WO2023108963A1 - 一种锂离子电池 - Google Patents
一种锂离子电池 Download PDFInfo
- Publication number
- WO2023108963A1 WO2023108963A1 PCT/CN2022/086541 CN2022086541W WO2023108963A1 WO 2023108963 A1 WO2023108963 A1 WO 2023108963A1 CN 2022086541 W CN2022086541 W CN 2022086541W WO 2023108963 A1 WO2023108963 A1 WO 2023108963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- ion battery
- positive electrode
- lithium ion
- battery according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the field of batteries, for example, to a lithium-ion battery.
- Lithium-ion battery refers to a secondary battery that can repeatedly deintercalate lithium ions between the positive and negative electrodes, so it is also called “rocking chair battery”. It is a new type of green energy battery successfully developed in the 21st century. Lithium-ion batteries are now mainly used in mobile phones, digital cameras, notebook computers, mobile power supplies, and electric vehicles, among which the field of electric vehicles has broad prospects for development.
- the current lithium-ion power battery has many advantages such as high energy density, high voltage, long cycle, long storage, no memory effect, high temperature resistance, and severe cold resistance.
- the structure of lithium-ion power batteries is divided into winding type and laminated type.
- the order of bare cells is positive electrode, separator, and negative electrode.
- the electrolyte is injected and sealed to make a finished battery cell.
- the cycle performance and charging speed performance of lithium-ion batteries are required to be further improved. Therefore, how to improve the fast charging performance of lithium-ion batteries while ensuring their cycle performance and safety performance is an urgent technical problem to be solved.
- the present disclosure provides a lithium ion battery.
- the present disclosure provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
- the positive pole piece satisfies: 0.35 ⁇ (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) ⁇ 11.95, such as 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 11.8 or 11.9, etc., wherein, Ds is the lithium ion solid phase diffusion coefficient in the positive pole piece, and D50 is the positive pole piece
- Ds is the lithium ion solid phase diffusion coefficient in the positive pole piece
- D50 is the positive pole piece
- CW is the areal density of the electrode layer in the positive electrode sheet
- PD is the compacted density of the positive electrode sheet.
- the provided positive electrode sheet includes a positive electrode active material, a conductive agent and a binder; in the positive electrode sheet, the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphite ethylene, etc., the binder includes but not limited to polyvinylidene fluoride or polytetrafluoroethylene, etc.
- the provided negative electrode sheet includes a negative electrode active material, a conductive agent and a binder; in the negative electrode sheet, the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphite vinyl, etc., the binder includes but not limited to styrene-butadiene rubber, sodium carboxymethyl cellulose or polyacrylic acid, etc.
- the preparation method of the provided positive electrode sheet and negative electrode sheet which can be obtained by using a conventional homogenate coating method.
- the source of the provided separator and electrolyte is not limited, and for example, it may be a conventional product applied in a lithium-ion battery.
- the dynamics of the positive and negative electrodes of the lithium-ion battery can be optimally matched during the fast charging process, ensuring The lithium-ion battery has a high charging capacity, and at the same time ensures that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
- the design of the positive electrode sheet needs to combine the characteristics of the positive electrode ion diffusion coefficient, and reasonably design the particle size, surface density, and compaction density of the material to increase the diffusion rate of lithium ions in the positive electrode sheet and ensure that the lithium-ion battery has a high charging capacity. , while ensuring that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
- the Ds ranges from 10 -10 to 10 -13 cm 2 /S, such as 1 ⁇ 10 -10 cm 2 /S, 2 ⁇ 10 -10 cm 2 /S, 3 ⁇ 10 -10 cm 2 /S, 4 ⁇ 10 -10 cm 2 /S, 5 ⁇ 10 -10 cm 2 /S, 6 ⁇ 10 -10 cm 2 /S, 7 ⁇ 10 -10 cm 2 /S, 8 ⁇ 10 -10 cm 2 /S, 9 ⁇ 10 -10 cm 2 /S, 9.9 ⁇ 10 -10 cm 2 /S, 3 ⁇ 10 -11 cm 2 /S, 4 ⁇ 10 -11 cm 2 /S, 5 ⁇ 10 -11 cm 2 /S, 1 ⁇ 10-12 cm 2 /S, 2 ⁇ 10-12 cm 2 /S, 6 ⁇ 10-12 cm 2 /S, 7 ⁇ 10-12 cm 2 /S, 8 ⁇ 10-12 cm 2 /S, 9 ⁇ 10-12 cm 2 /S, 1 ⁇ 10-13 cm 2 /S, 2 ⁇ 10-13 cm 2 /S, 3 ⁇ 10-13 cm 2 /S
- the diffusion rate of lithium ions in the material will be slow, especially at high rates or at low temperatures, which will further reduce the polarization of the battery, making it difficult for the positive electrode to intercalate lithium, resulting in partial Lithium ions are directly reduced and precipitated on the surface of the negative electrode to form lithium dendrites, resulting in loss of lithium-ion battery capacity.
- the continuous growth of lithium dendrites will also pierce the isolation film, forming a major safety hazard, and the continuous growth of lithium dendrites also consumes too much lithium ions. The capacity will decay too quickly during the process.
- the range of D50 is 2.5-20 ⁇ m, such as 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m , 19 ⁇ m or 20 ⁇ m, etc.
- the range of D50 is 3-13 ⁇ m.
- the median particle size D50 of the positive electrode active material falls within the range of 3-13 ⁇ m, it can avoid too small a particle size and cause more side reactions in the electrolyte to affect the performance of the lithium-ion battery , It can also avoid that the particle size is too large to hinder the transmission of lithium ions and affect the performance of lithium-ion batteries.
- the CW ranges from 10 to 30 mg/cm 2 , such as 10 mg/cm 2 , 11 mg/cm 2 , 12 mg/cm 2 , 13 mg/cm 2 , 14 mg/cm 2 , 15 mg/cm 2 , 16mg/cm 2 , 17mg/cm 2 , 18mg/cm 2 , 19mg/cm 2 , 20mg/cm 2 , 21mg/cm 2 , 22mg/cm 2 , 23mg/cm 2 , 24mg/cm 2 , 25mg/cm 2 , 26mg/cm 2 , 27mg/cm 2 , 28mg/cm 2 , 29mg/cm 2 or 30mg/cm 2 etc.
- the CW ranges from 12 to 28 mg/cm 2 .
- the migration distance of lithium ions in the positive electrode membrane is relatively short, which is beneficial to improve the power characteristics of the battery. At the same time, it can increase the current density of the pole piece and increase the energy density of the battery.
- the range of the PD is 2-4.4g/cm 3 , such as 2g/cm 3 , 2.1g/cm 3 , 2.2g/cm 3 , 2.3g/cm 3 , 2.4g/cm 3 , 2.5g/cm 3 , 2.6g/cm 3 , 2.7g/cm 3 , 2.8g/cm 3 , 2.9g/cm 3 , 3g/cm 3 , 3.1g/cm 3 , 3.2g/cm 3 , 3.3g /cm 3 cm 3 , 3.4g/cm 3 , 3.5g/cm 3 , 3.6g/cm 3 , 3.7g/cm 3 , 3.8g/cm 3 , 3.9g/cm 3 , 4g/cm 3 , 4.1g/cm 3 , 4.2g/cm 3 , 4.3g/cm 3 or 4.4g/cm 3 etc.
- the PD ranges from 2.8 to 3.6 g/cm 3 .
- the integrity of the positive electrode active material particles is higher, avoiding the increase of side reactions caused by the crushing of the particles by rolling, while the particles The electrical contact between them is better, which is conducive to the migration of lithium ions.
- the positive active material in the positive electrode sheet includes lithium iron phosphate positive electrode material and/or ternary positive electrode material.
- said a can be 0.9, 0.95, 1, 1.05, 1.1, 1.15 or 1.2 etc.
- said x can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9 etc.
- said y can be is 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9, etc.
- the z can be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9, etc.
- the negative electrode active material in the negative electrode sheet includes any one or a combination of at least two of graphite, hard carbon, or silicon-oxygen materials.
- the lithium ion battery is a lithium ion power battery.
- the preparation method of the lithium-ion battery provided in the present disclosure includes but not limited to the winding method and the stacking method, that is, the preparation method of the conventional lithium-ion battery, and the present disclosure is applicable to both.
- the present disclosure provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
- the positive pole piece satisfies: 0.35 ⁇ (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) ⁇ 11.95, such as 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 11.8 or 11.9, etc., wherein, Ds is the lithium ion solid phase diffusion coefficient in the positive pole piece, and D50 is the positive pole piece
- Ds is the lithium ion solid phase diffusion coefficient in the positive pole piece
- D50 is the positive pole piece
- CW is the areal density of the electrode layer in the positive electrode sheet
- PD is the compacted density of the positive electrode sheet.
- the provided positive electrode sheet includes a positive electrode active material, a conductive agent and a binder; in the positive electrode sheet, the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphite ethylene, etc., the binder includes but not limited to polyvinylidene fluoride or polytetrafluoroethylene, etc.
- the provided negative electrode sheet includes a negative electrode active material, a conductive agent and a binder; in the negative electrode sheet, the conductive agent includes but is not limited to acetylene black, Ketjen black, carbon nanotubes or graphite vinyl, etc., the binder includes but not limited to styrene-butadiene rubber, sodium carboxymethyl cellulose or polyacrylic acid, etc.
- the preparation method of the provided positive electrode sheet and negative electrode sheet can be obtained by using a conventional homogenate coating method.
- the provided separator and electrolyte are conventional products used in lithium-ion batteries.
- the dynamics of the positive and negative electrodes of the lithium-ion battery can be optimally matched during the fast charging process, ensuring The lithium-ion battery has a high charging capacity, and at the same time ensures that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
- the design of the positive electrode sheet needs to combine the characteristics of the positive electrode ion diffusion coefficient, and reasonably design the particle size, surface density, and compaction density of the material to increase the diffusion rate of lithium ions in the positive electrode sheet and ensure that the lithium-ion battery has a high charging capacity. , while ensuring that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
- the Ds ranges from 10 -10 to 10 -13 cm 2 /S.
- the diffusion rate of lithium ions in the material will be slow, especially at high rates or at low temperatures, which will further reduce the polarization of the battery, making it difficult for the positive electrode to intercalate lithium, resulting in partial Lithium ions are directly reduced and precipitated on the surface of the negative electrode to form lithium dendrites, resulting in loss of lithium-ion battery capacity.
- the continuous growth of lithium dendrites will also pierce the isolation film, forming a major safety hazard, and the continuous growth of lithium dendrites also consumes too much lithium ions. The capacity will decay too quickly during the process.
- the range of D50 is 2.5-20 ⁇ m.
- the range of D50 is 3-13 ⁇ m.
- the median particle size D50 of the positive electrode active material falls within the range of 3-13 ⁇ m, it can avoid too small a particle size and cause more side reactions in the electrolyte to affect the performance of the lithium-ion battery , It can also avoid that the particle size is too large to hinder the transmission of lithium ions and affect the performance of lithium-ion batteries.
- the CW ranges from 10 to 30 mg/cm 2 .
- the range of the CW is 12-28 mg/cm 2 .
- the migration distance of lithium ions in the positive electrode membrane is relatively short, which is beneficial to improve the power characteristics of the battery. At the same time, it can increase the current density of the pole piece and increase the energy density of the battery.
- the PD ranges from 2 to 4.4 g/cm 3 .
- the PD ranges from 2.8 to 3.6 g/cm 3 .
- the integrity of the positive electrode active material particles is higher, avoiding the increase of side reactions caused by the crushing of the particles by rolling, while the particles The electrical contact between them is better, which is conducive to the migration of lithium ions.
- the positive active material in the positive electrode sheet includes lithium iron phosphate positive electrode material and/or ternary positive electrode material.
- the negative electrode active material in the negative electrode sheet includes any one or a combination of at least two of graphite, hard carbon, or silicon-oxygen materials.
- the lithium ion battery is a lithium ion power battery.
- the manufacturing method of the lithium-ion battery provided in an embodiment of the present disclosure includes but not limited to the winding method and the stacking method, that is, the manufacturing method of the conventional lithium-ion battery, all of which are applicable in the embodiments of the present disclosure.
- This embodiment provides a lithium-ion battery, the lithium-ion battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte;
- Ds is the lithium ion solid-phase diffusion coefficient in the positive pole piece
- D50 is the median diameter of the positive active material in the positive pole piece
- CW is the positive pole piece
- PD is the compacted density of the positive electrode sheet, and the result of (ln Ds) 2 /(D50 ⁇ CW ⁇ PD).
- the positive electrode active material in the positive electrode sheet is NCM111, the conductive agent is carbon nanotubes, and the binder is polytetrafluoroethylene;
- the negative electrode active material in the negative electrode sheet is natural graphite, the conductive agent is carbon nanowire, and the binding agent is styrene-butadiene rubber and sodium carboxymethyl cellulose;
- the diaphragm is a polypropylene film, and the electrolyte is (2mol/L LiPF 6 , EC/EMC/MA).
- the mass ratio of NCM111, carbon nanotubes and polytetrafluoroethylene is 95:2.5:2.5;
- the mass ratio of natural graphite, carbon nanowires, styrene-butadiene rubber and sodium carboxymethyl cellulose is 95:2:1.5:1.5.
- This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This embodiment provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This comparative example provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- This comparative example provides a lithium ion battery, and its positive electrode active material, Ds, D50, CW, PD and (ln Ds) 2 /(D50 ⁇ CW ⁇ PD) are also shown in Table 1.
- the lithium-ion batteries provided by Examples 1-6 and Comparative Examples 1-2 were tested for electrochemical performance, and the test conditions were as follows:
- Cycle performance test At 25°C, the lithium-ion batteries prepared in the examples and comparative examples were charged at a rate of 3C and discharged at a rate of 1C, and a full-full-discharge cycle test was performed until the capacity of the lithium-ion battery decayed to the initial value. 80% of the capacity, record the number of cycles.
- This disclosure can make the kinetics of the positive and negative electrodes of the lithium-ion battery achieve optimal matching during the fast charging process by limiting the relationship between the ion diffusion coefficient, surface density, and compaction density of the positive electrode sheet, ensuring that the lithium-ion battery has a relatively high performance. High charging capacity, while ensuring that the lithium-ion battery has a good cycle life and safety when it is used for long-term fast charging.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本公开提供一种锂离子电池。其中,所述锂离子电池的正极极片满足:0.35<(ln Ds) 2/(D50×CW×PD)<11.95。这保证了锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,使得锂离子电池具有较高的充电能力,同时还保证了锂离子电池在长期快速充电使用时具有很好的循环使用寿命和安全性。
Description
本公开涉及电池领域,例如涉及一种锂离子电池。
锂离子电池是指可以供锂离子在正负极之间重复性脱嵌的二次电池,故又名“摇椅电池”,是21世纪开发成功的新型绿色能源电池。锂离子电池现在主要用于手机、数码相机、笔记本电脑、移动电源以及电动汽车等领域,其中电动汽车领域发展前景广阔。
当下的锂离子动力电池具有高能量密度、高电压、长循环、长存储、无记忆效应、耐高温、耐严寒等诸多优点。一般锂离子动力电池的结构分为卷绕式与叠片式,裸电芯顺序依次为正极片、隔离膜、负极片相间而形成,然后连接外部极柱,放入电芯外壳例如钢壳、铝壳或者铝塑膜中,注入电解液后封口制成成品电芯。随着对代步工具增长的需求和生活节奏的加快,锂离子电池作为新型环保能源的需求与日俱增,同时要求锂离子电池的循环性能与充电速度性能进一步提高。因此,如何提升锂离子电池的快充性能,同时保证其循环性能和安全性能,是急需解决的技术问题。
发明内容
本公开提供一种锂离子电池。
本公开在一实施例中提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片满足:0.35<(ln Ds)
2/(D50×CW×PD)<11.95,例如0.4、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、11.8或11.9等,其中,Ds为正极极片中的锂离子固相扩散系数,D50为正极极片中的正极活性物质的中值粒径,CW为正极极片中电极层的面密度,PD为正极极片的压实密度。
本公开提供的一实施例中,所提供的正极极片包括正极活性物质、导电剂和粘结剂;正极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于聚偏氟乙烯或聚四氟乙烯等。
本公开提供的一实施例中,所提供的负极极片包括负极活性物质、导电剂和粘结剂;负极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石 墨烯等,粘结剂包括但不限于丁苯橡胶,羧甲基纤维素钠或聚丙烯酸等。
本公开提供的一实施例中,对所提供的正极极片和负极极片的制备方法不作限定,采用常规的匀浆涂覆法即可得到。
本公开提供的一实施例中,对所提供的隔膜以及电解液的来源不作限定,示例性地,可以为常规的应用于锂离子电池中的产品。
本公开提供的一实施例中,通过限定正极极片离子扩散系数、面密度和压实密度之间的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
正极极片的设计需要结合正极离子扩散系数的特点,合理进行材料粒径、面密度、压实密度设计,以提升锂离子在正极片中的扩散速率,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
在一实施例中,1<(ln Ds)
2/(D50×CW×PD)<9.8,例如1.1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、9.6或9.7等。
在一实施例中,所述Ds的范围为10
-10~10
-13cm
2/S,例如1×10
-10cm
2/S、2×10
-10cm
2/S、3×10
-10cm
2/S、4×10
-10cm
2/S、5×10
-10cm
2/S、6×10
-10cm
2/S、7×10
-10cm
2/S、8×10
-10cm
2/S、9×10
-10cm
2/S、9.9×10
-10cm
2/S、3×10
-11cm
2/S、4×10
-11cm
2/S、5×10
-11cm
2/S、1×10
-12cm
2/S、2×10
-12cm
2/S、6×10
-12cm
2/S、7×10
-12cm
2/S、8×10
-12cm
2/S、9×10
-12cm
2/S、1×10
-13cm
2/S、2×10
-13cm
2/S、3×10
-13cm
2/S、4×10
-13cm
2/S、5×10
-13cm
2/S、6×10
-13cm
2/S、7×10
-13cm
2/S、8×10
-13cm
2/S、9×10
-13cm
2/S或9.9×10
-13cm
2/S等。
本公开提供的一实施例中,如果Ds扩散系数偏小,材料锂离子扩散速度较慢,尤其是大倍率或低温下会进一步下降,导致电池极化变大,正极嵌锂困难,成导致部分锂离子直接在负极表面还原析出而形成锂枝晶,造成锂离子电池容量损失。此外,锂离子电池循环充放电过程中,锂枝晶不断生长还会刺穿隔离膜,形成较大的安全隐患,且锂枝晶不断生长还消耗了过多的锂离子,锂离子电池循环使用过程中容量还会过快衰减。
在一实施例中,所述D50的范围为2.5~20μm,例如2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、 17μm、18μm、19μm或20μm等。
在一实施例中,所述D50的范围为3~13μm。
本公开提供的一实施例中,正极活性物质的中值粒径D50落入3~13μm范围内时,既可以避免粒径太小与电解液产生较多的副反应而影响锂离子电池的性能,还可以避免粒径太大阻碍锂离子的传输而影响锂离子电池的性能。
在一实施例中,所述CW的范围为10~30mg/cm
2,例如10mg/cm
2、11mg/cm
2、12mg/cm
2、13mg/cm
2、14mg/cm
2、15mg/cm
2、16mg/cm
2、17mg/cm
2、18mg/cm
2、19mg/cm
2、20mg/cm
2、21mg/cm
2、22mg/cm
2、23mg/cm
2、24mg/cm
2、25mg/cm
2、26mg/cm
2、27mg/cm
2、28mg/cm
2、29mg/cm
2或30mg/cm
2等。
在一实施例中,所述CW的范围为12~28mg/cm
2。
本公开提供的一实施例中,面密度CW落入12~28mg/cm
2范围内时,锂离子在正极膜片中迁移距离较短,有利于提升电池功率特性。同时又能提升极片电流密度,提高电池能量密度。
在一实施例中,所述PD的范围为2~4.4g/cm
3,例如2g/cm
3、2.1g/cm
3、2.2g/cm
3、2.3g/cm
3、2.4g/cm
3、2.5g/cm
3、2.6g/cm
3、2.7g/cm
3、2.8g/cm
3、2.9g/cm
3、3g/cm
3、3.1g/cm
3、3.2g/cm
3、3.3g/cm
3、3.4g/cm
3、3.5g/cm
3、3.6g/cm
3、3.7g/cm
3、3.8g/cm
3、3.9g/cm
3、4g/cm
3、4.1g/cm
3、4.2g/cm
3、4.3g/cm
3或4.4g/cm
3等。
在一实施例中,所述PD的范围为2.8~3.6g/cm
3。
本公开提供的一实施例中,压实密度PD落入2.8~3.6g/cm
3范围内时,正极活性物质颗粒的完整性更高,避免出现辊压颗粒破碎而导致副反应增加,同时颗粒之间的电接触更好,有利于锂离子迁移。
在一实施例中,所述正极极片中的正极活性物质包括磷酸铁锂正极材料和/或三元正极材料。
在一实施例中,所述三元正极材料的化学式为Li
aNi
xCo
yM
1-x-yO
2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种或至少两种的组合。
例如,所述a可以为0.9、0.95、1、1.05、1.1、1.15或1.2等,所述x可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等,所述y可以为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等,所述z可以为0、0.1、0.2、0.3、0.4、 0.5、0.6、0.7、0.8或0.9等。
在一实施例中,所述负极极片中的负极活性物质包括石墨、硬碳或硅氧材料中的任意一种或至少两种的组合。
在一实施例中,所述锂离子电池为锂离子动力电池。
示例性地,本公开所提供的锂离子电池的制备方法包括但不限于卷绕法和叠片法,即常规锂离子电池的制备方法,本公开均适用。
本公开在一实施例中提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片满足:0.35<(ln Ds)
2/(D50×CW×PD)<11.95,例如0.4、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、11.8或11.9等,其中,Ds为正极极片中的锂离子固相扩散系数,D50为正极极片中的正极活性物质的中值粒径,CW为正极极片中电极层的面密度,PD为正极极片的压实密度。
本公开提供的一实施例中,所提供的正极极片包括正极活性物质、导电剂和粘结剂;正极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于聚偏氟乙烯或聚四氟乙烯等。
本公开提供的一实施例中,所提供的负极极片包括负极活性物质、导电剂和粘结剂;负极极片中,导电剂包括但不限于乙炔黑、科琴黑、碳纳米管或石墨烯等,粘结剂包括但不限于丁苯橡胶,羧甲基纤维素钠或聚丙烯酸等。
本公开提供的一实施例中,所提供的正极极片和负极极片的制备方法,采用常规的匀浆涂覆法即可得到。
本公开提供的一实施例中,所提供的隔膜以及电解液,为常规的应用于锂离子电池中的产品。
本公开提供的一实施例中,通过限定正极极片离子扩散系数、面密度和压实密度之间的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。正极极片的设计需要结合正极离子扩散系数的特点,合理进行材料粒径、面密度、压实密度设计,以提升锂离子在正极片中的扩散速率,保证锂离子电池具有较高的充电能力, 同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
在一实施例中,1<(ln Ds)
2/(D50×CW×PD)<9.8。
在一实施例中,所述Ds的范围为10
-10~10
-13cm
2/S。
本公开提供的一实施例中,如果Ds扩散系数偏小,材料锂离子扩散速度较慢,尤其是大倍率或低温下会进一步下降,导致电池极化变大,正极嵌锂困难,成导致部分锂离子直接在负极表面还原析出而形成锂枝晶,造成锂离子电池容量损失。此外,锂离子电池循环充放电过程中,锂枝晶不断生长还会刺穿隔离膜,形成较大的安全隐患,且锂枝晶不断生长还消耗了过多的锂离子,锂离子电池循环使用过程中容量还会过快衰减。
在一实施例中,所述D50的范围为2.5~20μm。
在一实施例中,所述D50的范围为3~13μm。
本公开提供的一实施例中,正极活性物质的中值粒径D50落入3~13μm范围内时,既可以避免粒径太小与电解液产生较多的副反应而影响锂离子电池的性能,还可以避免粒径太大阻碍锂离子的传输而影响锂离子电池的性能。
在一实施例中,所述CW的范围为10~30mg/cm
2。
进一步地,在一实施例中,所述CW的范围为12~28mg/cm
2。
本公开提供的一实施例中,面密度CW落入12~28mg/cm
2范围内时,锂离子在正极膜片中迁移距离较短,有利于提升电池功率特性。同时又能提升极片电流密度,提高电池能量密度。
在一实施例中,所述PD的范围为2~4.4g/cm
3。
进一步地,在一实施例中,所述PD的范围为2.8~3.6g/cm
3。
本公开提供的一实施例中,压实密度PD落入2.8~3.6g/cm
3范围内时,正极活性物质颗粒的完整性更高,避免出现辊压颗粒破碎而导致副反应增加,同时颗粒之间的电接触更好,有利于锂离子迁移。
在一实施例中,所述正极极片中的正极活性物质包括磷酸铁锂正极材料和/或三元正极材料。
在一实施例中,所述三元正极材料的化学式为Li
aNi
xCo
yM
1-x-yO
2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种 或至少两种的组合。
在一实施例中,所述负极极片中的负极活性物质包括石墨、硬碳或硅氧材料中的任意一种或至少两种的组合。
在一实施例中,所述锂离子电池为锂离子动力电池。
示例性地,本公开在一实施例中所提供的锂离子电池的制备方法包括但不限于卷绕法和叠片法,即常规锂离子电池的制备方法,本公开的实施例中均适用。
实施例1
本实施例提供一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;
所述正极极片的下述数值如表1所示:Ds为正极极片中的锂离子固相扩散系数,D50为正极极片中的正极活性物质的中值粒径,CW为正极极片中电极层的面密度,PD为正极极片的压实密度,以及(ln Ds)
2/(D50×CW×PD)的结果。
所述正极极片中的正极活性物质为NCM111,导电剂为碳纳米管,粘结剂为聚四氟乙烯;
所述负极极片中的负极活性物质为天然石墨,导电剂为碳纳米线,粘结剂为丁苯橡胶和羧甲基纤维素钠;
所述隔膜为聚丙烯膜,电解液为(2mol/L的LiPF
6,EC/EMC/MA)。
所述锂离子电池(包括正极极片与负极极片)的制备方法依照具体实施方式进行:
所述正极极片中,NCM111、碳纳米管和聚四氟乙烯的质量比为95:2.5:2.5;
所述负极极片中,天然石墨、碳纳米线、丁苯橡胶和羧甲基纤维素钠的质量比为95:2:1.5:1.5。
实施例2
本实施例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例3
本实施例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例4
本实施例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例5
本实施例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
实施例6
本实施例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
对比例1
本对比例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
对比例2
本对比例提供一种锂离子电池,其正极活性物质、Ds、D50、CW、PD和(ln Ds)
2/(D50×CW×PD)也如表1所示。
其余制备方法与参数与实施例1保持一致。
将实施例1-6与对比例1-2所提供的锂离子电池进行电化学性能测试,测试条件如下:
(1)动力学性能测试:在25℃下,将实施例和对比例制备得到的锂离子电池以4C满充、以1C满放重复10次后,再将锂离子电池以4C满充,然后拆解出负极极片并观察负极极片表面的析锂情况。其中,负极表面析锂区域面积小于 5%认为是轻微析锂,负极表面析锂区域面积为5~40%认为是中度析锂,负极表面析锂区域面积大于40%认为是严重析锂。
(2)循环性能测试:在25℃下,将实施例和对比例制备得到的锂离子电池以3C倍率充电、以1C倍率放电,进行满充满放循环测试,直至锂离子电池的容量衰减至初始容量的80%,记录循环圈数。
其结果如表1所示。
表1
由表1可知,(ln Ds)
2/(D50×CW×PD)大于1且小于9.8时,锂离子迁移速率与正极材料粒度、正极片面密度及压实密度相匹配,锂离子可以快速从正极材料中脱出,同时在正极片中快速迁移,电池的性能更为优异,保持循环不析锂的同时,提升循环寿命,可以实现负极在4C满充、以1C满放重复10次后,再将锂离子电池以4C满充的情况下不析锂,且电池以3C倍率充电、以1C倍率 放电时,至少循环2500周,才会衰减至初始容量的80%。
从实施例2、4、6与对比例1-2的数据结果可知,当(ln Ds)
2/(D50×CW×PD)过小时,会导致锂离子在正极活性材料或正极片中迁移速率下降,快充过程中,无法快速嵌入负极,导致负极析锂,循环寿命下降。比值过大时,正极材料粒度偏小或面密度、极片压实偏小,不会导致循环出现析锂。但一方面造成设计成本增加,另一方面,粒度偏小时,长期循环过程中副反应增加,导致循环寿命下降。
结论:本公开通过限定正极极片离子扩散系数、面密度和压实密度之间的关系,可以使锂离子电池在快速充电过程中正、负极的动力学达到最优匹配,保证锂离子电池具有较高的充电能力,同时保证锂离子电池在长期快速充电使用时还具有很好的循环使用寿命和安全性。
Claims (13)
- 一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜和电解液;所述正极极片满足:0.35<(ln Ds) 2/(D50×CW×PD)<11.95,其中,Ds为正极极片中的锂离子固相扩散系数,D50为正极极片中的正极活性物质的中值粒径,CW为正极极片中电极层的面密度,PD为正极极片的压实密度。
- 如权利要求1所述的锂离子电池,其中,1<(ln Ds) 2/(D50×CW×PD)<9.8。
- 如权利要求1或2所述的锂离子电池,其中,所述Ds的范围为10 -10~10 -13cm 2/S。
- 如权利要求1-3任一项所述的锂离子电池,其中,所述D50的范围为2.5~20μm。
- 如权利要求4所述的锂离子电池,其中,所述D50的范围为3~13μm。
- 如权利要求1-5任一项所述的锂离子电池,其中,所述CW的范围为10~30mg/cm 2。
- 如权利要求6所述的锂离子电池,其中,所述CW的范围为12~28mg/cm 2。
- 如权利要求1-7任一项所述的锂离子电池,其中,所述PD的范围为2~4.4g/cm 3。
- 如权利要求8所述的锂离子电池,其中,所述PD的范围为2.8~3.6g/cm 3。
- 如权利要求1-9任一项所述的锂离子电池,其中,所述正极极片中的正极活性物质包括磷酸铁锂正极材料和/或三元正极材料。
- 如权利要求10所述的锂离子电池,其中,所述三元正极材料的化学式为Li aNi xCo yM 1-x-yO 2,其中0.9≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,M包括Mn、Al或W中任意一种或至少两种的组合。
- 如权利要求1-11任一项所述的锂离子电池,其中,所述负极极片中的负极活性物质包括石墨、硬碳或硅氧材料中的任意一种或至少两种的组合。
- 如权利要求1-12任一项所述的锂离子电池,其中,所述锂离子电池为锂离子动力电池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/038,792 US20240363856A1 (en) | 2021-12-13 | 2022-04-13 | Lithium-ion battery |
EP22893993.0A EP4235896A4 (en) | 2021-12-13 | 2022-04-13 | LITHIUM-ION BATTERY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111523012.9 | 2021-12-13 | ||
CN202111523012.9A CN114204109B (zh) | 2021-12-13 | 2021-12-13 | 一种锂离子电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023108963A1 true WO2023108963A1 (zh) | 2023-06-22 |
Family
ID=80653332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/086541 WO2023108963A1 (zh) | 2021-12-13 | 2022-04-13 | 一种锂离子电池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240363856A1 (zh) |
EP (1) | EP4235896A4 (zh) |
CN (1) | CN114204109B (zh) |
WO (1) | WO2023108963A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114144919B (zh) * | 2021-03-26 | 2024-11-01 | 宁德新能源科技有限公司 | 一种正极极片、包含该正极极片的电化学装置和电子装置 |
JP2024536612A (ja) * | 2021-10-25 | 2024-10-04 | 寧徳新能源科技有限公司 | 正極片及びそれを含むリチウムイオン二次電池 |
EP4425598A4 (en) * | 2021-10-25 | 2025-03-05 | Ningde Amperex Technology Limited | ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE THEREOF |
JP2024539298A (ja) * | 2021-10-25 | 2024-10-28 | 寧徳新能源科技有限公司 | 電気化学装置及びそれを含む電子装置 |
CN114204109B (zh) * | 2021-12-13 | 2023-07-07 | 蜂巢能源科技股份有限公司 | 一种锂离子电池 |
CN115663116B (zh) * | 2022-12-26 | 2023-03-17 | 中创新航科技股份有限公司 | 一种负极极片及含有该负极极片的锂离子电池 |
CN119029321A (zh) * | 2023-02-24 | 2024-11-26 | 宁德时代新能源科技股份有限公司 | 锂二次电池及用电装置 |
CN116598421B (zh) * | 2023-07-18 | 2023-10-10 | 江苏正力新能电池技术有限公司 | 一种正极极片及锂离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106099059A (zh) * | 2016-07-05 | 2016-11-09 | 宁德新能源科技有限公司 | 一种正极材料及其制备方法和电池 |
CN108878892A (zh) * | 2018-06-29 | 2018-11-23 | 宁德时代新能源科技股份有限公司 | 正极极片及电池 |
CN111446488A (zh) * | 2020-04-30 | 2020-07-24 | 宁德时代新能源科技股份有限公司 | 一种二次电池及其装置 |
CN114204109A (zh) * | 2021-12-13 | 2022-03-18 | 蜂巢能源科技股份有限公司 | 一种锂离子电池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105406046A (zh) * | 2015-12-21 | 2016-03-16 | 深圳市金润能源材料有限公司 | 钛酸锂负极材料及其制备方法 |
CN108844878A (zh) * | 2018-05-24 | 2018-11-20 | 宁德时代新能源科技股份有限公司 | 负极极片、极片活性比表面积的测试方法及电池 |
CN108923032A (zh) * | 2018-07-16 | 2018-11-30 | 力信(江苏)能源科技有限责任公司 | 以金属氧化物修饰的锂离子电池三元正极材料及制备方法 |
US11581569B2 (en) * | 2019-04-23 | 2023-02-14 | Sila Nanotechnologies, Inc. | Liquid-infiltrated solid-state electrolyte and rechargeable batteries comprising same |
CN112542570B (zh) * | 2019-09-23 | 2022-08-09 | 北京小米移动软件有限公司 | 硅负极极片及其制备方法和锂离子电池 |
EP3968430B1 (en) * | 2020-03-27 | 2023-10-04 | Contemporary Amperex Technology Co., Limited | Secondary battery and apparatus containing the secondary battery |
WO2021253883A1 (en) * | 2020-06-17 | 2021-12-23 | Guangdong Haozhi Technology Co. Limited | Method for composite delamination |
WO2022109886A1 (zh) * | 2020-11-25 | 2022-06-02 | 宁德时代新能源科技股份有限公司 | 复合正极材料、其制备方法、正极极片、二次电池及包含该二次电池的电池模块、电池包和装置 |
CN112768685B (zh) * | 2021-04-09 | 2021-07-13 | 湖南长远锂科股份有限公司 | 一种锂离子电池正极材料及其制备方法 |
-
2021
- 2021-12-13 CN CN202111523012.9A patent/CN114204109B/zh active Active
-
2022
- 2022-04-13 US US18/038,792 patent/US20240363856A1/en active Pending
- 2022-04-13 WO PCT/CN2022/086541 patent/WO2023108963A1/zh active Application Filing
- 2022-04-13 EP EP22893993.0A patent/EP4235896A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106099059A (zh) * | 2016-07-05 | 2016-11-09 | 宁德新能源科技有限公司 | 一种正极材料及其制备方法和电池 |
CN108878892A (zh) * | 2018-06-29 | 2018-11-23 | 宁德时代新能源科技股份有限公司 | 正极极片及电池 |
CN111446488A (zh) * | 2020-04-30 | 2020-07-24 | 宁德时代新能源科技股份有限公司 | 一种二次电池及其装置 |
CN114204109A (zh) * | 2021-12-13 | 2022-03-18 | 蜂巢能源科技股份有限公司 | 一种锂离子电池 |
Non-Patent Citations (2)
Title |
---|
See also references of EP4235896A4 * |
TANG YAN, OU QING-ZHU, LIU HENG, GUO XIAO-DONG, ZHONG BEN-HE: "Effect of electrode plate surface density and press density on electrochemical performance of Li3V2(PO4)3/C ", THE CHINESE JOURNAL OF NONFERROUS METALS, vol. 25, no. 12, 1 December 2015 (2015-12-01), pages 3404 - 3413, XP093071533 * |
Also Published As
Publication number | Publication date |
---|---|
EP4235896A4 (en) | 2025-05-07 |
EP4235896A1 (en) | 2023-08-30 |
CN114204109B (zh) | 2023-07-07 |
CN114204109A (zh) | 2022-03-18 |
US20240363856A1 (en) | 2024-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114204109B (zh) | 一种锂离子电池 | |
WO2017128983A1 (zh) | 全固态锂离子电池正极复合材料及其制备方法和应用 | |
WO2022206877A1 (zh) | 电化学装置及电子装置 | |
CN105308776B (zh) | 锂二次电池用负极活性材料、其制备方法和包含其的锂二次电池 | |
CN115810718B (zh) | 负极极片及包含其的二次电池 | |
TW201125183A (en) | Lithium secondary battery | |
TW201246665A (en) | Method for manufacturing positive electrode active material for energy storage device and energy storage device | |
CN110071265A (zh) | 一种硅碳负极预锂化方法 | |
CN114242932B (zh) | 一种锂离子电池 | |
US20130230769A1 (en) | Silicon and lithium silicate composite anodes for lithium rechargeable batteries | |
CN114122315A (zh) | 电化学装置和电子装置 | |
CN103762335B (zh) | 钛酸锂电极片及锂离子电池 | |
CN115295767A (zh) | 一种正极片和锂离子电池 | |
KR20200028258A (ko) | 이차전지용 음극 및 그를 포함하는 이차전지 | |
CN111697270A (zh) | 一种通过原位转移形成负极保护层的方法 | |
CN115498164A (zh) | 负极材料、负极浆料、负极片及制备方法和锂离子电池 | |
WO2024213126A1 (zh) | 一种二次电池、其制备方法及应用 | |
JP2000011991A (ja) | 有機電解液二次電池 | |
CN115172666A (zh) | 一种双层复合石墨负极及其制备方法 | |
CN109273670B (zh) | 一种具有高比表面介孔保护膜的金属锂负极及其制备方法 | |
WO2025130004A1 (zh) | 正极极片、正极极片的制备方法以及锂离子电池 | |
TW201902008A (zh) | 電極材料、電極片、電解液及鋰離子二次電池 | |
CN113097453A (zh) | 一种锂离子电池正极电极预嵌锂方法 | |
CN115939380A (zh) | 一种硬碳负极材料、负极片和电池 | |
CN108028361A (zh) | 用于锂离子二次电池的正极以及锂离子二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202337036888 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2022893993 Country of ref document: EP Effective date: 20230526 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |