[go: up one dir, main page]

WO2023090452A1 - Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery - Google Patents

Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery Download PDF

Info

Publication number
WO2023090452A1
WO2023090452A1 PCT/JP2022/043098 JP2022043098W WO2023090452A1 WO 2023090452 A1 WO2023090452 A1 WO 2023090452A1 JP 2022043098 W JP2022043098 W JP 2022043098W WO 2023090452 A1 WO2023090452 A1 WO 2023090452A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
positive electrode
particles
precursor powder
active material
Prior art date
Application number
PCT/JP2022/043098
Other languages
French (fr)
Japanese (ja)
Inventor
将志 井上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023090452A1 publication Critical patent/WO2023090452A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor powder, a positive electrode active material powder, a method for producing the positive electrode active material powder, a positive electrode, and a lithium secondary battery.
  • Lithium metal composite oxide is used as a positive electrode active material for lithium secondary batteries.
  • the positive electrode active material is usually in powder form.
  • Patent Document 1 has room for improvement in terms of cycle retention rate.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a precursor powder that can be used as a precursor of a positive electrode active material and can produce a positive electrode active material having a high cycle retention rate. do. Another object of the present invention is to provide a positive electrode active material powder having a high cycle retention rate and a method for producing a positive electrode active material powder having a high cycle retention rate. A further object of the present invention is to provide a positive electrode and a lithium secondary battery containing such a positive electrode active material powder and having an excellent cycle retention rate.
  • one aspect of the present invention includes the following aspects.
  • a precursor powder used as a precursor of a positive electrode active material for a lithium secondary battery comprising a plurality of particles having pores and a filling compound filled in the pores, the particles has a layered structure and is composed of a metal composite compound containing at least Ni, the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound, and satisfies the following formula (1) precursor powder.
  • 10 ⁇ (P1 ⁇ P2)/P1 ⁇ 100 ⁇ 100 (1) (P1 (cm 3 /g) is a washed precursor powder obtained by washing the precursor powder for 20 minutes with water that is 20 times the weight of the precursor powder, followed by solid-liquid separation and drying.
  • P2 (cm 3 /g) is the maximum peak value of the log differential pore volume in the region with a pore size of 10 nm or less in the pore size distribution of the precursor powder.
  • the pore size distribution is the value of the log differential pore volume at the pore size of
  • the pore size distribution is the nitrogen desorption isotherm obtained by measuring the precursor powder or the washed precursor powder at liquid nitrogen temperature, - Obtained by analysis using the Joyner-Halenda (BJH) method.
  • the metal complex compound contains an element X, and the element X is Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P, and the atomic weight ratio between Ni and the element X contained in the metal composite compound and the sum of W and Mo contained in the filling compound is represented by the following formula
  • the precursor powder according to any one of [1] to [3], which satisfies (2).
  • [Ni]: [X]: [W + Mo] (1-a): a: b (2) (Formula (2) satisfies 0.01 ⁇ a ⁇ 0.5 and 0.0015 ⁇ b ⁇ 0.03.)
  • D50 which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 ⁇ m
  • D50 which is the particle size at which the cumulative volume ratio from the small particle size side is 50%
  • a positive electrode active material powder used in a lithium secondary battery comprising a plurality of particles having pores and a filling compound filled in the pores, the particles having a layered structure. and a positive electrode comprising a lithium metal composite oxide containing at least Ni, the filling compound being either one or both of a water-soluble tungsten compound and a water-soluble molybdenum compound, and having a peak satisfying the following formula (3): Active material powder.
  • P3 ⁇ 0.003 (3) P3 (cm 3 /g) is the washed powder obtained by washing the positive electrode active material powder for 20 minutes using water that is 20 times the weight of the positive electrode active material powder, and drying after solid-liquid separation.
  • the pore size distribution is the nitrogen desorption obtained by measuring the washed powder at liquid nitrogen temperature It is obtained by analyzing the isotherm by the Barrett-Joyner-Halenda (BJH) method.)
  • the positive electrode active material powder is precisely weighed to obtain a sample, and the sample is washed for 20 minutes with water having a mass ratio of 20 times that of the sample, followed by solid-liquid separation to obtain a filtrate.
  • the filtrate is subjected to ICP analysis, and the total eluted molar amount of W and Mo eluted in the filtrate is determined based on the analysis results.
  • the elution ratio is obtained from the total molar amount of W and Mo in the sample and the total eluted molar amount.
  • the particles include secondary particles in which the primary particles of the lithium metal composite oxide are aggregated, and the secondary particles are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the lithium metal composite oxide contains an element X, and the element X is Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B , S and P, and the sum of Li, Ni, and the element X contained in the lithium metal composite oxide, and W and Mo contained in the filling compound
  • the positive electrode active material powder according to any one of [7] to [9], wherein the atomic weight ratio of: satisfies the following formula (4).
  • D50 which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 ⁇ m.
  • the positive electrode active material powder according to any one of [10].
  • the positive electrode active material powder according to any one of [7] to [11], which has a BET specific surface area of 2 m 2 /g or less.
  • the precursor powder and the lithium are at a molar ratio of 0.90 to 1.20 for Li constituting the lithium compound with respect to the total amount of metal elements constituting the particles of the precursor powder.
  • a positive electrode comprising the positive electrode active material powder according to any one of [7] to [13].
  • a precursor powder that is used as a precursor of a positive electrode active material and that enables production of a positive electrode active material with a high cycle maintenance rate. Further, it is possible to provide a positive electrode active material powder having a high cycle retention rate and a method for producing a positive electrode active material powder having a high cycle retention rate. Further, it is possible to provide a positive electrode and a lithium secondary battery containing such a positive electrode active material powder and having excellent cycle retention rate.
  • FIG. 1 is an SEM image of precursor powder 1 obtained in Example 1.
  • FIG. 2 is an SEM-EDX image showing the distribution of W in the same field of view as in FIG. 3 is an SEM image of CAM powder 1 obtained in Example 1.
  • FIG. 4 is an SEM-EDX image showing the distribution of W in the same field of view as in FIG.
  • FIG. 5 is a schematic diagram showing how CAM particles grow during the production of CAM powder using the precursor powder described above.
  • FIG. 6 is a schematic diagram showing how particles grow during production of LiMO particles using MCC particles that do not have a filling compound in their pores.
  • FIG. 7 is a schematic diagram showing an example of a lithium secondary battery.
  • FIG. 8 is a schematic diagram showing an example of the all-solid lithium secondary battery of the embodiment.
  • FIG. 9 is an SEM photograph of CAM powder 1.
  • FIG. FIG. 10 is an SEM photograph of CAM powder CB1.
  • 11 is an SEM image of the precursor powder 4.
  • FIG. 12 is an SEM-EDX image showing the distribution of Mo in the same field of view as in FIG. 13 is an SEM image of CAM powder 4.
  • FIG. 14 is an SEM-EDX image showing the distribution of Mo in the same field of view as in FIG.
  • FIG. 15 shows the measurement results for the precursor powder 1.
  • FIG. FIG. 16 shows measurement results for CAM powder 1.
  • FIG. 17 shows measurement results for the precursor powder CA1.
  • FIG. 18 shows measurement results for CAM powder CB1.
  • FIG. 19 shows the measurement results for precursor powder 5.
  • FIG. 20 shows the measurement results for CAM powder 5.
  • FIG. 20 shows the measurement results for CAM powder 5.
  • MCC Metal Composite Compound
  • LiMO lithium metal composite oxide. LiMO is not included in the above MCC (MCC does not include LiMO).
  • CAM means a cathode active material for lithium secondary batteries.
  • CAM powder positive electrode active material powder
  • powdery CAM powdery CAM
  • primary particles means particles that do not appear to have grain boundaries when observed in a field of view of 10,000 times using a scanning electron microscope or the like.
  • secondary particles refers to particles in which the above primary particles are aggregated. That is, secondary particles are aggregates of primary particles.
  • the numerical range for example, when “1 to 10 ⁇ m” is described, it means a numerical range from 1 ⁇ m to 10 ⁇ m including the lower limit (1 ⁇ m) and the upper limit (10 ⁇ m), that is, “1 ⁇ m or more and 10 ⁇ m or less”. .
  • Cycle retention rate is measured using the following (measurement of cycle retention rate) using a lithium secondary battery obtained by the following (production of positive electrode for lithium secondary battery) and (production of lithium secondary battery (coin-type half cell)): method).
  • cycle maintenance rate exceeds 80%, it is evaluated as "high cycle maintenance rate”.
  • a battery with a high cycle retention rate is preferable because it suppresses a decrease in capacity after repeated charging and discharging.
  • a positive electrode mixture is prepared. N-methyl-2-pyrrolidone is used as an organic solvent when preparing the positive electrode mixture.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .
  • the constant current constant voltage charge and the constant current discharge are combined to form the first charge/discharge cycle, and the charge/discharge cycle is repeated under the same conditions. After that, the discharge capacity (mAh/g) at the 50th cycle is measured.
  • Cycle retention rate (%) [discharge capacity at 50th cycle]/[discharge capacity at 1st cycle] x 100
  • the "cumulative particle size distribution" of each powder is obtained on a volume basis, and is measured using a measuring device based on the principle of laser diffraction scattering.
  • a measuring device for example, MT3000II (manufactured by Microtrac Bell) can be used.
  • the measurement range of the particle size distribution is 0.02 ⁇ m or more and 20 ⁇ m or less.
  • D 50 ( ⁇ m) is the particle size at which the cumulative volume ratio from the small particle size side is 50% when the whole is taken as 100%. More specifically, in a volume-based cumulative particle size distribution curve with a measurement range of 0.02 ⁇ m or more and 20 ⁇ m or less, when the entire measurement range is 100%, the particle volume ratio accumulated from the lower limit of the measurement range is The particle diameter at 50% is defined as D 50 ( ⁇ m).
  • the "BET specific surface area" of each powder is measured using the BET multipoint method from the nitrogen adsorption isotherm in the process of measuring the pore distribution described later.
  • a measuring device for example, a specific surface area pore size distribution measuring device (BELSORP-mini (manufactured by Microtrack Bell Co., Ltd.)) can be used.
  • composition analysis The composition of each powder, MCC, and LiMO is measured using an ICP emission spectrometer after dissolving each powder in acid or alkali according to the element to be measured.
  • an ICP emission spectrometer for example, Optima7300 (manufactured by PerkinElmer Co., Ltd.) can be used.
  • Powder X-ray diffraction measurement is performed using an X-ray diffractometer.
  • an X-ray diffractometer for example, D8ADVANCE (manufactured by Bruker Corporation) can be used.
  • the number of primary particles constituting the secondary particles is obtained by observing the secondary particles with a scanning electron microscope (SEM) and randomly selecting 5 visual fields from the obtained SEM image at a magnification of 10000 times. In each field of view, the number of primary particles on the surface of the secondary particles is counted, the number of primary particles per unit area of 1 ⁇ m 2 is measured, and the average number of primary particles is calculated.
  • SEM scanning electron microscope
  • the "pore size distribution" of the particles constituting each powder can be obtained by analyzing the nitrogen desorption isotherm obtained by measuring the powder at liquid nitrogen temperature using the Barrett-Joyner-Halenda (BJH) method.
  • BJH Barrett-Joyner-Halenda
  • a nitrogen desorption isotherm measuring device for example, BELSORP-mini (manufactured by Microtrac Bell Co., Ltd.) can be used.
  • each powder is subjected to vacuum degassing treatment at 105° C. for 8 hours using a vacuum heat treatment apparatus (BELSORP-vacII, manufactured by Microtrack Bell Co., Ltd.).
  • a vacuum heat treatment apparatus BELSORP-vacII, manufactured by Microtrack Bell Co., Ltd.
  • the nitrogen adsorption amount of each powder at the liquid nitrogen temperature (77 K) is measured using the above-mentioned measuring device, and a nitrogen adsorption isotherm and a nitrogen desorption isotherm are created.
  • the horizontal axis is the ratio between the adsorption equilibrium pressure and the saturated vapor pressure (relative pressure ( ⁇ / ⁇ 0)), and the vertical axis is the standard state (STP; Standard Temperature and Pressure). It is a curve obtained by plotting the nitrogen adsorption amount (cm 3 (STP)/g).
  • the obtained nitrogen desorption isotherm is analyzed by the BJH method to determine the pore size distribution in the pore size range of 2 nm or more and 200 nm or less.
  • the pore size distribution is obtained by dividing the differential pore volume dV by the logarithmic differential value d (logD) of the pore size D.
  • the horizontal axis is the pore size (nm, logarithmic scale) and the vertical axis is the log differential Distribution obtained by plotting as pore volume (cm 3 /g).
  • the precursor powder of the present embodiment is used as a CAM precursor and has a plurality of particles having pores of a predetermined size and a filling compound that fills the pores.
  • the particles have a layered structure and consist of MCC containing at least Ni.
  • the particles constituting the precursor powder may be hereinafter referred to as "MCC particles".
  • the crystal structure of the precursor preferably belongs to any one of the hexagonal, trigonal, orthorhombic, and monoclinic crystal systems, and particularly preferably belongs to the hexagonal or trigonal system. For example, it preferably belongs to the space group P-3m1.
  • the crystal structure of the precursor can be confirmed by powder X-ray diffraction measurement.
  • the filling compound is either one or both of a tungsten compound (W compound) and a molybdenum compound (Mo compound).
  • the fill compound is lithium ion conductive and water soluble.
  • W compounds include Li 2 WO 4 and Li 4 WO 5 .
  • Li2MoO4 , Li4MoO5 is mentioned as such Mo compound.
  • the MCC particles and the filling compound filled in the pores of the MCC particles constitute particulate precursors (precursor particles). That is, an MCC particle is a single secondary particle formed by agglomeration of MCC primary particles and having pores. A precursor particle is a single particle containing MCC particles and a filling compound. A precursor powder is an aggregate of a plurality of precursor particles.
  • the precursor powder satisfies the following formula (1). 10 ⁇ (P1 ⁇ P2)/P1 ⁇ 100 ⁇ 100 (1)
  • P1 (cm 3 /g) is the washed precursor powder obtained by washing the precursor powder for 20 minutes with water that is 20 times the weight of the precursor powder, followed by solid-liquid separation and drying. is the maximum peak value of the log differential pore volume in the pore size distribution of 10 nm or less.
  • washing refers to an operation of stirring the precursor powder with water to dissolve and remove contaminants present on the particle surfaces and between the particles of the precursor powder.
  • Maximum peak value refers to the maximum value among the peak values of a plurality of peaks present in the above region. If there is no peak in the region with a pore diameter of 10 nm or less, it is evaluated as having no P1.
  • the filling compound is water soluble. Therefore, by washing the precursor powder under the above conditions, the obtained washed precursor powder is in a state in which the filling compound is removed from the pores, and the pores buried by the filling compound are exposed. That is, the washed precursor powder can be pseudo-aggregated with MCC particles.
  • the nm-order pores are too small for the gaps formed between the MCC particles. Therefore, it can be determined that the peak appearing in the region with a pore diameter of 10 nm or less corresponds to the size of the pores formed in the MCC particles.
  • the peak indicating P1 indicates the presence of pores possessed by MCC particles.
  • P1 may be 0.02 cm 3 /g or more, or may be 0.032 cm 3 /g or more. Also, P1 may be 0.9 cm 3 /g or less, or may be 0.8 cm 3 /g or less. The upper limit and lower limit of P1 can be combined arbitrarily. For example, P1 may be 0.02-0.9 cm 3 /g, or 0.032-0.8 cm 3 /g.
  • P2 (cm 3 /g) is the value of the log differential pore volume at the pore diameter of the peak showing P1 in the pore diameter distribution of the precursor powder before washing.
  • P4 is the log differential pore size at the pore size of 4 nm in the CAM powder before washing. volume value.
  • P2 is smaller than P1 (P1>P2).
  • P2 may be 0.001 cm 3 /g or more, or may be 0.002 cm 3 /g or more. Also, P2 may be 0.8 cm 3 /g or less, 0.7 cm 3 /g or less, or 0.6 cm 3 /g or less. The upper limit and lower limit of P2 can be combined arbitrarily. For example, P2 may be 0.001 to 0.8 cm 3 /g, may be 0.002 to 0.7 cm 3 /g, may be 0.002 to 0.6 cm 3 /g. good.
  • (P1 ⁇ P2)/P1 ⁇ 100” in formula (1) defined by P1 and P2 above is the maximum peak of the log differential pore volume in the region with a pore diameter of 10 nm or less before and after washing the precursor powder. It represents the change rate (%) of the value. As represented by formula (1), the precursor powder has a maximum peak value change rate of 10% or more and less than 100% before and after washing.
  • the rate of change is preferably 15% or more, more preferably 25% or more, even more preferably 35% or more, and particularly preferably 45% or more. Further, the rate of change may be 99% or less, or may be 98% or less. The upper limit and lower limit of the rate of change can be arbitrarily combined. The rate of change may be 15-99%, 25-99%, 35-99%, or 45-98%.
  • (P1 ⁇ P2)/P1 ⁇ 100” is, in other words, the fine pores possessed by the MCC particles when focusing on the fine pores having a pore diameter of 10 nm or less among the pores possessed by the MCC particles. Represents an approximation of the fill factor of the fill compound.
  • the fine pores of the MCC particles are filled with a filling compound in a range of 10% by volume or more and less than 100% by volume.
  • total pore volume obtained from the pore size distribution of the precursor powder is preferably 0.005 to 0.15 cm 3 /g.
  • the total pore volume of the precursor powder may be 0.006 cm 3 /g or more, or 0.008 cm 3 /g or more. Also, the total pore volume of the precursor powder may be 0.05 cm 3 /g or less, or may be 0.02 cm 3 /g or less. The upper limit and lower limit of the total pore volume can be combined arbitrarily. For example, the total pore volume of the precursor powder may be 0.006-0.05 cm 3 /g, or 0.008-0.02 cm 3 /g.
  • the pores of the MCC particles are filled with a sufficient amount of the filling compound.
  • MCC particles The MCC forming the MCC particles preferably contains the element X in addition to Ni.
  • Element X is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P.
  • Element X is preferably at least one element selected from the group consisting of Co, Mn, Al, Ti, Mg, Nb, and Zr.
  • the total amount ([W+Mo] ) and the atomic weight ratio preferably satisfies the following formula (2).
  • [Ni]: [X]: [W + Mo] (1-a): a: b (2) (Formula (2) satisfies 0.01 ⁇ a ⁇ 0.5 and 0.0015 ⁇ b ⁇ 0.03.)
  • the precursor powder when the total of [Ni] and [X] is 100 mol%, the precursor powder has a ratio of [Ni] to the total of [Ni] and [X] of 50 to 99 mol% (0.5 ⁇ 1-a ⁇ 0.99), and the ratio of [X] to the sum of [Ni] and [X] is 1 to 50 mol% (0.01 ⁇ a ⁇ 0.5).
  • the ratio of the sum of [W] and [Mo] to the sum of [Ni] and [X] is 0.15 to 3 mol% (0.0015 ⁇ b ⁇ 0.03).
  • a may be 0.02 or more, or may be 0.04 or more. Also, a may be 0.40 or less, or may be 0.30 or less.
  • the upper limit and lower limit of a can be combined arbitrarily. For example, 0.02 ⁇ a ⁇ 0.40 or 0.04 ⁇ a ⁇ 0.30.
  • b may be 0.002 or more, or may be 0.003 or more. Also, b may be 0.02 or less, or may be 0.015 or less. The upper limit and lower limit of b can be combined arbitrarily. For example, 0.002 ⁇ b ⁇ 0.02 or 0.003 ⁇ b ⁇ 0.015.
  • 0.02 ⁇ a ⁇ 0.40 and 0.0015 ⁇ b ⁇ 0.02 may be satisfied, and 0.04 ⁇ a ⁇ 0.30 and 0.003 ⁇ b ⁇ 0.015.
  • the ratio of the total amount of [Ni] and [X] contained in MCC and [W] and [Mo] contained in the filling compound (a, b above) can be obtained by the following method.
  • the MCC constituting the precursor particles contains at least one of W and Mo as the element X
  • a and b are obtained by the following method.
  • the total amount A includes both the total amount B of W and Mo to be treated as element X of the MCC and the total amount of W and Mo constituting the filling compound.
  • the precursor powder is precisely weighed to obtain a sample, the sample is washed for 20 minutes with water having a mass ratio of 20 times that of the sample, solid-liquid separation is performed, and the mass of the sample after solid-liquid separation is
  • the filling compound is removed from the precursor powder by performing solid-liquid separation while passing twice as much water.
  • the obtained powder is dried by vacuum drying at 120° C. for 10 hours to obtain a dried product.
  • the dried product is measured by the method described in [Composition analysis] above to confirm the presence or absence of W or Mo. When W or Mo is confirmed, the total amount B of [W] and [Mo] to be treated as the element X of MCC is obtained.
  • MCC is preferably a hydroxide represented by the following compositional formula (I).
  • Ni (1-xy) Co x M y (OH) 2- ⁇ Formula (I) (In composition formula (I), 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.3, 0 ⁇ x + y ⁇ 0.5, and ⁇ 0.5 ⁇ ⁇ ⁇ 0.5, M is Mn, It is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P.)
  • M is preferably at least one element selected from the group consisting of Mn, Al, Ti, Mg, and Nb.
  • (x) x may be 0.
  • x is preferably 0.01 or more, more preferably 0.015 or more, and particularly preferably 0.02 or more. Also, x is preferably 0.30 or less, more preferably 0.25 or less, and particularly preferably 0.10 or less.
  • composition formula (I) preferably satisfies 0 ⁇ x ⁇ 0.25, more preferably 0.015 ⁇ x ⁇ 0.20, particularly 0.02 ⁇ x ⁇ 0.10 preferable.
  • (y) y is preferably 0.01 or more, more preferably 0.015 or more, and particularly preferably 0.02 or more. Moreover, y is preferably 0.30 or less, more preferably 0.25 or less, and particularly preferably 0.15 or less.
  • the above upper limit and lower limit of y can be combined arbitrarily.
  • the above composition formula (I) preferably satisfies 0.01 ⁇ y ⁇ 0.30, more preferably satisfies 0.015 ⁇ y ⁇ 0.20, and satisfies 0.02 ⁇ y ⁇ 0.15 is particularly preferred.
  • ( ⁇ ) ⁇ is preferably ⁇ 0.45 or more, more preferably ⁇ 0.30 or more, and particularly preferably ⁇ 0.20 or more.
  • is preferably 0.45 or less, more preferably 0.30 or less, and particularly preferably 0.20 or less. The above upper limit and lower limit can be combined arbitrarily.
  • the preferred range of x+y is the same as the preferred range of a in formula (2) above.
  • composition formula (I) preferably satisfies ⁇ 0.45 ⁇ 0.45, more preferably ⁇ 0.30 ⁇ 0.30, and ⁇ 0.20 ⁇ 0.20. is particularly preferred.
  • composition formula (I) preferably satisfies 0 ⁇ x ⁇ 0.25, 0.01 ⁇ y ⁇ 0.30, and ⁇ 0.45 ⁇ 0.45. Moreover, it is particularly preferable that the composition formula (I) satisfies 0.02 ⁇ x ⁇ 0.10, 0.02 ⁇ y ⁇ 0.15, and ⁇ 0.20 ⁇ 0.20.
  • the D 50 of the precursor powder is preferably 3-20 ⁇ m, more preferably 4-18 ⁇ m, even more preferably 7-17 ⁇ m.
  • the D50 of the precursor powder is 3 ⁇ m or more, the amount of pores in the MCC particles increases, and the cycle retention rate of the lithium secondary battery using the CAM powder obtained from the precursor powder tends to improve.
  • the D50 of the precursor powder is 20 ⁇ m or less, the precursor powder easily reacts with the lithium compound in the step of firing which will be described later, and a uniform crystal structure is generated throughout the precursor particles. The capacity of a lithium secondary battery using the obtained CAM powder is likely to be improved.
  • the BET specific surface area of the precursor powder is preferably 1 to 40 m 2 /g, more preferably 1.5 to 35 m 2 /g, even more preferably 1.5 to 10 m 2 /g.
  • the BET specific surface area of the precursor powder is 1 m 2 /g or more, the amount of pores in the MCC particles increases, and the precursor powder easily reacts uniformly with the lithium compound in the firing step described later.
  • the BET specific surface area of the precursor powder is 40 m 2 /g or less, the pores of the MCC particles are easily filled with the W compound and the Mo compound, and the cycle maintenance of the lithium secondary battery using the obtained CAM powder is achieved. Easy to improve rate.
  • the method for producing the precursor powder includes the steps of producing MCC particles, mixing a basic solution in which a filling compound is dissolved and the MCC particles to obtain a slurry, and solid-liquid separation of the precursor powder dispersed in the slurry. and a step of drying after removing by the operation or evaporation operation of the solution.
  • MCC which constitutes the MCC particles, is a metal composite hydroxide having a layered structure, and contains Ni and the element X at a molar ratio represented by the following formula (I′), for example.
  • Ni: X (1-a): a (I') (In formula (I′), X represents the element X and satisfies 0.01 ⁇ a ⁇ 0.5.)
  • a metal composite hydroxide containing Ni, Co and Mn is prepared.
  • a metal composite hydroxide having a layered structure can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • Ni (1-xy) A metal composite hydroxide represented by Co x Mn y (OH) 2 (x and y are the same as x and y in formula (I) above) is produced.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.
  • At least one of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used as the manganese salt that is the solute of the manganese salt solution.
  • the above metal salts are used in proportions corresponding to the composition ratio of Ni (1-xy) Co x Mn y (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of Ni, Co and Mn in the mixed solution containing the metal salt corresponds to (1-xy):x:y. Also, water is used as a solvent.
  • the complexing agent is one capable of forming complexes with nickel ions, cobalt ions and manganese ions in an aqueous solution. etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine.
  • a complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide.
  • the amount of the complexing agent contained in the mixture containing the nickel salt solution, cobalt salt solution, manganese salt solution and complexing agent is, for example, metal salts (nickel salts, cobalt salts and manganese salts). is greater than 0 and 2.0 or less.
  • the mixed solution in order to adjust the pH value of the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution, and the complexing agent, the mixed solution is added before the pH of the mixed solution changes from alkaline to neutral. to which is added an aqueous solution of alkali metal hydroxide.
  • the alkali metal hydroxide is, for example, sodium hydroxide, and is used as an aqueous sodium hydroxide solution.
  • Ni, Co, and Mn react to form Ni (1- xy) Co x Mn y (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
  • the pH value of the reaction solution in the reaction tank is controlled within the range of pH 9-13, for example.
  • a value measured at a solution temperature of 40°C is adopted.
  • the reaction precipitate formed in the reaction tank is neutralized while stirring.
  • the neutralization time of the reaction precipitate is, for example, 1 to 20 hours.
  • an overflow type reaction tank can be used to separate the formed reaction precipitate.
  • the reaction tank When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank.
  • Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.
  • An inert gas is preferably supplied into the reaction vessel, and various gases such as nitrogen, argon, or mixed gases thereof are supplied into the reaction vessel.
  • gases such as nitrogen, argon, or mixed gases thereof are supplied into the reaction vessel.
  • the above P1, BET specific surface area, and total pore volume of the precursor powder can be controlled by the inert gas flow rate.
  • Wash and dehydrate the isolated reaction precipitate is preferably carried out using water or an alkaline washing solution.
  • the reaction precipitate is preferably washed with an alkaline washing solution, more preferably with an aqueous sodium hydroxide solution.
  • a sieving treatment may be performed to adjust the particle size of the metal composite hydroxide.
  • MCC particles can be produced by the above steps.
  • the total pore volume is 0.01 to 0.2 cm 3 /g, and in the pore size distribution, the log differential showing the maximum peak value in the region with a pore size of 10 nm or less MCC particles with a pore volume of 0.02-0.4 cm 3 /g can be obtained.
  • the total pore volume of MCC particles is more preferably 0.015 cm 3 /g or more.
  • the total pore volume of the MCC particles is preferably 0.18 cm 3 /g or less, particularly preferably 0.12 cm 3 /g or less.
  • the following (step of obtaining a slurry) may be continued without performing dehydration treatment and drying treatment.
  • Step of obtaining slurry a basic solution in which the filler compound is dissolved is mixed with the obtained MCC particles to obtain a slurry.
  • the basic solution is obtained by mixing either or both of WO3 and MoO3 , LiOH.H2O as a base, and water. Alternatively, it can be obtained by mixing one or both of Li 2 WO 4 and Li 2 MO 4 , LiOH.H 2 O as a base, and water.
  • the pH of basic solutions at 25 ⁇ 2° C. is greater than 10 (pH>10).
  • the basic solution may contain NaOH in addition to LiOH as a base, or may contain NaOH instead of LiOH, but it is preferable to use only LiOH.
  • either one or both of WO3 and MoO3 react with LiOH.
  • the basic aqueous solution in this step one or both of water-soluble Li 2 WO 4 and Li 4 WO 5 can be obtained from the basic aqueous solution containing W, and from the basic aqueous solution containing Mo, the water-soluble Either or both of Li 2 MoO 4 and Li 4 MoO 5 , ie the filling compounds described above, result.
  • a slurry is obtained by mixing the obtained basic solution and MCC particles.
  • the water content of the slurry may be 20% by mass or more, or may be 21% by mass or more.
  • the water content of the slurry may be 70% by mass or less. That is, the water content of the obtained slurry may be 20 to 70% by mass, or may be 21 to 70% by mass.
  • the pH of the basic solution is greater than 10, the MCC particles in the slurry are difficult to dissolve in the basic solution, and the pores of the MCC particles are easily maintained. Therefore, while the MCC particles are dispersed in the slurry, the basic solution penetrates into the pores of the MCC particles. This fills the pores with a water-soluble filling compound.
  • the slurry is held for 5 minutes or longer. By keeping it as a slurry for this amount of time, the pores are sufficiently filled with the filling compound.
  • the amount of the filling compound filled in the pores is adjusted, and the above The value of P2 can be controlled within the range of this embodiment.
  • the above P4 of the finally obtained CAM powder can be controlled within the range of the present embodiment.
  • the precursor powder is then removed from the slurry and dried.
  • the water content of the slurry is 20 to 30% by mass, the water may be removed by evaporation directly from the slurry to take out the precursor powder.
  • the slurry When the water content of the slurry exceeds 30% by mass, the slurry may be filtered to separate the solid content (solid-liquid separation), and water may be evaporated from the obtained solid content to take out the precursor powder.
  • Heating, pressure reduction, air blowing, and combinations thereof can be appropriately adopted as the drying method.
  • FIG. 1 is an SEM image of the precursor powder obtained in Example 1, which will be described later.
  • the precursor powder shown in FIG. 1 has a compound containing Li and W as a filling compound.
  • FIG. 2 is an SEM-EDX image in the same field of view as in FIG. 1, which is a W mapping image.
  • the amount of W is indicated by the shade of color, and the white portion indicates that W does not exist, and the darker colored portion indicates that relatively more W is present.
  • the abundance of an element is similarly indicated by the shade of color.
  • pores can be confirmed in the precursor particles that make up the precursor powder.
  • the white striped portions correspond to the pores.
  • the CAM powder of the present embodiment is used in a lithium secondary battery and has a plurality of particles having pores of a predetermined size and a filling compound that fills the pores.
  • the filling compound the same compounds as the filling compound contained in the precursor powder described above can be exemplified.
  • the particles that make up the CAM powder are made of LiMO that has a layered structure and contains at least Ni. These particles are hereinafter sometimes referred to as "LiMO particles".
  • the LiMO particles and the filling compound that fills the pores of the LiMO particles constitute particulate CAMs (CAM particles). That is, a LiMO particle is a single secondary particle formed by aggregation of LiMO primary particles and having pores.
  • a CAM particle is a single particle containing a LiMO particle and a filling compound.
  • CAM powder is an aggregate of multiple CAM particles.
  • the CAM powder has a peak that satisfies the following formula (3). P3 ⁇ 0.003 (3)
  • P3 (cm 3 /g) is the pore size distribution of the washed powder obtained by washing the CAM powder for 20 minutes with water that is 20 times the mass of the CAM powder, followed by solid-liquid separation and drying. , is the maximum peak value of the log differential pore volume in the region with a pore diameter of 10 nm or less. If there is no peak in the region with a pore diameter of 10 nm or less, it is evaluated as having no P3.
  • the filling compound is water soluble. Therefore, by washing the CAM powder under the above conditions, the obtained washed powder is in a state in which the filling compound is removed from the pores, and the pores buried by the filling compound are exposed. In other words, the washed powder can be considered as an aggregate of LiMO particles in a pseudo manner.
  • the nm-order pores are too small for the gaps formed between the LiMO particles. Therefore, it can be determined that the peak appearing in the region with a pore diameter of 10 nm or less corresponds to the size of the pores formed in the LiMO particles.
  • the peak indicating P3 indicates the presence of pores possessed by the LiMO particles.
  • P3 may be 0.004 cm 3 /g or more, or 0.006 cm 3 /g or more. Also, P3 may be 0.06 cm 3 /g or less, or may be 0.05 cm 3 /g or less. The upper limit and lower limit of P3 can be combined arbitrarily. For example, P3 may be 0.004-0.06 cm 3 /g, or 0.006-0.05 cm 3 /g.
  • the maximum peak value of the log differential pore volume in the region with a pore size of 10 nm or less is defined as P4 (cm 3 /g).
  • P4 the maximum peak value of the log differential pore volume in the region with a pore size of 10 nm or less.
  • P4 is smaller than P3 (P3>P4).
  • P4 may be 0.0005 cm 3 /g or more, or may be 0.0010 cm 3 /g or more. Also, P4 may be 0.020 cm 3 /g or less, or may be 0.015 cm 3 /g or less. The upper limit and lower limit of P4 can be combined arbitrarily. For example, P4 may be 0.0005-0.020 cm 3 /g, or 0.0010-0.015 cm 3 /g.
  • the CAM powder preferably satisfies the following formula (5). 50 ⁇ (P3 ⁇ P4)/P3 ⁇ 100 ⁇ 100 (5)
  • (P3 ⁇ P4)/P3 ⁇ 100” in formula (5) defined by P3 and P4 above is the maximum peak value of the log differential pore volume in the region with a pore diameter of 10 nm or less before and after washing the CAM powder. represents the rate of change (%).
  • the CAM powder has a maximum peak value change rate of 50% or more and less than 100% before and after washing.
  • the rate of change may be 60% or more, or 65% or more. Further, the rate of change may be 99% or less, or may be 98% or less.
  • the upper limit and lower limit of the rate of change can be arbitrarily combined. For example, the rate of change may be 60-99%, or 65-98%.
  • (P3 ⁇ P4)/P3 ⁇ 100” is, in other words, when focusing on fine pores having a pore diameter of 10 nm or less among the pores possessed by the LiMO particles, for the fine pores possessed by the LiMO particles Represents an approximation of the fill factor of the fill compound.
  • the fine pores of the LiMO particles are filled with a filling compound in a range of 50% by volume or more and less than 100% by volume.
  • the ratio of the total elution molar amount of [W] and [Mo] to the CAM powder can be evaluated by the following method.
  • a sample is obtained by accurately weighing the CAM powder, and the sample is washed for 20 minutes using water that is 20 times the sample in terms of mass ratio, followed by solid-liquid separation to obtain the filtrate.
  • the filtrate is subjected to ICP analysis, and the total eluted molar amount of [W] and [Mo] eluted in the filtrate is determined based on the analysis results. From the total molar amount of [W] and [Mo] obtained by ICP analysis of the sample (CAM powder) and the total molar amount of eluted [W] and [Mo], the elution ratio is determined.
  • the elution ratio determined by the above method corresponds to the total molar amount of the filling compound eluted from the pores by washing with water.
  • the CAM powder preferably has an elution ratio of 10 to 60%, more preferably 15 to 50%, as measured by the above method.
  • the LiMO particles that constitute the CAM powder include secondary particles that are aggregated LiMO primary particles.
  • the number of primary particles constituting the secondary particles is preferably 10 to 50 per 1 ⁇ m 2 , more preferably 20 to 40 per 1 ⁇ m 2 .
  • LiMO particles The LiMO constituting the LiMO particles further contains the element X described above.
  • the CAM powder has a ratio of [Ni] of 50 to 99 mol% (0.5 ⁇ 1-a ⁇ 0.99) when the total of [Ni] and [X] is 100 mol%, The proportion of [X] is 1 to 50 mol % (0.01 ⁇ a ⁇ 0.5).
  • the ratio of the total of [Li] to the total of [Ni] and [X] is 90 to 120 mol% (0.9 ⁇ c ⁇ 1.2).
  • the ratio of the sum of [W] and [Mo] to the sum of [Ni] and [X] is 0.15 to 3 mol% (0.0015 ⁇ b ⁇ 0.03).
  • c may be 0.98 or more, or may be 1.00 or more. Also, c may be 1.15 or less, or may be 1.10 or less. The upper limit and lower limit of c can be combined arbitrarily. For example, 0.98 ⁇ c ⁇ 1.15 or 1.00 ⁇ c ⁇ 1.10.
  • the preferred range of a is the same as a described for the MCC particles of the precursor powder.
  • the preferred range of b is the same as b described for the MCC particles of the precursor powder.
  • LiMO may be a compound represented by the following compositional formula (II). Li[Li d (Ni (1-e) X e ) 1-d ]O 2 (II) (In formula (II), X represents the element X and satisfies ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.5.)
  • d in the formula (II) is -0.1 or more, more preferably -0.05 or more, and more preferably more than 0. . Further, from the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, d in the formula (II) is 0.2 or less, preferably 0.08 or less, and 0.06 or less. is more preferred.
  • the upper limit and lower limit of d can be combined arbitrarily. Combinations include, for example, d being -0.1 to 0.2, more than 0 to 0.2 or less, -0.05 to 0.08, more than 0 to 0.06 or less.
  • e in the formula (II) is preferably greater than 0 and 0.01 or more, and more preferably 0.02 or more. preferable. From the viewpoint of obtaining a lithium secondary battery with a high initial capacity, e in the formula (II) is 0.2 or less, preferably 0.1 or less, and more preferably 0.05 or less. .
  • the upper limit and lower limit of e can be combined arbitrarily. Combinations include, for example, e greater than 0 and 0.2 or less, 0.01 to 0.1, 0.02 to 0.05, and the like.
  • d may be -0.1 to 0.2 and e may be more than 0 and 0.2 or less, d is more than 0 and 0.2 or less and e is more than 0 It may be 0.2 or less, d may be -0.05 to 0.08 and e may be 0.01 to 0.1, d is more than 0 and 0.06 or less and e is 0.06 or less. 02 to 0.05.
  • the element X is one or more elements selected from the group consisting of Co, Mn, Ti, Mg, Al, W, Nb, B and Zr. is preferred, and one or more elements selected from the group consisting of Co, Mn, Al, W, Nb and B are more preferred.
  • the crystal structure of LiMO is a layered rock salt structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the crystal structure of LiMO is identified based on the diffraction angle and peak intensity of the obtained X-ray diffraction spectrum obtained by obtaining the powder X-ray diffraction spectrum by powder X-ray diffraction measurement.
  • the hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.
  • the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal assigned to C2 / m.
  • a structure is particularly preferred.
  • a CAM powder having a C/B ratio of 0.54 to 0.68 grows moderately anisotropically in the normal direction of the (003) plane (that is, in the c-axis direction), and lithium ions are absorbed and desorbed from the CAM powder. easier. Therefore, a CAM powder in which C/B satisfies the above relationship can improve battery performance.
  • the D50 of the CAM powder shows a value comparable to the D50 of the precursor powder used for production.
  • the D 50 of the CAM powder is preferably 3-20 ⁇ m, more preferably 4-18 ⁇ m, even more preferably 7-17 ⁇ m.
  • the pores of the LiMO particles are relatively increased, so that the cycle retention rate of the lithium secondary battery tends to be improved.
  • the D50 of the CAM powder is 20 ⁇ m or less, the pores of the LiMO particles are likely to come into contact with the electrolytic solution, and the initial capacity of the lithium secondary battery is likely to be improved.
  • the BET specific surface area of the CAM powder is preferably 2 m 2 /g or less, more preferably 0.1 to 2 m 2 /g, and even more preferably 0.2 to 1.5 m 2 /g. , 0.25 to 1.0 m 2 /g.
  • the BET specific surface area of the CAM powder is equal to or higher than the above lower limit, the CAM powder easily comes into contact with the electrolytic solution and improves the battery capacity. Further, when the BET specific surface area of the CAM powder is equal to or less than the upper limit, the decomposition reaction of the electrolytic solution, which is a side reaction in the lithium secondary battery, is unlikely to occur.
  • CAM powder has fine pores that satisfy the above formula (3).
  • the water-soluble filling compound filled in the pores of the CAM particles constituting the CAM powder is considered to partially dissolve in the electrolyte solution, which is a polar solvent. Pores appear in the CAM particles when the filling compound dissolves.
  • the fine pores of the CAM particles are expected to buffer the strain caused by the volume expansion and contraction of the CAM particles during charging and discharging of the lithium secondary battery, and suppress the damage of the particles. Also, it is believed that CAM particles with small pores are more effective at buffering than CAM particles with relatively large pores.
  • the W compound and Mo compound used as the filling compound have high lithium ion conductivity, it is possible to suppress the decrease in capacity.
  • the CAM powder of the present embodiment can realize a lithium secondary battery with excellent cycle retention rate.
  • a method for producing a CAM powder includes the steps of mixing a precursor powder and a lithium compound to obtain a mixture, and firing the mixture.
  • At least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride and lithium fluoride can be used as the lithium compound.
  • any one of lithium hydroxide, lithium hydroxide hydrate and lithium carbonate or a mixture thereof is preferred.
  • the content of lithium carbonate in lithium hydroxide or lithium hydroxide hydrate is preferably 5% by mass or less.
  • the precursor powder which is a metal composite hydroxide
  • the precursor powder may be heat-treated in the range of 400 to 700°C to obtain a metal composite oxide.
  • the heating temperature can be maintained for 0.5 to 10 hours. Air, oxygen, or a mixed gas of nitrogen can be used as the heating atmosphere.
  • the lithium compound and the precursor powder are mixed in consideration of the composition ratio of the final target. Specifically, the lithium compound and the precursor powder are mixed at a ratio that satisfies the above formula (4).
  • the precursor powder is prepared at a molar ratio of 0.90 to 1.20 for Li constituting the lithium compound with respect to the total amount of metal elements constituting the particles of the precursor powder (precursor particles).
  • a body powder and a lithium compound are mixed.
  • the firing temperature is 740-920°C.
  • the normal direction of the (003) plane in the crystal structure that is, the c-axis direction
  • the C/B is within the range of the present embodiment.
  • the firing temperature is 920° C. or lower, it is possible to obtain a CAM powder in which the pores are filled with either one or both of the W compound and the Mo compound.
  • the firing temperature is preferably 750°C or higher, more preferably 760°C or higher, even more preferably 780°C or higher, even more preferably 790°C or higher, and particularly preferably 800°C or higher. Also, the firing temperature is preferably 910° C. or lower, more preferably 900° C. or lower.
  • the upper limit and lower limit of the firing temperature can be combined arbitrarily.
  • the firing temperature is preferably 750 to 920°C, more preferably 760 to 910°C, even more preferably 780 to 900°C, and particularly preferably 800 to 900°C.
  • the firing temperature may be 760 to 920°C, 780 to 920°C, 790 to 920°C, or 800 to 920°C.
  • the firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and also the highest temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature).
  • the firing process includes a plurality of heating steps, the temperature at the highest holding temperature in each heating step is taken as the firing temperature.
  • the holding time for firing is preferably 3 to 30 hours, more preferably 4 to 20 hours. If the holding time in firing exceeds 30 hours, the volatilization of lithium tends to substantially deteriorate the battery performance. When the holding time in the firing is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor.
  • the heating rate in the heating process to reach the maximum holding temperature is preferably 80°C/hour or more, more preferably 100°C/hour or more, and particularly preferably 120°C/hour or more.
  • the rate of temperature increase in the heating process to reach the maximum holding temperature is calculated from the time from the time the temperature starts to rise until the temperature reaches the holding temperature in the baking apparatus.
  • the firing process may have multiple firing stages with different firing temperatures. For example, it is preferable to have a first firing stage and a second firing stage that fires at a higher temperature than the first firing stage. Furthermore, it may have firing stages with different firing temperatures and firing times.
  • Air, oxygen, nitrogen, or a mixed gas of these is used as the firing atmosphere, and multiple firing steps are carried out if necessary. It is particularly preferable to use oxygen gas as the firing atmosphere.
  • the mixture of the precursor powder and the lithium compound may be calcined before performing the calcination step.
  • calcination means calcination at a temperature lower than the calcination temperature in the calcination step.
  • the firing temperature during temporary firing is, for example, in the range of 400°C or higher and lower than 700°C.
  • the calcination may be performed multiple times.
  • the sintering apparatus used for sintering is not particularly limited, and for example, either a continuous sintering furnace or a fluidized sintering furnace may be used.
  • Continuous firing furnaces include tunnel furnaces or roller hearth kilns.
  • a rotary kiln may be used as the fluidized kiln.
  • the number of primary particles per 2 and C/B can be within the range of this embodiment.
  • FIG. 3 is an SEM image of the CAM powder obtained in Example 1, which will be described later.
  • the CAM powder shown in FIG. 3 is produced using the precursor powder shown in FIGS. 4 is an SEM-EDX image in the same field of view as in FIG. 3, which is a W mapping image.
  • pores can be confirmed in the CAM particles that make up the CAM powder.
  • the white striped portions correspond to the pores.
  • FIG. 5 is a schematic diagram showing how CAM particles grow during the production of CAM powder using the precursor powder described above.
  • FIG. 6 is a schematic diagram showing how particles grow during production of LiMO particles using MCC particles that do not have a filling compound in their pores.
  • the precursor particles A1 in the precursor powder react with the lithium compound (not shown), resulting in CAM particles B1 in the CAM powder.
  • MCC forming the primary particles AP1 in the precursor particles A1 reacts with a lithium compound (not shown) to produce LiMO forming the primary particles BP1.
  • the primary particles BP1 constitute CAM particles B1.
  • the pores are filled with the filling compound F. Therefore, when the primary particles AP1 and the lithium compound react, the filling compound F positioned between the primary particles AP1 inhibits the coalescence of the primary particles AP1 and inhibits the growth of the primary particles BP1.
  • the primary particles BP1 in the CAM particles B1 are less likely to grow from the primary particles AP1 in the precursor particles A1, and tend to be small particles.
  • the filling compound F filled in the pores of the precursor particles A1 retains the pores during firing. Therefore, compared to the pores of the precursor particles A1, the pores of the CAM particles B1 are less likely to change in diameter even if the overall volume is reduced, and are equivalent in size to the pores of the precursor particles A1. easy to become.
  • MCC particles A2 having no filling compound in pores are mixed with a lithium compound and fired, MCC constituting primary particles AP2 in MCC particles A2 and not shown It reacts with the lithium compound to produce LiMO, which constitutes the primary particles BP2.
  • the primary particles BP2 constitute LiMO particles B2.
  • the primary particles AP2 and the lithium compound react, there is no substance that inhibits the coalescence of the primary particles AP2. Therefore, when the MCC particles A2 are fired, the primary particles AP2 are united.
  • the primary particles BP2 in the LiMO particles B2 tend to grow from the primary particles AP2 in the MCC particles A2 and become relatively large particles.
  • the CAM powder that satisfies the above (3) is obtained by firing the mixture of the precursor powder and the lithium compound.
  • a positive electrode active material with a high cycle retention rate can be produced from the precursor powder having the above configuration.
  • the positive electrode active material powder having the above configuration can realize a battery with a high cycle retention rate when used for the positive electrode of a lithium secondary battery.
  • the method for producing the positive electrode active material powder having the configuration described above it is possible to easily produce a positive electrode active material powder that has a high cycle retention rate when used for the positive electrode of a lithium secondary battery.
  • Lithium secondary battery Next, the configuration of a lithium secondary battery that uses CAM powder will be described. Furthermore, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for use of CAM powder will be described. Furthermore, a lithium secondary battery suitable for use as a positive electrode will be described.
  • a positive electrode for a lithium secondary battery hereinafter sometimes referred to as a positive electrode
  • a lithium secondary battery suitable for use as a positive electrode will be described.
  • An example of a lithium secondary battery suitable for using CAM powder has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 7 is a schematic diagram showing an example of a lithium secondary battery.
  • a cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
  • the positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM powder, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • the CAM powder of this embodiment can be used as a CAM for an all-solid lithium secondary battery.
  • FIG. 8 is a schematic diagram showing an example of an all-solid lithium secondary battery.
  • the all-solid lithium secondary battery 1000 shown in FIG. 8 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an exterior body 200 housing the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector.
  • bipolar structures include structures described in JP-A-2004-95400.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the positive electrode as described above contains the CAM powder of the present embodiment and is therefore excellent in cycle retention.
  • the lithium secondary battery as described above since the lithium secondary battery as described above has the above positive electrode, it has excellent cycle retention rate.
  • the present invention also includes the following aspects.
  • a precursor powder used as a precursor of a positive electrode active material for lithium secondary batteries a plurality of particles having pores; a filling compound filled in the pores;
  • the particles have a layered structure and are made of MCC containing at least Ni, the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
  • ⁇ 3> The precursor powder according to ⁇ 1> or ⁇ 2>, wherein the total pore volume of the precursor powder is 0.008 to 0.02 cm 3 .
  • the MCC contains the element X
  • the atomic weight ratio between the Ni and the element X contained in the MCC and the sum of W and Mo contained in the filling compound is any one of ⁇ 1> to ⁇ 3> that satisfies the following formula (A2)
  • [Ni]: [X]: [W + Mo] (1-a): a: b ... (A2) (Formula (A2) satisfies 0.04 ⁇ a ⁇ 0.30 and 0.003 ⁇ b ⁇ 0.015.)
  • ⁇ 5> The precursor powder according to any one of ⁇ 1> to ⁇ 4>, wherein the MCC is a hydroxide represented by the following compositional formula (IA).
  • Ni 1-xy Co x M y (OH) 2- ⁇ Formula (IA) (In the composition formula (I), 0.02 ⁇ x ⁇ 0.10, 0.02 ⁇ y ⁇ 0.15, and -, -0.20 ⁇ ⁇ ⁇ 0.20 are satisfied, and M is Mn, Fe, One or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P.)
  • ⁇ 6> The precursor powder according to any one of ⁇ 1> to ⁇ 5>, wherein the D50 is 7 to 17 ⁇ m.
  • ⁇ 7> The precursor powder according to any one of ⁇ 1> to ⁇ 6>, which has a BET specific surface area of 1.5 to 10 m 2 /g.
  • a CAM powder used in a lithium secondary battery a plurality of particles having pores; a filling compound filled in the pores;
  • the particles have a layered structure and are made of LiMO containing at least Ni, the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
  • a CAM powder having a peak that satisfies the following formula (A3). 0.006 ⁇ P3 ⁇ 0.05 (A3)
  • the particles include secondary particles in which the LiMO primary particles are aggregated,
  • the CAM powder according to any one of ⁇ 8> to ⁇ 10>, wherein the number of primary particles per 1 ⁇ m 2 obtained from an SEM image of the secondary particles at a magnification of 10,000 is 20 to 40.
  • the LiMO contains the element X
  • the atomic weight ratio of Li, Ni, and element X contained in the LiMO and the sum of W and Mo contained in the filling compound is any one of ⁇ 8> to ⁇ 11> that satisfies the following formula (A4): CAM powder according to claim 1.
  • [Li]: [Ni]: [X]: [W + Mo] c: (1-a): a: b (A4) (Formula (A4) satisfies 1.00 ⁇ c ⁇ 1.10, 0.04 ⁇ a ⁇ 0.30, and 0.003 ⁇ b ⁇ 0.015.)
  • LiMO is a compound represented by the following composition formula (II-A). Li[Li d (Ni (1-e) X e ) 1-d ]O 2 (II-A) (In formula (II-A), X represents element X and satisfies 0 ⁇ d ⁇ 0.06 and 0.02 ⁇ e ⁇ 0.05.)
  • ⁇ 14> The CAM powder according to any one of ⁇ 8> to ⁇ 13>, wherein the D 50 is 7 to 17 ⁇ m.
  • CAM powder according to any one of ⁇ 8> to ⁇ 14> which has a BET specific surface area of 0.25 to 1.0 m 2 /g.
  • ⁇ 16> The CAM powder according to any one of ⁇ 8> to ⁇ 15>, wherein the C/B is 0.55 to 0.66.
  • composition analysis The composition analysis of each powder produced by the below-described method was performed by the method of [Composition analysis] described above.
  • the number of primary particles composing the CAM powder was measured by the above-described [Number of primary particles composing secondary particles (per unit area)].
  • P1 was obtained by washing each precursor powder obtained by the method described later with water of 20 times the mass of the precursor powder for 20 minutes, filtering, and vacuum drying at 120° C. for 10 hours.
  • the obtained precursor powder was measured by the method of [pore size distribution] described above, and obtained based on the definition of P1.
  • P2 was obtained based on the definition of P2 by measuring each precursor powder obtained by the method described below by the above-described [pore size distribution] method.
  • P3 was obtained by washing each CAM powder obtained by the method described below for 20 minutes with water having a mass 20 times the mass of the precursor powder, filtering, and drying by vacuum drying at 120° C. for 10 hours.
  • the powder was measured by the method of [pore size distribution] described above, and obtained based on the definition of P3.
  • P4 is obtained based on the definition of P4 in the pore size distribution of the CAM powder obtained by measuring each CAM powder obtained by the method described below by the method of [pore size distribution] described above.
  • Example 1 A metal composite hydroxide 1 having a composition of Ni 0.96 Co 0.02 Mn 0.02 (OH) 2 was obtained by a known coprecipitation method using an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate. rice field.
  • the metal composite hydroxide 1 had a peak assigned to the space group P-3m1 in the powder XRD measurement using Cu-K ⁇ rays, and had a layered structure.
  • the metal composite hydroxide 1 had a D50 of 10.1 ⁇ m, a BET specific surface area of 8.0 m 2 /g, and a total pore volume of 0.024 cm 3 /g as measured by a nitrogen adsorption method.
  • the metal composite hydroxide 1 has a log differential pore volume peak in a region of 10 nm or less in the pore size distribution calculated by the method described in [Pore size distribution] above, and the pore size of the peak is 3. 9 nm, and the peak value was 0.08 cm 3 /g.
  • the basic solution 1 was added to the metal composite hydroxide 1 to prepare a slurry (water content 50% by mass) with a metal composite hydroxide 1 concentration of 50% by mass, and stirred for 5 minutes.
  • the slurry was filtered to obtain a wet cake with a water content of 15% by mass.
  • Precursor powder 1 was obtained by heating and drying the wet cake at 120° C. for 10 hours.
  • W/(Ni+Co+Mn) which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn
  • Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Mn contained in the precursor powder 1 was 1.06.
  • a mixture was obtained by mixing precursor powder 1 and lithium hydroxide monohydrate.
  • CAM powder 1 The resulting mixture was then fired at a firing temperature of 800°C for 5 hours in an oxygen atmosphere to obtain CAM powder 1.
  • the filler compound contained in precursor powder 1 and CAM powder 1 was a W compound containing Li and W.
  • Precursor powder 2 and CAM powder 2 were obtained in the same manner as in Example 1, except that basic solution 2 was added to metal composite hydroxide 1 to prepare slurry.
  • W/(Ni+Co+Mn) which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn
  • the filler compound contained in precursor powder 2 and CAM powder 2 was a W compound containing Li and W.
  • the dissolved amount of W per 100 g of water in the solution was calculated to be 14.1 g.
  • the pH of the basic solution 3 was 12.0 (measurement temperature 25°C ⁇ 2°C).
  • Example 2 In the same manner as in Example 1, except that the slurry was adjusted by adding the basic solution 3 to the metal composite hydroxide 1, and the moisture content of the wet cake after filtration of the slurry was adjusted to 10% by mass. A precursor powder 3 and a CAM powder 3 were obtained.
  • W/(Ni+Co+Mn) which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn
  • the filler compound contained in precursor powder 3 and CAM powder 3 was a W compound containing Li and W.
  • the slurry was vacuum-dried at 50°C for 2 hours to obtain a wet cake. Furthermore, the precursor powder 4 was obtained by heating the wet cake at 120° C. for 10 hours.
  • a CAM powder 4 was obtained in the same manner as in Example 1 except that the precursor powder 4 was used.
  • the filler compounds contained in precursor powder 4 and CAM powder 4 were Mo compounds containing Li and Mo.
  • Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Mn contained in the precursor powder C1 was 1.06.
  • WO 3 was weighed in an amount such that the ratio (mol %) of W to the total amount 1 of Ni, Co and Mn contained in the precursor powder C1 was 0.7 mol %.
  • Precursor powder C1 lithium hydroxide monohydrate and WO3 were mixed to obtain a mixture.
  • the resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C1.
  • the CAM powder C1 washed under the above conditions had a peak pore size of 18.4 nm and a peak value of 0.012 cm 3 /g.
  • the washed CAM powder C1 did not have a log differential pore volume peak in the region of 10 nm or less, and the maximum peak value P3 could not be evaluated.
  • Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Mn contained in the precursor powder C2 was 1.06.
  • a mixture was obtained by mixing precursor powder C2 and lithium hydroxide. The resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C2.
  • the filler compound contained in precursor powder C2 and CAM powder C2 was a W compound containing Li and W.
  • the CAM powder C2 washed under the above conditions had a peak pore size of 24.3 nm and a peak value of 0.018 cm 3 /g.
  • the washed CAM powder C2 did not have a log differential pore volume peak in the region of 10 nm or less, and P3 could not be evaluated.
  • Tables 1 and 2 show the evaluation results of the precursor powders of Examples 1-4 and Comparative Examples 1-2.
  • Tables 3 and 4 show the evaluation results of the CAM powders of Examples 1-4 and Comparative Examples 1-2.
  • FIG. 9 is an SEM photograph of CAM powder 1.
  • FIG. 10 is an SEM photograph of CAM powder C1.
  • the primary particles forming the CAM particles of the CAM powder of the example are smaller than the primary particles forming the CAM particles of the CAM powder of the comparative example.
  • FIG. 11 is an SEM image of the precursor powder 4.
  • FIG. 12 is an SEM-EDX image in the same field of view as in FIG. 11, which is a mapping image of Mo.
  • pores can be confirmed in the precursor particles.
  • black striped portions correspond to pores.
  • FIG. 13 is an SEM image of CAM powder 4.
  • FIG. 14 is an SEM-EDX image in the same field of view as in FIG. 13, which is a mapping image of Mo.
  • pores can be confirmed in the CAM particles.
  • white striped portions also correspond to pores.
  • FIG. 15 and 16 are diagrams showing changes in pore size distribution before and after washing with water for the precursor powder 1 and the CAM powder 1 produced in Example 1.
  • FIG. 15 shows the measurement results for the precursor powder 1
  • FIG. 16 shows the measurement results for the CAM powder 1.
  • FIG. 15 shows the measurement results for the precursor powder 1
  • FIG. 16 shows the measurement results for the CAM powder 1.
  • the peak indicating P2 in the precursor powder 1 greatly changes to indicate P1 by washing.
  • the peak in the region with a pore diameter of 10 nm or less grows large.
  • FIG. 17 and 18 are diagrams showing changes in the pore size distribution of the precursor powder C1 and the CAM powder C1 produced in Comparative Example 1 before and after washing with water.
  • FIG. 17 shows the measurement results for the precursor powder C1
  • FIG. 18 shows the measurement results for the CAM powder C1.
  • Example 5 A metal composite hydroxide 2 having a composition of Ni 0.91 Co 0.07 Mn 0.02 (OH) 2 is obtained by a known coprecipitation method using an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate. rice field.
  • metal composite hydroxide 2 has a peak assigned to space group P-3m1 in powder XRD measurement using Cu-K ⁇ rays, and has a layered structure.
  • the metal composite hydroxide 2 had a D50 of 4.6 ⁇ m, a BET specific surface area of 36.1 m 2 /g, and a total pore volume of 0.16 cm 3 /g as measured by a nitrogen adsorption method.
  • the metal composite hydroxide 2 has a log differential pore volume peak in a region with a pore diameter of 10 nm or less in the pore diameter distribution calculated by the method described in [Pore diameter distribution] above, and the pore diameter of the peak was 4.3 nm and the peak value was 0.823 cm 3 /g.
  • the slurry was vacuum-dried at 50°C for 2 hours to obtain a wet cake. Furthermore, the precursor powder 5 was obtained by heating the wet cake at 120° C. for 10 hours.
  • W/(Ni+Co+Mn) which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn
  • a CAM powder 5 was obtained in the same manner as in Example 1 except that the precursor powder 5 was used.
  • Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Mn contained in the precursor powder C3 was 1.06.
  • a mixture was obtained by mixing precursor powder C3 and lithium hydroxide. The resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C3.
  • CAM powder C3 washed under the above conditions had a peak pore size of 50.6 nm and a peak value of 0.016 cm 3 /g. CAM powder C3 after washing did not have a log differential pore volume peak in the region of 10 nm or less, and P3 could not be evaluated.
  • Tables 5 and 6 show the evaluation results of the precursor powders of Example 5 and Comparative Example 3.
  • Tables 7 and 8 show the evaluation results of the CAM powders of Example 5 and Comparative Example 3.
  • Example 5 using the precursor powder of the present embodiment exhibited an excellent cycle retention rate compared to Comparative Example 3 in which no filling compound was added to the precursor.
  • 19 and 20 are diagrams showing changes in pore size distribution before and after washing with water for precursor powder 5 and CAM powder 5 produced in Example 5.
  • 19 shows the measurement results for the precursor powder 5
  • FIG. 20 shows the measurement results for the CAM powder 5.
  • the broken line indicates the pore size distribution of the powder before washing
  • the solid line indicates the pore size distribution of the powder after washing.
  • the peak indicating P2 in the precursor powder 5 greatly changes to indicate P1 due to washing.
  • a large peak grows in the region of pore diameters of 10 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A precursor powder used as a precursor of a positive electrode active material for a lithium secondary battery, said precursor powder having a plurality of particles with pores, and a filling compound with which the pores are filled, wherein the particles have a layered structure and are composed of a metal complex compound including at least Ni, the filling compound is one or both of a water-soluble tungsten compound and a water-soluble molybdenum compound, and the precursor powder satisfies formula (1). (1) 10≤(P1-P2)/P1×100<100... (P1: the maximum peak value, in the pore diameter distribution of the washed precursor powder, of the log differential pore volume in an area in which the pore diameter is at most 10 nm. P2: the value, in the pore diameter distribution of the precursor powder, of the log differential pore volume at the pore diameter of the peak exhibiting P1.)

Description

前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池Precursor powder, positive electrode active material powder, method for producing positive electrode active material powder, positive electrode and lithium secondary battery

 本発明は、前駆体粉末、正極活物質粉末、正極活物質粉末の製造方法、正極及びリチウム二次電池に関する。
 本願は、2021年11月22日に出願された日本国特願2021-189152号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a precursor powder, a positive electrode active material powder, a method for producing the positive electrode active material powder, a positive electrode, and a lithium secondary battery.
This application claims priority based on Japanese Patent Application No. 2021-189152 filed on November 22, 2021, the contents of which are incorporated herein.

 リチウム金属複合酸化物は、リチウム二次電池の正極活物質として用いられている。正極活物質は、通常、粉末状の形態である。 Lithium metal composite oxide is used as a positive electrode active material for lithium secondary batteries. The positive electrode active material is usually in powder form.

 近年では、リチウム金属複合酸化物にさらに別の化合物を加え、正極活物質の性能(電池特性)を向上させる検討がされている。このような正極活物質として、例えば、リチウム金属複合酸化物粉末とタングステン酸リチウムを混合した混合物が知られている(例えば、特許文献1参照)。 In recent years, studies have been conducted to improve the performance (battery characteristics) of the positive electrode active material by adding another compound to the lithium metal composite oxide. As such a positive electrode active material, for example, a mixture of lithium metal composite oxide powder and lithium tungstate is known (see, for example, Patent Document 1).

JP-A-2016-225277JP-A-2016-225277

 リチウム二次電池の応用分野が進む中、サイクル維持率のさらなる向上が求められている。上記特許文献1に記載の正極活物質は、サイクル維持率の点で改良の余地がある。 As the application field of lithium secondary batteries advances, there is a demand for further improvements in the cycle retention rate. The positive electrode active material described in Patent Document 1 has room for improvement in terms of cycle retention rate.

 本発明はこのような事情に鑑みてなされたものであって、正極活物質の前駆体として用いられ、サイクル維持率が高い正極活物質を製造可能とする前駆体粉末を提供することを目的とする。また、サイクル維持率が高い正極活物質粉末及びサイクル維持率が高い正極活物質粉末の製造方法を提供することを併せて目的とする。さらに、このような正極活物質粉末を含み、サイクル維持率に優れた正極及びリチウム二次電池を提供することを併せて目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a precursor powder that can be used as a precursor of a positive electrode active material and can produce a positive electrode active material having a high cycle retention rate. do. Another object of the present invention is to provide a positive electrode active material powder having a high cycle retention rate and a method for producing a positive electrode active material powder having a high cycle retention rate. A further object of the present invention is to provide a positive electrode and a lithium secondary battery containing such a positive electrode active material powder and having an excellent cycle retention rate.

 上記の課題を解決するため、本発明の一態様は、以下の態様を包含する。 In order to solve the above problems, one aspect of the present invention includes the following aspects.

[1]リチウム二次電池用正極活物質の前駆体として用いられる前駆体粉末であって、細孔を有する複数の粒子と、前記細孔に充填された充填化合物と、を有し、前記粒子は、層状構造を有し、少なくともNiを含む金属複合化合物からなり、前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、下記式(1)を満たす前駆体粉末。
10≦(P1-P2)/P1×100<100…(1)
(P1(cm/g)は、質量比で前記前駆体粉末の20倍の水を用いて前記前駆体粉末を20分間洗浄し、固液分離後に乾燥させて得られた洗浄済前駆体粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。P2(cm/g)は、前記前駆体粉末の細孔径分布において、上記P1を示すピークの細孔径におけるlog微分細孔容積の値である。前記細孔径分布は、前記前駆体粉末又は前記洗浄済前駆体粉末について、液体窒素温度で測定して得られる窒素脱離等温線を、Barrett-Joyner-Halenda(BJH)法で解析して求められる。)
[1] A precursor powder used as a precursor of a positive electrode active material for a lithium secondary battery, comprising a plurality of particles having pores and a filling compound filled in the pores, the particles has a layered structure and is composed of a metal composite compound containing at least Ni, the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound, and satisfies the following formula (1) precursor powder.
10≦(P1−P2)/P1×100<100 (1)
(P1 (cm 3 /g) is a washed precursor powder obtained by washing the precursor powder for 20 minutes with water that is 20 times the weight of the precursor powder, followed by solid-liquid separation and drying. P2 (cm 3 /g) is the maximum peak value of the log differential pore volume in the region with a pore size of 10 nm or less in the pore size distribution of the precursor powder. The pore size distribution is the value of the log differential pore volume at the pore size of The pore size distribution is the nitrogen desorption isotherm obtained by measuring the precursor powder or the washed precursor powder at liquid nitrogen temperature, - Obtained by analysis using the Joyner-Halenda (BJH) method.)

[2]前記P2が0.8cm/g以下である[1]に記載の前駆体粉末。 [2] The precursor powder according to [1], wherein the P2 is 0.8 cm 3 /g or less.

[3]前記前駆体粉末の細孔径分布から求められる全細孔容積が0.005~0.15cmである[1]又は[2]に記載の前駆体粉末。 [3] The precursor powder according to [1] or [2], wherein the total pore volume obtained from the pore size distribution of the precursor powder is 0.005 to 0.15 cm 3 .

[4]前記金属複合化合物は、元素Xを含み、前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる少なくとも1種の元素であり、前記金属複合化合物に含まれるNi及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(2)を満たす[1]から[3]のいずれか1項に記載の前駆体粉末。
[Ni]:[X]:[W+Mo]=(1-a):a:b…(2)
(式(2)は、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
[4] The metal complex compound contains an element X, and the element X is Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P, and the atomic weight ratio between Ni and the element X contained in the metal composite compound and the sum of W and Mo contained in the filling compound is represented by the following formula The precursor powder according to any one of [1] to [3], which satisfies (2).
[Ni]: [X]: [W + Mo] = (1-a): a: b (2)
(Formula (2) satisfies 0.01≦a≦0.5 and 0.0015≦b≦0.03.)

[5]レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子径側からの累積体積割合が50%となる粒子径であるD50が3~20μmである[1]から[4]のいずれか1項に記載の前駆体粉末。 [5] In a volume-based cumulative particle size distribution curve obtained by laser diffraction particle size distribution measurement, D50 , which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 μm [1] The precursor powder according to any one of [4] to [4].

[6]BET比表面積が1~40m/gである[1]から[5]のいずれか1項に記載の前駆体粉末。 [6] The precursor powder according to any one of [1] to [5], which has a BET specific surface area of 1 to 40 m 2 /g.

[7]リチウム二次電池に用いられる正極活物質粉末であって、細孔を有する複数の粒子と、前記細孔に充填された充填化合物と、を有し、前記粒子は、層状構造を有し、少なくともNiを含むリチウム金属複合酸化物からなり、前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、下記式(3)を満たすピークを有する正極活物質粉末。
P3≧0.003…(3)
(P3(cm/g)は、質量比で前記正極活物質粉末の20倍の水を用いて前記正極活物質粉末を20分間洗浄し、固液分離後に乾燥させて得られた洗浄済粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。前記細孔径分布は、前記洗浄済粉末について、液体窒素温度で測定して得られる窒素脱離等温線を、Barrett-Joyner-Halenda(BJH)法で解析して求められる。)
[7] A positive electrode active material powder used in a lithium secondary battery, comprising a plurality of particles having pores and a filling compound filled in the pores, the particles having a layered structure. and a positive electrode comprising a lithium metal composite oxide containing at least Ni, the filling compound being either one or both of a water-soluble tungsten compound and a water-soluble molybdenum compound, and having a peak satisfying the following formula (3): Active material powder.
P3≧0.003 (3)
(P3 (cm 3 /g) is the washed powder obtained by washing the positive electrode active material powder for 20 minutes using water that is 20 times the weight of the positive electrode active material powder, and drying after solid-liquid separation. is the maximum peak value of the log differential pore volume in the pore size distribution of 10 nm or less in the pore size distribution of.The pore size distribution is the nitrogen desorption obtained by measuring the washed powder at liquid nitrogen temperature It is obtained by analyzing the isotherm by the Barrett-Joyner-Halenda (BJH) method.)

[8]下記測定方法で測定される、前記正極活物質粉末に対するWとMoとの合計溶出モル量である溶出割合が、10~60%である[7]に記載の正極活物質粉末。
(測定方法)
前記正極活物質粉末を精秤して試料を得、質量比で前記試料の20倍の水を用いて前記試料を20分間洗浄し、固液分離して濾液を得る。前記濾液のICP分析を行い、分析結果に基づいて前記濾液に溶出したWとMoとの合計溶出モル量を求める。前記試料中のWとMoとの合計モル量と前記合計溶出モル量とから前記溶出割合を求める。
[8] The positive electrode active material powder according to [7], wherein the elution ratio, which is the total eluted molar amount of W and Mo with respect to the positive electrode active material powder, is 10 to 60%, as measured by the following measuring method.
(Measuring method)
The positive electrode active material powder is precisely weighed to obtain a sample, and the sample is washed for 20 minutes with water having a mass ratio of 20 times that of the sample, followed by solid-liquid separation to obtain a filtrate. The filtrate is subjected to ICP analysis, and the total eluted molar amount of W and Mo eluted in the filtrate is determined based on the analysis results. The elution ratio is obtained from the total molar amount of W and Mo in the sample and the total eluted molar amount.

[9]前記粒子は、前記リチウム金属複合酸化物の一次粒子が凝集した二次粒子を含み、前記二次粒子について走査型電子顕微鏡(SEM)観察し、得られる拡大倍率10000倍のSEM画像から求められる1μmあたりの前記一次粒子の数が10~50個である[7]又は[8]に記載の正極活物質粉末。 [9] The particles include secondary particles in which the primary particles of the lithium metal composite oxide are aggregated, and the secondary particles are observed with a scanning electron microscope (SEM). The positive electrode active material powder according to [7] or [8], wherein the required number of primary particles per 1 μm 2 is 10 to 50.

[10]前記リチウム金属複合酸化物は、元素Xを含み、前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる少なくとも1種の元素であり、前記リチウム金属複合酸化物に含まれるLi、Ni、及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(4)を満たす[7]から[9]のいずれか1項に記載の正極活物質粉末。
[Li]:[Ni]:[X]:[W+Mo]=c:(1-a):a:b…(4)
(式(4)は、0.9≦c≦1.2、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
[10] The lithium metal composite oxide contains an element X, and the element X is Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B , S and P, and the sum of Li, Ni, and the element X contained in the lithium metal composite oxide, and W and Mo contained in the filling compound The positive electrode active material powder according to any one of [7] to [9], wherein the atomic weight ratio of: satisfies the following formula (4).
[Li]: [Ni]: [X]: [W + Mo] = c: (1-a): a: b (4)
(Formula (4) satisfies 0.9≦c≦1.2, 0.01≦a≦0.5, and 0.0015≦b≦0.03.)

[11]レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子径側からの累積体積割合が50%となる粒子径であるD50が3~20μmである[7]から[10]のいずれか1項に記載の正極活物質粉末。 [11] In the volume-based cumulative particle size distribution curve obtained by laser diffraction particle size distribution measurement, D50 , which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 μm. The positive electrode active material powder according to any one of [10].

[12]BET比表面積が2m/g以下である[7]から[11]のいずれか1項に記載の正極活物質粉末。 [12] The positive electrode active material powder according to any one of [7] to [11], which has a BET specific surface area of 2 m 2 /g or less.

[13]CuKα線を使用した粉末X線回折測定において、2θ=18.7±2°の範囲内のピークの回折ピークの半値幅Bに対する、2θ=44.6±2°の範囲内の回折ピークの半値幅Cとの比C/Bが、0.54~0.68である[7]から[12]のいずれか1項に記載の正極活物質粉末。 [13] Diffraction within the range of 2θ = 44.6 ± 2° with respect to the half width B of the diffraction peak of the diffraction peak within the range of 2θ = 18.7 ± 2° in powder X-ray diffraction measurement using CuKα rays The positive electrode active material powder according to any one of [7] to [12], wherein the ratio C/B to the peak half width C is 0.54 to 0.68.

[14][1]から[6]のいずれか1項に記載の前駆体粉末と、リチウム化合物とを混合して混合物を得る工程と、前記混合物を焼成する工程と、を含み、前記混合物を得る工程においては、前記前駆体粉末の前記粒子を構成する金属元素の総量に対して、前記リチウム化合物を構成するLiが0.90~1.20となるモル比で前記前駆体粉末と前記リチウム化合物とを混合し、前記焼成する工程における焼成温度は、740~920℃である正極活物質粉末の製造方法。 [14] A step of mixing the precursor powder according to any one of [1] to [6] with a lithium compound to obtain a mixture; In the obtaining step, the precursor powder and the lithium are at a molar ratio of 0.90 to 1.20 for Li constituting the lithium compound with respect to the total amount of metal elements constituting the particles of the precursor powder. A method for producing a positive electrode active material powder, wherein the firing temperature in the step of mixing with a compound and firing is 740 to 920°C.

[15][7]から[13]のいずれか1項に記載の正極活物質粉末を含む正極。 [15] A positive electrode comprising the positive electrode active material powder according to any one of [7] to [13].

[16][15]に記載の正極を有するリチウム二次電池。 [16] A lithium secondary battery having the positive electrode according to [15].

 本発明によれば、正極活物質の前駆体として用いられ、サイクル維持率が高い正極活物質を製造可能とする前駆体粉末を提供することができる。また、サイクル維持率が高い正極活物質粉末及びサイクル維持率が高い正極活物質粉末の製造方法を提供することができる。さらに、このような正極活物質粉末を含み、サイクル維持率に優れた正極及びリチウム二次電池を提供することができる。 According to the present invention, it is possible to provide a precursor powder that is used as a precursor of a positive electrode active material and that enables production of a positive electrode active material with a high cycle maintenance rate. Further, it is possible to provide a positive electrode active material powder having a high cycle retention rate and a method for producing a positive electrode active material powder having a high cycle retention rate. Further, it is possible to provide a positive electrode and a lithium secondary battery containing such a positive electrode active material powder and having excellent cycle retention rate.

図1は、実施例1で得られた前駆体粉末1のSEM像である。FIG. 1 is an SEM image of precursor powder 1 obtained in Example 1. FIG. 図2は、図1と同じ視野におけるWの分布を示すSEM-EDX像である。FIG. 2 is an SEM-EDX image showing the distribution of W in the same field of view as in FIG. 図3は、実施例1で得られたCAM粉末1のSEM像である。3 is an SEM image of CAM powder 1 obtained in Example 1. FIG. 図4は、図3と同じ視野におけるWの分布を示すSEM-EDX像である。FIG. 4 is an SEM-EDX image showing the distribution of W in the same field of view as in FIG. 図5は、上述の前駆体粉末を用いたCAM粉末の製造時におけるCAM粒子の成長の様子を示す模式図である。FIG. 5 is a schematic diagram showing how CAM particles grow during the production of CAM powder using the precursor powder described above. 図6は、細孔内に充填化合物を有さないMCC粒子を用いたLiMO粒子の製造時における粒子成長の様子を示す模式図である。FIG. 6 is a schematic diagram showing how particles grow during production of LiMO particles using MCC particles that do not have a filling compound in their pores. 図7は、リチウム二次電池の一例を示す模式図である。FIG. 7 is a schematic diagram showing an example of a lithium secondary battery. 図8は、実施形態の全固体リチウム二次電池の一例を示す模式図である。FIG. 8 is a schematic diagram showing an example of the all-solid lithium secondary battery of the embodiment. 図9は、CAM粉末1のSEM写真である。9 is an SEM photograph of CAM powder 1. FIG. 図10は、CAM粉末CB1のSEM写真である。FIG. 10 is an SEM photograph of CAM powder CB1. 図11は、前駆体粉末4のSEM像である。11 is an SEM image of the precursor powder 4. FIG. 図12は、図11と同じ視野におけるMoの分布を示すSEM-EDX像である。FIG. 12 is an SEM-EDX image showing the distribution of Mo in the same field of view as in FIG. 図13は、CAM粉末4のSEM像である。13 is an SEM image of CAM powder 4. FIG. 図14は、図13と同じ視野におけるMoの分布を示すSEM-EDX像である。FIG. 14 is an SEM-EDX image showing the distribution of Mo in the same field of view as in FIG. 図15は、前駆体粉末1についての測定結果である。FIG. 15 shows the measurement results for the precursor powder 1. FIG. 図16は、CAM粉末1についての測定結果である。FIG. 16 shows measurement results for CAM powder 1. FIG. 図17は、前駆体粉末CA1についての測定結果である。FIG. 17 shows measurement results for the precursor powder CA1. 図18は、CAM粉末CB1についての測定結果である。FIG. 18 shows measurement results for CAM powder CB1. 図19は、前駆体粉末5についての測定結果である。FIG. 19 shows the measurement results for precursor powder 5. FIG. 図20は、CAM粉末5についての測定結果である。20 shows the measurement results for CAM powder 5. FIG.

 <用語の定義>
 本明細書で用いる用語について、以下のように定義する。
<Definition of terms>
The terms used in this specification are defined as follows.

 用語「MCC」は、金属複合化合物(Metal Composite Compound)を意味する。 The term "MCC" means Metal Composite Compound.

 用語「LiMO」は、リチウム金属複合酸化物(Lithium Metal composite Oxide)を意味する。LiMOは上記MCCに含まれない(MCCはLiMOを含まない)こととする。 The term "LiMO" means lithium metal composite oxide. LiMO is not included in the above MCC (MCC does not include LiMO).

 用語「CAM」は、リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を意味する。 The term "CAM" means a cathode active material for lithium secondary batteries.

 金属の元素記号を示す表現(例えば「Ni」)は、特に言及しない限り金属単体ではなく元素を示す。 Expressions that indicate the symbol of a metal element (for example, "Ni") indicate an element rather than a single metal unless otherwise specified.

 用語「粉末」は、微細な粒子の集合を意味する。したがって、正極活物質に用語「粉末」を合わせた「正極活物質粉末」(CAM粉末)は、粉末状のCAMを意味する。物質名に「粉末」を付した類似表現についても同様に、粉末状の物質であることを意味する。 The term "powder" means a collection of fine particles. Therefore, "positive electrode active material powder" (CAM powder), which is a combination of the term "powder" and the positive electrode active material, means powdery CAM. A similar expression in which "powder" is attached to the name of a substance also means a powdery substance.

 用語「一次粒子」は、走査型電子顕微鏡などを用いて10000倍の視野にて観察した際に、外観上に粒界が存在しない粒子を意味する。 The term "primary particles" means particles that do not appear to have grain boundaries when observed in a field of view of 10,000 times using a scanning electron microscope or the like.

 用語「二次粒子」は、上述の一次粒子が凝集している粒子である。すなわち、二次粒子は一次粒子の凝集体である。 The term "secondary particles" refers to particles in which the above primary particles are aggregated. That is, secondary particles are aggregates of primary particles.

 数値範囲について、例えば「1~10μm」と記載した場合、1μmから10μmまでの範囲であって下限値(1μm)と上限値(10μm)を含む数値範囲、すなわち「1μm以上10μm以下」を意味する。 Regarding the numerical range, for example, when “1 to 10 μm” is described, it means a numerical range from 1 μm to 10 μm including the lower limit (1 μm) and the upper limit (10 μm), that is, “1 μm or more and 10 μm or less”. .

 <測定方法>
 本明細書で評価する各値は、以下のように測定して求める。
<Measurement method>
Each value evaluated in this specification is obtained by measuring as follows.

[サイクル維持率]
 「サイクル維持率」は、下記(リチウム二次電池用正極の作製)及び(リチウム二次電池(コイン型ハーフセル)の作製)によって得られるリチウム二次電池を用いて、下記(サイクル維持率の測定方法)により測定する。サイクル維持率の値が80%を超える場合、「サイクル維持率が高い」と評価する。サイクル維持率が高い電池は、充電と放電を繰り返した後の容量低下が抑制されるため好ましい。
[Cycle maintenance rate]
"Cycle retention rate" is measured using the following (measurement of cycle retention rate) using a lithium secondary battery obtained by the following (production of positive electrode for lithium secondary battery) and (production of lithium secondary battery (coin-type half cell)): method). When the value of cycle maintenance rate exceeds 80%, it is evaluated as "high cycle maintenance rate". A battery with a high cycle retention rate is preferable because it suppresses a decrease in capacity after repeated charging and discharging.

(リチウム二次電池用正極の作製)
 CAM粉末と導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM粉末:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製する。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いる。
(Preparation of positive electrode for lithium secondary battery)
CAM powder, a conductive material (acetylene black), and a binder (PVdF) are added and kneaded so as to have a composition of CAM powder: conductive material: binder = 92:5:3 (mass ratio), thereby forming a paste. A positive electrode mixture is prepared. N-methyl-2-pyrrolidone is used as an organic solvent when preparing the positive electrode mixture.

 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は1.65cmとする。 The obtained positive electrode mixture is applied to an Al foil having a thickness of 40 μm as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .

(リチウム二次電池(コイン型ハーフセル)の作製)
 以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
(Fabrication of lithium secondary battery (coin-type half cell))
The following operations are performed in an argon atmosphere glove box.

 上述のリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上にポリエチレン製多孔質フィルムのセパレータを置く。ここに電解液を300μl注入する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを30:35:35(体積比)で混合した混合液にLiPF6を1mol/lとなるように溶解した液体を用いる。 Place the positive electrode for the lithium secondary battery described above on the lower lid of the coin-type battery R2032 part (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down, and place a polyethylene porous film separator on top of it. . 300 μl of electrolytic solution is injected here. As the electrolyte, a liquid obtained by dissolving LiPF 6 to 1 mol/l in a mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a volume ratio of 30:35:35 is used.

 次に、負極として金属リチウムを用いて、セパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「コイン型ハーフセル」と称することがある。)を作製する。 Next, using metallic lithium as the negative electrode, place it on the upper side of the separator, cover it with a gasket, and crimp it with a crimping machine to make it a lithium secondary battery (coin-type half cell R2032, hereinafter referred to as "coin-type half cell"). There is.).

(サイクル維持率の測定方法)
 得られたコイン型ハーフセルを、室温で12時間静置することで、セパレータ及び正極合剤層に充分電解液を含浸させる。次いで初期充放電処理として、4.3Vまで0.2CAで定電流充電してから4.3Vで定電圧充電する定電流定電圧充電を行った後、室温において2.5Vまで0.2CAで放電する定電流放電を行い、これらの充放電操作を4回繰り返す。
(Method for measuring cycle maintenance rate)
The resulting coin-shaped half-cell is allowed to stand at room temperature for 12 hours, so that the separator and the positive electrode mixture layer are sufficiently impregnated with the electrolytic solution. Next, as an initial charge/discharge treatment, constant current and constant voltage charge was performed by performing constant current charge at 0.2 CA to 4.3 V and then constant voltage charge at 4.3 V, followed by discharging at room temperature to 2.5 V at 0.2 CA. A constant current discharge is performed, and these charge/discharge operations are repeated four times.

 その後、室温において4.3Vまで0.5CAで定電流充電してから4.3Vで定電圧充電する定電流定電圧充電を行った後、室温において2.5Vまで1CAで放電する定電流放電を行う。この時の放電容量を測定し、得られた値を「1サイクル目の放電容量」(mAh/g)とする。 After that, after performing constant-current and constant-voltage charging in which constant-current charging is performed at room temperature to 4.3 V at 0.5 CA and then constant-voltage charging at 4.3 V, constant-current discharging is performed at room temperature at 1 CA to 2.5 V. conduct. The discharge capacity at this time is measured, and the obtained value is defined as the "first cycle discharge capacity" (mAh/g).

 上記定電流定電圧充電と定電流放電とを合わせて1サイクル目の充放電とし、同じ条件で充放電のサイクルを繰り返す。その後、50サイクル目の放電容量(mAh/g)を測定する。 The constant current constant voltage charge and the constant current discharge are combined to form the first charge/discharge cycle, and the charge/discharge cycle is repeated under the same conditions. After that, the discharge capacity (mAh/g) at the 50th cycle is measured.

 測定される1サイクル目の放電容量と50サイクル目の放電容量とを用い、下記の式からサイクル維持率を算出する。
 サイクル維持率(%)=[50サイクル目の放電容量]/[1サイクル目の放電容量]×100
Using the measured discharge capacity at the 1st cycle and the discharge capacity at the 50th cycle, the cycle retention rate is calculated from the following formula.
Cycle retention rate (%) = [discharge capacity at 50th cycle]/[discharge capacity at 1st cycle] x 100

[累積粒度分布]
 各粉末の「累積粒度分布」は、体積基準で求められ、レーザー回折散乱法を測定原理とする測定装置を用いて測定する。前記測定装置は、例えばMT3000II(マイクロトラック・ベル社製)を使用できる。粒度分布の測定範囲は、0.02μm以上20μm以下とする。
[Cumulative particle size distribution]
The "cumulative particle size distribution" of each powder is obtained on a volume basis, and is measured using a measuring device based on the principle of laser diffraction scattering. For the measuring device, for example, MT3000II (manufactured by Microtrac Bell) can be used. The measurement range of the particle size distribution is 0.02 μm or more and 20 μm or less.

 得られた体積基準の累積粒度分布曲線において、全体を100%としたときに、小粒子径側からの累積体積割合が50%となる粒子径をD50(μm)とする。より詳細には、測定範囲が0.02μm以上20μm以下である体積基準の累積粒度分布曲線において、測定範囲全体を100%としたときに、測定範囲の下限値から累積させた粒子体積の割合が50%となる粒子径をD50(μm)とする。 In the obtained volume-based cumulative particle size distribution curve, D 50 (μm) is the particle size at which the cumulative volume ratio from the small particle size side is 50% when the whole is taken as 100%. More specifically, in a volume-based cumulative particle size distribution curve with a measurement range of 0.02 μm or more and 20 μm or less, when the entire measurement range is 100%, the particle volume ratio accumulated from the lower limit of the measurement range is The particle diameter at 50% is defined as D 50 (μm).

[BET比表面積]
 各粉末の「BET比表面積」は、後述の細孔分布の測定過程における窒素吸着等温線より、BET多点法を用いて測定する。測定装置としては、例えば比表面積細孔分布測定装置(BELSORP-mini(マイクロトラック・ベル株式会社製))を使用できる。
[BET specific surface area]
The "BET specific surface area" of each powder is measured using the BET multipoint method from the nitrogen adsorption isotherm in the process of measuring the pore distribution described later. As a measuring device, for example, a specific surface area pore size distribution measuring device (BELSORP-mini (manufactured by Microtrack Bell Co., Ltd.)) can be used.

[組成分析]
 各粉末、MCC、及びLiMOの組成は、測定元素に応じて各粉末を酸又はアルカリに溶解させる処理により溶解した後、ICP発光分光分析装置を用いて測定する。ICP発光分光分析装置としては、例えばOptima7300(株式会社パーキンエルマー製)を使用できる。
[Composition analysis]
The composition of each powder, MCC, and LiMO is measured using an ICP emission spectrometer after dissolving each powder in acid or alkali according to the element to be measured. As an ICP emission spectrometer, for example, Optima7300 (manufactured by PerkinElmer Co., Ltd.) can be used.

[粉末X線回折測定]
 粉末X線回折測定は、X線回折装置を用いて行う。X線回折装置としては、例えばD8ADVANCE(Bruker Corporation製)を使用できる。
[Powder X-ray diffraction measurement]
Powder X-ray diffraction measurement is performed using an X-ray diffractometer. As an X-ray diffractometer, for example, D8ADVANCE (manufactured by Bruker Corporation) can be used.

 まず、各粉末を専用の基板に充填し、CuKα線源を用いて、回折角2θ=10°~90°、サンプリング幅0.02°の条件にて測定を行い、粉末X線回折スペクトルを得る。得られたスペクトルより、統合粉末X線解析ソフトウェアを用い、結晶構造を同定する。 First, each powder is filled on a dedicated substrate and measured using a CuKα radiation source under the conditions of a diffraction angle 2θ = 10 ° to 90 ° and a sampling width of 0.02 ° to obtain a powder X-ray diffraction spectrum. . From the spectrum obtained, the crystal structure is identified using integrated powder X-ray analysis software.

 粉末X線回折解析ソフトウェア(Bruker Corporation製、DIFFRAC.EVA)を用い、粉末X線回折スペクトルから2θ=18.7±2°の範囲内の回折ピークの半値幅Bと、2θ=44.6±2°の範囲内の回折ピークの半値幅Cを算出する。2θ=18.7±2°の範囲内の回折ピークは、CAMに含まれるLiMOの(003)面における回折ピークであり、2θ=44.6±2°の範囲内の回折ピークは、CAMに含まれるLiMOの(104)面における回折ピークである。 Using powder X-ray diffraction analysis software (manufactured by Bruker Corporation, DIFFRAC.EVA), the half-value width B of the diffraction peak within the range of 2θ = 18.7 ± 2 ° from the powder X-ray diffraction spectrum and 2θ = 44.6 ± Calculate the half-value width C of the diffraction peak within the range of 2°. The diffraction peak within the range of 2θ = 18.7 ± 2° is the diffraction peak in the (003) plane of LiMO contained in the CAM, and the diffraction peak within the range of 2θ = 44.6 ± 2° is the diffraction peak in the CAM. Diffraction peaks in the (104) plane of the contained LiMO.

[二次粒子を構成する一次粒子の数(単位面積当たり)]
 二次粒子を構成する一次粒子の数は、二次粒子について走査型電子顕微鏡(SEM)観察し、得られる拡大倍率10000倍のSEM画像からランダムに5視野を選択する。各視野において、二次粒子表面の一次粒子の数を数え、それぞれ単位面積1μmあたりの一次粒子数を計測し、一次粒子数の平均値を算出する。測定にあたっては、走査型電子顕微鏡(日本電子株式会社製、JSM-5510)を使用できる。
[Number of primary particles constituting secondary particles (per unit area)]
The number of primary particles constituting the secondary particles is obtained by observing the secondary particles with a scanning electron microscope (SEM) and randomly selecting 5 visual fields from the obtained SEM image at a magnification of 10000 times. In each field of view, the number of primary particles on the surface of the secondary particles is counted, the number of primary particles per unit area of 1 μm 2 is measured, and the average number of primary particles is calculated. A scanning electron microscope (manufactured by JEOL Ltd., JSM-5510) can be used for the measurement.

[細孔径分布]
 各粉末を構成する粒子の「細孔径分布」は、各粉末について、液体窒素温度で測定して得られる窒素脱離等温線を、Barrett-Joyner-Halenda(BJH)法で解析して求められる。窒素脱離等温線の測定装置としては、例えばBELSORP-mini(マイクロトラック・ベル株式会社製)を使用できる。
[Pore size distribution]
The "pore size distribution" of the particles constituting each powder can be obtained by analyzing the nitrogen desorption isotherm obtained by measuring the powder at liquid nitrogen temperature using the Barrett-Joyner-Halenda (BJH) method. As a nitrogen desorption isotherm measuring device, for example, BELSORP-mini (manufactured by Microtrac Bell Co., Ltd.) can be used.

 まず、真空加熱処理装置(BELSORP-vacII、マイクロトラック・ベル株式会社製)を用いて、各粉末5gを105℃で8時間真空脱気処理する。処理後、上記測定装置を用いて、各粉末の液体窒素温度(77K)における窒素の吸着量を測定し、窒素吸着等温線と窒素脱離等温線を作成する。 First, 5 g of each powder is subjected to vacuum degassing treatment at 105° C. for 8 hours using a vacuum heat treatment apparatus (BELSORP-vacII, manufactured by Microtrack Bell Co., Ltd.). After the treatment, the nitrogen adsorption amount of each powder at the liquid nitrogen temperature (77 K) is measured using the above-mentioned measuring device, and a nitrogen adsorption isotherm and a nitrogen desorption isotherm are created.

 窒素吸着等温線及び窒素脱離等温線は、横軸を吸着平衡圧と飽和蒸気圧との比(相対圧(ρ/ρ0))、縦軸を標準状態(STP;Standard Temperature and Pressure)における気体窒素の吸着量(cm(STP)/g)としてプロットして得られる曲線である。 In the nitrogen adsorption isotherm and the nitrogen desorption isotherm, the horizontal axis is the ratio between the adsorption equilibrium pressure and the saturated vapor pressure (relative pressure (ρ / ρ0)), and the vertical axis is the standard state (STP; Standard Temperature and Pressure). It is a curve obtained by plotting the nitrogen adsorption amount (cm 3 (STP)/g).

 得られた窒素脱離等温線を、BJH法により解析して細孔径2nm以上200nm以下の領域における細孔径分布を求める。細孔径分布は、差分細孔容積dVを、細孔径Dの対数扱いの差分値d(logD)で割った値を求め、横軸を細孔径(nm、対数目盛)、縦軸をlog微分細孔容積(cm/g)としてプロットして得られる分布である。 The obtained nitrogen desorption isotherm is analyzed by the BJH method to determine the pore size distribution in the pore size range of 2 nm or more and 200 nm or less. The pore size distribution is obtained by dividing the differential pore volume dV by the logarithmic differential value d (logD) of the pore size D. The horizontal axis is the pore size (nm, logarithmic scale) and the vertical axis is the log differential Distribution obtained by plotting as pore volume (cm 3 /g).

<前駆体粉末>
 本実施形態の前駆体粉末は、CAMの前駆体として用いられ、所定の大きさの細孔を有する複数の粒子と、細孔に充填された充填化合物と、を有する。
<Precursor powder>
The precursor powder of the present embodiment is used as a CAM precursor and has a plurality of particles having pores of a predetermined size and a filling compound that fills the pores.

 粒子は、層状構造を有し、少なくともNiを含むMCCからなる。前駆体粉末を構成する上記粒子について、以下、「MCC粒子」と称することがある。 The particles have a layered structure and consist of MCC containing at least Ni. The particles constituting the precursor powder may be hereinafter referred to as "MCC particles".

 前駆体の結晶構造は、六方晶、三方晶、斜方晶、単斜晶のいずれかの結晶系に属することが好ましく、六方晶又は三方晶に属することが特に好ましい。例えば、空間群P-3m1に属することが好ましい。前駆体の結晶構造は、粉末X線回折測定により確認することができる。 The crystal structure of the precursor preferably belongs to any one of the hexagonal, trigonal, orthorhombic, and monoclinic crystal systems, and particularly preferably belongs to the hexagonal or trigonal system. For example, it preferably belongs to the space group P-3m1. The crystal structure of the precursor can be confirmed by powder X-ray diffraction measurement.

 充填化合物は、タングステン化合物(W化合物)及びモリブデン化合物(Mo化合物)のいずれか一方又は両方である。充填化合物は、リチウムイオン伝導性を有し、且つ水溶性を有する。このようなW化合物としては、LiWO、LiWOが挙げられる。また、このようなMo化合物としては、LiMoO、LiMoOが挙げられる。 The filling compound is either one or both of a tungsten compound (W compound) and a molybdenum compound (Mo compound). The fill compound is lithium ion conductive and water soluble. Such W compounds include Li 2 WO 4 and Li 4 WO 5 . Moreover , Li2MoO4 , Li4MoO5 is mentioned as such Mo compound.

 MCC粒子と、MCC粒子の細孔に充填された充填化合物とは、粒子状の前駆体(前駆体粒子)を構成する。すなわち、MCC粒子とは、MCCの一次粒子が凝集してなり、且つ細孔を有する一つの二次粒子である。また、前駆体粒子とは、MCC粒子と充填化合物とを含む一つの粒子である。前駆体粉末は、複数の前駆体粒子の集合体である。 The MCC particles and the filling compound filled in the pores of the MCC particles constitute particulate precursors (precursor particles). That is, an MCC particle is a single secondary particle formed by agglomeration of MCC primary particles and having pores. A precursor particle is a single particle containing MCC particles and a filling compound. A precursor powder is an aggregate of a plurality of precursor particles.

 また、前駆体粉末は、下記式(1)を満たす。
 10≦(P1-P2)/P1×100<100  …(1)
Moreover, the precursor powder satisfies the following formula (1).
10≦(P1−P2)/P1×100<100 (1)

 ここで、P1(cm/g)は、質量比で前駆体粉末の20倍の水を用いて前駆体粉末を20分間洗浄し、固液分離後に乾燥させて得られた洗浄済前駆体粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。本明細書において「洗浄」とは、水を用いて前駆体粉末を撹拌することで、前駆体粉末の粒子表面及び粒子間に存在する夾雑物を水に溶解させ、除去する操作を指す。 Here, P1 (cm 3 /g) is the washed precursor powder obtained by washing the precursor powder for 20 minutes with water that is 20 times the weight of the precursor powder, followed by solid-liquid separation and drying. is the maximum peak value of the log differential pore volume in the pore size distribution of 10 nm or less. As used herein, “washing” refers to an operation of stirring the precursor powder with water to dissolve and remove contaminants present on the particle surfaces and between the particles of the precursor powder.

 「最大ピーク値」とは、上記領域において複数存在するピークのピーク値のうち、最大値を指す。細孔径10nm以下の領域にピークが存在しない場合は、P1が無いものとして評価する。 "Maximum peak value" refers to the maximum value among the peak values of a plurality of peaks present in the above region. If there is no peak in the region with a pore diameter of 10 nm or less, it is evaluated as having no P1.

 上述のように、充填化合物は水溶性である。そのため、前駆体粉末を上記条件で洗浄することにより、得られる洗浄済前駆体粉末は、細孔から充填化合物が除去された状態となり、充填化合物により埋没していた細孔が顕わになる。すなわち、洗浄済前駆体粉末は、疑似的にMCC粒子の集合体と考えることができる。 As mentioned above, the filling compound is water soluble. Therefore, by washing the precursor powder under the above conditions, the obtained washed precursor powder is in a state in which the filling compound is removed from the pores, and the pores buried by the filling compound are exposed. That is, the washed precursor powder can be pseudo-aggregated with MCC particles.

 nmオーダーの細孔は、MCC粒子間に形成される隙間としては小さすぎる。そのため、細孔径10nm以下の領域に現れるピークは、MCC粒子内に形成される細孔の大きさに対応すると判断できる。P1を示すピークは、MCC粒子が有する細孔の存在を示す。 The nm-order pores are too small for the gaps formed between the MCC particles. Therefore, it can be determined that the peak appearing in the region with a pore diameter of 10 nm or less corresponds to the size of the pores formed in the MCC particles. The peak indicating P1 indicates the presence of pores possessed by MCC particles.

 P1は、0.02cm/g以上であってもよく、0.032cm/g以上であってもよい。また、P1は0.9cm/g以下であってもよく、0.8cm/g以下であってもよい。P1の上限値と下限値とは任意に組み合わせることができる。例えば、P1は0.02~0.9cm/gであってもよく、0.032~0.8cm/gであってもよい。 P1 may be 0.02 cm 3 /g or more, or may be 0.032 cm 3 /g or more. Also, P1 may be 0.9 cm 3 /g or less, or may be 0.8 cm 3 /g or less. The upper limit and lower limit of P1 can be combined arbitrarily. For example, P1 may be 0.02-0.9 cm 3 /g, or 0.032-0.8 cm 3 /g.

 また、P2(cm/g)は、洗浄前の前駆体粉末の細孔径分布において、P1を示すピークの細孔径におけるlog微分細孔容積の値である。例えば、洗浄前のCAM粉末の細孔径分布において、上記洗浄済CAM粉末におけるP3を示すピークの細孔径が4nmであったとき、P4は、洗浄前のCAM粉末における細孔径4nmにおけるlog微分細孔容積の値である。前駆体粉末においては、MCC粒子が有する細孔は、充填化合物により埋没している。したがって、P2はP1よりも小さくなる(P1>P2)。 P2 (cm 3 /g) is the value of the log differential pore volume at the pore diameter of the peak showing P1 in the pore diameter distribution of the precursor powder before washing. For example, in the pore size distribution of the CAM powder before washing, when the pore size of the peak indicating P3 in the washed CAM powder is 4 nm, P4 is the log differential pore size at the pore size of 4 nm in the CAM powder before washing. volume value. In the precursor powder, the pores of the MCC particles are filled with a filling compound. Therefore, P2 is smaller than P1 (P1>P2).

 P2は、0.001cm/g以上であってもよく、0.002cm/g以上であってもよい。また、P2は0.8cm/g以下であってもよく、0.7cm/g以下であってもよく、0.6cm/g以下であってもよい。P2の上限値と下限値とは任意に組み合わせることができる。例えば、P2は0.001~0.8cm/gであってもよく、0.002~0.7cm/gであってもよく、0.002~0.6cm/gであってもよい。 P2 may be 0.001 cm 3 /g or more, or may be 0.002 cm 3 /g or more. Also, P2 may be 0.8 cm 3 /g or less, 0.7 cm 3 /g or less, or 0.6 cm 3 /g or less. The upper limit and lower limit of P2 can be combined arbitrarily. For example, P2 may be 0.001 to 0.8 cm 3 /g, may be 0.002 to 0.7 cm 3 /g, may be 0.002 to 0.6 cm 3 /g. good.

 上記P1,P2によって規定される式(1)の「(P1-P2)/P1×100」は、前駆体粉末の洗浄前後における、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値の変化率(%)を表す。式(1)で表すように、前駆体粉末は、洗浄前後の最大ピーク値の変化率が10%以上100%未満である。 “(P1−P2)/P1×100” in formula (1) defined by P1 and P2 above is the maximum peak of the log differential pore volume in the region with a pore diameter of 10 nm or less before and after washing the precursor powder. It represents the change rate (%) of the value. As represented by formula (1), the precursor powder has a maximum peak value change rate of 10% or more and less than 100% before and after washing.

 上記変化率は、15%以上が好ましく、25%以上がさらに好ましく、35%以上がよりさらに好ましく、45%以上が特に好ましい。また、上記変化率は99%以下であってもよく、98%以下であってもよい。上記変化率の上限値と下限値とは任意に組み合わせることができる。上記変化率は、15~99%であってもよく、25~99%であってもよく、35~99%であってもよく、45~98%であってもよい。 The rate of change is preferably 15% or more, more preferably 25% or more, even more preferably 35% or more, and particularly preferably 45% or more. Further, the rate of change may be 99% or less, or may be 98% or less. The upper limit and lower limit of the rate of change can be arbitrarily combined. The rate of change may be 15-99%, 25-99%, 35-99%, or 45-98%.

 「(P1-P2)/P1×100」は、言い換えると、MCC粒子が有する細孔のうち、細孔径10nm以下である微細な細孔に着目したときの、MCC粒子が有する微細な細孔に対する充填化合物の充填率の概算値を表す。MCC粒子の微細な細孔は、充填化合物により10体積%以上100体積%未満の範囲で充填されている。 "(P1−P2)/P1×100" is, in other words, the fine pores possessed by the MCC particles when focusing on the fine pores having a pore diameter of 10 nm or less among the pores possessed by the MCC particles. Represents an approximation of the fill factor of the fill compound. The fine pores of the MCC particles are filled with a filling compound in a range of 10% by volume or more and less than 100% by volume.

 また、前駆体粉末の細孔径分布から求められる全細孔容積(前駆体粉末の全細孔容積)は、0.005~0.15cm/gであると好ましい。 Further, the total pore volume obtained from the pore size distribution of the precursor powder (total pore volume of the precursor powder) is preferably 0.005 to 0.15 cm 3 /g.

 前駆体粉末の全細孔容積は、0.006cm/g以上であってもよく、0.008cm/g以上であってもよい。また、前駆体粉末の全細孔容積は0.05cm/g以下であってもよく、0.02cm/g以下であってもよい。全細孔容積の上限値と下限値とは任意に組み合わせることができる。例えば、前駆体粉末の全細孔容積は、0.006~0.05cm/gであってもよく、0.008~0.02cm/gであってもよい。 The total pore volume of the precursor powder may be 0.006 cm 3 /g or more, or 0.008 cm 3 /g or more. Also, the total pore volume of the precursor powder may be 0.05 cm 3 /g or less, or may be 0.02 cm 3 /g or less. The upper limit and lower limit of the total pore volume can be combined arbitrarily. For example, the total pore volume of the precursor powder may be 0.006-0.05 cm 3 /g, or 0.008-0.02 cm 3 /g.

 式(1)を満たし、好ましくは全細孔容積が上記範囲である前駆体粉末は、MCC粒子が有する細孔に十分な量の充填化合物が充填している。このような前駆体粉末を用いると、サイクル維持率に優れるCAM粉末を製造可能となる。詳細は後述する。 In the precursor powder that satisfies formula (1) and preferably has a total pore volume within the above range, the pores of the MCC particles are filled with a sufficient amount of the filling compound. By using such a precursor powder, it is possible to produce a CAM powder with excellent cycle retention rate. Details will be described later.

(MCC粒子)
 MCC粒子を構成するMCCは、Niの他、さらに元素Xを含むことが好ましい。元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群から選ばれる少なくとも1種の元素である。元素Xは、Co、Mn、Al、Ti、Mg、Nb、及びZrからなる群から選ばれる少なくとも1種の元素であることが好ましい。
(MCC particles)
The MCC forming the MCC particles preferably contains the element X in addition to Ni. Element X is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P. . Element X is preferably at least one element selected from the group consisting of Co, Mn, Al, Ti, Mg, Nb, and Zr.

 前駆体粉末において、MCCに含まれるNiの量[Ni]及びXの量[X]と、充填化合物に含まれるWの量[W]とMoの量[Mo]との合計量([W+Mo])と、の原子量比は、下記式(2)を満たすことが好ましい。
 [Ni]:[X]:[W+Mo]=(1-a):a:b  …(2)
(式(2)は、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
In the precursor powder, the total amount ([W+Mo] ) and the atomic weight ratio preferably satisfies the following formula (2).
[Ni]: [X]: [W + Mo] = (1-a): a: b (2)
(Formula (2) satisfies 0.01≦a≦0.5 and 0.0015≦b≦0.03.)

 すなわち、前駆体粉末は、[Ni]と[X]との合計を100mol%としたとき、[Ni]と[X]との合計に対する[Ni]の割合が、50~99mol%(0.5≦1-a≦0.99)であり、[Ni]と[X]との合計に対する[X]の割合が、1~50mol%(0.01≦a≦0.5)である。 That is, when the total of [Ni] and [X] is 100 mol%, the precursor powder has a ratio of [Ni] to the total of [Ni] and [X] of 50 to 99 mol% (0.5 ≤ 1-a ≤ 0.99), and the ratio of [X] to the sum of [Ni] and [X] is 1 to 50 mol% (0.01 ≤ a ≤ 0.5).

 また、[Ni]と[X]との合計に対する、[W]と[Mo]の合計の割合は、0.15~3mol%(0.0015≦b≦0.03)である。 Also, the ratio of the sum of [W] and [Mo] to the sum of [Ni] and [X] is 0.15 to 3 mol% (0.0015≤b≤0.03).

 aは、0.02以上であってもよく、0.04以上であってもよい。また、aは0.40以下であってもよく、0.30以下であってもよい。aの上限値と下限値とは任意に組み合わせることができる。例えば、0.02≦a≦0.40であってもよく、0.04≦a≦0.30であってもよい。 a may be 0.02 or more, or may be 0.04 or more. Also, a may be 0.40 or less, or may be 0.30 or less. The upper limit and lower limit of a can be combined arbitrarily. For example, 0.02≦a≦0.40 or 0.04≦a≦0.30.

 bは、0.002以上であってもよく、0.003以上であってもよい。また、bは0.02以下であってもよく、0.015以下であってもよい。bの上限値と下限値とは任意に組み合わせることができる。例えば、0.002≦b≦0.02であってもよく、0.003≦b≦0.015であってもよい。 b may be 0.002 or more, or may be 0.003 or more. Also, b may be 0.02 or less, or may be 0.015 or less. The upper limit and lower limit of b can be combined arbitrarily. For example, 0.002≦b≦0.02 or 0.003≦b≦0.015.

 すなわち、上記式(2)においては、0.02≦a≦0.40且つ0.0015≦b≦0.02であってもよく、0.04≦a≦0.30且つ0.003≦b≦0.015であってもよい。 That is, in the above formula (2), 0.02 ≤ a ≤ 0.40 and 0.0015 ≤ b ≤ 0.02 may be satisfied, and 0.04 ≤ a ≤ 0.30 and 0.003 ≤ b ≤ 0.015.

 MCCに含まれる[Ni]及び[X]、充填化合物に含まれる[W]と[Mo]との合計量の比(上記a,b)は、以下の方法で求めることができる。 The ratio of the total amount of [Ni] and [X] contained in MCC and [W] and [Mo] contained in the filling compound (a, b above) can be obtained by the following method.

 まず、前駆体粒子を構成するMCCが、元素XとしてW及びMoを含まないことが既知である場合、上記[組成分析]に記載の方法で測定した前駆体粉末の[W]と[Mo]との合計量を、充填化合物に含まれる[W]と[Mo]との合計量として採用できる。そのため、上記[組成分析]により得られる前駆体粉末のICP分析結果から[Ni][X][W+Mo]を求め、上記a,bを求めることができる。 First, when it is known that the MCC constituting the precursor particles does not contain W and Mo as the element X, [W] and [Mo] of the precursor powder measured by the method described in [Composition analysis] can be employed as the total amount of [W] and [Mo] contained in the filling compound. Therefore, [Ni][X][W+Mo] can be obtained from the ICP analysis result of the precursor powder obtained by the above [composition analysis], and the above a and b can be obtained.

 また、前駆体粒子を構成するMCCが元素XとしてWとMoとの少なくとも一方を含むことが既知である場合、または不明である場合、a,bを以下の方法で求める。 In addition, when it is known or unknown that the MCC constituting the precursor particles contains at least one of W and Mo as the element X, a and b are obtained by the following method.

 まず、上記[組成分析]に記載の方法により、前駆体粉末に含まれる[Ni]と、W及びMo以外の元素Xに該当する元素の合計量Xと、W及びMoの合計量Aとを求める。合計量Aには、MCCの元素Xとして扱うべきW及びMoの合計量Bと、充填化合物を構成するW及びMoの合計量との両方が含まれる。 First, by the method described in [Composition analysis] above, [Ni] contained in the precursor powder, the total amount X of elements corresponding to element X other than W and Mo, and the total amount A of W and Mo demand. The total amount A includes both the total amount B of W and Mo to be treated as element X of the MCC and the total amount of W and Mo constituting the filling compound.

 次に、前駆体粉末を精秤して試料を得、質量比で試料の20倍の水を用いて試料を20分間洗浄し固液分離して、さらに固液分離後の試料に対して質量比で2倍の水を通液処理しながら固液分離を行うことにより、前記充填化合物を前駆体粉末から除去する。得られた粉末を120℃、10時間の真空乾燥により乾燥させて乾燥物を得る。乾燥物を上記[組成分析]に記載の方法で測定し、W又はMoの有無を確認する。W又はMoが確認された場合、MCCの元素Xとして扱うべき[W]と[Mo]との合計量Bを求める。 Next, the precursor powder is precisely weighed to obtain a sample, the sample is washed for 20 minutes with water having a mass ratio of 20 times that of the sample, solid-liquid separation is performed, and the mass of the sample after solid-liquid separation is The filling compound is removed from the precursor powder by performing solid-liquid separation while passing twice as much water. The obtained powder is dried by vacuum drying at 120° C. for 10 hours to obtain a dried product. The dried product is measured by the method described in [Composition analysis] above to confirm the presence or absence of W or Mo. When W or Mo is confirmed, the total amount B of [W] and [Mo] to be treated as the element X of MCC is obtained.

 合計量Aから合計量Bを除くことで、[W+Mo]を求めることができる。合計量Xと合計量Bを合計することで、[X]を求めることができる。得られた[Ni][X][W+Mo]から、上記a,bを求めることができる。 By subtracting the total amount B from the total amount A, [W + Mo] can be obtained. By summing the total amount X and the total amount B, [X] can be obtained. From the obtained [Ni][X][W+Mo], the above a and b can be obtained.

 MCCは、下記組成式(I)で表される水酸化物であることが好ましい。
 Ni(1-x-y)Co(OH)2-α ・・・式(I)
(組成式(I)中、0≦x≦0.3、0<y≦0.3、0<x+y≦0.5、及び-0.5≦α<0.5を満たし、MはMn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる1種以上の元素である。)
MCC is preferably a hydroxide represented by the following compositional formula (I).
Ni (1-xy) Co x M y (OH) 2-α Formula (I)
(In composition formula (I), 0 ≤ x ≤ 0.3, 0 < y ≤ 0.3, 0 < x + y ≤ 0.5, and −0.5 ≤ α < 0.5, M is Mn, It is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P.)

 Mは、Mn、Al、Ti、Mg、及びNbからなる群から選ばれる少なくとも1種の元素であることが好ましい。 M is preferably at least one element selected from the group consisting of Mn, Al, Ti, Mg, and Nb.

 (x)
 xは、0であってもよい。xは、0.01以上が好ましく、0.015以上がより好ましく、0.02以上が特に好ましい。またxは、0.30以下が好ましく、0.25以下がより好ましく、0.10以下が特に好ましい。
(x)
x may be 0. x is preferably 0.01 or more, more preferably 0.015 or more, and particularly preferably 0.02 or more. Also, x is preferably 0.30 or less, more preferably 0.25 or less, and particularly preferably 0.10 or less.

 xの上記上限値及び下限値は任意に組み合わせることができる。
 上記組成式(I)は0≦x≦0.25を満たすことが好ましく、0.015≦x≦0.20を満たすことがより好ましく、0.02≦x≦0.10を満たすことが特に好ましい。
The above upper limit and lower limit of x can be combined arbitrarily.
The composition formula (I) preferably satisfies 0 ≤ x ≤ 0.25, more preferably 0.015 ≤ x ≤ 0.20, particularly 0.02 ≤ x ≤ 0.10 preferable.

 (y)
 yは、0.01以上が好ましく、0.015以上がより好ましく、0.02以上が特に好ましい。またyは、0.30以下が好ましく、0.25以下がより好ましく、0.15以下が特に好ましい。
(y)
y is preferably 0.01 or more, more preferably 0.015 or more, and particularly preferably 0.02 or more. Moreover, y is preferably 0.30 or less, more preferably 0.25 or less, and particularly preferably 0.15 or less.

 yの上記上限値及び下限値は任意に組み合わせることができる。
 上記組成式(I)は、0.01≦y≦0.30を満たすことが好ましく、0.015≦y≦0.20を満たすことがより好ましく、0.02≦y≦0.15を満たすことが特に好ましい。
The above upper limit and lower limit of y can be combined arbitrarily.
The above composition formula (I) preferably satisfies 0.01≦y≦0.30, more preferably satisfies 0.015≦y≦0.20, and satisfies 0.02≦y≦0.15 is particularly preferred.

 (α)
 αは、-0.45以上が好ましく、-0.30以上がより好ましく、-0.20以上が特に好ましい。αは、0.45以下が好ましく、0.30以下がより好ましく、0.20以下が特に好ましい。上記上限値及び下限値は任意に組みわせることができる。
(α)
α is preferably −0.45 or more, more preferably −0.30 or more, and particularly preferably −0.20 or more. α is preferably 0.45 or less, more preferably 0.30 or less, and particularly preferably 0.20 or less. The above upper limit and lower limit can be combined arbitrarily.

 x+yの好ましい範囲は、上記式(2)のaの好ましい範囲と同様である。 The preferred range of x+y is the same as the preferred range of a in formula (2) above.

 上記組成式(I)は-0.45≦α≦0.45を満たすことが好ましく、-0.30≦α≦0.30を満たすことがより好ましく、-0.20≦α≦0.20を満たすことが特に好ましい。 The composition formula (I) preferably satisfies −0.45≦α≦0.45, more preferably −0.30≦α≦0.30, and −0.20≦α≦0.20. is particularly preferred.

 上記組成式(I)は、0≦x≦0.25、0.01≦y≦0.30、及び-0.45≦α≦0.45を満たすことが好ましい。また、上記組成式(I)は、0.02≦x≦0.10、0.02≦y≦0.15、及び-0.20≦α≦0.20を満たすことが特に好ましい。 The above composition formula (I) preferably satisfies 0≦x≦0.25, 0.01≦y≦0.30, and −0.45≦α≦0.45. Moreover, it is particularly preferable that the composition formula (I) satisfies 0.02≦x≦0.10, 0.02≦y≦0.15, and −0.20≦α≦0.20.

(粉体特性)
 前駆体粉末のD50は、3~20μmであると好ましく、4~18μmであるとより好ましく、7~17μmであるとさらに好ましい。前駆体粉末のD50が3μm以上であると、MCC粒子の細孔の存在量が増え、前駆体粉末より得られるCAM粉末を用いたリチウム二次電池のサイクル維持率が向上しやすい。また、前駆体粉末のD50が20μm以下であると、前駆体粉末が後述の焼成する工程においてリチウム化合物と反応しやすく、前駆体粒子全体で均一な結晶構造が生成するため、前駆体粉末より得られるCAM粉末を用いたリチウム二次電池の容量が向上しやすい。
(Powder characteristics)
The D 50 of the precursor powder is preferably 3-20 μm, more preferably 4-18 μm, even more preferably 7-17 μm. When the D50 of the precursor powder is 3 μm or more, the amount of pores in the MCC particles increases, and the cycle retention rate of the lithium secondary battery using the CAM powder obtained from the precursor powder tends to improve. In addition, when the D50 of the precursor powder is 20 μm or less, the precursor powder easily reacts with the lithium compound in the step of firing which will be described later, and a uniform crystal structure is generated throughout the precursor particles. The capacity of a lithium secondary battery using the obtained CAM powder is likely to be improved.

 また、前駆体粉末のBET比表面積は、1~40m/gであると好ましく、1.5~35m/gであるとより好ましく、1.5~10m/gであるとさらに好ましい。前駆体粉末のBET比表面積が1m/g以上であると、MCC粒子の細孔の存在量が増え、前駆体粉末が後述の焼成する工程においてリチウム化合物と均一に反応しやすい。また、前駆体粉末のBET比表面積が40m/g以下であると、MCC粒子の細孔中にW化合物及びMo化合物を充填させやすく、得られるCAM粉末を用いたリチウム二次電池のサイクル維持率が向上しやすい。 Also, the BET specific surface area of the precursor powder is preferably 1 to 40 m 2 /g, more preferably 1.5 to 35 m 2 /g, even more preferably 1.5 to 10 m 2 /g. When the BET specific surface area of the precursor powder is 1 m 2 /g or more, the amount of pores in the MCC particles increases, and the precursor powder easily reacts uniformly with the lithium compound in the firing step described later. Further, when the BET specific surface area of the precursor powder is 40 m 2 /g or less, the pores of the MCC particles are easily filled with the W compound and the Mo compound, and the cycle maintenance of the lithium secondary battery using the obtained CAM powder is achieved. Easy to improve rate.

<前駆体粉末の製造方法>
 前駆体粉末の製造方法は、MCC粒子を製造する工程と、充填化合物が溶解した塩基性溶液と、MCC粒子とを混合してスラリーを得る工程と、スラリーに分散する前駆体粉末を固液分離操作又は溶液の蒸発操作にて取り出した後、乾燥させる工程と、を有する。
<Method for producing precursor powder>
The method for producing the precursor powder includes the steps of producing MCC particles, mixing a basic solution in which a filling compound is dissolved and the MCC particles to obtain a slurry, and solid-liquid separation of the precursor powder dispersed in the slurry. and a step of drying after removing by the operation or evaporation operation of the solution.

(MCC粒子を製造する工程)
 MCC粒子を構成するMCCは、層状構造を有する金属複合水酸化物であり、一例として下記式(I’)で表されるモル比率で、Ni及び上記元素Xを含む。
 Ni:X=(1-a):a   (I’)
 (式(I’)中、Xは、上記元素Xを表し、0.01≦a≦0.5を満たす。)
(Step of producing MCC particles)
MCC, which constitutes the MCC particles, is a metal composite hydroxide having a layered structure, and contains Ni and the element X at a molar ratio represented by the following formula (I′), for example.
Ni: X = (1-a): a (I')
(In formula (I′), X represents the element X and satisfies 0.01≦a≦0.5.)

 以下、Ni、Co及びMnを含むMCC粒子の製造工程を一例として説明する。まず、Ni、Co及びMnを含む金属複合水酸化物を調製する。層状構造を有する金属複合水酸化物は、通常公知のバッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。 The manufacturing process of MCC particles containing Ni, Co and Mn will be described below as an example. First, a metal composite hydroxide containing Ni, Co and Mn is prepared. A metal composite hydroxide having a layered structure can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.

 具体的には、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を反応させ、Ni(1-x-y)CoMn(OH)(x、yは上記式(I)のx、yと同様)で表される金属複合水酸化物を製造する。 Specifically, by the continuous coprecipitation method described in JP-A-2002-201028, a nickel salt solution, a cobalt salt solution, a manganese salt solution and a complexing agent are reacted to obtain Ni (1-xy) A metal composite hydroxide represented by Co x Mn y (OH) 2 (x and y are the same as x and y in formula (I) above) is produced.

 ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの少なくとも1種を使用することができる。 The nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.

 コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの少なくとも1種を使用することができる。 At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.

 マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン及び酢酸マンガンのうちの少なくとも1種を使用することができる。 At least one of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used as the manganese salt that is the solute of the manganese salt solution.

 以上の金属塩は、上記Ni(1-x-y)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるNi、Co及びMnのモル比が、(1-x-y):x:yと対応するように各金属塩の量を規定する。また、溶媒として水が使用される。 The above metal salts are used in proportions corresponding to the composition ratio of Ni (1-xy) Co x Mn y (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of Ni, Co and Mn in the mixed solution containing the metal salt corresponds to (1-xy):x:y. Also, water is used as a solvent.

 錯化剤としては、水溶液中で、ニッケルイオン、コバルトイオン及びマンガンイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸及びウラシル二酢酸及びグリシンが挙げられる。 The complexing agent is one capable of forming complexes with nickel ions, cobalt ions and manganese ions in an aqueous solution. etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine.

 金属複合水酸化物の製造工程において、錯化剤は、用いられてもよく、用いられなくてもよい。錯化剤が用いられる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩(ニッケル塩、コバルト塩及びマンガン塩)のモル数の合計に対するモル比が0より大きく2.0以下である。 A complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide. When a complexing agent is used, the amount of the complexing agent contained in the mixture containing the nickel salt solution, cobalt salt solution, manganese salt solution and complexing agent is, for example, metal salts (nickel salts, cobalt salts and manganese salts). is greater than 0 and 2.0 or less.

 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ金属水酸化物の水溶液を添加する。アルカリ金属水酸化物とは、例えば水酸化ナトリウムであり、水酸化ナトリウム水溶液として用いる。 In the coprecipitation method, in order to adjust the pH value of the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution, and the complexing agent, the mixed solution is added before the pH of the mixed solution changes from alkaline to neutral. to which is added an aqueous solution of alkali metal hydroxide. The alkali metal hydroxide is, for example, sodium hydroxide, and is used as an aqueous sodium hydroxide solution.

 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤、アルカリ金属水酸化物の水溶液を反応槽に連続して供給すると、Ni、Co及びMnが反応し、Ni(1-x-y)CoMn(OH)が生成する。 When the nickel salt solution, cobalt salt solution, and manganese salt solution, as well as the complexing agent and the aqueous alkali metal hydroxide solution are continuously supplied to the reaction vessel, Ni, Co, and Mn react to form Ni (1- xy) Co x Mn y (OH) 2 is produced.

 反応に際しては、反応槽の温度を、例えば20~80℃、好ましくは30~70℃の範囲内で制御する。 During the reaction, the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.

 また、反応に際しては、反応槽内の反応液のpH値を、例えばpH9~13の範囲内で制御する。反応液のpHは、液温40℃にて測定したときの値を採用する。 Also, during the reaction, the pH value of the reaction solution in the reaction tank is controlled within the range of pH 9-13, for example. For the pH of the reaction solution, a value measured at a solution temperature of 40°C is adopted.

 反応槽内で形成された反応沈殿物を攪拌しながら中和する。反応沈殿物の中和の時間は、例えば1~20時間である。 The reaction precipitate formed in the reaction tank is neutralized while stirring. The neutralization time of the reaction precipitate is, for example, 1 to 20 hours.

 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離するためオーバーフローさせるタイプの反応槽を用いることができる。 For the reaction tank used in the continuous coprecipitation method, an overflow type reaction tank can be used to separate the formed reaction precipitate.

 バッチ式共沈殿法により金属複合水酸化物を製造する場合、反応槽としては、オーバーフローパイプを備えない反応槽、及びオーバーフローパイプに連結された濃縮槽を備え、オーバーフローした反応沈殿物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が挙げられる。 When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank. Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.

 反応槽内には不活性ガスを供給することが好ましく、各種気体、例えば、窒素、アルゴン、又はそれらの混合ガスを反応槽内に供給する。不活性ガスの通気量によって、前駆体粉末の上記P1、BET比表面積、及び全細孔容積を制御することができる。 An inert gas is preferably supplied into the reaction vessel, and various gases such as nitrogen, argon, or mixed gases thereof are supplied into the reaction vessel. The above P1, BET specific surface area, and total pore volume of the precursor powder can be controlled by the inert gas flow rate.

 その他、反応槽に供給する金属塩の濃度、反応温度、反応pH等を適宜制御することにより、上記P1、及び後述のP3を本実施形態の範囲に制御することができる。 In addition, by appropriately controlling the concentration of the metal salt supplied to the reaction tank, the reaction temperature, the reaction pH, etc., P1 above and P3 described later can be controlled within the range of the present embodiment.

 以上の反応後、中和された反応沈殿物を単離する。単離には、例えば反応沈殿物を含むスラリー(つまり、共沈物スラリー)を遠心分離や吸引ろ過などで脱水する方法が用いられる。 After the above reaction, isolate the neutralized reaction precipitate. For isolation, for example, a method of dehydrating a slurry containing a reaction precipitate (that is, a coprecipitate slurry) by centrifugation, suction filtration, or the like is used.

 単離された反応沈殿物を洗浄、脱水する。反応沈殿物の洗浄は、水又はアルカリ性洗浄液を用いて行うことが好ましい。反応沈殿物の洗浄は、アルカリ性洗浄液を用いて行うことが好ましく、水酸化ナトリウム水溶液を用いて行うことがより好ましい。 Wash and dehydrate the isolated reaction precipitate. Washing of the reaction precipitate is preferably carried out using water or an alkaline washing solution. The reaction precipitate is preferably washed with an alkaline washing solution, more preferably with an aqueous sodium hydroxide solution.

 洗浄後、さらに脱水し乾燥させることで、Ni、Co及びMnを含む金属複合水酸化物が得られる。乾燥後に、篩別処理を行い、金属複合水酸化物の粒子径を調整してもよい。 After washing, further dehydration and drying yields a metal composite hydroxide containing Ni, Co, and Mn. After drying, a sieving treatment may be performed to adjust the particle size of the metal composite hydroxide.

 以上の工程により、MCC粒子を製造することができる。上記のような条件で共沈殿法を実施することによって、全細孔容積0.01~0.2cm/g、細孔径分布において、細孔径10nm以下の領域での最大ピーク値を示すlog微分細孔容積0.02~0.4cm/gを有するMCC粒子を得ることができる。 MCC particles can be produced by the above steps. By carrying out the coprecipitation method under the above conditions, the total pore volume is 0.01 to 0.2 cm 3 /g, and in the pore size distribution, the log differential showing the maximum peak value in the region with a pore size of 10 nm or less MCC particles with a pore volume of 0.02-0.4 cm 3 /g can be obtained.

 MCC粒子の全細孔容積が前記範囲内であると、W化合物及びMo化合物のいずれか一方又は両方がMCC粒子の細孔へ均一に充填されやすく、得られるCAM粉末を用いたリチウム二次電池のサイクル維持率が向上しやすい。MCC粒子の全細孔容積は、0.015cm/g以上がより好ましい。MCC粒子の全細孔容積は、0.18cm/g以下が好ましく、0.12cm/g以下が特に好ましい。 When the total pore volume of the MCC particles is within the above range, either one or both of the W compound and the Mo compound are likely to be uniformly filled into the pores of the MCC particles, and a lithium secondary battery using the obtained CAM powder is produced. cycle maintenance rate is easy to improve. The total pore volume of MCC particles is more preferably 0.015 cm 3 /g or more. The total pore volume of the MCC particles is preferably 0.18 cm 3 /g or less, particularly preferably 0.12 cm 3 /g or less.

 なお、反応沈殿物の洗浄後、脱水処理及び乾燥処理を実施せずに、以下の(スラリーを得る工程)を続けて行ってもよい。 After washing the reaction precipitate, the following (step of obtaining a slurry) may be continued without performing dehydration treatment and drying treatment.

(スラリーを得る工程)
 次いで、充填化合物が溶解した塩基性溶液と、得られたMCC粒子とを混合してスラリーを得る。
(Step of obtaining slurry)
Next, a basic solution in which the filler compound is dissolved is mixed with the obtained MCC particles to obtain a slurry.

 上記塩基性溶液は、WO及びMoOのいずれか一方又は両方と、塩基であるLiOH・HOと、水とを混合して得る方法により得られる。又は、LiWO及びLiMOのいずれか一方又は両方と、塩基であるLiOH・HOと、水とを混合して得る方法によって得ることができる。塩基性溶液の25±2℃でのpHは、10より大きい(pH>10)。 The basic solution is obtained by mixing either or both of WO3 and MoO3 , LiOH.H2O as a base, and water. Alternatively, it can be obtained by mixing one or both of Li 2 WO 4 and Li 2 MO 4 , LiOH.H 2 O as a base, and water. The pH of basic solutions at 25±2° C. is greater than 10 (pH>10).

 塩基性溶液は、塩基としてLiOHの他にNaOHを含んでもよく、LiOHの代わりにNaOHを含んでもよいが、LiOHのみ用いることが好ましい。 The basic solution may contain NaOH in addition to LiOH as a base, or may contain NaOH instead of LiOH, but it is preferable to use only LiOH.

 塩基性溶液においては、WO及びMoOのいずれか一方又は両方と、LiOHとが反応する。本工程において上記塩基性水溶液を用いることで、Wを含む塩基性水溶液から、水溶性のLiWO及びLiWOのいずれか一方又は両方、Moを含む塩基性水溶液から、水溶性のLiMoO及びLiMoOのいずれか一方又は両方、すなわち上述の充填化合物が生じる。 In a basic solution, either one or both of WO3 and MoO3 react with LiOH. By using the basic aqueous solution in this step, one or both of water-soluble Li 2 WO 4 and Li 4 WO 5 can be obtained from the basic aqueous solution containing W, and from the basic aqueous solution containing Mo, the water-soluble Either or both of Li 2 MoO 4 and Li 4 MoO 5 , ie the filling compounds described above, result.

 得られた塩基性溶液と、MCC粒子とを混合することで、スラリーが得られる。スラリーの含水率は、20質量%以上であってもよく、21質量%以上であってもよい。スラリーの含水率は70質量%以下であってもよい。すなわち、得られるスラリーの含水率は、20~70質量%であってもよく、21~70質量%であってもよい。 A slurry is obtained by mixing the obtained basic solution and MCC particles. The water content of the slurry may be 20% by mass or more, or may be 21% by mass or more. The water content of the slurry may be 70% by mass or less. That is, the water content of the obtained slurry may be 20 to 70% by mass, or may be 21 to 70% by mass.

 塩基性溶液のpHが10より大きいため、スラリー中のMCC粒子は、塩基性溶液において溶解し難く、MCC粒子の細孔が維持されやすい。そのため、MCC粒子がスラリーに分散する間に、MCC粒子が有する細孔には、塩基性溶液が浸入する。これにより、細孔内に水溶性の充填化合物が充填される。  Since the pH of the basic solution is greater than 10, the MCC particles in the slurry are difficult to dissolve in the basic solution, and the pores of the MCC particles are easily maintained. Therefore, while the MCC particles are dispersed in the slurry, the basic solution penetrates into the pores of the MCC particles. This fills the pores with a water-soluble filling compound.

 スラリーとして保持する時間は、5分間以上であると好ましい。この程度の間、スラリーとして保持することで、細孔内に充填化合物が十分に充填される。 It is preferable that the slurry is held for 5 minutes or longer. By keeping it as a slurry for this amount of time, the pores are sufficiently filled with the filling compound.

 本工程において、スラリーの濃度及び含水率や、スラリーに含まれるMCC粒子と塩基性溶液に含まれる充填化合物の比を調整することで、細孔に充填される充填化合物の量を調整し、上記P2の値を本実施形態の範囲に制御することができる。また、最終的に得られるCAM粉末の上記P4を本実施形態の範囲に制御することができる。 In this step, by adjusting the concentration and water content of the slurry and the ratio of the MCC particles contained in the slurry and the filling compound contained in the basic solution, the amount of the filling compound filled in the pores is adjusted, and the above The value of P2 can be controlled within the range of this embodiment. Moreover, the above P4 of the finally obtained CAM powder can be controlled within the range of the present embodiment.

(乾燥させる工程)
 次いで、スラリーから、前駆体粉末を取り出し、乾燥させる。
 スラリーの含水率が20~30質量%の場合、スラリーから直接水を蒸発させて除去し、前駆体粉末を取り出してもよい。
(Drying process)
The precursor powder is then removed from the slurry and dried.
When the water content of the slurry is 20 to 30% by mass, the water may be removed by evaporation directly from the slurry to take out the precursor powder.

 スラリーの含水率が30質量%を超える場合、スラリーを濾過して固形分を分離(固液分離)し、得られた固形分から水を蒸発させて、前駆体粉末を取り出してもよい。 When the water content of the slurry exceeds 30% by mass, the slurry may be filtered to separate the solid content (solid-liquid separation), and water may be evaporated from the obtained solid content to take out the precursor powder.

 乾燥の方法は、加熱、減圧、送風及びこれらの組み合わせを適宜採用することができる。 Heating, pressure reduction, air blowing, and combinations thereof can be appropriately adopted as the drying method.

 これにより、上述の前駆体粉末が得られる。 As a result, the precursor powder described above is obtained.

 図1は、後述する実施例1で得られた前駆体粉末のSEM像である。図1に示す前駆体粉末は、充填化合物として、LiとWとを含む化合物を有している。また、図2は、図1と同じ視野におけるSEM-EDX像であり、Wのマッピング像である。図2ではWの量を色の濃淡で示し、白の部分はWが存在せず、色濃く着色されている部分ほど相対的にWが多く存在していることを示している。以下、本明細書において図示する各マッピング像についても同様に、元素の存在量を色の濃淡で示している。 FIG. 1 is an SEM image of the precursor powder obtained in Example 1, which will be described later. The precursor powder shown in FIG. 1 has a compound containing Li and W as a filling compound. FIG. 2 is an SEM-EDX image in the same field of view as in FIG. 1, which is a W mapping image. In FIG. 2, the amount of W is indicated by the shade of color, and the white portion indicates that W does not exist, and the darker colored portion indicates that relatively more W is present. In each mapping image illustrated in the present specification, the abundance of an element is similarly indicated by the shade of color.

 図1に示すように、前駆体粉末を構成する前駆体粒子には細孔が確認できる。粒子断面において、白い縞状に写っている部分が細孔に該当する。 As shown in FIG. 1, pores can be confirmed in the precursor particles that make up the precursor powder. In the cross section of the particle, the white striped portions correspond to the pores.

 また、図2に示すように、前駆体粒子の内部にまでWが存在していることを確認できる。 In addition, as shown in FIG. 2, it can be confirmed that W exists even inside the precursor particles.

<CAM粉末>
 本実施形態のCAM粉末は、リチウム二次電池に用いられ、所定の大きさの細孔を有する複数の粒子と、細孔に充填された充填化合物と、を有する。充填化合物としては、上述した前駆体粉末に含まれる充填化合物と同じ化合物を例示できる。
<CAM powder>
The CAM powder of the present embodiment is used in a lithium secondary battery and has a plurality of particles having pores of a predetermined size and a filling compound that fills the pores. As the filling compound, the same compounds as the filling compound contained in the precursor powder described above can be exemplified.

 CAM粉末を構成する粒子は、層状構造を有し、少なくともNiを含むLiMOからなる。この粒子について、以下、「LiMO粒子」と称することがある。LiMO粒子と、LiMO粒子の細孔に充填された充填化合物とは、粒子状のCAM(CAM粒子)を構成する。すなわち、LiMO粒子とは、LiMOの一次粒子が凝集してなり、且つ細孔を有する一つの二次粒子である。また、CAM粒子とは、LiMO粒子と充填化合物とを含む一つの粒子である。CAM粉末は複数のCAM粒子の集合体である。 The particles that make up the CAM powder are made of LiMO that has a layered structure and contains at least Ni. These particles are hereinafter sometimes referred to as "LiMO particles". The LiMO particles and the filling compound that fills the pores of the LiMO particles constitute particulate CAMs (CAM particles). That is, a LiMO particle is a single secondary particle formed by aggregation of LiMO primary particles and having pores. A CAM particle is a single particle containing a LiMO particle and a filling compound. CAM powder is an aggregate of multiple CAM particles.

 また、CAM粉末は、下記式(3)を満たすピークを有する。
 P3≧0.003  …(3)
Moreover, the CAM powder has a peak that satisfies the following formula (3).
P3≧0.003 (3)

 ここで、P3(cm/g)は、質量比でCAM粉末の20倍の水を用いてCAM粉末を20分間洗浄し、固液分離後に乾燥させて得られた洗浄済粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。細孔径10nm以下の領域にピークが存在しない場合は、P3が無いものとして評価する。 Here, P3 (cm 3 /g) is the pore size distribution of the washed powder obtained by washing the CAM powder for 20 minutes with water that is 20 times the mass of the CAM powder, followed by solid-liquid separation and drying. , is the maximum peak value of the log differential pore volume in the region with a pore diameter of 10 nm or less. If there is no peak in the region with a pore diameter of 10 nm or less, it is evaluated as having no P3.

 上述のように、充填化合物は水溶性である。そのため、CAM粉末を上記条件で洗浄することにより、得られる洗浄済粉末は、細孔から充填化合物が除去された状態となり、充填化合物により埋没していた細孔が顕わになる。すなわち、洗浄済粉末は、疑似的にLiMO粒子の集合体と考えることができる。 As mentioned above, the filling compound is water soluble. Therefore, by washing the CAM powder under the above conditions, the obtained washed powder is in a state in which the filling compound is removed from the pores, and the pores buried by the filling compound are exposed. In other words, the washed powder can be considered as an aggregate of LiMO particles in a pseudo manner.

 nmオーダーの細孔は、LiMO粒子間に形成される隙間としては小さすぎる。そのため、細孔径10nm以下の領域に現れるピークは、LiMO粒子内に形成される細孔の大きさに対応すると判断できる。P3を示すピークは、LiMO粒子が有する細孔の存在を示す。 The nm-order pores are too small for the gaps formed between the LiMO particles. Therefore, it can be determined that the peak appearing in the region with a pore diameter of 10 nm or less corresponds to the size of the pores formed in the LiMO particles. The peak indicating P3 indicates the presence of pores possessed by the LiMO particles.

 P3は、0.004cm/g以上であってもよく、0.006cm/g以上であってもよい。また、P3は0.06cm/g以下であってもよく、0.05cm/g以下であってもよい。P3の上限値と下限値とは任意に組み合わせることができる。例えば、P3は0.004~0.06cm/gであってもよく、0.006~0.05cm/gであってもよい。 P3 may be 0.004 cm 3 /g or more, or 0.006 cm 3 /g or more. Also, P3 may be 0.06 cm 3 /g or less, or may be 0.05 cm 3 /g or less. The upper limit and lower limit of P3 can be combined arbitrarily. For example, P3 may be 0.004-0.06 cm 3 /g, or 0.006-0.05 cm 3 /g.

 また、洗浄前のCAM粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値をP4(cm/g)とする。例えば、洗浄前のCAM粉末の細孔径分布において、上記洗浄済前駆体粉末におけるP1を示すピークの細孔径が4nmであったとき、P2は、洗浄前の前駆体粉末における細孔径4nmにおけるlog微分細孔容積の値である。 Also, in the pore size distribution of the CAM powder before washing, the maximum peak value of the log differential pore volume in the region with a pore size of 10 nm or less is defined as P4 (cm 3 /g). For example, in the pore size distribution of the CAM powder before washing, when the pore size of the peak indicating P1 in the washed precursor powder is 4 nm, P2 is the log differential at the pore size of 4 nm in the precursor powder before washing. is the pore volume value.

 CAM粉末においては、LiMO粒子が有する細孔は、充填化合物により埋没している。したがって、P4はP3よりも小さくなる(P3>P4)。  In the CAM powder, the pores of the LiMO particles are filled with a filling compound. Therefore, P4 is smaller than P3 (P3>P4).

 P4は、0.0005cm/g以上であってもよく、0.0010cm/g以上であってもよい。また、P4は0.020cm/g以下であってもよく、0.015cm/g以下であってもよい。P4の上限値と下限値とは任意に組み合わせることができる。例えば、P4は0.0005~0.020cm/gであってもよく、0.0010~0.015cm/gであってもよい。 P4 may be 0.0005 cm 3 /g or more, or may be 0.0010 cm 3 /g or more. Also, P4 may be 0.020 cm 3 /g or less, or may be 0.015 cm 3 /g or less. The upper limit and lower limit of P4 can be combined arbitrarily. For example, P4 may be 0.0005-0.020 cm 3 /g, or 0.0010-0.015 cm 3 /g.

 CAM粉末は、下記式(5)を満たすことが好ましい。
 50≦(P3-P4)/P3×100<100  …(5)
The CAM powder preferably satisfies the following formula (5).
50≦(P3−P4)/P3×100<100 (5)

 上記P3,P4によって規定される式(5)の「(P3-P4)/P3×100」は、CAM粉末の洗浄前後における、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値の変化率(%)を表す。式(5)で表すように、CAM粉末は、洗浄前後の最大ピーク値の変化率が50%以上100%未満である。 “(P3−P4)/P3×100” in formula (5) defined by P3 and P4 above is the maximum peak value of the log differential pore volume in the region with a pore diameter of 10 nm or less before and after washing the CAM powder. represents the rate of change (%). As represented by the formula (5), the CAM powder has a maximum peak value change rate of 50% or more and less than 100% before and after washing.

 上記変化率は、60%以上であってもよく、65%以上であってもよい。また、上記変化率は99%以下であってもよく、98%以下であってもよい。上記変化率の上限値と下限値とは任意に組み合わせることができる。例えば、上記変化率は、60~99%であってもよく、65~98%であってもよい。 The rate of change may be 60% or more, or 65% or more. Further, the rate of change may be 99% or less, or may be 98% or less. The upper limit and lower limit of the rate of change can be arbitrarily combined. For example, the rate of change may be 60-99%, or 65-98%.

 「(P3-P4)/P3×100」は、言い換えると、LiMO粒子が有する細孔のうち、細孔径10nm以下である微細な細孔に着目したときの、LiMO粒子が有する微細な細孔に対する充填化合物の充填率の概算値を表す。LiMO粒子の微細な細孔は、充填化合物により50体積%以上100体積%未満の範囲で充填されている。 “(P3−P4)/P3×100” is, in other words, when focusing on fine pores having a pore diameter of 10 nm or less among the pores possessed by the LiMO particles, for the fine pores possessed by the LiMO particles Represents an approximation of the fill factor of the fill compound. The fine pores of the LiMO particles are filled with a filling compound in a range of 50% by volume or more and less than 100% by volume.

 CAM粉末に対する[W]と[Mo]との合計溶出モル量の割合(溶出割合)は、以下の方法で評価することができる。 The ratio of the total elution molar amount of [W] and [Mo] to the CAM powder (elution ratio) can be evaluated by the following method.

 CAM粉末を精秤して試料を得、質量比で試料の20倍の水を用いて試料を20分間洗浄し固液分離して濾液を得る。濾液のICP分析を行い、分析結果に基づいて濾液に溶出した[W]と[Mo]との合計溶出モル量を求める。試料(CAM粉末)のICP分析により得られる[W]と[Mo]との合計モル量と、上記[W]と[Mo]との合計溶出モル量とから、上記溶出割合を求める。 A sample is obtained by accurately weighing the CAM powder, and the sample is washed for 20 minutes using water that is 20 times the sample in terms of mass ratio, followed by solid-liquid separation to obtain the filtrate. The filtrate is subjected to ICP analysis, and the total eluted molar amount of [W] and [Mo] eluted in the filtrate is determined based on the analysis results. From the total molar amount of [W] and [Mo] obtained by ICP analysis of the sample (CAM powder) and the total molar amount of eluted [W] and [Mo], the elution ratio is determined.

 上記方法で求められる溶出割合は、水洗によって細孔から溶出する充填化合物の合計モル量に対応している。 The elution ratio determined by the above method corresponds to the total molar amount of the filling compound eluted from the pores by washing with water.

 CAM粉末は、上記方法で測定される溶出割合が、10~60%であると好ましく、15~50%であるとより好ましい。 The CAM powder preferably has an elution ratio of 10 to 60%, more preferably 15 to 50%, as measured by the above method.

 CAM粉末を構成するLiMO粒子は、LiMOの一次粒子が凝集した二次粒子を含む。二次粒子を構成する一次粒子の数は、1μmあたり10~50個であると好ましく、1μmあたり20~40個であるとより好ましい。 The LiMO particles that constitute the CAM powder include secondary particles that are aggregated LiMO primary particles. The number of primary particles constituting the secondary particles is preferably 10 to 50 per 1 μm 2 , more preferably 20 to 40 per 1 μm 2 .

(LiMO粒子)
 LiMO粒子を構成するLiMOは、さらに上述の元素Xを含む。
(LiMO particles)
The LiMO constituting the LiMO particles further contains the element X described above.

 CAM粉末において、LiMOに含まれる[Li]、[Ni]、及び[X]と、充填化合物に含まれる[W]と[Mo]とのとの原子量比は、下記式(4)を満たすことが好ましい。
[Li]:[Ni]:[X]:[W+Mo]=c:(1-a):a:b  …(4)
(式(4)は、0.9≦c≦1.2、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
In the CAM powder, the atomic weight ratio of [Li], [Ni], and [X] contained in LiMO and [W] and [Mo] contained in the filling compound must satisfy the following formula (4). is preferred.
[Li]: [Ni]: [X]: [W + Mo] = c: (1-a): a: b (4)
(Formula (4) satisfies 0.9≦c≦1.2, 0.01≦a≦0.5, and 0.0015≦b≦0.03.)

 すなわち、CAM粉末は、[Ni]と[X]との合計を100mol%としたとき、[Ni]の割合が、50~99mol%(0.5≦1-a≦0.99)であり、[X]の割合は、1~50mol%(0.01≦a≦0.5)である。 That is, the CAM powder has a ratio of [Ni] of 50 to 99 mol% (0.5 ≤ 1-a ≤ 0.99) when the total of [Ni] and [X] is 100 mol%, The proportion of [X] is 1 to 50 mol % (0.01≦a≦0.5).

 また、[Ni]と[X]との合計に対する、[Li]の合計の割合は、90~120mol%(0.9≦c≦1.2)である。 Also, the ratio of the total of [Li] to the total of [Ni] and [X] is 90 to 120 mol% (0.9≤c≤1.2).

 さらに、[Ni]と[X]との合計に対する、[W]と[Mo]の合計の割合は、0.15~3mol%(0.0015≦b≦0.03)である。 Furthermore, the ratio of the sum of [W] and [Mo] to the sum of [Ni] and [X] is 0.15 to 3 mol% (0.0015≤b≤0.03).

 cは、0.98以上であってもよく、1.00以上であってもよい。また、cは1.15以下であってもよく、1.10以下であってもよい。cの上限値と下限値とは任意に組み合わせることができる。例えば、0.98≦c≦1.15であってもよく、1.00≦c≦1.10であってもよい。 c may be 0.98 or more, or may be 1.00 or more. Also, c may be 1.15 or less, or may be 1.10 or less. The upper limit and lower limit of c can be combined arbitrarily. For example, 0.98≦c≦1.15 or 1.00≦c≦1.10.

 aの好ましい範囲は、上記前駆体粉末のMCC粒子において説明したaと同様である。 The preferred range of a is the same as a described for the MCC particles of the precursor powder.

 bの好ましい範囲は、上記前駆体粉末のMCC粒子において説明したbと同様である。 The preferred range of b is the same as b described for the MCC particles of the precursor powder.

 すなわち、上記式(4)においては、0.98≦c≦1.15、0.02≦a≦0.40且つ0.0020≦b≦0.02であってもよく、1.00≦c≦1.10、0.04≦a≦0.30且つ0.003≦b≦0.015であってもよい。 That is, in the above formula (4), 0.98 ≤ c ≤ 1.15, 0.02 ≤ a ≤ 0.40 and 0.0020 ≤ b ≤ 0.02 may be satisfied, and 1.00 ≤ c ≤1.10, 0.04≤a≤0.30 and 0.003≤b≤0.015.

 LiMOは、以下の組成式(II)で表される化合物であってもよい。
 Li[Li(Ni(1-e)1-d]O   (II)
 (式(II)中、Xは、前記元素Xを表し、-0.1≦d≦0.2、0<e≦0.5を満たす。)
LiMO may be a compound represented by the following compositional formula (II).
Li[Li d (Ni (1-e) X e ) 1-d ]O 2 (II)
(In formula (II), X represents the element X and satisfies −0.1≦d≦0.2 and 0<e≦0.5.)

 サイクル維持率が高いリチウム二次電池を得る観点から、前記式(II)におけるdは、-0.1以上であり、-0.05以上であることがより好ましく、0を超えることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記式(II)におけるdは、0.2以下であり、0.08以下であることが好ましく、0.06以下であることがより好ましい。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, d in the formula (II) is -0.1 or more, more preferably -0.05 or more, and more preferably more than 0. . Further, from the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, d in the formula (II) is 0.2 or less, preferably 0.08 or less, and 0.06 or less. is more preferred.

 dの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、dが-0.1~0.2、0を超え0.2以下、-0.05~0.08、0を超え0.06以下等であることが挙げられる。 The upper limit and lower limit of d can be combined arbitrarily. Combinations include, for example, d being -0.1 to 0.2, more than 0 to 0.2 or less, -0.05 to 0.08, more than 0 to 0.06 or less.

 充放電サイクルを繰り返した後の電池の抵抗増加を抑制する観点から、前記式(II)におけるeは、0より大きく、0.01以上であることが好ましく、0.02以上であることがより好ましい。また、初期容量が高いリチウム二次電池を得る観点から前記式(II)におけるeは、0.2以下であり、0.1以下であることが好ましく、0.05以下であることがより好ましい。 From the viewpoint of suppressing an increase in the resistance of the battery after repeated charge-discharge cycles, e in the formula (II) is preferably greater than 0 and 0.01 or more, and more preferably 0.02 or more. preferable. From the viewpoint of obtaining a lithium secondary battery with a high initial capacity, e in the formula (II) is 0.2 or less, preferably 0.1 or less, and more preferably 0.05 or less. .

 eの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、eが0を超え0.2以下、0.01~0.1、0.02~0.05等であることが挙げられる。 The upper limit and lower limit of e can be combined arbitrarily. Combinations include, for example, e greater than 0 and 0.2 or less, 0.01 to 0.1, 0.02 to 0.05, and the like.

 すなわち、式(II)においては、dが-0.1~0.2且つeが0を超え0.2以下であってもよく、dが0を超え0.2以下且つeが0を超え0.2以下であってもよく、dが-0.05~0.08且つeが0.01~0.1であってもよく、dが0を超え0.06以下且つeが0.02~0.05であってもよい。 That is, in formula (II), d may be -0.1 to 0.2 and e may be more than 0 and 0.2 or less, d is more than 0 and 0.2 or less and e is more than 0 It may be 0.2 or less, d may be -0.05 to 0.08 and e may be 0.01 to 0.1, d is more than 0 and 0.06 or less and e is 0.06 or less. 02 to 0.05.

 サイクル維持率が高いリチウム二次電池を得る観点から、元素Xは、Co、Mn、Ti、Mg、Al、W、Nb、B及びZrからなる群より選択される1種以上の元素であることが好ましく、Co、Mn、Al、W、Nb及びBからなる群より選択される1種以上の元素であることがより好ましい。 From the viewpoint of obtaining a lithium secondary battery with a high cycle retention rate, the element X is one or more elements selected from the group consisting of Co, Mn, Ti, Mg, Al, W, Nb, B and Zr. is preferred, and one or more elements selected from the group consisting of Co, Mn, Al, W, Nb and B are more preferred.

 LiMOの結晶構造は、層状岩塩型構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。LiMOの結晶構造は、粉末X線回折測定により粉末X線回折スペクトルを求め、得られたX線回折スペクトルの回折角、ピーク強度に基づいて同定する。 The crystal structure of LiMO is a layered rock salt structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure. The crystal structure of LiMO is identified based on the diffraction angle and peak intensity of the obtained X-ray diffraction spectrum obtained by obtaining the powder X-ray diffraction spectrum by powder X-ray diffraction measurement.

 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.

 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.

 これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a lithium secondary battery with a high discharge capacity, the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal assigned to C2 / m. A structure is particularly preferred.

 CAM粉末は、上述の[粉末X線回折測定]に記載の方法で測定して得られる粉末X線回折スペクトルにおいて、2θ=18.7±2°の範囲内の回折ピーク(003面)の半値幅Bと、2θ=44.6±2°の範囲内の回折ピーク(104面)の半値幅Cとの比C/Bが、0.54~0.68であると好ましい。すなわち、CAM粉末のC/Bは、0.55~0.66であると好ましい。 The CAM powder has half of the diffraction peak (003 plane) within the range of 2θ = 18.7 ± 2° in the powder X-ray diffraction spectrum obtained by measuring by the method described in [Powder X-ray diffraction measurement] above. The ratio C/B between the value width B and the half-value width C of the diffraction peak (104 plane) within the range of 2θ=44.6±2° is preferably 0.54 to 0.68. That is, the C/B of the CAM powder is preferably 0.55-0.66.

 C/Bが0.54~0.68であるCAM粉末は、(003)面の法線方向(すなわちc軸方向)に適度に異方成長し、CAM粉末に対するリチウムイオンの吸蔵・脱離が容易となる。そのため、C/Bが上記関係を満たすCAM粉末は、電池性能を向上させることが可能となる。 A CAM powder having a C/B ratio of 0.54 to 0.68 grows moderately anisotropically in the normal direction of the (003) plane (that is, in the c-axis direction), and lithium ions are absorbed and desorbed from the CAM powder. easier. Therefore, a CAM powder in which C/B satisfies the above relationship can improve battery performance.

(粉体特性)
 CAM粉末のD50は、製造に用いる前駆体粉末のD50と同等の値を示す。CAM粉末のD50は、3~20μmであると好ましく、4~18μmであるとより好ましく、7~17μmであるとさらに好ましい。CAM粉末のD50が3μm以上であるとLiMO粒子の細孔が相対的に増えることにより、リチウム二次電池のサイクル維持率が向上しやすい。また、CAM粉末のD50が20μm以下であると、LiMO粒子の細孔と電解液が接触しやすくなり、リチウム二次電池の初期容量が向上しやすい。
(Powder characteristics)
The D50 of the CAM powder shows a value comparable to the D50 of the precursor powder used for production. The D 50 of the CAM powder is preferably 3-20 μm, more preferably 4-18 μm, even more preferably 7-17 μm. When the D50 of the CAM powder is 3 μm or more, the pores of the LiMO particles are relatively increased, so that the cycle retention rate of the lithium secondary battery tends to be improved. Further, when the D50 of the CAM powder is 20 μm or less, the pores of the LiMO particles are likely to come into contact with the electrolytic solution, and the initial capacity of the lithium secondary battery is likely to be improved.

 また、CAM粉末のBET比表面積は、2m/g以下であることが好ましく、0.1~2m/gであるとより好ましく、0.2~1.5m/gであるとさらに好ましく、0.25~1.0m/gであるとさらにいっそう好ましい。CAM粉末のBET比表面積が上記下限値以上であると、電解液と接触しやすく電池容量が向上する。また、CAM粉末のBET比表面積が上記上限値以下であると、リチウム二次電池において副反応である電解液の分解反応を生じにくい。 The BET specific surface area of the CAM powder is preferably 2 m 2 /g or less, more preferably 0.1 to 2 m 2 /g, and even more preferably 0.2 to 1.5 m 2 /g. , 0.25 to 1.0 m 2 /g. When the BET specific surface area of the CAM powder is equal to or higher than the above lower limit, the CAM powder easily comes into contact with the electrolytic solution and improves the battery capacity. Further, when the BET specific surface area of the CAM powder is equal to or less than the upper limit, the decomposition reaction of the electrolytic solution, which is a side reaction in the lithium secondary battery, is unlikely to occur.

 CAM粉末は、上記式(3)を満たすような微細な細孔を有する。CAM粉末をリチウム二次電池の正極に用いると、CAM粉末を構成するCAM粒子の細孔に充填された水溶性の充填化合物は、極性溶媒である電解液に一部が溶解すると考えられる。充填化合物が溶解すると、CAM粒子には細孔が顕現する。  CAM powder has fine pores that satisfy the above formula (3). When the CAM powder is used for the positive electrode of a lithium secondary battery, the water-soluble filling compound filled in the pores of the CAM particles constituting the CAM powder is considered to partially dissolve in the electrolyte solution, which is a polar solvent. Pores appear in the CAM particles when the filling compound dissolves.

 CAM粒子が有する微細な細孔は、リチウム二次電池の充放電に伴うCAM粒子の体積膨張及び収縮によるひずみを緩衝し、粒子の破損を抑制することが期待できる。また、小さな細孔を有するCAM粒子は、相対的に大きな細孔を有するCAM粒子よりも上記緩衝の効果が高いと考えられる。  The fine pores of the CAM particles are expected to buffer the strain caused by the volume expansion and contraction of the CAM particles during charging and discharging of the lithium secondary battery, and suppress the damage of the particles. Also, it is believed that CAM particles with small pores are more effective at buffering than CAM particles with relatively large pores.

 さらに、充填化合物として用いるW化合物やMo化合物は、リチウムイオン伝導性が高いため、容量低下を抑制することできる。 Furthermore, since the W compound and Mo compound used as the filling compound have high lithium ion conductivity, it is possible to suppress the decrease in capacity.

 これらにより、本実施形態のCAM粉末においては、サイクル維持率に優れたリチウム二次電池を実現できる。 As a result, the CAM powder of the present embodiment can realize a lithium secondary battery with excellent cycle retention rate.

<CAM粉末の製造方法>
 CAM粉末の製造方法は、前駆体粉末と、リチウム化合物とを混合して混合物を得る工程と、混合物を焼成する工程と、を含む。
<Method for producing CAM powder>
A method for producing a CAM powder includes the steps of mixing a precursor powder and a lithium compound to obtain a mixture, and firing the mixture.

(混合物を得る工程)
 リチウム化合物としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム、水酸化リチウム水和物及び炭酸リチウムのいずれか一方又はその混合物が好ましい。また、水酸化リチウム又は水酸化リチウム水和物が炭酸リチウムを含む場合には、水酸化リチウム又は水酸化リチウム水和物中の炭酸リチウムの含有量は、5質量%以下であることが好ましい。
(Step of obtaining a mixture)
At least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, lithium chloride and lithium fluoride can be used as the lithium compound. Among these, any one of lithium hydroxide, lithium hydroxide hydrate and lithium carbonate or a mixture thereof is preferred. When lithium hydroxide or lithium hydroxide hydrate contains lithium carbonate, the content of lithium carbonate in lithium hydroxide or lithium hydroxide hydrate is preferably 5% by mass or less.

 混合物を得る工程の前に、金属複合水酸化物である前駆体粉末を400~700℃の範囲で加熱処理を行い、金属複合酸化物としてもよい。加熱温度の保持時間は、0.5~10時間とすることができる。加熱雰囲気として、大気、酸素又は、窒素これらの混合ガスを用いることができる。 Before the step of obtaining the mixture, the precursor powder, which is a metal composite hydroxide, may be heat-treated in the range of 400 to 700°C to obtain a metal composite oxide. The heating temperature can be maintained for 0.5 to 10 hours. Air, oxygen, or a mixed gas of nitrogen can be used as the heating atmosphere.

 リチウム化合物と前駆体粉末とを、最終目的物の組成比を勘案して混合する。具体的には、リチウム化合物と前駆体粉末は、上記式(4)を満たす割合で混合する。  The lithium compound and the precursor powder are mixed in consideration of the composition ratio of the final target. Specifically, the lithium compound and the precursor powder are mixed at a ratio that satisfies the above formula (4).

 すなわち、混合物を得る工程においては、前駆体粉末の粒子(前駆体粒子)を構成する金属元素の総量に対して、リチウム化合物を構成するLiが0.90~1.20となるモル比で前駆体粉末とリチウム化合物とを混合する。 That is, in the step of obtaining a mixture, the precursor powder is prepared at a molar ratio of 0.90 to 1.20 for Li constituting the lithium compound with respect to the total amount of metal elements constituting the particles of the precursor powder (precursor particles). A body powder and a lithium compound are mixed.

(焼成する工程)
 焼成温度は、740~920℃である。焼成温度が740℃以上であると、結晶構造中の(003)面の法線方向(すなわちc軸方向)が適度に異方成長し、上記C/Bが本実施形態の範囲であるCAM粉末を得ることができる。また、焼成温度が920℃以下であると、細孔にW化合物及びMo化合物のいずれか一方又は両方を充填したCAM粉末を得ることができる。
(Baking process)
The firing temperature is 740-920°C. When the firing temperature is 740° C. or higher, the normal direction of the (003) plane in the crystal structure (that is, the c-axis direction) grows moderately anisotropically, and the C/B is within the range of the present embodiment. can be obtained. Moreover, when the firing temperature is 920° C. or lower, it is possible to obtain a CAM powder in which the pores are filled with either one or both of the W compound and the Mo compound.

 焼成温度は、750℃以上が好ましく、760℃以上がより好ましく、780℃以上がさらに好ましく、790℃以上がよりさらに好ましく、800℃以上が特に好ましい。また、焼成温度は、910℃以下であることが好ましく、900℃以下であることがより好ましい。 The firing temperature is preferably 750°C or higher, more preferably 760°C or higher, even more preferably 780°C or higher, even more preferably 790°C or higher, and particularly preferably 800°C or higher. Also, the firing temperature is preferably 910° C. or lower, more preferably 900° C. or lower.

 焼成温度の上限値と下限値とは、任意に組み合わせることができる。例えば、焼成温度は、750~920℃であることが好ましく、760~910℃であることがより好ましく、780~900℃であることがさらに好ましく、800~900℃であることが特に好ましい。 The upper limit and lower limit of the firing temperature can be combined arbitrarily. For example, the firing temperature is preferably 750 to 920°C, more preferably 760 to 910°C, even more preferably 780 to 900°C, and particularly preferably 800 to 900°C.

 また、焼成温度は、760~920℃であってもよく、780~920℃であってもよく、790~920℃であってもよく、800~920℃であってもよい。 Also, the firing temperature may be 760 to 920°C, 780 to 920°C, 790 to 920°C, or 800 to 920°C.

 本明細書における焼成温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度(以下、最高保持温度と呼ぶことがある)を意味する。焼成工程において、複数の加熱工程を有する場合、各加熱工程のうち、最高保持温度で加熱した際の温度を焼成温度とする。 The firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and also the highest temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature). When the firing process includes a plurality of heating steps, the temperature at the highest holding temperature in each heating step is taken as the firing temperature.

 焼成における保持時間は、3~30時間が好ましく、4~20時間がより好ましい。焼成における保持時間が30時間を超えると、リチウムの揮発によって実質的に電池性能が悪くなる傾向となる。焼成における保持時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。 The holding time for firing is preferably 3 to 30 hours, more preferably 4 to 20 hours. If the holding time in firing exceeds 30 hours, the volatilization of lithium tends to substantially deteriorate the battery performance. When the holding time in the firing is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor.

 最高保持温度に達する加熱工程の昇温速度は80℃/時間以上が好ましく、100℃/時間以上がより好ましく、120℃/時間以上が特に好ましい。最高保持温度に達する加熱工程の昇温速度は、焼成装置において、昇温を開始した時間から保持温度に到達するまでの時間から算出される。 The heating rate in the heating process to reach the maximum holding temperature is preferably 80°C/hour or more, more preferably 100°C/hour or more, and particularly preferably 120°C/hour or more. The rate of temperature increase in the heating process to reach the maximum holding temperature is calculated from the time from the time the temperature starts to rise until the temperature reaches the holding temperature in the baking apparatus.

 焼成工程は、焼成温度が異なる複数の焼成段階を有してもよい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階を有することが好ましい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。 The firing process may have multiple firing stages with different firing temperatures. For example, it is preferable to have a first firing stage and a second firing stage that fires at a higher temperature than the first firing stage. Furthermore, it may have firing stages with different firing temperatures and firing times.

 焼成雰囲気として、大気、酸素、窒素、又はこれらの混合ガス等が用いられ、必要ならば複数の焼成工程が実施される。焼成雰囲気とし、酸素ガスを用いることが特に好ましい。 Air, oxygen, nitrogen, or a mixed gas of these is used as the firing atmosphere, and multiple firing steps are carried out if necessary. It is particularly preferable to use oxygen gas as the firing atmosphere.

 なお、前駆体粉末とリチウム化合物との混合物は、焼成工程を行う前に仮焼成されてもよい。本実施形態において仮焼成とは、焼成工程における焼成温度よりも低い温度で焼成することである。仮焼成時の焼成温度は、例えば400℃以上700℃未満の範囲が挙げられる。仮焼成は、複数回行ってもよい。 The mixture of the precursor powder and the lithium compound may be calcined before performing the calcination step. In the present embodiment, calcination means calcination at a temperature lower than the calcination temperature in the calcination step. The firing temperature during temporary firing is, for example, in the range of 400°C or higher and lower than 700°C. The calcination may be performed multiple times.

 焼成時に用いる焼成装置は、特に限定されず、例えば、連続焼成炉又は流動式焼成炉の何れを用いて行ってもよい。連続焼成炉としては、トンネル炉又はローラーハースキルンが挙げられる。流動式焼成炉としては、ロータリーキルンを用いてもよい。 The sintering apparatus used for sintering is not particularly limited, and for example, either a continuous sintering furnace or a fluidized sintering furnace may be used. Continuous firing furnaces include tunnel furnaces or roller hearth kilns. A rotary kiln may be used as the fluidized kiln.

 前述の前駆体粉末を用いて、焼成条件を前述の範囲にすることにより、1μm
あたりの一次粒子の数、及びC/Bを本実施形態の範囲にすることができる。
By using the above-mentioned precursor powder and setting the firing conditions to the above-mentioned range, 1 μm
The number of primary particles per 2 and C/B can be within the range of this embodiment.

 図3は、後述する実施例1で得られたCAM粉末のSEM像である。図3に示すCAM粉末は、図1,2で示した前駆体粉末を用いて製造している。また、図4は、図3と同じ視野におけるSEM-EDX像であり、Wのマッピング像である。 FIG. 3 is an SEM image of the CAM powder obtained in Example 1, which will be described later. The CAM powder shown in FIG. 3 is produced using the precursor powder shown in FIGS. 4 is an SEM-EDX image in the same field of view as in FIG. 3, which is a W mapping image.

 図3に示すように、CAM粉末を構成するCAM粒子には細孔が確認できる。粒子断面において、白い縞状に写っている部分が細孔に該当する。 As shown in Fig. 3, pores can be confirmed in the CAM particles that make up the CAM powder. In the cross section of the particle, the white striped portions correspond to the pores.

 また、図4に示すように、CAM粒子の内部にまでWが存在していることを確認できる。 In addition, as shown in FIG. 4, it can be confirmed that W exists even inside the CAM particles.

 図5は、上述の前駆体粉末を用いたCAM粉末の製造時におけるCAM粒子の成長の様子を示す模式図である。また、図6は、細孔内に充填化合物を有さないMCC粒子を用いたLiMO粒子の製造時における粒子成長の様子を示す模式図である。 FIG. 5 is a schematic diagram showing how CAM particles grow during the production of CAM powder using the precursor powder described above. FIG. 6 is a schematic diagram showing how particles grow during production of LiMO particles using MCC particles that do not have a filling compound in their pores.

 図5に示すように、上述の前駆体粉末をリチウム化合物と混合して焼成すると、前駆体粉末中の前駆体粒子A1と、不図示のリチウム化合物とが反応し、CAM粉末中のCAM粒子B1が得られる。詳細には、前駆体粒子A1中の一次粒子AP1を構成するMCCと、不図示のリチウム化合物とが反応し、一次粒子BP1を構成するLiMOが生じる。一次粒子BP1は、CAM粒子B1を構成する。 As shown in FIG. 5, when the precursor powder described above is mixed with a lithium compound and fired, the precursor particles A1 in the precursor powder react with the lithium compound (not shown), resulting in CAM particles B1 in the CAM powder. is obtained. Specifically, MCC forming the primary particles AP1 in the precursor particles A1 reacts with a lithium compound (not shown) to produce LiMO forming the primary particles BP1. The primary particles BP1 constitute CAM particles B1.

 ここで、前駆体粒子A1は、細孔に充填化合物Fが充填されている。そのため、一次粒子AP1とリチウム化合物とが反応する際、一次粒子AP1の間に位置する充填化合物Fは、一次粒子AP1同士の合一を阻害し、一次粒子BP1の粒子成長を阻害する。 Here, in the precursor particles A1, the pores are filled with the filling compound F. Therefore, when the primary particles AP1 and the lithium compound react, the filling compound F positioned between the primary particles AP1 inhibits the coalescence of the primary particles AP1 and inhibits the growth of the primary particles BP1.

 これにより、CAM粒子B1中の一次粒子BP1は、前駆体粒子A1中の一次粒子AP1から粒子成長しにくく、小粒径の粒子となりやすい。 As a result, the primary particles BP1 in the CAM particles B1 are less likely to grow from the primary particles AP1 in the precursor particles A1, and tend to be small particles.

 また、前駆体粒子A1の細孔に充填された充填化合物Fは、焼成時に細孔を保持する。そのため、CAM粒子B1が有する細孔は、前駆体粒子A1が有する細孔と比べ、全体の容積は減少しても細孔径は変化し難く、前駆体粒子A1が有する細孔と同等の大きさとなりやすい。 In addition, the filling compound F filled in the pores of the precursor particles A1 retains the pores during firing. Therefore, compared to the pores of the precursor particles A1, the pores of the CAM particles B1 are less likely to change in diameter even if the overall volume is reduced, and are equivalent in size to the pores of the precursor particles A1. easy to become.

 同様に、図6に示すように、細孔内に充填化合物を有さないMCC粒子A2をリチウム化合物と混合して焼成すると、MCC粒子A2中の一次粒子AP2を構成するMCCと、不図示のリチウム化合物とが反応し、一次粒子BP2を構成するLiMOが生じる。一次粒子BP2は、LiMO粒子B2を構成する。 Similarly, as shown in FIG. 6, when MCC particles A2 having no filling compound in pores are mixed with a lithium compound and fired, MCC constituting primary particles AP2 in MCC particles A2 and not shown It reacts with the lithium compound to produce LiMO, which constitutes the primary particles BP2. The primary particles BP2 constitute LiMO particles B2.

 ここで、一次粒子AP2とリチウム化合物とが反応する際、一次粒子AP2同士の合一を阻害する物質は存在しない。そのため、MCC粒子A2を焼成すると、一次粒子AP2同士が合一する。 Here, when the primary particles AP2 and the lithium compound react, there is no substance that inhibits the coalescence of the primary particles AP2. Therefore, when the MCC particles A2 are fired, the primary particles AP2 are united.

 これにより、LiMO粒子B2中の一次粒子BP2は、MCC粒子A2中の一次粒子AP2から粒子成長し、相対的に大粒径の粒子となりやすい。 As a result, the primary particles BP2 in the LiMO particles B2 tend to grow from the primary particles AP2 in the MCC particles A2 and become relatively large particles.

 また、一次粒子BP2の合一に伴い、一次粒子間の微細な細孔は消失する。そのため、得られるLiMO粒子B2においては、MCC粒子A2の細孔と比べ、相対的に大きい細孔が残存しやすい。 In addition, fine pores between the primary particles disappear as the primary particles BP2 coalesce. Therefore, relatively large pores tend to remain in the obtained LiMO particles B2 as compared with the pores of the MCC particles A2.

 以上のように、上述の前駆体粉末とリチウム化合物との混合物を焼成することにより、上記(3)を満たすCAM粉末が得られる。 As described above, the CAM powder that satisfies the above (3) is obtained by firing the mixture of the precursor powder and the lithium compound.

 以上のような構成の前駆体粉末においては、サイクル維持率が高い正極活物質を製造できる。 A positive electrode active material with a high cycle retention rate can be produced from the precursor powder having the above configuration.

 また、以上のような構成の正極活物質粉末は、リチウム二次電池の正極に用いた際に、サイクル維持率が高い電池を実現できる。 In addition, the positive electrode active material powder having the above configuration can realize a battery with a high cycle retention rate when used for the positive electrode of a lithium secondary battery.

 以上のような構成の正極活物質粉末の製造方法によれば、リチウム二次電池の正極に用いた際に、サイクル維持率が高くなる正極活物質粉末を、容易に製造可能となる。 According to the method for producing the positive electrode active material powder having the configuration described above, it is possible to easily produce a positive electrode active material powder that has a high cycle retention rate when used for the positive electrode of a lithium secondary battery.

<リチウム二次電池>
 次いで、CAM粉末を用いる場合の好適なリチウム二次電池の構成を説明する。
 さらに、CAM粉末を用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
 さらに、正極の用途として好適なリチウム二次電池について説明する。
<Lithium secondary battery>
Next, the configuration of a lithium secondary battery that uses CAM powder will be described.
Furthermore, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for use of CAM powder will be described.
Furthermore, a lithium secondary battery suitable for use as a positive electrode will be described.

 CAM粉末を用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery suitable for using CAM powder has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.

 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.

 図7は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 7 is a schematic diagram showing an example of a lithium secondary battery. For example, a cylindrical lithium secondary battery 10 is manufactured as follows.

 まず、図7に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 7, a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .

 正極2は、まずCAM粉末、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造できる。 The positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM powder, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.

 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。 Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in

 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.

 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.

 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。 In addition, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. . For example, a shape such as a cylindrical shape or a rectangular shape can be mentioned.

 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.

 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。 For the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery, for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.

 <全固体リチウム二次電池>
 本実施形態のCAM粉末は、全固体リチウム二次電池のCAMとして用いることができる。
<All-solid lithium secondary battery>
The CAM powder of this embodiment can be used as a CAM for an all-solid lithium secondary battery.

 図8は、全固体リチウム二次電池の一例を示す模式図である。図8に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。 FIG. 8 is a schematic diagram showing an example of an all-solid lithium secondary battery. The all-solid lithium secondary battery 1000 shown in FIG. 8 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an exterior body 200 housing the laminate 100. Moreover, the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. Specific examples of bipolar structures include structures described in JP-A-2004-95400.

 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。 The positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 . The positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.

 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。 The negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 . The negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.

 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。 The laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 . In addition, all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .

 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。 The all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .

 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。 For the exterior body 200, a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used. Moreover, as the exterior body 200, a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.

 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(又はシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。 Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).

 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、これに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。 The all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but is not limited to this. The all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .

 全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。 For all-solid-state lithium secondary batteries, for example, the configurations, materials and manufacturing methods described in [0151] to [0181] of WO2022/113904A1 can be used.

 以上のような正極は、本実施形態のCAM粉末を含むためサイクル維持率に優れる。 The positive electrode as described above contains the CAM powder of the present embodiment and is therefore excellent in cycle retention.

 また、以上のようなリチウム二次電池は、上記正極を有するためサイクル維持率に優れる。 In addition, since the lithium secondary battery as described above has the above positive electrode, it has excellent cycle retention rate.

 一つの側面として、本発明は以下の態様も包含する。 As one aspect, the present invention also includes the following aspects.

〈1〉リチウム二次電池用正極活物質の前駆体として用いられる前駆体粉末であって、
 細孔を有する複数の粒子と、
 前記細孔に充填された充填化合物と、を有し、
 前記粒子は、層状構造を有し、少なくともNiを含むMCCからなり、
 前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、
 下記式(A1)を満たす前駆体粉末。
 15≦(P1-P2)/P1×100≦99  …(A1)
<1> A precursor powder used as a precursor of a positive electrode active material for lithium secondary batteries,
a plurality of particles having pores;
a filling compound filled in the pores;
The particles have a layered structure and are made of MCC containing at least Ni,
the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
A precursor powder that satisfies the following formula (A1).
15≦(P1−P2)/P1×100≦99 (A1)

〈2〉前記P2が0.6cm/g以下である〈1〉に記載の前駆体粉末。 <2> The precursor powder according to <1>, wherein the P2 is 0.6 cm 3 /g or less.

〈3〉前記前駆体粉末の前記全細孔容積が0.008~0.02cmである〈1〉又は〈2〉に記載の前駆体粉末。 <3> The precursor powder according to <1> or <2>, wherein the total pore volume of the precursor powder is 0.008 to 0.02 cm 3 .

〈4〉前記MCCは、前記元素Xを含み、
 前記MCCに含まれる前記Ni及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(A2)を満たす〈1〉から〈3〉のいずれか1項に記載の前駆体粉末。
 [Ni]:[X]:[W+Mo]=(1-a):a:b  …(A2)
(式(A2)は、0.04≦a≦0.30、及び0.003≦b≦0.015を満たす。)
<4> the MCC contains the element X,
The atomic weight ratio between the Ni and the element X contained in the MCC and the sum of W and Mo contained in the filling compound is any one of <1> to <3> that satisfies the following formula (A2) A precursor powder as described in .
[Ni]: [X]: [W + Mo] = (1-a): a: b ... (A2)
(Formula (A2) satisfies 0.04≦a≦0.30 and 0.003≦b≦0.015.)

〈5〉前記MCCは、下記組成式(I-A)で表される水酸化物である〈1〉から〈4〉のいずれか1項に記載の前駆体粉末。
 Ni1-x-yCo(OH)2-α ・・・式(I-A)
(組成式(I)中、0.02≦x≦0.10、0.02≦y≦0.15、及び-、-0.20≦α≦0.20を満たし、MはMn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる1種以上の元素である。)
<5> The precursor powder according to any one of <1> to <4>, wherein the MCC is a hydroxide represented by the following compositional formula (IA).
Ni 1-xy Co x M y (OH) 2-α Formula (IA)
(In the composition formula (I), 0.02 ≤ x ≤ 0.10, 0.02 ≤ y ≤ 0.15, and -, -0.20 ≤ α ≤ 0.20 are satisfied, and M is Mn, Fe, One or more elements selected from the group consisting of Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P.)

〈6〉前記D50が7~17μmである〈1〉から〈5〉のいずれか1項に記載の前駆体粉末。 <6> The precursor powder according to any one of <1> to <5>, wherein the D50 is 7 to 17 μm.

〈7〉BET比表面積が1.5~10m/gである〈1〉から〈6〉のいずれか1項に記載の前駆体粉末。 <7> The precursor powder according to any one of <1> to <6>, which has a BET specific surface area of 1.5 to 10 m 2 /g.

〈8〉リチウム二次電池に用いられるCAM粉末であって、
 細孔を有する複数の粒子と、
 前記細孔に充填された充填化合物と、を有し、
 前記粒子は、層状構造を有し、少なくともNiを含むLiMOからなり、
 前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、
 下記式(A3)を満たすピークを有するCAM粉末。
 0.006≦P3≦0.05  …(A3)
<8> A CAM powder used in a lithium secondary battery,
a plurality of particles having pores;
a filling compound filled in the pores;
The particles have a layered structure and are made of LiMO containing at least Ni,
the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
A CAM powder having a peak that satisfies the following formula (A3).
0.006≦P3≦0.05 (A3)

〈9〉下記式(A5)を満たす〈8〉に記載のCAM粉末。
 65≦(P3-P4)/P3×100≦98  …(A5)
(上記式(A5)のP4(cm/g)は、前記式(5)のP4と同じである。)
<9> The CAM powder according to <8>, which satisfies the following formula (A5).
65≦(P3−P4)/P3×100≦98 (A5)
(P4 (cm 3 /g) in the above formula (A5) is the same as P4 in the above formula (5).)

〈10〉前記溶出割合が、10~60%である〈8〉又は〈9〉に記載のCAM粉末。 <10> The CAM powder according to <8> or <9>, wherein the elution rate is 10 to 60%.

〈11〉前記粒子は、前記LiMOの一次粒子が凝集した二次粒子を含み、
 前記二次粒子の拡大倍率10000倍のSEM画像から求められる1μmあたりの前記一次粒子の数が20~40個である〈8〉から〈10〉のいずれか1項に記載のCAM粉末。
<11> The particles include secondary particles in which the LiMO primary particles are aggregated,
The CAM powder according to any one of <8> to <10>, wherein the number of primary particles per 1 μm 2 obtained from an SEM image of the secondary particles at a magnification of 10,000 is 20 to 40.

〈12〉前記LiMOは、前記元素Xを含み、
 前記LiMOに含まれるLi、前記Ni、及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(A4)を満たす〈8〉から〈11〉のいずれか1項に記載のCAM粉末。
[Li]:[Ni]:[X]:[W+Mo]=c:(1-a):a:b  …(A4)
(式(A4)は、1.00≦c≦1.10、0.04≦a≦0.30、及び0.003≦b≦0.015を満たす。)
<12> The LiMO contains the element X,
The atomic weight ratio of Li, Ni, and element X contained in the LiMO and the sum of W and Mo contained in the filling compound is any one of <8> to <11> that satisfies the following formula (A4): CAM powder according to claim 1.
[Li]: [Ni]: [X]: [W + Mo] = c: (1-a): a: b (A4)
(Formula (A4) satisfies 1.00≦c≦1.10, 0.04≦a≦0.30, and 0.003≦b≦0.015.)

〈13〉前記LiMOは、下記組成式(II-A)で表される化合物である〈8〉から〈12〉のいずれか1項に記載のCAM粉末。
 Li[Li(Ni(1-e)1-d]O   (II-A)
 (式(II-A)中、Xは、元素Xを表し、0<d≦0.06、0.02≦e≦0.05を満たす。)
<13> The CAM powder according to any one of <8> to <12>, wherein the LiMO is a compound represented by the following composition formula (II-A).
Li[Li d (Ni (1-e) X e ) 1-d ]O 2 (II-A)
(In formula (II-A), X represents element X and satisfies 0<d≦0.06 and 0.02≦e≦0.05.)

〈14〉前記D50が7~17μmである〈8〉から〈13〉のいずれか1項に記載のCAM粉末。 <14> The CAM powder according to any one of <8> to <13>, wherein the D 50 is 7 to 17 μm.

〈15〉BET比表面積が0.25~1.0m/gである〈8〉から〈14〉のいずれか1項に記載のCAM粉末。 <15> The CAM powder according to any one of <8> to <14>, which has a BET specific surface area of 0.25 to 1.0 m 2 /g.

〈16〉前記C/Bが、0.55~0.66である〈8〉から〈15〉のいずれか1項に記載のCAM粉末。 <16> The CAM powder according to any one of <8> to <15>, wherein the C/B is 0.55 to 0.66.

 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. The various shapes, combinations, etc., of the constituent members shown in the above examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Although the present invention will be described below with reference to examples, the present invention is not limited to these examples.

[組成分析]
 後述の方法で製造される各粉末の組成分析は、上述の[組成分析]の方法により行った。
[Composition analysis]
The composition analysis of each powder produced by the below-described method was performed by the method of [Composition analysis] described above.

[BET比表面積]
 各粉末のBET比表面積は、上述の[BET比表面積]の方法により測定した。
[BET specific surface area]
The BET specific surface area of each powder was measured by the method of [BET specific surface area] described above.

[累積粒度分布]
 各粉末の累積粒度分布は、上述の[累積粒度分布]の方法により測定した。
[Cumulative particle size distribution]
The cumulative particle size distribution of each powder was measured by the method of [Cumulative particle size distribution] described above.

[粉末X線回折測定]
 前駆体粉末およびCAM粉末の粉末X線回折(XRD)測定は、上述の[粉末X線回折測定]の方法により行った。
[Powder X-ray diffraction measurement]
The powder X-ray diffraction (XRD) measurement of the precursor powder and the CAM powder was performed by the method of [Powder X-ray diffraction measurement] described above.

[二次粒子を構成する一次粒子の数]
 CAM粉末を構成する一次粒子の数は、上述の[二次粒子を構成する一次粒子の数(単位面積当たり)]の方法により測定した。
[Number of Primary Particles Constituting Secondary Particles]
The number of primary particles composing the CAM powder was measured by the above-described [Number of primary particles composing secondary particles (per unit area)].

[細孔径分布]
 各粒子の細孔径分布は、上述の[細孔径分布]の方法により測定した。
[Pore size distribution]
The pore size distribution of each particle was measured by the method of [pore size distribution] described above.

 P1は、後述の方法で得られた各前駆体粉末を、前駆体粉末の20倍の質量の水で20分間洗浄し、ろ過後に120℃、10時間の真空乾燥により乾燥させて得られた洗浄済前駆体粉末について、上述の[細孔径分布]の方法により測定し、P1の定義に基づいて求めた。 P1 was obtained by washing each precursor powder obtained by the method described later with water of 20 times the mass of the precursor powder for 20 minutes, filtering, and vacuum drying at 120° C. for 10 hours. The obtained precursor powder was measured by the method of [pore size distribution] described above, and obtained based on the definition of P1.

 P2は、後述の方法で得られた各前駆体粉末を、上述の[細孔径分布]の方法により測定し、P2の定義に基づいて求めた。 P2 was obtained based on the definition of P2 by measuring each precursor powder obtained by the method described below by the above-described [pore size distribution] method.

 P3は、後述の方法で得られた各CAM粉末を、前駆体粉末の20倍の質量の水で20分間洗浄し、ろ過後に120℃、10時間の真空乾燥により乾燥させて得られた洗浄済粉末について、上述の[細孔径分布]の方法により測定し、P3の定義に基づいて求めた。 P3 was obtained by washing each CAM powder obtained by the method described below for 20 minutes with water having a mass 20 times the mass of the precursor powder, filtering, and drying by vacuum drying at 120° C. for 10 hours. The powder was measured by the method of [pore size distribution] described above, and obtained based on the definition of P3.

 P4は、後述の方法で得られた各CAM粉末を、上述の[細孔径分布]の方法により測定して得られるCAM粉末の細孔径分布において、P4の定義に基づいて求めた。 P4 is obtained based on the definition of P4 in the pore size distribution of the CAM powder obtained by measuring each CAM powder obtained by the method described below by the method of [pore size distribution] described above.

[電池性能の評価]
 製造したCAM粉末の性能について、上述の[サイクル維持率]に記載の方法に従って電池性能を評価した。
[Evaluation of battery performance]
Regarding the performance of the produced CAM powder, the battery performance was evaluated according to the method described in [Cycle maintenance rate] above.

(実施例1)
 ニッケル硫酸塩とコバルト硫酸塩とマンガン硫酸塩の水溶液を用いる公知の共沈殿法により、Ni0.96Co0.02Mn0.02(OH)の組成を有する金属複合水酸化物1を得た。
(Example 1)
A metal composite hydroxide 1 having a composition of Ni 0.96 Co 0.02 Mn 0.02 (OH) 2 was obtained by a known coprecipitation method using an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate. rice field.

 金属複合水酸化物1は、Cu-Kα線を用いる粉末XRD測定において、空間群P-3m1に帰属されるピークを有しており、層状構造を有していることを確認した。 It was confirmed that the metal composite hydroxide 1 had a peak assigned to the space group P-3m1 in the powder XRD measurement using Cu-Kα rays, and had a layered structure.

 金属複合水酸化物1のD50は10.1μm、BET比表面積は8.0m/g、窒素吸着法により測定される全細孔容積は0.024cm/gであった。 The metal composite hydroxide 1 had a D50 of 10.1 μm, a BET specific surface area of 8.0 m 2 /g, and a total pore volume of 0.024 cm 3 /g as measured by a nitrogen adsorption method.

 金属複合水酸化物1は、上記[細孔径分布]に記載の方法により算出される細孔径分布において、10nm以下の領域にlog微分細孔容積のピークを有し、該ピークの細孔径は3.9nmであり、ピーク値は0.08cm/gであった。 The metal composite hydroxide 1 has a log differential pore volume peak in a region of 10 nm or less in the pore size distribution calculated by the method described in [Pore size distribution] above, and the pore size of the peak is 3. 9 nm, and the peak value was 0.08 cm 3 /g.

 純水100gにLiOH・HOを3.7g、WOを9.4g添加し、撹拌することで、Li/W=2.2(モル比)でLiとWとが溶解した塩基性溶液1を調製した。溶液中の水100gあたりのWの溶解量は7.4gと算出された。塩基性溶液1のpHは12.1(測定温度25℃±2℃)であった。 3.7 g of LiOH·H 2 O and 9.4 g of WO 3 were added to 100 g of pure water and stirred to obtain a basic solution in which Li and W were dissolved at Li/W = 2.2 (molar ratio). 1 was prepared. The dissolved amount of W per 100 g of water in the solution was calculated to be 7.4 g. The pH of the basic solution 1 was 12.1 (measurement temperature 25°C ± 2°C).

 金属複合水酸化物1に塩基性溶液1を添加して、金属複合水酸化物1の濃度が50質量%であるスラリー(含水率50質量%)を調整し、5分間撹拌した。スラリーをろ過し、含水率が15質量%のウェットケーキを得た。ウェットケーキを120℃で10時間加熱し、乾燥させることで、前駆体粉末1を得た。 The basic solution 1 was added to the metal composite hydroxide 1 to prepare a slurry (water content 50% by mass) with a metal composite hydroxide 1 concentration of 50% by mass, and stirred for 5 minutes. The slurry was filtered to obtain a wet cake with a water content of 15% by mass. Precursor powder 1 was obtained by heating and drying the wet cake at 120° C. for 10 hours.

 前駆体粉末1の元素分析より、Ni、Co、Mnの物質量に対するWの物質量の割合であるW/(Ni+Co+Mn)は0.7mol%であった。すなわち、前駆体粉末1の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.7mol%であり、式(2)においてa=0.04、b=0.007であった。 According to the elemental analysis of the precursor powder 1, W/(Ni+Co+Mn), which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn, was 0.7 mol%. That is, the composition ratio (molar ratio) of the precursor powder 1 is [Ni]:[Co]:[Mn]:[W]=96 mol%:2 mol%:2 mol%:0.7 mol%, and the formula (2 ), a=0.04 and b=0.007.

 前駆体粉末1に含まれるNi、Co及びMnの合計量1に対するLiの量(モル比)が1.06となるように水酸化リチウム一水和物を秤量した。前駆体粉末1と水酸化リチウム一水和物を混合して混合物を得た。 Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Mn contained in the precursor powder 1 was 1.06. A mixture was obtained by mixing precursor powder 1 and lithium hydroxide monohydrate.

 次いで、得られた混合物を、酸素雰囲気下、焼成温度800℃、5時間で焼成し、CAM粉末1を得た。 The resulting mixture was then fired at a firing temperature of 800°C for 5 hours in an oxygen atmosphere to obtain CAM powder 1.

 CAM粉末1の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.7mol%であり、式(4)において、a=0.04、b=0.007、c=1.06であった。CAM粉末1の粒子は、層状構造を有していることを確認した。前駆体粉末1及びCAM粉末1に含まれる充填化合物は、LiとWを含むW化合物であった。 The composition ratio (molar ratio) of the CAM powder 1 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0. 0.7 mol %, and in formula (4), a=0.04, b=0.007, and c=1.06. It was confirmed that the particles of CAM powder 1 had a layered structure. The filler compound contained in precursor powder 1 and CAM powder 1 was a W compound containing Li and W.

(実施例2)
 純水100gにLiOH・HOを7.4g、WOを18.7g添加し、さらに撹拌することで、Li/W=2.2(モル比)でLiとWとが溶解した塩基性溶液2を調製した。溶液中の水100gあたりのWの溶解量は14.4gと算出された。塩基性溶液2のpHは12.0(測定温度25℃±2℃)であった。
(Example 2)
By adding 7.4 g of LiOH·H 2 O and 18.7 g of WO 3 to 100 g of pure water and further stirring, a basic solution was obtained in which Li and W were dissolved at Li/W = 2.2 (molar ratio). Solution 2 was prepared. The dissolved amount of W per 100 g of water in the solution was calculated to be 14.4 g. The pH of the basic solution 2 was 12.0 (measurement temperature 25°C ± 2°C).

 金属複合水酸化物1に塩基性溶液2を添加してスラリーを調整したこと以外は実施例1と同様にして、前駆体粉末2及びCAM粉末2を得た。 Precursor powder 2 and CAM powder 2 were obtained in the same manner as in Example 1, except that basic solution 2 was added to metal composite hydroxide 1 to prepare slurry.

 前駆体粉末2の元素分析より、Ni、Co、Mnの物質量に対するWの物質量の割合であるW/(Ni+Co+Mn)は1.4mol%であった。すなわち、前駆体粉末2の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:1.4mol%であり、式(2)においてa=0.04、b=0.014であった。 According to the elemental analysis of the precursor powder 2, W/(Ni+Co+Mn), which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn, was 1.4 mol%. That is, the composition ratio (molar ratio) of the precursor powder 2 is [Ni]:[Co]:[Mn]:[W]=96 mol%:2 mol%:2 mol%:1.4 mol%, and the formula (2 ), a=0.04 and b=0.014.

 CAM粉末2の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:1.4mol%であり、式(4)において、a=0.04、b=0.014、c=1.06であった。CAM粉末2の粒子は、層状構造を有していることを確認した。前駆体粉末2及びCAM粉末2に含まれる充填化合物は、LiとWを含むW化合物であった。 The composition ratio (molar ratio) of the CAM powder 2 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:1. 0.4 mol %, and in formula (4), a=0.04, b=0.014, and c=1.06. It was confirmed that the particles of CAM powder 2 had a layered structure. The filler compound contained in precursor powder 2 and CAM powder 2 was a W compound containing Li and W.

(実施例3)
 純水100gにNaOHを6.5g、WOを17.8g添加し、さらに撹拌することで、Na/W=2.1(モル比)でNaとWとが溶解した塩基性溶液3を調製した。溶液中の水100gあたりのWの溶解量は14.1gと算出された。塩基性溶液3のpHは12.0(測定温度25℃±2℃)であった。
(Example 3)
6.5 g of NaOH and 17.8 g of WO3 are added to 100 g of pure water, and further stirred to prepare a basic solution 3 in which Na and W are dissolved at Na/W = 2.1 (molar ratio). bottom. The dissolved amount of W per 100 g of water in the solution was calculated to be 14.1 g. The pH of the basic solution 3 was 12.0 (measurement temperature 25°C ± 2°C).

 金属複合水酸化物1に塩基性溶液3を添加してスラリーを調整したこと、及びスラリーのろ過後のウェットケーキの含水率を10質量%に調整したこと以外は実施例1と同様にして、前駆体粉末3及びCAM粉末3を得た。 In the same manner as in Example 1, except that the slurry was adjusted by adding the basic solution 3 to the metal composite hydroxide 1, and the moisture content of the wet cake after filtration of the slurry was adjusted to 10% by mass. A precursor powder 3 and a CAM powder 3 were obtained.

 前駆体粉末3の元素分析より、Ni、Co、Mnの物質量に対するWの物質量の割合であるW/(Ni+Co+Mn)は0.8mol%であった。すなわち、前駆体粉末3の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.8mol%であり、式(2)においてa=0.04、b=0.008であった。 According to the elemental analysis of the precursor powder 3, W/(Ni+Co+Mn), which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn, was 0.8 mol%. That is, the composition ratio (molar ratio) of the precursor powder 3 is [Ni]:[Co]:[Mn]:[W]=96 mol%:2 mol%:2 mol%:0.8 mol%, and the formula (2 ), a=0.04 and b=0.008.

 CAM粉末3の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.8mol%であり、式(4)において、a=0.04、b=0.008、c=1.06であった。CAM粉末3の粒子は、層状構造を有していることを確認した。前駆体粉末3及びCAM粉末3に含まれる充填化合物は、LiとWを含むW化合物であった。 The composition ratio (molar ratio) of the CAM powder 3 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0. 8 mol %, and in formula (4), a = 0.04, b = 0.008, and c = 1.06. It was confirmed that the particles of CAM powder 3 had a layered structure. The filler compound contained in precursor powder 3 and CAM powder 3 was a W compound containing Li and W.

(実施例4)
 純水100gにLiOH・HOを0.6g、LiMoOを14.9g添加し、さらに撹拌することで、Li/Mo=2.2(モル比)でLiとMoとが溶解した塩基性溶液4を調製した。溶液中の水100gあたりのMoの溶解量は8.2gと算出された。塩基性溶液4のpHは11.9(測定温度25℃±2℃)であった。
(Example 4)
0.6 g of LiOH·H 2 O and 14.9 g of Li 2 MoO 4 were added to 100 g of pure water, and further stirred to dissolve Li and Mo at Li/Mo=2.2 (molar ratio). A basic solution 4 was prepared. The amount of dissolved Mo per 100 g of water in the solution was calculated to be 8.2 g. The pH of the basic solution 4 was 11.9 (measurement temperature 25°C ± 2°C).

 100gの金属複合水酸化物1に対し塩基性溶液4を14.4g添加し、さらに純水22gを加えて混合し、金属複合水酸化物1の質量濃度が74質量%であるスラリー(含水率26質量%)を調製した。 14.4 g of the basic solution 4 is added to 100 g of the metal composite hydroxide 1, and 22 g of pure water is added and mixed to obtain a slurry having a mass concentration of the metal composite hydroxide 1 of 74% by mass (moisture content 26% by mass) was prepared.

 50℃で2時間、スラリーを真空乾燥し、ウェットケーキを得た。さらにウェットケーキを120℃にて10時間加熱することで、前駆体粉末4を得た。 The slurry was vacuum-dried at 50°C for 2 hours to obtain a wet cake. Furthermore, the precursor powder 4 was obtained by heating the wet cake at 120° C. for 10 hours.

 前駆体粉末4の元素分析より、Ni、Co、Mnの物質量に対するMoの物質量の割合であるMo/(Ni+Co+Mn)は1.0mol%であった。すなわち、前駆体粉末4の組成比(モル比)は、[Ni]:[Co]:[Mn]:[Mo]=96mol%:2mol%:2mol%:1.0mol%であり、式(2)においてa=0.04、b=0.010であった。 According to the elemental analysis of the precursor powder 4, Mo/(Ni+Co+Mn), which is the ratio of the substance amount of Mo to the substance amounts of Ni, Co, and Mn, was 1.0 mol%. That is, the composition ratio (molar ratio) of the precursor powder 4 is [Ni]:[Co]:[Mn]:[Mo]=96 mol%:2 mol%:2 mol%:1.0 mol%, and the formula (2 ), a=0.04 and b=0.010.

 前駆体粉末4を用いたこと以外は実施例1と同様にして、CAM粉末4を得た。 A CAM powder 4 was obtained in the same manner as in Example 1 except that the precursor powder 4 was used.

 CAM粉末4の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[Mo]=96mol%:2mol%:2mol%:1.0mol%であり、式(4)において、a=0.04、b=0.010、c=1.06であった。CAM粉末4の粒子は、層状構造を有していることを確認した。前駆体粉末4及びCAM粉末4に含まれる充填化合物は、LiとMoを含むMo化合物であった。 The composition ratio (molar ratio) of the CAM powder 4 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[Mo]=96mol%:2mol%:2mol%:1. 0 mol %, and in formula (4), a = 0.04, b = 0.010, and c = 1.06. It was confirmed that the particles of CAM powder 4 had a layered structure. The filler compounds contained in precursor powder 4 and CAM powder 4 were Mo compounds containing Li and Mo.

(比較例1)
 塩基性溶液を添加しない金属複合水酸化物1を前駆体粉末C1とした。
(Comparative example 1)
Metal composite hydroxide 1 to which no basic solution was added was used as precursor powder C1.

 前駆体粉末C1に含まれるNi、Co及びMnの合計量1に対するLiの量(モル比)が1.06となるように水酸化リチウム一水和物を秤量した。 Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Mn contained in the precursor powder C1 was 1.06.

 また、前駆体粉末C1に含まれるNi、Co及びMnの合計量1に対するWの割合(モル%)が0.7mol%となる量のWOを秤量した。 Also, WO 3 was weighed in an amount such that the ratio (mol %) of W to the total amount 1 of Ni, Co and Mn contained in the precursor powder C1 was 0.7 mol %.

 前駆体粉末C1と水酸化リチウム一水和物とWOとを混合して混合物を得た。得られた混合物の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.7mol%であった。得られた混合物を、酸素雰囲気下、800℃、5時間で焼成し、CAM粉末C1を得た。 Precursor powder C1, lithium hydroxide monohydrate and WO3 were mixed to obtain a mixture. The composition ratio (molar ratio) of the resulting mixture was [Ni]:[Co]:[Mn]:[W]=96 mol %:2 mol %:2 mol %:0.7 mol %. The resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C1.

 CAM粉末C1の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.7mol%であり、式(4)において、a=0.04、b=0.007、c=1.06であった。CAM粉末C1の粒子は、層状構造を有していることを確認した。 The composition ratio (molar ratio) of the CAM powder C1 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0. 0.7 mol %, and in formula (4), a=0.04, b=0.007, and c=1.06. It was confirmed that the particles of CAM powder C1 had a layered structure.

 上述の条件で洗浄したCAM粉末C1のピーク細孔径は18.4nm、ピーク値は0.012cm/gであった。洗浄後のCAM粉末C1は、10nm以下の領域にlog微分細孔容積のピークを有しておらず、最大ピーク値P3を評価できなかった。 The CAM powder C1 washed under the above conditions had a peak pore size of 18.4 nm and a peak value of 0.012 cm 3 /g. The washed CAM powder C1 did not have a log differential pore volume peak in the region of 10 nm or less, and the maximum peak value P3 could not be evaluated.

 また、最大ピーク値P3を示すピークが存在しないため、CAM粉末C1の細孔径分布において、最大ピーク値P4を読み取ることができなかった。 Also, since there was no peak indicating the maximum peak value P3, the maximum peak value P4 could not be read in the pore size distribution of the CAM powder C1.

(比較例2)
 JP-A-2019-40675に記載の発明に相当するCAM粉末を作製した。具体的には、以下の方法で作製した。
 純水100gにLiWOを6.0g添加し、撹拌することで、Li/W=2.0(モル比)でLiとWとが溶解した塩基性溶液5を調製した。水溶液中の水分100gあたりのWの溶解量は4.2gと算出された。塩基性溶液5のpHは8.6(測定温度25℃±2℃)であった。
(Comparative example 2)
A CAM powder corresponding to the invention described in JP-A-2019-40675 was produced. Specifically, it was produced by the following method.
6.0 g of Li 2 WO 4 was added to 100 g of pure water and stirred to prepare a basic solution 5 in which Li and W were dissolved at Li/W=2.0 (molar ratio). The amount of dissolved W per 100 g of water in the aqueous solution was calculated to be 4.2 g. The pH of the basic solution 5 was 8.6 (measurement temperature 25°C ± 2°C).

 100gの金属複合水酸化物1を混合しながら、4.5gの塩基性溶液5を噴霧し、金属複合水酸化物1と塩基性溶液5との混合物を得た。得られた混合物を120℃にて10時間乾燥させ、前駆体粉末C2を得た。 While mixing 100 g of metal composite hydroxide 1, 4.5 g of basic solution 5 was sprayed to obtain a mixture of metal composite hydroxide 1 and basic solution 5. The resulting mixture was dried at 120° C. for 10 hours to obtain precursor powder C2.

 前駆体粉末C2の元素分析より、Ni、Co、Mnの物質量に対するWの物質量の割合であるW/(Ni+Co+Mn)は0.10mol%であった。すなわち、前駆体粉末C2の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.10mol%であり、式(2)においてa=0.04、b=0.010であった。  From the elemental analysis of the precursor powder C2, W/(Ni + Co + Mn), which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn, was 0.10 mol%. That is, the composition ratio (molar ratio) of the precursor powder C2 is [Ni]:[Co]:[Mn]:[W]=96 mol%:2 mol%:2 mol%:0.10 mol%, and the formula (2 ), a=0.04 and b=0.010.

 前駆体粉末C2に含まれるNi、Co及びMnの合計量1に対するLiの量(モル比)が1.06となるように水酸化リチウム一水和物を秤量した。前駆体粉末C2と水酸化リチウムとを混合して混合物を得た。得られた混合物を、酸素雰囲気下、800℃、5時間で焼成し、CAM粉末C2を得た。CAM粉末C2の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0.10mol%であり、式(4)において、a=0.04、b=0.010、c=1.06であった。CAM粉末C2の粒子は、層状構造を有していることを確認した。前駆体粉末C2及びCAM粉末C2に含まれる充填化合物は、LiとWを含むW化合物であった。 Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Mn contained in the precursor powder C2 was 1.06. A mixture was obtained by mixing precursor powder C2 and lithium hydroxide. The resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C2. The composition ratio (molar ratio) of the CAM powder C2 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=96mol%:2mol%:2mol%:0. .10 mol %, and in formula (4), a = 0.04, b = 0.010 and c = 1.06. It was confirmed that the particles of CAM powder C2 had a layered structure. The filler compound contained in precursor powder C2 and CAM powder C2 was a W compound containing Li and W.

 上述の条件で洗浄したCAM粉末C2のピークの細孔径は24.3nm、ピーク値は0.018cm/gであった。洗浄後のCAM粉末C2は、10nm以下の領域にlog微分細孔容積のピークを有しておらず、P3を評価できなかった。 The CAM powder C2 washed under the above conditions had a peak pore size of 24.3 nm and a peak value of 0.018 cm 3 /g. The washed CAM powder C2 did not have a log differential pore volume peak in the region of 10 nm or less, and P3 could not be evaluated.

 また、P3を示すピークが存在しないため、CAM粉末C2のP4を読み取ることができなかった。 Also, since there is no peak indicating P3, P4 of CAM powder C2 could not be read.

 実施例1~4及び比較例1~2の前駆体粉末について、各評価結果を表1,2に示す。また、実施例1~4及び比較例1~2のCAM粉末について、各評価結果を表3、4に示す。 Tables 1 and 2 show the evaluation results of the precursor powders of Examples 1-4 and Comparative Examples 1-2. Tables 3 and 4 show the evaluation results of the CAM powders of Examples 1-4 and Comparative Examples 1-2.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 評価の結果、本実施形態の前駆体粉末を用いた実施例1~4は、前駆体において充填化合物を添加しなかった比較例1と比べ、優れたサイクル維持率を示すことが確かめられた。 As a result of the evaluation, it was confirmed that Examples 1 to 4 using the precursor powder of the present embodiment exhibit superior cycle retention rates compared to Comparative Example 1 in which no filling compound was added to the precursor.

 図9は、CAM粉末1のSEM写真である。図10は、CAM粉末C1のSEM写真である。 FIG. 9 is an SEM photograph of CAM powder 1. FIG. 10 is an SEM photograph of CAM powder C1.

 図9,10から明らかなように、実施例のCAM粉末のCAM粒子を構成する一次粒子が、比較例のCAM粉末のCAM粒子を構成する一次粒子と比べて小さいことが分かる。 As is clear from FIGS. 9 and 10, the primary particles forming the CAM particles of the CAM powder of the example are smaller than the primary particles forming the CAM particles of the CAM powder of the comparative example.

 図11は、前駆体粉末4のSEM像である。また、図12は、図11と同じ視野におけるSEM-EDX像であり、Moのマッピング像である。 FIG. 11 is an SEM image of the precursor powder 4. FIG. 12 is an SEM-EDX image in the same field of view as in FIG. 11, which is a mapping image of Mo.

 図11に示すように、前駆体粒子には細孔が確認できる。図11に示す粒子断面において、黒い縞状に写っている部分が細孔に該当する。 As shown in FIG. 11, pores can be confirmed in the precursor particles. In the particle cross section shown in FIG. 11, black striped portions correspond to pores.

 また、図12に示すように、前駆体粒子の内部にまでMoが存在していることを確認できる。 In addition, as shown in FIG. 12, it can be confirmed that Mo exists even inside the precursor particles.

 図13は、CAM粉末4のSEM像である。また、図14は、図13と同じ視野におけるSEM-EDX像であり、Moのマッピング像である。 FIG. 13 is an SEM image of CAM powder 4. FIG. 14 is an SEM-EDX image in the same field of view as in FIG. 13, which is a mapping image of Mo.

 図13に示すように、CAM粒子には細孔が確認できる。粒子断面において、白い縞状に写っている部分も細孔に該当する。 As shown in FIG. 13, pores can be confirmed in the CAM particles. In the particle cross section, white striped portions also correspond to pores.

 また、図14に示すように、CAM粒子の内部にまでMoが存在していることを確認できる。 In addition, as shown in FIG. 14, it can be confirmed that Mo exists even inside the CAM particles.

 図15,16は、実施例1で作製した前駆体粉末1とCAM粉末1について、水洗前後の細孔径分布の変化を示す図である。図15は、前駆体粉末1についての測定結果であり、図16はCAM粉末1についての測定結果である。 15 and 16 are diagrams showing changes in pore size distribution before and after washing with water for the precursor powder 1 and the CAM powder 1 produced in Example 1. FIG. 15 shows the measurement results for the precursor powder 1, and FIG. 16 shows the measurement results for the CAM powder 1. FIG.

 図15,16において、破線が洗浄前の粉末の細孔径分布を示し、実線が洗浄後の粉末の細孔径分布を示す。  In Figures 15 and 16, the broken line indicates the pore size distribution of the powder before washing, and the solid line indicates the pore size distribution of the powder after washing.

 図15に示すように、前駆体粉末1においてP2を示すピークは、洗浄によりP1を示すように大きく変化する。また、図16に示すように、CAM粉末1においては、洗浄後に、前駆体粉末1と同様に細孔径10nm以下の領域のピークが大きく成長する。 As shown in FIG. 15, the peak indicating P2 in the precursor powder 1 greatly changes to indicate P1 by washing. In addition, as shown in FIG. 16, in the CAM powder 1, after washing, similarly to the precursor powder 1, the peak in the region with a pore diameter of 10 nm or less grows large.

 図17,18は、比較例1で作製した前駆体粉末C1とCAM粉末C1について、水洗前後の細孔径分布の変化を示す図である。図17は、前駆体粉末C1についての測定結果であり、図18はCAM粉末C1についての測定結果である。 17 and 18 are diagrams showing changes in the pore size distribution of the precursor powder C1 and the CAM powder C1 produced in Comparative Example 1 before and after washing with water. FIG. 17 shows the measurement results for the precursor powder C1, and FIG. 18 shows the measurement results for the CAM powder C1.

 図17,18において、破線が洗浄前の粉末の細孔径分布を示し、実線が洗浄後の粉末の細孔径分布を示す。  In Figures 17 and 18, the broken line indicates the pore size distribution of the powder before washing, and the solid line indicates the pore size distribution of the powder after washing.

 図17に示すように、前駆体粉末C1においては、洗浄前後で最大ピーク値にほぼ変化は見られず、洗浄のみでは前駆体粉末C1の細孔には変化が生じないことが分かる。また、図18に示すように、CAM粉末C1においては、洗浄後に、10nmを超える細孔径の領域において、ピークが出現する。前駆体粉末C1が有するMCC粒子には、細孔に充填化合物が充填されておらず、焼成時に一次粒子が合一しながら粒成長したことが示唆される。 As shown in FIG. 17, in the precursor powder C1, almost no change was observed in the maximum peak value before and after washing, indicating that the pores of the precursor powder C1 did not change by washing alone. Moreover, as shown in FIG. 18, in the CAM powder C1, after washing, a peak appears in the region of pore diameters exceeding 10 nm. The pores of the MCC particles of the precursor powder C1 were not filled with a filling compound, suggesting that the primary particles coalesced during firing to grow grains.

 (実施例5)
 ニッケル硫酸塩とコバルト硫酸塩とマンガン硫酸塩の水溶液を用いる公知の共沈法により、Ni0.91Co0.07Mn0.02(OH)の組成を有する金属複合水酸化物2を得た。
(Example 5)
A metal composite hydroxide 2 having a composition of Ni 0.91 Co 0.07 Mn 0.02 (OH) 2 is obtained by a known coprecipitation method using an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate. rice field.

 金属複合水酸化物2は、Cu-Kα線を用いる粉末XRD測定において空間群P-3m1に帰属されるピークを有しており、層状構造を有していることを確認した。 It was confirmed that metal composite hydroxide 2 has a peak assigned to space group P-3m1 in powder XRD measurement using Cu-Kα rays, and has a layered structure.

 金属複合水酸化物2のD50は4.6μm、BET比表面積は36.1m/g、窒素吸着法により測定される全細孔容積は0.16cm/gであった。 The metal composite hydroxide 2 had a D50 of 4.6 μm, a BET specific surface area of 36.1 m 2 /g, and a total pore volume of 0.16 cm 3 /g as measured by a nitrogen adsorption method.

 金属複合水酸化物2は、上記[細孔径分布]に記載の方法により算出される細孔径分布において、細孔径10nm以下の領域にlog微分細孔容積のピークを有し、該ピークの細孔径は4.3nmであり、ピーク値は0.823cm/gであった。 The metal composite hydroxide 2 has a log differential pore volume peak in a region with a pore diameter of 10 nm or less in the pore diameter distribution calculated by the method described in [Pore diameter distribution] above, and the pore diameter of the peak was 4.3 nm and the peak value was 0.823 cm 3 /g.

 純水100gにLiOH・HOを0.40g、LiWOを16.5g添加し、撹拌することで、Li/W=2.2(モル比)でLiとWとが溶解した塩基性溶液6を調製した。溶液中の水100gあたりのWの溶解量は11.5gと算出された。塩基性溶液6のpHは12.0(測定温度25℃±2℃)であった。 0.40 g of LiOH·H 2 O and 16.5 g of Li 2 WO 4 were added to 100 g of pure water and stirred to obtain a base in which Li and W were dissolved at Li/W = 2.2 (molar ratio). A sexual solution 6 was prepared. The dissolved amount of W per 100 g of water in the solution was calculated to be 11.5 g. The pH of the basic solution 6 was 12.0 (measurement temperature 25°C ± 2°C).

 100gの金属複合水酸化物2に対し塩基性溶液6を19.5g添加し、さらに純水56gを加えて混合し、金属複合水酸化物1の質量濃度が57質量%であるスラリーを調製した。 19.5 g of basic solution 6 was added to 100 g of metal composite hydroxide 2, and 56 g of pure water was further added and mixed to prepare a slurry having a mass concentration of metal composite hydroxide 1 of 57% by mass. .

 50℃で2時間、スラリーを真空乾燥し、ウェットケーキを得た。さらにウェットケーキを120℃にて10時間加熱することで、前駆体粉末5を得た。 The slurry was vacuum-dried at 50°C for 2 hours to obtain a wet cake. Furthermore, the precursor powder 5 was obtained by heating the wet cake at 120° C. for 10 hours.

 前駆体粉末5の元素分析より、Ni、Co、Mnの物質量に対するWの物質量の割合であるW/(Ni+Co+Mn)は1.0mol%であった。すなわち、前駆体粉末4の組成比(モル比)は、[Ni]:[Co]:[Mn]:[W]=91mol%:7mol%:2mol%:1.0mol%であり、式(2)においてa=0.09、b=0.010であった。 According to the elemental analysis of the precursor powder 5, W/(Ni+Co+Mn), which is the ratio of the substance amount of W to the substance amounts of Ni, Co, and Mn, was 1.0 mol%. That is, the composition ratio (molar ratio) of the precursor powder 4 is [Ni]:[Co]:[Mn]:[W]=91 mol%:7 mol%:2 mol%:1.0 mol%, and the formula (2 ), a=0.09 and b=0.010.

 前駆体粉末5を用いたこと以外は実施例1と同様にして、CAM粉末5を得た。 A CAM powder 5 was obtained in the same manner as in Example 1 except that the precursor powder 5 was used.

 CAM粉末5の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]:[W]=91mol%:7mol%:2mol%:1.0mol%であり、式(4)において、a=0.09、b=0.010、c=1.06であった。CAM粉末5の粒子は、層状構造を有していることを確認した。 The composition ratio (molar ratio) of the CAM powder 5 is Li/(Ni+Co+Mn)=1.06, and [Ni]:[Co]:[Mn]:[W]=91 mol%:7 mol%:2 mol%:1. 0 mol %, and in formula (4), a = 0.09, b = 0.010, and c = 1.06. It was confirmed that the particles of CAM powder 5 had a layered structure.

(比較例3)
 塩基性溶液を添加しない金属複合水酸化物2を前駆体粉末C3とした。
(Comparative Example 3)
Metal composite hydroxide 2 to which no basic solution was added was used as precursor powder C3.

 前駆体粉末C3に含まれるNi、Co及びMnの合計量1に対するLiの量(モル比)が1.06となるように水酸化リチウム一水和物を秤量した。前駆体粉末C3と水酸化リチウムとを混合して混合物を得た。得られた混合物を、酸素雰囲気下、800℃、5時間で焼成し、CAM粉末C3を得た。 Lithium hydroxide monohydrate was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Mn contained in the precursor powder C3 was 1.06. A mixture was obtained by mixing precursor powder C3 and lithium hydroxide. The resulting mixture was fired at 800° C. for 5 hours in an oxygen atmosphere to obtain CAM powder C3.

 CAM粉末C3の組成比(モル比)は、Li/(Ni+Co+Mn)=1.06であり、[Ni]:[Co]:[Mn]=91mol%:7mol%:2mol%であり、式(4)において、a=0.09、b=0、c=1.06であった。CAM粉末C3の粒子は、層状構造を有していることを確認した。 The composition ratio (molar ratio) of CAM powder C3 is Li/(Ni + Co + Mn) = 1.06, [Ni]: [Co]: [Mn] = 91 mol%: 7 mol%: 2 mol%, and the formula (4 ), a=0.09, b=0 and c=1.06. It was confirmed that the particles of CAM powder C3 had a layered structure.

 上述の条件で洗浄したCAM粉末C3のピーク細孔径は50.6nm、ピーク値は0.016cm/gであった。洗浄後のCAM粉末C3は、10nm以下の領域にlog微分細孔容積のピークを有しておらず、P3を評価できなかった。 The CAM powder C3 washed under the above conditions had a peak pore size of 50.6 nm and a peak value of 0.016 cm 3 /g. CAM powder C3 after washing did not have a log differential pore volume peak in the region of 10 nm or less, and P3 could not be evaluated.

 また、P3を示すピークが存在しないため、CAM粉末C2のP4を読み取ることができなかった。 Also, since there is no peak indicating P3, P4 of CAM powder C2 could not be read.

 実施例5、比較例3の前駆体粉末について、各評価結果を表5,6に示す。また、実施例5、比較例3のCAM粉末について、各評価結果を表7,8に示す。 Tables 5 and 6 show the evaluation results of the precursor powders of Example 5 and Comparative Example 3. Tables 7 and 8 show the evaluation results of the CAM powders of Example 5 and Comparative Example 3.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

 評価の結果、本実施形態の前駆体粉末を用いた実施例5は、前駆体において充填化合物を添加しなかった比較例3と比べ、優れたサイクル維持率を示すことが確かめられた。 As a result of the evaluation, it was confirmed that Example 5 using the precursor powder of the present embodiment exhibited an excellent cycle retention rate compared to Comparative Example 3 in which no filling compound was added to the precursor.

 図19,20は、実施例5で作製した前駆体粉末5とCAM粉末5について、水洗前後の細孔径分布の変化を示す図である。図19は、前駆体粉末5についての測定結果であり、図20はCAM粉末5についての測定結果である。 19 and 20 are diagrams showing changes in pore size distribution before and after washing with water for precursor powder 5 and CAM powder 5 produced in Example 5. 19 shows the measurement results for the precursor powder 5, and FIG. 20 shows the measurement results for the CAM powder 5. FIG.

 図19,20において、破線が洗浄前の粉末の細孔径分布を示し、実線が洗浄後の粉末の細孔径分布を示す。  In Figures 19 and 20, the broken line indicates the pore size distribution of the powder before washing, and the solid line indicates the pore size distribution of the powder after washing.

 図19に示すように、前駆体粉末5においてP2を示すピークは、洗浄によりP1を示すように大きく変化する。また、図20に示すように、CAM粉末5においては、洗浄後に、前駆体粉末5と同様に細孔径10nm以下の領域にピークが大きく成長する。 As shown in FIG. 19, the peak indicating P2 in the precursor powder 5 greatly changes to indicate P1 due to washing. Moreover, as shown in FIG. 20 , in the CAM powder 5 , after washing, similarly to the precursor powder 5 , a large peak grows in the region of pore diameters of 10 nm or less.

 以上の結果より、本発明が有用であることが確かめられた。 From the above results, it was confirmed that the present invention is useful.

 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池 DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolytic solution, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 Negative electrode lead 100 Laminated body 110 Positive electrode 111 Positive electrode active material layer 112 Positive electrode current collector 113 External terminal 120 Negative electrode 121 Negative electrode active material layer 122 Negative electrode current collector DESCRIPTION OF SYMBOLS 123... External terminal 130... Solid electrolyte layer 200... Exterior body 200a... Opening part 1000... All-solid-state lithium secondary battery

Claims (16)

 リチウム二次電池用正極活物質の前駆体として用いられる前駆体粉末であって、
 細孔を有する複数の粒子と、
 前記細孔に充填された充填化合物と、を有し、
 前記粒子は、層状構造を有し、少なくともNiを含む金属複合化合物からなり、
 前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、
 下記式(1)を満たす前駆体粉末。
 10≦(P1-P2)/P1×100<100  …(1)
(P1(cm/g)は、質量比で前記前駆体粉末の20倍の水を用いて前記前駆体粉末を20分間洗浄し、固液分離後乾燥させて得られた洗浄済前駆体粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。
 P2(cm/g)は、前記前駆体粉末の細孔径分布において、上記P1を示すピークの細孔径におけるlog微分細孔容積の値である。
 前記細孔径分布は、前記前駆体粉末又は前記洗浄済前駆体粉末について、液体窒素温度で測定して得られる窒素脱離等温線を、Barrett-Joyner-Halenda(BJH)法で解析して求められる。)
A precursor powder used as a precursor of a positive electrode active material for a lithium secondary battery,
a plurality of particles having pores;
a filling compound filled in the pores;
The particles have a layered structure and are composed of a metal composite compound containing at least Ni,
the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
A precursor powder that satisfies the following formula (1).
10≦(P1−P2)/P1×100<100 (1)
(P1 (cm 3 /g) is the washed precursor powder obtained by washing the precursor powder for 20 minutes with water that is 20 times the weight of the precursor powder, followed by solid-liquid separation and drying. is the maximum peak value of the log differential pore volume in the pore size distribution of 10 nm or less.
P2 (cm 3 /g) is the value of the log differential pore volume at the pore diameter of the peak showing P1 in the pore diameter distribution of the precursor powder.
The pore size distribution is obtained by analyzing the nitrogen desorption isotherm obtained by measuring the precursor powder or the washed precursor powder at liquid nitrogen temperature by the Barrett-Joyner-Halenda (BJH) method. . )
 前記P2が0.8cm/g以下である請求項1に記載の前駆体粉末。 2. The precursor powder according to claim 1, wherein said P2 is 0.8 cm <3> /g or less.  前記前駆体粉末の細孔径分布から求められる全細孔容積が0.005~0.15cmである請求項1又は2に記載の前駆体粉末。 3. The precursor powder according to claim 1, wherein the total pore volume obtained from the pore size distribution of the precursor powder is 0.005 to 0.15 cm 3 .  前記金属複合化合物は、元素Xを含み、
 前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる少なくとも1種の元素であり、
 前記金属複合化合物に含まれるNi及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(2)を満たす請求項1から3のいずれか1項に記載の前駆体粉末。
 [Ni]:[X]:[W+Mo]=(1-a):a:b  …(2)
(式(2)は、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
The metal complex compound contains the element X,
The element X is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P. can be,
4. Any one of claims 1 to 3, wherein the atomic weight ratio between Ni and the element X contained in the metal composite compound and the sum of W and Mo contained in the filling compound satisfies the following formula (2) Precursor powder as described.
[Ni]: [X]: [W + Mo] = (1-a): a: b (2)
(Formula (2) satisfies 0.01≦a≦0.5 and 0.0015≦b≦0.03.)
 レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子径側からの累積体積割合が50%となる粒子径であるD50が3~20μmである請求項1から4のいずれか1項に記載の前駆体粉末。 In the volume-based cumulative particle size distribution curve obtained by laser diffraction particle size distribution measurement, D50 , which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 μm. Precursor powder according to any one of claims 1 to 3.  BET比表面積が1~40m/gである請求項1から5のいずれか1項に記載の前駆体粉末。 6. The precursor powder according to any one of claims 1 to 5, which has a BET specific surface area of 1 to 40 m 2 /g.  リチウム二次電池に用いられる正極活物質粉末であって、
 細孔を有する複数の粒子と、
 前記細孔に充填された充填化合物と、を有し、
 前記粒子は、層状構造を有し、少なくともNiを含むリチウム金属複合酸化物からなり、
 前記充填化合物は、水溶性のタングステン化合物及び水溶性のモリブデン化合物のいずれか一方又は両方であり、
 下記式(3)を満たすピークを有する正極活物質粉末。
 P3≧0.003  …(3)
(P3(cm/g)は、質量比で前記正極活物質粉末の20倍の水を用いて前記正極活物質粉末を20分間洗浄し、固液分離後に乾燥させて得られた洗浄済粉末の細孔径分布において、細孔径10nm以下の領域でのlog微分細孔容積の最大ピーク値である。
 前記細孔径分布は、前記洗浄済粉末について、液体窒素温度で測定して得られる窒素脱離等温線を、Barrett-Joyner-Halenda(BJH)法で解析して求められる。)
A positive electrode active material powder used in a lithium secondary battery,
a plurality of particles having pores;
a filling compound filled in the pores;
The particles have a layered structure and are made of a lithium metal composite oxide containing at least Ni,
the filling compound is either or both of a water-soluble tungsten compound and a water-soluble molybdenum compound;
A positive electrode active material powder having a peak that satisfies the following formula (3).
P3≧0.003 (3)
(P3 (cm 3 /g) is the washed powder obtained by washing the positive electrode active material powder for 20 minutes using water that is 20 times the weight of the positive electrode active material powder, and drying after solid-liquid separation. is the maximum peak value of the log differential pore volume in the pore size distribution of 10 nm or less.
The pore size distribution is obtained by analyzing the nitrogen desorption isotherm obtained by measuring the washed powder at liquid nitrogen temperature by the Barrett-Joyner-Halenda (BJH) method. )
 下記測定方法で測定される、前記正極活物質粉末に対するWとMoとの合計溶出モル量である溶出割合が、10~60%である請求項7に記載の正極活物質粉末。
(測定方法)
 前記正極活物質粉末を精秤して試料を得、質量比で前記試料の20倍の水を用いて前記試料を20分間洗浄し、固液分離して濾液を得る。前記濾液のICP分析を行い、分析結果に基づいて前記濾液に溶出したWとMoとの合計溶出モル量を求める。前記試料中のWとMoとの合計モル量と前記合計溶出モル量とから前記溶出割合を求める。
8. The positive electrode active material powder according to claim 7, wherein the elution ratio, which is the total eluted molar amount of W and Mo with respect to the positive electrode active material powder, measured by the following measuring method is 10 to 60%.
(Measuring method)
The positive electrode active material powder is precisely weighed to obtain a sample, and the sample is washed for 20 minutes with water having a mass ratio of 20 times that of the sample, followed by solid-liquid separation to obtain a filtrate. The filtrate is subjected to ICP analysis, and the total eluted molar amount of W and Mo eluted in the filtrate is determined based on the analysis results. The elution ratio is obtained from the total molar amount of W and Mo in the sample and the total eluted molar amount.
 前記粒子は、前記リチウム金属複合酸化物の一次粒子が凝集した二次粒子を含み、
 前記二次粒子について走査型電子顕微鏡(SEM)観察し、得られる拡大倍率10000倍のSEM画像から求められる1μmあたりの前記一次粒子の数が10~50個である請求項7又は8に記載の正極活物質粉末。
The particles include secondary particles in which the primary particles of the lithium metal composite oxide are aggregated,
9. The number of the primary particles per 1 μm 2 obtained by observing the secondary particles with a scanning electron microscope (SEM) and obtaining an SEM image with a magnification of 10000 times is 10 to 50. positive electrode active material powder.
 前記リチウム金属複合酸化物は、元素Xを含み、
 前記元素Xは、Co、Mn、Fe、Cu、Ti、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga、B、S及びPからなる群より選ばれる少なくとも1種の元素であり、
 前記リチウム金属複合酸化物に含まれるLi、Ni、及び前記元素Xと、前記充填化合物に含まれるWとMoとの合計との原子量比は、下記式(4)を満たす請求項7から9のいずれか1項に記載の正極活物質粉末。
[Li]:[Ni]:[X]:[W+Mo]=c:(1-a):a:b  …(4)
(式(4)は、0.9≦c≦1.2、0.01≦a≦0.5、及び0.0015≦b≦0.03を満たす。)
The lithium metal composite oxide contains element X,
The element X is at least one element selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, B, S and P. can be,
10. The atomic weight ratio of Li, Ni, and the element X contained in the lithium metal composite oxide and the sum of W and Mo contained in the filling compound satisfies the following formula (4). The positive electrode active material powder according to any one of items 1 and 2.
[Li]: [Ni]: [X]: [W + Mo] = c: (1-a): a: b (4)
(Formula (4) satisfies 0.9≦c≦1.2, 0.01≦a≦0.5, and 0.0015≦b≦0.03.)
 レーザー回折式粒度分布測定によって得られる体積基準の累積粒度分布曲線において、小粒子径側からの累積体積割合が50%となる粒子径であるD50が3~20μmである請求項7から10のいずれか1項に記載の正極活物質粉末。 In the volume-based cumulative particle size distribution curve obtained by laser diffraction particle size distribution measurement, D50 , which is the particle size at which the cumulative volume ratio from the small particle size side is 50%, is 3 to 20 μm. The positive electrode active material powder according to any one of items 1 and 2.  BET比表面積が2m/g以下である請求項7から11のいずれか1項に記載の正極活物質粉末。 The positive electrode active material powder according to any one of claims 7 to 11, having a BET specific surface area of 2 m 2 /g or less.  CuKα線を使用した粉末X線回折測定において、2θ=18.7±2°の範囲内のピークの回折ピークの半値幅Bに対する、2θ=44.6±2°の範囲内の回折ピークの半値幅Cとの比C/Bが、0.54~0.68である請求項7から12のいずれか1項に記載の正極活物質粉末。 In the powder X-ray diffraction measurement using CuKα rays, half of the diffraction peak within the range of 2θ = 44.6 ± 2 ° with respect to the half width B of the diffraction peak of the peak within the range of 2θ = 18.7 ± 2 ° The positive electrode active material powder according to any one of claims 7 to 12, wherein the ratio C/B to the price range C is 0.54 to 0.68.  請求項1から6のいずれか1項に記載の前駆体粉末と、リチウム化合物とを混合して混合物を得る工程と、
 前記混合物を焼成する工程と、を含み、
 前記混合物を得る工程においては、前記前駆体粉末の前記粒子を構成する金属元素の総量に対して、前記リチウム化合物を構成するLiが0.90~1.20となるモル比で前記前駆体粉末と前記リチウム化合物とを混合し、
 前記焼成する工程における焼成温度は、740~920℃である正極活物質粉末の製造方法。
A step of mixing the precursor powder according to any one of claims 1 to 6 and a lithium compound to obtain a mixture;
calcining the mixture,
In the step of obtaining the mixture, the precursor powder having a molar ratio of 0.90 to 1.20 of Li constituting the lithium compound with respect to the total amount of metal elements constituting the particles of the precursor powder. and the lithium compound,
The method for producing a positive electrode active material powder, wherein the firing temperature in the firing step is 740 to 920°C.
 請求項7から13のいずれか1項に記載の正極活物質粉末を含む正極。 A positive electrode comprising the positive electrode active material powder according to any one of claims 7 to 13.  請求項15に記載の正極を有するリチウム二次電池。 A lithium secondary battery having the positive electrode according to claim 15.
PCT/JP2022/043098 2021-11-22 2022-11-22 Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery WO2023090452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021189152A JP7181982B1 (en) 2021-11-22 2021-11-22 Precursor powder, positive electrode active material powder, method for producing positive electrode active material powder, positive electrode and lithium secondary battery
JP2021-189152 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090452A1 true WO2023090452A1 (en) 2023-05-25

Family

ID=84282961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043098 WO2023090452A1 (en) 2021-11-22 2022-11-22 Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP7181982B1 (en)
WO (1) WO2023090452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025037616A1 (en) * 2023-08-16 2025-02-20 住友金属鉱山株式会社 Positive-electrode active material for all-solid-state lithium ion secondary batteries, and all-solid-state lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031619A1 (en) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2018129221A (en) * 2017-02-09 2018-08-16 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019187953A1 (en) * 2018-03-30 2019-10-03 住友化学株式会社 Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
WO2020085283A1 (en) * 2018-10-26 2020-04-30 住友金属鉱山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for lithium ion secondary batteries and method for producing same, and lithium ion secondary battery using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031619A1 (en) * 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2018129221A (en) * 2017-02-09 2018-08-16 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019187953A1 (en) * 2018-03-30 2019-10-03 住友化学株式会社 Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
WO2020085283A1 (en) * 2018-10-26 2020-04-30 住友金属鉱山株式会社 Metal composite hydroxide and method for producing same, positive electrode active material for lithium ion secondary batteries and method for producing same, and lithium ion secondary battery using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025037616A1 (en) * 2023-08-16 2025-02-20 住友金属鉱山株式会社 Positive-electrode active material for all-solid-state lithium ion secondary batteries, and all-solid-state lithium ion secondary battery

Also Published As

Publication number Publication date
JP2023076015A (en) 2023-06-01
JP7181982B1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Lin et al. Crystallographic facet-and size-controllable synthesis of spinel LiNi 0.5 Mn 1.5 O 4 with excellent cyclic stability as cathode of high voltage lithium ion battery
KR102432535B1 (en) Nickel-manganese composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
CN108137347B (en) Lithium-nickel-containing composite oxide, method for producing the same, and non-aqueous electrolyte secondary battery
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP7531096B2 (en) Positive electrode active material and battery
US20240282959A1 (en) Method for manufacturing positive-electrode active material precursor and positive-electrode active material for nonaqueous electrolyte secondary battery
KR20140138780A (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
WO2022260072A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP6919250B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its precursor, and their manufacturing method
JP6540077B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2023090452A1 (en) Precursor powder, positive electrode active material powder, positive electrode active material powder production method, positive electrode, and lithium secondary battery
US20240063383A1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6717311B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2024053428A (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2024128014A1 (en) Metal composite compound powder and method for producing positive electrode active material for lithium secondary battery
JP7441999B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2024135203A1 (en) Lithium-metal complex oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7441998B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2024181444A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2022264992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP2025041245A (en) A method for producing a precursor and a positive electrode active material for a lithium secondary battery.
JP2025038616A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
WO2023106274A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023106309A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22895733

Country of ref document: EP

Kind code of ref document: A1