[go: up one dir, main page]

WO2023068197A1 - Freezing apparatus - Google Patents

Freezing apparatus Download PDF

Info

Publication number
WO2023068197A1
WO2023068197A1 PCT/JP2022/038399 JP2022038399W WO2023068197A1 WO 2023068197 A1 WO2023068197 A1 WO 2023068197A1 JP 2022038399 W JP2022038399 W JP 2022038399W WO 2023068197 A1 WO2023068197 A1 WO 2023068197A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
expansion valve
compressor
refrigerant
valve
Prior art date
Application number
PCT/JP2022/038399
Other languages
French (fr)
Japanese (ja)
Inventor
崚平 在本
有悟 笹谷
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP22883501.3A priority Critical patent/EP4411278A4/en
Publication of WO2023068197A1 publication Critical patent/WO2023068197A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/15Control issues during shut down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • a typical refrigeration system includes a compressor, a condenser, an expansion valve, a receiver (gas-liquid separator), and an evaporator.
  • the high temperature, high pressure gaseous refrigerant produced by the compressor is first sent to the condenser.
  • the condenser heat is exchanged between refrigerant and air, and the refrigerant becomes a high-temperature, high-pressure liquid refrigerant.
  • the expansion valve the temperature and pressure of the refrigerant decrease, and the refrigerant becomes a low-temperature, low-pressure liquid refrigerant.
  • the refrigerant becomes a low-temperature, low-pressure gaseous refrigerant.
  • the present disclosure has been made to solve the above problems, and aims to provide a refrigeration system that can be manufactured at a lower cost.
  • a refrigeration system includes a main circuit as a circulation flow path through which refrigerant flows, a plurality of compressors arranged in series on the main circuit, and the plurality of compressors a check valve arranged between, a condenser arranged downstream of the plurality of compressors, a receiver arranged downstream of the condenser, and a first arranged downstream of the receiver an expansion valve, an evaporator arranged downstream of the expansion valve, an injection flow path connecting the receiver and an upstream side of the check valve between the plurality of compressors, a solenoid valve arranged on the injection flow path; a liquid level detection unit that detects the amount of the liquid component of the refrigerant stored in the receiver; and a control unit, wherein the control unit controls the compressor.
  • the first expansion valve is closed before stopping, and the electromagnetic valve is closed when the liquid level detection unit detects that the amount of the liquid component in the receiver has reached a predetermined upper limit. do.
  • FIG. 1 is a circuit diagram showing the configuration of a refrigeration system according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a circuit diagram showing the configuration of the refrigerating apparatus according to the first embodiment of the present disclosure, showing a state before operation is stopped
  • FIG. FIG. 2 is a circuit diagram showing the configuration of the refrigerating apparatus according to the first embodiment of the present disclosure, showing a state after operation is stopped
  • FIG. FIG. 10 is a circuit diagram showing the configuration of a refrigeration system according to a second embodiment of the present disclosure, showing a state before operation is stopped
  • Fig. 10 is a circuit diagram showing the configuration of the refrigeration apparatus according to the second embodiment of the present disclosure, showing a state after operation is stopped.
  • FIG. 10 is a circuit diagram showing the configuration of the refrigeration system according to the second embodiment of the present disclosure, and shows a state in which the refrigerant in the receiver is being transferred to another receiver while the system is stopped.
  • FIG. 1 Composition of refrigeration equipment
  • FIG. 1 Composition of refrigeration equipment
  • the refrigeration system 100 includes a main circuit 90 formed as a circulation flow path, a first compressor 1 (compressor), a second compressor 2 (compressor), and a condenser 4. , the first expansion valve 7, the receiver 6, the liquid level detector 61, the pressure detector 62, the second expansion valve 5, the evaporator 8, the injection passage 11, the solenoid valve 13, and the accumulator 15 , a check valve 18 , and a control section 80 .
  • the main circuit 90 is filled with refrigerant in a liquid or gaseous state.
  • the first compressor 1 and the second compressor 2 are arranged in series on the main circuit 90 . That is, the discharge side of the first compressor 1 faces the suction side of the second compressor 2 .
  • a scroll compressor, a rotary compressor, or a scroll compressor can be used as the first compressor 1 and the second compressor 2, for example, a scroll compressor, a rotary compressor, or a scroll compressor can be used.
  • the side where the second compressor 2 is located when viewed from the first compressor 1 is sometimes called the downstream side, and the opposite side is sometimes called the upstream side.
  • a check valve 18 is provided between the first compressor 1 and the second compressor 2 . The check valve 18 is configured to allow the refrigerant to flow only in the direction from the upstream side to the downstream side.
  • a condenser 4 is arranged downstream of the second compressor 2 .
  • the condenser 4 is a heat exchanger for exchanging heat between the outside air and the refrigerant.
  • a fan (not shown) is provided in the vicinity of the condenser 4 to forcefully exchange heat between the air and the refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant generated by the second compressor 2 is condensed by passing through the condenser 4 to become a high-temperature, high-pressure liquid refrigerant.
  • a second expansion valve 5 is provided downstream of the condenser 4 .
  • the high-temperature and high-pressure liquid refrigerant supplied from the condenser 4 is reduced in pressure and temperature by passing through the second expansion valve 5 and becomes a low-temperature and low-pressure liquid refrigerant.
  • a receiver 6 is connected to the downstream side of the second expansion valve 5 .
  • the receiver 6 is a container for storing at least part of the liquid refrigerant that has passed through the second expansion valve 5 .
  • the amount of liquid refrigerant that can exist in the main circuit 90 varies depending on the operating conditions of the refrigeration system 100 .
  • a receiver 6 is provided to accommodate this variation.
  • a liquid level detector 61 and a pressure detector 62 are attached to the receiver 6 .
  • the liquid level detection unit 61 detects the amount of liquid refrigerant in the receiver 6 and transmits it to the control unit 80 as an electric signal.
  • the pressure detection unit 62 detects the pressure inside the receiver 6 and transmits it to the control unit 80 as an electric signal.
  • a first expansion valve 7 is arranged further downstream of the receiver 6 .
  • the first expansion valve 7 is provided to further reduce the temperature and pressure of the low temperature, low pressure liquid refrigerant that has passed through the receiver 6 .
  • the second expansion valve 5 and the first expansion valve 7 are electromagnetic expansion valves that can be switched between open and closed states by an electric signal from the outside.
  • An evaporator 8 is provided downstream of the first expansion valve 7 .
  • the evaporator 8 is a heat exchanger for exchanging heat between the outside air and the refrigerant.
  • a fan (not shown) is provided in the vicinity of the evaporator 8 to forcefully exchange heat between the air and the refrigerant.
  • the low-temperature, low-pressure liquid refrigerant that has passed through the first expansion valve 7 evaporates by exchanging heat with the outside air when passing through the evaporator 8 to become a low-temperature, low-pressure gaseous refrigerant.
  • An accumulator 15 is provided downstream of the evaporator 8 .
  • the accumulator 15 is a container for storing liquid refrigerant that has not been completely evaporated in the evaporator 8 . After the liquid component is removed by the accumulator 15, the gaseous refrigerant is sent to the first compressor 1 again and compressed.
  • the refrigeration system 100 is operated by continuously repeating such a cycle (refrigeration cycle).
  • the injection flow path 11 connects between the above-described check valve 18 and the first compressor 1 (that is, the low-pressure side compressor) and the receiver 6 .
  • a solenoid valve 13 is provided on the injection flow path 11 .
  • the solenoid valve 13 can be switched between open and closed states by an electric signal from the outside.
  • the control unit 80 is provided to switch between the open/closed state of each valve device described above and the operating state of the first compressor 1 and the second compressor 2 by an electric signal. Specifically, the control unit 80 can switch the open/closed states of the first expansion valve 7 , the second expansion valve 5 , and the electromagnetic valve 13 . Further, the control unit 80 can switch between driving and stopping the first compressor 1 and the second compressor 2 .
  • the operation when stopping the refrigeration system 100 will be described.
  • the refrigerating apparatus 100 conventionally, when the operation is stopped, the refrigerant is evenly present in the piping path. Therefore, it is necessary to secure a certain level or more of pressure resistance performance of piping and various devices.
  • the pressure resistance performance of the first compressor 1 on the low-pressure side in particular needs to be the same as the pressure resistance performance of the second compressor 2 on the high-pressure side, causing an increase in cost.
  • the refrigerating apparatus 100 is configured to collect the refrigerant into the receiver 6 by performing the operation described below. As shown in FIG. 2, the controller 80 first closes the first expansion valve 7 . Thereby, the downstream side of the receiver 6 in the main circuit 90 is blocked. As a result, the refrigerant in the main circuit 90 and the injection flow path 11 is sequentially stored in the receiver 6 .
  • the control unit 80 causes the second expansion valve 5, and the solenoid valve 13 is closed. As a result, the receiver 6 is disconnected from the main circuit 90 . Subsequently, the control unit 80 stops driving the first compressor 1 and the second compressor 2 . As described above, the refrigerating apparatus 100 is stopped.
  • the first compressor 1 and the second compressor 2 are operated with the first expansion valve 7 closed prior to stopping the operation.
  • the refrigerant existing in the main circuit 90 and each device can be recovered in the receiver 6 . Therefore, when the operation of the refrigerating device 100 is stopped, the refrigerant is less likely to remain in the main circuit 90 and each device, and particularly the pressure resistance performance of the first compressor 1 on the low pressure side can be lowered. As a result, the manufacturing cost and maintenance cost of the refrigeration apparatus 100 can be reduced.
  • closing the second expansion valve 5 in addition to the electromagnetic valve 13 causes the receiver 6 to be disconnected from the main circuit. Thereby, the refrigerant can be stably sealed in the receiver 6 .
  • this embodiment differs from the first embodiment in the number of compressors. Specifically, on the main circuit 90, in addition to the first compressor 1 on the lowest pressure side, two second compressors 2a and 2b on the high pressure side are provided. One check valve 18 (18a, 18b) is provided upstream of each of the second compressors 2a, 2b.
  • a plurality of sets (two sets) each of the receiver 6, the first expansion valve 7, the injection passage 11, and the electromagnetic valve 13 described in the first embodiment are provided.
  • the receiver 6, the first expansion valve 7, the injection passage 11, and the electromagnetic valve 13 located relatively downstream on the main circuit 90 will be referred to as the downstream receiver 6a and the downstream first expansion valve 7a.
  • the downstream injection passage 11a, and the downstream electromagnetic valve 13a are also positioned relatively upstream.
  • these devices positioned relatively upstream are called an upstream receiver 6b, an upstream first expansion valve 7b, an upstream injection passage 11b, and an upstream electromagnetic valve 13b.
  • the downstream injection channel 11a connects the downstream receiver 6a, the first compressor 1, and the check valve 18a.
  • the upstream injection passage 11b connects the upstream receiver 6b, the second compressor 2a, and the check valve 18b.
  • the control unit 80 first closes the first downstream expansion valve 7a.
  • the refrigerant on the downstream side of the first downstream expansion valve 7a on the main circuit 90 is sequentially collected by the downstream receiver 6a.
  • the controller 80 closes the upstream first expansion valve 7b and the downstream electromagnetic valve 13a, as shown in FIG. As a result, the downstream receiver 6 a is disconnected from the main circuit 90 . After that, the refrigerant still remaining on the main circuit 90 is stored in the upstream receiver 6b. Finally, when it is detected that the upstream receiver 6b is also filled with refrigerant, the controller 80 closes the second expansion valve 5 and the upstream electromagnetic valve 13b. As a result, the upstream receiver 6 b is also disconnected from the main circuit 90 . After that, the control unit 80 stops the first compressor 1 and the second compressors 2a and 2b. As described above, the refrigerating device 200 is stopped.
  • the refrigerant is stored in a plurality of receivers 6 sequentially from the receiver 6 on the downstream side to the receiver 6 on the upstream side, thereby recovering the refrigerant in the main circuit 90 and each device.
  • the pressure inside the receiver 6 may rise due to the outside temperature.
  • the pressure detection unit 62 detects that the pressure inside the downstream receiver 6a has become equal to or higher than a predetermined upper limit pressure.
  • the controller 80 opens only the downstream side solenoid valve 13a and the second expansion valve 5 .
  • the controller 80 drives the first compressor 1 and the second compressors 2a and 2b.
  • the refrigerant in the downstream receiver 6a flows through the downstream injection channel 11a and the main circuit 90 toward the upstream receiver 6b.
  • the control unit 80 continues this operation until the pressure in the downstream receiver 6a becomes less than the upper limit pressure.
  • the receivers 6 can be sequentially filled with refrigerant from the downstream side to the upstream side. Thereby, more refrigerant can be stored in the plurality of receivers 6 .
  • the compressor when the pressure in the receiver 6 increases while the refrigerating apparatus 200 is stopped, the compressor is restarted while the injection flow path 11 connected to the receiver 6 located downstream is opened.
  • the refrigerant in the receiver 6 positioned downstream can be transferred to another receiver 6 positioned upstream. Thereby, the pressure in each receiver 6 can be maintained below the upper limit pressure.
  • a two-stage compression refrigeration system 100 including the first compressor 1 and the second compressor 2 and a three-stage compression system including the first compressor 1 and the second compressors 2a and 2b
  • the refrigerator 200 has been described.
  • the number of compressors is not limited by the above embodiment, and it is possible to employ a configuration that performs four or more stages of compression.
  • a specific example of a four-stage compression refrigeration system is a configuration using two scroll compressors. Even with such a configuration, it is possible to realize each operation described in the second embodiment.
  • a refrigeration apparatus 100 includes a main circuit 90 as a circulation flow path through which a refrigerant flows, and a plurality of compressors (first compressor 1 and a second compressor 2), a check valve 18 arranged between the plurality of compressors, a condenser 4 arranged downstream of the plurality of compressors, and downstream of the condenser 4
  • the control unit 80 closes the first expansion valve 7 before stopping the compressor, and the liquid level
  • the electromagnetic valve 13 is closed when the detection unit 61 detects that the amount of the liquid component in the receiver 6 has reached a predetermined upper limit.
  • the compressor prior to stopping the operation of the refrigeration system 100, the compressor is operated with the first expansion valve 7 closed, thereby removing the refrigerant existing in the main circuit 90 and each device. It can be collected in receiver 6 . Therefore, when the operation of the refrigerating apparatus 100 is stopped, it becomes difficult for the refrigerant to remain in the main circuit 90 and each device.
  • the refrigeration system 200 includes a plurality of sets of the receivers 6, the first expansion valves 7, the injection passages 11, and the electromagnetic valves 13 arranged in series on the main circuit 90.
  • the control unit 80 closes the first expansion valve 7 before stopping the compressor, and the liquid level detection unit 61 detects that the amount of the liquid component in the receiver 6 reaches the upper limit value.
  • the electromagnetic valve 13 has From the electromagnetic valve 13 to the first expansion valve 7 located on the most upstream side, and the electromagnetic valve 13 are sequentially carried out.
  • the receivers 6 can be sequentially filled with refrigerant from the downstream side to the upstream side. Thereby, more refrigerant can be stored in the plurality of receivers 6 .
  • the refrigeration apparatus 200 further includes a pressure detection section 62 that detects the pressure inside the receiver 6, and the control section 80 controls the pressure detection section 62 while the compressor is stopped.
  • the receiver 6 located relatively upstream is detected by closing the electromagnetic valve 13 on the injection flow path 11 connected to the receiver 6 that While opening, the said compressor is driven.
  • the pressure inside the receiver 6 may rise under the influence of the outside temperature.
  • the pressure in each receiver 6 can be maintained below the upper limit pressure.
  • the refrigerating apparatus 100 further includes a second expansion valve 5 arranged between the condenser 4 and the receiver 6, and the control unit 80 controls the liquid level detection unit 61 When it is detected that the amount of refrigerant in the receiver 6 has reached a predetermined upper limit, the solenoid valve 13 and the second expansion valve 5 are closed.
  • the receiver 6 is disconnected from the main circuit. Thereby, the refrigerant can be stably sealed in the receiver 6 .
  • Refrigerating device 90 Main circuit 80 Control unit 1 First compressors 2, 2a, 2b Second compressor 4 Condenser 5 Second expansion valve 6 Receiver 6a Downstream receiver 6b Upstream receiver 7 First expansion valve 7a Downstream side first expansion valve 7b upstream side first expansion valve 8 evaporator 11 injection passage 11a downstream side injection passage 11b upstream side injection passage 13 solenoid valve 13a downstream side solenoid valve 13b upstream side solenoid valve 15 accumulators 18, 18a, 18b check valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A freezing apparatus comprising: a main circuit through which a refrigerant flows; a plurality of compressors; a non-return valve; a condenser; a receiver; a first expansion valve; an evaporator; an injection flowpath; an electromagnetic valve disposed upon the injection flowpath; a fluid level detection unit that detects the amount of refrigerant stored inside the receiver; and a control unit. The control unit closes the first expansion valve prior to stopping the compressors and closes the electromagnetic valve at the point that the fluid level detection unit has detected that the amount of fluid component inside the receiver has reached a predetermined upper value.

Description

冷凍装置refrigeration equipment

 本開示は、冷凍装置に関する。
 本願は、2021年10月18日に日本に出願された特願2021-170169号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to refrigeration equipment.
This application claims priority to Japanese Patent Application No. 2021-170169 filed in Japan on October 18, 2021, the contents of which are incorporated herein.

 一般的な冷凍装置は、圧縮機と、凝縮器と、膨張弁と、レシーバ(気液分離器)と、蒸発器と、を備えている。圧縮機によって生成された高温高圧の気体冷媒がまず凝縮器に送られる。凝縮器では冷媒と空気との熱交換が行われ、当該冷媒は高温高圧の液体冷媒となる。その後、膨張弁を通過することで、冷媒は温度と圧力が下がり、低温低圧の液体冷媒となる。さらに、蒸発器で空気と熱交換を行うことで、当該冷媒は低温低圧の気体冷媒となる。この過程で、凝縮器又は蒸発器が設置されている空間の温度が調節される。特に、冷凍装置の出力を向上させるために、近年では圧縮機を複数直列的に配置する構成が採られる場合がある(下記特許文献1参照)。つまり、低圧側の圧縮機と高圧側の圧縮機が直列に配置される。 A typical refrigeration system includes a compressor, a condenser, an expansion valve, a receiver (gas-liquid separator), and an evaporator. The high temperature, high pressure gaseous refrigerant produced by the compressor is first sent to the condenser. In the condenser, heat is exchanged between refrigerant and air, and the refrigerant becomes a high-temperature, high-pressure liquid refrigerant. After that, by passing through the expansion valve, the temperature and pressure of the refrigerant decrease, and the refrigerant becomes a low-temperature, low-pressure liquid refrigerant. Further, by exchanging heat with air in the evaporator, the refrigerant becomes a low-temperature, low-pressure gaseous refrigerant. In this process, the temperature of the space in which the condenser or evaporator is installed is adjusted. In particular, in recent years, in order to improve the output of a refrigeration system, there are cases in which a plurality of compressors are arranged in series (see Patent Document 1 below). That is, the low-pressure side compressor and the high-pressure side compressor are arranged in series.

特開2020-204454号公報JP 2020-204454 A

 上記のような冷凍装置では、運転を停止する際には、配管経路上に冷媒が万遍なく存在した状態とされることが従来一般的であった。そのため、配管や各種装置の耐圧性能をいずれも一定以上に確保する必要がある。その結果、特に低圧側の圧縮機の耐圧性能を、高圧側の圧縮機の耐圧性能と同程度にする必要が生じ、コストが上昇する原因となっていた。 In the refrigeration system as described above, conventionally, when the operation is stopped, the refrigerant is evenly present on the piping route. Therefore, it is necessary to secure a certain level or more of pressure resistance performance of piping and various devices. As a result, the pressure resistance performance of the compressor on the low pressure side, in particular, needs to be the same as the pressure resistance performance of the compressor on the high pressure side, which causes an increase in cost.

 本開示は上記課題を解決するためになされたものであって、より低廉に製造することが可能な冷凍装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a refrigeration system that can be manufactured at a lower cost.

 上記課題を解決するために、本開示に係る冷凍装置は、冷媒が流通する循環流路としての主回路と、該主回路上で直列に配置された複数の圧縮機と、該複数の圧縮機の間に配置された逆止弁と、前記複数の圧縮機の下流側に配置された凝縮器と、該凝縮器の下流側に配置されたレシーバと、該レシーバの下流側に配置された第一膨張弁と、該膨張弁の下流側に配置された蒸発器と、前記レシーバと、前記複数の圧縮機の間であって前記逆止弁の上流側とを接続するインジェクション流路と、該インジェクション流路上に配置された電磁弁と、前記レシーバ内に貯留された前記冷媒の液体成分の量を検知する液面検知部と、制御部と、を備え、前記制御部は、前記圧縮機を停止させる前に前記第一膨張弁を閉止し、前記液面検知部によって前記レシーバ内の前記液体成分の量が予め定められた上限値に達したことが検知された時点で前記電磁弁を閉止する。 In order to solve the above problems, a refrigeration system according to the present disclosure includes a main circuit as a circulation flow path through which refrigerant flows, a plurality of compressors arranged in series on the main circuit, and the plurality of compressors a check valve arranged between, a condenser arranged downstream of the plurality of compressors, a receiver arranged downstream of the condenser, and a first arranged downstream of the receiver an expansion valve, an evaporator arranged downstream of the expansion valve, an injection flow path connecting the receiver and an upstream side of the check valve between the plurality of compressors, a solenoid valve arranged on the injection flow path; a liquid level detection unit that detects the amount of the liquid component of the refrigerant stored in the receiver; and a control unit, wherein the control unit controls the compressor. The first expansion valve is closed before stopping, and the electromagnetic valve is closed when the liquid level detection unit detects that the amount of the liquid component in the receiver has reached a predetermined upper limit. do.

 本開示によれば、より低廉に製造することが可能な冷凍装置を提供することができる。 According to the present disclosure, it is possible to provide a refrigeration system that can be manufactured at a lower cost.

本開示の第一実施形態に係る冷凍装置の構成を示す回路図である。1 is a circuit diagram showing the configuration of a refrigeration system according to a first embodiment of the present disclosure; FIG. 本開示の第一実施形態に係る冷凍装置の構成を示す回路図であって、運転を停止する前の状態を示す図である。FIG. 2 is a circuit diagram showing the configuration of the refrigerating apparatus according to the first embodiment of the present disclosure, showing a state before operation is stopped; FIG. 本開示の第一実施形態に係る冷凍装置の構成を示す回路図であって、運転を停止した後の状態を示す図である。FIG. 2 is a circuit diagram showing the configuration of the refrigerating apparatus according to the first embodiment of the present disclosure, showing a state after operation is stopped; FIG. 本開示の第二実施形態に係る冷凍装置の構成を示す回路図であって、運転を停止する前の状態を示す図である。FIG. 10 is a circuit diagram showing the configuration of a refrigeration system according to a second embodiment of the present disclosure, showing a state before operation is stopped; 本開示の第二実施形態に係る冷凍装置の構成を示す回路図であって、運転を停止した後の状態を示す図である。[ Fig. 10] Fig. 10 is a circuit diagram showing the configuration of the refrigeration apparatus according to the second embodiment of the present disclosure, showing a state after operation is stopped. 本開示の第二実施形態に係る冷凍装置の構成を示す回路図であって、停止中にレシーバ内の冷媒を他のレシーバに移送している状態を示す図である。FIG. 10 is a circuit diagram showing the configuration of the refrigeration system according to the second embodiment of the present disclosure, and shows a state in which the refrigerant in the receiver is being transferred to another receiver while the system is stopped.

[第一実施形態]
(冷凍装置の構成)
 以下、本開示の第一実施形態に係る冷凍装置100について、図1から図3を参照して説明する。この冷凍装置100は冷凍サイクルによって稼働することで冷媒と空気との間で熱交換を行うヒートポンプ式の装置である。
[First embodiment]
(Composition of refrigeration equipment)
A refrigerating apparatus 100 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 3. FIG. This refrigerating device 100 is a heat pump device that performs heat exchange between a refrigerant and air by operating in a refrigerating cycle.

 図1に示すように、冷凍装置100は、循環流路として形成された主回路90と、第一圧縮機1(圧縮機)と、第二圧縮機2(圧縮機)と、凝縮器4と、第一膨張弁7と、レシーバ6と、液面検知部61と、圧力検知部62と、第二膨張弁5と、蒸発器8と、インジェクション流路11と、電磁弁13と、アキュムレータ15と、逆止弁18と、制御部80と、を備えている。 As shown in FIG. 1, the refrigeration system 100 includes a main circuit 90 formed as a circulation flow path, a first compressor 1 (compressor), a second compressor 2 (compressor), and a condenser 4. , the first expansion valve 7, the receiver 6, the liquid level detector 61, the pressure detector 62, the second expansion valve 5, the evaporator 8, the injection passage 11, the solenoid valve 13, and the accumulator 15 , a check valve 18 , and a control section 80 .

(第一圧縮機、第二圧縮機の構成)
 主回路90内には冷媒が液体又は気体の状態で充填されている。第一圧縮機1と第二圧縮機2は、主回路90上で直列的に配置されている。つまり、第一圧縮機1の吐出側は、第二圧縮機2の吸入側に向かっている。第一圧縮機1、及び第二圧縮機2としては例えばスクロール圧縮機やロータリ圧縮機の他、スクロータリ圧縮機を用いることが可能である。なお、以下の説明では、主回路90上で、第一圧縮機1から見て第二圧縮機2が位置する側を下流側と呼び、その反対側を上流側と呼ぶことがある。第一圧縮機1と第二圧縮機2の間には逆止弁18が設けられている。逆止弁18は、上流側から下流側に向かう方向のみに冷媒を流通させるように構成されている。
(Configuration of first compressor and second compressor)
The main circuit 90 is filled with refrigerant in a liquid or gaseous state. The first compressor 1 and the second compressor 2 are arranged in series on the main circuit 90 . That is, the discharge side of the first compressor 1 faces the suction side of the second compressor 2 . As the first compressor 1 and the second compressor 2, for example, a scroll compressor, a rotary compressor, or a scroll compressor can be used. In the following description, on the main circuit 90, the side where the second compressor 2 is located when viewed from the first compressor 1 is sometimes called the downstream side, and the opposite side is sometimes called the upstream side. A check valve 18 is provided between the first compressor 1 and the second compressor 2 . The check valve 18 is configured to allow the refrigerant to flow only in the direction from the upstream side to the downstream side.

(凝縮器の構成)
 第二圧縮機2の下流側には、凝縮器4が配置されている。凝縮器4は、外部の空気と冷媒とを熱交換させるための熱交換器である。凝縮器4の近傍には不図示のファンが設けられており、強制的に空気と冷媒との熱交換を行うことが可能とされている。第二圧縮機2で生成された高温高圧の気体冷媒は、凝縮器4を通過することで凝縮され、高温高圧の液体冷媒となる。
(Configuration of condenser)
A condenser 4 is arranged downstream of the second compressor 2 . The condenser 4 is a heat exchanger for exchanging heat between the outside air and the refrigerant. A fan (not shown) is provided in the vicinity of the condenser 4 to forcefully exchange heat between the air and the refrigerant. The high-temperature, high-pressure gaseous refrigerant generated by the second compressor 2 is condensed by passing through the condenser 4 to become a high-temperature, high-pressure liquid refrigerant.

 凝縮器4の下流側には、第二膨張弁5が設けられている。凝縮器4から供給された高温高圧の液体冷媒は、第二膨張弁5を通過することで圧力と温度が低下し、低温低圧の液体冷媒となる。 A second expansion valve 5 is provided downstream of the condenser 4 . The high-temperature and high-pressure liquid refrigerant supplied from the condenser 4 is reduced in pressure and temperature by passing through the second expansion valve 5 and becomes a low-temperature and low-pressure liquid refrigerant.

(レシーバの構成)
 第二膨張弁5の下流側には、レシーバ6が接続されている。レシーバ6は、第二膨張弁5を通過した液体冷媒の少なくとも一部を貯留するための容器である。冷凍装置100の運転条件によって主回路90内に存在できる液体冷媒の量が変動する。レシーバ6はこの変動に対応するために設けられている。レシーバ6には、液面検知部61と、圧力検知部62が取り付けられている。液面検知部61は、レシーバ6内の液体冷媒の量を検知して制御部80に電気信号として送信する。圧力検知部62は、レシーバ6内の圧力を検知して制御部80に電気信号として送信する。
(Receiver configuration)
A receiver 6 is connected to the downstream side of the second expansion valve 5 . The receiver 6 is a container for storing at least part of the liquid refrigerant that has passed through the second expansion valve 5 . The amount of liquid refrigerant that can exist in the main circuit 90 varies depending on the operating conditions of the refrigeration system 100 . A receiver 6 is provided to accommodate this variation. A liquid level detector 61 and a pressure detector 62 are attached to the receiver 6 . The liquid level detection unit 61 detects the amount of liquid refrigerant in the receiver 6 and transmits it to the control unit 80 as an electric signal. The pressure detection unit 62 detects the pressure inside the receiver 6 and transmits it to the control unit 80 as an electric signal.

 レシーバ6のさらに下流側には、第一膨張弁7が配置されている。第一膨張弁7は、レシーバ6を通過した低温低圧の液体冷媒の温度と圧力をさらに下げるために設けられている。なお、第二膨張弁5、及び第一膨張弁7は、外部からの電気信号によって開閉状態を切り替えることが可能な電磁膨張弁である。 A first expansion valve 7 is arranged further downstream of the receiver 6 . The first expansion valve 7 is provided to further reduce the temperature and pressure of the low temperature, low pressure liquid refrigerant that has passed through the receiver 6 . The second expansion valve 5 and the first expansion valve 7 are electromagnetic expansion valves that can be switched between open and closed states by an electric signal from the outside.

(蒸発器の構成)
 第一膨張弁7の下流側には、蒸発器8が設けられている。蒸発器8は、外部の空気と冷媒とを熱交換させるための熱交換器である。蒸発器8の近傍には不図示のファンが設けられており、強制的に空気と冷媒との熱交換を行うことが可能とされている。第一膨張弁7を通過してきた低温低圧の液体冷媒は、蒸発器8を通過する際に外部の空気と熱交換することで蒸発し、低温低圧の気体冷媒となる。
(Configuration of evaporator)
An evaporator 8 is provided downstream of the first expansion valve 7 . The evaporator 8 is a heat exchanger for exchanging heat between the outside air and the refrigerant. A fan (not shown) is provided in the vicinity of the evaporator 8 to forcefully exchange heat between the air and the refrigerant. The low-temperature, low-pressure liquid refrigerant that has passed through the first expansion valve 7 evaporates by exchanging heat with the outside air when passing through the evaporator 8 to become a low-temperature, low-pressure gaseous refrigerant.

 蒸発器8の下流側には、アキュムレータ15が設けられている。アキュムレータ15は、蒸発器8で蒸発しきれなかった液体冷媒を貯留するための容器である。アキュムレータ15で液体成分が除去された後、気体冷媒は再び第一圧縮機1に送られて圧縮される。このようなサイクル(冷凍サイクル)を連続的に繰り返すことで、冷凍装置100が運転される。 An accumulator 15 is provided downstream of the evaporator 8 . The accumulator 15 is a container for storing liquid refrigerant that has not been completely evaporated in the evaporator 8 . After the liquid component is removed by the accumulator 15, the gaseous refrigerant is sent to the first compressor 1 again and compressed. The refrigeration system 100 is operated by continuously repeating such a cycle (refrigeration cycle).

(インジェクション流路の構成)
 インジェクション流路11は、上述した逆止弁18と第一圧縮機1(つまり、低圧側の圧縮機)の間と、レシーバ6とを接続している。インジェクション流路11上には、電磁弁13が設けられている。電磁弁13は、外部からの電気信号によってその開閉状態を切り替えることが可能とされている。
(Structure of injection channel)
The injection flow path 11 connects between the above-described check valve 18 and the first compressor 1 (that is, the low-pressure side compressor) and the receiver 6 . A solenoid valve 13 is provided on the injection flow path 11 . The solenoid valve 13 can be switched between open and closed states by an electric signal from the outside.

(制御部の構成)
 制御部80は、上述した各弁装置の開閉状態、及び第一圧縮機1と第二圧縮機2の運転状態を電気信号によって切り替えるために設けられている。具体的には、制御部80は、第一膨張弁7、第二膨張弁5、及び電磁弁13の開閉状態を切り替えることが可能である。また、制御部80は、第一圧縮機1、及び第二圧縮機2の駆動・停止を切り替えることが可能である。
(Configuration of control unit)
The control unit 80 is provided to switch between the open/closed state of each valve device described above and the operating state of the first compressor 1 and the second compressor 2 by an electric signal. Specifically, the control unit 80 can switch the open/closed states of the first expansion valve 7 , the second expansion valve 5 , and the electromagnetic valve 13 . Further, the control unit 80 can switch between driving and stopping the first compressor 1 and the second compressor 2 .

(作用効果)
 続いて、冷凍装置100の動作の一例について説明する。図1に示すように、冷凍装置100を通常運転するに当たって、制御部80は、電磁弁13を閉止する。これにより、インジェクション流路11が閉止状態となり、冷媒は主回路90のみを循環するようになる。冷媒が主回路90を循環することで、上述した冷凍サイクルが連続的に生じる。
(Effect)
Next, an example of the operation of the refrigeration system 100 will be described. As shown in FIG. 1 , the controller 80 closes the electromagnetic valve 13 when the refrigerating apparatus 100 is normally operated. As a result, the injection flow path 11 is closed and the refrigerant circulates only through the main circuit 90 . Circulation of the refrigerant in the main circuit 90 causes the above-described refrigeration cycle to occur continuously.

 次いで、図2と図3を参照して、冷凍装置100を停止する際の動作について説明する。上記のような冷凍装置100では、運転を停止する際には、配管経路上に冷媒が万遍なく存在した状態とされることが従来一般的であった。そのため、配管や各種装置の耐圧性能をいずれも一定以上に確保する必要がある。その結果、特に低圧側の第一圧縮機1の耐圧性能を、高圧側の第二圧縮機2の耐圧性能と同程度にする必要が生じ、コストが上昇する原因となっていた。 Next, with reference to FIGS. 2 and 3, the operation when stopping the refrigeration system 100 will be described. In the refrigerating apparatus 100 as described above, conventionally, when the operation is stopped, the refrigerant is evenly present in the piping path. Therefore, it is necessary to secure a certain level or more of pressure resistance performance of piping and various devices. As a result, the pressure resistance performance of the first compressor 1 on the low-pressure side in particular needs to be the same as the pressure resistance performance of the second compressor 2 on the high-pressure side, causing an increase in cost.

 そこで、本実施形態に係る冷凍装置100は、以下で説明する動作を行うことで、冷媒をレシーバ6内に回収するように構成されている。図2に示すように、まず制御部80は第一膨張弁7を閉止する。これにより、主回路90におけるレシーバ6の下流側が閉塞される。その結果、主回路90、及びインジェクション流路11内の冷媒が順次レシーバ6内に貯留されていく。 Therefore, the refrigerating apparatus 100 according to this embodiment is configured to collect the refrigerant into the receiver 6 by performing the operation described below. As shown in FIG. 2, the controller 80 first closes the first expansion valve 7 . Thereby, the downstream side of the receiver 6 in the main circuit 90 is blocked. As a result, the refrigerant in the main circuit 90 and the injection flow path 11 is sequentially stored in the receiver 6 .

 その後、図3に示すように、レシーバ6内が液体冷媒で満たされたこと(冷媒の量が上限値に達したこと)を液面検知部61が検知すると、制御部80は第二膨張弁5、及び電磁弁13を閉止する。これにより、レシーバ6が主回路90から切り離された状態となる。続いて、制御部80は第一圧縮機1、及び第二圧縮機2の駆動を停止する。以上により、冷凍装置100が停止する。 After that, as shown in FIG. 3, when the liquid level detection unit 61 detects that the receiver 6 is filled with liquid refrigerant (that the amount of refrigerant has reached the upper limit), the control unit 80 causes the second expansion valve 5, and the solenoid valve 13 is closed. As a result, the receiver 6 is disconnected from the main circuit 90 . Subsequently, the control unit 80 stops driving the first compressor 1 and the second compressor 2 . As described above, the refrigerating apparatus 100 is stopped.

 以上、説明したように、本実施形態に係る冷凍装置100では、運転を停止するに先立って、第一膨張弁7を閉止した状態で第一圧縮機1、及び第二圧縮機2を運転することで、主回路90や各装置内に存在している冷媒をレシーバ6内に回収することができる。したがって、冷凍装置100の運転を停止した状態では、主回路90や各装置に冷媒が残留しにくくなり、特に低圧側の第一圧縮機1の耐圧性能を下げることが可能となる。その結果、冷凍装置100の製造コストやメンテナンスコストを下げることができる。 As described above, in the refrigeration system 100 according to the present embodiment, the first compressor 1 and the second compressor 2 are operated with the first expansion valve 7 closed prior to stopping the operation. Thereby, the refrigerant existing in the main circuit 90 and each device can be recovered in the receiver 6 . Therefore, when the operation of the refrigerating device 100 is stopped, the refrigerant is less likely to remain in the main circuit 90 and each device, and particularly the pressure resistance performance of the first compressor 1 on the low pressure side can be lowered. As a result, the manufacturing cost and maintenance cost of the refrigeration apparatus 100 can be reduced.

 また、上記構成によれば、電磁弁13に加えて第二膨張弁5を閉止することで、レシーバ6が主回路から切り離された状態となる。これにより、レシーバ6内に冷媒を安定的に封じ込めることができる。 Further, according to the above configuration, closing the second expansion valve 5 in addition to the electromagnetic valve 13 causes the receiver 6 to be disconnected from the main circuit. Thereby, the refrigerant can be stably sealed in the receiver 6 .

 以上、本開示の第一実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。 The first embodiment of the present disclosure has been described above. Various changes and modifications can be made to the above configuration without departing from the gist of the present disclosure.

[第二実施形態]
 次に、本開示の第二実施形態に係る冷凍装置200について、図4から図6を参照して説明する。なお、上記の第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。
[Second embodiment]
Next, a refrigeration system 200 according to a second embodiment of the present disclosure will be described with reference to FIGS. 4 to 6. FIG. In addition, the same code|symbol is attached|subjected about the structure similar to said 1st embodiment, and detailed description is abbreviate|omitted.

 図4に示すように、本実施形態では、圧縮機の数が第一実施形態とは異なっている。具体的には、主回路90上に、最も低圧側の第一圧縮機1に加えて、2つの高圧側の第二圧縮機2a、2bが設けられている。これら第二圧縮機2a、2bの上流側にはそれぞれ1つずつ逆止弁18(18a、18b)が設けられている。 As shown in FIG. 4, this embodiment differs from the first embodiment in the number of compressors. Specifically, on the main circuit 90, in addition to the first compressor 1 on the lowest pressure side, two second compressors 2a and 2b on the high pressure side are provided. One check valve 18 (18a, 18b) is provided upstream of each of the second compressors 2a, 2b.

 さらに、本実施形態では、第一実施形態で説明したレシーバ6、第一膨張弁7、インジェクション流路11、及び電磁弁13がそれぞれ複数組(2組)ずつ設けられている。以下の説明では、主回路90上で相対的に下流側に位置するレシーバ6、第一膨張弁7、インジェクション流路11、及び電磁弁13を、下流側レシーバ6a、下流側第一膨張弁7a、下流側インジェクション流路11a、及び下流側電磁弁13aと呼ぶ。また、相対的に上流側に位置するこれらの装置を、上流側レシーバ6b、上流側第一膨張弁7b、上流側インジェクション流路11b、及び上流側電磁弁13bと呼ぶ。 Furthermore, in this embodiment, a plurality of sets (two sets) each of the receiver 6, the first expansion valve 7, the injection passage 11, and the electromagnetic valve 13 described in the first embodiment are provided. In the following description, the receiver 6, the first expansion valve 7, the injection passage 11, and the electromagnetic valve 13 located relatively downstream on the main circuit 90 will be referred to as the downstream receiver 6a and the downstream first expansion valve 7a. , the downstream injection passage 11a, and the downstream electromagnetic valve 13a. Also, these devices positioned relatively upstream are called an upstream receiver 6b, an upstream first expansion valve 7b, an upstream injection passage 11b, and an upstream electromagnetic valve 13b.

 下流側インジェクション流路11aは、下流側レシーバ6aと、第一圧縮機1と逆止弁18aとの間を接続している。上流側インジェクション流路11bは、上流側レシーバ6bと、第二圧縮機2aと逆止弁18bとの間を接続している。 The downstream injection channel 11a connects the downstream receiver 6a, the first compressor 1, and the check valve 18a. The upstream injection passage 11b connects the upstream receiver 6b, the second compressor 2a, and the check valve 18b.

 続いて、冷凍装置200を停止させる際の動作について説明する。図4に示すように、停止に先立って、制御部80はまず下流側第一膨張弁7aを閉止する。これにより、主回路90上における下流側第一膨張弁7aよりも下流側の冷媒が、下流側レシーバ6aに順次回収される。 Next, the operation when stopping the refrigeration apparatus 200 will be described. As shown in FIG. 4, prior to stopping, the control unit 80 first closes the first downstream expansion valve 7a. As a result, the refrigerant on the downstream side of the first downstream expansion valve 7a on the main circuit 90 is sequentially collected by the downstream receiver 6a.

 その後、下流側レシーバ6aが冷媒で満たされたことが検知されると、図5に示すように、制御部80は上流側第一膨張弁7b、及び下流側電磁弁13aを閉止する。これにより、下流側レシーバ6aが主回路90から切り離された状態となる。その後、なおも主回路90上に残留している冷媒は、上流側レシーバ6bに貯留されていく。最後に、上流側レシーバ6bも冷媒で満たされたことが検知されると、制御部80は第二膨張弁5、及び上流側電磁弁13bを閉止する。これにより、上流側レシーバ6bも主回路90から切り離された状態となる。その後、制御部80は第一圧縮機1、第二圧縮機2a,2bを停止する。以上により、冷凍装置200が停止する。 After that, when it is detected that the downstream receiver 6a is filled with refrigerant, the controller 80 closes the upstream first expansion valve 7b and the downstream electromagnetic valve 13a, as shown in FIG. As a result, the downstream receiver 6 a is disconnected from the main circuit 90 . After that, the refrigerant still remaining on the main circuit 90 is stored in the upstream receiver 6b. Finally, when it is detected that the upstream receiver 6b is also filled with refrigerant, the controller 80 closes the second expansion valve 5 and the upstream electromagnetic valve 13b. As a result, the upstream receiver 6 b is also disconnected from the main circuit 90 . After that, the control unit 80 stops the first compressor 1 and the second compressors 2a and 2b. As described above, the refrigerating device 200 is stopped.

 このように、複数のレシーバ6に対して、冷媒を下流側のレシーバ6から上流側のレシーバ6にかけて順次貯留させていくことで、主回路90、及び各装置内の冷媒が回収される。 In this way, the refrigerant is stored in a plurality of receivers 6 sequentially from the receiver 6 on the downstream side to the receiver 6 on the upstream side, thereby recovering the refrigerant in the main circuit 90 and each device.

 ところで、上記のように冷凍装置200が停止している際に、外気温の影響を受けてレシーバ6内の圧力が上昇することがある。例えば下流側レシーバ6a内の圧力が予め定められた上限圧力以上となったことを圧力検知部62が検知した場合を考える。この場合、図6に示すように、制御部80は、下流側電磁弁13aと第二膨張弁5のみを開放する。この状態で、制御部80は第一圧縮機1、及び第二圧縮機2a、2bを駆動する。すると、下流側レシーバ6a内の冷媒が、下流側インジェクション流路11aと主回路90を通じて上流側レシーバ6bに向かって流れる。下流側レシーバ6a内の圧力が上限圧力未満となるまで制御部80はこの動作を継続する。 By the way, when the refrigerating device 200 is stopped as described above, the pressure inside the receiver 6 may rise due to the outside temperature. For example, consider a case where the pressure detection unit 62 detects that the pressure inside the downstream receiver 6a has become equal to or higher than a predetermined upper limit pressure. In this case, as shown in FIG. 6, the controller 80 opens only the downstream side solenoid valve 13a and the second expansion valve 5 . In this state, the controller 80 drives the first compressor 1 and the second compressors 2a and 2b. Then, the refrigerant in the downstream receiver 6a flows through the downstream injection channel 11a and the main circuit 90 toward the upstream receiver 6b. The control unit 80 continues this operation until the pressure in the downstream receiver 6a becomes less than the upper limit pressure.

 以上、説明したように、上記構成によれば、複数のレシーバ6を備える冷凍装置200において、これらレシーバ6を下流側から上流側にかけて順次冷媒によって満たすことができる。これにより、より多くの冷媒を複数のレシーバ6内に貯留することができる。 As described above, according to the above configuration, in the refrigeration apparatus 200 having a plurality of receivers 6, the receivers 6 can be sequentially filled with refrigerant from the downstream side to the upstream side. Thereby, more refrigerant can be stored in the plurality of receivers 6 .

 また、上記構成によれば、冷凍装置200の停止中にレシーバ6内の圧力が上昇した場合に、下流側に位置するレシーバ6に接続されたインジェクション流路11を開通させた状態で圧縮機を駆動することで、当該下流側に位置するレシーバ6内の冷媒を、上流側に位置する他のレシーバ6に移送することができる。これにより、各レシーバ6内の圧力を上限圧力以下に維持することができる。 Further, according to the above configuration, when the pressure in the receiver 6 increases while the refrigerating apparatus 200 is stopped, the compressor is restarted while the injection flow path 11 connected to the receiver 6 located downstream is opened. By driving, the refrigerant in the receiver 6 positioned downstream can be transferred to another receiver 6 positioned upstream. Thereby, the pressure in each receiver 6 can be maintained below the upper limit pressure.

 以上、本開示の各実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記各実施形態では、第一圧縮機1と第二圧縮機2を備える2段圧縮の冷凍装置100と、第一圧縮機1と第二圧縮機2a、2bとを備える3段圧縮の冷凍装置200について説明した。しかしながら、圧縮機の数は上記実施形態によっては限定されず、4段以上の圧縮を行う構成を採ることが可能である。4段圧縮の冷凍装置として具体的には、2つのスクロータリ圧縮機を用いる構成が挙げられる。このような構成でも、上記第二実施形態で説明した各動作を実現することが可能である。 The embodiments of the present disclosure have been described above. Various changes and modifications can be made to the above configuration without departing from the gist of the present disclosure. For example, in each of the above embodiments, a two-stage compression refrigeration system 100 including the first compressor 1 and the second compressor 2, and a three-stage compression system including the first compressor 1 and the second compressors 2a and 2b The refrigerator 200 has been described. However, the number of compressors is not limited by the above embodiment, and it is possible to employ a configuration that performs four or more stages of compression. A specific example of a four-stage compression refrigeration system is a configuration using two scroll compressors. Even with such a configuration, it is possible to realize each operation described in the second embodiment.

[付記]
 各実施形態に記載の冷凍装置100、及び冷凍装置200は、例えば以下のように把握される。
[Appendix]
The refrigerating device 100 and the refrigerating device 200 described in each embodiment are understood, for example, as follows.

(1)第1の態様に係る冷凍装置100は、冷媒が流通する循環流路としての主回路90と、該主回路90上で直列に配置された複数の圧縮機(第一圧縮機1と第二圧縮機2)と、該複数の圧縮機の間に配置された逆止弁18と、前記複数の圧縮機の下流側に配置された凝縮器4と、該凝縮器4の下流側に配置されたレシーバ6と、該レシーバ6の下流側に配置された第一膨張弁7と、該第一膨張弁7の下流側に配置された蒸発器8と、前記レシーバ6と、前記複数の圧縮機の間であって前記逆止弁18の上流側とを接続するインジェクション流路11と、該インジェクション流路11上に配置された電磁弁13と、前記レシーバ6内に貯留された前記冷媒の液体成分の量を検知する液面検知部61と、制御部80と、を備え、前記制御部80は、前記圧縮機を停止させる前に前記第一膨張弁7を閉止し、前記液面検知部61によって前記レシーバ6内の前記液体成分の量が予め定められた上限値に達したことが検知された時点で前記電磁弁13を閉止する。 (1) A refrigeration apparatus 100 according to a first aspect includes a main circuit 90 as a circulation flow path through which a refrigerant flows, and a plurality of compressors (first compressor 1 and a second compressor 2), a check valve 18 arranged between the plurality of compressors, a condenser 4 arranged downstream of the plurality of compressors, and downstream of the condenser 4 The arranged receiver 6, the first expansion valve 7 arranged downstream of the receiver 6, the evaporator 8 arranged downstream of the first expansion valve 7, the receiver 6, the plurality of An injection passage 11 that connects the upstream side of the check valve 18 between the compressors, an electromagnetic valve 13 arranged on the injection passage 11, and the refrigerant stored in the receiver 6. and a control unit 80. The control unit 80 closes the first expansion valve 7 before stopping the compressor, and the liquid level The electromagnetic valve 13 is closed when the detection unit 61 detects that the amount of the liquid component in the receiver 6 has reached a predetermined upper limit.

 上記構成によれば、冷凍装置100の運転を停止するに先立って、第一膨張弁7を閉止した状態で圧縮機を運転することで、主回路90や各装置内に存在している冷媒をレシーバ6内に回収することができる。したがって、冷凍装置100の運転を停止した状態では、主回路90や各装置に冷媒が残留しにくくなり、特に低圧側の圧縮機の耐圧性能を下げることが可能となる。 According to the above configuration, prior to stopping the operation of the refrigeration system 100, the compressor is operated with the first expansion valve 7 closed, thereby removing the refrigerant existing in the main circuit 90 and each device. It can be collected in receiver 6 . Therefore, when the operation of the refrigerating apparatus 100 is stopped, it becomes difficult for the refrigerant to remain in the main circuit 90 and each device.

(2)第2の態様に係る冷凍装置200は、前記主回路90上で直列に配置された複数組の前記レシーバ6、前記第一膨張弁7、前記インジェクション流路11、及び前記電磁弁13を備え、前記制御部80は、前記圧縮機を停止させる前に前記第一膨張弁7を閉止し、前記液面検知部61によって前記レシーバ6内の前記液体成分の量が前記上限値に達したことが検知された時点で前記電磁弁13を閉止する制御を、前記複数組の前記第一膨張弁7、及び前記電磁弁13のうち最も下流側に位置する前記第一膨張弁7、及び前記電磁弁13から最も上流側に位置する前記第一膨張弁7、及び前記電磁弁13まで順次行う。 (2) The refrigeration system 200 according to the second aspect includes a plurality of sets of the receivers 6, the first expansion valves 7, the injection passages 11, and the electromagnetic valves 13 arranged in series on the main circuit 90. The control unit 80 closes the first expansion valve 7 before stopping the compressor, and the liquid level detection unit 61 detects that the amount of the liquid component in the receiver 6 reaches the upper limit value. When it is detected that the electromagnetic valve 13 has From the electromagnetic valve 13 to the first expansion valve 7 located on the most upstream side, and the electromagnetic valve 13 are sequentially carried out.

 上記構成によれば、複数のレシーバ6を備える冷凍装置200において、これらレシーバ6を下流側から上流側にかけて順次冷媒によって満たすことができる。これにより、より多くの冷媒を複数のレシーバ6内に貯留することができる。 According to the above configuration, in the refrigerating apparatus 200 having a plurality of receivers 6, the receivers 6 can be sequentially filled with refrigerant from the downstream side to the upstream side. Thereby, more refrigerant can be stored in the plurality of receivers 6 .

(3)第3の態様に係る冷凍装置200は、前記レシーバ6内の圧力を検知する圧力検知部62をさらに備え、前記制御部80は、前記圧縮機の停止中に、前記圧力検知部62によって、前記複数のレシーバ6のうち相対的に上流側に位置する前記レシーバ6内の圧力が予め定められた上限圧力以上となったことが検知された場合に、前記相対的に上流側に位置する前記レシーバ6に接続された前記インジェクション流路11上の前記電磁弁13を閉止し、相対的に下流側に位置する前記レシーバ6に接続された前記インジェクション流路11上の前記電磁弁13を開放するとともに、前記圧縮機を駆動する。 (3) The refrigeration apparatus 200 according to the third aspect further includes a pressure detection section 62 that detects the pressure inside the receiver 6, and the control section 80 controls the pressure detection section 62 while the compressor is stopped. When it is detected that the pressure in the receiver 6 located relatively upstream among the plurality of receivers 6 is equal to or higher than a predetermined upper limit pressure, the receiver 6 located relatively upstream is detected by closing the electromagnetic valve 13 on the injection flow path 11 connected to the receiver 6 that While opening, the said compressor is driven.

 ここで、冷凍装置200の停止中に、外気温の影響を受けてレシーバ6内の圧力が上昇することがある。上記構成によれば、このような場合に、下流側に位置するレシーバ6に接続されたインジェクション流路11を開通させた状態で圧縮機を駆動することで、当該下流側に位置するレシーバ6内の冷媒を、上流側に位置する他のレシーバ6に移送することができる。これにより、各レシーバ6内の圧力を上限圧力以下に維持することができる。 Here, while the refrigeration system 200 is stopped, the pressure inside the receiver 6 may rise under the influence of the outside temperature. According to the above configuration, in such a case, by driving the compressor in a state in which the injection flow path 11 connected to the receiver 6 located downstream is open, of refrigerant can be transferred to another receiver 6 located upstream. Thereby, the pressure in each receiver 6 can be maintained below the upper limit pressure.

(4)第4の態様に係る冷凍装置100は、前記凝縮器4と前記レシーバ6との間に配置された第二膨張弁5をさらに備え、前記制御部80は、前記液面検知部61によって前記レシーバ6内の前記冷媒の量が予め定められた上限値に達したことが検知された時点で、前記電磁弁13、及び前記第二膨張弁5を閉止する。 (4) The refrigerating apparatus 100 according to the fourth aspect further includes a second expansion valve 5 arranged between the condenser 4 and the receiver 6, and the control unit 80 controls the liquid level detection unit 61 When it is detected that the amount of refrigerant in the receiver 6 has reached a predetermined upper limit, the solenoid valve 13 and the second expansion valve 5 are closed.

 上記構成によれば、電磁弁13に加えて第二膨張弁5を閉止することで、レシーバ6が主回路から切り離された状態となる。これにより、レシーバ6内に冷媒を安定的に封じ込めることができる。 According to the above configuration, by closing the second expansion valve 5 in addition to the electromagnetic valve 13, the receiver 6 is disconnected from the main circuit. Thereby, the refrigerant can be stably sealed in the receiver 6 .

 本開示によれば、より低廉に製造することが可能な冷凍装置を提供することができる。 According to the present disclosure, it is possible to provide a refrigeration system that can be manufactured at a lower cost.

100,200 冷凍装置
90 主回路
80 制御部
1 第一圧縮機
2,2a,2b 第二圧縮機
4 凝縮器
5 第二膨張弁
6 レシーバ
6a 下流側レシーバ
6b 上流側レシーバ
7 第一膨張弁
7a 下流側第一膨張弁
7b 上流側第一膨張弁
8 蒸発器
11 インジェクション流路
11a 下流側インジェクション流路
11b 上流側インジェクション流路
13 電磁弁
13a 下流側電磁弁
13b 上流側電磁弁
15 アキュムレータ
18,18a,18b 逆止弁
100, 200 Refrigerating device 90 Main circuit 80 Control unit 1 First compressors 2, 2a, 2b Second compressor 4 Condenser 5 Second expansion valve 6 Receiver 6a Downstream receiver 6b Upstream receiver 7 First expansion valve 7a Downstream side first expansion valve 7b upstream side first expansion valve 8 evaporator 11 injection passage 11a downstream side injection passage 11b upstream side injection passage 13 solenoid valve 13a downstream side solenoid valve 13b upstream side solenoid valve 15 accumulators 18, 18a, 18b check valve

Claims (4)

 冷媒が流通する循環流路としての主回路と、
 該主回路上で直列に配置された複数の圧縮機と、
 該複数の圧縮機の間に配置された逆止弁と、
 前記複数の圧縮機の下流側に配置された凝縮器と、
 該凝縮器の下流側に配置されたレシーバと、
 該レシーバの下流側に配置された第一膨張弁と、
 該第一膨張弁の下流側に配置された蒸発器と、
 前記レシーバと、前記複数の圧縮機の間であって前記逆止弁の上流側とを接続するインジェクション流路と、
 該インジェクション流路上に配置された電磁弁と、
 前記レシーバ内に貯留された前記冷媒の液体成分の量を検知する液面検知部と、
 制御部と、
を備え、
 前記制御部は、前記圧縮機を停止させる前に前記第一膨張弁を閉止し、前記液面検知部によって前記レシーバ内の前記液体成分の量が予め定められた上限値に達したことが検知された時点で前記電磁弁を閉止する冷凍装置。
a main circuit as a circulation channel through which the refrigerant flows;
a plurality of compressors arranged in series on the main circuit;
a check valve disposed between the plurality of compressors;
a condenser arranged downstream of the plurality of compressors;
a receiver located downstream of the condenser;
a first expansion valve located downstream of the receiver;
an evaporator located downstream of the first expansion valve;
an injection flow path connecting the receiver and an upstream side of the check valve between the plurality of compressors;
a solenoid valve arranged on the injection flow path;
a liquid level detection unit that detects the amount of the liquid component of the refrigerant stored in the receiver;
a control unit;
with
The control unit closes the first expansion valve before stopping the compressor, and the liquid level detection unit detects that the amount of the liquid component in the receiver has reached a predetermined upper limit. a refrigerating device that closes the solenoid valve when the
 前記主回路上で直列に配置された複数組の前記レシーバ、前記第一膨張弁、前記インジェクション流路、及び前記電磁弁を備え、
 前記制御部は、前記圧縮機を停止させる前に前記第一膨張弁を閉止し、前記液面検知部によって前記レシーバ内の前記液体成分の量が前記上限値に達したことが検知された時点で前記電磁弁を閉止する制御を、前記複数組の前記第一膨張弁、及び前記電磁弁のうち最も下流側に位置する前記第一膨張弁、及び前記電磁弁から最も上流側に位置する前記第一膨張弁、及び前記電磁弁まで順次行う請求項1に記載の冷凍装置。
A plurality of sets of the receiver, the first expansion valve, the injection passage, and the solenoid valve arranged in series on the main circuit,
The control unit closes the first expansion valve before stopping the compressor, and when the liquid level detection unit detects that the amount of the liquid component in the receiver has reached the upper limit. The control for closing the electromagnetic valves is performed by the first expansion valve of the plurality of sets, the first expansion valve located most downstream among the electromagnetic valves, and the first expansion valve located most upstream from the electromagnetic valve. 2. The refrigeration system according to claim 1, wherein the first expansion valve and the solenoid valve are sequentially operated.
 前記レシーバ内の圧力を検知する圧力検知部をさらに備え、
 前記制御部は、前記圧縮機の停止中に、前記圧力検知部によって、前記複数のレシーバのうち相対的に上流側に位置する前記レシーバ内の圧力が予め定められた上限圧力以上となったことが検知された場合に、前記相対的に上流側に位置する前記レシーバに接続された前記インジェクション流路上の前記電磁弁を閉止し、相対的に下流側に位置する前記レシーバに接続された前記インジェクション流路上の前記電磁弁を開放するとともに、前記圧縮機を駆動する請求項2に記載の冷凍装置。
Further comprising a pressure detection unit that detects pressure in the receiver,
The control unit detects that the pressure in the receiver located relatively upstream among the plurality of receivers exceeds a predetermined upper limit pressure by the pressure detection unit while the compressor is stopped. is detected, the solenoid valve on the injection flow path connected to the receiver located relatively upstream is closed, and the injection connected to the receiver located relatively downstream 3. The refrigeration system according to claim 2, wherein the solenoid valve on the flow path is opened and the compressor is driven.
 前記凝縮器と前記レシーバとの間に配置された第二膨張弁をさらに備え、
 前記制御部は、前記液面検知部によって前記レシーバ内の前記冷媒の量が予め定められた上限値に達したことが検知された時点で、前記電磁弁、及び前記第二膨張弁を閉止する請求項1から3のいずれか一項に記載の冷凍装置。
further comprising a second expansion valve positioned between the condenser and the receiver;
The control unit closes the solenoid valve and the second expansion valve when the liquid level detection unit detects that the amount of the refrigerant in the receiver has reached a predetermined upper limit. 4. A refrigeration system according to any one of claims 1 to 3.
PCT/JP2022/038399 2021-10-18 2022-10-14 Freezing apparatus WO2023068197A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22883501.3A EP4411278A4 (en) 2021-10-18 2022-10-14 FREEZING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021170169A JP2023060524A (en) 2021-10-18 2021-10-18 refrigeration equipment
JP2021-170169 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023068197A1 true WO2023068197A1 (en) 2023-04-27

Family

ID=86059276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038399 WO2023068197A1 (en) 2021-10-18 2022-10-14 Freezing apparatus

Country Status (3)

Country Link
EP (1) EP4411278A4 (en)
JP (1) JP2023060524A (en)
WO (1) WO2023068197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118816418A (en) * 2024-09-18 2024-10-22 宁波惠康智能科技有限公司 A high-efficiency low-temperature evaporation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133056A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Air conditioner
JP2013139938A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device
JP2018009767A (en) * 2016-07-15 2018-01-18 ダイキン工業株式会社 Refrigeration equipment
WO2018167820A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
JP2020204454A (en) 2019-06-17 2020-12-24 パナソニック株式会社 Refrigeration cycle device
CN113503653A (en) * 2021-08-04 2021-10-15 珠海格力电器股份有限公司 Multi-compressor refrigeration system and air conditioner
JP2021170169A (en) 2020-04-14 2021-10-28 古河電気工業株式会社 Processing apparatus, processing method, processing program, and information processing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094907A (en) * 2012-08-24 2019-08-06 开利公司 The high lateral pressure control of transcritical refrigerant vapor compression system
ES2964488T3 (en) * 2019-09-09 2024-04-08 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133056A (en) * 1999-11-04 2001-05-18 Mitsubishi Electric Corp Air conditioner
JP2013139938A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device
JP2018009767A (en) * 2016-07-15 2018-01-18 ダイキン工業株式会社 Refrigeration equipment
WO2018167820A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
JP2020204454A (en) 2019-06-17 2020-12-24 パナソニック株式会社 Refrigeration cycle device
JP2021170169A (en) 2020-04-14 2021-10-28 古河電気工業株式会社 Processing apparatus, processing method, processing program, and information processing system
CN113503653A (en) * 2021-08-04 2021-10-15 珠海格力电器股份有限公司 Multi-compressor refrigeration system and air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4411278A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118816418A (en) * 2024-09-18 2024-10-22 宁波惠康智能科技有限公司 A high-efficiency low-temperature evaporation device

Also Published As

Publication number Publication date
JP2023060524A (en) 2023-04-28
EP4411278A4 (en) 2025-01-15
EP4411278A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
EP2309204B1 (en) Refrigeration device
AU2005280900B2 (en) Refrigeration apparatus
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
KR101249898B1 (en) Heat pump
EP2863151B1 (en) Two-stage compression cycle
KR100564444B1 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioners
KR101220583B1 (en) Freezing device
KR101220741B1 (en) Freezing device
WO2014184931A1 (en) Refrigeration device
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP2016173202A (en) Heat pump
JP2013024538A (en) Refrigeration unit
WO2023068197A1 (en) Freezing apparatus
CN103822419B (en) Refrigerating plant
JP2015102319A (en) Refrigeration cycle device
WO2002046664A1 (en) Refrigerator
KR101151529B1 (en) Refrigerant System
EP1496321A1 (en) Refrigerating equipment
JP5765325B2 (en) Refrigeration equipment
KR20210096521A (en) Air conditioning apparatus
KR102017405B1 (en) Heat pump
CN116294290A (en) Gas heat pump unit for realizing extremely low temperature refrigeration and control method thereof
EP4145061A1 (en) Refrigerating apparatus
JP3042506B2 (en) Refrigeration equipment
JP2013137124A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022883501

Country of ref document: EP

Effective date: 20240430

NENP Non-entry into the national phase

Ref country code: DE