WO2023100316A1 - 積雪量推定システム及び積雪量推定方法 - Google Patents
積雪量推定システム及び積雪量推定方法 Download PDFInfo
- Publication number
- WO2023100316A1 WO2023100316A1 PCT/JP2021/044262 JP2021044262W WO2023100316A1 WO 2023100316 A1 WO2023100316 A1 WO 2023100316A1 JP 2021044262 W JP2021044262 W JP 2021044262W WO 2023100316 A1 WO2023100316 A1 WO 2023100316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- snow
- optical fiber
- temperature
- section
- amount estimation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/12—Detecting, e.g. by using light barriers using one transmitter and one receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/12—Detecting, e.g. by using light barriers using one transmitter and one receiver
- G01V8/16—Detecting, e.g. by using light barriers using one transmitter and one receiver using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/20—Detecting, e.g. by using light barriers using multiple transmitters or receivers
- G01V8/24—Detecting, e.g. by using light barriers using multiple transmitters or receivers using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/14—Rainfall or precipitation gauges
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present disclosure relates to a snow accumulation estimation system and method for remotely measuring snow accumulation.
- Surveillance cameras and disaster prevention cameras can also be used as a means of grasping snow conditions. If the amount of accumulated snow can be grasped using a camera, staff members will no longer need to patrol every day, and the above-mentioned requirements can be met.
- the snow amount estimation system utilizes the fact that the temperature change in snow is smaller than the outside air temperature change.
- the snow amount estimation system is an optical fiber having at least one raised section connecting the ground and the sky; a temperature measuring device that measures the temperature of the optical fiber as a distribution in the longitudinal direction of the optical fiber; Analysis processing for detecting a section from the ground side where the temperature change of the optical fiber is smaller than other sections from among the raised sections when there is a temperature change in the atmosphere during snowfall, and estimating the amount of snow accumulation from the length of the section. Department and Prepare.
- the snow amount estimation method includes: Measuring the temperature of an optical fiber having at least one pull-up section connecting the ground and the sky as a distribution in the longitudinal direction of the optical fiber; Comparing the distribution before and after atmospheric temperature change during snow cover, detecting a section from the ground side in which the temperature change of the optical fiber is smaller than the others among the raised sections, and snow accumulation from the length of the section. to estimate the
- the temperature distribution of an optical fiber stretched upwards from the ground is measured with a temperature measuring instrument that uses Raman scattered light, etc., and sections with little temperature change are detected in response to fluctuations in outside air temperature. presume.
- the amount of accumulated snow can be measured remotely because optical fibers are used. Therefore, the present invention can provide a snow amount estimation system and a snow amount estimation method capable of remotely measuring the amount of snow accurately and economically.
- the optical fiber is connected to the temperature measurement device at one end and the other end. Arranged in a loop.
- the optical fiber may have a star shape with a plurality of ends when viewed from the temperature measuring device.
- the present invention can provide a snow amount estimation system and a snow amount estimation method that can accurately and economically measure the snow amount remotely.
- BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. It is a figure explaining the scattered light waveform which the snow amount estimation system which concerns on this invention measures. It is a figure explaining the scattered light waveform which the snow amount estimation system which concerns on this invention measures. It is a figure explaining the snow amount estimation method which concerns on this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the snow amount estimation system which concerns on this invention. BRIEF
- the snow amount estimation system measures the temperature of the optical fiber based on the intensity dependence of the Raman scattering light on the temperature, associates the position of the optical fiber in the longitudinal direction with the arrival time of the returned light, Grasp the estimated amount of snow at the measurement point from the temperature distribution.
- Raman scattered light has intensity dependence on temperature.
- R-OTDR Renishaw Optical Time Domain Reflectometry
- the temperature of the optical fiber can be estimated by observing the intensity of the Raman scattered light.
- the present snow amount estimation system can measure the temperature distribution in the longitudinal direction of the optical fiber (see, for example, references).
- the optical fiber that has been laid includes underground sections that are buried underground, aerial sections that are stretched in the air with utility poles, etc., and between underground sections and aerial sections, the optical fibers are carried from the ground to the air by utility poles (that There is a pull section to move (or vice versa).
- the temperature change in the optical fiber between the overhead section and the raised section follows the outside air temperature change, while the temperature change in the optical fiber in the underground section is smaller than the temperature change in the optical fiber between the overhead section and the raised section. . Therefore, by comparing the temperature distribution in the longitudinal direction of the optical fiber before and after the outside air temperature change occurs, it is possible to remotely grasp the position of the pulling section.
- the temperature change in the snow is small relative to the outside air temperature change. less than Therefore, by comparing the temperature distribution in the longitudinal direction of the optical fiber before and after the outside air temperature change occurs, it is possible to remotely grasp the length of the snow-buried portion in the lifting section, that is, the amount of accumulated snow.
- the snow amount estimation system can remotely monitor the snow amount using the lifted section of the optical fiber network.
- FIG. 1 is a diagram for explaining the snow amount estimation system 301 of this embodiment.
- the snow amount estimation system 301 is an optical fiber 50 having at least one pull-up section 50a connecting the ground 20 and the sky; a temperature measuring device 11 that measures the temperature of the optical fiber 50 as a distribution in the longitudinal direction of the optical fiber 50; When there is a change in the temperature of the atmosphere during snowfall, an analysis process of detecting a section of the pulling-up section 50a from the ground 20 side where the temperature change of the optical fiber 50 is smaller than the others, and estimating the amount of snow accumulation from the length of the section. Part 12; Prepare.
- reference numeral 25 means accumulated snow.
- the optical fiber 50 may be embedded in the optical cable 51 .
- the optical fiber 50 has an underground section 50b laid underground, an overhead section 50c bridged by the utility pole 13, and a raised section 50a connecting the underground section 50b and the overhead section 50c by the utility pole 13. do.
- the temperature measuring device 11 and the analysis processing unit 12 can be arranged in the communication building 10, which is a base for snow cover management.
- the temperature measuring device 11 is a device capable of measuring the temperature of the optical fiber 50 in a distributed manner.
- the temperature measuring device 11 is, for example, a Raman OTDR or a Brillouin OTDR. Note that the temperature measuring device 11 has sufficiently high measurement accuracy (for example, measurement is possible in units of 1° C.) with respect to the amount of change in the outside air temperature.
- the temperature measuring device 11 has a sufficient distance resolution (for example, a distance resolution of 1 m when measuring a 1-m change in snow cover) for measuring the amount of change in snow cover.
- the optical fiber 50 in the pull-up section 50a is an optical cable housed in a pull-up pipe connected from the underground manhole 14 to the utility pole 13, a premises cable laid on the wall surface of the building, or a new utility pole 13 or the like for snowfall measurement. It is an optical fiber included in an optical cable to be laid.
- the optical fiber 50 in the section 50b connecting the raised section 50a and the temperature measuring device 11 is an optical fiber included in the underground optical cable 51 pulled out from the communication building 10.
- the section 50b is the underground optical cable and the section 50c is the overhead optical cable, but the reverse is also possible. That is, the section 50b connecting the raising section 50a and the temperature measuring device 11 may be an overhead cable, and the section 50c may be an underground cable.
- FIG. 2A is a diagram for explaining the relative temperature distribution of the optical fiber 50 measured by the temperature measuring device 11 when snow is not covered.
- the solid line is the relative temperature distribution at an arbitrary time
- the dashed line is the relative temperature distribution at the time when the outside air temperature is lower than the arbitrary time.
- FIG. 2B is a diagram for explaining the difference between the relative temperature distribution at an arbitrary time and the relative temperature distribution when the outside air temperature drops.
- the distance Z0 from the communication building 10 to the raised section (the base of the utility pole 13) is obtained when there is no snow cover.
- the difference in temperature above ground between day and night is greater than that below ground. Therefore, the temperature distribution of the optical fiber 50 (solid line in FIG. 2A) measured by the temperature measuring device 11 when the temperature is high (daytime) and the temperature measuring device 11 when the temperature is low (nighttime)
- a difference from the temperature distribution of the optical fiber 50 (broken line in FIG. 2(A)) is obtained (FIG. 2(B)). From FIG.
- the section where the temperature difference of the optical fiber 50 is small between daytime and nighttime is the underground section 50b
- the section where the temperature difference of the optical fiber 50 is large is the above-ground section (the raised section 50a and the overhead section 50c).
- Z0 be the boundary between the two sections.
- an optical fiber vibration distribution measuring device (DAS: Distributed Acoustic Sensing) is connected to the optical fiber 50 in the communication building 10, and an operator strikes the base of the utility pole 13 while measuring the vibration distribution waveform.
- Z0 may be the position at which the maximum magnitude of vibration is obtained.
- the distance Z1 is determined by the length of the raised section 50a from Z0, so it can be calculated by measuring the length from the base of the utility pole 13 to the bridge point with a tape measure or by using a design value.
- FIG. 3(A) is a diagram explaining the relative temperature distribution of the optical fiber 50 measured by the temperature measuring device 11 when it is covered with snow.
- the solid line is the relative temperature distribution at an arbitrary time
- the dashed line is the relative temperature distribution at the time when the outside air temperature is lower than the arbitrary time.
- FIG. 3B is a diagram for explaining the difference between the relative temperature distribution at an arbitrary time and the relative temperature distribution when the outside air temperature drops.
- the temperature measuring device 11 measures the temperature distribution (solid line in FIG. 3A) when the temperature is high (daytime) and the temperature when the temperature is low (nighttime) in the raised section 50a (Z0 to Z1).
- the distribution (dashed line in FIG. 3(A)) is measured.
- FIG. 3(B) shows the difference between the two temperature distributions (solid line and broken line in FIG. 3(A)).
- the temperature change is small even if the outside temperature changes. Therefore, it can be said that the section 50s (between Z0 and Zs) in FIG. 3B, in which the temperature of the optical fiber has little change, is buried in snow (amount of accumulated snow).
- the amount of accumulated snow does not change significantly between the times when the temperature distribution of the optical fiber 50 is measured twice. Specifically, the change in the amount of accumulated snow must be sufficiently small relative to the spatial resolution of the temperature measuring device 11 .
- the optical fiber 50 is perpendicular to the ground 20 in the pulling section 50a. Even if the optical fiber 50 is not perpendicular to the ground 20 in the pulling section 50a, if the inclination angle can be grasped, the amount of accumulated snow can be calculated from the length from Z0 to Zs and the inclination angle.
- FIG. 4 is a flow chart for explaining the snow amount estimation method performed by the snow amount estimation system 301 .
- This estimation method is Measuring the temperature of the optical fiber 50 having at least one pull-up section 50a connecting the ground 20 and the sky as a distribution in the longitudinal direction of the optical fiber 50 (steps S11 and S12); Comparing the distributions before and after atmospheric temperature changes during snow cover, detecting a section 50 s in which the temperature change of the optical fiber 50 from the ground 20 side is smaller than the others in the raised section 50 a, and snow cover from the length of the section 50 s estimating the amount (step S13) I do.
- step S10 the position of the pulling section 50a is grasped (step S01).
- step S01 Z0 corresponding to the distance from the communication building 10 to the base of the utility pole 13 is obtained when snow is not accumulated.
- Z0 must be the actual length determined by optical measurement.
- the actual length of Z0 is obtained by one of the following methods. (1) Z0 is acquired by comparing the temperature distribution of the optical fiber 50 acquired before and after the outside air temperature change, as described with reference to FIG. (2) An optical fiber vibration distribution measuring device is connected to the optical fiber 50, the base of the utility pole 13 is intentionally hit, and Z0 is obtained from the vibration waveform.
- the actual length Z1 from the communication building to the utility pole crossing point is obtained when snow is not covered.
- the actual length of Z1 is obtained by one of the following methods. (1) Measure the distance from the base of the utility pole 13 to the bridge point with a tape measure, and add the measured value to Z0. (2) Add the design value of the distance from the base of the utility pole 13 to the bridge point to Z0.
- a section 50a is taken from Z0 to Z1.
- Step S11 and subsequent steps are performed when it is desired to measure the amount of accumulated snow.
- step S11 the temperature distribution in the pulling section 50a is measured by the temperature measuring device 11 at an arbitrary time during snowfall (solid line in FIG. 3A). Also, the outside air temperature T0 at an arbitrary time is recorded.
- step S12 the temperature distribution of the pulling-up section 50a is measured by the temperature measuring device 11 at the time when the temperature changes with respect to the outside air temperature T0 during snow cover (broken line in FIG. 3A).
- step S13 the amount of accumulated snow is obtained from the temperature distribution of the raised section 50a in which the temperature change is relatively small (section 50s in FIG. 3(B)).
- Emodiment 3 In the first embodiment, an example of measuring the amount of accumulated snow at one location has been described.
- the amount of snow accumulation estimation system according to the present invention can also measure the amount of snow accumulation at a plurality of locations. 5 and 6 show the configuration of the snow amount estimation system for measuring multiple points.
- FIG. 5 shows a snow amount estimation system 302 in which a plurality of snow amount measurement points are connected by a single optical fiber 50 in a unicursal manner.
- the measurable measurement point interval is set to be equal to or greater than the positional resolution of the temperature measuring device 11 (for example, 100 m or greater).
- FIG. 6 shows a snow amount estimation system 303 in which an optical fiber 50 is laid to each of a plurality of snow amount measurement points.
- the snow amount estimation system 303 includes an optical switch 15 and measures the snow amount at each measurement point by switching the optical switch 15 .
- FIG. 7 is a diagram illustrating the snow amount estimation system 304 of this embodiment. Snow amount estimation system 304 is different from snow amount estimation system 302 in FIG. .
- a Raman OTDA, Brillouin OTDA, or Brillouin OCDA can be used as the temperature measuring device 11 . Therefore, the snow amount estimation system 304 has higher positional resolution and temperature accuracy than the snow amount estimation system 302 .
- a plurality of looped optical fibers 50 may be provided using the optical switch 15 as in the snow amount estimation system 303 of FIG.
- FIG. 8 is a diagram for explaining the snow amount estimation system 305 of this embodiment. Unlike the snow amount estimation system 302 in FIG. 5, the snow amount estimation system 305 is characterized in that it has a star shape with a plurality of terminals when viewed from the temperature measuring device 11 .
- the present invention is implemented using a premises cable laid on the wall of a building.
- the topology of the optical fiber network may be a star with optical splitters 16 .
- the present invention can be implemented by placing a reflector 17 at the end of the optical fiber and using ERA (End Reflection Assisted)-BOTDA.
- the snow amount estimation system uses an optical fiber sensing technology that can measure the temperature of the optical cable in a distributed manner. Measure the amount of time change in the temperature distribution of an optical cable laid on an inclined plane. As the optical cables laid perpendicular to the road surface, etc., use up/down cables of the existing optical cable network, in-house cables installed on the walls of buildings, or cables newly laid on utility poles, etc. to measure the amount of snow. It is possible. In other words, according to the present invention, it becomes possible to remotely monitor the amount of accumulated snow using the existing optical cable network.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Geophysics (AREA)
- General Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本発明は、正確に且つ経済的に積雪量を遠隔で測定できる積雪量推定システム及び積雪量推定方法を提供することを目的とする。 本発明に係る。積雪量推定システム301は、地面20と上空とを結ぶ引き上げ区間50aを少なくとも1か所持つ光ファイバ50と、光ファイバ50の温度を光ファイバ50の長手方向の分布として測定する温度測定器11と、積雪時に大気の温度変化があったときに、引き上げ区間50aのうち、地面20側から光ファイバ50の温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部12と、を備える。
Description
本開示は、積雪量を遠隔から測定する積雪量推定システム及びその方法に関する。
豪雪地方での除雪作業において、地方自治体の職員が日中帯に車両走行によるパトロールを実施し、深夜帯に実施する除雪対象道路を決定している。当該パトロールは、冬季の凍結路面を日々、長距離(70~80km程度)走行するため、危険作業であり、人手不足が深刻な地方においては、サステナブル、省エネ、安全且つ効率的に積雪状態を把握することが求められる。
高橋ら,ブリルアン散乱を用いた損失測定のための周波数掃引パルスによる音響波励起過程の検討、信学技報, vol. 116, no. 456, OFT2016-52, pp. 39-44, 2017年2月.
積雪状態を把握する手段として監視カメラや防災カメラを利用することもできる。カメラを利用して積雪量を把握できれば職員が日々パトロールする必要が無くなり、上述した要求を満たすことができる。
しかし、監視カメラや防災カメラを利用する手段は、雪深い郊外地域に多数のカメラを設置しなければならない。さらに、撮影したカメラ画像から積雪量を正確に把握することが困難である。これは、カメラの特性上、白色の雪面の凹凸は判別が難しいことが理由である。さらに、濃霧時、降雪時等の気象条件によっては、さらに積雪量の把握が困難になる。つまり、積雪量の遠隔把握にカメラを利用する手段には、多数のカメラを設置するという経済的な課題、及び把握する積雪量の正確性に課題があった。
そこで、本発明は、前記課題を解決するために、正確に且つ経済的に積雪量を遠隔で測定できる積雪量推定システム及び積雪量推定方法を提供することを目的とする。
上記目的を達成するために、本発明に係る積雪量推定システムは、雪中の温度変化が外気温変化に対して小さいことを利用する。
具体的には、本発明に係る積雪量推定システムは、
地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバと、
前記光ファイバの温度を前記光ファイバの長手方向の分布として測定する温度測定器と、
積雪時に大気の温度変化があったときに、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部と、
を備える。
地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバと、
前記光ファイバの温度を前記光ファイバの長手方向の分布として測定する温度測定器と、
積雪時に大気の温度変化があったときに、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部と、
を備える。
また、本発明に係る積雪量推定方法は、
地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバの温度を前記光ファイバの長手方向の分布として測定すること、
積雪時における大気の温度変化前後の前記分布を比較し、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出すること、及び
前記区間の長さから積雪量を推定すること
を行う。
地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバの温度を前記光ファイバの長手方向の分布として測定すること、
積雪時における大気の温度変化前後の前記分布を比較し、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出すること、及び
前記区間の長さから積雪量を推定すること
を行う。
ラマン散乱光等を利用する温度測定器で地面から上方へ張った光ファイバの温度分布を測定し、外気温変動に対して温度変化の少ない区間を検出し、その区間の長さから積雪量を推定する。光ファイバを用いるので遠隔で積雪量を測定することができる。従って、本発明は、正確に且つ経済的に積雪量を遠隔で測定できる積雪量推定システム及び積雪量推定方法を提供することができる。
なお、積雪量の測定地点である前記引き上げ区間の位置を把握することを予め行うことが好ましい。
位置分解能や温度測定精度を高めることができるラマンOTDA、B-OTDA、B-OCDAを温度測定器として用いる場合、前記光ファイバは、一端と他端とが前記温度測定器に接続されるようにループ状に配置される。
前記光ファイバは、前記温度測定器から見た末端が複数であるスター型としてもよい。ERA-BOTDAとすることで多数の測定地点の積雪量を同時に測定することができる。
なお、上記各発明は、可能な限り組み合わせることができる。
本発明は、正確に且つ経済的に積雪量を遠隔で測定できる積雪量推定システム及び積雪量推定方法を提供することができる。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
[発明の特徴]
本発明に係る積雪量推定システムは、ラマン散乱光の温度に対する強度依存性で光ファイバの温度を測定し、戻ってきた光の到着時間で光ファイバの長手方向の位置を対応付け、光ファイバの温度分布から測定地点の積雪量を推定を把握する。
ラマン散乱光は温度に対して強度依存性を持つ。R-OTDR(Raman Optical Time Domain Refrectometry)は、光ファイバに入射したパルス光により生じたラマン散乱光を観測する光反射計測技術である。ラマン散乱光の強度を観測することで光ファイバの温度を推定することができる。
また、OTDRなので、パルス光で生じたレイリー散乱光の到着時間で光ファイバの長手方向の位置を対応付けすることができる。
このように、本積雪量推定システムは、光ファイバの長手方向に温度分布を測定することができる(例えば、参考文献を参照。)。
[参考文献]岡本和弘、光ファイバによる温度分布計測、レーザー解説、平成6年4月
本発明に係る積雪量推定システムは、ラマン散乱光の温度に対する強度依存性で光ファイバの温度を測定し、戻ってきた光の到着時間で光ファイバの長手方向の位置を対応付け、光ファイバの温度分布から測定地点の積雪量を推定を把握する。
ラマン散乱光は温度に対して強度依存性を持つ。R-OTDR(Raman Optical Time Domain Refrectometry)は、光ファイバに入射したパルス光により生じたラマン散乱光を観測する光反射計測技術である。ラマン散乱光の強度を観測することで光ファイバの温度を推定することができる。
また、OTDRなので、パルス光で生じたレイリー散乱光の到着時間で光ファイバの長手方向の位置を対応付けすることができる。
このように、本積雪量推定システムは、光ファイバの長手方向に温度分布を測定することができる(例えば、参考文献を参照。)。
[参考文献]岡本和弘、光ファイバによる温度分布計測、レーザー解説、平成6年4月
一方、敷設された光ファイバには、地下に埋設された地下区間、電柱などで空中に張られた架空区間、地下区間と架空区間との間で電柱により光ファイバを地中から空中へ(その逆の場合もある)移動させる引き上げ区間が存在する。
積雪が無い状態であれば、架空区間と引き上げ区間の光ファイバの温度変化は外気温変動に追従する一方、地下区間の光ファイバの温度変化は架空区間と引き上げ区間の光ファイバの温度変化より小さい。このため、外気温変化が生じた前後で光ファイバの長手方向の温度分布を比較することで引き上げ区間の位置を遠隔で把握することができる。
また、積雪時であれば、外気温変動に対して雪中の温度変化は小さいので、引き上げ区間の光ファイバの内、雪に埋もれている部分の温度変化は雪に埋もれていない部分の温度変化より小さい。このため、外気温変化が生じた前後で光ファイバの長手方向の温度分布を比較することで引き上げ区間における雪で埋もれた部分の長さ、すなわち積雪量を遠隔で把握することができる。
従って、本発明に係る積雪量推定システムは、光ファイバ網の引き上げ区間を利用して遠隔から積雪量の監視を行うことができる。
[実施形態1]
図1は、本実施形態の積雪量推定システム301を説明する図である。積雪量推定システム301は、
地面20と上空とを結ぶ引き上げ区間50aを少なくとも1か所持つ光ファイバ50と、
光ファイバ50の温度を光ファイバ50の長手方向の分布として測定する温度測定器11と、
積雪時に大気の温度変化があったときに、引き上げ区間50aのうち、地面20側から光ファイバ50の温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部12と、
を備える。
図1において符号25は積雪を意味する。
図1は、本実施形態の積雪量推定システム301を説明する図である。積雪量推定システム301は、
地面20と上空とを結ぶ引き上げ区間50aを少なくとも1か所持つ光ファイバ50と、
光ファイバ50の温度を光ファイバ50の長手方向の分布として測定する温度測定器11と、
積雪時に大気の温度変化があったときに、引き上げ区間50aのうち、地面20側から光ファイバ50の温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部12と、
を備える。
図1において符号25は積雪を意味する。
光ファイバ50は光ケーブル51に内蔵されていてもよい。本実施形態では、光ケーブル51が地中に敷設されている形態を説明する。また、光ファイバ50は、地中に敷設されている地下区間50b、電柱13により架け渡されている架空区間50c、及び電柱13により地中区間50bと架空区間50cとを結ぶ引き上げ区間50aが存在する。
また、温度測定器11と解析処理部12は、積雪管理を行う拠点である通信ビル10内に配置することができる。
また、温度測定器11と解析処理部12は、積雪管理を行う拠点である通信ビル10内に配置することができる。
温度測定器11は、光ファイバ50の温度を分布的に測定可能な装置である。温度測定器11は、例えば、ラマンOTDR、ブリルアンOTDRである。なお、温度測定器11は、外気温の変化量に対して十分高い測定精度(例えば1℃単位で測定可能)を持つ。また、温度測定器11は、積雪変化量の測定要件に対して、十分な距離分解能(例えば、1mの積雪量変化を測定したい場合、1mの距離分解能)をもつ。
引き上げ区間50aの光ファイバ50は、地下マンホール14から電柱13に接続される引上げ管に収容される光ケーブル、建物の壁面に敷設された構内ケーブル、または積雪量測定のために新たに電柱13等に敷設する光ケーブルに含まれる光ファイバである。
引き上げ区間50aと温度測定器11とを接続する区間50bの光ファイバ50は、通信ビル10から引き出される地下光ケーブル51に含まれる光ファイバである。なお、図1では、区間50bが地下光ケーブル、区間50cが架空光ケーブルであるが、逆であってもよい。すなわち、引き上げ区間50aと温度測定器11とを接続する区間50bが架空ケーブルであり、区間50cが地下ケーブルであってもよい。
図2から図3を用いて、解析処理部12が行う処理を説明する。
図2(A)は、非積雪時に温度測定器11で測定した光ファイバ50の相対温度分布を説明する図である。実線が任意時刻における相対温度分布、破線が任意の時刻より外気温が下がった時刻における相対温度分布である。図2(B)は、任意時刻の相対温度分布と外気温低下時の相対温度分布の差分を説明する図である。
図2(A)は、非積雪時に温度測定器11で測定した光ファイバ50の相対温度分布を説明する図である。実線が任意時刻における相対温度分布、破線が任意の時刻より外気温が下がった時刻における相対温度分布である。図2(B)は、任意時刻の相対温度分布と外気温低下時の相対温度分布の差分を説明する図である。
非積雪時において、通信ビル10から引き上げ区間(電柱13の根元)までの距離Z0を求める。日中と夜間とで地上の気温差は地下の温度差より大きい。そこで、気温が高い時刻(日中)に温度測定器11で測定した光ファイバ50の温度分布(図2(A)の実線)と気温が下がった時刻(夜間)に温度測定器11で測定した光ファイバ50の温度分布(図2(A)の破線)との差分を得る(図2(B))。図2(B)より、日中と夜間とで光ファイバ50の温度差が小さい区間を地下区間50b、光ファイバ50の温度差が大きい区間を地上区間(引き上げ区間50aと架空区間50c)とする。両区間の境目をZ0とする。
あるいは、通信ビル10内にて光ファイバ50に光ファイバ振動分布測定装置(DAS:Distributed Acoustic Sensing)を接続し、振動分布波形を測定しながら、作業員により電柱13の根元を打撃し、測定される振動の大きさの最大値をとる位置をZ0としてもよい。
距離Z1については、Z0から引き上げ区間50aの長さで決定するため、電柱13の根元から架渉ポイントまでの長さをメジャーで測る、あるいは設計値を使うことで算出できる。
図3(A)は、積雪時に温度測定器11で測定した光ファイバ50の相対温度分布を説明する図である。実線が任意時刻における相対温度分布、破線が任意の時刻より外気温が下がった時刻における相対温度分布である。図3(B)は、任意時刻の相対温度分布と外気温低下時の相対温度分布の差分を説明する図である。
積雪時において、温度測定器11により、引き上げ区間50a(Z0からZ1)について気温が高い時(日中)の温度分布(図3(A)の実線)と気温が下がった時(夜間)の温度分布(図3(A)の破線)を測定する。両温度分布(図3(A)の実線と破線)の差分を図3(B)に示す。雪中は、外気温が変化しても温度変化が少ない。このため、図3(B)の光ファイバの温度変化が少ない区間50s(Z0からZsの間)が、雪に埋もれている部分(積雪量)といえる。
ただし、光ファイバ50の温度分布を2回測定する時刻間で、積雪量が大きく変化しないことが前提となる。具体的には、温度測定器11の空間分解能に対して、積雪量の変化が十分小さくなければならない。
上記の説明は、引き上げ区間50aにおいて光ファイバ50が地面20に対して垂直であることを前提として説明している。引き上げ区間50aにおいて光ファイバ50が地面20に対して垂直でなくとも、傾斜角が把握できていれば、Z0からZsの長さと傾斜角から積雪量を計算できる。
[実施形態2]
図4は、積雪量推定システム301が行う積雪量推定方法を説明するフローチャートである。本推定方法は、
地面20と上空とを結ぶ引き上げ区間50aを少なくとも1か所持つ光ファイバ50の温度を光ファイバ50の長手方向の分布として測定すること(ステップS11及びS12)、
積雪時における大気の温度変化前後の前記分布を比較し、引き上げ区間50aのうち、地面20側から光ファイバ50の温度変化が他より少ない区間50sを検出すること、及び
区間50sの長さから積雪量を推定すること(ステップS13)
を行う。
図4は、積雪量推定システム301が行う積雪量推定方法を説明するフローチャートである。本推定方法は、
地面20と上空とを結ぶ引き上げ区間50aを少なくとも1か所持つ光ファイバ50の温度を光ファイバ50の長手方向の分布として測定すること(ステップS11及びS12)、
積雪時における大気の温度変化前後の前記分布を比較し、引き上げ区間50aのうち、地面20側から光ファイバ50の温度変化が他より少ない区間50sを検出すること、及び
区間50sの長さから積雪量を推定すること(ステップS13)
を行う。
また、ステップS11を行う前に事前処理(ステップS10)として、引き上げ区間50aの位置を把握しておく(ステップS01)。
ステップS01では、非積雪時に、通信ビル10から電柱13の根元までの距離に当たるZ0を求める。Z0は光計測により求めた実長である必要がある。Z0の実長は、以下のいずれかの方法で取得する。
(1)積雪量推定システム301を利用し、図2で説明したように、外気温の変化前後で取得した光ファイバ50の温度分布を比較することでZ0を取得する。
(2)光ファイバ50に光ファイバ振動分布測定装置を接続し、意図的に電柱13の根元を打撃し、その振動波形からZ0を取得する。
ステップS01では、非積雪時に、通信ビル10から電柱13の根元までの距離に当たるZ0を求める。Z0は光計測により求めた実長である必要がある。Z0の実長は、以下のいずれかの方法で取得する。
(1)積雪量推定システム301を利用し、図2で説明したように、外気温の変化前後で取得した光ファイバ50の温度分布を比較することでZ0を取得する。
(2)光ファイバ50に光ファイバ振動分布測定装置を接続し、意図的に電柱13の根元を打撃し、その振動波形からZ0を取得する。
そして、非積雪時に、通信ビルから電柱架渉ポイントまでの実長Z1を求める。Z1の実長は、以下のいずれかの方法で取得する。
(1)電柱13の根元から架渉ポイントまでの距離をメジャーで測定し、その測定値をZ0に加算する。
(2)電柱13の根元から架渉ポイントまでの距離の設計値をZ0に加算する。
(1)電柱13の根元から架渉ポイントまでの距離をメジャーで測定し、その測定値をZ0に加算する。
(2)電柱13の根元から架渉ポイントまでの距離の設計値をZ0に加算する。
Z0からZ1を引き上げ区間50aとする。
ステップS11以降は、積雪量を測定したいときに行う。
ステップS11では、積雪時において、任意の時刻において、温度測定器11で引き上げ区間50aの温度分布を測定する(図3(A)の実線)。また、任意時刻における外気温T0を記録する。
ステップS12では、積雪時において、外気温T0に対して温度変化があった時刻において、温度測定器11で引き上げ区間50aの温度分布を測定する(図3(A)の破線)。
ステップS13では、引き上げ区間50aの温度分布のうち、相対的に温度変化が小さい区間を積雪量として求める(図3(B)の区間50s)。
ステップS11では、積雪時において、任意の時刻において、温度測定器11で引き上げ区間50aの温度分布を測定する(図3(A)の実線)。また、任意時刻における外気温T0を記録する。
ステップS12では、積雪時において、外気温T0に対して温度変化があった時刻において、温度測定器11で引き上げ区間50aの温度分布を測定する(図3(A)の破線)。
ステップS13では、引き上げ区間50aの温度分布のうち、相対的に温度変化が小さい区間を積雪量として求める(図3(B)の区間50s)。
[実施形態3]
実施形態1では、1か所の積雪量を測定する例を説明した。本発明に係る積雪量推定システムは、複数箇所の積雪量も測定可能である。複数箇所を測定する積雪量推定システムの構成を図5及び図6に示す。
実施形態1では、1か所の積雪量を測定する例を説明した。本発明に係る積雪量推定システムは、複数箇所の積雪量も測定可能である。複数箇所を測定する積雪量推定システムの構成を図5及び図6に示す。
図5は、複数の積雪量の測定地点を1本の光ファイバ50で一筆書き状に接続した積雪量推定システム302である。測定可能な測定地点間隔は、温度測定器11の位置分解能以上(例えば、100m以上)とする。
図6は、複数の積雪量の測定地点それぞれへ光ファイバ50を敷設した積雪量推定システム303である。積雪量推定システム303は、光スイッチ15を備え、光スイッチ15を切り替えることでそれぞれの測定地点の積雪量を測定する。
[実施形態4]
図7は、本実施形態の積雪量推定システム304を説明する図である。積雪量推定システム304は、図5の積雪量推定システム302に対し、光ファイバ50が、一端と他端とが温度測定器11に接続されるようにループ状に配置されることを特徴とする。
図7は、本実施形態の積雪量推定システム304を説明する図である。積雪量推定システム304は、図5の積雪量推定システム302に対し、光ファイバ50が、一端と他端とが温度測定器11に接続されるようにループ状に配置されることを特徴とする。
温度測定器11として、ラマンOTDA、ブリルアンOTDA、又はブリルアンOCDAを使用することができる。このため、積雪量推定システム304は、位置分解能や温度精度が積雪量推定システム302に対して高い。なお、図6の積雪量推定システム303のように光スイッチ15を利用してループ状の光ファイバ50を複数備えてもよい。
[実施形態5]
図8は、本実施形態の積雪量推定システム305を説明する図である。積雪量推定システム305は、図5の積雪量推定システム302に対し、温度測定器11から見た末端が複数であるスター型であることを特徴とする。
図8は、本実施形態の積雪量推定システム305を説明する図である。積雪量推定システム305は、図5の積雪量推定システム302に対し、温度測定器11から見た末端が複数であるスター型であることを特徴とする。
建物の壁面に敷設された構内ケーブルを用いて本発明を実施する場合もある。このような場合、光ファイバネットワークのトポロジが光スプリッタ16を有するスター型となることもある。この場合には、光ファイバの末端に反射板17を配置し、ERA(End Reflection Assisted)-BOTDAを利用することで本発明を実施可能である。
[効果]
本発明に係る積雪量推定システムは、光ケーブルの温度を分布的に測定が可能な光ファイバセンシング技術を用いて、積雪量を測定する路面等に対して垂直方向(傾斜角が既知であるならば傾斜していてもよい)に敷設された光ケーブルの温度分布の時間変化量を測定する。路面等に対して垂直方向に敷設された光ケーブルとして、既設光ケーブル網の引上げ/下げケーブルや建物の壁面設置された構内ケーブル、または、積雪量測定のために新たに電柱等に敷設するケーブルを利用可能である。
つまり、本発明により、既設光ケーブル網を活用して遠隔から積雪量の監視ができるようになる。
本発明に係る積雪量推定システムは、光ケーブルの温度を分布的に測定が可能な光ファイバセンシング技術を用いて、積雪量を測定する路面等に対して垂直方向(傾斜角が既知であるならば傾斜していてもよい)に敷設された光ケーブルの温度分布の時間変化量を測定する。路面等に対して垂直方向に敷設された光ケーブルとして、既設光ケーブル網の引上げ/下げケーブルや建物の壁面設置された構内ケーブル、または、積雪量測定のために新たに電柱等に敷設するケーブルを利用可能である。
つまり、本発明により、既設光ケーブル網を活用して遠隔から積雪量の監視ができるようになる。
10:通信ビル
11:温度測定器
12:解析処理部
13:電柱
14:マンホール
15:光スイッチ
16:光スプリッタ
17:反射板
20:地面
25:積雪
50:光ファイバ
50a:引き上げ区間
50b:地下区間
50c:架空区間
50s:雪中区間
51:光ケーブル
301~305:積雪量推定システム
11:温度測定器
12:解析処理部
13:電柱
14:マンホール
15:光スイッチ
16:光スプリッタ
17:反射板
20:地面
25:積雪
50:光ファイバ
50a:引き上げ区間
50b:地下区間
50c:架空区間
50s:雪中区間
51:光ケーブル
301~305:積雪量推定システム
Claims (5)
- 地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバと、
前記光ファイバの温度を前記光ファイバの長手方向の分布として測定する温度測定器と、
積雪時に大気の温度変化があったときに、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出し、前記区間の長さから積雪量を推定する解析処理部と、
を備える積雪量推定システム。 - 前記光ファイバは、一端と他端とが前記温度測定器に接続されるようにループ状に配置されることを特徴とする請求項1に記載の積雪量推定システム。
- 前記光ファイバは、前記温度測定器から見た末端が複数であるスター型であることを特徴とする請求項1に記載の積雪量推定システム。
- 地面と上空とを結ぶ引き上げ区間を少なくとも1か所持つ光ファイバの温度を前記光ファイバの長手方向の分布として測定すること、
積雪時における大気の温度変化前後の前記分布を比較し、前記引き上げ区間のうち、前記地面側から前記光ファイバの温度変化が他より少ない区間を検出すること、及び
前記区間の長さから積雪量を推定すること
を行う積雪量推定方法。 - 前記引き上げ区間の位置を把握することを予め行うことを特徴とする請求項4に記載の積雪量推定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/044262 WO2023100316A1 (ja) | 2021-12-02 | 2021-12-02 | 積雪量推定システム及び積雪量推定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/044262 WO2023100316A1 (ja) | 2021-12-02 | 2021-12-02 | 積雪量推定システム及び積雪量推定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023100316A1 true WO2023100316A1 (ja) | 2023-06-08 |
Family
ID=86611656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044262 WO2023100316A1 (ja) | 2021-12-02 | 2021-12-02 | 積雪量推定システム及び積雪量推定方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023100316A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04281597A (ja) * | 1991-03-11 | 1992-10-07 | Matsushita Electric Ind Co Ltd | 路面凍結検知装置 |
JP2001228264A (ja) * | 2000-02-17 | 2001-08-24 | Mitsubishi Cable Ind Ltd | 路面凍結予測システム |
JP2003114283A (ja) * | 2001-10-03 | 2003-04-18 | Sparkling Foton:Kk | 積雪監視装置および融氷雪システム |
JP2003270358A (ja) * | 2002-03-15 | 2003-09-25 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバを利用した積雪センサ、積雪計および積雪計測法 |
US20050077455A1 (en) * | 2003-08-13 | 2005-04-14 | Townley-Smith Paul A. | Perimeter detection |
JP2017191044A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社鈴木エンタープライズ | 積雪検知装置及び積雪検知システム |
-
2021
- 2021-12-02 WO PCT/JP2021/044262 patent/WO2023100316A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04281597A (ja) * | 1991-03-11 | 1992-10-07 | Matsushita Electric Ind Co Ltd | 路面凍結検知装置 |
JP2001228264A (ja) * | 2000-02-17 | 2001-08-24 | Mitsubishi Cable Ind Ltd | 路面凍結予測システム |
JP2003114283A (ja) * | 2001-10-03 | 2003-04-18 | Sparkling Foton:Kk | 積雪監視装置および融氷雪システム |
JP2003270358A (ja) * | 2002-03-15 | 2003-09-25 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバを利用した積雪センサ、積雪計および積雪計測法 |
US20050077455A1 (en) * | 2003-08-13 | 2005-04-14 | Townley-Smith Paul A. | Perimeter detection |
JP2017191044A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社鈴木エンタープライズ | 積雪検知装置及び積雪検知システム |
Non-Patent Citations (2)
Title |
---|
HIROSHI TAKAHASHI, ET AL.: "Investigation of Acoustic Wave Excitation Process by Frequency Swept Pulse for Loss Measurement Using Brillouin Scattering", IEICE TECHNICAL REPORT, vol. 116, no. 456 (OFT2016-52), 1 January 2017 (2017-01-01), pages 39 - 44, XP009546769 * |
OKAMOTO KAZUHIRO: "Fiber-Optic Distributed-Temperature Sensing", REZA KENKYU - REVIEW OF LASER ENGINEERING., REZA GAKKAI, JP, vol. 22, no. 4, 1 January 1994 (1994-01-01), JP , pages 276 - 283, XP093070000, ISSN: 0387-0200, DOI: 10.2184/lsj.22.276 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7267918B2 (ja) | 分散音響センシングのための方法およびシステム | |
CN106570568B (zh) | 基于三维全景和gis地图的桥隧巡检养护管理系统及方法 | |
CN103780305B (zh) | 一种配电网通信光缆网络集中监测管理方法及系统 | |
JP7164027B2 (ja) | 光ファイバセンサ、監視システム、センシング位置補正方法、及び、センシング位置補正プログラム | |
CN104401360A (zh) | 基于多手段融合的铁路轨道系统安全实时监控方法及系统 | |
KR102380852B1 (ko) | 제설작업 의사 결정 시스템 및 방법 | |
CN114575927A (zh) | 一种轨道交通安全监测系统及方法 | |
CN111926651B (zh) | 一种道路用电加热防冰融雪系统及其铺设方法 | |
CN110474677B (zh) | 一种快速定位光纤断点的方法 | |
KR102380853B1 (ko) | 자율작업 기능을 갖춘 도로의 제설용액 분사시스템 | |
CN114993444A (zh) | 基于光栅传感器阵列的机场跑道安全监测方法及系统 | |
WO2022176047A1 (ja) | 電柱位置特定方法及び架空光ファイバケーブルの状態推定方法 | |
WO2023100316A1 (ja) | 積雪量推定システム及び積雪量推定方法 | |
CN111239842A (zh) | 一种基于分布式光纤传感技术的雨水入侵光缆监测系统及方法 | |
JP2002157676A (ja) | 可視画像式路面状況把握装置における路面状況判定方法 | |
CN102401730A (zh) | 一种自组织光纤光缆识别仪 | |
CN205665360U (zh) | 绝缘子污秽监测装置 | |
WO2022019603A1 (ko) | Iot(internet of things)를 이용한 제설 작업 관리 시스템 | |
CN205157454U (zh) | 隧道拱顶分布式光纤监测装置 | |
CN110346167A (zh) | 一种基于光纤的桥梁安全监测方法及其监测机构 | |
US20250028078A1 (en) | Amount of snowfall estimation system and amount of snowfall estimation method | |
CN106646670B (zh) | 一种输电线路分布式微气象监测方法 | |
CN211504169U (zh) | 基于分布式光纤的渗水盲沟破损检测系统 | |
WO2006123977A1 (en) | A method for detecting ice on the surface of a fixed structure, a device for performing the method and a fixed structure provided with a device for detecting ice | |
CN202329986U (zh) | 一种自组织光纤光缆识别仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21966399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21966399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |