ではシリンダ壁12の耐焼き付き性が向上していることが確認された。 As shown in FIG. 22, in Example 7, the time until seizure occurred was about 6.5 times longer than in Comparative Example 3. Therefore, in Example 7, the seizure resistance of the cylinder wall 12 was improved. confirmed.

 [輸送機器]
 本発明の実施形態によるエンジン100は、各種の輸送機器に好適に用いられる。図23に、本発明の実施形態によるエンジン100を備えた自動二輪車の例を示す。
[Transport equipment]
The engine 100 according to the embodiment of the present invention is suitable for use in various transportation equipment. FIG. 23 shows an example of a motorcycle equipped with an engine 100 according to an embodiment of the invention.

 図23に示す自動二輪車300では、本体フレーム301の前端にヘッドパイプ302が設けられている。ヘッドパイプ302には、フロントフォーク303が車両の左右方向に揺動し得るように取り付けられている。フロントフォーク303の下端には、前輪304が回転可能なように支持されている。 A motorcycle 300 shown in FIG. 23 is provided with a head pipe 302 at the front end of a body frame 301 . A front fork 303 is attached to the head pipe 302 so as to swing in the lateral direction of the vehicle. A front wheel 304 is rotatably supported at the lower end of the front fork 303 .

 本体フレーム301の後端上部から後方に延びるようにシートレール306が取り付けられている。本体フレーム301上に燃料タンク307が設けられており、シートレール306上にメインシート308aおよびタンデムシート308bが設けられている。 A seat rail 306 is attached so as to extend rearward from the upper part of the rear end of the body frame 301 . A fuel tank 307 is provided on the body frame 301, and a main seat 308a and a tandem seat 308b are provided on the seat rails 306. As shown in FIG.

 また、本体フレーム301の後端に、後方へ延びるリアアーム309が取り付けられている。リアアーム309の後端に後輪310が回転可能なように支持されている。 A rear arm 309 extending rearward is attached to the rear end of the body frame 301 . A rear wheel 310 is rotatably supported at the rear end of the rear arm 309 .

 本体フレーム301の中央部には、エンジン100が保持されている。エンジン100の前方には、ラジエータ311が設けられている。エンジン100の排気ポートには排気管312が接続されており、排気管312の後端にマフラー313が取り付けられている。 The engine 100 is held in the central portion of the body frame 301 . A radiator 311 is provided in front of the engine 100 . An exhaust pipe 312 is connected to an exhaust port of the engine 100 and a muffler 313 is attached to the rear end of the exhaust pipe 312 .

 エンジン100には変速機315が連結されている。変速機315の出力軸316に駆動スプロケット317が取り付けられている。駆動スプロケット317は、チェーン318を介して後輪310の後輪スプロケット319に連結されている。変速機315およびチェーン318は、エンジン100により発生した動力を駆動輪に伝える伝達機構として機能する。 A transmission 315 is connected to the engine 100 . A drive sprocket 317 is attached to the output shaft 316 of the transmission 315 . Drive sprocket 317 is connected to rear wheel sprocket 319 of rear wheel 310 via chain 318 . Transmission 315 and chain 318 function as a transmission mechanism that transmits the power generated by engine 100 to the drive wheels.

 自動二輪車300は、本発明の実施形態によるエンジン100を備えているので、燃費の向上、オイル消費量の低減、触媒の性能劣化の抑制等の効果が得られる。 Since the motorcycle 300 includes the engine 100 according to the embodiment of the present invention, effects such as improved fuel efficiency, reduced oil consumption, and suppressed catalyst performance deterioration can be obtained.

 なお、ここでは輸送機器の例として自動二輪車を例示したが、本発明の実施形態によるエンジンは、自動二輪車に限定されず、自動四輪車や自動三輪車、船舶等の他の輸送機器にも好適に用いられる。 Although a motorcycle is illustrated here as an example of transportation equipment, the engine according to the embodiment of the present invention is not limited to motorcycles, and is also suitable for other transportation equipment such as four-wheeled motor vehicles, three-wheeled motor vehicles, and ships. used for

 上述したように、本発明の実施形態による内燃機関100は、アルミニウム合金から形成されたピストン40と、ピストン40が摺動する摺動面12aを含むシリンダ壁12を有するシリンダブロック10とを備える。シリンダブロック10は、シリコンを含むアルミニウム合金から形成されており、摺動面12aに複数の初晶シリコン粒2を有する。摺動面12aの十点平均粗さRzJISは、0.5μm以下であり、摺動面12aにおける複数の初晶シリコン粒2の破砕率は、20%以下である。 As described above, the internal combustion engine 100 according to the embodiment of the present invention includes the piston 40 made of aluminum alloy and the cylinder block 10 having the cylinder wall 12 including the sliding surface 12a on which the piston 40 slides. The cylinder block 10 is made of an aluminum alloy containing silicon, and has a plurality of primary crystal silicon grains 2 on a sliding surface 12a. The ten-point average roughness Rz JIS of the sliding surface 12a is 0.5 μm or less, and the crushing rate of the plurality of primary crystal silicon grains 2 on the sliding surface 12a is 20% or less.

 本発明の実施形態による内燃機関100では、シリンダ壁12の摺動面12aの十点平均粗さRzJISが0.5μm以下である。つまり、鏡面仕上げがなされていると言えるほど、摺動面12aの凹凸が小さい。そのため、摺動面12aに均一な油膜が形成され、摩擦抵抗を低減することができる。それ故、摺動ロスを低減し、燃費を向上させることができる。また、ピストンリング42に掻き残されてシリンダ壁12表面に残留するオイル(潤滑油)が減るので、オイル消費量が低減されるとともに触媒の性能の劣化が抑制される。さらに、摺動面12aの凹凸が小さいことにより、シリンダ壁12の相手攻撃性(ピストンリング42やピストンスカート44に対する攻撃性)も低減される。 In the internal combustion engine 100 according to the embodiment of the present invention, the ten-point average roughness Rz JIS of the sliding surface 12a of the cylinder wall 12 is 0.5 μm or less. That is, the unevenness of the sliding surface 12a is so small that it can be said that the sliding surface 12a is mirror-finished. Therefore, a uniform oil film is formed on the sliding surface 12a, and frictional resistance can be reduced. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil (lubricating oil) left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced.

 なお、摺動面12aの表面粗さが小さくなると、摺動面12aにおけるオイル保持量が減って耐焼き付き性が低下することが懸念される。しかしながら、本発明の実施形態による内燃機関100では、摺動面12aには高硬度の初晶シリコン粒2が存在しているので、アルミニウム合金基材(マトリックス)1にかかる面圧が低下し、耐焼き付き性を十分に確保することができる。さらに、クロスハッチのような溝が不要であり、オイルが溝に逃げないようにすることができるので、油膜圧力が高くなって流体潤滑状態が好適に実現される。このことによっても耐焼き付き性が確保される。 It should be noted that if the surface roughness of the sliding surface 12a is reduced, there is concern that the amount of oil retained on the sliding surface 12a will be reduced and the seizure resistance will be reduced. However, in the internal combustion engine 100 according to the embodiment of the present invention, since the primary crystal silicon grains 2 with high hardness are present on the sliding surface 12a, the surface pressure applied to the aluminum alloy base material (matrix) 1 is reduced, Sufficient seizure resistance can be ensured. Furthermore, since a groove such as a crosshatch is not required and the oil can be prevented from escaping into the groove, the oil film pressure is increased and a fluid lubrication state can be suitably realized. This also ensures the seizure resistance.

 また、本発明の実施形態による内燃機関100では、シリンダ壁12の摺動面12aにおける初晶シリコン粒2の破砕率が20%以下であるので、破砕されていない(言わば健全な)初晶シリコン粒2が摺動面12aに多く露出している。このことによっても、相手攻撃性が低減される。さらに、ピストンスカート44やピストンリング42との接触荷重が、露出している健全な初晶シリコン粒2に分散されることにより、シリンダ壁12の耐焼き付き性および耐摩耗性が向上する。 Further, in the internal combustion engine 100 according to the embodiment of the present invention, since the crushing rate of the primary crystal silicon grains 2 on the sliding surface 12a of the cylinder wall 12 is 20% or less, Many grains 2 are exposed on the sliding surface 12a. This also reduces opponent aggression. Furthermore, the contact load with the piston skirt 44 and the piston ring 42 is distributed to the exposed healthy primary crystal silicon grains 2, so that the seizure resistance and wear resistance of the cylinder wall 12 are improved.

 ある実施形態では、摺動面12aの算術平均粗さRaは、0.05μm未満である。 In one embodiment, the arithmetic mean roughness Ra of the sliding surface 12a is less than 0.05 μm.

 シリンダ壁12の摺動面12aの算術平均粗さRaが0.05μm未満であると、摺動面12aの凹凸が小さいので、摺動面12aに均一な油膜が形成され、摩擦抵抗を低減することができる。それ故、摺動ロスを低減し、燃費を向上させることができる。また、ピストンリング42に掻き残されてシリンダ壁12表面に残留するオイルが減るので、オイル消費量が低減されるとともに触媒の性能の劣化が抑制される。さらに、摺動面12aの凹凸が小さいことにより、シリンダ壁12の相手攻撃性(ピストンリング42やピストンスカート44に対する攻撃性)も低減される。 When the arithmetic mean roughness Ra of the sliding surface 12a of the cylinder wall 12 is less than 0.05 μm, the unevenness of the sliding surface 12a is small, so that a uniform oil film is formed on the sliding surface 12a to reduce the frictional resistance. be able to. Therefore, sliding loss can be reduced and fuel efficiency can be improved. In addition, since the amount of oil left behind on the piston ring 42 and remaining on the surface of the cylinder wall 12 is reduced, the amount of oil consumed is reduced and the deterioration of catalyst performance is suppressed. Furthermore, since the unevenness of the sliding surface 12a is small, the aggressiveness of the cylinder wall 12 (aggressiveness to the piston ring 42 and the piston skirt 44) is also reduced.

 ある実施形態では、摺動面12aにおいて複数の初晶シリコン粒2が占める面積の比率が8%以上である。 In one embodiment, the ratio of the area occupied by the plurality of primary crystal silicon grains 2 on the sliding surface 12a is 8% or more.

 摺動面12aにおいて初晶シリコン粒2が占める面積の比率が8%以上であると、合金基材1にかかる面圧が低下するので、耐焼き付き性および耐摩耗性が向上する。 When the ratio of the area occupied by the primary crystal silicon grains 2 in the sliding surface 12a is 8% or more, the surface pressure applied to the alloy base material 1 is reduced, so the seizure resistance and wear resistance are improved.

 ある実施形態では、摺動面12aを0.1mm×0.1mmの複数の升目Sqに区切り、升目Sqの総数に対する、初晶シリコン粒2が存在しない升目Sq2の数の比率を、空白率と呼ぶとき、空白率が55.5%以下である。 In one embodiment, the sliding surface 12a is divided into a plurality of squares Sq of 0.1 mm×0.1 mm, and the ratio of the number of squares Sq2 in which the primary crystal silicon grains 2 are not present to the total number of squares Sq is defined as the blank ratio. When called, the blank rate is 55.5% or less.

 「空白率」は、初晶シリコン粒2の分散具合の指標である。空白率が低いほど、初晶シリコン粒2がよく分散されていることを表している。摺動面12aの空白率が55.5%以下であると、合金基材1にかかる面圧が十分に低下するので、耐焼き付き性および耐摩耗性が向上する。 "Blank ratio" is an index of how the primary crystal silicon grains 2 are dispersed. The lower the void ratio, the better the primary crystal silicon grains 2 are dispersed. When the blank ratio of the sliding surface 12a is 55.5% or less, the surface pressure applied to the alloy base material 1 is sufficiently reduced, thereby improving the seizure resistance and wear resistance.

 ある実施形態では、シリンダブロック10は、シリコンを15質量%以上25質量%以下含むアルミニウム合金から形成されている。 In one embodiment, the cylinder block 10 is made of an aluminum alloy containing 15% by mass or more and 25% by mass or less of silicon.

 シリンダブロック10の耐摩耗性および強度を十分に高くする観点からは、シリンダブロック10の材料であるアルミニウム合金のシリコン含有率は、15質量%以上25質量%以下であることが好ましい。シリコン含有率が15質量%以上であると、初晶シリコン粒2を十分に多く晶出させることができ、シリンダブロック10の耐摩耗性を十分に向上させることができる。シリコン含有率が25質量%以下であると、シリンダブロック10の強度を十分に高く維持することができる。 From the viewpoint of sufficiently increasing the wear resistance and strength of the cylinder block 10, the silicon content of the aluminum alloy, which is the material of the cylinder block 10, is preferably 15% by mass or more and 25% by mass or less. When the silicon content is 15% by mass or more, a sufficiently large amount of primary crystal silicon grains 2 can be crystallized, and the wear resistance of the cylinder block 10 can be sufficiently improved. When the silicon content is 25% by mass or less, the strength of the cylinder block 10 can be maintained sufficiently high.

 ある実施形態では、複数の初晶シリコン粒2の平均結晶粒径は、8μm以上50μm以下である。 In one embodiment, the average crystal grain size of the plurality of primary crystal silicon grains 2 is 8 μm or more and 50 μm or less.

 初晶シリコン粒2の平均結晶粒径を8μm以上50μm以下の範囲内にすることによって、シリンダブロック10の耐摩耗性をいっそう向上させることができる。 The wear resistance of the cylinder block 10 can be further improved by setting the average crystal grain size of the primary crystal silicon grains 2 within the range of 8 μm or more and 50 μm or less.

 初晶シリコン粒2の平均結晶粒径が50μmを超える場合、摺動面12aの単位面積当りの初晶シリコン粒2の個数が少ない。そのため、内燃機関100の運転時に初晶シリコン粒2のそれぞれに大きな荷重がかかり、初晶シリコン粒2が破砕されることがある。破砕された初晶シリコン粒2の破片は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。 When the average crystal grain size of the primary crystal silicon grains 2 exceeds 50 μm, the number of primary crystal silicon grains 2 per unit area of the sliding surface 12a is small. Therefore, a large load is applied to each of the primary crystal silicon grains 2 during operation of the internal combustion engine 100, and the primary crystal silicon grains 2 may be crushed. Fragments of the crushed primary-crystal silicon grains 2 act as abrasive particles, so there is a risk that the sliding surface 12a will be greatly worn.

 また、初晶シリコン粒2の平均結晶粒径が8μm未満である場合、初晶シリコン粒2の、マトリックス1中に埋まっている部分が小さい。そのため、内燃機関100の運転時には、初晶シリコン粒2の脱落が起こりやすい。脱落した初晶シリコン粒2は、研摩粒子として作用してしまうため、摺動面12aが大きく摩耗するおそれがある。 Further, when the average crystal grain size of the primary-crystal silicon grains 2 is less than 8 μm, the portion of the primary-crystal silicon grains 2 buried in the matrix 1 is small. Therefore, during operation of the internal combustion engine 100, the primary crystal silicon grains 2 are likely to fall off. Since the dropped primary-crystal silicon grains 2 act as abrasive particles, the sliding surface 12a may be greatly worn.

 これに対し、初晶シリコン粒2の平均結晶粒径が8μm以上50μm以下である場合、初晶シリコン粒2は摺動面12aの単位面積あたりに十分な数存在する。そのため、内燃機関100の運転時に各初晶シリコン粒2にかかる荷重は相対的に小さくなるため、初晶シリコン粒2の破砕が抑制される。また、初晶シリコン粒2のマトリックス1に埋まっている部分が十分に大きいので、初晶シリコン粒2の脱落が低減され、そのため、脱落した初晶シリコン粒2による摺動面12aの摩耗も抑制される。 On the other hand, when the average crystal grain size of the primary crystal silicon grains 2 is 8 μm or more and 50 μm or less, a sufficient number of primary crystal silicon grains 2 are present per unit area of the sliding surface 12a. Therefore, since the load applied to each primary-crystal silicon grain 2 during operation of the internal combustion engine 100 is relatively small, crushing of the primary-crystal silicon grain 2 is suppressed. In addition, since the portion of the primary-crystal silicon grains 2 embedded in the matrix 1 is sufficiently large, the drop-off of the primary-crystal silicon grains 2 is reduced, and wear of the sliding surface 12a due to the dropped-off primary-crystal silicon grains 2 is also suppressed. be done.

 ある実施形態では、ピストン40は、ピストン本体41と、ピストン本体41の外周部に取り付けられた複数のピストンリング42とを有し、複数のピストンリング42のそれぞれは、外周部にダイヤモンドライクカーボン層42Dを有する。 In one embodiment, the piston 40 has a piston body 41 and a plurality of piston rings 42 attached to the outer periphery of the piston body 41, each of the plurality of piston rings 42 having a diamond-like carbon layer on the outer periphery. 42D.

 各ピストンリング42が外周部にダイヤモンドライクカーボン層42Dを有していると、シリンダ壁12に対するピストンリング42によるスカッフをより確実に防止することができる。 If each piston ring 42 has a diamond-like carbon layer 42D on the outer peripheral portion, scuffing of the cylinder wall 12 by the piston ring 42 can be prevented more reliably.

 ある実施形態では、ピストン40は、ピストンヘッド43と、ピストンヘッド43の外周部から延びるピストンスカート44とを有し、ピストンスカート44は、外周面の少なくとも一部に形成された樹脂層rlまたはめっき層を有する。 In one embodiment, the piston 40 has a piston head 43 and a piston skirt 44 extending from the outer peripheral portion of the piston head 43, and the piston skirt 44 is a resin layer rl or a plating layer formed on at least a portion of the outer peripheral surface. have layers.

 ピストンスカート44が、外周面の少なくとも一部に形成された樹脂層rlまたはめっき層を有していると、ピストン40の耐摩耗性および耐焼き付き性を向上させることができる。 When the piston skirt 44 has a resin layer rl or a plating layer formed on at least a portion of the outer peripheral surface, the wear resistance and seizure resistance of the piston 40 can be improved.

 本発明の実施形態による輸送機器は、上述したいずれかの構成を有する内燃機関100を備える。 A transportation device according to an embodiment of the present invention includes an internal combustion engine 100 having any of the configurations described above.

 本発明の実施形態による内燃機関100は、各種の輸送機器に好適に用いられる。 The internal combustion engine 100 according to the embodiment of the present invention is suitable for use in various types of transportation equipment.

 本発明の実施形態によると、シリコンを含むアルミニウム合金から形成されたシリンダブロックを備えた内燃機関において、耐焼き付き性を確保しつつ、シリンダ壁の摩擦抵抗およびオイル消費量を低減することができる。本発明の実施形態による内燃機関は、自動二輪車をはじめとする各種の輸送機器に好適に用いられる。 According to the embodiment of the present invention, in an internal combustion engine having a cylinder block made of an aluminum alloy containing silicon, it is possible to reduce frictional resistance and oil consumption of the cylinder wall while ensuring seizure resistance. INDUSTRIAL APPLICABILITY An internal combustion engine according to an embodiment of the present invention is suitable for use in various types of transportation equipment including motorcycles.

 1:マトリックス(合金基材)、2:初晶シリコン粒、2a:初晶シリコン粒の破砕した部分、2b:初晶シリコン粒の破砕していない部分、10:シリンダブロック、11:シリンダボア、12:シリンダ壁、12a:摺動面(シリンダ壁の内周面)、13:外壁、14:ウォータージャケット、20:シリンダヘッド、21:吸気ポート、22:排気ポート、23:吸気弁、24:排気弁、30:クランクケース、40:ピストン、41:ピストン本体、42:ピストンリング、42a:トップリング、42b:セカンドリング、42c:サードリング、42D:ダイヤモンドライクカーボン層、43:ピストンヘッド、44:ピストンスカート、48:ピストンピン、50:クランクシャフト、51:クランクピン、52:クランクアーム、60:コンロッド、61:ロッド本体部、62:小端部、63:大端部、70:燃焼室、100:エンジン(内燃機関)、300:自動二輪車、Sq:升目、Sq1:初晶シリコン粒が存在する升目、Sq2:初晶シリコン粒が存在しない升目、bl:基材、rl:樹脂層 1: matrix (alloy base material), 2: primary crystal silicon grains, 2a: crushed portion of primary crystal silicon grains, 2b: uncrushed portion of primary crystal silicon grains, 10: cylinder block, 11: cylinder bore, 12 : Cylinder wall 12a: Sliding surface (inner peripheral surface of cylinder wall) 13: Outer wall 14: Water jacket 20: Cylinder head 21: Intake port 22: Exhaust port 23: Intake valve 24: Exhaust valve, 30: crankcase, 40: piston, 41: piston body, 42: piston ring, 42a: top ring, 42b: second ring, 42c: third ring, 42D: diamond-like carbon layer, 43: piston head, 44: Piston skirt 48: Piston pin 50: Crankshaft 51: Crank pin 52: Crank arm 60: Connecting rod 61: Rod main body 62: Small end 63: Large end 70: Combustion chamber 100: engine (internal combustion engine), 300: motorcycle, Sq: square, Sq1: square in which primary crystal silicon particles are present, Sq2: square in which primary crystal silicon particles are not present, bl: base material, rl: resin layer

Claims (9)

 アルミニウム合金から形成されたピストンと、
 前記ピストンが摺動する摺動面を含むシリンダ壁を有するシリンダブロックと、
を備え、
 前記シリンダブロックは、シリコンを含むアルミニウム合金から形成されており、前記摺動面に複数の初晶シリコン粒を有し、
 前記摺動面の十点平均粗さRzJISは、0.5μm以下であり、
 前記摺動面における前記複数の初晶シリコン粒の破砕率は、20%以下である、内燃機関。
a piston formed from an aluminum alloy;
a cylinder block having a cylinder wall including a sliding surface on which the piston slides;
with
The cylinder block is made of an aluminum alloy containing silicon, and has a plurality of primary crystal silicon grains on the sliding surface,
The ten-point average roughness Rz JIS of the sliding surface is 0.5 μm or less,
The internal combustion engine, wherein the crushing rate of the plurality of primary crystal silicon grains on the sliding surface is 20% or less.
 前記摺動面の算術平均粗さRaは、0.05μm未満である、請求項1に記載の内燃機関。 The internal combustion engine according to claim 1, wherein the sliding surface has an arithmetic mean roughness Ra of less than 0.05 µm.  前記摺動面において前記複数の初晶シリコン粒が占める面積の比率は8%以上である、請求項1または2に記載の内燃機関。 The internal combustion engine according to claim 1 or 2, wherein the ratio of the area occupied by the plurality of primary crystal silicon grains on the sliding surface is 8% or more.  前記摺動面を0.1mm×0.1mmの複数の升目に区切り、升目の総数に対する、初晶シリコン粒が存在しない升目の数の比率を、空白率と呼ぶとき、
 前記空白率が55.5%以下である、請求項1から3のいずれかに記載の内燃機関。
When the sliding surface is divided into a plurality of squares of 0.1 mm x 0.1 mm, and the ratio of the number of squares in which primary crystal silicon grains are not present to the total number of squares is called a blank ratio,
4. The internal combustion engine according to any one of claims 1 to 3, wherein said blank ratio is 55.5% or less.
 前記シリンダブロックは、シリコンを15質量%以上25質量%以下含むアルミニウム合金から形成されている、請求項1から4のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 4, wherein said cylinder block is made of an aluminum alloy containing 15% by mass or more and 25% by mass or less of silicon.  前記複数の初晶シリコン粒の平均結晶粒径は、8μm以上50μm以下である、請求項1から5のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 5, wherein the average crystal grain size of the plurality of primary crystal silicon grains is 8 µm or more and 50 µm or less.  前記ピストンは、ピストン本体と、前記ピストン本体の外周部に取り付けられた複数のピストンリングとを有し、
 前記複数のピストンリングのそれぞれは、外周部にダイヤモンドライクカーボン層を有する、請求項1から6のいずれかに記載の内燃機関。
The piston has a piston body and a plurality of piston rings attached to the outer periphery of the piston body,
7. The internal combustion engine according to any one of claims 1 to 6, wherein each of said plurality of piston rings has a diamond-like carbon layer on its outer peripheral portion.
 前記ピストンは、ピストンヘッドと、前記ピストンヘッドの外周部から延びるピストンスカートとを有し、
 前記ピストンスカートは、外周面の少なくとも一部に形成された樹脂層またはめっき層を有する、請求項1から7のいずれかに記載の内燃機関。
The piston has a piston head and a piston skirt extending from the outer circumference of the piston head,
8. The internal combustion engine according to any one of claims 1 to 7, wherein said piston skirt has a resin layer or a plating layer formed on at least part of its outer peripheral surface.
 請求項1から8のいずれかに記載の内燃機関を備えた輸送機器。 A transportation device equipped with the internal combustion engine according to any one of claims 1 to 8.
PCT/JP2021/045976 2021-12-14 2021-12-14 Internal combustion engine and transportation device WO2023112125A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21957737.6A EP4219929A4 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device
PCT/JP2021/045976 WO2023112125A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045976 WO2023112125A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Publications (1)

Publication Number Publication Date
WO2023112125A1 true WO2023112125A1 (en) 2023-06-22

Family

ID=86774081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045976 WO2023112125A1 (en) 2021-12-14 2021-12-14 Internal combustion engine and transportation device

Country Status (2)

Country Link
EP (1) EP4219929A4 (en)
WO (1) WO2023112125A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253553A (en) * 1988-04-01 1989-10-09 Honda Motor Co Ltd Combination of internal combustion engine cylinder sleeve and piston
JPH0788711A (en) * 1993-09-17 1995-04-04 Toshiba Tungaloy Co Ltd Bore boring method for aluminum cylinder block
JPH10331970A (en) * 1997-06-04 1998-12-15 Nissan Motor Co Ltd Piston and piston ring groove surface improving method
JP2002221077A (en) * 2001-01-29 2002-08-09 Nissan Motor Co Ltd Cylinder block and its honing work method
JP2003013163A (en) * 2001-07-03 2003-01-15 Toyota Motor Corp Powder aluminum alloy sliding member and combination of cylinder and piston ring
WO2004002658A1 (en) 2002-06-26 2004-01-08 Yamaha Hatsudoki Kabushiki Kaisha Method and device for vacuum die casting of aluminum alloy, and aluminum alloy product
JP2004268179A (en) 2003-03-06 2004-09-30 Nihon Micro Coating Co Ltd Polishing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059404A (en) * 2015-02-23 2018-04-12 ヤマハ発動機株式会社 Engine, cylinder body member, and vehicle
DE102015006498A1 (en) * 2015-05-22 2016-11-24 Mahle International Gmbh Cylinder bore for a cylinder housing of an internal combustion engine and arrangement of such a cylinder bore and a piston

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253553A (en) * 1988-04-01 1989-10-09 Honda Motor Co Ltd Combination of internal combustion engine cylinder sleeve and piston
JPH0788711A (en) * 1993-09-17 1995-04-04 Toshiba Tungaloy Co Ltd Bore boring method for aluminum cylinder block
JPH10331970A (en) * 1997-06-04 1998-12-15 Nissan Motor Co Ltd Piston and piston ring groove surface improving method
JP2002221077A (en) * 2001-01-29 2002-08-09 Nissan Motor Co Ltd Cylinder block and its honing work method
JP2003013163A (en) * 2001-07-03 2003-01-15 Toyota Motor Corp Powder aluminum alloy sliding member and combination of cylinder and piston ring
WO2004002658A1 (en) 2002-06-26 2004-01-08 Yamaha Hatsudoki Kabushiki Kaisha Method and device for vacuum die casting of aluminum alloy, and aluminum alloy product
JP2004268179A (en) 2003-03-06 2004-09-30 Nihon Micro Coating Co Ltd Polishing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219929A4

Also Published As

Publication number Publication date
EP4219929A4 (en) 2024-01-10
EP4219929A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
CN1210427C (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing same, and combination of piston ring and cylinder block
US8047174B2 (en) Internal combustion engine component and method for producing the same
EP2138695A2 (en) Cylinder block, internal combustion engine, transportation apparatus, and method for producing cylinder block
KR20030077967A (en) Cylinder liner with its inner peripheral surface formed with surface treatment layer, and method for machining to the surface treatment layer
US9850846B1 (en) Cylinder liner and method of forming the same
JP2010151139A (en) Engine component and method for manufacturing the same
JP2007284706A (en) Sliding material
CN102678369A (en) Linerless engine
WO2023112125A1 (en) Internal combustion engine and transportation device
WO2021250859A1 (en) Cylinder liner and cylinder bore
WO2023112124A1 (en) Internal combustion engine and transportation device
WO2023112123A1 (en) Internal combustion engine and transport equipment
EP3263877B1 (en) Engine, cylinder body member, and vehicle
CN1101702A (en) Reciprocating-type compressor
WO2016136034A1 (en) Engine, cylinder body member, and vehicle
JP3891732B2 (en) Sliding member
JP6339812B2 (en) piston ring
EP3263878B1 (en) Air-cooled engine, cylinder body member for air-cooled engine, and vehicle equipped with air-cooled engine
WO2021161728A1 (en) Sliding mechanism
PL240847B1 (en) Gray cast iron for automotive castings and method of shaping the geometrical structure of the cast iron surface, in particular the surface of automotive castings made of this gray cast iron
JP2002241879A (en) Extruded aluminum alloy material for cylinder liner and cylinder liner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021957737

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP