[go: up one dir, main page]

WO2023090017A1 - Analysis device and method - Google Patents

Analysis device and method Download PDF

Info

Publication number
WO2023090017A1
WO2023090017A1 PCT/JP2022/038507 JP2022038507W WO2023090017A1 WO 2023090017 A1 WO2023090017 A1 WO 2023090017A1 JP 2022038507 W JP2022038507 W JP 2022038507W WO 2023090017 A1 WO2023090017 A1 WO 2023090017A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
analysis
reagent bottle
analyzer
combination
Prior art date
Application number
PCT/JP2022/038507
Other languages
French (fr)
Japanese (ja)
Inventor
清浩 杉山
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2023090017A1 publication Critical patent/WO2023090017A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present disclosure relates to an analyzer and method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-227048
  • Patent Document 1 includes a plurality of types of reagents (for example, a first reagent and a second reagent) to analyze a sample.
  • the reagent container is also referred to as a reagent bottle.
  • a combination of a plurality of types of reagents used is also referred to as a "reagent bottle combination”.
  • the analyzer analyzes a large number of samples, the amount of reagents used is large. Therefore, when the analyzer analyzes a large amount of samples, a configuration is conceivable in which a combination of a plurality of reagent bottles to be used in sequence is determined. Specifically, the analyzer selects, for example, a first reagent bottle combination, a second reagent bottle combination to be used next to the first reagent bottle combination, and a third reagent bottle combination to be used next to the second reagent bottle combination. decide.
  • the present disclosure has been made to solve such problems, and its purpose is to provide an analysis device and an analysis method that improve the user's convenience in determining reagent bottle combinations.
  • the analysis device of the present disclosure includes an arrangement section, a first storage device, a control device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample.
  • a controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • the control device determines a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.
  • the analysis device of the present disclosure includes an arrangement section, a first storage device, a control device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample.
  • a controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • control device determines that the amount of the first reagent contained in the first reagent-bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent-bottle combination due to the occurrence of the abnormality. If so, the analysis mechanism determines a second reagent bottle combination containing the first and second reagents to be used next to the first reagent bottle combination.
  • the control method of the present disclosure is a control method for an analyzer.
  • the analysis device includes an arrangement section, a first storage device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method.
  • the control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • the control method comprises determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by the user is received. .
  • the control method of the present disclosure is a control method for an analyzer.
  • the analysis device includes an arrangement section, a first storage device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method.
  • the control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Further, the control method is such that the amount of the first reagent contained in the first reagent bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent bottle combination due to the occurrence of the abnormality. If so, determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.
  • the analyzer of the present disclosure improves user convenience in determining the combination of reagent bottles.
  • FIG. 1 is a diagram functionally showing the overall configuration of an analyzer according to the present embodiment
  • FIG. FIG. 4 is a plan view showing a configuration example of an analysis mechanism
  • It is a figure which shows an example of the reagent arrangement
  • It is a functional block diagram of a control device.
  • It is a figure which shows an example of reagent information.
  • It is a figure which shows an example of an input screen.
  • Fig. 3 shows a first situation
  • Fig. 2 shows a second situation;
  • FIG. 13 illustrates storage of reagent pairs and calibration curves;
  • 4 is a flowchart showing an example of main processing of the analyzer; It is an example of main processing of main interrupt processing of the analyzer.
  • 4 is a flow chart showing an example of main processing of the analyzer in decision mode
  • 4 is a flowchart showing an example of main processing of the analyzer in analysis mode;
  • the analyzer 600 is configured to dispense a sample and reagent into a cuvette with a probe (nozzle) and optically measure the reaction state in the cuvette.
  • the sample is, for example, a subject's blood component (serum or plasma) or urine.
  • the analyzer 600 can analyze a sample using multiple types of reagents. In the present embodiment, the multiple types of reagents are the first reagent and the second reagent.
  • FIG. 1 is a diagram functionally showing the overall configuration of analysis device 600 according to the present embodiment.
  • Analyzer 600 described in the first embodiment is an example of a blood coagulation analyzer.
  • this analyzer 600 includes a cuvette supply device 110, a cuvette transfer device 120, a stirring device 200, a control device 354, and a cuvette disposal container 400.
  • the cuvette supply device 110, the cuvette transfer device 120, and the cuvette disposal container 400 are hereinafter simply referred to as “supply device 110,” “transfer device 120,” and “disposal container 400,” respectively.
  • the analyzer 600 further includes a sample dispensing port P1.
  • the supply device 110 includes a cuvette storage section 111 (hereinafter simply referred to as “storage section 111 ”) and a supply mechanism 112 .
  • the storage section 111 is configured to be able to store a large number of cuvettes (for example, 1000 cuvettes at maximum).
  • the supply mechanism 112 supplies the cuvette housed in the housing portion 111 to the sample dispensing port P1. The details of the container 111 and the supply mechanism 112 will be described later with reference to FIG.
  • the sample pipetting port P1 is arranged at a position where the sample can be pipetted into the cuvette by a sample pipetting device (not shown).
  • a sample pipetting device not shown.
  • the sample dispensing device dispenses the sample into the cuvette.
  • the transfer device 120 includes an arm 121 with a chuck (hereinafter simply referred to as "arm 121") and a drive device 122.
  • the arm 121 has a chuck (chuck 121a, which will be described later) that can grip a cuvette.
  • Arm 121 is configured to detachably hold the cuvette by means of a chuck.
  • Drive 122 is configured to actuate arm 121 to change the position of the chuck. Details of the arm 121 and the drive device 122 will also be described later with reference to FIG.
  • the analysis device 600 further includes a plurality of ports capable of transferring cuvettes by the transfer device 120, specifically, a stirring port P2, a photometry port P3, a waste port P5, a suction port P11, and a suction port P12.
  • the photometric ports P3 include multiple coagulation ports P3a and multiple colorimetric ports P3b.
  • Each of the sample dispensing port P1, stirring port P2, photometric port P3, disposal port P5, suction port P11, and suction port P12 is provided with a port sensor that detects the presence or absence of a cuvette.
  • the stirring port P2 is arranged at the stirring position of the stirring device 200 .
  • the stirrer 200 is configured to stir the contents of the cuvette under predetermined conditions (eg, stirring speed and stirring time) when the cuvette is set in the stirring port P2.
  • Each of the coagulation port P3a and the colorimetric port P3b is arranged in a photometric section (not shown).
  • Each of the coagulation port P3a and the colorimetric port P3b is provided with a photodetector (not shown) for detecting the irradiated light, which is irradiated with light from the light source.
  • the controller 354 receives the detection results of the amount of light from the photodetectors of the coagulation port P3a and the colorimetric port P3b, and performs predetermined measurements on the contents of the cuvettes set in each port. That is, for the coagulation port P3a, the controller 354 uses the amount of scattered light detected by the photodetector to measure the coagulation time of the sample in the cuvette. For the colorimetric port P3b, the controller 354 measures the absorbance of the sample in the cuvette based on the colorimetric method using the amount of transmitted light detected by the photodetector.
  • the control device 354 has a CPU (Central Processing Unit) 360, a memory 361, and a communication I/F 362 as main components. Each component is interconnected by a data bus.
  • the memory 361 is composed of, for example, ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and the like.
  • the ROM stores programs executed by the CPU 360 .
  • the RAM temporarily stores data generated by executing programs in the CPU 360 .
  • RAM can function as a temporary data memory that is used as a working area.
  • HDD 166 is a non-volatile storage device. Also, instead of the HDD 166, a semiconductor storage device such as a flash memory may be employed.
  • the program stored in the ROM may be stored in a storage medium and distributed as a program product.
  • the program may be provided by an information provider as a downloadable program product via the so-called Internet.
  • the control device 354 reads a program provided by a storage medium, the Internet, or the like.
  • Control device 354 stores the read program in a predetermined storage area (for example, ROM).
  • CPU 360 executes the above-described display processing by executing the stored program.
  • Storage media are not limited to DVD-ROM (Digital Versatile Disk Read Only Memory), CD-ROM (compact disc read-only memory), FD (Flexible Disk), hard disk, magnetic tape, cassette tape, optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), semiconductor memory such as flash ROM
  • the recording medium is a non-transitory medium in which the program and the like can be read by the computer.
  • a communication I/F 362 is an interface for communicating with other devices.
  • Other equipment includes, for example, an analysis mechanism 300, which will be described later, a group of quantity sensors S1-S6, which will be described later, a display device 358, and an input device 356.
  • the input device 356 is, for example, a pointing device such as a keyboard or a mouse, and receives commands from the user.
  • the display device 358 is composed of, for example, a liquid crystal display (LCD) panel, and displays information to the user. When a touch panel is used as the user interface, the input device 356 and the display device 358 are integrally formed.
  • the waste port P5 is configured to collect used cuvettes.
  • the waste port P5 is connected to the waste container 400 through piping, for example. When the cuvette is introduced into the disposal port P5, the cuvette is led to the disposal container 400.
  • FIG. 1 A schematic diagram of a waste container 400 .
  • the N (N is an integer equal to or greater than 2) first reagents are accommodated in N first reagent bottles, respectively.
  • the N first reagent bottles containing the first reagent are held by the first reagent placing portion 311a.
  • the aspiration spot P11 is configured to aspirate the first reagent from any one of the N first reagent bottles.
  • the M (M is an integer equal to or greater than 2) second reagents are each contained in a plurality of second reagent bottles.
  • the M second reagent bottles containing the second reagents are held by the second reagent placement portion 312a.
  • the aspiration spot P12 is configured to aspirate the second reagent from any one of the M second reagent bottles.
  • the reagent placement section may also be referred to as a "reagent holding area" or a "reagent holding mechanism.”
  • FIG. 2 is a plan view showing a configuration example of the analysis mechanism 300 of the analysis device 600.
  • FIG. Analysis mechanism 300 analyzes an unknown sample or a known sample under the control of control device 354 . Also, the analysis mechanism 300 analyzes unknown samples using reagent bottle combinations used for analysis items. Here, "using a reagent bottle combination” typically means “consuming a plurality of reagents constituting the reagent bottle combination”.
  • FIG. 2 shows three mutually orthogonal axes (X-axis, Y-axis and Z-axis). , indicates the vertical direction (ie, the up-down direction). The direction indicated by the Z-axis arrow is upward, and the opposite direction is downward (ie, the direction of gravity).
  • a large number of cuvettes 100 are accommodated in the accommodation section 111 .
  • a user can replenish the cuvette 100 into the containing portion 111 from an inlet (not shown) of the containing portion 111 .
  • the cuvette 100 can be made of any material as long as it can transmit light, and for example, a transparent acrylic material can be used.
  • the supply mechanism 112 is configured to take out the cuvettes 100 one by one from the container 111 and supply them to the sample dispensing port P1.
  • a transfer method of the cuvette 100 in the supply mechanism 112 is arbitrary, and may be, for example, a slide method (self-weight method), a belt conveyor method, a roller method, or a slide method.
  • the supply mechanism 112 is configured to receive the detection result of the port sensor of the sample dispensing port P1 and supply the next cuvette 100 to the port P1 when the sample dispensing port P1 becomes empty.
  • the supply mechanism 112 is not limited to this, and may be configured to supply the cuvette 100 to the sample dispensing port P1 according to an instruction from a control device, which will be described later.
  • the arm 21 is a device (sample dispensing device) for dispensing the sample aspirated from the sample aspiration port P21 into the cuvette 100 set in the sample dispensing port P1.
  • the arm 21 includes a probe 21a and an arm body 21b.
  • the arm body 21b is configured to be rotatable around a rotation shaft 23a, and by rotating the arm body 21b, the probe 21a provided at the tip of the arm body 21b draws an arc-shaped trajectory L2 on the XY plane. You can move like
  • the probe 21a moves to the sample dispensing port P1, the sample suction port P21, the S port P22 (more specifically, the ports P22a to P22i), and the washing port provided on the track L2. It is possible to move to each of P23.
  • the S port P22 for example, ports P22a and P22b are detergent ports, ports P22c, P22d and P22e are buffer ports, and ports P22f, P22g, P22h and P22i are diluent ports.
  • a movable sample rack is provided below the sample suction port P21.
  • a plurality of sample containers containing samples are placed on the sample rack. is placed directly below the sample aspiration port P21.
  • the CTS mechanism 24 is provided near the sample aspiration port P21, and is configured to pierce the cap with a piercer when the sample container to be dispensed has a cap.
  • the photometry unit 130 has a plurality of photometry ports P3 (a plurality of coagulation ports P3a and colorimetric ports P3b) arranged in an arc.
  • a plurality (14 in this embodiment) of coagulation ports P3a and a plurality of (6 in this embodiment) of colorimetric ports P3b are arranged.
  • the arm 11 is a device for dispensing the reagent aspirated from the aspiration port P11 or the aspiration P12 into the target cuvette 100 set in the photometry port P3, and includes a probe 11a and an arm body 11b.
  • the arm body 11b is configured to be rotatable around a rotation shaft 13a, and by rotating the arm body 11b, the probe 11a provided at the tip of the arm body 11b draws an arc-shaped trajectory L1 on the XY plane. You can move like
  • the probe 11a By rotating the arm body 11b, the probe 11a can move to each of the coagulation ports P3a, colorimetric ports P3b, suction ports P11 and P12, and recovery port P13 provided on the track L1.
  • the probe 11a is actually composed of two probes in order to avoid contamination between reagents.
  • the reagent placement section 31a (reagent tray) has an outer peripheral tray and an inner peripheral tray. The reagent (or washing liquid) on the outer peripheral tray and the reagent on the inner peripheral tray can be sucked from the suction ports P11 and P12 by two probes, respectively.
  • the recovery port P13 is a port for recovering the used washing liquid.
  • a water reservoir for collecting water discharged from the probe 11a to wash the outer surface of the tip of the probe, and a waste port for discarding the liquid. including the part.
  • the reference port P4 is provided at a different location from the photometry port P3 (photometry unit 130). As mentioned above, the reference port P4 has the same configuration as each colorimetric port P3b, but is located inside the analyzer 600 rather than on the analyzer 300, for example, because it does not require the cuvette 100 to be set.
  • a first reagent placement portion 311a (reagent placement portion 31a) is placed below the suction port P11.
  • the first reagent placement portion 311a holds a plurality of first reagent bottles each containing a first reagent.
  • a second reagent placement portion 312a (reagent placement portion 31a) is arranged below the suction port P12.
  • a plurality of second reagent bottles each containing a second reagent are held by the second reagent placement portion 312a.
  • the reagent placement unit 31a is composed of a disk-shaped turntable, and by driving the turntable, a desired reagent (first reagent or second reagent) detergent container 1a can be placed directly below the suction ports P11 and P12. can be done.
  • a first reagent or a second reagent is aspirated by the probe 11 a and transported to a predetermined position by the arm 11 .
  • a first reagent or a second reagent is delivered into a cuvette (a cuvette containing an unknown or known sample) of sample dispensing port P1.
  • An unknown sample is a reagent to be analyzed by analyzer 600 .
  • a known sample is a sample for which the item analyzed by analyzer 600 (for example, the concentration of the component to be analyzed) is known.
  • the arm 121 includes a chuck 121a and an arm body 121b.
  • the chuck 121a is configured to be able to grip the cuvette 100 .
  • the method by which the chuck 121a holds the cuvette 100 is arbitrary, and the chuck 121a may be a mechanical chuck, a magnetic chuck, or a vacuum chuck.
  • the arm main body 121b is configured to be able to turn around the rotary shaft 13a together with the rotating body 122a.
  • the rotating body 122a rotates
  • the arm body 121b rotates integrally with the rotating body 122a, and the chuck 121a provided at the tip of the arm body 121b moves so as to draw an arc-shaped trajectory L1 on the XY plane. can be done.
  • the pivot centers of the arms 11 and 121 are the same.
  • On the trajectory L1 are a sample pipetting port P1, a stirring port P2, a waste port P5, a plurality of photometric ports P3 (a plurality of coagulation ports P3a and a plurality of colorimetric ports P3b), and suction ports P11 and P12. , and a recovery port P13.
  • the arm 121 can move the chuck 121a to the sample dispensing port P1, the agitation port P2, each photometric port P3, and the disposal port P5.
  • the probe 11a can be moved to the port P2 and each photometric port P3.
  • the analyzer 600 acquires the first parameter by executing a predetermined process on the unknown sample. Then, the analyzer 600 calculates the second parameter by applying the first parameter to the calibration curve.
  • the second parameter is a parameter for the analysis purpose of analysis device 600 of the present embodiment.
  • a second parameter is the concentration of the target substance contained in the unknown sample.
  • the analyzer 600 analyzes the sample by executing a predetermined process over a predetermined measurement time.
  • the measurement time starts, for example, when light from a light source (not shown) hits a cuvette containing a sample and reagents (eg, first reagent and second reagent).
  • the predetermined process is a process of exposing the unknown sample to light.
  • Analysis device 600 calculates the absorbance of the unknown sample by executing a predetermined process.
  • An example of the predetermined processing described above corresponds to the processing of exposing an unknown sample to light for a predetermined measurement time.
  • the analyzer 600 calculates the slope of the absorbance during the measurement time. This "slope of absorbance" corresponds to an example of the "first parameter".
  • the analysis device 600 creates a calibration curve by executing the predetermined process on a known sample having a known concentration of the target substance in advance.
  • the slope of the absorbance is associated with the concentration of the target substance.
  • the analyzer 600 refers to the calibration curve and outputs the concentration of the target substance corresponding to the calculated slope of the absorbance as a measurement result.
  • the "concentration of the target substance” corresponds to an example of the "second parameter".
  • the predetermined process may be another process, and the first parameter and the second parameter may be other parameters.
  • FIG. 3 is a diagram showing an example of the reagent placement portion (first reagent placement portion 311a, second reagent placement portion 312a) of the present embodiment.
  • the multiple types of reagents include a first reagent A and a second reagent B different in type from the first reagent A. Therefore, the components of the first reagent A and the second reagent B are different.
  • the first reagent placement section 311a can hold M1 (M1 is an integer equal to or greater than 2) first reagents.
  • the second reagent placement section 312a can hold M2 (M2 is an integer equal to or greater than 2) second reagents.
  • the second reagent placement section 312a can hold three second reagents, that is, a second reagent B1, a second reagent B2, and a second reagent B3.
  • the reagent placement section can hold six reagents.
  • M1 and M2 are preferably 2 or 3.
  • M1 and M2 may be 2 or an integer of 4 or more.
  • each of the six reagents is contained in six reagent bottles.
  • the lid is attached to the reagent bottle.
  • the analysis device 600 uses a piercer (not shown) to open the lid (penetrate through the lid) and remove the reagent contained in the reagent bottle. Absorb and use (consume).
  • the analyzer 600 also has six quantity sensors that detect reagent information for each of the six reagents.
  • the reagent information corresponds to "reagent bottle information" of the present disclosure.
  • the six quantity sensors are quantity sensor S1, quantity sensor S2, quantity sensor S3, quantity sensor S4, quantity sensor S5 and quantity sensor S6.
  • Amount sensor S1 detects the amount of first reagent A1.
  • Amount sensor S2 detects the amount of first reagent A2.
  • Amount sensor S3 detects the amount of first reagent A3.
  • Amount sensor S4 detects the amount of second reagent B1.
  • Amount sensor S5 detects the amount of second reagent B2.
  • Amount sensor S6 detects the amount of second reagent B3.
  • Six quantity sensors are connected to controller 354 . Information detected by the six quantity sensors is output to the controller 354 .
  • the six quantity sensors are also referred to as "quantity sensor groups S1 to S6".
  • FIG. 4 is a functional block diagram of the control device 354.
  • the control device 354 has an acquisition unit 302 , a processing unit 304 , a control unit 306 and a storage unit 310 .
  • Storage unit 310 has a first storage unit 321 and a second storage unit 322 .
  • controller 354 is connected to analysis mechanism 300, input device 356, display device 358, and quantity sensors S1-S6.
  • the acquisition unit 302 acquires the analysis result of an unknown sample or a known sample by the analysis mechanism 300 from the analysis mechanism 300 . Acquisition unit 302 also acquires a signal indicating that the input device 356 has been operated by the user (for example, a predetermined operation described later). Further, the acquiring unit 302 acquires the reagent information detected by each quantity sensor of the quantity sensor groups S1 to S6. The information acquired by the acquisition unit 302 is output to the processing unit 304 .
  • the processing unit 304 When the processing unit 304 acquires the analysis result of the known sample from the acquisition unit 302, it creates a calibration curve.
  • the calibration curve is stored in the second storage unit 322 (see FIG. 9).
  • the processing unit 304 acquires the analysis result (first parameter) of the unknown sample from the acquisition unit 302, the processing unit 304 refers to the prepared calibration curve to derive the analysis result (second parameter). .
  • the processing unit 304 then generates image data representing the second parameter and outputs the image data to the control unit 306 .
  • the control unit 306 causes the display device 358 to display an image based on the image data.
  • the processing unit 304 when the processing unit 304 acquires the reagent information detected by each quantity sensor of the quantity sensor groups S1 to S6 from the acquisition unit 302, the processing unit 304 stores the reagent information in the first storage unit 321 (see FIG. 5). In other words, the processing unit 304 updates the reagent information stored in the first storage unit 321 to the reagent information newly detected by each quantity sensor of the quantity sensor groups S1 to S6.
  • the reagent information includes at least one of a reagent position in a reagent bottle corresponding to the reagent information, an amount of reagent corresponding to the reagent information, an expiration date of the reagent, and an onboard stability of the reagent.
  • the reagent information includes all of the reagent position corresponding to the reagent information, the amount of reagent corresponding to the reagent information, the expiration date of the reagent, and the onboard stability of the reagent.
  • the expiration date is the date set by the reagent manufacturer, and is the date when the reagent can be used properly. The more the current date and time is earlier than the expiration date, the higher the freshness of the reagent corresponding to the expiration date.
  • the on-board stability is the storage stability (or reactivity of the reagent) of the reagent placed in the reagent placement section 312 of the analyzer 600 .
  • This is the number of days that have passed since the cap of the reagent bottle containing the reagent was opened by the piercer. The shorter the number of days that have passed, the higher the freshness of the reagent corresponding to the number of days that have passed. In other words, the fewer days that have passed, the higher the onboard stability.
  • the reagent position is information indicating the location within the analyzer 600 where the reagent bottle containing the reagent is arranged.
  • the amount sensor detects the amount of reagent in the reagent bottle at each predetermined interrupt time (for example, 1 minute).
  • the quantity sensor is, for example, a liquid level sensor that detects the liquid level of the reagent.
  • the amount of reagent detected by the amount sensor is output to controller 354 .
  • FIG. 5 is a diagram showing an example of reagent information stored in the first storage device of the control device 354. As shown in FIG. In the example of FIG. 5, each reagent (first reagent A1, first reagent A2, first reagent A3, second reagent B1, second reagent B2, second reagent B3) is associated with reagent information. remembered.
  • the first storage device stores reagent information.
  • the reagent information of the first reagent is also referred to as "first reagent information”.
  • the reagent information of the second reagent is also referred to as "second reagent information”.
  • the first storage device stores first reagent information (reagent information of the first reagent A1 to first reagent A3) of each of the plurality of first reagents and second reagent information of each of the plurality of second reagents (second reagent information of the reagent B1 to the second reagent B3).
  • control device 354 updates the reagent amount in the reagent information to the reagent amount output from the above-described amount sensor.
  • the quantity sensor detects the quantity of reagent at each predetermined interrupt time (eg, one minute). Therefore, the reagent amount in the reagent information is updated every interrupt time.
  • the controller 354 can grasp the amount of each reagent by such updating.
  • Information including an expiration date (for example, a barcode) is attached to the reagent bottle.
  • a barcode reader (not shown) detects the expiration date by reading the barcode.
  • the detected expiration date is output to the control device 354 .
  • the control device 354 stores the expiration date in the first storage unit 321 .
  • controller 354 does not update the expiration date.
  • Controller 354 detects that the cap of the reagent bottle has been pierced by the piercer. Then, the control device 354 specifies the elapsed time (eg, the number of days elapsed) since the cap of the reagent bottle was pierced by the piercer. Controller 354 updates the onboard stability after a predetermined period of time (eg, one day).
  • Modes of the analyzer 600 include an analysis mode and a determination mode.
  • the analyzer 600 can be switched from the analysis mode to the determination mode while the processing of the analyzer 600 is stopped (the analyzer 600 is on standby), or can be switched from the determination mode to the analysis mode. can be switched.
  • the analysis mode is a mode in which the analysis device 600 analyzes an unknown sample.
  • analyzer 600 can analyze an unknown sample using one reagent (first reagent or second reagent).
  • the analyzer 600 creates a calibration curve using the one reagent and a known sample (for example, a known sample corresponding to the unknown sample). allow.
  • the analysis device 600 permits the creation of the calibration curve, it may notify the user of the permission. If the user sets a known sample at a predetermined position in the analyzer 600 when the preparation of the calibration curve is permitted, the one reagent and the known sample are used to prepare the calibration curve.
  • Analysis device 600 then derives the first parameter. Furthermore, the analyzer 600 calculates a second parameter based on the first parameter and the calibration curve (preliminarily created calibration curve).
  • the analyzer 600 displays the reagent information (a plurality of first reagent information) shown in FIG. and a plurality of second reagent information), one first reagent is determined from three first reagents, and one second reagent is determined from three second reagents.
  • the amounts of the first and second reagents used that are necessary for analyzing a minimum unit sample are referred to as "required amounts.”
  • the analyzer 600 can analyze the sample using the first reagent and the second reagent when both the first reagent and the second reagent are in the necessary amount or more.
  • the processing unit 304 refers to the reagent amounts of the three pieces of first reagent information, and selects a first reagent having a required amount or more from the three first reagents A1 to A3 as a candidate. A first reagent that is less than the required amount is not used. Furthermore, the processing unit 304 refers to the expiration dates of the three pieces of first reagent information, and selects a first reagent within the expiration date as a candidate from among the candidate first reagents. Furthermore, the processing unit 304 refers to the onboard stability of the three pieces of first reagent information, and determines a first reagent with high onboard stability from among the candidate first reagents. As a modification, the processing unit 304 refers to the onboard stability of the three pieces of first reagent information, and determines the first reagent with the low onboard stability from among the candidate first reagents. good too.
  • the processing unit 304 refers to the three pieces of second reagent information and determines the second reagent to be used from among the three second reagents B1 to B3.
  • the determined first reagent and second reagent are also collectively referred to as a "reagent pair" or “combination”.
  • a “reagent pair” or “combination” corresponds to a "reagent bottle combination” in this disclosure.
  • the controller 354 allows creating a calibration curve using the determined reagent pair (first reagent and second reagent) and a known sample (for example, a known sample corresponding to an unknown sample).
  • a known sample for example, a known sample corresponding to an unknown sample.
  • the reagent pair (first reagent and second reagent) and the known sample are used to prepare the calibration curve.
  • the calibration curve is also referred to as the "calibration curve corresponding to the reagent pair”.
  • Controller 354 then derives the first parameter.
  • the control device 354 calculates a second parameter based on the first parameter and the calibration curve (preliminarily created calibration curve).
  • the three first reagents may have different manufacturing lots or manufacturing dates. Therefore, although the three first reagents are of the same type, they may have slightly different characteristics. Similarly, the three second reagents may be of the same type but may have slightly different characteristics. In this way, even if the reagents are of the same type, in consideration of the case where the components are slightly different, when the analysis device 600 uses the first reagent A1 and the second reagent B1 for analysis, the first reagent A1 and the second reagent B1 are used. A calibration curve is prepared using reagent A1, the second reagent B1, and a known sample. Also, when the analyzer 600 performs analysis using the first reagent A2 and the second reagent B1, a calibration curve is created using the first reagent A2, the second reagent B1, and a known sample.
  • control device 354 of the present embodiment creates calibration curves individually for reagents of the same type but in different reagent bottles. Therefore, the control device 354 can accurately analyze an unknown sample without being affected by slight differences in the properties of the sample.
  • the analyzer 600 can analyze unknown samples for a plurality of analysis items. For example, for an unknown sample, the concentration of substance R1 can be analyzed as a first analysis item, and the concentration of substance R2 can be analyzed as a second analysis item.
  • controller 354 determines a reagent pair when analyzing an unknown sample using a first reagent and a second reagent.
  • the reagent pair is referred to as "first reagent pair", “first combination”.
  • the first reagent pair corresponds to the "first bottle combination" of the present disclosure.
  • the determination mode is a mode for determining a reagent pair to be used next to the first reagent pair (hereinafter also referred to as a "second reagent pair”) in a state where the first reagent pair has been determined. be.
  • the second reagent pair corresponds to the "first bottle combination" of the present disclosure.
  • at least one of the first reagent and the second reagent forming the first reagent pair is different from the first reagent and the second reagent forming the second reagent pair.
  • the determination mode is shifted to the input device 356 by a predetermined operation by the user.
  • first calibration curve the first reagent and second reagent that constitute the first reagent pair and the calibration curve created with the known sample.
  • second calibration curve the calibration curve created with the first and second reagents constituting the second reagent pair and the known sample.
  • the controller 354 controls the mode of the analyzer 600 to either the analysis mode (first mode) for analyzing an unknown sample or the determination mode (second mode) for determining the second reagent pair. do. Therefore, analyzer 600 can determine the second reagent pair while analyzing an unknown sample.
  • FIG. 6 is an example of an input screen for the user to perform a predetermined operation.
  • the control device 354 displays the input screen of FIG. 6 at a predetermined timing, which will be described later.
  • This input screen is displayed in a display area 358A of the display device 358.
  • the character image 411 in the example of FIG. 6 is an image showing the characters "Would you like to shift to the determination mode for determining the next reagent pair?"
  • the mode of the analyzer 600 shifts to the decision mode.
  • the predetermined operation for shifting to the decision mode is the operation of the Yes button 412 on the input screen of FIG.
  • the control device 354 permits the user's predetermined operation by displaying the input screen.
  • FIG. 7 is a diagram for explaining the first situation.
  • FIG. 7A is a diagram showing a case where the analysis device 600 has determined the first reagent pair.
  • FIG. 7A shows an example in which the analyzer 600 determines the pair of the first reagent A1 and the second reagent B1 as the first reagent pair.
  • the analyzer 600 uses the first reagent A1 and the second reagent B1, which form the first reagent pair, and a known sample set by the user to create a calibration curve (first It is shown that a calibration curve) was created. Then, analyzer 600 analyzes the unknown sample using first reagent A1 and second reagent B1 while referring to the first calibration curve.
  • an unexpected imbalance between the amount of the first reagent and the amount of the second reagent may occur due to an abnormality occurring while the analyzer 600 is analyzing the unknown sample.
  • the imbalance means that the amount of the first reagent or the amount of the second reagent constituting the first reagent pair is less than the required amount.
  • the unbalance caused by the occurrence of the following abnormality is also called "abnormal unbalance".
  • FIG. 7(B) shows a case where abnormal imbalance causes the first reagent A1 to excessively decrease and the amount of the first reagent A1 to become less than the required amount.
  • the first abnormality among the three abnormalities is the dispensing error of the first reagent A1.
  • a dispensing error of the first reagent A1 occurs, for example, when the probe 11a aspirates an excessive amount of the first reagent A1.
  • the second abnormality is a dispensing error of the unknown sample when the unknown sample and the first reagent A1 are both dispensed.
  • the pipetting error of the unknown sample is, for example, a case where a sample pipetting device (not shown) does not properly pipette the sample. In this case, the first reagent A1 is not used and is discarded, for example. Therefore, also in this case, the first reagent A1 is excessively decreased.
  • the analyzer 600 dispenses the first reagent, and dispenses the second reagent after a predetermined period of time has elapsed.
  • the third abnormality is an abnormality in which some abnormality occurs in the analysis device 600 during the predetermined period and the analysis device 600 is brought to an emergency stop. In this case, the dispensed first reagent is discarded, for example. Therefore, also in this case, the first reagent A1 is excessively decreased.
  • the first sample A1 is excessively reduced.
  • control device 354 can identify the occurrence of abnormal imbalance based on the first reagent amount indicated by the first reagent information and the second reagent amount indicated by the second reagent information. As described above, the reagent amounts indicated by the six pieces of reagent information are updated at each interrupt time. Controller 354 also specifies the required amount of the first reagent and the required amount of the second reagent.
  • the control device 354 determines that an abnormal imbalance has occurred when the amount of the first reagent is less than the required amount or when the amount of the second reagent is less than the required amount. . Therefore, the controller 354 can identify the occurrence of abnormal imbalance based on the first reagent amount indicated by the first reagent information and the second reagent amount indicated by the second reagent information.
  • the analysis device 600 allows the user's predetermined operation by displaying the input screen of FIG. Then, when the user performs the permitted predetermined operation (operation to the Yes button 412 in FIG. 6), the analyzer 600, as shown in FIG. A second combination is determined based on the plurality of pieces of second reagent information.
  • the amount of the reagent (the first reagent A1 in the present embodiment) contained in the predetermined first reagent pair is changed to may be less than required.
  • the conventional analyzer determines that the amount of the first reagent A1 is less than the required amount, and uses another reagent pair, the first reagent A2 and the second reagent B2.
  • the second reagent B1 is not used even though the second reagent B1 remains sufficiently. Therefore, the second reagent B1 is wasted.
  • the analyzer 600 of the present embodiment determines the second reagent pair based on the amounts indicated by the three pieces of first reagent information and the amounts indicated by the three pieces of second reagent information. As shown in FIG. 7B, the amount of the first reagent A1 is less than the required amount, while the second sample B1 remains sufficiently. Therefore, analyzer 600 selects second reagent B1 as the second reagent included in the second combination. Further, when determining the second combination, the analyzer 600 excludes the first reagent A1 from the candidates for the second combination because the amount of the first reagent A1 is less than the required amount.
  • FIG. 7C shows an example in which the analyzer 600 selects the first reagent A2 as the first reagent included in the second combination.
  • the analyzer 600 changes the reagent pair from the first reagent pair to the second reagent pair by the user's predetermined operation. Therefore, the analyzer 600 selects the sufficiently remaining second reagent B2 as the second reagent pair, excludes the first reagent A1 that is less than the required amount, and uses the other first reagent (first reagent A2). It can be selected as a second reagent pair. Therefore, waste of the second reagent B1 remaining in the pure content can be prevented.
  • analyzer 600 creates a calibration curve (second calibration curve) using the first and second reagents that make up the second reagent pair and the known sample. allow.
  • the analysis device 600 detects an abnormal imbalance, it executes an alarm process.
  • the warning process may include, for example, displaying warning information on the display device 358 .
  • the warning information is, for example, information indicating that "the amount of the first reagent A1 is less than the required amount".
  • the warning information is characters such as "the amount of the first reagent A1 is less than the required amount”.
  • the warning process may include, for example, a process of outputting a warning sound from a speaker (not shown).
  • FIG. 8 is a diagram for explaining the second situation.
  • analyzer 600 creates a calibration curve
  • the user needs to set a known sample.
  • the analysis apparatus 600 needs to create a calibration curve during the analysis of an unknown sample, it is necessary to stop the analysis of the unknown sample and have the user set the known sample. Therefore, not only is the user's work increased, but the time required for analysis of the unknown sample is increased.
  • FIG. 8A is a diagram showing a case where, for example, analysis device 600 determines the first reagent pair before analysis device 600 analyzes an unknown sample.
  • FIG. 8A shows an example in which the analyzer 600 determines the pair of the first reagent A1 and the second reagent B1 as the first reagent pair.
  • analyzer 600 displays the input screen of FIG. 6 to allow the user's predetermined operation. Then, when the user performs the permitted predetermined operation, as shown in FIG. 8(B), analyzer 600 performs a second 2 Determine the combination.
  • analyzer 600 determines a first combination, a first calibration curve corresponding to the first combination, a second combination, and a second calibration curve corresponding to the second combination prior to analysis of the unknown sample. can do. Therefore, analyzer 600 analyzes an unknown sample by using the first and second reagents included in the first combination and the first and second reagents included in the second combination to provide the user with a known sample.
  • Unknown samples (a large amount of unknown samples) can be analyzed continuously without placing
  • the process of continuously analyzing an unknown sample using the first and second reagents contained in the first combination and the first and second reagents contained in the second combination is referred to as "seamless analysis.” Also called By executing seamless analysis, the analyzer 600 can reduce the user's trouble of setting a known sample and the time required to analyze an unknown sample.
  • FIG. 9 is a diagram showing storage of reagent pairs and calibration curves by the second storage unit 322.
  • the maximum number of reagent pairs to be stored and the maximum number of calibration curves to be stored in the second storage unit 322 are both "2", and are configured not to store three or more reagent pairs and three or more calibration curves. As a result, an increase in the storage area of the second storage unit 322 can be suppressed.
  • the maximum storage number is set to "2". However, no particular inconvenience occurs.
  • the processing unit 304 determines the first reagent pair, which is the first reagent A1 and the second reagent B1, and creates the first calibration curve corresponding to the first reagent pair, , the first reagent pair information L1 indicating the first reagent pair and the first calibration curve are stored in the second storage unit 322.
  • the first reagent pair information L1 is information indicating the first reagent A1 and the second reagent B1.
  • the processing unit 304 determines a second reagent pair, which is the first reagent A2 and the second reagent B2, for seamless analysis, and , the second reagent pair information L2 indicating the second reagent pair and the second calibration curve are stored in the second storage unit 322 when the second calibration curve corresponding to is created.
  • the second reagent pair information L2 is information indicating the first reagent A2 and the second reagent B2.
  • the processing unit 304 stores the second calibration curve in the second storage unit 322 while keeping the first calibration curve stored in the second storage unit 322. Therefore, the analyzer 600 can perform seamless analysis using the first calibration curve and the second calibration curve stored in the second storage unit 322 .
  • the processing unit 304 determines the second reagent pair, which is the first reagent A2 and the second reagent B1, for seamless analysis, and When the second calibration curve corresponding to the pair is created, the second storage unit 322 stores the second reagent pair information L2 indicating the second reagent pair and the second calibration curve.
  • the second reagent pair information L2 is information indicating the first reagent A2 and the second reagent B1.
  • the processing unit 304 stores the second calibration curve in the second storage unit 322 while keeping the first calibration curve stored in the second storage unit 322, as shown in FIG. 9(C).
  • the processing unit 304 deletes the unnecessary reagent pair information and the calibration curve corresponding to the reagent pair information.
  • the processing unit 304 deletes the reagent pair information and the calibration curve.
  • the processing unit 304 deletes the reagent pair information and the calibration curve.
  • the processing unit 304 deletes the first reagent pair information of the first reagent pair and the first calibration curve.
  • the processing unit 304 deletes unnecessary calibration curves. Therefore, the processing unit 304 can store other reagent pair information and calibration curves.
  • the processing unit 304 determines the second reagent pair to be used next to the first reagent pair.
  • the second reagent pair to be used next means "a reagent pair newly determined while the first reagent pair is stored in the second storage unit 322 (second reagent pair)”.
  • FIG. 10 is a flowchart showing an example of main processing of the analysis device 600. As shown in FIG. The flowchart of FIG. 10 starts when the user performs an operation to start the analysis of the unknown sample on the input device 356 . It is also assumed that the user sets the reagents used by the analyzer 600 in the reagent placement section 31a (the first reagent placement section 311a and the second reagent placement section 312a). Here, it is assumed that first reagents A1 to A3 and second reagents B1 to B3 are set by the user.
  • step S2 the analyzer 600 acquires reagent information of the set reagent from the sensor groups S1 to S6.
  • Analyzer 600 stores first reagent information for each of first reagents A1 to A3 and second reagent information for each of second reagents B1 to B3 in first storage section 321 (see FIG. 5).
  • step S4 the analyzer 600 determines the first reagent pair (see FIG. 7(A) or FIG. 8(A)) used in each analysis item of the unknown sample.
  • step S5 the analysis device 600 allows creation of a first calibration curve corresponding to the first reagent pair.
  • step S6 when a known sample is set for the user, the analyzer 600 uses the known sample and the first and second reagents configured by the determined first reagent pair. to create the first calibration curve.
  • step S8 the analysis device 600 displays the input screen of FIG. As a result, the analysis device 600 allows the user to perform a predetermined operation (operation to the Yes button 412). Then, in step S10, the analysis device 600 determines whether or not the Yes button 412 has been operated by the user. In step S10, if Yes button 412 is operated (YES in step S10), the process proceeds to step S10. Also, in step S10, when the No button 413 is operated (NO in step S10), the process proceeds to step S12.
  • the analyzer 600 controls the mode to the determination mode.
  • the determination mode is a mode for determining the second reagent pair, as described above. In this manner, analysis device 600 switches the mode of analysis device 600 between the analysis mode and the decision mode according to the user's operation on the input screen. Therefore, user convenience can be improved.
  • FIG. 11 is an example of main processing of interrupt processing executed by the analysis device 600.
  • the analyzer 600 calculates the reagent amounts of three pieces of the first reagent information and three pieces of the reagent amounts of the second reagent information every interrupt time (for example, one minute). Update. In this way, analyzer 600 periodically updates reagent information (three pieces of first reagent information and three pieces of second reagent information). Note that the reagent information to be updated is the reagent information acquired in step S2 of FIG.
  • FIG. 12 is a flow chart showing an example of main processing of the analysis device 600 during the decision mode in step S12.
  • step S202 the analyzer 600 prohibits updating reagent information.
  • This update of the reagent information is step S402 in FIG.
  • step S204 analyzer 600 determines a second reagent pair based on the first reagent information and the second reagent information.
  • the reason why the update of the reagent information is prohibited in step S202 will be explained. If the process of step S202 is not executed, the first reagent information or the second reagent information may be updated during the process (calculation) of determining the second reagent pair in step S204. In this case, analyzer 600 may determine the wrong second reagent pair. Therefore, the analyzer 600 prohibits updating of the reagent information during the determination mode, thereby suppressing execution of the erroneous second reagent pair determination process.
  • step S206 the analyzer 600 permits creation of a second calibration curve corresponding to the second reagent pair. Further, in step S206, analysis device 600 allows quality control analysis. Quality control analysis will now be described. After step S206, a second calibration curve is created. Quality control analysis is a process of confirming whether or not an appropriate analysis can be performed with the prepared second calibration curve. Quality control analysis is performed using QC (Quality Control) samples. By permitting the execution of the quality control analysis in this way, the user can grasp whether or not the unknown sample can be appropriately analyzed with the first reagent and the second reagent included in the second combination.
  • QC Quality Control
  • step S208 when a known sample is set for the user, analyzer 600 uses the known sample and the first and second reagents configured by the determined second reagent pair. Create a second calibration curve for each item using
  • step S210 the analysis device 600 determines whether or not the preparation of the second calibration curve has been completed for each analysis item.
  • the decision mode is terminated and the main processing of FIG. go to mode.
  • the analyzer 600 automatically changes the mode of the analyzer 600 to the analysis mode when the second reagent pair is determined in the determination mode and the second calibration curve corresponding to the second reagent pair is created. to control. Therefore, it is possible to omit the trouble of causing the user to control to the analysis mode, and as a result, it is possible to improve the user's convenience.
  • step S210 If it is determined in step S210 that the preparation of calibration curves for all analysis items has not been completed (NO in step S210), the process proceeds to step S212.
  • step S212 the analyzer 600 displays all the second calibration curves created in step S208 on the display device 358. FIG. Through the process of step S212, the user can grasp the created second calibration curve and the second calibration curve that has not been created.
  • step S214 the analysis device 600 determines whether or not to recreate the second calibration curve. For example, in step S214, analyzer 600 displays on display device 358 a screen (not shown) that allows input of an operation for redoing the creation of the second calibration curve. If the user has performed an operation to redo the second calibration curve (YES in step S214), the process returns to step S208. On the other hand, if the user has performed an operation not to redo the second calibration curve (NO in step S214), the process proceeds to the analysis mode of step S14.
  • the analysis device 600 has not generated the second calibration curves for all the analysis items (NO in step S210), but if the generation of the second calibration curves has not been redone (step S214 NO), the mode of the analyzer 600 is automatically controlled to the analysis mode. Therefore, it is possible to omit the trouble of causing the user to control to the analysis mode, and as a result, it is possible to improve the user's convenience.
  • FIG. 13 is a flowchart showing an example of main processing of the analysis device 600 in the analysis mode of step S14.
  • the analyzer 600 determines whether or not the reagent will run out during the analysis of the unknown sample based on the six pieces of reagent information.
  • step S102 if the reagent runs out (YES in step S102), the analyzer 600 determines whether or not the next reagent for the running out reagent has already been determined.
  • the analyzer 600 determines whether or not the next reagent for the running out reagent has already been determined.
  • step S104 determines whether or not the next reagent for the running out reagent has already been determined.
  • step S104 determines whether or not the next reagent for the running out reagent has already been determined.
  • NO is determined in step S104
  • step S106 the analysis item (analysis item corresponding to the insufficient reagent) that should have been analyzed with the "insufficient reagent" determined in step S104 is excluded from the analysis targets.
  • analysis device 600 can analyze the sample with the determined reagent in subsequent step S112. After the process of step S106 ends, the process proceeds to step S112.
  • step S108 the analyzer 600 determines whether or not the calibration curve for the reagent pair containing the next reagent resulting from the determination of YES in step S104 has been obtained.
  • analyzer 600 facilitates the creation of the calibration curve that was determined not to have been obtained at step S108. For example, the analysis device 600 displays a character image such as “Please create a calibration curve” on the display device 358 . Then, the process ends without analyzing the unknown sample.
  • step S106 determines whether the process of step S106 is completed, and if YES is determined in step S108.
  • step S112 analyzer 600 starts analyzing the unknown sample.
  • step S114 it is determined whether or not an abnormal imbalance has occurred during the analysis of the unknown sample. If it is determined that abnormal imbalance has not occurred, the process proceeds to step S116.
  • step S116 analyzer 600 determines whether the analysis of all unknown samples and the analysis of all analysis items of the unknown samples have been completed.
  • step S116 if all analyzes have not been completed (NO in step S116), the process returns to step S114. Further, in step S116, when all the analyzes have been completed (YES in step S116), the process ends.
  • step S114 if an abnormal imbalance occurs, in step S118, the analysis device 600 executes the warning process described above. Then, the process proceeds to step S12.
  • analyzer 600 determines the second reagent pair when the user performs a predetermined operation in steps S8 and S10. can do. Therefore, user convenience can be improved.
  • the analyzer 600 allows the user to perform a predetermined operation in step S8.
  • the analyzer 600 allows the user to perform a predetermined operation in step S8 even when an abnormal imbalance occurs (NO in step S114).
  • first case When the predetermined operation permitted when the first reagent pair is determined is accepted (hereinafter also referred to as “first case"), and when the abnormal imbalance occurs, the predetermined operation permitted is accepted.
  • the second reagent pair is determined by executing the same processing in both cases (hereinafter also referred to as “second case”). The same processing is step S204 in FIG. 12, for example. Therefore, the analyzer 600 of the present embodiment can reduce the processing capacity (the number of processes) compared to an analyzer that determines the second reagent pair by different processes for the first case and the second case. .
  • the analyzer 600 may automatically determine the second reagent pair without requiring a predetermined operation by the user. In other words, in FIGS. 10 and 13, if YES is determined in step S114, the warning process in step S118 is executed, and then the process proceeds to step S12 instead of step S8.
  • the second reagent pair can be determined without requiring user's operation. Therefore, even with such a configuration, user convenience can be improved.
  • the number of types of reagents used for analyzing an unknown sample is two, that is, the reagents are the first reagent and the second reagent.
  • a configuration in which the number of types of reagents is L may be adopted. That is, the first reagent combination (first reagent bottle combination) is a combination of L reagents (eg, first reagent, second reagent, and third reagent).
  • the second reagent combination (second reagent bottle combination) is also a combination of L reagents (eg, first reagent, second reagent, and third reagent).
  • analyzer 600 calculates the first parameter and stores the first parameter in a predetermined storage area. It may be stored (or held). In this case, the analyzer 600 calculates the second parameter by applying the reserved first parameter to the calibration curve after the calibration curve is created.
  • step S108 if NO is determined in step S108, the process proceeds to step S112. Then, the first parameter is calculated by the analysis of the unknown sample started in step S112. Each time, after the calibration curve is created, the analysis device 600 calculates the second parameter by applying the first parameter to the calibration curve.
  • the analyzer of this embodiment as a blood coagulation analyzer has been described.
  • the analysis device may be another analysis device.
  • Other analyzers are, for example, biochemical automated analyzers or immune item analyzers.
  • the calibration curves (the first calibration curve and the second calibration curve) are used to analyze the unknown sample using the first reagent and the second reagent.
  • a configuration in which the unknown sample is analyzed using the first reagent and the second reagent without using the calibration curve may be adopted.
  • An analysis apparatus employing such a configuration directly calculates the second parameter without calculating the first parameter.
  • the reagent information includes all of the reagent position, the amount of the reagent, the expiration date of the reagent, and the on-board stability of the reagent.
  • the reagent information may include at least one of reagent position, reagent quantity and expiration date of the reagent, on-board stability of the reagent.
  • the analyzer 600 detects the amount of the reagent by the above-described amount sensor or the like when determining the reagent to be used. Then, analyzer 600 identifies the remaining reagent based on the amount of the detected reagent and uses the remaining reagent.
  • An analysis device includes an arrangement unit, a first storage device, a control device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample.
  • a controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • the control device determines a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.
  • the first reagent used next to the first combination is determined at the user's desired timing. and a second reagent can be determined. Therefore, user convenience can be improved.
  • control device causes the amount of the first reagent contained in the first reagent bottle combination to increase to the first 2 Allow routine manipulations when less than required for use with reagents.
  • the user can perform the permitted predetermined operation.
  • the second combination which is the combination of the remaining second reagent and the new first reagent, is determined, so that waste of the second reagent can be avoided.
  • the first calibration curve for the first combination and the second calibration curve for the second combination Both a second calibration curve and a second calibration curve can be generated.
  • the user When creating a calibration curve for the analyzer, the user must set a known sample. Therefore, an unknown sample can be analyzed using the first and second reagents contained in the first combination and the first and second reagents contained in the second combination without requiring the user to place the known sample. , can continuously analyze unknown samples (a large number of unknown samples).
  • the controller permits the predetermined operation when the first reagent bottle combination is determined, and allows the predetermined operation when an abnormality occurs. is received and the predetermined operation permitted when the first reagent bottle combination is determined is performed, thereby determining the second reagent bottle combination.
  • the second Processing for determining combinations can be shared.
  • An analysis device includes an arrangement unit, a first storage device, a control device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample.
  • a controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • control device determines that the amount of the first reagent contained in the first reagent-bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent-bottle combination due to the occurrence of the abnormality. If so, the analysis mechanism determines a second reagent bottle combination containing the first and second reagents to be used next to the first reagent bottle combination.
  • the first calibration curve using the first reagent and the second reagent included in the first combination, and the second calibration curve using the first reagent and the second reagent included in the second combination A calibration curve can be created.
  • the analyzer described in Section 4 or 7 further includes a second storage device that stores the first calibration curve and the second calibration curve and does not store other calibration curves.
  • the second storage device stores at most two calibration curves, so an increase in the storage area of the second storage device can be suppressed.
  • the controller determines the mode of the analyzer as the first mode for analyzing the unknown sample and the second combination. Control to either the second mode or the second mode.
  • control device switches the mode of the analyzer between the first mode and the second mode according to the user's operation.
  • updating of the first update information and updating of the second update information are permitted during the second mode, updating of the first update information and updating of the second update information are executed during the process of determining the second combination. may be In this case, the controller may determine the wrong second combination. Therefore, by prohibiting the update of the reagent bottle information during the second mode, it is possible to suppress execution of the erroneous determination process of the second combination.
  • the controller controls the first reagent and the second reagent included in the second combination and the user It allows preparation of a second calibration curve using the set known samples, and quality control analysis using the second calibration curve.
  • the unknown sample is detected by the first reagent and the second reagent included in the second combination.
  • the user can grasp whether the analysis can be performed appropriately.
  • the reagent bottle information includes the amount of reagent, the expiration date of the reagent, and the onboard stability of the reagent. At least one.
  • the first combination and the second combination are determined based on at least one of the expiration date and onboard stability of the first reagent and at least one of the expiration date and onboard stability of the second reagent. can.
  • a control method is a control method for an analyzer.
  • the analysis device includes an arrangement section, a first storage device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method.
  • the control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • the control method comprises determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by the user is received. .
  • the first reagent used next to the first combination is determined at the user's desired timing. and a second reagent can be determined. Therefore, user convenience can be improved.
  • a control method is a control method for an analyzer.
  • the analysis device includes an arrangement section, a first storage device, and an analysis mechanism.
  • a plurality of reagent bottles are arranged in the arrangement section.
  • the first storage device stores reagent bottle information of a plurality of reagent bottles.
  • the analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method.
  • the control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item.
  • control method is such that the amount of the first reagent contained in the first reagent bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent bottle combination due to the occurrence of the abnormality. If so, determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An analysis device (600) comprises: a first storage unit (321) which stores three pieces of first reagent information and three pieces of second reagent information; a control device (354) which determines a reagent pair on the basis of the three pieces of first reagent information and the three pieces of second reagent information; and an analysis mechanism (300) which uses a first reagent and a second reagent included in the reagent pair determined by the control device (354) to analyze an unknown sample, wherein when the control device (354) has determined a first reagent pair and has received a prescribed operation from a user, the control device (354) determines a second reagent pair that includes a first reagent and a second reagent to used next by the analysis mechanism (300) after the first reagent pair.

Description

分析装置、および方法Analyzer and method

 本開示は、分析装置、および方法に関する。 The present disclosure relates to an analyzer and method.

 従来、試薬を使用して試料を分析する分析装置が提案されている。たとえば、特開2011-227048号公報(特許文献1)の分析装置は、複数の試薬容器(「試薬ボトル」とも称される。)に収容されている該複数種類の試薬(たとえば、第1試薬と第2試薬)を使用して、試料を分析する分析装置が開示されている。  Conventionally, analyzers that analyze samples using reagents have been proposed. For example, the analyzer disclosed in Japanese Patent Application Laid-Open No. 2011-227048 (Patent Document 1) includes a plurality of types of reagents (for example, a first reagent and a second reagent) to analyze a sample.

特開2011-227048号公報JP 2011-227048 A

 以下では、試薬容器は、試薬ボトルとも称される。また、以下では、使用される複数種類の試薬の組合せは、「試薬ボトル組合せ」とも称される。一般的に、分析装置が多量の試料を分析する場合には、使用する試薬の量は多くなる。したがって、分析装置が、多量の試料を分析する場合には、順に使用する複数の試薬ボトル組合せを決定する構成が考えられる。具体的には、分析装置は、たとえば、第1試薬ボトル組合せ、第1試薬ボトル組合せの次に使用する第2試薬ボトル組合せ、および第2試薬ボトル組合せの次に使用する第3試薬ボトル組合せを決定する。 Below, the reagent container is also referred to as a reagent bottle. Also, hereinafter, a combination of a plurality of types of reagents used is also referred to as a "reagent bottle combination". In general, when the analyzer analyzes a large number of samples, the amount of reagents used is large. Therefore, when the analyzer analyzes a large amount of samples, a configuration is conceivable in which a combination of a plurality of reagent bottles to be used in sequence is determined. Specifically, the analyzer selects, for example, a first reagent bottle combination, a second reagent bottle combination to be used next to the first reagent bottle combination, and a third reagent bottle combination to be used next to the second reagent bottle combination. decide.

 しかしながら、このような構成が採用された分析装置において、分析装置が複数の試薬ボトル組合せを決定した後には、該複数の試薬ボトル組合せを変更することはできない。したがって、ユーザの利便性を向上できないという問題が生じ得る。 However, in an analyzer adopting such a configuration, after the analyzer has determined a plurality of reagent bottle combinations, the plurality of reagent bottle combinations cannot be changed. Therefore, a problem may arise that user convenience cannot be improved.

 本開示は、このような課題を解決するためになされたものであって、その目的は、試薬ボトル組合せの決定においてユーザの利便性を向上させる分析装置および分析方法を提供することである。 The present disclosure has been made to solve such problems, and its purpose is to provide an analysis device and an analysis method that improve the user's convenience in determining reagent bottle combinations.

 本開示の分析装置は、配置部と、第1記憶装置と、制御装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。制御装置は、複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトル組合せを決定する。分析機構は、制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する。制御装置は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定する。また、制御装置は、ユーザによる所定操作を受付けた場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する。 The analysis device of the present disclosure includes an arrangement section, a first storage device, a control device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles. The analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample. A controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Further, when receiving a predetermined operation by the user, the control device determines a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.

 本開示の分析装置は、配置部と、第1記憶装置と、制御装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。制御装置は、複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトル組合せを決定する。分析機構は、制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する。制御装置は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定する。また、制御装置は、異常が発生することにより、第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する。 The analysis device of the present disclosure includes an arrangement section, a first storage device, a control device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles. The analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample. A controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item. In addition, the control device determines that the amount of the first reagent contained in the first reagent-bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent-bottle combination due to the occurrence of the abnormality. If so, the analysis mechanism determines a second reagent bottle combination containing the first and second reagents to be used next to the first reagent bottle combination.

 本開示の制御方法は、分析装置の制御方法である。分析装置は、配置部と、第1記憶装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。分析機構は、制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する。制御方法は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することを備える。また、制御方法は、ユーザによる所定操作を受付けた場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することを備える。 The control method of the present disclosure is a control method for an analyzer. The analysis device includes an arrangement section, a first storage device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method. The control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Also, the control method comprises determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by the user is received. .

 本開示の制御方法は、分析装置の制御方法である。分析装置は、配置部と、第1記憶装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。分析機構は、制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する。制御方法は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することを備える。また、制御方法は、異常が発生することにより、第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することを備える。 The control method of the present disclosure is a control method for an analyzer. The analysis device includes an arrangement section, a first storage device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method. The control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Further, the control method is such that the amount of the first reagent contained in the first reagent bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent bottle combination due to the occurrence of the abnormality. If so, determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.

 本開示の分析装置においては、試薬ボトル組合せの決定においてユーザの利便性を向上させる。 The analyzer of the present disclosure improves user convenience in determining the combination of reagent bottles.

本実施の形態の分析装置の全体構成を機能的に示す図である。1 is a diagram functionally showing the overall configuration of an analyzer according to the present embodiment; FIG. 分析機構の構成例を示す平面図である。FIG. 4 is a plan view showing a configuration example of an analysis mechanism; 本実施の形態の試薬配置部の一例を示す図である。It is a figure which shows an example of the reagent arrangement|positioning part of this Embodiment. 制御装置の機能ブロック図である。It is a functional block diagram of a control device. 試薬情報の一例を示す図である。It is a figure which shows an example of reagent information. 入力画面の一例を示す図である。It is a figure which shows an example of an input screen. 第1の状況を示す図である。Fig. 3 shows a first situation; 第2の状況を示す図である。Fig. 2 shows a second situation; 試薬ペアおよび検量線の記憶を示す図である。FIG. 13 illustrates storage of reagent pairs and calibration curves; 分析装置の主な処理の一例を示すフローチャートである。4 is a flowchart showing an example of main processing of the analyzer; 分析装置の主な割込処理の主な処理の一例である。It is an example of main processing of main interrupt processing of the analyzer. 決定モード中の分析装置の主な処理の一例を示すフローチャートである。4 is a flow chart showing an example of main processing of the analyzer in decision mode; 分析モード中の分析装置の主な処理の一例を示すフローチャートである。4 is a flowchart showing an example of main processing of the analyzer in analysis mode;

 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.

 [全体構成]
 本開示の血液凝固分析装置(以下、単に「分析装置600」と称する。)の全体構成を説明する。分析装置600は、プローブ(ノズル)により試料および試薬をキュベットに分注し、キュベット内の反応状態を光学的に測定するように構成される。試料は、たとえば、被験者の血液成分(血清又は血漿)または尿などである。また、分析装置600は、複数種類の試薬を使用して、試料を分析できる。本実施の形態においては、複数種類の試薬は、第1試薬および第2試薬である。
[overall structure]
The overall configuration of the blood coagulation analyzer of the present disclosure (hereinafter simply referred to as "analyzer 600") will be described. The analyzer 600 is configured to dispense a sample and reagent into a cuvette with a probe (nozzle) and optically measure the reaction state in the cuvette. The sample is, for example, a subject's blood component (serum or plasma) or urine. Also, the analyzer 600 can analyze a sample using multiple types of reagents. In the present embodiment, the multiple types of reagents are the first reagent and the second reagent.

 図1は、本実施の形態に従う分析装置600の全体構成を機能的に示す図である。本実施の形態1で説明される分析装置600は、血液凝固分析装置の一例である。 FIG. 1 is a diagram functionally showing the overall configuration of analysis device 600 according to the present embodiment. Analyzer 600 described in the first embodiment is an example of a blood coagulation analyzer.

 図1を参照して、この分析装置600は、キュベット供給装置110と、キュベット移送装置120と、攪拌装置200と、制御装置354と、キュベット廃棄容器400とを備える。なお、以下では、キュベット供給装置110、キュベット移送装置120、およびキュベット廃棄容器400を、それぞれ単に「供給装置110」、「移送装置120」、および「廃棄容器400」と称する。 Referring to FIG. 1, this analyzer 600 includes a cuvette supply device 110, a cuvette transfer device 120, a stirring device 200, a control device 354, and a cuvette disposal container 400. The cuvette supply device 110, the cuvette transfer device 120, and the cuvette disposal container 400 are hereinafter simply referred to as "supply device 110," "transfer device 120," and "disposal container 400," respectively.

 分析装置600は、サンプル分注ポートP1をさらに備える。供給装置110は、キュベット収容部111(以下、単に「収容部111」と称する。)と、供給機構112とを含む。収容部111は、多数のキュベット(たとえば最大で1000個)を収容可能に構成される。供給機構112は、収容部111に収容されているキュベットをサンプル分注ポートP1へ供給する。収容部111および供給機構112の詳細については、後ほど図2にて説明する。 The analyzer 600 further includes a sample dispensing port P1. The supply device 110 includes a cuvette storage section 111 (hereinafter simply referred to as “storage section 111 ”) and a supply mechanism 112 . The storage section 111 is configured to be able to store a large number of cuvettes (for example, 1000 cuvettes at maximum). The supply mechanism 112 supplies the cuvette housed in the housing portion 111 to the sample dispensing port P1. The details of the container 111 and the supply mechanism 112 will be described later with reference to FIG.

 サンプル分注ポートP1は、図示しないサンプル分注装置によってキュベットに試料を分注可能な位置に配置される。サンプル分注ポートP1にキュベットがセットされると、サンプル分注装置によってキュベットに試料が分注される。 The sample pipetting port P1 is arranged at a position where the sample can be pipetted into the cuvette by a sample pipetting device (not shown). When a cuvette is set in the sample dispensing port P1, the sample dispensing device dispenses the sample into the cuvette.

 移送装置120は、チャック付きアーム121(以下、単に「アーム121」と称する)と、駆動装置122とを含む。アーム121は、キュベットを把持可能に構成されたチャック(後述のチャック121a)を有する。アーム121は、チャックによってキュベットを着脱可能に保持するように構成されている。駆動装置122は、アーム121を作動させてチャックの位置を変更するように構成される。アーム121および駆動装置122の詳細についても、後ほど図2にて説明する。 The transfer device 120 includes an arm 121 with a chuck (hereinafter simply referred to as "arm 121") and a drive device 122. The arm 121 has a chuck (chuck 121a, which will be described later) that can grip a cuvette. Arm 121 is configured to detachably hold the cuvette by means of a chuck. Drive 122 is configured to actuate arm 121 to change the position of the chuck. Details of the arm 121 and the drive device 122 will also be described later with reference to FIG.

 分析装置600は、移送装置120によりキュベットを移送可能な複数のポート、具体的には、攪拌ポートP2、測光ポートP3、廃棄ポートP5、吸引ポートP11、および吸引ポートP12をさらに備える。測光ポートP3は、複数の凝固ポートP3aと、複数の比色ポートP3bとを含む。サンプル分注ポートP1、攪拌ポートP2、測光ポートP3、廃棄ポートP5、吸引ポートP11、および吸引ポートP12の各々には、キュベットの有無を検出するポートセンサが設けられている。 The analysis device 600 further includes a plurality of ports capable of transferring cuvettes by the transfer device 120, specifically, a stirring port P2, a photometry port P3, a waste port P5, a suction port P11, and a suction port P12. The photometric ports P3 include multiple coagulation ports P3a and multiple colorimetric ports P3b. Each of the sample dispensing port P1, stirring port P2, photometric port P3, disposal port P5, suction port P11, and suction port P12 is provided with a port sensor that detects the presence or absence of a cuvette.

 攪拌ポートP2は、攪拌装置200の攪拌位置に配置される。攪拌装置200は、攪拌ポートP2にキュベットがセットされると、所定の条件(たとえば、攪拌速度および攪拌時間)でキュベットの内容物を攪拌するように構成されている。 The stirring port P2 is arranged at the stirring position of the stirring device 200 . The stirrer 200 is configured to stir the contents of the cuvette under predetermined conditions (eg, stirring speed and stirring time) when the cuvette is set in the stirring port P2.

 凝固ポートP3aおよび比色ポートP3bの各々は、図示しない測光部に配置されている。凝固ポートP3aおよび比色ポートP3bの各々には、光源から光が照射され、照射された光を検出する光検出器(図示せず)が設けられている。 Each of the coagulation port P3a and the colorimetric port P3b is arranged in a photometric section (not shown). Each of the coagulation port P3a and the colorimetric port P3b is provided with a photodetector (not shown) for detecting the irradiated light, which is irradiated with light from the light source.

 制御装置354は、凝固ポートP3aおよび比色ポートP3bの各々の光検出器から光量の検出結果を受け、各ポートにセットされたキュベットの内容物に対して所定の測定を行う。すなわち、制御装置354は、凝固ポートP3aについては、光検出器によって検出される散乱光の光量を用いて、キュベット内の試料の凝固時間測定を行う。また、制御装置354は、比色ポートP3bについては、光検出器によって検出される透過光の光量を用いて、比色法に基づいて、キュベット内の試料の吸光度を測定する。 The controller 354 receives the detection results of the amount of light from the photodetectors of the coagulation port P3a and the colorimetric port P3b, and performs predetermined measurements on the contents of the cuvettes set in each port. That is, for the coagulation port P3a, the controller 354 uses the amount of scattered light detected by the photodetector to measure the coagulation time of the sample in the cuvette. For the colorimetric port P3b, the controller 354 measures the absorbance of the sample in the cuvette based on the colorimetric method using the amount of transmitted light detected by the photodetector.

 制御装置354は、主たる構成要素として、CPU(Central Processing Unit)360と、メモリ361と、通信I/F362とを有する。各構成要素はデータバスによって相互に接続されている。メモリ361は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、HDD(Hard Disk Drive)などにより構成される。 The control device 354 has a CPU (Central Processing Unit) 360, a memory 361, and a communication I/F 362 as main components. Each component is interconnected by a data bus. The memory 361 is composed of, for example, ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and the like.

 ROMは、CPU360にて実行されるプログラムを格納する。RAMは、CPU360におけるプログラムの実行により生成されるデータなどを一時的に格納する。RAMは、作業領域として利用される一時的なデータメモリとして機能できる。HDD166は、不揮発性の記憶装置である。また、HDD166に代えて、フラッシュメモリなどの半導体記憶装置を採用してもよい。 The ROM stores programs executed by the CPU 360 . The RAM temporarily stores data generated by executing programs in the CPU 360 . RAM can function as a temporary data memory that is used as a working area. HDD 166 is a non-volatile storage device. Also, instead of the HDD 166, a semiconductor storage device such as a flash memory may be employed.

 また、ROMに格納されているプログラムは、記憶媒体に格納されて、プログラムプロダクトとして流通されてもよい。または、プログラムは、情報提供事業者によって、いわゆるインターネットなどによりダウンロード可能なプログラムプロダクトとして提供されてもよい。制御装置354は、記憶媒体またはインターネットなどにより提供されたプログラムを読み取る。制御装置354は、読み取ったプログラムを所定の記憶領域(たとえば、ROM)に記憶する。CPU360は、該記憶されたプログラムを実行することにより上述の表示処理を実行する。 Also, the program stored in the ROM may be stored in a storage medium and distributed as a program product. Alternatively, the program may be provided by an information provider as a downloadable program product via the so-called Internet. The control device 354 reads a program provided by a storage medium, the Internet, or the like. Control device 354 stores the read program in a predetermined storage area (for example, ROM). CPU 360 executes the above-described display processing by executing the stored program.

 記憶媒体は、DVD-ROM(Digital Versatile Disk Read Only Memory)、CD-ROM(compact disc read-only memory)、FD(Flexible Disk)、ハードディスクに限られず、磁気テープ、カセットテープ、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc)、光カード、マスクROM、EPROM(Electronically Programmable Read-Only Memory)、EEPROM(Electronically Erasable Programmable Read-Only Memory)、フラッシュROMなどの半導体メモリなどの固定的にプログラムを担持する媒体としてもよい。また、記録媒体は、プログラムなどをコンピュータが読取可能な非一時的な媒体である。 Storage media are not limited to DVD-ROM (Digital Versatile Disk Read Only Memory), CD-ROM (compact disc read-only memory), FD (Flexible Disk), hard disk, magnetic tape, cassette tape, optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), semiconductor memory such as flash ROM The recording medium is a non-transitory medium in which the program and the like can be read by the computer.

 通信I/F362は、他の機器と通信するためのインターフェースである。他の機器は、たとえば、後述の分析機構300と、後述の量センサ群S1~S6と、表示装置358と、入力装置356とを有する。 A communication I/F 362 is an interface for communicating with other devices. Other equipment includes, for example, an analysis mechanism 300, which will be described later, a group of quantity sensors S1-S6, which will be described later, a display device 358, and an input device 356.

 入力装置356は、たとえばキーボードあるいはマウスなどのポインティングデバイスであり、ユーザからの指令を受付ける。表示装置358は、たとえば液晶(LCD:Liquid Crystal Display)パネルで構成され、ユーザに情報を表示する。ユーザインターフェースとしてタッチパネルが用いられる場合には、入力装置356と表示装置358とが一体的に形成される。 The input device 356 is, for example, a pointing device such as a keyboard or a mouse, and receives commands from the user. The display device 358 is composed of, for example, a liquid crystal display (LCD) panel, and displays information to the user. When a touch panel is used as the user interface, the input device 356 and the display device 358 are integrally formed.

 廃棄ポートP5は、使用済みのキュベットを回収するように構成される。廃棄ポートP5は、たとえば配管を通じて廃棄容器400に接続されている。廃棄ポートP5にキュベットが投入されると、キュベットは廃棄容器400へ導かれる。 The waste port P5 is configured to collect used cuvettes. The waste port P5 is connected to the waste container 400 through piping, for example. When the cuvette is introduced into the disposal port P5, the cuvette is led to the disposal container 400. FIG.

 N(Nは2以上の整数)個の第1試薬は、それぞれN個の第1試薬ボトルに収容される。第1試薬が収容されたN個の第1試薬ボトルは、第1試薬配置部311aにより保持される。吸引スポットP11は、N個の第1試薬ボトルのうちのいれかの第1試薬ボトルから第1試薬を吸引するように構成される。 The N (N is an integer equal to or greater than 2) first reagents are accommodated in N first reagent bottles, respectively. The N first reagent bottles containing the first reagent are held by the first reagent placing portion 311a. The aspiration spot P11 is configured to aspirate the first reagent from any one of the N first reagent bottles.

 M(Mは2以上の整数)個の第2試薬は、それぞれ複数の第2試薬ボトルに収容される。第2試薬が収容されたM個の第2試薬ボトルは、第2試薬配置部312aにより保持される。吸引スポットP12は、M個の第2試薬ボトルのうちのいれかの第2試薬ボトルから第2試薬を吸引するように構成される。本実施の形態においては、N=M=3とする。また、試薬配置部は、「試薬保持領域」または「試薬保持機構」と称されてもよい。 The M (M is an integer equal to or greater than 2) second reagents are each contained in a plurality of second reagent bottles. The M second reagent bottles containing the second reagents are held by the second reagent placement portion 312a. The aspiration spot P12 is configured to aspirate the second reagent from any one of the M second reagent bottles. In this embodiment, N=M=3. The reagent placement section may also be referred to as a "reagent holding area" or a "reagent holding mechanism."

 図2は、分析装置600の分析機構300の構成例を示す平面図である。分析機構300は、制御装置354の制御により、未知試料または既知試料などを分析する。また、分析機構300は、分析項目に対して使用する試薬ボトル組合せを使用して未知試料を分析する。ここで、「試薬ボトル組合せを使用する」とは、典型的には、「試薬ボトル組合せを構成する複数の試薬を消費する」ということである。図2には、互いに直交する3つの軸(X軸、Y軸およびZ軸)が示されており、X軸およびY軸は、それぞれ分析装置600の幅方向および奥行き方向を示し、Z軸は、鉛直方向(すなわち上下方向)を示している。Z軸の矢印が指し示す方向は上方向であり、その反対方向は下方向(すなわち重力方向)である。 FIG. 2 is a plan view showing a configuration example of the analysis mechanism 300 of the analysis device 600. FIG. Analysis mechanism 300 analyzes an unknown sample or a known sample under the control of control device 354 . Also, the analysis mechanism 300 analyzes unknown samples using reagent bottle combinations used for analysis items. Here, "using a reagent bottle combination" typically means "consuming a plurality of reagents constituting the reagent bottle combination". FIG. 2 shows three mutually orthogonal axes (X-axis, Y-axis and Z-axis). , indicates the vertical direction (ie, the up-down direction). The direction indicated by the Z-axis arrow is upward, and the opposite direction is downward (ie, the direction of gravity).

 図1および図2を参照して、収容部111には、多数のキュベット100が収容されている。ユーザは、収容部111の投入口(図示せず)から収容部111内へキュベット100を補給することができる。キュベット100は、光を透過可能であれば材質は任意であり、たとえば透明のアクリル製のものを採用することができる。 With reference to FIGS. 1 and 2, a large number of cuvettes 100 are accommodated in the accommodation section 111 . A user can replenish the cuvette 100 into the containing portion 111 from an inlet (not shown) of the containing portion 111 . The cuvette 100 can be made of any material as long as it can transmit light, and for example, a transparent acrylic material can be used.

 供給機構112は、収容部111からキュベット100を1つずつ取り出してサンプル分注ポートP1に供給するように構成される。供給機構112におけるキュベット100の移送方式は任意であり、たとえば、滑り台方式(自重方式)、ベルトコンベア方式、ローラ方式、スライド方式のいずれであってもよい。供給機構112は、サンプル分注ポートP1のポートセンサの検出結果を受信し、サンプル分注ポートP1が空いたら次のキュベット100をポートP1に供給するように構成される。但し、これに限られず、供給機構112は、後述の制御装置からの指示に従ってキュベット100をサンプル分注ポートP1に供給するように構成されてもよい。 The supply mechanism 112 is configured to take out the cuvettes 100 one by one from the container 111 and supply them to the sample dispensing port P1. A transfer method of the cuvette 100 in the supply mechanism 112 is arbitrary, and may be, for example, a slide method (self-weight method), a belt conveyor method, a roller method, or a slide method. The supply mechanism 112 is configured to receive the detection result of the port sensor of the sample dispensing port P1 and supply the next cuvette 100 to the port P1 when the sample dispensing port P1 becomes empty. However, the supply mechanism 112 is not limited to this, and may be configured to supply the cuvette 100 to the sample dispensing port P1 according to an instruction from a control device, which will be described later.

 アーム21は、サンプル吸引ポートP21から吸引される試料を、サンプル分注ポートP1にセットされたキュベット100へ分注するための機器(サンプル分注装置)である。アーム21は、プローブ21aと、アーム本体21bとを含む。アーム本体21bは、回転軸23aの回りを旋回可能に構成されており、アーム本体21bが旋回することによって、アーム本体21bの先端に設けられるプローブ21aは、XY平面において円弧状の軌道L2を描くように移動することができる。 The arm 21 is a device (sample dispensing device) for dispensing the sample aspirated from the sample aspiration port P21 into the cuvette 100 set in the sample dispensing port P1. The arm 21 includes a probe 21a and an arm body 21b. The arm body 21b is configured to be rotatable around a rotation shaft 23a, and by rotating the arm body 21b, the probe 21a provided at the tip of the arm body 21b draws an arc-shaped trajectory L2 on the XY plane. You can move like

 アーム本体21bが旋回することによって、プローブ21aは、軌道L2上に設けられたサンプル分注ポートP1、サンプル吸引ポートP21、SポートP22(より特定的には、ポートP22a~P22i)、および洗浄ポートP23の各々に移動することができる。なお、SポートP22について、たとえば、ポートP22a,P22bは洗剤ポートであり、ポートP22c,P22d,P22eは緩衝液ポートであり、ポートP22f,P22g,P22h,P22iは希釈液ポートである。 By rotating the arm main body 21b, the probe 21a moves to the sample dispensing port P1, the sample suction port P21, the S port P22 (more specifically, the ports P22a to P22i), and the washing port provided on the track L2. It is possible to move to each of P23. Regarding the S port P22, for example, ports P22a and P22b are detergent ports, ports P22c, P22d and P22e are buffer ports, and ports P22f, P22g, P22h and P22i are diluent ports.

 なお、図示していないが、サンプル吸引ポートP21の下方には、可動式のサンプルラックが設けられている。サンプルラックには、試料が入った複数のサンプル容器が載置されており、サンプル分注ポートP1にセットされたキュベット100へのサンプルの分注に先立ち、サンプルラックは、分注対象のサンプル容器がサンプル吸引ポートP21の直下に配置されるように作動する。CTS機構24は、サンプル吸引ポートP21の近傍に設けられ、分注対象のサンプル容器にキャップが付いている場合に、ピアサでキャップを穿孔するように構成される。 Although not shown, a movable sample rack is provided below the sample suction port P21. A plurality of sample containers containing samples are placed on the sample rack. is placed directly below the sample aspiration port P21. The CTS mechanism 24 is provided near the sample aspiration port P21, and is configured to pierce the cap with a piercer when the sample container to be dispensed has a cap.

 測光部130には、複数の測光ポートP3(複数の凝固ポートP3aおよび比色ポートP3b)が円弧状に配置されている。この例では、複数(本実施の形態では14個)の凝固ポートP3aと、複数(本実施の形態では6個)の比色ポートP3bが配置されている。アーム11は、吸引ポートP11または吸引P12から吸引される試薬を、測光ポートP3にセットされている対象のキュベット100へ分注するための機器であり、プローブ11aと、アーム本体11bとを含む。アーム本体11bは、回転軸13aの回りを旋回可能に構成されており、アーム本体11bが旋回することによって、アーム本体11bの先端に設けられるプローブ11aは、XY平面において円弧状の軌道L1を描くように移動することができる。 The photometry unit 130 has a plurality of photometry ports P3 (a plurality of coagulation ports P3a and colorimetric ports P3b) arranged in an arc. In this example, a plurality (14 in this embodiment) of coagulation ports P3a and a plurality of (6 in this embodiment) of colorimetric ports P3b are arranged. The arm 11 is a device for dispensing the reagent aspirated from the aspiration port P11 or the aspiration P12 into the target cuvette 100 set in the photometry port P3, and includes a probe 11a and an arm body 11b. The arm body 11b is configured to be rotatable around a rotation shaft 13a, and by rotating the arm body 11b, the probe 11a provided at the tip of the arm body 11b draws an arc-shaped trajectory L1 on the XY plane. You can move like

 アーム本体11bが旋回することによって、プローブ11aは、軌道L1上に設けられた各凝固ポートP3a、各比色ポートP3b、吸引ポートP11,P12、回収ポートP13の各々に移動することができる。なお、特に図示していないが、実際には、プローブ11aは試薬間のコンタミネーションを回避するために2本のプローブで構成される。試薬配置部31a(試薬トレイ)は外周トレイと内周トレイとを有している。外周トレイ上の試薬(又は洗浄液)および内周トレイ上の試薬をそれぞれ2本のプローブで吸引ポートP11,P12から吸引することができる。なお、回収ポートP13は、使用済みの洗浄液を回収するポートであり、特に図示しないが、プローブ11aから吐出される水を溜めてプローブ先端の外面を洗浄する水溜め部と、液体を廃棄する廃棄部とを含む。 By rotating the arm body 11b, the probe 11a can move to each of the coagulation ports P3a, colorimetric ports P3b, suction ports P11 and P12, and recovery port P13 provided on the track L1. Although not shown, the probe 11a is actually composed of two probes in order to avoid contamination between reagents. The reagent placement section 31a (reagent tray) has an outer peripheral tray and an inner peripheral tray. The reagent (or washing liquid) on the outer peripheral tray and the reagent on the inner peripheral tray can be sucked from the suction ports P11 and P12 by two probes, respectively. The recovery port P13 is a port for recovering the used washing liquid. Although not shown, a water reservoir for collecting water discharged from the probe 11a to wash the outer surface of the tip of the probe, and a waste port for discarding the liquid. including the part.

 参照ポートP4は、測光ポートP3(測光部130)とは別の場所に設けられる。上述のように、参照ポートP4は、各比色ポートP3bと同じ構成であるが、キュベット100をセットする必要がないため、たとえば、分析機構300上ではなく分析装置600の内部に配置される。 The reference port P4 is provided at a different location from the photometry port P3 (photometry unit 130). As mentioned above, the reference port P4 has the same configuration as each colorimetric port P3b, but is located inside the analyzer 600 rather than on the analyzer 300, for example, because it does not require the cuvette 100 to be set.

 吸引ポートP11の下方には、第1試薬配置部311a(試薬配置部31a)が配置される。第1試薬配置部311aにより、各々が第1試薬を収容している複数の第1試薬ボトルが保持される。また、吸引ポートP12の下方には、第2試薬配置部312a(試薬配置部31a)が配置される。第2試薬配置部312aにより、各々が第2試薬を収容している複数の第2試薬ボトルが保持される。試薬配置部31aは、円盤状のターンテーブルによって構成され、ターンテーブルを駆動することにより、所望の試薬(第1試薬または第2試薬)洗剤容器1aを吸引ポートP11,P12の直下に配置することができる。第1試薬または第2試薬は、プローブ11aにより吸引され、アーム11により所定の位置に搬送される。たとえば、第1試薬または第2試薬は、サンプル分注ポートP1のキュベット(未知試料または既知試料が収容されているキュベット)内に搬送される。未知試料とは、分析装置600の分析対象の試薬である。既知試料は、分析装置600が分析する項目(たとえば、分析対象の成分の濃度)が既知である試料である。 A first reagent placement portion 311a (reagent placement portion 31a) is placed below the suction port P11. The first reagent placement portion 311a holds a plurality of first reagent bottles each containing a first reagent. A second reagent placement portion 312a (reagent placement portion 31a) is arranged below the suction port P12. A plurality of second reagent bottles each containing a second reagent are held by the second reagent placement portion 312a. The reagent placement unit 31a is composed of a disk-shaped turntable, and by driving the turntable, a desired reagent (first reagent or second reagent) detergent container 1a can be placed directly below the suction ports P11 and P12. can be done. A first reagent or a second reagent is aspirated by the probe 11 a and transported to a predetermined position by the arm 11 . For example, a first reagent or a second reagent is delivered into a cuvette (a cuvette containing an unknown or known sample) of sample dispensing port P1. An unknown sample is a reagent to be analyzed by analyzer 600 . A known sample is a sample for which the item analyzed by analyzer 600 (for example, the concentration of the component to be analyzed) is known.

 アーム121は、チャック121aと、アーム本体121bとを含む。チャック121aは、キュベット100を把持可能に構成される。チャック121aがキュベット100を保持する方式は任意であり、チャック121aは、メカニカルチャックであってもよいし、マグネットチャックであってもよいし、真空チャックであってもよい。アーム本体121bは、回転軸13aの回りを回転体122aとともに旋回可能に構成されている。回転体122aが回転することによって、回転体122aと一体的にアーム本体121bが旋回し、アーム本体121bの先端に設けられるチャック121aは、XY平面において円弧状の軌道L1を描くように移動することができる。 The arm 121 includes a chuck 121a and an arm body 121b. The chuck 121a is configured to be able to grip the cuvette 100 . The method by which the chuck 121a holds the cuvette 100 is arbitrary, and the chuck 121a may be a mechanical chuck, a magnetic chuck, or a vacuum chuck. The arm main body 121b is configured to be able to turn around the rotary shaft 13a together with the rotating body 122a. When the rotating body 122a rotates, the arm body 121b rotates integrally with the rotating body 122a, and the chuck 121a provided at the tip of the arm body 121b moves so as to draw an arc-shaped trajectory L1 on the XY plane. can be done.

 上記のように、アーム11とアーム121との旋回中心は同じである。軌道L1上には、サンプル分注ポートP1と、攪拌ポートP2と、廃棄ポートP5と、複数の測光ポートP3(複数の凝固ポートP3aおよび複数の比色ポートP3b)と、吸引ポートP11,P12と、回収ポートP13とが設けられている。そして、アーム121は、サンプル分注ポートP1、攪拌ポートP2、各測光ポートP3、および廃棄ポートP5にチャック121aを移動させることができ、アーム11は、吸引ポートP11,P12、回収ポートP13、攪拌ポートP2、および各測光ポートP3にプローブ11aを移動させることができる。 As described above, the pivot centers of the arms 11 and 121 are the same. On the trajectory L1 are a sample pipetting port P1, a stirring port P2, a waste port P5, a plurality of photometric ports P3 (a plurality of coagulation ports P3a and a plurality of colorimetric ports P3b), and suction ports P11 and P12. , and a recovery port P13. The arm 121 can move the chuck 121a to the sample dispensing port P1, the agitation port P2, each photometric port P3, and the disposal port P5. The probe 11a can be moved to the port P2 and each photometric port P3.

 また、分析装置600は、未知試料に対して所定処理を実行することにより、第1パラメータを取得する。そして、分析装置600は、該第1パラメータを検量線に適用することにより、第2パラメータを算出する。第2パラメータは、本実施の形態の分析装置600の分析目的のパラメータである。第2パラメータは、未知試料に含まれる対象物質の濃度である。 Also, the analyzer 600 acquires the first parameter by executing a predetermined process on the unknown sample. Then, the analyzer 600 calculates the second parameter by applying the first parameter to the calibration curve. The second parameter is a parameter for the analysis purpose of analysis device 600 of the present embodiment. A second parameter is the concentration of the target substance contained in the unknown sample.

 以下、具体的に説明する。分析装置600は、所定の測定時間に亘って所定の処理を実行することにより、試料を分析する。測定時間は、たとえば、検体と試薬(たとえば、第1試薬および第2試薬)とが収容されたキュベットに対して、光源(図示せず)からの光が当たったときから開始される。また、所定の処理は、未知試料に対して光を当てる処理である。分析装置600は、所定の処理を実行することにより、未知試料の吸光度を算出する。上記の所定処理の一例が、所定の測定時間に亘って未知試料に対して光を当てるという処理に該当する。さらに、分析装置600は、測定時間における吸光度の傾き(勾配)を算出する。この「吸光度の傾き」が「第1パラメータ」の一例に該当する。また、分析装置600は、予め、上記対象物質の濃度が既知である既知試料に対して上記の所定処理を実行することにより検量線を作成する。検量線において、吸光度の傾きと、上記対象物質の濃度とが対応付けられている。分析装置600は、吸光度差の傾きを算出すると、検量線を参照し、算出された吸光度の傾きに対応する上記対象物質の濃度を測定結果として出力する。「上記対象物質の濃度」が「第2パラメータ」の一例に該当する。なお、所定処理は他の処理としてもよく、第1パラメータ、および第2パラメータは他のパラメータとしてもよい。 A specific explanation is provided below. The analyzer 600 analyzes the sample by executing a predetermined process over a predetermined measurement time. The measurement time starts, for example, when light from a light source (not shown) hits a cuvette containing a sample and reagents (eg, first reagent and second reagent). Further, the predetermined process is a process of exposing the unknown sample to light. Analysis device 600 calculates the absorbance of the unknown sample by executing a predetermined process. An example of the predetermined processing described above corresponds to the processing of exposing an unknown sample to light for a predetermined measurement time. Furthermore, the analyzer 600 calculates the slope of the absorbance during the measurement time. This "slope of absorbance" corresponds to an example of the "first parameter". In addition, the analysis device 600 creates a calibration curve by executing the predetermined process on a known sample having a known concentration of the target substance in advance. In the calibration curve, the slope of the absorbance is associated with the concentration of the target substance. After calculating the slope of the absorbance difference, the analyzer 600 refers to the calibration curve and outputs the concentration of the target substance corresponding to the calculated slope of the absorbance as a measurement result. The "concentration of the target substance" corresponds to an example of the "second parameter". Note that the predetermined process may be another process, and the first parameter and the second parameter may be other parameters.

 [試薬配置部]
 図3は、本実施の形態の試薬配置部(第1試薬配置部311a、第2試薬配置部312a)の一例を示す図である。本実施の形態においては、複数種類の試薬は、第1試薬Aと、該第1試薬Aと種別が異なる第2試薬Bとを含む。よって、第1試薬Aと第2試薬Bとでは成分が異なる。
[Reagent placement part]
FIG. 3 is a diagram showing an example of the reagent placement portion (first reagent placement portion 311a, second reagent placement portion 312a) of the present embodiment. In the present embodiment, the multiple types of reagents include a first reagent A and a second reagent B different in type from the first reagent A. Therefore, the components of the first reagent A and the second reagent B are different.

 第1試薬配置部311aは、M1(M1は2以上の整数)個の第1試薬を保持可能である。第2試薬配置部312aは、M2(M2は2以上の整数)個の第2試薬を保持可能である。図3の例では、M1=M2=3であるとする。つまり、第1試薬配置部311aは、3個の第1試薬である第1試薬A1、第1試薬A2、および第1試薬A3を保持可能である。また、第2試薬配置部312aは、3個の第2試薬である第2試薬B1、第2試薬B2、および第2試薬B3を保持可能である。つまり、試薬配置部は、6個の試薬を保持できる。また、M1およびM2は2または3であることが好ましい。このように、M1およびM2を比較的小さい数とすることにより、分析装置600を小型化できる。なお、変形例として、M1およびM2は、2としてもよく、4以上の整数としてもよい。 The first reagent placement section 311a can hold M1 (M1 is an integer equal to or greater than 2) first reagents. The second reagent placement section 312a can hold M2 (M2 is an integer equal to or greater than 2) second reagents. In the example of FIG. 3, it is assumed that M1=M2=3. That is, the first reagent placement portion 311a can hold three first reagents, namely, the first reagent A1, the first reagent A2, and the first reagent A3. In addition, the second reagent placement section 312a can hold three second reagents, that is, a second reagent B1, a second reagent B2, and a second reagent B3. That is, the reagent placement section can hold six reagents. Also, M1 and M2 are preferably 2 or 3. Thus, by setting M1 and M2 to relatively small numbers, the size of the analyzer 600 can be reduced. As a modification, M1 and M2 may be 2 or an integer of 4 or more.

 また、6個の試薬のそれぞれは、6個の試薬ボトルに収容されている。試薬ボトルが使用される前には、該試薬ボトルには蓋部が装着されている。そして、該試薬ボトルが使用される場合には、分析装置600は、ピアサ(図示せず)で、蓋部を開封して(蓋部を貫通して)、試薬ボトルに収容されている試薬を吸引して使用(消費)する。 Also, each of the six reagents is contained in six reagent bottles. Before the reagent bottle is used, the lid is attached to the reagent bottle. When the reagent bottle is used, the analysis device 600 uses a piercer (not shown) to open the lid (penetrate through the lid) and remove the reagent contained in the reagent bottle. Absorb and use (consume).

 また、分析装置600は、6個の試薬のそれぞれの試薬情報を検出する6個の量センサを有する。試薬情報は、本開示の「試薬ボトル情報」に対応する。6個の量センサは、量センサS1、量センサS2、量センサS3、量センサS4、量センサS5、および量センサS6である。量センサS1は、第1試薬A1の量を検出する。量センサS2は、第1試薬A2の量を検出する。量センサS3は、第1試薬A3の量を検出する。量センサS4は、第2試薬B1の量を検出する。量センサS5は、第2試薬B2の量を検出する。量センサS6は、第2試薬B3の量を検出する。6個の量センサは、制御装置354に接続されている。6個の量センサが検出した情報は、制御装置354に出力される。以下では、6個の量センサは、「量センサ群S1~S6」とも称される。 The analyzer 600 also has six quantity sensors that detect reagent information for each of the six reagents. The reagent information corresponds to "reagent bottle information" of the present disclosure. The six quantity sensors are quantity sensor S1, quantity sensor S2, quantity sensor S3, quantity sensor S4, quantity sensor S5 and quantity sensor S6. Amount sensor S1 detects the amount of first reagent A1. Amount sensor S2 detects the amount of first reagent A2. Amount sensor S3 detects the amount of first reagent A3. Amount sensor S4 detects the amount of second reagent B1. Amount sensor S5 detects the amount of second reagent B2. Amount sensor S6 detects the amount of second reagent B3. Six quantity sensors are connected to controller 354 . Information detected by the six quantity sensors is output to the controller 354 . In the following, the six quantity sensors are also referred to as "quantity sensor groups S1 to S6".

 [制御装置の機能ブロック図]
 図4は、制御装置354の機能ブロック図である。制御装置354は、取得部302と、処理部304と、制御部306と、記憶部310とを有する。記憶部310は、第1記憶部321と、第2記憶部322とを有する。図4の例では、制御装置354は、分析機構300と、入力装置356と、表示装置358と、量センサ群S1~S6と接続されている。
[Functional block diagram of control device]
FIG. 4 is a functional block diagram of the control device 354. As shown in FIG. The control device 354 has an acquisition unit 302 , a processing unit 304 , a control unit 306 and a storage unit 310 . Storage unit 310 has a first storage unit 321 and a second storage unit 322 . In the example of FIG. 4, controller 354 is connected to analysis mechanism 300, input device 356, display device 358, and quantity sensors S1-S6.

 取得部302は、分析機構300から、分析機構300による未知試料または既知試料の分析結果などを取得する。また、取得部302は、入力装置356に対するユーザの操作(たとえば、後述する所定操作)がされたことを示す信号を取得する。また、取得部302は、量センサ群S1~S6のそれぞれの量センサから、該量センサが検出した試薬情報を取得する。取得部302が取得した情報は、処理部304に出力される。 The acquisition unit 302 acquires the analysis result of an unknown sample or a known sample by the analysis mechanism 300 from the analysis mechanism 300 . Acquisition unit 302 also acquires a signal indicating that the input device 356 has been operated by the user (for example, a predetermined operation described later). Further, the acquiring unit 302 acquires the reagent information detected by each quantity sensor of the quantity sensor groups S1 to S6. The information acquired by the acquisition unit 302 is output to the processing unit 304 .

 処理部304は、既知試料の分析結果を取得部302から取得した場合には、検量線を作成する。検量線は、第2記憶部322に記憶される(図9参照)。処理部304は、未知試料の分析結果(第1パラメータ)を取得部302から取得した場合には、処理部304は、作成された検量線を参照して分析結果(第2パラメータ)を導出する。そして、処理部304は、該第2パラメータを示す画像データを生成し、該画像データを制御部306に出力する。制御部306は、該画像データに基づく画像を表示装置358に表示させる。 When the processing unit 304 acquires the analysis result of the known sample from the acquisition unit 302, it creates a calibration curve. The calibration curve is stored in the second storage unit 322 (see FIG. 9). When the processing unit 304 acquires the analysis result (first parameter) of the unknown sample from the acquisition unit 302, the processing unit 304 refers to the prepared calibration curve to derive the analysis result (second parameter). . The processing unit 304 then generates image data representing the second parameter and outputs the image data to the control unit 306 . The control unit 306 causes the display device 358 to display an image based on the image data.

 また、処理部304は、量センサ群S1~S6のそれぞれの量センサが検出した試薬情報を取得部302から取得すると、該試薬情報を第1記憶部321に記憶させる(図5参照)。換言すれば、処理部304は、第1記憶部321に記憶されている試薬情報を、量センサ群S1~S6のそれぞれの量センサが新たに検出した試薬情報に更新する。 Further, when the processing unit 304 acquires the reagent information detected by each quantity sensor of the quantity sensor groups S1 to S6 from the acquisition unit 302, the processing unit 304 stores the reagent information in the first storage unit 321 (see FIG. 5). In other words, the processing unit 304 updates the reagent information stored in the first storage unit 321 to the reagent information newly detected by each quantity sensor of the quantity sensor groups S1 to S6.

 [試薬情報]
 次に、試薬情報を説明する。試薬情報は、該試薬情報に対応する試薬ボトルの試薬ポジション、該試薬情報に対応する試薬の量、該試薬の有効期限、および試薬のオンボード安定性のうち少なくとも1つを含む。本実施の形態においては、試薬情報は、試薬情報に対応する試薬ポジション、該試薬情報に対応する試薬の量、および該試薬の有効期限、該試薬のオンボード安定性の全てを含む。
[Reagent information]
Next, reagent information will be explained. The reagent information includes at least one of a reagent position in a reagent bottle corresponding to the reagent information, an amount of reagent corresponding to the reagent information, an expiration date of the reagent, and an onboard stability of the reagent. In this embodiment, the reagent information includes all of the reagent position corresponding to the reagent information, the amount of reagent corresponding to the reagent information, the expiration date of the reagent, and the onboard stability of the reagent.

 有効期限は、試薬メーカが定める期限であって、試薬を適切に使用できる期限である。現在の日時が有効期限よりも前の期間であるほど、該有効期限に対応する試薬の鮮度は高いということである。 The expiration date is the date set by the reagent manufacturer, and is the date when the reagent can be used properly. The more the current date and time is earlier than the expiration date, the higher the freshness of the reagent corresponding to the expiration date.

 オンボード安定性は、分析装置600の試薬配置部312に配置された状態での試薬の保存安定性(または試薬の反応性)である。試薬が収容されている試薬ボトルの蓋部がピアサにより開封したときからの経過日数である。経過日数が少ないほど、該該経過日数に対応する試薬の鮮度は高いということである。つまり、経過日数が少ないほど、オンボード安定性は高い。 The on-board stability is the storage stability (or reactivity of the reagent) of the reagent placed in the reagent placement section 312 of the analyzer 600 . This is the number of days that have passed since the cap of the reagent bottle containing the reagent was opened by the piercer. The shorter the number of days that have passed, the higher the freshness of the reagent corresponding to the number of days that have passed. In other words, the fewer days that have passed, the higher the onboard stability.

 試薬ポジションは、分析装置600内において、試薬を収容する試薬ボトルが配置されている場所を示す情報である。 The reagent position is information indicating the location within the analyzer 600 where the reagent bottle containing the reagent is arranged.

 量センサは、試薬ボトル内の試薬の量を所定の割込時間(たとえば、1分)ごとに検出する。量センサは、たとえば、試薬の液面を検知する液面センサである。量センサにより検出された試薬量は制御装置354に出力される。 The amount sensor detects the amount of reagent in the reagent bottle at each predetermined interrupt time (for example, 1 minute). The quantity sensor is, for example, a liquid level sensor that detects the liquid level of the reagent. The amount of reagent detected by the amount sensor is output to controller 354 .

 図5は、制御装置354が有する第1記憶装置に記憶されている試薬情報の一例を示す図である。図5の例では、各試薬(第1試薬A1、第1試薬A2、第1試薬A3、第2試薬B1、第2試薬B2、第2試薬B3)のそれぞれに、試薬情報が対応づけられて記憶されている。 FIG. 5 is a diagram showing an example of reagent information stored in the first storage device of the control device 354. As shown in FIG. In the example of FIG. 5, each reagent (first reagent A1, first reagent A2, first reagent A3, second reagent B1, second reagent B2, second reagent B3) is associated with reagent information. remembered.

 たとえば、第1試薬A1に対して、試薬ポジションP1と、該第1試薬A1の量X1と、該第1試薬A1の有効期限Y1と、該第1試薬A1のオンボード安定性Z1とが対応付けられている。このように、第1記憶装置は、試薬情報を記憶する。第1試薬の試薬情報は、「第1試薬情報」とも称される。第2試薬の試薬情報は、「第2試薬情報」とも称される。つまり、第1記憶装置は、複数の第1試薬の各々の第1試薬情報(第1試薬A1~第1試薬A3の試薬情報)および複数の第2試薬の各々の第2試薬情報(第2試薬B1~第2試薬B3の試薬情報)を記憶する。 For example, for the first reagent A1, the reagent position P1, the amount X1 of the first reagent A1, the expiration date Y1 of the first reagent A1, and the onboard stability Z1 of the first reagent A1 correspond. attached. Thus, the first storage device stores reagent information. The reagent information of the first reagent is also referred to as "first reagent information". The reagent information of the second reagent is also referred to as "second reagent information". That is, the first storage device stores first reagent information (reagent information of the first reagent A1 to first reagent A3) of each of the plurality of first reagents and second reagent information of each of the plurality of second reagents (second reagent information of the reagent B1 to the second reagent B3).

 また、制御装置354は、試薬情報のうちの試薬量を、上述の量センサから出力された試薬量に更新する。上述のように、量センサは、所定の割込時間(たとえば、1分)ごとに、試薬量を検出する。よって、試薬情報のうちの試薬量は、割込時間ごとに更新されることになる。制御装置354は、このような更新により、各試薬の量を把握できる。 Also, the control device 354 updates the reagent amount in the reagent information to the reagent amount output from the above-described amount sensor. As described above, the quantity sensor detects the quantity of reagent at each predetermined interrupt time (eg, one minute). Therefore, the reagent amount in the reagent information is updated every interrupt time. The controller 354 can grasp the amount of each reagent by such updating.

 次に、試薬情報のうちの有効期限について説明する。試薬ボトルには、有効期限を含む情報(たとえば、バーコード)が付加されている。バーコード読取装置(図示せず)は、該バーコード読み取ることにより有効期限を検出する。検出した有効期限は、制御装置354に出力される。そして、制御装置354は、該有効期限を第1記憶部321に記憶する。本実施の形態においては、制御装置354は、有効期限については更新しない。 Next, I will explain the expiration date of the reagent information. Information including an expiration date (for example, a barcode) is attached to the reagent bottle. A barcode reader (not shown) detects the expiration date by reading the barcode. The detected expiration date is output to the control device 354 . Then, the control device 354 stores the expiration date in the first storage unit 321 . In this embodiment, controller 354 does not update the expiration date.

 次に、試薬情報のうちのオンボード安定性について説明する。制御装置354は、試薬ボトルの蓋部がピアサにより穿孔されたことを検出する。そして、制御装置354は、試薬ボトルの蓋部がピアサにより穿孔されたときからの経過時間(たとえば、経過日数)を特定する。制御装置354は、所定期間(たとえば、1日)が経過することにより、オンボード安定性を更新する。 Next, we will explain the onboard stability of the reagent information. Controller 354 detects that the cap of the reagent bottle has been pierced by the piercer. Then, the control device 354 specifies the elapsed time (eg, the number of days elapsed) since the cap of the reagent bottle was pierced by the piercer. Controller 354 updates the onboard stability after a predetermined period of time (eg, one day).

 [分析装置600のモード]
 次に、分析装置600のモードを説明する。分析装置600のモードは、分析モードと決定モードとを含む。分析装置600は、該分析装置600の処理が停止している状態(分析装置600が待機中である状態)で、分析モードから決定モードに切替えることができるとともに、または、決定モードから分析モードに切替えることができる。
[Mode of analyzer 600]
Next, modes of the analyzer 600 will be described. Modes of the analyzer 600 include an analysis mode and a determination mode. The analyzer 600 can be switched from the analysis mode to the determination mode while the processing of the analyzer 600 is stopped (the analyzer 600 is on standby), or can be switched from the determination mode to the analysis mode. can be switched.

 分析モードは、分析装置600が未知試料を分析するモードである。分析モードにおいては、分析装置600は、1つの試薬(第1試薬または第2試薬)を使用して未知試料を分析できる。該1つの試薬を使用して未知試料を分析する場合には、分析装置600は、該1つの試薬および既知試料(たとえば、未知試料に対応する既知試料)を使用して検量線を作成することを許容する。分析装置600は、検量線の作成を許容した場合には、該許容されたことを示す所定通知をユーザに実行してもよい。検量線の作成が許容された場合において、ユーザにより既知試料が分析装置600の所定位置にセットされると、該1つの試薬および該既知試料を使用して検量線を作成する。そして、分析装置600は、第1パラメータを導出する。さらに、分析装置600は、該第1パラメータと、該検量線(予め作成された検量線)とに基づいて第2パラメータを算出する。 The analysis mode is a mode in which the analysis device 600 analyzes an unknown sample. In analysis mode, analyzer 600 can analyze an unknown sample using one reagent (first reagent or second reagent). When analyzing an unknown sample using the one reagent, the analyzer 600 creates a calibration curve using the one reagent and a known sample (for example, a known sample corresponding to the unknown sample). allow. When the analysis device 600 permits the creation of the calibration curve, it may notify the user of the permission. If the user sets a known sample at a predetermined position in the analyzer 600 when the preparation of the calibration curve is permitted, the one reagent and the known sample are used to prepare the calibration curve. Analysis device 600 then derives the first parameter. Furthermore, the analyzer 600 calculates a second parameter based on the first parameter and the calibration curve (preliminarily created calibration curve).

 また、分析モードにおいては、2つの試薬を使用する旨の操作が、ユーザにより入力装置356に対して行われたときに、分析装置600は、図5に示す試薬情報(複数の第1試薬情報および複数の第2試薬情報)に基づいて、3つの第1試薬から1つの第1試薬を決定するとともに、3つの第2試薬から1つの第2試薬を決定する。 In addition, in the analysis mode, when the user performs an operation for using two reagents on the input device 356, the analyzer 600 displays the reagent information (a plurality of first reagent information) shown in FIG. and a plurality of second reagent information), one first reagent is determined from three first reagents, and one second reagent is determined from three second reagents.

 次に、この決定手法の一例を説明する。以下では、使用される第1試薬および第2試薬において、最小単位の試料(たとえば、1つのキュベットに収容された試料)を分析するために必要な量を「必要量」と称する。つまり、分析装置600は、第1試薬および第2試薬が共に必要量以上である場合に、該第1試薬および第2試薬を使用して、試料を分析することができる。 Next, an example of this decision method will be explained. Hereinafter, the amounts of the first and second reagents used that are necessary for analyzing a minimum unit sample (for example, a sample contained in one cuvette) are referred to as "required amounts." In other words, the analyzer 600 can analyze the sample using the first reagent and the second reagent when both the first reagent and the second reagent are in the necessary amount or more.

 処理部304は、3つの第1試薬情報の試薬量を参照して、3つの第1試薬A1~A3から、必要量以上である第1試薬を候補として選択する。必要量未満である第1試薬は使用されない。さらに、処理部304は、3つの第1試薬情報の有効期限を参照して、候補となった第1試薬から、有効期限内である第1試薬を候補として選択する。さらに、処理部304は、3つの第1試薬情報のオンボード安定性を参照して、候補となった第1試薬からオンボード安定性が高い第1試薬を決定する。なお、変形例として、処理部304は、3つの第1試薬情報のオンボード安定性を参照して、候補となった第1試薬からオンボード安定性が低い第1試薬を決定するようにしてもよい。 The processing unit 304 refers to the reagent amounts of the three pieces of first reagent information, and selects a first reagent having a required amount or more from the three first reagents A1 to A3 as a candidate. A first reagent that is less than the required amount is not used. Furthermore, the processing unit 304 refers to the expiration dates of the three pieces of first reagent information, and selects a first reagent within the expiration date as a candidate from among the candidate first reagents. Furthermore, the processing unit 304 refers to the onboard stability of the three pieces of first reagent information, and determines a first reagent with high onboard stability from among the candidate first reagents. As a modification, the processing unit 304 refers to the onboard stability of the three pieces of first reagent information, and determines the first reagent with the low onboard stability from among the candidate first reagents. good too.

 また、同様に、処理部304は、3つの第2試薬情報を参照して、3つの第2試薬B1~B3から使用する第2試薬を決定する。決定された第1試薬および第2試薬をまとめて「試薬ペア」または「組合せ」とも称する。「試薬ペア」または「組合せ」は、本開示の「試薬ボトル組合せ」に対応する。 Similarly, the processing unit 304 refers to the three pieces of second reagent information and determines the second reagent to be used from among the three second reagents B1 to B3. The determined first reagent and second reagent are also collectively referred to as a "reagent pair" or "combination". A "reagent pair" or "combination" corresponds to a "reagent bottle combination" in this disclosure.

 そして、制御装置354は、決定した試薬ペア(第1試薬および第2試薬)、および既知試料(たとえば、未知試料に対応する既知試料)を使用して検量線を作成することを許容する。検量線の作成が許容された場合において、ユーザにより既知試料がセットされると、試薬ペア(第1試薬および第2試薬)、および既知試料を使用して検量線を作成する。該検量線については、「試薬ペアに対応する検量線」とも称される。そして、制御装置354は、第1パラメータを導出する。さらに、制御装置354は、該第1パラメータと、該検量線(予め作成された検量線)とに基づいて第2パラメータを算出する。 Then, the controller 354 allows creating a calibration curve using the determined reagent pair (first reagent and second reagent) and a known sample (for example, a known sample corresponding to an unknown sample). When the preparation of the calibration curve is permitted and the user sets the known sample, the reagent pair (first reagent and second reagent) and the known sample are used to prepare the calibration curve. The calibration curve is also referred to as the "calibration curve corresponding to the reagent pair". Controller 354 then derives the first parameter. Furthermore, the control device 354 calculates a second parameter based on the first parameter and the calibration curve (preliminarily created calibration curve).

 また、3つの第1試薬は、製造ロットまたは製造年月日が異なる場合がある。よって、3つの第1試薬は同一種別ではあるものの、特性などが若干異なる場合がある。また、3つの第2試薬についても同様に、3つの第2試薬は同一種別ではあるものの、特性などが若干異なる場合がある。このように、同一の種別の試薬であっても、成分などが若干異なる場合を鑑みて、分析装置600が第1試薬A1および第2試薬B1を使用して分析する場合には、該第1試薬A1、該第2試薬B1、および既知試料を用いて検量線を作成する。また、分析装置600が第1試薬A2および第2試薬B1を使用して分析する場合には、該第1試薬A2、該第2試薬B1、および既知試料を用いて検量線を作成する。 Also, the three first reagents may have different manufacturing lots or manufacturing dates. Therefore, although the three first reagents are of the same type, they may have slightly different characteristics. Similarly, the three second reagents may be of the same type but may have slightly different characteristics. In this way, even if the reagents are of the same type, in consideration of the case where the components are slightly different, when the analysis device 600 uses the first reagent A1 and the second reagent B1 for analysis, the first reagent A1 and the second reagent B1 are used. A calibration curve is prepared using reagent A1, the second reagent B1, and a known sample. Also, when the analyzer 600 performs analysis using the first reagent A2 and the second reagent B1, a calibration curve is created using the first reagent A2, the second reagent B1, and a known sample.

 このように、本実施の形態の制御装置354は、同一の種別の試薬であっても、試薬ボトルが異なる場合には、個別に検量線を作成する。よって、制御装置354は、試料の若干の特性の相違の影響を受けずに、精度良く、未知試料を分析することができる。 In this way, the control device 354 of the present embodiment creates calibration curves individually for reagents of the same type but in different reagent bottles. Therefore, the control device 354 can accurately analyze an unknown sample without being affected by slight differences in the properties of the sample.

 また、分析装置600は、複数の分析項目について未知試料の分析を実行することができる。たとえば、未知試料について、第1の分析項目として物質R1の濃度を分析することができるとともに、第2の分析項目として物質R2の濃度を分析することができる。 Also, the analyzer 600 can analyze unknown samples for a plurality of analysis items. For example, for an unknown sample, the concentration of substance R1 can be analyzed as a first analysis item, and the concentration of substance R2 can be analyzed as a second analysis item.

 次に、決定モードを説明する。上述のように、制御装置354は、第1試薬および第2試薬を用いて未知試料を分析する場合には、試薬ペアを決定する。該試薬ペアは、「第1試薬ペア」、「第1組合せ」と称される。第1試薬ペアは、本開示の「第1ボトル組合せ」に対応する。決定モードは、該第1試薬ペアが決定されている状態において、該第1試薬ペアの次に使用される試薬ペア(以下、「第2試薬ペア」とも称される。)を決定するモードである。第2試薬ペアは、本開示の「第1ボトル組合せ」に対応する。また、第1試薬ペアを構成する第1試薬および第2試薬と、第2試薬ペアを構成する第1試薬および第2試薬とは少なくとも一方が異なる。 Next, I will explain the decision mode. As described above, controller 354 determines a reagent pair when analyzing an unknown sample using a first reagent and a second reagent. The reagent pair is referred to as "first reagent pair", "first combination". The first reagent pair corresponds to the "first bottle combination" of the present disclosure. The determination mode is a mode for determining a reagent pair to be used next to the first reagent pair (hereinafter also referred to as a "second reagent pair") in a state where the first reagent pair has been determined. be. The second reagent pair corresponds to the "first bottle combination" of the present disclosure. In addition, at least one of the first reagent and the second reagent forming the first reagent pair is different from the first reagent and the second reagent forming the second reagent pair.

 また、決定モードは、入力装置356に対してユーザによる所定操作により移行される。以下では、第1試薬ペアを構成する第1試薬および第2試薬と、既知試料で作成される検量線は、「第1検量線」と称される。また、第2試薬ペアを構成する第1試薬および第2試薬と、既知試料で作成される検量線は、「第2検量線」と称される。 Also, the determination mode is shifted to the input device 356 by a predetermined operation by the user. Hereinafter, the first reagent and second reagent that constitute the first reagent pair and the calibration curve created with the known sample are referred to as "first calibration curve". Also, the calibration curve created with the first and second reagents constituting the second reagent pair and the known sample is referred to as a "second calibration curve".

 このように、制御装置354は、分析装置600のモードを、未知試料を分析する分析モード(第1モード)と、第2試薬ペアを決定する決定モード(第2モード)とのいずれかに制御する。したがって、分析装置600は、未知試料を分析できつつ、第2試薬ペアを決定することができる。 Thus, the controller 354 controls the mode of the analyzer 600 to either the analysis mode (first mode) for analyzing an unknown sample or the determination mode (second mode) for determining the second reagent pair. do. Therefore, analyzer 600 can determine the second reagent pair while analyzing an unknown sample.

 図6は、ユーザが所定操作を行うための入力画面の一例である。制御装置354は、後述する所定タイミングで、図6の入力画面を表示する。この入力画面は表示装置358の表示領域358Aに表示される。図6の例では、文字画像411と、Yesボタン412と、Noボタン413とが表示されている。図6の例の文字画像411は、「次の試薬ペアを決定する決定モードに移行しますか?」という文字を示す画像である。 FIG. 6 is an example of an input screen for the user to perform a predetermined operation. The control device 354 displays the input screen of FIG. 6 at a predetermined timing, which will be described later. This input screen is displayed in a display area 358A of the display device 358. FIG. In the example of FIG. 6, a character image 411, a Yes button 412, and a No button 413 are displayed. The character image 411 in the example of FIG. 6 is an image showing the characters "Would you like to shift to the determination mode for determining the next reagent pair?"

 図6の入力画面が表示された場合において、ユーザは、Yesボタン412を操作すると、分析装置600のモードは決定モードに移行する。このように、決定モードに移行させるための所定操作は、図6の入力画面において、Yesボタン412への操作である。また、制御装置354は、入力画面を表示することにより、ユーザの所定操作を許容することになる。 When the user operates the Yes button 412 when the input screen of FIG. 6 is displayed, the mode of the analyzer 600 shifts to the decision mode. Thus, the predetermined operation for shifting to the decision mode is the operation of the Yes button 412 on the input screen of FIG. Further, the control device 354 permits the user's predetermined operation by displaying the input screen.

 次に、本実施の形態の決定モードが移行される典型的な状況を説明する。まず、第1の状況を説明する。図7は、第1の状況を説明するための図である。図7(A)は、分析装置600が、第1試薬ペアを決定した場合を示す図である。図7(A)では、分析装置600が、第1試薬A1と第2試薬B1とのペアを第1試薬ペアとして決定した例が示されている。また、図7(A)の例では、分析装置600が、第1試薬ペアを構成する第1試薬A1と第2試薬B1、およびユーザによりセットされた既知試料とを用いて検量線(第1検量線)を作成したことが示されている。そして、分析装置600は、第1試薬A1および第2試薬B1を使用して、第1検量線を参照しながら、未知試料を分析する。 Next, a typical situation in which the determination mode of this embodiment is shifted will be described. First, the first situation will be explained. FIG. 7 is a diagram for explaining the first situation. FIG. 7A is a diagram showing a case where the analysis device 600 has determined the first reagent pair. FIG. 7A shows an example in which the analyzer 600 determines the pair of the first reagent A1 and the second reagent B1 as the first reagent pair. In addition, in the example of FIG. 7A, the analyzer 600 uses the first reagent A1 and the second reagent B1, which form the first reagent pair, and a known sample set by the user to create a calibration curve (first It is shown that a calibration curve) was created. Then, analyzer 600 analyzes the unknown sample using first reagent A1 and second reagent B1 while referring to the first calibration curve.

 ところで、分析装置600が、該未知試料を分析している途中などに、異常が発生することにより第1試薬量と第2試薬量との想定されていないアンバランスが発生する場合がある。ここで、該アンバランスとは、第1試薬ペアを構成する第1試薬の量または第2試薬の量が、必要量未満になることである。また、以下の異常が発生することにより生じるアンバランスを、「異常アンバランス」とも称される。図7(B)の例では、異常アンバランスが生じることにより、第1試薬A1が過度に減少して、第1試薬A1の量が必要量未満になった場合が示されている。 By the way, an unexpected imbalance between the amount of the first reagent and the amount of the second reagent may occur due to an abnormality occurring while the analyzer 600 is analyzing the unknown sample. Here, the imbalance means that the amount of the first reagent or the amount of the second reagent constituting the first reagent pair is less than the required amount. Moreover, the unbalance caused by the occurrence of the following abnormality is also called "abnormal unbalance". The example of FIG. 7(B) shows a case where abnormal imbalance causes the first reagent A1 to excessively decrease and the amount of the first reagent A1 to become less than the required amount.

 異常アンバランスが発生し得る異常は、以下の3つの異常がある。該3つの異常のうちの第1異常は、第1試薬A1の分注ミスである。第1試薬A1の分注ミスは、たとえば、プローブ11aが過度に多くの第1試薬A1を吸引した場合に発生する。また、第2異常は、未知試料および第1試薬A1を共に分注する場合において、該未知試料の分注ミスである。該未知試料の分注ミスは、たとえば、図示しないサンプル分注装置がサンプルの分注処理を適切に行わなかった場合である。この場合には、該第1試薬A1は使用されずに、たとえば、破棄される。よって、この場合にも、第1試薬A1は過度に減少することになる。 There are three types of abnormalities that can cause abnormal imbalance. The first abnormality among the three abnormalities is the dispensing error of the first reagent A1. A dispensing error of the first reagent A1 occurs, for example, when the probe 11a aspirates an excessive amount of the first reagent A1. Also, the second abnormality is a dispensing error of the unknown sample when the unknown sample and the first reagent A1 are both dispensed. The pipetting error of the unknown sample is, for example, a case where a sample pipetting device (not shown) does not properly pipette the sample. In this case, the first reagent A1 is not used and is discarded, for example. Therefore, also in this case, the first reagent A1 is excessively decreased.

 また、本実施の形態においては、分析装置600は、第1試薬を分注し、所定期間経過後に、第2試薬を分注する。第3異常は、該所定期間中に分析装置600に何らかの異常が発生して分析装置600が緊急停止するという異常である。この場合には、分注された第1試薬は、たとえば、破棄される。よって、この場合にも、第1試薬A1は過度に減少することになる。 Also, in the present embodiment, the analyzer 600 dispenses the first reagent, and dispenses the second reagent after a predetermined period of time has elapsed. The third abnormality is an abnormality in which some abnormality occurs in the analysis device 600 during the predetermined period and the analysis device 600 is brought to an emergency stop. In this case, the dispensed first reagent is discarded, for example. Therefore, also in this case, the first reagent A1 is excessively decreased.

 また、第1~第3異常以外にも、たとえば、分析装置600に対して外力が加わることにより、第1試料A1がこぼれた場合などにも第1試料A1は過度に減少する。 In addition to the first to third abnormalities, for example, when the first sample A1 is spilled due to external force applied to the analyzer 600, the first sample A1 is excessively reduced.

 以下に示すように、制御装置354は、第1試薬情報により示される第1試薬量および第2試薬情報により示される第2試薬量に基づいて異常アンバランスの発生を特定できる。上述のように、割込時間ごとに、6つの試薬情報により示される試薬量を更新している。また、制御装置354は、第1試薬の必要量、および第2試薬の必要量を特定している。 As described below, the control device 354 can identify the occurrence of abnormal imbalance based on the first reagent amount indicated by the first reagent information and the second reagent amount indicated by the second reagent information. As described above, the reagent amounts indicated by the six pieces of reagent information are updated at each interrupt time. Controller 354 also specifies the required amount of the first reagent and the required amount of the second reagent.

 しかしながら、異常アンバランスが生じた場合には、たとえば、第1試料が過度に減少したことにより、第1試薬が必要量未満になる。第1試薬が必要量未満になると、分析装置600は、該第1試薬(必要量未満となった第1試薬)と、第2試薬とを用いて未知試料を分析することができない。このように、制御装置354は、第1試薬の量が必要量未満となった場合、または、第2試薬の量が必要量未満となった場合には、異常アンバランスが発生したと判断する。したがって、制御装置354は、第1試薬情報により示される第1試薬量および第2試薬情報により示される第2試薬量に基づいて異常アンバランスの発生を特定できる。 However, if an abnormal imbalance occurs, for example, the amount of the first reagent becomes less than the required amount due to excessive reduction of the first sample. If the amount of the first reagent becomes less than the required amount, the analyzer 600 cannot analyze the unknown sample using the first reagent (the first reagent that becomes less than the required amount) and the second reagent. In this way, the control device 354 determines that an abnormal imbalance has occurred when the amount of the first reagent is less than the required amount or when the amount of the second reagent is less than the required amount. . Therefore, the controller 354 can identify the occurrence of abnormal imbalance based on the first reagent amount indicated by the first reagent information and the second reagent amount indicated by the second reagent information.

 分析装置600は、異常アンバランスが発生した場合には、図6の入力画面を表示することにより、ユーザの所定操作を許容する。そして、許容された所定操作(図6のYesボタン412への操作)がユーザにより行われた場合には、分析装置600は、図7(C)に示すように、複数の第1試薬情報および複数の第2試薬情報に基づいて、第2組合せを決定する。 When an abnormal imbalance occurs, the analysis device 600 allows the user's predetermined operation by displaying the input screen of FIG. Then, when the user performs the permitted predetermined operation (operation to the Yes button 412 in FIG. 6), the analyzer 600, as shown in FIG. A second combination is determined based on the plurality of pieces of second reagent information.

 このように、図7(B)に示すように、予め決定されていた第1試薬ペアに含まれる試薬(本実施の形態では第1試薬A1)の量が、異常アンバランスが発生することにより、必要量未満になる場合がある。異常アンバランスが発生した場合に、従来の分析装置は、第1試薬A1が必要量未満であると判断し、他の試薬ペアである第1試薬A2および第2試薬B2を使用する。この従来の分析装置では、第2試薬B1は十分に残存しているにもかかわらず、該第2試薬B1は使用されない。よって、第2試薬B1は無駄になってしまう。 In this way, as shown in FIG. 7B, the amount of the reagent (the first reagent A1 in the present embodiment) contained in the predetermined first reagent pair is changed to , may be less than required. When an abnormal imbalance occurs, the conventional analyzer determines that the amount of the first reagent A1 is less than the required amount, and uses another reagent pair, the first reagent A2 and the second reagent B2. In this conventional analyzer, the second reagent B1 is not used even though the second reagent B1 remains sufficiently. Therefore, the second reagent B1 is wasted.

 そこで、本実施の形態の分析装置600は、3つの第1試薬情報により示される量および3つの第2試薬情報により示される量に基づいて、第2試薬ペアを決定する。図7(B)に示されるように、第1試薬A1の量は必要量未満である一方で第2試料B1は十分残存している。したがって、分析装置600は、第2組合せに含まれる第2試薬として第2試薬B1を選択する。また、分析装置600は、第2組合せを決定する際に、第1試薬A1の量は必要量未満であることから、第1試薬A1を第2組合せの候補から除外する。図7(C)では、分析装置600は、第2組合せに含まれる第1試薬として第1試薬A2を選択している例が示されている。換言すれば、ユーザの所定操作により分析装置600は、試薬ペアを第1試薬ペアから第2試薬ペアに変更している。よって、分析装置600は、十分残存している第2試薬B2を第2試薬ペアとして選択しつつ、必要量未満である第1試薬A1を除外し他の第1試薬(第1試薬A2)を第2試薬ペアとして選択できる。よって、純分に残存している第2試薬B1の無駄を防止できる。 Therefore, the analyzer 600 of the present embodiment determines the second reagent pair based on the amounts indicated by the three pieces of first reagent information and the amounts indicated by the three pieces of second reagent information. As shown in FIG. 7B, the amount of the first reagent A1 is less than the required amount, while the second sample B1 remains sufficiently. Therefore, analyzer 600 selects second reagent B1 as the second reagent included in the second combination. Further, when determining the second combination, the analyzer 600 excludes the first reagent A1 from the candidates for the second combination because the amount of the first reagent A1 is less than the required amount. FIG. 7C shows an example in which the analyzer 600 selects the first reagent A2 as the first reagent included in the second combination. In other words, the analyzer 600 changes the reagent pair from the first reagent pair to the second reagent pair by the user's predetermined operation. Therefore, the analyzer 600 selects the sufficiently remaining second reagent B2 as the second reagent pair, excludes the first reagent A1 that is less than the required amount, and uses the other first reagent (first reagent A2). It can be selected as a second reagent pair. Therefore, waste of the second reagent B1 remaining in the pure content can be prevented.

 また、分析装置600は、第2試薬ペアを決定すると、第2試薬ペアを構成する第1試薬および第2試薬と、既知試料とを使用して検量線(第2検量線)を作成することを許容する。 In addition, after determining the second reagent pair, analyzer 600 creates a calibration curve (second calibration curve) using the first and second reagents that make up the second reagent pair and the known sample. allow.

 また、分析装置600は、異常アンバランスを検知すると、警報処理を実行する。警報処理は、たとえば、表示装置358に警告情報を表示させる処理を含んでもよい。警告情報は、たとえば、「第1試薬A1が必要量未満であること」を示す情報である。警報情報は、「第1試薬A1が必要量未満です」といった文字である。また、警告処理は、たとえば、スピーカ(図示せず)から警告音を出力する処理を含んでもよい。 Also, when the analysis device 600 detects an abnormal imbalance, it executes an alarm process. The warning process may include, for example, displaying warning information on the display device 358 . The warning information is, for example, information indicating that "the amount of the first reagent A1 is less than the required amount". The warning information is characters such as "the amount of the first reagent A1 is less than the required amount". Also, the warning process may include, for example, a process of outputting a warning sound from a speaker (not shown).

 図8は、第2の状況を説明するための図である。上述のように、本実施の形態においては、分析装置600が、検量線を作成する場合には、ユーザは、既知試料をセットする必要がある。特に、分析装置600が、未知試料の分析途中に、検量線を作成する必要がある場合には、該未知試料の分析を停止して、ユーザに既知試料をセットさせる必要がある。したがって、ユーザの手間が増大するのみならず、未知試料の分析必要時間が増大してしまう。 FIG. 8 is a diagram for explaining the second situation. As described above, in the present embodiment, when analyzer 600 creates a calibration curve, the user needs to set a known sample. In particular, when the analysis apparatus 600 needs to create a calibration curve during the analysis of an unknown sample, it is necessary to stop the analysis of the unknown sample and have the user set the known sample. Therefore, not only is the user's work increased, but the time required for analysis of the unknown sample is increased.

 そこで、分析装置600は、未知試料を分析する前に、モードを決定モードに切替え可能とする。図8(A)は、たとえば、分析装置600が未知試料を分析する前において、分析装置600が、第1試薬ペアを決定した場合を示す図である。図8(A)では、分析装置600が、第1試薬A1と第2試薬B1とのペアを第1試薬ペアとして決定した例が示されている。本実施の形態においては、分析装置600は、第1試薬ペアを決定した場合には、図6の入力画面を表示することにより、ユーザの所定操作を許容する。そして、許容された所定操作がユーザにより行われた場合には、分析装置600は、図8(B)に示すように、複数の第1試薬情報および複数の第2試薬情報に基づいて、第2組合せを決定する。 Therefore, the analyzer 600 can switch the mode to the determination mode before analyzing the unknown sample. FIG. 8A is a diagram showing a case where, for example, analysis device 600 determines the first reagent pair before analysis device 600 analyzes an unknown sample. FIG. 8A shows an example in which the analyzer 600 determines the pair of the first reagent A1 and the second reagent B1 as the first reagent pair. In the present embodiment, when the first reagent pair is determined, analyzer 600 displays the input screen of FIG. 6 to allow the user's predetermined operation. Then, when the user performs the permitted predetermined operation, as shown in FIG. 8(B), analyzer 600 performs a second 2 Determine the combination.

 このように、分析装置600は、未知試料の分析の前に、第1組合せ、該第1組合せに対応する第1検量線、第2組合せ、および第2組合せに対応する第2検量線を決定することができる。よって、分析装置600は、未知試料の分析を、第1組合せに含まれる第1試薬および第2試薬と、第2組合せに含まれる第1試薬および第2試薬とを用いて、ユーザに既知試料を配置させることなく、連続的に未知試料(多量の未知試料)を分析できる。以下では、第1組合せに含まれる第1試薬および第2試薬と、第2組合せに含まれる第1試薬および第2試薬とを用いて連続的に未知試料を分析する処理は、「シームレス分析」とも称される。分析装置600は、シームレス分析を実行することにより、ユーザに既知試料をセットさせる手間、および未知試料の分析必要時間を抑制できる。 Thus, analyzer 600 determines a first combination, a first calibration curve corresponding to the first combination, a second combination, and a second calibration curve corresponding to the second combination prior to analysis of the unknown sample. can do. Therefore, analyzer 600 analyzes an unknown sample by using the first and second reagents included in the first combination and the first and second reagents included in the second combination to provide the user with a known sample. Unknown samples (a large amount of unknown samples) can be analyzed continuously without placing Hereinafter, the process of continuously analyzing an unknown sample using the first and second reagents contained in the first combination and the first and second reagents contained in the second combination is referred to as "seamless analysis." Also called By executing seamless analysis, the analyzer 600 can reduce the user's trouble of setting a known sample and the time required to analyze an unknown sample.

 [試薬ペアおよび検量線の記憶]
 次に、第2記憶部322による試薬ペアおよび検量線の記憶について説明する。図9は、第2記憶部322による試薬ペアおよび検量線の記憶を示す図である。第2記憶部322による試薬ペアの最大記憶数および検量線の最大記憶数は、共に“2”であり、3つ以上の試薬ペアおよび3つ以上の検量線を記憶しない構成となっている。これにより、第2記憶部322の記憶領域の増大化を抑制できる。また、上述のように、そもそも、試薬配置部31aが保持可能な第1試薬の数および第2試薬の数は、“3”という比較的小さな数であることから、最大記憶数を“2”としても特段の不都合が生じることはない。
[Reagent pair and calibration curve storage]
Next, storage of reagent pairs and calibration curves by the second storage unit 322 will be described. FIG. 9 is a diagram showing storage of reagent pairs and calibration curves by the second storage unit 322. As shown in FIG. The maximum number of reagent pairs to be stored and the maximum number of calibration curves to be stored in the second storage unit 322 are both "2", and are configured not to store three or more reagent pairs and three or more calibration curves. As a result, an increase in the storage area of the second storage unit 322 can be suppressed. Further, as described above, since the number of first reagents and the number of second reagents that can be held by the reagent placement section 31a is originally a relatively small number of "3", the maximum storage number is set to "2". However, no particular inconvenience occurs.

 図9(A)においては、処理部304が、第1試薬A1および第2試薬B1である第1試薬ペアを決定し、かつ該第1試薬ペアに対応する第1検量線を作成した場合に、第1試薬ペアを示す第1試薬ペア情報L1および該第1検量線を第2記憶部322に記憶した場合を示している。図9(A)の例では、第1試薬ペア情報L1は、第1試薬A1および第2試薬B1を示す情報である。 In FIG. 9A, when the processing unit 304 determines the first reagent pair, which is the first reagent A1 and the second reagent B1, and creates the first calibration curve corresponding to the first reagent pair, , the first reagent pair information L1 indicating the first reagent pair and the first calibration curve are stored in the second storage unit 322. FIG. In the example of FIG. 9A, the first reagent pair information L1 is information indicating the first reagent A1 and the second reagent B1.

 次に、図9(B)に示したように、処理部304が、シームレス分析のために、第1試薬A2および第2試薬B2である第2試薬ペアを決定し、かつ該第2試薬ペアに対応する第2検量線を作成した場合に、第2試薬ペアを示す第2試薬ペア情報L2および該第2検量線を第2記憶部322に記憶した場合を示している。図9(B)の例では、第2試薬ペア情報L2は、第1試薬A2および第2試薬B2を示す情報である。 Next, as shown in FIG. 9B, the processing unit 304 determines a second reagent pair, which is the first reagent A2 and the second reagent B2, for seamless analysis, and , the second reagent pair information L2 indicating the second reagent pair and the second calibration curve are stored in the second storage unit 322 when the second calibration curve corresponding to is created. In the example of FIG. 9B, the second reagent pair information L2 is information indicating the first reagent A2 and the second reagent B2.

 この場合に、図9(B)に示すように、処理部304は、第1検量線を第2記憶部322に記憶させたまま、第2検量線を第2記憶部322に記憶させる。よって、分析装置600は、第2記憶部322に記憶されている第1検量線および第2検量線を用いたシームレス分析を実行可能である。 In this case, as shown in FIG. 9B, the processing unit 304 stores the second calibration curve in the second storage unit 322 while keeping the first calibration curve stored in the second storage unit 322. Therefore, the analyzer 600 can perform seamless analysis using the first calibration curve and the second calibration curve stored in the second storage unit 322 .

 次に、第2検量線を作成せずに、第1検量線を使用した未知試料の分析中に、異常アンバランスが発生した場合を説明する。この場合には、図9(C)に示すように、処理部304が、シームレス分析のために、第1試薬A2および第2試薬B1である第2試薬ペアを決定し、かつ該第2試薬ペアに対応する第2検量線を作成した場合に、第2試薬ペアを示す第2試薬ペア情報L2および該第2検量線を第2記憶部322に記憶する。図9(C)の例では、第2試薬ペア情報L2は、第1試薬A2および第2試薬B1を示す情報である。 Next, we will explain the case where an abnormal imbalance occurs during the analysis of an unknown sample using the first calibration curve without creating the second calibration curve. In this case, as shown in FIG. 9C, the processing unit 304 determines the second reagent pair, which is the first reagent A2 and the second reagent B1, for seamless analysis, and When the second calibration curve corresponding to the pair is created, the second storage unit 322 stores the second reagent pair information L2 indicating the second reagent pair and the second calibration curve. In the example of FIG. 9C, the second reagent pair information L2 is information indicating the first reagent A2 and the second reagent B1.

 この場合に、図9(C)に示すように、処理部304は、第1検量線を第2記憶部322に記憶させたまま、第2検量線を第2記憶部322に記憶させる。 In this case, the processing unit 304 stores the second calibration curve in the second storage unit 322 while keeping the first calibration curve stored in the second storage unit 322, as shown in FIG. 9(C).

 また、処理部304は、不要となった試薬ペア情報および該試薬ペア情報に対応する検量線を削除する。試薬ペアを構成する第1試薬または第2試薬が必要量未満になった場合に、該試薬ペアを示す試薬ペア情報、および該試薬ペアに対応する検量線は不要となる。したがって、処理部304は、該試薬ペア情報および該検量線を削除する。また、第1検量線を使用した未知試料の分析中に異常アンバランスが発生した場合には、該第1検量線に対応する第1試薬ペアのいずれかの試薬の量が必要量未満となったことである。したがって、処理部304は、該第1試薬ペアの第1試薬ペア情報および該第1検量線を削除する。このように、処理部304は、不要となった検量線を削除する。したがって、処理部304は、他の試薬ペア情報および検量線を記憶させることができる。 In addition, the processing unit 304 deletes the unnecessary reagent pair information and the calibration curve corresponding to the reagent pair information. When the amount of the first reagent or the second reagent constituting the reagent pair becomes less than the required amount, the reagent pair information indicating the reagent pair and the calibration curve corresponding to the reagent pair become unnecessary. Therefore, the processing unit 304 deletes the reagent pair information and the calibration curve. In addition, when an abnormal imbalance occurs during the analysis of an unknown sample using the first calibration curve, the amount of any reagent of the first reagent pair corresponding to the first calibration curve becomes less than the required amount. That's what it was. Therefore, the processing unit 304 deletes the first reagent pair information of the first reagent pair and the first calibration curve. Thus, the processing unit 304 deletes unnecessary calibration curves. Therefore, the processing unit 304 can store other reagent pair information and calibration curves.

 このように、処理部304は、第1試薬ペアの次に使用される第2試薬ペアを決定する。本実施の形態においては、「次に使用される第2試薬ペア」とは、「第2記憶部322に第1試薬ペアが記憶されている状態で、新たに決定される試薬ペア(第2試薬ペア)」である。 Thus, the processing unit 304 determines the second reagent pair to be used next to the first reagent pair. In the present embodiment, "the second reagent pair to be used next" means "a reagent pair newly determined while the first reagent pair is stored in the second storage unit 322 (second reagent pair)”.

 [制御装置のフローチャート]
 図10は、分析装置600の主な処理の一例を示すフローチャートである。未知試料の分析の開始操作が入力装置356に対してユーザにより実行された場合に、図10のフローチャートは開始する。また、分析装置600が使用する試薬が試薬配置部31a(第1試薬配置部311aおよび第2試薬配置部312a)にユーザによりセットされたとする。ここでは、第1試薬A1~A3および第2試薬B1~B3がユーザによりセットされたとする。
[Flow chart of control device]
FIG. 10 is a flowchart showing an example of main processing of the analysis device 600. As shown in FIG. The flowchart of FIG. 10 starts when the user performs an operation to start the analysis of the unknown sample on the input device 356 . It is also assumed that the user sets the reagents used by the analyzer 600 in the reagent placement section 31a (the first reagent placement section 311a and the second reagent placement section 312a). Here, it is assumed that first reagents A1 to A3 and second reagents B1 to B3 are set by the user.

 ステップS2において、分析装置600は、該セットされた試薬の試薬情報をセンサ群S1~S6から取得する。分析装置600は、第1試薬A1~A3の各々の第1試薬情報および第2試薬B1~B3の各々の第2試薬情報を、第1記憶部321に記憶する(図5参照)。 In step S2, the analyzer 600 acquires reagent information of the set reagent from the sensor groups S1 to S6. Analyzer 600 stores first reagent information for each of first reagents A1 to A3 and second reagent information for each of second reagents B1 to B3 in first storage section 321 (see FIG. 5).

 次に、ステップS4において、分析装置600は、未知試料の各分析項目で使用される第1試薬ペア(図7(A)または図8(A)参照)を決定する。次に、ステップS5において、分析装置600は、第1試薬ペアに対応する第1検量線の作成を許容する。次に、ステップS6において、分析装置600は、既知試料がユーザにセットされた場合に、該既知試料と、決定された第1試薬ペアにより構成される第1試薬および第2試薬とを使用して第1検量線を作成する。 Next, in step S4, the analyzer 600 determines the first reagent pair (see FIG. 7(A) or FIG. 8(A)) used in each analysis item of the unknown sample. Next, in step S5, the analysis device 600 allows creation of a first calibration curve corresponding to the first reagent pair. Next, in step S6, when a known sample is set for the user, the analyzer 600 uses the known sample and the first and second reagents configured by the determined first reagent pair. to create the first calibration curve.

 次に、ステップS8において、分析装置600は、図6の入力画面を表示する。これにより、分析装置600は、ユーザによる所定操作(Yesボタン412への操作)を許容する。そして、ステップS10において、分析装置600は、ユーザによりYesボタン412が操作されたか否かを判断する。ステップS10において、Yesボタン412が操作された場合には(ステップS10でYES)、処理は、ステップS10に進む。また、ステップS10において、Noボタン413が操作された場合には(ステップS10でNO)、処理は、ステップS12に進む。 Next, in step S8, the analysis device 600 displays the input screen of FIG. As a result, the analysis device 600 allows the user to perform a predetermined operation (operation to the Yes button 412). Then, in step S10, the analysis device 600 determines whether or not the Yes button 412 has been operated by the user. In step S10, if Yes button 412 is operated (YES in step S10), the process proceeds to step S10. Also, in step S10, when the No button 413 is operated (NO in step S10), the process proceeds to step S12.

 ステップS12では、分析装置600は、モードを決定モードに制御する。決定モードは、上述のように、第2試薬ペアを決定するモードである。このように、分析装置600は、入力画面に対するユーザの操作に応じて、分析装置600のモードを、分析モードおよび決定モードのいずれかに切換える。したがって、ユーザの利便性を向上させることができる。 At step S12, the analyzer 600 controls the mode to the determination mode. The determination mode is a mode for determining the second reagent pair, as described above. In this manner, analysis device 600 switches the mode of analysis device 600 between the analysis mode and the decision mode according to the user's operation on the input screen. Therefore, user convenience can be improved.

 図11は、分析装置600が実行する割込処理の主な処理の一例である。図11に示すように、ステップS402において、分析装置600は、上述の割込時間(たとえば、1分)毎に、3つの第1試薬情報の試薬量および3つの第2試薬情報の試薬量を更新する。このように、分析装置600は、周期的に試薬情報(3つの第1試薬情報および3つの第2試薬情報)を更新する。なお、更新対象の試薬情報は、図10のステップS2で取得した試薬情報である。 FIG. 11 is an example of main processing of interrupt processing executed by the analysis device 600. FIG. As shown in FIG. 11, in step S402, the analyzer 600 calculates the reagent amounts of three pieces of the first reagent information and three pieces of the reagent amounts of the second reagent information every interrupt time (for example, one minute). Update. In this way, analyzer 600 periodically updates reagent information (three pieces of first reagent information and three pieces of second reagent information). Note that the reagent information to be updated is the reagent information acquired in step S2 of FIG.

 図12は、ステップS12の決定モード中の分析装置600の主な処理の一例を示すフローチャートである。まず、ステップS202において、分析装置600は、試薬情報の更新を禁止する。この試薬情報の更新とは、図11のステップS402である。次に、ステップS204において、分析装置600は、第1試薬情報および第2試薬情報に基づいて第2試薬ペアを決定する。ここで、ステップS202で試薬情報の更新を禁止する理由を説明する。仮にステップS202の処理が実行されない場合には、ステップS204の第2試薬ペアを決定する処理(演算)の途中で、第1試薬情報または第2試薬情報が更新されてしまう場合がある。この場合には、分析装置600は、誤った第2試薬ペアを決定する場合がある。そこで、分析装置600は、決定モード中において、試薬情報の更新を禁止することにより、誤った第2試薬ペアの決定処理が実行されることを抑制できる。 FIG. 12 is a flow chart showing an example of main processing of the analysis device 600 during the decision mode in step S12. First, in step S202, the analyzer 600 prohibits updating reagent information. This update of the reagent information is step S402 in FIG. Next, in step S204, analyzer 600 determines a second reagent pair based on the first reagent information and the second reagent information. Here, the reason why the update of the reagent information is prohibited in step S202 will be explained. If the process of step S202 is not executed, the first reagent information or the second reagent information may be updated during the process (calculation) of determining the second reagent pair in step S204. In this case, analyzer 600 may determine the wrong second reagent pair. Therefore, the analyzer 600 prohibits updating of the reagent information during the determination mode, thereby suppressing execution of the erroneous second reagent pair determination process.

 次に、ステップS206において、分析装置600は、第2試薬ペアに対応する第2検量線の作成を許容する。さらに、ステップS206においては、分析装置600は、精度管理分析を許容する。ここで、精度管理分析を説明する。該ステップS206以降において、第2検量線が作成される。精度管理分析は、該作成された第2検量線で適切な分析を実行できるか否かを確認する処理である。精度管理分析は、QC(Quality control)試料を用いて実行される。このように、精度管理分析の実行が許容されることにより、第2組合せに含まれる第1試薬および第2試薬により未知試料を適切に分析できるか否かをユーザは把握できる。 Next, in step S206, the analyzer 600 permits creation of a second calibration curve corresponding to the second reagent pair. Further, in step S206, analysis device 600 allows quality control analysis. Quality control analysis will now be described. After step S206, a second calibration curve is created. Quality control analysis is a process of confirming whether or not an appropriate analysis can be performed with the prepared second calibration curve. Quality control analysis is performed using QC (Quality Control) samples. By permitting the execution of the quality control analysis in this way, the user can grasp whether or not the unknown sample can be appropriately analyzed with the first reagent and the second reagent included in the second combination.

 次に、ステップS208において、分析装置600は、既知試料がユーザにセットされた場合に、該既知試料と、決定された第2試薬ペアにより構成される第1試薬および第2試薬とを使用して全ての項目毎に第2検量線を作成する。次に、ステップS210において、分析装置600は、全ての分析項目毎に第2検量線の作成が完了したか否かを判断する。全ての分析項目毎に第2検量線が作成されたと判断された場合には(ステップS210でYES)、決定モードは終了し、図10のメイン処理に復帰して、処理は、ステップS14の分析モードに進む。このように、分析装置600は、決定モードにおいて第2試薬ペアを決定しかつ該第2試薬ペアに対応する第2検量線を作成した場合に、分析装置600のモードを、自動的に分析モードに制御する。したがって、ユーザにより分析モードに制御させるといった手間を省略することができ、結果として、ユーザの利便性を向上させることができる。 Next, in step S208, when a known sample is set for the user, analyzer 600 uses the known sample and the first and second reagents configured by the determined second reagent pair. Create a second calibration curve for each item using Next, in step S210, the analysis device 600 determines whether or not the preparation of the second calibration curve has been completed for each analysis item. When it is determined that the second calibration curves have been created for all the analysis items (YES in step S210), the decision mode is terminated and the main processing of FIG. go to mode. In this way, the analyzer 600 automatically changes the mode of the analyzer 600 to the analysis mode when the second reagent pair is determined in the determination mode and the second calibration curve corresponding to the second reagent pair is created. to control. Therefore, it is possible to omit the trouble of causing the user to control to the analysis mode, and as a result, it is possible to improve the user's convenience.

 また、ステップS210において、全ての分析項目の検量線の作成が完了していないと判断された場合(ステップS210でNO)には、処理は、ステップS212に進む。ステップS212においては、分析装置600は、ステップS208で作成した全ての第2検量線を表示装置358に表示する。ステップS212の処理により、ユーザは、作成された第2検量線および作成されていない第2検量線を把握できる。 If it is determined in step S210 that the preparation of calibration curves for all analysis items has not been completed (NO in step S210), the process proceeds to step S212. In step S212, the analyzer 600 displays all the second calibration curves created in step S208 on the display device 358. FIG. Through the process of step S212, the user can grasp the created second calibration curve and the second calibration curve that has not been created.

 次に、分析装置600は、ステップS214において、第2検量線の作成をやり直すか否かを判断する。たとえば、分析装置600は、ステップS214においては、第2検量線の作成をやり直す操作の入力を許容する画面(図示せず)を表示装置358に表示する。第2検量線をやり直す操作がユーザにより行われた場合には(ステップS214でYES)、処理は、ステップS208に戻る。一方、第2検量線をやり直さない操作がユーザにより行われた場合には(ステップS214でNO)、処理は、ステップS14の分析モードに進む。このように、分析装置600は、全ての分析項目の第2検量線が作成されていないが(ステップS210でNO)、第2検量線の作成のやり直しが行われていない場合には(ステップS214でNO)、分析装置600のモードを、自動的に分析モードに制御する。したがって、ユーザにより分析モードに制御させるといった手間を省略することができ、結果として、ユーザの利便性を向上させることができる。 Next, in step S214, the analysis device 600 determines whether or not to recreate the second calibration curve. For example, in step S214, analyzer 600 displays on display device 358 a screen (not shown) that allows input of an operation for redoing the creation of the second calibration curve. If the user has performed an operation to redo the second calibration curve (YES in step S214), the process returns to step S208. On the other hand, if the user has performed an operation not to redo the second calibration curve (NO in step S214), the process proceeds to the analysis mode of step S14. As described above, the analysis device 600 has not generated the second calibration curves for all the analysis items (NO in step S210), but if the generation of the second calibration curves has not been redone (step S214 NO), the mode of the analyzer 600 is automatically controlled to the analysis mode. Therefore, it is possible to omit the trouble of causing the user to control to the analysis mode, and as a result, it is possible to improve the user's convenience.

 図13は、ステップS14の分析モード中の分析装置600の主な処理の一例を示すフローチャートである。ステップS102において、分析装置600は、未知試料の分析途中で試薬が足りなくなるか否かを、6個の試薬情報に基づいて判断する。 FIG. 13 is a flowchart showing an example of main processing of the analysis device 600 in the analysis mode of step S14. In step S102, the analyzer 600 determines whether or not the reagent will run out during the analysis of the unknown sample based on the six pieces of reagent information.

 ステップS102において、試薬が足りなくなる場合には(ステップS102でYES)、分析装置600は、足りなくなる試薬について次の試薬を決定済みか否かを判断する。ここで、このステップS102を含むステップS14の前のステップS12において、シームレス分析のための第2試薬ペアが決定されている場合には、ステップS104ではYESと判断され、処理は、ステップS108に進む。一方、該第2試薬ペアが決定されていない場合には、ステップS104ではNOと判断され、処理は、ステップS106に進む。ステップS106においては、ステップS104で判断された「足りない試薬」で分析される筈であった分析項目(足りない試薬に対応する分析項目)を、分析対象から除外する。これにより、分析装置600は、決定されている試薬により試料を以降のステップS112において分析することができる。ステップS106の処理が終了すると、処理は、ステップS112に進む。 In step S102, if the reagent runs out (YES in step S102), the analyzer 600 determines whether or not the next reagent for the running out reagent has already been determined. Here, if the second reagent pair for seamless analysis has been determined in step S12 prior to step S14 including step S102, YES is determined in step S104, and the process proceeds to step S108. . On the other hand, if the second reagent pair has not been determined, NO is determined in step S104, and the process proceeds to step S106. In step S106, the analysis item (analysis item corresponding to the insufficient reagent) that should have been analyzed with the "insufficient reagent" determined in step S104 is excluded from the analysis targets. As a result, analysis device 600 can analyze the sample with the determined reagent in subsequent step S112. After the process of step S106 ends, the process proceeds to step S112.

 また、ステップS108において、分析装置600は、ステップS104でYESと判断されたことに起因する次の試薬を含む試薬ペアの検量線を取得しているか否かを判断する。ステップS110において、分析装置600は、ステップS108において取得されていないと判断された検量線の作成を促進する。たとえば、分析装置600は、表示装置358に「検量線を作成してください」といった文字画像を表示する。そして、未知試料を分析することなく終了する。 Also, in step S108, the analyzer 600 determines whether or not the calibration curve for the reagent pair containing the next reagent resulting from the determination of YES in step S104 has been obtained. At step S110, analyzer 600 facilitates the creation of the calibration curve that was determined not to have been obtained at step S108. For example, the analysis device 600 displays a character image such as “Please create a calibration curve” on the display device 358 . Then, the process ends without analyzing the unknown sample.

 一方、ステップS106の処理終了後、およびステップS108でYESと判断された場合には、処理は、ステップS112に進む。ステップS112において、分析装置600は未知試料の分析を開始する。また、ステップS114において、未知試料の分析中に異常アンバランスが発生したか否かを判断する。異常アンバランスが発生してないと判断された場合には、処理は、ステップS116に進む。ステップS116においては、分析装置600は、全ての未知試料の分析および該未知試料の全ての分析項目の分析が終了したか否かを判断する。ステップS116において、全ての分析が終了していない場合には(ステップS116でNO)、処理は、ステップS114に戻る。また、ステップS116において、全ての分析が終了した場合には(ステップS116でYES)、処理は終了する。 On the other hand, after the process of step S106 is completed, and if YES is determined in step S108, the process proceeds to step S112. In step S112, analyzer 600 starts analyzing the unknown sample. Also, in step S114, it is determined whether or not an abnormal imbalance has occurred during the analysis of the unknown sample. If it is determined that abnormal imbalance has not occurred, the process proceeds to step S116. In step S116, analyzer 600 determines whether the analysis of all unknown samples and the analysis of all analysis items of the unknown samples have been completed. In step S116, if all analyzes have not been completed (NO in step S116), the process returns to step S114. Further, in step S116, when all the analyzes have been completed (YES in step S116), the process ends.

 また、ステップS114において、異常アンバランスが発生した場合には、ステップS118において、分析装置600は、上述の警告処理を実行する。そして、処理は、ステップS12に進む。 Also, in step S114, if an abnormal imbalance occurs, in step S118, the analysis device 600 executes the warning process described above. Then, the process proceeds to step S12.

 比較例の分析装置においては、未知試料の分析の前に複数の試薬ペアを決定した後には、該複数の試薬ペアを変更することはできない。したがって、ユーザの利便性を向上できないという問題があった。 In the analytical device of the comparative example, after a plurality of reagent pairs have been determined before the analysis of the unknown sample, the plurality of reagent pairs cannot be changed. Therefore, there is a problem that user convenience cannot be improved.

 これに対し、本実施の形態においては、分析装置600は、第1試薬ペアを決定した後、ステップS8およびステップS10において、ユーザによる所定操作が実行された場合には、第2試薬ペアを決定することができる。よって、ユーザの利便性を向上させることができる。 In contrast, in the present embodiment, after determining the first reagent pair, analyzer 600 determines the second reagent pair when the user performs a predetermined operation in steps S8 and S10. can do. Therefore, user convenience can be improved.

 また、分析装置600は、第1試薬ペアを決定した場合(ステップS4の処理が実行された場合)、ステップS8においてユーザによる所定操作を許容する。また、分析装置600は、異常アンバランスが発生した場合(ステップS114でNOと判断された場合)にもステップS8においてユーザによる所定操作を許容する。第1試薬ペアを決定した場合に許容された所定操作を受付けた場合(以下、「第1の場合」とも称される。)と、異常アンバランスが発生した場合に許容した所定操作を受付けた場合(以下、「第2の場合」とも称される。)とで、同一の処理を実行することにより、第2試薬ペアを決定する。該同一の処理は、たとえば、図12のステップS204である。したがって、第1の場合と第2の場合とで異なる処理により第2試薬ペアを決定する分析装置と比較して、本実施の形態の分析装置600は、処理の容量(処理数)を低減できる。 Also, when the first reagent pair is determined (when the process of step S4 is executed), the analyzer 600 allows the user to perform a predetermined operation in step S8. In addition, the analyzer 600 allows the user to perform a predetermined operation in step S8 even when an abnormal imbalance occurs (NO in step S114). When the predetermined operation permitted when the first reagent pair is determined is accepted (hereinafter also referred to as "first case"), and when the abnormal imbalance occurs, the predetermined operation permitted is accepted. The second reagent pair is determined by executing the same processing in both cases (hereinafter also referred to as “second case”). The same processing is step S204 in FIG. 12, for example. Therefore, the analyzer 600 of the present embodiment can reduce the processing capacity (the number of processes) compared to an analyzer that determines the second reagent pair by different processes for the first case and the second case. .

 [変形例]
 (1) 上述の実施の形態においては、分析装置600は、ステップS114において異常アンバランスの発生を検知した場合には、ステップS8のユーザの所定操作を受付けた場合に、第2試薬ペアを決定する構成を説明した。
[Modification]
(1) In the above-described embodiment, when the occurrence of abnormal imbalance is detected in step S114, analyzer 600 determines the second reagent pair when receiving the user's predetermined operation in step S8. I explained the configuration to do.

 しかしながら、分析装置600は、ステップS114において異常アンバランスの発生を検知した場合には、ユーザの所定操作を必要とすることなく自動的に第2試薬ペアを決定するようにしてもよい。つまり、図10および図13において、ステップS114でYESと判断された場合には、ステップS118の警告処理を実行した後に、処理は、ステップS8ではなく、ステップS12に進む。 However, when the analyzer 600 detects the occurrence of abnormal imbalance in step S114, the analyzer 600 may automatically determine the second reagent pair without requiring a predetermined operation by the user. In other words, in FIGS. 10 and 13, if YES is determined in step S114, the warning process in step S118 is executed, and then the process proceeds to step S12 instead of step S8.

 このような構成によれば、異常アンバランスが生じた後であっても、ユーザの操作を必要とすることなく、第2試薬ペアを決定することができる。したがって、このような構成であっても、ユーザの利便性を向上させることができる。 According to such a configuration, even after abnormal imbalance occurs, the second reagent pair can be determined without requiring user's operation. Therefore, even with such a configuration, user convenience can be improved.

 (2) 上述の実施の形態においては、未知試料を分析するために使用される試薬の種別数は2である、つまり、該試薬は、第1試薬および第2試薬である例を説明した。しかしながら、試薬の種別数は、L(Lは3以上の整数)である構成が採用されてもよい。つまり、第1試薬組合せ(第1試薬ボトル組合せ)は、L個の試薬(たとえば、第1試薬、第2試薬、および第3試薬)の組合せということになる。また、第2試薬組合せ(第2試薬ボトル組合せ)も、L個の試薬(たとえば、第1試薬、第2試薬、および第3試薬)の組合せということになる。 (2) In the above embodiment, the number of types of reagents used for analyzing an unknown sample is two, that is, the reagents are the first reagent and the second reagent. However, a configuration in which the number of types of reagents is L (L is an integer equal to or greater than 3) may be adopted. That is, the first reagent combination (first reagent bottle combination) is a combination of L reagents (eg, first reagent, second reagent, and third reagent). The second reagent combination (second reagent bottle combination) is also a combination of L reagents (eg, first reagent, second reagent, and third reagent).

 (3) 上述の実施の形態において、試薬ペアは決定されているものの該試薬ペアに対応する検量線が作成されていない場合には、未知試料を分析することなく、図10の処理を終了する構成を説明した。たとえば、図13のステップS108において、分析装置600は、NOと判断した場合には、ステップS110の構成を実行した後に、図10の処理を終了する。 (3) In the above embodiment, if the reagent pair has been determined but the calibration curve corresponding to the reagent pair has not been created, the unknown sample is not analyzed and the process of FIG. 10 ends. explained the configuration. For example, if analysis device 600 determines NO in step S108 of FIG. 13, it ends the processing of FIG. 10 after executing the configuration of step S110.

 しかしながら、試薬ペアは決定されているものの該試薬ペアに対応する検量線が作成されていない場合には、分析装置600は、第1パラメータを算出して、該第1パラメータを所定の記憶領域に記憶するようにしてもよい(保留するようにしてもよい)。この場合には、分析装置600は、該検量線が作成された後に、保留していた第1パラメータを、該検量線に適用することにより、第2パラメータを算出する。 However, when a reagent pair has been determined but a calibration curve corresponding to the reagent pair has not been created, analyzer 600 calculates the first parameter and stores the first parameter in a predetermined storage area. It may be stored (or held). In this case, the analyzer 600 calculates the second parameter by applying the reserved first parameter to the calibration curve after the calibration curve is created.

 図13においては、ステップS108でNOと判断された場合には、処理は、ステップS112に進む。そして、ステップS112で開始された未知試料の分析により第1パラメータを算出する。その度、分析装置600は、検量線が作成した後に、該第1パラメータを検量線に適用することにより、第2パラメータを算出する。 In FIG. 13, if NO is determined in step S108, the process proceeds to step S112. Then, the first parameter is calculated by the analysis of the unknown sample started in step S112. Each time, after the calibration curve is created, the analysis device 600 calculates the second parameter by applying the first parameter to the calibration curve.

 (4) 本実施形態の分析装置は、血液凝固分析装置である構成を説明した。しかしながら、分析装置は、他の分析装置であってもよい。他の分析装置は、たとえば、生化学自動分析装置、または、免疫項目分析装置である。 (4) The configuration of the analyzer of this embodiment as a blood coagulation analyzer has been described. However, the analysis device may be another analysis device. Other analyzers are, for example, biochemical automated analyzers or immune item analyzers.

 (5) 上述の分析装置600においては、検量線(第1検量線および第2検量線)を用いて、第1試薬および第2試薬を使用して未知試料を分析する構成を説明した。しかしながら、検量線(第1検量線および第2検量線)を用いずに、第1試薬および第2試薬を使用して未知試料を分析する構成が採用されてもよい。このような構成が採用された分析装置は、第1パラメータを算出せずに、直接、第2パラメータを算出する。 (5) In the analyzer 600 described above, the calibration curves (the first calibration curve and the second calibration curve) are used to analyze the unknown sample using the first reagent and the second reagent. However, a configuration in which the unknown sample is analyzed using the first reagent and the second reagent without using the calibration curve (the first calibration curve and the second calibration curve) may be adopted. An analysis apparatus employing such a configuration directly calculates the second parameter without calculating the first parameter.

 (6) 上述の実施の形態においては、試薬情報においては、試薬ポジション、試薬の量、および該試薬の有効期限、該試薬のオンボード安定性の全てを含むを構成を説明した。しかしながら、試薬情報は、試薬ポジション、試薬の量、および該試薬の有効期限、該試薬のオンボード安定性の少なくとも1つを含むようにしてもよい。なお、試薬情報に試薬の量が含まれていない構成の場合において、分析装置600は、使用する試薬を決定する場合には、上述の量センサなどにより、試薬の量を検出する。そして、分析装置600は、該検出された試薬の量に基づいて残存している試薬を特定し、該残存する試薬を使用する。 (6) In the above-described embodiment, the reagent information includes all of the reagent position, the amount of the reagent, the expiration date of the reagent, and the on-board stability of the reagent. However, the reagent information may include at least one of reagent position, reagent quantity and expiration date of the reagent, on-board stability of the reagent. In the case of a configuration in which the reagent information does not include the amount of the reagent, the analyzer 600 detects the amount of the reagent by the above-described amount sensor or the like when determining the reagent to be used. Then, analyzer 600 identifies the remaining reagent based on the amount of the detected reagent and uses the remaining reagent.

 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the multiple exemplary embodiments described above are specific examples of the following aspects.

 (第1項) 一態様に係る分析装置は、配置部と、第1記憶装置と、制御装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。制御装置は、複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトル組合せを決定する。分析機構は、制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する。制御装置は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定する。また、制御装置は、ユーザによる所定操作を受付けた場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する。 (Section 1) An analysis device according to one aspect includes an arrangement unit, a first storage device, a control device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles. The analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample. A controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Further, when receiving a predetermined operation by the user, the control device determines a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.

 このような構成によれば、分析機構により使用される第1試薬および第2試薬を含む第1組合せを決定した後、ユーザの所望のタイミングで、第1組合せの次に使用される第1試薬および第2試薬を含む第2組合せを決定することができる。したがって、ユーザの利便性を向上させることができる。 According to such a configuration, after determining the first combination containing the first reagent and the second reagent used by the analysis mechanism, the first reagent used next to the first combination is determined at the user's desired timing. and a second reagent can be determined. Therefore, user convenience can be improved.

 (第2項) 第1項に記載の分析装置において、制御装置は、異常が発生することにより、第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合に、所定操作を許容する。 (Section 2) In the analysis apparatus described in Section 1, the control device causes the amount of the first reagent contained in the first reagent bottle combination to increase to the first 2 Allow routine manipulations when less than required for use with reagents.

 このような構成によれば、異常が発生することにより、第1試薬の量が過度に減少し、第2試薬が残存する場合であっても、許容された所定操作がユーザにより行われることにより、該残存している第2試薬と、新たな第1試薬との組合せである第2組合せを決定することから、第2試薬の無駄を回避できる。 According to such a configuration, even if the amount of the first reagent is excessively reduced due to the occurrence of an abnormality and the second reagent remains, the user can perform the permitted predetermined operation. , the second combination, which is the combination of the remaining second reagent and the new first reagent, is determined, so that waste of the second reagent can be avoided.

 (第3項) 第2項に記載の分析装置において、制御装置は、上述の異常が発生した場合に、警告処理を実行する。 (Section 3) In the analyzer described in Section 2, the control device executes warning processing when the above-described abnormality occurs.

 このような構成によれば、第1組合せに含まれる第1試薬の量が、必要量未満となったことをユーザに通知できる。 According to such a configuration, it is possible to notify the user that the amount of the first reagent contained in the first combination is less than the required amount.

 (第4項) 第1項~第3項のいずれか1項に記載の分析装置において、制御装置は、第1試薬ボトル組合せを決定した場合に、所定操作を許容し、第1試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第1検量線を作成し、許容した所定操作を受付けたことにより決定した第2試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第2検量線を作成する。 (Section 4) In the analyzer according to any one of Sections 1 to 3, when the first reagent bottle combination is determined, the control device permits the predetermined operation, and the first reagent bottle combination and the known sample set by the user to create a first calibration curve, and use the second reagent bottle combination determined by accepting the permitted predetermined operation and the known sample set by the user to create a second calibration curve.

 このような構成によれば、第1組合せが決定された場合には、許容された所定操作がユーザにより行われた場合には、第1組合せについての第1検量線と、第2組合せについての第2検量線との双方を作成することができる。分析装置に検量線を作成する場合には、既知試料をユーザはセットする必要がある。よって、未知試料の分析を、第1組合せに含まれる第1試薬および第2試薬と、第2組合せに含まれる第1試薬および第2試薬とを用いて、ユーザに既知試料を配置させることなく、連続的に未知試料(多数の未知試料)を分析できる。 According to such a configuration, when the first combination is determined, when the user performs the permitted predetermined operation, the first calibration curve for the first combination and the second calibration curve for the second combination Both a second calibration curve and a second calibration curve can be generated. When creating a calibration curve for the analyzer, the user must set a known sample. Therefore, an unknown sample can be analyzed using the first and second reagents contained in the first combination and the first and second reagents contained in the second combination without requiring the user to place the known sample. , can continuously analyze unknown samples (a large number of unknown samples).

 (第5項) 第2項または第3項に記載の分析装置において、制御装置は、第1試薬ボトル組合せを決定した場合に、所定操作を許容し、異常が発生した場合に許容した所定操作を受付けた場合と、第1試薬ボトル組合せを決定した場合に許容した所定操作を受付けた場合とで同一の処理を実行することにより第2試薬ボトル組合せを決定する。 (Section 5) In the analyzer described in Section 2 or 3, the controller permits the predetermined operation when the first reagent bottle combination is determined, and allows the predetermined operation when an abnormality occurs. is received and the predetermined operation permitted when the first reagent bottle combination is determined is performed, thereby determining the second reagent bottle combination.

 このような構成によれば、第1組合せに含まれる第1試薬の量が必要量未満となった場合と、第1組合せを決定した場合に許容した所定操作を受付けた場合とで、第2組合せを決定するための処理を共通化できる。 According to such a configuration, when the amount of the first reagent contained in the first combination becomes less than the required amount and when the predetermined operation permitted when the first combination is determined is accepted, the second Processing for determining combinations can be shared.

 (第6項) 一態様に係る分析装置は、配置部と、第1記憶装置と、制御装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。制御装置は、複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトル組合せを決定する。分析機構は、制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する。制御装置は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定する。また、制御装置は、異常が発生することにより、第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する。 (Section 6) An analysis device according to one aspect includes an arrangement unit, a first storage device, a control device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The controller determines a combination of reagent bottles to be used for analysis items based on reagent bottle information of a plurality of reagent bottles. The analysis mechanism uses the reagent bottle combination determined by the controller to analyze the unknown sample. A controller determines a first reagent bottle combination containing a first reagent and a second reagent for the assay item. In addition, the control device determines that the amount of the first reagent contained in the first reagent-bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent-bottle combination due to the occurrence of the abnormality. If so, the analysis mechanism determines a second reagent bottle combination containing the first and second reagents to be used next to the first reagent bottle combination.

 このような構成によれば、異常が発生することにより、第1試薬の量が過度に減少し、第2試薬が残存する場合であっても、該残存している第2試薬と、新たな第1試薬との組合せである第2組合せを自動的に決定することから、ユーザの操作を必要とすることなく第2試薬の無駄を回避できる。 According to such a configuration, even if the amount of the first reagent is excessively reduced due to the occurrence of an abnormality and the second reagent remains, the remaining second reagent and the new Since the second combination, which is the combination with the first reagent, is automatically determined, waste of the second reagent can be avoided without requiring user's operation.

 (第7項) 第1項~第3項、第5項、および第6項のいずれか1項に記載の分析装置において、制御装置は、第1試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第1検量線を作成し、第2試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第2検量線を作成する。 (Section 7) In the analyzer according to any one of Sections 1 to 3, 5, and 6, the controller controls the combination of the first reagent bottle and the known A first calibration curve is generated using the samples and a second calibration curve is generated using a second reagent bottle combination and known samples set by the user.

 このような構成によれば、第1組合せに含まれる第1試薬と第2試薬とを使用した第1検量線と、第2組合せに含まれる第1試薬と第2試薬とを使用した第2検量線とを作成できる。 According to such a configuration, the first calibration curve using the first reagent and the second reagent included in the first combination, and the second calibration curve using the first reagent and the second reagent included in the second combination A calibration curve can be created.

 (第8項) 第4項または第7項に記載の分析装置は、第1検量線および第2検量線を記憶し、他の検量線を記憶しない第2記憶装置をさらに備える。 (Section 8) The analyzer described in Section 4 or 7 further includes a second storage device that stores the first calibration curve and the second calibration curve and does not store other calibration curves.

 このような構成によれば、第2記憶装置は、多くとも2つの検量線を記憶することから、第2記憶装置の記憶領域の増大化を抑制できる。 According to such a configuration, the second storage device stores at most two calibration curves, so an increase in the storage area of the second storage device can be suppressed.

 (第9項) 第1項~第8項のいずれか1項に記載の分析装置において、制御装置は、分析装置のモードを、未知試料を分析する第1モードと、第2組合せを決定する第2モードとのいずれかに制御する。 (Item 9) In the analyzer according to any one of items 1 to 8, the controller determines the mode of the analyzer as the first mode for analyzing the unknown sample and the second combination. Control to either the second mode or the second mode.

 このような構成によれば、未知試料を分析できつつ、第2組合せを決定することができる。 According to such a configuration, it is possible to determine the second combination while analyzing the unknown sample.

 (第10項) 第9項に記載の分析装置において、制御装置は、ユーザの操作に応じて、分析装置のモードを、第1モードおよび第2モードのいずれかに切換える。 (Item 10) In the analyzer described in Item 9, the control device switches the mode of the analyzer between the first mode and the second mode according to the user's operation.

 このような構成によれば、ユーザの利便性を向上させることができる。
 (第11項) 第9項または第10項に記載の分析装置において、制御装置は、第2モード中において、試薬ボトル情報の更新を禁止する。
According to such a configuration, user convenience can be improved.
(Item 11) In the analyzer described in Item 9 or 10, the controller prohibits update of the reagent bottle information during the second mode.

 仮に、第2モード中に第1更新情報の更新および第2更新情報の更新が許容されると、第2組合せの決定処理中に、第1更新情報の更新および第2更新情報の更新が実行される場合がある。この場合には、制御装置は、誤った第2組合せを決定する場合がある。そこで、第2モード中において、試薬ボトル情報の更新を禁止することにより、誤った第2組合せの決定処理が実行されることを抑制できる。 If updating of the first update information and updating of the second update information are permitted during the second mode, updating of the first update information and updating of the second update information are executed during the process of determining the second combination. may be In this case, the controller may determine the wrong second combination. Therefore, by prohibiting the update of the reagent bottle information during the second mode, it is possible to suppress execution of the erroneous determination process of the second combination.

 (第12項) 第9項~第11項のいずれか1項に記載の分析装置において、制御装置は、第2モード中において、第2組合せに含まれる第1試薬および第2試薬とユーザによりセットされた既知試料とを使用した第2検量線の作成、および該第2検量線を用いた精度管理分析を許容する。 (Item 12) In the analyzer according to any one of items 9 to 11, during the second mode, the controller controls the first reagent and the second reagent included in the second combination and the user It allows preparation of a second calibration curve using the set known samples, and quality control analysis using the second calibration curve.

 このような構成によれば、第2検量線の作成および該第2検量線を用いた精度管理分析が許容されることから、第2組合せに含まれる第1試薬および第2試薬により未知試料を適切に分析できるかをユーザは把握できる。 According to such a configuration, since the preparation of the second calibration curve and the quality control analysis using the second calibration curve are allowed, the unknown sample is detected by the first reagent and the second reagent included in the second combination. The user can grasp whether the analysis can be performed appropriately.

 (第13項) 第9項~第12項のいずれか1項に記載の分析装置において、制御装置は、第2モードにおいて第2組合せを決定しかつ第2検量線を作成した場合に、分析装置のモードを、自動的に第1モードに制御する。 (Item 13) In the analyzer according to any one of items 9 to 12, when the control device determines the second combination in the second mode and creates the second calibration curve, the analysis The mode of the device is automatically controlled to the first mode.

 このような構成によれば、第2検量線が作成された後は、未知試料を分析する第1モードに自動的に制御できることから、ユーザの利便性を向上させることができる。 According to such a configuration, after the second calibration curve is created, it is possible to automatically control to the first mode for analyzing the unknown sample, so it is possible to improve the user's convenience.

 (第14項) 第1項~第13項のいずれか1項に記載の分析装置において、試薬ボトル情報は、試薬の量と、試薬の有効期限と、試薬のオンボード安定性とのうちの少なくとも1つを含む。 (Section 14) In the analyzer according to any one of Sections 1 to 13, the reagent bottle information includes the amount of reagent, the expiration date of the reagent, and the onboard stability of the reagent. At least one.

 このような構成によれば、第1試薬の有効期限およびオンボード安定性の少なくとも一方、および第2試薬の有効期限およびオンボード安定性の少なくとも一方に基づいて第1組合せおよび第2組合せを決定できる。 According to such a configuration, the first combination and the second combination are determined based on at least one of the expiration date and onboard stability of the first reagent and at least one of the expiration date and onboard stability of the second reagent. can.

 (第15項) 一態様に係る制御方法は、分析装置の制御方法である。分析装置は、配置部と、第1記憶装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。分析機構は、制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する。制御方法は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することを備える。また、制御方法は、ユーザによる所定操作を受付けた場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することを備える。 (Section 15) A control method according to one aspect is a control method for an analyzer. The analysis device includes an arrangement section, a first storage device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method. The control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Also, the control method comprises determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by the user is received. .

 このような構成によれば、分析機構により使用される第1試薬および第2試薬を含む第1組合せを決定した後、ユーザの所望のタイミングで、第1組合せの次に使用される第1試薬および第2試薬を含む第2組合せを決定することができる。したがって、ユーザの利便性を向上させることができる。 According to such a configuration, after determining the first combination containing the first reagent and the second reagent used by the analysis mechanism, the first reagent used next to the first combination is determined at the user's desired timing. and a second reagent can be determined. Therefore, user convenience can be improved.

 (第16項) 一態様に係る制御方法は、分析装置の制御方法である。分析装置は、配置部と、第1記憶装置と、分析機構とを備える。配置部は、複数の試薬ボトルが配置される。第1記憶装置は、複数の試薬ボトルの試薬ボトル情報を記憶する。分析機構は、制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する。制御方法は、分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することを備える。また、制御方法は、異常が発生することにより、第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、分析機構により第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することを備える。 (Section 16) A control method according to one aspect is a control method for an analyzer. The analysis device includes an arrangement section, a first storage device, and an analysis mechanism. A plurality of reagent bottles are arranged in the arrangement section. The first storage device stores reagent bottle information of a plurality of reagent bottles. The analysis mechanism analyzes the unknown sample using the reagent bottle combination determined by the control method. The control method comprises determining a first reagent bottle combination containing a first reagent and a second reagent for the assay item. Further, the control method is such that the amount of the first reagent contained in the first reagent bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent bottle combination due to the occurrence of the abnormality. If so, determining a second reagent bottle combination containing the first reagent and the second reagent to be used next to the first reagent bottle combination by the analysis mechanism.

 このような構成によれば、異常が発生することにより、第1試薬の量が過度に減少し、第2試薬が残存する場合であっても、該残存している第2試薬と、新たな第1試薬との組合せである第2組合せを自動的に決定することから、ユーザの操作を必要とすることなく第2試薬の無駄を回避できる。 According to such a configuration, even if the amount of the first reagent is excessively reduced due to the occurrence of an abnormality and the second reagent remains, the remaining second reagent and the new Since the second combination, which is the combination with the first reagent, is automatically determined, waste of the second reagent can be avoided without requiring user's operation.

 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

 110 キュベット供給装置、111 キュベット収容部、120 キュベット移送装置、121 チャック付きアーム、200 攪拌装置、300 分析機構、302 取得部、304 処理部、306 制御部、310 記憶部、311 第1記憶部、311a 第1試薬配置部、312 第2記憶部、312a 第2試薬配置部、354 制御装置、356 入力装置、358 表示装置、358A 表示領域、361 メモリ、600 分析装置。 110 cuvette supply device, 111 cuvette storage unit, 120 cuvette transfer device, 121 arm with chuck, 200 stirring device, 300 analysis mechanism, 302 acquisition unit, 304 processing unit, 306 control unit, 310 storage unit, 311 first storage unit, 311a first reagent placement unit, 312 second storage unit, 312a second reagent placement unit, 354 control device, 356 input device, 358 display device, 358A display area, 361 memory, 600 analyzer.

Claims (16)

 複数の試薬ボトルが配置される配置部と、
 前記複数の試薬ボトルの試薬ボトル情報を記憶する第1記憶装置と、
 前記複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトル組合せを決定する制御装置と、
 前記制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する分析機構とを備え、
 前記制御装置は、
  分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定し、
  ユーザによる所定操作を受付けた場合、前記分析機構により前記第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する、分析装置。
an arrangement section in which a plurality of reagent bottles are arranged;
a first storage device that stores reagent bottle information of the plurality of reagent bottles;
a controller that determines a reagent bottle combination to be used for an analysis item based on the reagent bottle information of the plurality of reagent bottles;
an analysis mechanism that analyzes an unknown sample using the reagent bottle combination determined by the control device;
The control device is
determining a first reagent bottle combination containing a first reagent and a second reagent for the analytical item;
An analysis device that determines a second reagent bottle combination containing a first reagent and a second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by a user is received.
 前記制御装置は、異常が発生することにより、前記第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合に、前記所定操作を許容する、請求項1に記載の分析装置。 The controller determines that the amount of the first reagent contained in the first reagent bottle combination is less than the necessary amount for use with the second reagent contained in the first reagent bottle combination due to the occurrence of the abnormality. 2. The analyzer according to claim 1, wherein said predetermined operation is permitted when  前記制御装置は、前記異常が発生した場合に、警告処理を実行する、請求項2に記載の分析装置。 The analysis device according to claim 2, wherein the control device executes warning processing when the abnormality occurs.  前記制御装置は、
  前記第1試薬ボトル組合せを決定した場合に、前記所定操作を許容し、
  前記第1試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第1検量線を作成し、
  許容した前記所定操作を受付けたことにより決定した前記第2試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第2検量線を作成する、請求項1~請求項3のいずれか1項に記載の分析装置。
The control device is
permitting the predetermined operation when the first reagent bottle combination is determined;
creating a first calibration curve using the first reagent bottle combination and a known sample set by a user;
A second calibration curve is created using the second reagent bottle combination determined by accepting the allowed predetermined operation and the known sample set by the user. 2. The analyzer according to item 1.
 前記制御装置は、
  前記第1試薬ボトル組合せを決定した場合に、前記所定操作を許容し、
  前記異常が発生した場合に許容した前記所定操作を受付けた場合と、
  前記第1試薬ボトル組合せを決定した場合に許容した前記所定操作を受付けた場合とで同一の処理を実行することにより前記第2試薬ボトル組合せを決定する、請求項2または請求項3に記載の分析装置。
The control device is
permitting the predetermined operation when the first reagent bottle combination is determined;
when the predetermined operation permitted when the abnormality occurs;
4. The second reagent bottle combination according to claim 2 or 3, wherein the second reagent bottle combination is determined by executing the same processing when the predetermined operation allowed when the first reagent bottle combination is determined is accepted. Analysis equipment.
 複数の試薬ボトルが配置される配置部と、
 前記複数の試薬ボトルの試薬ボトル情報を記憶する第1記憶装置と、
 前記複数の試薬ボトルの試薬ボトル情報に基づいて、分析項目に対して使用する試薬ボトルの組合せを決定する制御装置と、
 前記制御装置が決定した試薬ボトル組合せを使用して、未知試料を分析する分析機構とを備え、
 前記制御装置は、
  分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定し、
  異常が発生することにより、前記第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、前記分析機構により前記第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定する、分析装置。
an arrangement section in which a plurality of reagent bottles are arranged;
a first storage device that stores reagent bottle information of the plurality of reagent bottles;
a controller that determines a combination of reagent bottles to be used for an analysis item based on the reagent bottle information of the plurality of reagent bottles;
an analysis mechanism that analyzes an unknown sample using the reagent bottle combination determined by the control device;
The control device is
determining a first reagent bottle combination containing a first reagent and a second reagent for the analytical item;
If the occurrence of an abnormality causes the amount of the first reagent contained in the first reagent bottle combination to become less than the necessary amount for use with the second reagent contained in the first reagent bottle combination, An analysis device for determining a second reagent bottle combination containing a first reagent and a second reagent to be used next to the first reagent bottle combination by the analysis mechanism.
 前記制御装置は、
  前記第1試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第1検量線を作成し、
  前記第2試薬ボトル組合せと、ユーザによりセットされた既知試料とを使用して第2検量線を作成する、請求項1~請求項3、請求項5、および請求項6のいずれか1項に記載の分析装置。
The control device is
creating a first calibration curve using the first reagent bottle combination and a known sample set by a user;
Any one of claims 1 to 3, 5, and 6, wherein a second calibration curve is created using the second reagent bottle combination and a known sample set by a user The analyzer described.
 前記分析装置は、前記第1検量線および前記第2検量線を記憶し、他の検量線を記憶しない第2記憶装置をさらに備える、請求項4または請求項7に記載の分析装置。 The analysis device according to claim 4 or 7, further comprising a second storage device that stores the first calibration curve and the second calibration curve and does not store other calibration curves.  前記制御装置は、前記分析装置のモードを、前記未知試料を分析する第1モードと、前記第2試薬ボトル組合せを決定する第2モードとのいずれかに制御する、請求項1に記載の分析装置。 2. The analysis according to claim 1, wherein said controller controls the mode of said analyzer between a first mode for analyzing said unknown sample and a second mode for determining said second reagent bottle combination. Device.  前記制御装置は、ユーザの操作に応じて、前記分析装置のモードを、前記第1モードおよび前記第2モードのいずれかに切換える、請求項9に記載の分析装置。 The analysis device according to claim 9, wherein the control device switches the mode of the analysis device between the first mode and the second mode according to a user's operation.  前記制御装置は、前記第2モード中において、前記複数の試薬ボトルの試薬ボトル情報の更新を禁止する、請求項9または請求項10に記載の分析装置。 The analyzer according to claim 9 or 10, wherein said control device prohibits update of reagent bottle information of said plurality of reagent bottles during said second mode.  前記制御装置は、前記第2モード中において、前記第2試薬ボトル組合せとユーザによりセットされた既知試料とを使用した第2検量線の作成、および該第2検量線を用いた精度管理分析を許容する、請求項9~請求項11のいずれか1項に記載の分析装置。 During the second mode, the control device creates a second calibration curve using the second reagent bottle combination and the known sample set by the user, and performs quality control analysis using the second calibration curve. The analysis device according to any one of claims 9 to 11, which allows.  前記制御装置は、前記第2モードにおいて前記第2試薬ボトル組合せを決定しかつ第2検量線を作成した場合に、前記分析装置のモードを、自動的に前記第1モードに制御する、請求項9~請求項12のいずれか1項に記載の分析装置。 The controller automatically controls the mode of the analyzer to the first mode when the second reagent bottle combination is determined and the second calibration curve is created in the second mode. The analyzer according to any one of claims 9 to 12.  前記試薬ボトル情報は、試薬の量と、試薬の有効期限と、試薬のオンボード安定性とのうちの少なくとも1つを含む、請求項1~請求項13のいずれか1項に記載の分析装置。 The analyzer according to any one of claims 1 to 13, wherein the reagent bottle information includes at least one of reagent quantity, reagent expiration date, and reagent on-board stability. .  分析装置の制御方法であって、
 前記分析装置は、
  複数の試薬ボトルが配置される配置部と、
  前記複数の試薬ボトルの試薬ボトル情報を記憶する第1記憶装置と、
  前記制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する分析機構とを備え、
 前記制御方法は、
  分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することと、
  ユーザによる所定操作を受付けた場合、前記分析機構により前記第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することと、を備える、制御方法。
A control method for an analyzer,
The analysis device is
an arrangement section in which a plurality of reagent bottles are arranged;
a first storage device that stores reagent bottle information of the plurality of reagent bottles;
an analysis mechanism that analyzes an unknown sample using the reagent bottle combination determined by the control method;
The control method is
determining a first reagent bottle combination containing a first reagent and a second reagent for the assay;
determining a second reagent bottle combination containing a first reagent and a second reagent to be used next to the first reagent bottle combination by the analysis mechanism when a predetermined operation by a user is received. Method.
  分析装置の制御方法であって、
 前記分析装置は、
  複数の試薬ボトルが配置される配置部と、
  前記複数の試薬ボトルの試薬ボトル情報を記憶する第1記憶装置と、
  前記制御方法で決定した試薬ボトル組合せを使用して、未知試料を分析する分析機構とを備え、
 前記制御方法は、
  分析項目に対する第1試薬および第2試薬を含む第1試薬ボトル組合せを決定することと、
  異常が発生することにより、前記第1試薬ボトル組合せに含まれる第1試薬の量が該第1試薬ボトル組合せに含まれる第2試薬とともに使用されるために必要な必要量未満になった場合、前記分析機構により前記第1試薬ボトル組合せの次に使用される第1試薬および第2試薬を含む第2試薬ボトル組合わせを決定することと、を備える、制御方法。
A control method for an analyzer,
The analysis device is
an arrangement section in which a plurality of reagent bottles are arranged;
a first storage device that stores reagent bottle information of the plurality of reagent bottles;
an analysis mechanism that analyzes an unknown sample using the reagent bottle combination determined by the control method;
The control method is
determining a first reagent bottle combination containing a first reagent and a second reagent for the assay;
If the occurrence of an abnormality causes the amount of the first reagent contained in the first reagent bottle combination to become less than the necessary amount for use with the second reagent contained in the first reagent bottle combination, determining a second reagent bottle combination containing a first reagent and a second reagent to be used next to said first reagent bottle combination by said analysis mechanism.
PCT/JP2022/038507 2021-11-22 2022-10-17 Analysis device and method WO2023090017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189449 2021-11-22
JP2021189449 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023090017A1 true WO2023090017A1 (en) 2023-05-25

Family

ID=86396848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038507 WO2023090017A1 (en) 2021-11-22 2022-10-17 Analysis device and method

Country Status (1)

Country Link
WO (1) WO2023090017A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102705A (en) * 2009-11-10 2011-05-26 Hitachi High-Technologies Corp Automatic analysis apparatus
WO2013150978A1 (en) * 2012-04-06 2013-10-10 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2015049094A (en) * 2013-08-30 2015-03-16 シスメックス株式会社 Sample analyzer and sample analysis method
WO2020179317A1 (en) * 2019-03-05 2020-09-10 株式会社日立ハイテク Automatic analysis device and automatic analysis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102705A (en) * 2009-11-10 2011-05-26 Hitachi High-Technologies Corp Automatic analysis apparatus
WO2013150978A1 (en) * 2012-04-06 2013-10-10 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2015049094A (en) * 2013-08-30 2015-03-16 シスメックス株式会社 Sample analyzer and sample analysis method
WO2020179317A1 (en) * 2019-03-05 2020-09-10 株式会社日立ハイテク Automatic analysis device and automatic analysis method

Similar Documents

Publication Publication Date Title
US8535607B2 (en) Sample analyzer
JP5178830B2 (en) Automatic analyzer
US7670554B2 (en) Automated analyzer
JP2950698B2 (en) Automatic analyzer with washing function
CN108027380B (en) Automatic analysis device
WO2007129741A1 (en) Automatic analyzer
WO2007139212A1 (en) Automatic analyzer
JP2011179919A (en) Specimen processing device
JP4891749B2 (en) Automatic analyzer
JP5305794B2 (en) Automatic analyzer
JP7144667B2 (en) AUTOMATIC ANALYZER AND AUTOMATIC ANALYSIS SYSTEM, AND AUTOMATIC ANALYSIS METHOD FOR SAMPLE
JP2014126415A (en) Automatic analyzer
JP2019211329A (en) Automatic analyzer
WO2023090017A1 (en) Analysis device and method
JP7334697B2 (en) automatic analyzer
JP7276462B2 (en) Biochemical analysis device and biochemical analysis method
JP7329625B2 (en) Automatic analyzer, display system for automatic analyzer, and display method for automatic analyzer
WO2021014674A1 (en) Automatic analysis device and method of automatic sample analysis
JP2023056431A (en) Autoanalyzer
JP7054620B2 (en) Automatic analyzer and automatic analysis method
EP3640647B1 (en) Automated analysis device
JP7525395B2 (en) measuring device
JP7114794B1 (en) Automatic analysis device and automatic analysis method
US20230194556A1 (en) Automatic analyzer and maintenance method for automatic analyzer
JP7329596B2 (en) automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22895303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP