[go: up one dir, main page]

WO2023013372A1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
WO2023013372A1
WO2023013372A1 PCT/JP2022/027462 JP2022027462W WO2023013372A1 WO 2023013372 A1 WO2023013372 A1 WO 2023013372A1 JP 2022027462 W JP2022027462 W JP 2022027462W WO 2023013372 A1 WO2023013372 A1 WO 2023013372A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
thickness
content
surface layer
Prior art date
Application number
PCT/JP2022/027462
Other languages
English (en)
French (fr)
Inventor
恭平 石川
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280051030.8A priority Critical patent/CN117677726A/zh
Priority to MX2024001087A priority patent/MX2024001087A/es
Priority to EP22852798.2A priority patent/EP4382628A1/en
Priority to JP2023539733A priority patent/JP7640906B2/ja
Priority to KR1020247003011A priority patent/KR20240027747A/ko
Priority to US18/568,329 priority patent/US20240287663A1/en
Publication of WO2023013372A1 publication Critical patent/WO2023013372A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to high-strength steel sheets.
  • high-strength steel sheets have lower formability such as bending workability than mild steel sheets, and the forming methods used for mild steel sheets may not be applicable. Therefore, even in the field of steel sheets for automobiles, there is a strong need for high-strength steel sheets with excellent bending workability.
  • Patent Document 1 a high-strength steel sheet having a central part of thickness and a surface layer soft part formed on one side or both sides of the central part of the thickness, wherein in the cross section of the high-strength steel sheet, the central part of the thickness
  • the metal structure contains, in terms of area ratio, tempered martensite: 85% or more, etc.
  • the metal structure of the soft surface layer contains, in terms of area ratio, ferrite: 65% or more, pearlite: 5% or more and less than 20%, etc.
  • the average spacing between pearlite and pearlite in the soft surface layer is 3 ⁇ m or more
  • the Vickers hardness (Hc) at the center of the plate thickness and the Vickers hardness (Hs) at the soft surface layer are 0.50 ⁇ Hs
  • Patent Document 1 describes that by distributing pearlite as a hard structure in the soft surface layer, the bending load and bendability of the steel sheet can be increased at the same time.
  • a high-strength steel sheet is described which is characterized by a standard deviation of hardness of 0.8 or less.
  • Patent Document 2 teaches that bendability is remarkably improved by suppressing variations in hardness of the softened surface portion in addition to having the softened surface portion.
  • Patent Document 3 it has a predetermined chemical composition, 90% or more of the structure is martensite, and the average aspect ratio of the prior austenite grains from the surface layer to the plate thickness 1/8 in the cross section in the rolling direction is 3 or more, A high-strength hot-rolled steel sheet characterized by having a microstructure of 20 or less is described. Moreover, Patent Document 3 describes that the above configuration makes it possible to provide a high-strength hot-rolled steel sheet having a yield strength of 950 MPa or more, which is excellent in bending workability and wear resistance.
  • a coated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the base steel sheet in order from the interface between the base steel sheet and the coating layer toward the base steel sheet side , an internal oxide layer containing at least one oxide selected from the group consisting of Si and Mn, and a layer containing the internal oxide layer, and when the thickness of the base steel sheet is t, Vickers hardness has a soft layer satisfying 90% or less of the Vickers hardness at t/4 part of the base steel sheet and a predetermined hard layer, and the average depth D of the soft layer is 20 ⁇ m or more, and A high-strength plated steel sheet having an average depth d of the internal oxide layer of 4 ⁇ m or more and less than D, and having a tensile strength of 980 MPa or more is described.
  • Patent Documents 4 to 10 hydrogen embrittlement can be effectively suppressed by controlling the average depth d of the internal oxide layer to be 4 ⁇ m or more and utilizing the internal oxide layer as a hydrogen trap site. and the average depth D of the soft layer including the region of the internal oxide layer, the bendability is particularly enhanced.
  • an object of the present invention is to provide a high-strength steel sheet that has improved bending workability and can suppress the occurrence of flaws.
  • the present inventors provide a high-strength steel sheet having a tensile strength of 1250 MPa or more, the surface layer soft portion having an average Vickers hardness at a predetermined ratio with respect to the average Vickers hardness at the center of the plate thickness to improve bending workability, form an internal oxide layer having a predetermined thickness on the outermost layer of the soft surface layer, and control the voids formed near the surface within an appropriate range. found that surface hardness can be improved to suppress the occurrence of flaws on the surface of the steel sheet, and the present invention has been completed.
  • a high-strength steel sheet including a plate thickness central portion and a surface layer soft portion formed on one side or both sides of the plate thickness central portion,
  • the central part of the plate thickness is % by mass, C: 0.10 to 0.30%, Si: 0.01 to 2.50%, Mn: 0.10 to 10.00%, P: 0.100% or less, S: 0.0500% or less, Al: 0-1.50%, N: 0.0100% or less, O: 0.0060% or less, Cr: 0 to 2.00%, Mo: 0 to 1.00%, B: 0 to 0.0100%, Ti: 0 to 0.30%, Nb: 0 to 0.30%, V: 0 to 0.50%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Ca: 0-0.040%, Mg: 0-0.040%, REM: 0 to 0.040%, and the balance: Fe and impurities, 1.50 ⁇ [Si] + [Mn
  • the central part of the plate thickness is an area ratio, Tempered martensite: 85% or more, The high-strength steel sheet according to (1) above, having a microstructure comprising at least one of ferrite, bainite, pearlite, and retained austenite: less than 15% in total, and as-quenched martensite: less than 5%.
  • the surface soft portion has an area ratio of Ferrite: 80% or more, at least one of tempered martensite, bainite, and retained austenite: total less than 20%;
  • a high-strength steel sheet that has improved bending workability and is capable of suppressing the occurrence of flaws.
  • Such high-strength steel sheets have high resistance to the occurrence of scratches and can maintain good appearance properties. It is very useful for use as a skeletal member such as a pillar member.
  • such high-strength steel sheets have high surface hardness and are therefore excellent in wear resistance. It is also very suitable for applications where
  • a high-strength steel sheet includes a thickness center portion and a surface layer soft portion formed on one side or both sides of the thickness center portion,
  • the central part of the plate thickness is % by mass, C: 0.10 to 0.30%, Si: 0.01 to 2.50%, Mn: 0.10 to 10.00%, P: 0.100% or less, S: 0.0500% or less, Al: 0-1.50%, N: 0.0100% or less, O: 0.0060% or less, Cr: 0 to 2.00%, Mo: 0 to 1.00%, B: 0 to 0.0100%, Ti: 0 to 0.30%, Nb: 0 to 0.30%, V: 0 to 0.50%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Ca: 0-0.040%, Mg: 0-0.040%, REM: 0 to 0.040%, and the balance: Fe and impurities, 1.50 ⁇ [Si] +
  • the present inventor first determined that the microstructure of the soft surface layer having a predetermined thickness contains ferrite with an area ratio of 80% or more, and the average Vickers hardness (Hs ) and the average Vickers hardness (Hc) at the center of the sheet thickness so that they satisfy the formula Hs/Hc ⁇ 0.50, the bendability of high-strength steel sheets can be significantly improved. Found it.
  • the present inventors have found that in the annealing treatment performed after rolling (typically hot rolling and cold rolling), relatively easily oxidizable components (eg, Si, Al, etc.) in the steel sheet are combined with oxygen in the annealing atmosphere. Further investigation was carried out focusing on the internal oxide layer formed on the outermost layer of the steel sheet by bonding, and voids that may be formed in the vicinity of the surface layer in relation to other manufacturing conditions.
  • relatively easily oxidizable components eg, Si, Al, etc.
  • the present inventors found that the internal oxide layer containing oxides such as Si and Al has a thickness of 3 ⁇ m or more from the steel sheet surface, and the area ratio of voids formed near the surface layer, more specifically, from the steel sheet surface By controlling the void area ratio in the region up to a depth position of 10 ⁇ m to 3.0% or less, the surface hardness of the steel sheet is greatly improved, and the occurrence of flaws on the steel sheet surface is significantly suppressed. I found out what I can do.
  • dislocations generally refer to linear crystal defects
  • deformation of steel is generally caused by rearrangement of iron atoms in the vicinity of dislocations contained in steel due to external forces, etc. It is generated by moving the position of the dislocation.
  • the surface layer of the steel sheet has a predetermined thickness, specifically, the surface of the steel sheet (if a plating layer exists on the surface of the steel sheet, the interface between the plating layer and the steel sheet) to the inside having a thickness of 3 ⁇ m or more
  • a large number of fine oxide particles are dispersed inside the oxide layer, and such inner oxide particles act as obstacles that impede the movement of dislocations. It is considered that the surface hardness of the steel sheet is improved as a result.
  • merely forming an internal oxide layer improves the surface hardness, but may not reliably prevent the occurrence of flaws such as cracks and peeling.
  • the inventors conducted further investigations and found that when a certain amount or more of voids (voids) exist in the vicinity of the surface layer, when the steel sheet receives some external force, the voids become the starting points for peeling, cracking, etc.
  • the void area ratio in the region from the steel plate surface to a depth of 10 ⁇ m to 3.0% or less, the occurrence of such flaws is reliably suppressed. I found what I can do.
  • high-strength steel sheet for example, high-strength steel sheets for automobiles that require excellent bending workability and high resistance to scratches, and furthermore, excellent bending workability and wear resistance It can also be used favorably in applications such as construction machine members that require good properties, such as crane booms.
  • the high-strength steel sheets according to the embodiments of the present invention will be described in more detail below.
  • the chemical composition of the thickness center portion will be described.
  • the chemical composition near the boundary with the soft surface layer may differ from that at a position sufficiently distant from the boundary due to the diffusion of alloying elements with the soft surface layer.
  • the chemical composition at the center of the plate thickness below refers to the chemical composition measured near the 1/2 plate thickness position.
  • the unit of content of each element, "%”, means “% by mass” unless otherwise specified.
  • the term "to" indicating a numerical range is used to include the numerical values before and after it as a lower limit and an upper limit, unless otherwise specified.
  • Carbon (C) is an effective element for securing a predetermined amount of tempered martensite and improving the strength of the steel sheet.
  • the C content is 0.10% or more.
  • the C content may be 0.12% or more, 0.14% or more, 0.16% or more, or 0.18% or more.
  • the C content is 0.30% or less.
  • the C content may be 0.28% or less, 0.26% or less, 0.24% or less, or 0.22% or less.
  • Si is an effective element for ensuring hardenability. Si is also an element that suppresses alloying with Al. In order to sufficiently obtain these effects, the Si content is 0.01% or more. The Si content may be 0.05% or more, 0.10% or more, 0.15% or more, or 0.30% or more. On the other hand, if Si is contained excessively, the central part of the sheet thickness becomes embrittled, and bending workability may deteriorate. Therefore, the Si content is 2.50%. The Si content may be 2.20% or less, 2.10% or less, 2.00% or less, 1.80% or less, or 1.50% or less.
  • Mn 0.10 to 10.00%
  • Manganese (Mn) is an element that acts as a deoxidizing agent. Mn is also an effective element for improving hardenability. In order to sufficiently obtain these effects, the Mn content is 0.10% or more. The Mn content may be 0.20% or more, 0.50% or more, 0.80% or more, or 1.00% or more. On the other hand, when Mn is contained excessively, coarse Mn oxides are formed in the steel, which may reduce the elongation of the steel sheet. Therefore, the Mn content is 10.00% or less. The Mn content may be 9.00% or less, 8.00% or less, 6.00% or less, or 5.00% or less.
  • Phosphorus (P) is an element mixed in during the manufacturing process.
  • the P content may be 0%.
  • the P content may be 0.0001% or more, 0.0005% or more, 0.001% or more, or 0.005% or more.
  • the P content is 0.100% or less.
  • the P content may be 0.080% or less, 0.060% or less, 0.040% or less, or 0.020% or less.
  • S 0.0500% or less
  • Sulfur (S) is an element mixed in during the manufacturing process.
  • the S content may be 0%.
  • the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the S content is 0.0500% or less.
  • the S content may be 0.0400% or less, 0.0300% or less, 0.0200% or less, or 0.0100% or less.
  • Aluminum (Al) is an element that acts as a deoxidizing agent for steel and stabilizes ferrite.
  • the Al content may be 0%, the Al content is preferably 0.001% or more in order to obtain such effects.
  • the Al content may be 0.01% or more, 0.02% or more, or 0.03% or more.
  • the Al content is 1.50% or less.
  • the Al content may be 1.40% or less, 1.30% or less, 1.00% or less, or 0.80% or less.
  • N Nitrogen
  • the N content may be 0%. However, in order to reduce the N content to less than 0.0001%, refining takes time, resulting in a decrease in productivity. Therefore, the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more. On the other hand, when N is contained excessively, coarse nitrides are formed, which may reduce the bending workability and/or toughness of the steel sheet. Therefore, the N content is 0.0100% or less. The N content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
  • Oxygen (O) is an element mixed in during the manufacturing process.
  • the O content may be 0%.
  • the O content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the O content is 0.0060% or less.
  • the O content may be 0.0050% or less, 0.0045% or less, or 0.0040% or less.
  • the plate thickness central portion may contain at least one of the following optional elements in place of part of the remaining Fe, if necessary.
  • the plate thickness central portion may contain at least one selected from the group consisting of Cr: 0 to 2.00%, Mo: 0 to 1.00%, and B: 0 to 0.0100%.
  • the plate thickness central portion may contain at least one selected from the group consisting of Ti: 0 to 0.30%, Nb: 0 to 0.30%, and V: 0 to 0.50%.
  • the plate thickness central portion may contain at least one selected from the group consisting of Cu: 0 to 1.00% and Ni: 0 to 1.00%.
  • the plate thickness center part may contain at least one selected from the group consisting of Ca: 0 to 0.040%, Mg: 0 to 0.040% and REM: 0 to 0.040% .
  • Chromium (Cr) is an effective element for increasing the hardenability and increasing the strength of the steel sheet.
  • the Cr content may be 0%, the Cr content is preferably 0.001% or more in order to obtain such effects.
  • the Cr content may be 0.01% or more, 0.10% or more, or 0.20% or more.
  • the Cr content is preferably 2.00% or less.
  • the Cr content may be 1.80% or less, 1.00% or less, or 0.50% or less.
  • Molybdenum is an element effective in increasing the strength of steel sheets.
  • Mo content may be 0%, the Mo content is preferably 0.001% or more in order to obtain such effects.
  • Mo content may be 0.01% or more, 0.05% or more, or 0.10% or more.
  • Mo content is preferably 1.00% or less.
  • the Mo content may be 0.90% or less, 0.80% or less, or 0.60% or less.
  • B is an element effective in increasing the strength of steel sheets.
  • the B content may be 0%, the B content is preferably 0.0001% or more in order to obtain such effects.
  • the B content may be 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • an excessive B content may reduce toughness and/or weldability. Therefore, the B content is preferably 0.0100% or less.
  • the B content may be 0.0080% or less, 0.0060% or less, or 0.0040% or less.
  • Titanium (Ti) is an element that is effective in controlling the morphology of carbides, and is also an element that promotes an increase in the strength of ferrite.
  • the Ti content may be 0%, the Ti content is preferably 0.001% or more in order to obtain these effects.
  • the Ti content may be 0.005% or more, 0.01% or more, or 0.02% or more.
  • the Ti content is preferably 0.30% or less.
  • the Ti content may be 0.20% or less, 0.15% or less, or 0.10% or less.
  • Niobium is an element effective in controlling the morphology of carbides and contributes to improving the toughness of the steel sheet by refining the structure due to the pinning effect.
  • the Nb content may be 0%, the Nb content is preferably 0.001% or more in order to obtain these effects.
  • the Nb content may be 0.005% or more, 0.01% or more, or 0.02% or more.
  • the Nb content is preferably 0.30% or less.
  • the Nb content may be 0.20% or less, 0.15% or less, or 0.10% or less.
  • V Vanadium (V), like Ti and Nb, is an element effective in controlling the morphology of carbides, and is also an element that contributes to improving the toughness of the steel sheet by refining the structure due to the pinning effect.
  • the V content may be 0%, the V content is preferably 0.001% or more in order to obtain these effects.
  • the V content may be 0.005% or more, 0.01% or more, or 0.02% or more.
  • the V content is preferably 0.50% or less.
  • the V content may be 0.30% or less, 0.20% or less, or 0.10% or less.
  • Copper (Cu) is an element effective in improving the strength of a steel sheet.
  • the Cu content may be 0%, the Cu content is preferably 0.001% or more in order to obtain such effects.
  • the Cu content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Cu content is preferably 1.00% or less.
  • the Cu content may be 0.80% or less, 0.60% or less, or 0.40% or less.
  • Nickel (Ni) is an element effective in improving the strength of a steel sheet.
  • the Ni content may be 0%, the Ni content is preferably 0.001% or more in order to obtain such effects.
  • the Ni content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Ni content is preferably 1.00% or less.
  • the Ni content may be 0.80% or less, 0.60% or less, or 0.40% or less.
  • Ca is an element that can control the morphology of sulfide by adding a small amount.
  • the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain such effects.
  • the Ca content may be 0.0005% or more, 0.001% or more, or 0.005% or more.
  • the Ca content is preferably 0.040% or less.
  • the Ca content may be 0.030% or less, 0.020% or less, or 0.015% or less.
  • Magnesium (Mg), like Ca, is an element capable of controlling the form of sulfide by adding a small amount.
  • the Mg content may be 0%, the Mg content is preferably 0.0001% or more in order to obtain such effects.
  • the Mg content may be 0.0005% or more, 0.001% or more, or 0.005% or more.
  • the Mg content is preferably 0.040% or less.
  • the Mg content may be 0.030% or less, 0.020% or less, or 0.015% or less.
  • Rare earth metals are elements that can control the morphology of sulfides by adding trace amounts of them, like Ca and Mg.
  • the REM content may be 0%, the REM content is preferably 0.0001% or more in order to obtain such effects.
  • the REM content may be 0.0005% or greater, 0.001% or greater, or 0.005% or greater.
  • the REM content is preferably 0.040% or less.
  • the REM content may be 0.030% or less, 0.020% or less, or 0.015% or less.
  • REM in this specification refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and the lanthanides lanthanum with atomic number 57 (La) to lutetium with atomic number 71 (Lu ), and the REM content is the total content of these elements.
  • the central portion of the plate thickness may intentionally or unavoidably contain the following elements, which do not impede the effects of the present invention.
  • These elements are W: 0 to 0.10%, Ta: 0 to 0.10%, Co: 0 to 0.50%, Sn: 0 to 0.050%, Sb: 0 to 0.050%, As: 0-0.050% and Zr: 0-0.050%.
  • the content of these elements may be 0.0001% or more or 0.001% or more.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when the steel sheet or the central part of the thickness of the steel sheet is industrially manufactured.
  • the internal oxide layer is formed mainly by the combination of relatively easily oxidizable components in the steel sheet, such as Si, Mn, Al and Cr, with oxygen in the annealing atmosphere during the annealing treatment after cold rolling. formed in the part. Therefore, in order to form the internal oxide layer to a thickness sufficient to improve the surface hardness of the steel sheet, specifically to a thickness of 3 ⁇ m or more from the steel sheet surface, these elements must be contained in the steel in a certain amount in total. It must contain more than
  • the chemical composition at the center of the plate thickness according to the embodiment of the present invention is such that the total content of Si, Mn, Al and Cr is 1.50 while controlling the content of each alloy element within the range described above.
  • the total content of Si, Mn, Al and Cr is 1.60% or more, 1.70% or more, 1.80% or more, 1.90% or more, 2.00% or more, 2.20% or more, or It may be 2.50% or more.
  • the total Si, Mn, Al and Cr content is too high, it will not necessarily have a detrimental effect in terms of promoting the formation of internal oxides and increasing the surface hardness, but it will affect the individual alloy. Elemental contents can become too high and the properties associated therewith can be degraded. Therefore, the total content of Si, Mn, Al and Cr should be 20.00% or less.
  • the total content of Si, Mn, Al and Cr is 15.00% or less, 12.00% or less, 10.00% or less, 9.00% or less, 8.00% or less or 7.00% It may be below.
  • Tempered martensite is a high-strength and tough structure.
  • the predetermined chemical composition described above in particular, has a C content of 0.10% or more, and contains 85% or more of tempered martensite in the center of the plate thickness, so that a high It is possible to reliably achieve a tensile strength, specifically a tensile strength of 1250 MPa or more.
  • the area ratio of tempered martensite may be 86% or more, 88% or more, or 90% or more.
  • the upper limit of the area ratio of tempered martensite is not particularly limited, and may be 100%.
  • the area fraction of tempered martensite may be 98% or less, 96% or less, or 94% or less.
  • the microstructure at the center of the plate thickness may contain any other structure as long as it satisfies the requirement that the plate contains 85% or more of tempered martensite in terms of area ratio.
  • the total area ratio of at least one of ferrite, bainite, pearlite, and retained austenite is preferably less than 15% in the central portion of the plate thickness.
  • the microstructure at the center of the sheet thickness may contain ferrite.
  • the interface between the hard structure of tempered martensite and the soft structure of ferrite can be the starting point of fracture, if ferrite is contained excessively, the hole expansibility of the steel sheet may be reduced.
  • bainite since bainite is hard, it contributes to improvement in the strength of the steel sheet. Therefore, from the viewpoint of improving the strength of the steel sheet, the microstructure at the center of the sheet thickness may contain bainite.
  • Bainite is any of upper bainite with carbides between laths, lower bainite with carbides in laths, bainitic ferrite with no carbides, and granular bainitic ferrite with lath boundaries recovered and blurred. It may be a mixed structure of them.
  • Pearlite is a hard structure in which soft ferrite and hard cementite are arranged in layers, and is a structure that contributes to improving the strength of steel sheets. Therefore, from the viewpoint of improving the strength of the steel sheet, the microstructure at the center of the sheet thickness may contain pearlite. However, since the interface between the soft ferrite and the hard cementite can be the starting point of fracture, an excessive amount of pearlite may reduce the hole expansibility of the steel sheet.
  • retained austenite is a structure that contributes to improving the ductility of the steel sheet due to the effect of deformation-induced transformation (TRIP). Therefore, from the viewpoint of improving the ductility of the steel sheet, the microstructure at the center of the sheet thickness may contain retained austenite. On the other hand, retained austenite transforms into martensite as it is quenched due to work-induced transformation. Therefore, if the steel sheet contains an excessive amount of retained austenite, it may reduce the hole expansibility of the steel sheet.
  • the object of the present invention can reliably avoid unrelated deterioration of the expansibility, while still allowing the additional effects caused by these tissues to fully develop.
  • the total area ratio of at least one of ferrite, bainite, pearlite, and retained austenite may be 0%, but may be, for example, 1% or more, 3% or more, 4% or more, or 5% or more. . Also, the total area ratio of at least one of ferrite, bainite, pearlite, and retained austenite may be 14% or less, 12% or less, 11% or less, or 10% or less.
  • As-quenched martensite refers to martensite that has not been tempered, ie, martensite that does not contain carbides. As-quenched martensite is a very hard structure. Therefore, the area ratio of as-quenched martensite may be 0%, but may be 1% or more or 2% or more from the viewpoint of strength improvement. On the other hand, since as-quenched martensite is a brittle structure, the area ratio of as-quenched martensite is preferably less than 5% from the viewpoint of ensuring higher toughness. The area ratio of as-quenched martensite may be 4% or less or 3% or less.
  • Tempered martensite and bainite are identified as follows from the position and arrangement of cementite contained within the structure in this observation region. In tempered martensite, cementite exists inside martensite laths, but there are two or more types of crystal orientations of martensite laths and cementite, and cementite has multiple variants, so tempered martensite can be identified. The area ratio of tempered martensite identified in this way is calculated by the point counting method (based on ASTM E562). On the other hand, as for the existence state of bainite, there are cases where cementite or retained austenite exists at the interface of lath-shaped bainitic ferrite, and there are cases where cementite exists inside lath-shaped bainitic ferrite. .
  • bainite When cementite or retained austenite exists at the interface of lath-shaped bainitic ferrite, bainite can be identified because the interface of bainitic ferrite is known. In addition, when cementite exists inside lath-shaped bainitic ferrite, the crystal orientation relationship between bainitic ferrite and cementite is one type, and cementite has the same variant. can be identified. The area ratio of the bainite thus identified is calculated by the point counting method.
  • the volume fraction of retained austenite is measured by an X-ray diffraction method. First, of the samples collected as described above, the surface of the steel sheet is removed by mechanical polishing and chemical polishing from the surface to the position of 1/4 of the plate thickness, and the surface of the plate thickness of 1/4 is exposed from the surface of the steel plate. The exposed surface is irradiated with MoK ⁇ rays, and the integrated intensity ratio of the diffraction peaks of the (200) and (211) planes of the bcc phase and the (200), (220) and (311) planes of the fcc phase is determined. . The volume fraction of retained austenite is calculated from the integrated intensity ratio of the diffraction peaks. As this calculation method, a general 5-peak method is used. The calculated volume ratio of retained austenite is determined as the area ratio of retained austenite.
  • the soft surface layer formed on one side or both sides of the center of the plate thickness has a thickness of more than 10 ⁇ m to 5.0% or less of the plate thickness, and the average Vickers hardness (Hc) of the center of the plate thickness It has an average Vickers hardness (Hs) of 0.50 times or less (that is, Hs/Hc ⁇ 0.50).
  • the thickness of the surface soft portion may be 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 35 ⁇ m or more, or 40 ⁇ m or more in order to further enhance the bending workability improvement effect.
  • the thickness of the surface layer soft portion may be 4.5% or less, 4.0% or less, 3.5% or less, 3.0% or less, or 2.5% or less of the plate thickness.
  • the ratio (Hs/Hc) of the average Vickers hardness (Hs) of the surface layer soft portion to the average Vickers hardness (Hc) of the plate thickness central portion is set to 0.0. It may be less than 50 times, 0.49 times or less, 0.48 times or less, 0.47 times or less, 0.46 times or less, or 0.45 times or less. Although the lower limit of Hs/Hc is not particularly limited, for example, Hs/Hc may be 0.20 times or more, 0.25 times or more, or 0.30 times or more. When the soft surface portion is formed on both sides of the plate thickness center, Hs/Hc for the soft surface portion on one side and Hs/Hc for the soft surface portion on the other side may be the same, or can be different.
  • the "thickness of the soft surface layer", the "average Vickers hardness (Hc) at the center of the plate thickness” and the “average Vickers hardness (Hs) of the soft surface layer” are determined as follows.
  • Vickers hardness test is performed in accordance with JIS Z 2244-1:2020. First, the Vickers hardness at the position of 1/2 thickness of the steel plate was measured with an indentation load of 10 g. A total of 3 or more Vickers hardnesses, for example 5 or 10 points, are measured, and the average value thereof is determined as the average Vickers hardness (Hc) at the center of the plate thickness. The distance between each measurement point is preferably four times or more the distance of the indentation.
  • a distance of four times or more of the indentation means a distance of four times or more of the diagonal length of the rectangular opening of the indentation produced by the diamond indenter during Vickers hardness measurement.
  • the C concentration was measured in the depth direction from the surface using a glow discharge luminescence surface spectrometer (GDS). The area up to 1/2 of the amount) is defined as the surface layer soft portion, and the thickness ( ⁇ m) of the surface layer soft portion and its ratio (%) to the plate thickness are determined.
  • the Vickers hardness of 10 points is randomly measured in the soft surface layer determined in this way with an indentation load of 10 g, and the average Vickers hardness (Hs) of the soft surface layer is determined by calculating the average value thereof. be done.
  • the thickness and average Vickers hardness (Hs) of the soft surface layer on the other side can be obtained by measuring in the same manner as described above. It is determined.
  • the microstructure of the soft surface layer contains 80% or more ferrite in terms of area ratio. Since ferrite is a soft structure, it is a structure that is easily deformed. Therefore, by including 80% or more of ferrite in the soft surface layer, high bending workability can be achieved.
  • the area ratio of ferrite may be 82% or more, 85% or more, 87% or more, or 90% or more.
  • the upper limit of the area ratio of ferrite is not particularly limited and may be 100%. For example, the area percentage of ferrite may be 98% or less, 96% or less, or 94% or less.
  • the microstructure of the soft surface layer may contain any other structure as long as it satisfies the requirement of containing 80% or more ferrite in terms of area ratio.
  • the total area ratio of at least one of tempered martensite, bainite, and retained austenite in the soft surface layer is preferably less than 20%.
  • Tempered martensite and bainite are hard structures.
  • retained austenite transforms into hard martensite as it is quenched due to deformation-induced transformation. Therefore, from the viewpoint of further improving the bending workability of the steel sheet, for example, the total area ratio of at least one of tempered martensite, bainite, and retained austenite is 18% or less, 16% or less, 14% or less, or 12%. It may be below.
  • the total area ratio of at least one of tempered martensite, bainite, and retained austenite may be 0%, but may be, for example, 1% or more, 3% or more, 5% or more, 8% or more, or 10% or more. There may be.
  • the microstructure of the surface layer soft portion can achieve sufficiently high bending workability by including ferrite with an area ratio of 80% or more.
  • the area ratio of pearlite which is a structure, is preferably less than 5%.
  • the perlite area ratio may be 4.5% or less, 4% or less, or 3% or less.
  • the lower limit of the area ratio of pearlite is not particularly limited and may be 0%.
  • the perlite area ratio may be 1% or more or 2% or more.
  • the area ratio of as-quenched martensite which is a hard structure, is preferably less than 5%.
  • the area ratio of as-quenched martensite may be 4% or less or 3% or less.
  • the lower limit of the area ratio of as-quenched martensite is not particularly limited, and may be 0%.
  • the area ratio of as-quenched martensite may be 1% or more or 2% or more.
  • the identification of the microstructure and the calculation of the area ratio in the soft surface layer are performed as follows. First, a sample having a plate thickness cross-section parallel to the rolling direction of the steel plate is taken, and the cross-section is used as an observation surface. A plurality of observation areas are randomly selected from the observation plane so that there is no bias in the plate thickness direction within the range defined as the surface layer soft portion. The total area of these observation areas shall be 2.0 ⁇ 10 ⁇ 9 m 2 or more.
  • the identification of microstructures other than retained austenite and the calculation of area ratios are the same as the identification of microstructures and the calculation of area ratios at the plate thickness center, except that the observation region is different.
  • the volume fraction of retained austenite in the soft surface layer is obtained by obtaining crystal orientation information of the observed region using electron backscatter diffraction (EBSD). Specifically, first, a sample having a plate thickness cross-section parallel to the rolling direction of the steel plate is taken. Using the cross section as an observation surface, the observation surface is sequentially subjected to wet polishing with emery paper, polishing with diamond abrasive grains having an average particle size of 1 ⁇ m, and chemical polishing. Next, a plurality of observation areas are randomly selected so that there is no bias in the plate thickness direction within the range defined as the surface soft portion of the polished observation surface, and the total area is 2.0 ⁇ 10 -9 m 2 or more.
  • EBSD electron backscatter diffraction
  • the crystal orientation of the region is obtained at intervals of 0.05 ⁇ m.
  • software "OIM Data Collection TM (ver.7)” manufactured by TSL Solutions Co., Ltd. is used as data acquisition software for crystal orientation.
  • the acquired crystal orientation information is separated into bcc phase and fcc phase by software "OIM Analysis TM (ver.7)” manufactured by TSL Solutions Co., Ltd.
  • This fcc phase is retained austenite.
  • the volume fraction of retained austenite thus obtained is determined as the area fraction of retained austenite.
  • the chemical composition of the surface soft portion is basically the same as the chemical composition of the thickness central portion, except that the carbon concentration near the surface is lower. From the definition of the soft surface layer described above, the C content in the soft surface layer is 0.5 times or less the C content in the central portion of the sheet thickness.
  • the soft surface layer includes an internal oxide layer having a thickness of 3 ⁇ m or more from the surface of the steel sheet (if the surface of the steel sheet has a coating layer, the interface between the coating layer and the steel sheet). .
  • an internal oxide layer having a thickness of 3 ⁇ m or more By including an internal oxide layer having a thickness of 3 ⁇ m or more, the movement of dislocations contained in the steel is pinned by many fine oxide particles present in the internal oxide layer, and as a result, the surface hardness of the steel sheet is increased. It can be considered that the stability can be improved significantly.
  • the thickness of the internal oxide layer may be 4 ⁇ m or more, 5 ⁇ m or more, 6 ⁇ m or more, 8 ⁇ m or more, or 10 ⁇ m or more. Although the upper limit of the thickness of the internal oxide layer is not particularly limited, the thickness of the internal oxide layer may be, for example, 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
  • the thickness of the internal oxide layer is the distance from the surface of the steel sheet to the farthest position where the internal oxide exists when proceeding from the surface of the steel sheet in the thickness direction of the steel sheet (the direction perpendicular to the surface of the steel sheet).
  • the thickness of the internal oxide layer is determined by taking a sample having a plate thickness cross-section parallel to the rolling direction of the steel plate and including the surface layer portion of the steel plate and observing the cross-section with an SEM.
  • the depth to be measured is a region from the surface of the steel sheet to 50 ⁇ m.
  • the void area ratio in the vicinity of the surface layer 3.0% or less
  • the void area ratio in the region from the surface of the steel sheet (the interface between the coating layer and the steel sheet when a coating layer exists on the surface of the steel sheet) to a depth of 10 ⁇ m is 3.0%. It is below. If a certain amount or more of voids (voids) exist in the vicinity of the surface layer, when the steel sheet is subjected to some external force, such as bending, the voids are the starting point and defects such as peeling occur.
  • the void area ratio may be 2.0% or less, 1.5% or less, or 1.0% or less.
  • the lower limit of the void area ratio is not particularly limited and may be 0%.
  • the void area ratio may be 0.1% or more or 0.5% or more.
  • the void area ratio is determined as follows. First, an observation sample is obtained by mirror-finishing an observation surface by buffing. Next, the surface of the observation sample or the interface between the plating layer and the base iron was photographed by SEM at a magnification of 9000 times, centering on 5 ⁇ m below, and one field of view was an area of 10 ⁇ m ⁇ 10 ⁇ m, and backscattered electron unevenness images of 15 consecutive fields of view were taken.
  • the region where the uneven portion was observed was analyzed by an energy dispersive X-ray spectrometer (EDS) to determine whether it was an inclusion or a void, and only the pure void portion was counted as a void, and a 10 ⁇ m ⁇ 150 ⁇ m image was taken with an SEM. is determined as the void area ratio.
  • EDS energy dispersive X-ray spectrometer
  • a high-strength steel sheet according to an embodiment of the present invention generally has a thickness of 0.6-6.0 mm.
  • the plate thickness may be 1.0 mm or more, 1.2 mm or more, or 1.4 mm or more, and/or 5.0 mm or less, 4.0 mm or less, 3.0 mm or less, or 2.5 mm or less. may be
  • the high-strength steel sheet according to the embodiment of the present invention may further include a plating layer on the surface of the soft surface layer for the purpose of improving corrosion resistance.
  • the plating layer may be either a hot-dip plating layer or an electroplating layer.
  • the hot-dip plating layer is, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, a hot-dip aluminum plating layer, a hot-dip Zn--Al alloy plating layer, a hot-dip Zn--Al--Mg alloy-plating layer, or a hot-dip Zn--Al--Mg--Si. Including alloy plating layer, etc.
  • the electroplated layer includes, for example, an electrogalvanized layer, an electroplated Zn—Ni alloy layer, and the like.
  • the plating layer is a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, or an electro-galvanized layer.
  • the coating amount of the plating layer is not particularly limited, and a general coating amount may be used.
  • the high-strength steel sheet according to the embodiment of the present invention excellent mechanical properties such as tensile strength of 1250 MPa or more can be achieved.
  • the tensile strength is preferably 1300 MPa or higher, more preferably 1350 MPa or higher.
  • the upper limit is not particularly limited, for example, the tensile strength may be 2000 MPa or less, 1800 MPa or less, or 1650 MPa or less.
  • high hardness can be achieved, more specifically, the average Vickers hardness (Hc) at the center of the sheet thickness exceeding 400 Hv (i.e., the sheet thickness average Vickers hardness at 1/2 position) can be achieved.
  • the average Vickers hardness (Hc) at the center of the sheet thickness is preferably 415 Hv or higher, more preferably 430 Hv or higher. Furthermore, according to the high-strength steel sheet according to the embodiment of the present invention, excellent bending workability can be achieved, and more specifically, a total elongation of 10% or more can be achieved.
  • the total elongation is preferably 11% or more, more preferably 12% or more. Although the upper limit is not particularly limited, for example, the total elongation may be 25% or less or 20% or less.
  • Tensile strength and total elongation are measured by performing a tensile test based on JIS Z2241:2011 based on a JIS No. 5 test piece sampled from a direction (C direction) parallel to the sheet width direction of the steel sheet.
  • the high-strength steel sheet according to the embodiment of the present invention has improved bending workability and high resistance to the occurrence of scratches, and can maintain good appearance properties. Very useful for use as a demanding skeletal member.
  • the high-strength steel sheet has high surface hardness and is therefore excellent in wear resistance, it is used in applications that require high bending workability and wear resistance in addition to high strength, such as booms of cranes for construction machinery. is also very suitable for
  • a method for manufacturing a high-strength steel sheet according to an embodiment of the present invention includes: A slab having the chemical composition described above in relation to the center of thickness is heated to a temperature of 1100-1250° C. and then finish rolled, and the finish rolled steel sheet is immediately cooled at an average cooling rate of 40° C./sec or higher.
  • a hot rolling step including cooling and winding at a temperature of 590° C. or less, wherein the finishing temperature of the finish rolling is 840 to 1050° C., and the maximum temperature of the hot rolled coil after winding is 580° C. or less. and the holding time in the temperature range from the maximum temperature to 500 ° C.
  • a step of pickling the obtained hot-rolled steel sheet is limited to 4 hours or less, a step of pickling the obtained hot-rolled steel sheet;
  • a cold rolling process in which the pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 30 to 80%,
  • An annealing step comprising heating the obtained cold-rolled steel sheet in a temperature range of (Ac3-30) ° C. or higher in an atmosphere in which the logarithm of the oxygen partial pressure P (atm) is -20 to -16;
  • the cold-rolled steel sheet is first cooled to a temperature of 680-780°C at an average cooling rate of 0.5-20°C/s, and then secondarily cooled to a temperature of 25-600°C at an average cooling rate of over 20°C/s.
  • a cooling step including cooling, and a tempering step including holding the cold-rolled steel sheet in a temperature range of 100 to 400° C. for a time of 150 to 1000 seconds.
  • the slab to be used is preferably cast by continuous casting from the viewpoint of productivity, but may be produced by ingot casting or thin slab casting.
  • the slabs used have a relatively high content of alloying elements in order to obtain high-strength steel sheets. For this reason, it is necessary to heat the slab before subjecting it to hot rolling to dissolve the alloying elements in the slab. If the heating temperature is lower than 1100° C., the alloying elements do not sufficiently dissolve in the slab, leaving coarse alloy carbides, which may cause embrittlement cracking during hot rolling. Therefore, the heating temperature is preferably 1100° C. or higher. Although the upper limit of the heating temperature is not particularly limited, it is preferably 1250° C. or less from the viewpoint of the capacity of the heating equipment and productivity.
  • the heated slab may be subjected to rough rolling before finish rolling in order to adjust the plate thickness or the like.
  • Conditions for the rough rolling are not particularly limited as long as the desired sheet bar dimensions can be secured.
  • the heated slab, or optionally rough rolled slab, is then subjected to finish rolling. Since the slab used as described above contains a relatively large amount of alloying elements, it is necessary to increase the rolling load during hot rolling. For this reason, hot rolling is preferably performed at a high temperature.
  • the finishing temperature of finish rolling is important in terms of controlling the metal structure of the steel sheet. If the finishing temperature of finish rolling is low, the metal structure may become non-uniform and the formability may deteriorate. Therefore, the finishing temperature of finish rolling is preferably 840° C. or higher. On the other hand, in order to suppress coarsening of austenite, it is preferable that the finishing temperature of finish rolling is 1050° C. or less.
  • the finish-rolled steel sheet is immediately cooled at an average cooling rate of 40° C./sec or more, eg, 40-100° C./sec, and then coiled at a temperature of 590° C. or less. If the time until the start of cooling after finish rolling is long, the average cooling rate after finish rolling is slow, or the coiling temperature is high, the formation of an internal oxide layer on the surface layer of the hot-rolled steel sheet is promoted. Since the formed internal oxide layer cannot be sufficiently removed even by the subsequent pickling, the cold rolling process is performed in a state in which the internal oxide layer is included.
  • the finish-rolled steel sheet In order to reliably suppress the formation of such an internal oxide layer in the hot rolling process, the finish-rolled steel sheet must be immediately cooled at an average cooling rate of 40° C./sec or more. is cooled at an average cooling rate of 40°C/sec or more within 3 seconds after finish rolling.
  • the coiling temperature should be below 590°C, preferably below 550°C.
  • the maximum temperature of the hot-rolled coil (hot-rolled steel sheet) after winding is controlled to 580°C or less, and the holding time in the temperature range from the maximum temperature of the hot-rolled coil to 500°C is limited to 4 hours or less.
  • the heat history of the hot-rolled coil after coiling It is also important to properly control
  • a hot-rolled coil after winding may be subjected to a heat-insulating treatment to ensure cold-rollability.
  • a thick internal oxide layer may be formed on the surface.
  • the maximum temperature of the hot-rolled coil after winding is controlled to 570°C or less, and the holding time in the temperature range from the maximum temperature of the hot-rolled coil to 500°C is limited to 3.5 hours or less.
  • the temperature measurement method and measurement location are not particularly limited, but for example, the temperature at a position about 25 m from the inner end of the hot-rolled coil toward the outer end in the length direction of the hot-rolled coil is measured from the outside with a thermo viewer. Alternatively, it may be measured by inserting a thermocouple into the hot-rolled coil.
  • the obtained hot-rolled steel sheet is pickled to remove the oxide scale formed on the surface of the hot-rolled steel sheet.
  • the pickling may be carried out under conditions suitable for removing the oxide scale, and may be carried out once, or may be carried out in multiple batches to ensure the removal of the oxide scale.
  • the pickled hot rolled steel sheet is cold rolled at a rolling reduction of 30 to 80% in the cold rolling process.
  • the rolling reduction of cold rolling is preferably 50% or more.
  • the rolling reduction of cold rolling is preferably 70% or less.
  • the number of rolling passes and the rolling reduction for each pass are not particularly limited, and may be appropriately set so that the rolling reduction of the entire cold rolling is within the above range.
  • the surface layer of the steel sheet is softened by decarburization to form a desired soft surface layer, and oxygen from the atmosphere is removed from the steel sheet. It can be diffused into the steel sheet to form a desired internal oxide layer near the surface of the steel sheet. More specifically, heating in a temperature range of (Ac3-30)° C. or higher in a heating furnace and a soaking furnace promotes decarburization in the surface layer of the steel sheet and reduces the carbon content in the surface layer. Since the hardenability of the surface layer portion decreases due to a decrease in the amount of carbon in the surface layer portion, it is possible to obtain an appropriate amount of ferrite in the surface layer portion.
  • the oxygen partial pressure P O2 (atm) in the furnace atmosphere within an appropriate range.
  • the logarithm logP 02 of the oxygen partial pressure P 02 in the atmosphere is -20 or more, the oxygen potential is sufficiently high to promote decarburization.
  • the diffusion of oxygen from the atmosphere into the steel is promoted, and internal oxidation of Si, Al, Mn, Cr, etc. existing near the surface of the steel plate proceeds, and the steel plate is An internal oxide layer having a sufficient thickness, more specifically a thickness of 3 ⁇ m or more, can be formed in the vicinity of the surface of the substrate.
  • log P O2 is preferably -19 or greater.
  • logP 02 is controlled to ⁇ 16 or less.
  • excessive decarburization and internal oxidation due to too high oxygen potential can be suppressed. Therefore, a desired surface layer soft portion and internal oxide layer can be reliably obtained.
  • oxidation of not only Si, Al, Mn, etc., but also the base steel sheet itself is suppressed, making it easier to obtain the desired surface state of the steel sheet.
  • log P O2 is preferably -17 or less. According to this method, since the internal oxide layer is formed in the annealing process after the cold rolling process, the internal oxide layer is formed during cold rolling compared to the case where the internal oxide layer is formed in the hot rolling process. A void area ratio of 3.0% or less can be reliably achieved in the finally obtained steel sheet without voids being formed around the .
  • the heating temperature range in the annealing step is preferably 1100° C. or lower, more preferably 950° C. or lower.
  • the soft surface layer only on one side of the steel sheet
  • two cold-rolled steel sheets are superimposed during the main annealing process and annealed under the conditions described above. Only the surface layer portion may be decarburized and softened.
  • the obtained cold-rolled steel sheet is cooled to a temperature of 680 to 780°C at an average cooling rate of 0.5 to 20°C/sec in order to form the desired structure in the soft surface layer and the central portion of the plate thickness. and then secondarily cooled to a temperature of 25-600° C. at an average cooling rate of over 20° C./sec.
  • Primary cooling cooling to a temperature of 680 to 780°C at an average cooling rate of 0.5 to 20°C/sec
  • the average cooling rate of the primary cooling is preferably 18° C./second or less, more preferably 16° C./second or less.
  • a higher ferrite area ratio can be achieved while preventing or suppressing the formation of pearlite or the like in the soft surface layer.
  • the average cooling rate of primary cooling is preferably 1° C./second or more, more preferably 2° C./second or more. Further, by setting the cooling stop temperature of the primary cooling to 680° C.
  • the cooling stop temperature of primary cooling is preferably 700° C. or higher.
  • the cooling stop temperature of the primary cooling is set to 780° C. or less, it is possible to promote the formation of ferrite in the surface layer soft portion.
  • the average cooling rate and cooling stop temperature of the secondary cooling are particularly important in forming as-quenched martensite for obtaining a predetermined amount of tempered martensite at the central portion of the sheet thickness.
  • As-quenched martensite is generated by transformation in a temperature range of 25 to 600° C. with a small amount of dislocations present in austenite grains before transformation serving as nuclei.
  • the average cooling rate of secondary cooling is preferably 23° C./second or more.
  • the cooling stop temperature of secondary cooling is 25° C. or higher, but preferably 100° C. or higher from the viewpoint of further improving productivity.
  • the cooling stop temperature of secondary cooling is preferably 500° C. or lower.
  • the cold-rolled steel sheet after the cooling process mainly contains as-quenched martensite in the central part of the sheet thickness. Therefore, it is necessary to temper the as-quenched martensite to tempered martensite in the subsequent tempering process. More specifically, in the tempering step, the as-quenched martensite at the center of the sheet thickness is tempered into tempered martensite by stopping the cold-rolled steel sheet in a temperature range of 100 to 400° C. for 150 to 1000 seconds. , the workability of the steel sheet can be improved as compared with the case where the sheet thickness center mainly contains as-quenched martensite. By setting the residence temperature to 100°C or higher, the effect of tempering can be reliably obtained.
  • the residence time is preferably 1000 seconds or less.
  • a steel sheet is subjected to hot-dip galvanizing treatment as the plating treatment, for example, the steel sheet is heated or cooled to a temperature not less than 40° C. lower than the temperature of the galvanizing bath and not more than 50° C. higher than the temperature of the galvanizing bath. is passed through a galvanizing bath.
  • hot-dip galvanizing treatment a steel sheet having a hot-dip galvanized layer on its surface, that is, a hot-dip galvanized steel sheet is obtained.
  • the hot-dip galvanized layer has a chemical composition of, for example, Fe: 7 to 15% by mass, and the balance: Zn, Al and impurities.
  • the hot-dip galvanized layer may be a zinc alloy.
  • the hot dip galvanized steel sheet is heated to a temperature of 460°C or higher and 600°C or lower. If the heating temperature is less than 460°C, alloying may be insufficient. On the other hand, if the heating temperature exceeds 600° C., excessive alloying may occur, resulting in deterioration of corrosion resistance.
  • a steel sheet having an alloyed hot-dip galvanized layer on its surface that is, an alloyed hot-dip galvanized steel sheet is obtained.
  • the steel sheet may be subjected to plating treatment such as electroplating treatment or vapor deposition plating treatment, and alloying treatment may be performed after the electroplating treatment.
  • plating treatment such as electroplating treatment or vapor deposition plating treatment
  • alloying treatment may be performed after the electroplating treatment.
  • the steel sheet may also be subjected to surface treatments such as formation of an organic film, film lamination, treatment with organic salts or inorganic salts, and non-chromium treatment.
  • the steel sheet may optionally be subjected to additional tempering in order to adjust the strength etc. of the steel sheet.
  • additional tempering is not particularly limited, and may be performed, for example, by holding the steel sheet in a temperature range of 200 to 500° C. for 2 seconds or longer.
  • Example A In this example, first, a continuously cast slab with a thickness of 20 mm having the chemical composition shown in Table 1 is heated to a predetermined temperature within the range of 1100 to 1250 ° C. so that the end temperature of finish rolling is 840 to 1050 ° C. Hot rolling was performed under these conditions, and the steel was cooled at an average cooling rate of 40°C/sec within 3 seconds after finish rolling, and then coiled at the coiling temperature shown in Table 2. The maximum temperature of the hot-rolled coil after winding was controlled to 580° C. or less, and the holding time in the temperature range from the maximum temperature of the hot-rolled coil to 500° C. was 3.5 hours or less.
  • the temperature of the hot-rolled coil was measured by inserting a thermocouple at a position about 25 m from the inner end of the hot-rolled coil toward the outer end in the longitudinal direction.
  • the obtained hot-rolled steel sheets were pickled and then cold-rolled at the rolling reduction shown in Table 2.
  • the obtained cold-rolled steel sheet was annealed under the conditions shown in Table 2 to decarburize and soften the surface layer of the steel sheet, and then similarly cooled and tempered under the conditions shown in Table 2.
  • Table 3 the steel sheet having the soft surface layer on only one side was decarburized and softened by decarburizing and softening only one surface layer of the steel sheet by annealing two cold-rolled steel sheets on top of each other during the annealing process. It is.
  • the properties of the obtained steel sheets were measured and evaluated by the following methods.
  • the "thickness of the soft surface layer”, the “average Vickers hardness (Hc) at the center of the plate thickness” and the “average Vickers hardness (Hs) of the soft surface layer” are determined as follows, and the Vickers hardness The test was conducted in accordance with JIS Z 2244-1:2020. First, the Vickers hardness at the position of 1/2 thickness of the steel plate was measured with an indentation load of 10 g. A total of 5 points of Vickers hardness were measured, and the average value thereof was determined as the average Vickers hardness (Hc) at the center of the plate thickness.
  • the distance between each measurement point was four times or more of the indentation.
  • the C concentration is measured in the depth direction from the surface using GDS, and the area from the surface until the C concentration gradually increases to 1/2 of the average C concentration of the matrix is defined as the soft surface layer.
  • the thickness (%) of the surface layer soft part was determined. Randomly measure the Vickers hardness of 10 points in the soft surface layer determined in this way with an indentation load of 10 g, and calculate the average value of them to determine the average Vickers hardness (Hs) of the soft surface layer. bottom.
  • the thickness of the internal oxide layer is determined by taking a sample having a thickness cross section parallel to the rolling direction of the steel sheet and including the surface layer of the steel sheet, observing the cross section with an SEM, and observing the thickness direction of the steel sheet from the surface of the steel sheet (steel sheet It was determined by measuring the distance from the steel plate surface to the furthest position where internal oxides are present when going in the direction perpendicular to the surface of the steel plate. The measurement depth was a region from the surface of the steel sheet to 50 ⁇ m.
  • the void area ratio near the surface layer was determined as follows. First, an observation sample was prepared by mirror-finishing an observation surface by buffing. Next, the surface of the observation sample or the interface between the plating layer and the base iron was photographed by SEM at a magnification of 9000 times, centering on 5 ⁇ m below, and one field of view was an area of 10 ⁇ m ⁇ 10 ⁇ m, and backscattered electron unevenness images of 15 consecutive fields of view were taken. got The area where the uneven part was observed was analyzed by EDS, and it was determined whether it was an inclusion or a void, and only the pure void part was counted as a void. It was determined as an area ratio.
  • Tensile strength and total elongation Tensile strength TS and total elongation t-El were measured by performing a tensile test according to JIS Z2241: 2011 based on a JIS No. 5 test piece taken from a direction (C direction) parallel to the width direction of the steel plate.
  • the bending workability was evaluated by measuring the bending angle ⁇ (°) by a bending test conforming to VDA (German Automobile Manufacturers Association Standard) 238-100:2017-04.
  • Comparative Example 22 the total area ratio of tempered martensite and as-quenched martensite was relatively high, but the tensile strength decreased due to the low C content.
  • Comparative Example 23 since the C content was high, the tensile strength was improved, but the bending workability was lowered.
  • Comparative Example 24 bending workability was deteriorated due to the high Si content.
  • Comparative Example 25 bending workability deteriorated due to the high Mn content.
  • Comparative Example 26 the Al content was high, so coarse Al oxides were generated, and as a result, the bending workability was lowered.
  • Comparative Example 27 it is considered that coarse Cr carbides were formed due to the high Cr content, and as a result, bending workability was lowered.
  • Comparative Example 28 since the total content of Si, Mn, Al and Cr was low, a sufficient internal oxide layer could not be formed, resulting in a decrease in surface hardness and the occurrence of microcracks. observed.
  • Comparative Example 29 an internal oxide layer was formed during the hot rolling process due to the high coiling temperature. For this reason, it is thought that voids were formed around the internal oxide during the subsequent cold rolling, and as a result, the void area ratio near the surface layer of the final steel sheet could not be sufficiently reduced, and microcracks were formed. Occurrence was observed.
  • Comparative Example 30 since the stop temperature of the secondary cooling was high, the desired amount of tempered martensite was not generated at the plate thickness central portion, and as a result, the tensile strength decreased.
  • Comparative Example 31 since the average cooling rate of the primary cooling was fast, ferrite could not be generated sufficiently in the soft surface layer, and as a result, the value of Hs/Hc increased and the bending workability decreased. .
  • Comparative Example 32 since the logarithm logP 02 of the oxygen partial pressure P 02 in the annealing step was low, decarburization was not promoted and an internal oxide layer could not be sufficiently formed. As a result, the surface hardness decreased and the occurrence of microcracks was observed.
  • the average Vickers hardness of the plate thickness central part and the surface layer soft part having a predetermined chemical composition and / or microstructure satisfies Hs / Hc ⁇ 0.50. Furthermore, by controlling the internal oxide layer to a thickness of 3 ⁇ m or more from the steel plate surface and controlling the void area ratio near the surface layer to 3.0% or less, despite having a high strength of 1250 MPa or more, bending The workability could be improved, and the occurrence of flaws on the surface of the steel sheet could be remarkably suppressed.
  • Example B In this example, the effect of controlling the heat history after coiling on the properties of the obtained steel sheet was examined. Specifically, Example 16 in Table 3 was used as a reference (the maximum temperature of the hot-rolled coil after winding was 567°C and the holding time in the temperature range from the maximum temperature to 500°C was 3.5 hours), and Comparative Example 33 and 34, the maximum temperature of the hot-rolled coil after winding and the holding time in the temperature range from the maximum temperature to 500° C. were varied. Other manufacturing conditions in Comparative Examples 33 and 34 were the same as in Example 16. Table 4 shows the results.
  • Example 16 in which the maximum temperature of the hot-rolled coil after winding is 580 ° C. or less and the holding time in the temperature range from the maximum temperature to 500 ° C. is 4 hours or less, Table 3 As shown in , the final product steel sheet had a void area ratio of 0.0% in the vicinity of the surface layer, and therefore was sufficiently reduced to 3.0% or less. As a result, no microcracks were observed in Example 16. On the other hand, in Comparative Example 33 in which the maximum temperature of the hot-rolled coil after winding is over 580 ° C. and in Comparative Example 34 in which the holding time in the temperature range from the maximum temperature to 500 ° C.
  • the void area ratio near the surface layer could not be controlled to 3.0% or less, and the occurrence of microcracks was observed.
  • the maximum temperature of the hot-rolled coil after coiling was high or the holding time was long, so that an internal oxide layer was formed during the hot rolling process, and the internal oxidation layer was formed during the subsequent cold rolling. This is considered to be caused by the formation of voids around the object.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

板厚中心部と、板厚中心部の片側又は両側に形成された表層軟質部とを含み、板厚中心部が所定の化学組成及び焼戻しマルテンサイト:85%以上を含むミクロ組織を有し、表層軟質部が10μm超から板厚の5%以下の厚さを有し、フェライト:80%以上を含むミクロ組織を有し、表面から3μm以上の厚さを有する内部酸化層を含み、板厚中心部の平均ビッカース硬さ(Hc)と表層軟質部の平均ビッカース硬さ(Hs)がHs/Hc≦0.50を満たし、表面から10μmの深さ位置までの領域におけるボイド面積率が3.0%以下である高強度鋼板が提供される。

Description

高強度鋼板
 本発明は、高強度鋼板に関する。
 鋼板を高強度化すると加工性が低下するため、鋼板において強度と加工性の両立を図ることは一般に困難である。例えば、建設機械用クレーンのブームは、近年の建造物の高層化に伴って長尺化される傾向にあり、したがって軽量化とともに高強度化が求められている。また、鋼板をブームなどの部材に適用する場合には、曲げ加工が施されるため、曲げ加工性に優れた高強度鋼板に対するニーズが高まっている。
 自動車業界においても、燃費向上の観点から車体の軽量化が求められている。車体の軽量化と衝突安全性を両立するためには、使用する鋼板の高強度化が有効な方法の一つであり、このような背景から高強度鋼板の開発が進められている。一般的に、高強度鋼板では、軟鋼板に対し曲げ加工性などの成形性が低下し、軟鋼板で使用される成形法が適用できない場合がある。したがって、自動車用鋼板の分野においても、曲げ加工性に優れた高強度鋼板に対する高いニーズがある。
 特許文献1では、板厚中心部と、前記板厚中心部の片側又は両側に形成された表層軟質部とを有する高強度鋼板であって、前記高強度鋼板の断面において、前記板厚中心部の金属組織が、面積率で、焼戻しマルテンサイト:85%以上等を含み、前記表層軟質部の金属組織が、面積率で、フェライト:65%以上、パーライト:5%以上20%未満等を含み、前記表層軟質部のパーライトとパーライトとの平均間隔が3μm以上であり、前記板厚中心部のビッカース硬さ(Hc)及び前記表層軟質部のビッカース硬さ(Hs)が、0.50≦Hs/Hc≦0.75を満足する高強度鋼板が記載されている。また、特許文献1では、表層軟質部に硬質組織としてパーライトを分布させることで、鋼板の曲げ荷重及び曲げ性を同時に高められると記載されている。
 特許文献2では、板厚中心部と、該板厚中心部の片側または両側に配置された表層軟化部とを含む引張強度が800MPa以上の高強度鋼板であって、各表層軟化部が10μm超から板厚の30%以下の厚さを有し、前記表層軟化部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さの0.60倍以下であり、前記表層軟化部のナノ硬さの標準偏差が0.8以下であることを特徴とする高強度鋼板が記載されている。また、特許文献2では、表層軟化部を有することに加えて、当該表層軟化部の硬さばらつきを抑制することで曲げ性が顕著に向上すると教示されている。
 特許文献3では、所定の化学成分組成を有し、組織の90%以上がマルテンサイトであり、圧延方向の断面における表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比が3以上、20以下である組織を有することを特徴とする高強度熱延鋼板が記載されている。また、特許文献3では、上記の構成によれば、曲げ加工性と耐摩耗性に優れた降伏強度950MPa以上の高強度熱延鋼板を提供することが可能となると記載されている。
 特許文献4~10では、素地鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するめっき鋼板であって、前記素地鋼板と前記めっき層との界面から素地鋼板側に向って順に、SiおよびMnよりなる群から選択される少なくとも一種の酸化物を含む内部酸化層と、前記内部酸化層を含む層であって、且つ、前記素地鋼板の板厚をtとしたとき、ビッカース硬さが、前記素地鋼板のt/4部におけるビッカース硬さの90%以下を満足する軟質層と、所定の硬質層とを有し、且つ、前記軟質層の平均深さDが20μm以上、および前記内部酸化層の平均深さdが4μm以上、前記D未満を満足し、引張強度が980MPa以上である高強度めっき鋼板が記載されている。また、特許文献4~10では、内部酸化層の平均深さdを4μm以上に厚く制御して当該内部酸化層を水素トラップサイトとして活用することで水素脆化を有効に抑制でき、内部酸化層の平均深さdと当該内部酸化層の領域を含む軟質層の平均深さDとの関係を適切に制御することで、特に曲げ性が高められると教示されている。
国際公開第2020/196060号 国際公開第2018/151331号 特開2014-227583号公報 国際公開第2016/111271号 国際公開第2016/111272号 国際公開第2016/111273号 国際公開第2016/111274号 国際公開第2016/111275号 国際公開第2015/146692号 国際公開第2015/005191号
 従来技術において提案されるように、鋼板の表面に軟質層を配置することで曲げ加工性を改善することが可能である。一方で、鋼板の表面に軟質層を配置すると、一般に表面硬さが低下するため、疵の発生による外観の劣化や、耐摩耗性の低下などを招く場合がある。これに関連して、特許文献3では、表層から板厚1/8までの旧オーステナイト粒の平均アスペクト比を3以上、20以下することで、表面硬さを向上させるとともに、曲げ加工性に優れた鋼板が得られると教示されている。しかしながら、特許文献3では、旧オーステナイト粒の平均アスペクト比以外の表層部における組織制御については必ずしも十分な検討はなされておらず、それゆえ特許文献3に記載の発明においては、曲げ加工性及び表面硬さの向上に関して依然として改善の余地があった。
 そこで、本発明は、改善された曲げ加工性を有しかつ疵の発生についても抑制可能な高強度鋼板を提供することを目的とする。
 本発明者は、上記目的を達成するために、1250MPa以上の引張強度を有する高強度鋼板において、板厚中心部の平均ビッカース硬さに対して所定の割合の平均ビッカース硬さを有する表層軟質部を設けて曲げ加工性を改善するとともに、当該表層軟質部の最表層部に所定の厚さを有する内部酸化層を形成し、さらに表層近傍に形成されるボイドを適切な範囲内に制御することで、表面硬さを向上させて鋼板表面における疵の発生を抑制することができることを見出し、本発明を完成させた。
 上記目的を達成し得た本発明は下記のとおりである。
 (1)板厚中心部と、前記板厚中心部の片側又は両側に形成された表層軟質部とを含む高強度鋼板であって、
 前記板厚中心部が、質量%で、
 C:0.10~0.30%、
 Si:0.01~2.50%、
 Mn:0.10~10.00%、
 P:0.100%以下、
 S:0.0500%以下、
 Al:0~1.50%、
 N:0.0100%以下、
 O:0.0060%以下、
 Cr:0~2.00%、
 Mo:0~1.00%、
 B:0~0.0100%、
 Ti:0~0.30%、
 Nb:0~0.30%、
 V:0~0.50%、
 Cu:0~1.00%、
 Ni:0~1.00%、
 Ca:0~0.040%、
 Mg:0~0.040%、
 REM:0~0.040%、並びに
 残部:Fe及び不純物からなり、
 1.50≦[Si]+[Mn]+[Al]+[Cr]≦20.00を満たし、式中、[Si]、[Mn]、[Al]及び[Cr]は各元素の含有量(質量%)である化学組成を有し、
 面積率で、
 焼戻しマルテンサイト:85%以上を含むミクロ組織を有し、
 前記表層軟質部が、10μm超から板厚の5.0%以下の厚さを有し、
 面積率で、
 フェライト:80%以上を含むミクロ組織を有し、
 前記高強度鋼板の表面から3μm以上の厚さを有する内部酸化層を含み、
 前記板厚中心部の平均ビッカース硬さ(Hc)と前記表層軟質部の平均ビッカース硬さ(Hs)がHs/Hc≦0.50を満たし、
 前記高強度鋼板の表面から10μmの深さ位置までの領域におけるボイド面積率が3.0%以下である、高強度鋼板。
 (2)前記板厚中心部が、面積率で、
 焼戻しマルテンサイト:85%以上、
 フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種:合計で15%未満、並びに
 焼入れままマルテンサイト:5%未満からなるミクロ組織を有する、上記(1)に記載の高強度鋼板。
 (3)前記表層軟質部が、面積率で、
 フェライト:80%以上、
 焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種:合計で20%未満、
 パーライト:5%未満、並びに
 焼入れままマルテンサイト:5%未満からなるミクロ組織を有する、上記(1)又は(2)に記載の高強度鋼板。
 (4)前記表層軟質部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、又は電気亜鉛めっき層をさらに含む、上記(1)~(3)のいずれか1項に記載の高強度鋼板。
 本発明によれば、改善された曲げ加工性を有しかつ疵の発生についても抑制可能な高強度鋼板を提供することができる。このような高強度鋼板は、疵の発生に対する抵抗性が高く、外観性状を良好に維持することができるため、例えば自動車の特に準外板部品と呼ばれる高い強度とともに意匠性や外観性が求められるピラー部材のような骨格部材としての使用に非常に有用である。また、このような高強度鋼板は、表面硬さが高くそれゆえ耐摩耗性にも優れるため、例えば建設機械用クレーンのブームなど、高強度に加えて、高い曲げ加工性及び耐摩耗性が求められる用途においても非常に適している。
<高強度鋼板>
 本発明の実施形態に係る高強度鋼板は、板厚中心部と、前記板厚中心部の片側又は両側に形成された表層軟質部とを含み、
 前記板厚中心部が、質量%で、
 C:0.10~0.30%、
 Si:0.01~2.50%、
 Mn:0.10~10.00%、
 P:0.100%以下、
 S:0.0500%以下、
 Al:0~1.50%、
 N:0.0100%以下、
 O:0.0060%以下、
 Cr:0~2.00%、
 Mo:0~1.00%、
 B:0~0.0100%、
 Ti:0~0.30%、
 Nb:0~0.30%、
 V:0~0.50%、
 Cu:0~1.00%、
 Ni:0~1.00%、
 Ca:0~0.040%、
 Mg:0~0.040%、
 REM:0~0.040%、並びに
 残部:Fe及び不純物からなり、
 1.50≦[Si]+[Mn]+[Al]+[Cr]≦20.00を満たし、式中、[Si]、[Mn]、[Al]及び[Cr]は各元素の含有量(質量%)である化学組成を有し、
 面積率で、
 焼戻しマルテンサイト:85%以上を含むミクロ組織を有し、
 前記表層軟質部が、10μm超から板厚の5.0%以下の厚さを有し、
 面積率で、
 フェライト:80%以上を含むミクロ組織を有し、
 前記高強度鋼板の表面から3μm以上の厚さを有する内部酸化層を含み、
 前記板厚中心部の平均ビッカース硬さ(Hc)と前記表層軟質部の平均ビッカース硬さ(Hs)がHs/Hc≦0.50を満たし、
 前記高強度鋼板の表面から10μmの深さ位置までの領域におけるボイド面積率が3.0%以下であることを特徴としている。
 先に述べたとおり、鋼板の表面に軟質層を配置することで曲げ加工性を改善することができるものの、一方でこのような表層軟質部に起因して一般に表面硬さが低下するため、疵の発生による外観の劣化や、耐摩耗性の低下などを招く場合がある。そこで、本発明者は、1250MPa以上の引張強度を有する高強度鋼板において、板厚中心部の片側又は両側に設けられる表層軟質部に加えて、当該表層軟質部における最表層部や表層近傍の組織にも着目して検討を行った。より具体的には、本発明者は、まず、所定の厚さを有する表層軟質部のミクロ組織を面積率で80%以上のフェライトを含むものとしつつ、当該表層軟質部の平均ビッカース硬さ(Hs)と板厚中心部の平均ビッカース硬さ(Hc)をそれらがHs/Hc≦0.50の式を満たすよう制御することで、高強度鋼板の曲げ加工性を顕著に改善することができることを見出した。また、本発明者は、圧延(典型的には熱間圧延及び冷間圧延)後に行われる焼鈍処理において鋼板中の比較的酸化しやすい成分(例えばSi、Al等)が焼鈍雰囲気中の酸素と結合することで鋼板の最表層部に形成される内部酸化層や、他の製造条件に関連して表層近傍に形成される場合があるボイド(空隙)に着目してさらに検討を行った。その結果、本発明者は、SiやAl等の酸化物を含む内部酸化層を鋼板表面から3μm以上の厚さとしつつ、表層近傍に形成されるボイドの面積率、より具体的には鋼板表面から10μmの深さ位置までの領域におけるボイド面積率を3.0%以下に制御することで、鋼板の表面硬さが大きく向上することに加えて、鋼板表面における疵の発生を顕著に抑制することができることを見出した。
 何ら特定の理論に束縛されることを意図するものではないが、内部酸化層中に存在する内部酸化物粒子が鋼中の転位に対する障害物となり、それによって転位運動がピン止めされて鋼板の表面硬さが向上するものと考えられる。より詳しく説明すると、転位とは一般に線状の結晶欠陥を言うものであるが、鋼の変形は、一般的に、鋼中に含まれる転位近傍の鉄原子が外力等によって再配置されることで当該転位の位置が移動することによって生じる。ここで、鋼板の表層部に所定の厚さ、具体的には鋼板の表面(鋼板の表面にめっき層が存在する場合には、めっき層と鋼板の界面)から3μm以上の厚さを有する内部酸化層が形成されていると、その内部には微細な酸化物粒子が数多く分散して存在しているため、このような内部酸化物粒子が障害物となって転位の運動が阻害され、その結果として鋼板の表面硬さが向上するものと考えられる。一方で、単に内部酸化層を形成しただけでは、表面硬さは向上するものの、き裂や剥離など疵の発生を確実に防ぐことができない場合がある。
 今回、本発明者は、さらに検討を行い、表層近傍に一定量以上のボイド(空隙)が存在する場合には、鋼板が何らかの外力を受けた場合に当該ボイドが起点となって剥離やき裂等の疵の発生が生じる場合があることを見出し、鋼板表面から10μmの深さ位置までの領域におけるボイド面積率を3.0%以下に制御することで、このような疵の発生を確実に抑制できることを見出した。したがって、本発明の実施形態に係る高強度鋼板によれば、例えば優れた曲げ加工性及び疵に対する高い抵抗性が要求される自動車用の高強度鋼板や、さらには優れた曲げ加工性及び耐摩耗性が要求される建設機械用部材、例えばクレーンのブームなどの用途においても良好に使用することが可能である。以下、本発明の実施形態に係る高強度鋼板についてより詳しく説明する。
[板厚中心部の化学組成]
 まず、板厚中心部の化学組成について説明する。板厚中心部において表層軟質部との境界付近では表層軟質部との合金元素の拡散により化学組成が境界から十分に離れた位置と異なる場合がある。そのような場合には、以下の板厚中心部の化学組成は、板厚1/2位置付近で測定される化学組成をいうものである。また、以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[C:0.10~0.30%]
 炭素(C)は、所定量の焼戻しマルテンサイトを確保し、鋼板の強度を向上させるのに有効な元素である。これらの効果を十分に得るために、C含有量は0.10%以上である。C含有量は0.12%以上、0.14%以上、0.16%以上又は0.18%以上であってもよい。一方で、Cを過度に含有すると、延性及び/又は曲げ加工性が低下する場合がある。したがって、C含有量は0.30%以下である。C含有量は0.28%以下、0.26%以下、0.24%以下又は0.22%以下であってもよい。
[Si:0.01~2.50%]
 ケイ素(Si)は、焼入れ性を確保するのに有効な元素である。また、Siは、Alとの合金化を抑制する元素でもある。これらの効果を十分に得るために、Si含有量は0.01%以上である。Si含有量は0.05%以上、0.10%以上、0.15%以上又は0.30%以上であってもよい。一方で、Siを過度に含有すると、板厚中心部が脆化し、曲げ加工性が低下する場合がある。したがって、Si含有量は2.50%である。Si含有量は2.20%以下、2.10%以下、2.00%以下、1.80%以下又は1.50%以下であってもよい。
[Mn:0.10~10.00%]
 マンガン(Mn)は、脱酸剤として作用する元素である。また、Mnは、焼入れ性を向上させるのに有効な元素でもある。これらの効果を十分に得るために、Mn含有量は0.10%以上である。Mn含有量は0.20%以上、0.50%以上、0.80%以上又は1.00%以上であってもよい。一方で、Mnを過度に含有すると、粗大なMn酸化物が鋼中に形成し、鋼板の伸びが低下する場合がある。したがって、Mn含有量は10.00%以下である。Mn含有量は9.00%以下、8.00%以下、6.00%以下又は5.00%以下であってもよい。
[P:0.100%以下]
 リン(P)は、製造工程で混入する元素である。P含有量は0%であってもよい。しかしながら、P含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、P含有量は0.0001%以上、0.0005%以上、0.001%以上又は0.005%以上であってもよい。一方で、Pを過度に含有すると、鋼板の板厚中心部に偏析して靭性を低下させる場合がある。したがって、P含有量は0.100%以下である。P含有量は0.080%以下、0.060%以下、0.040%以下又は0.020%以下であってもよい。
[S:0.0500%以下]
 硫黄(S)は、製造工程で混入する元素である。S含有量は0%であってもよい。しかしながら、S含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、S含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Sを過度に含有すると、粗大なMnSが形成して鋼板の靭性が低下する場合がある。したがって、S含有量は0.0500%以下である。S含有量は0.0400%以下、0.0300%以下、0.0200%以下又は0.0100%以下であってもよい。
[Al:0~1.50%]
 アルミニウム(Al)は、鋼の脱酸剤として作用してフェライトを安定化する元素である。Al含有量は0%であってもよいが、このような効果を得るためには、Al含有量は0.001%以上であることが好ましい。Al含有量は0.01%以上、0.02%以上又は0.03%以上であってもよい。一方で、Alを過度に含有すると、粗大なAl酸化物が生成して鋼板の伸びが低下する場合があるか、及び/又は焼戻しマルテンサイトを十分に生成できない場合がある。したがって、Al含有量は1.50%以下である。Al含有量は1.40%以下、1.30%以下、1.00%以下又は0.80%以下であってもよい。
[N:0.0100%以下]
 窒素(N)は、製造工程で混入する元素である。N含有量は0%であってもよい。しかしながら、N含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、N含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Nを過度に含有すると、粗大な窒化物が形成して鋼板の曲げ加工性及び/又は靭性を低下させる場合がある。したがって、N含有量は0.0100%以下である。N含有量は0.0080%以下、0.0060%以下又は0.0050%以下であってもよい。
[O:0.0060%以下]
 酸素(O)は、製造工程で混入する元素である。O含有量は0%であってもよい。しかしながら、O含有量を0.0001%未満に低減するためには精錬に時間を要し、生産性の低下を招く。したがって、O含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、Oを過度に含有すると、粗大な介在物が形成して鋼板の靭性を低下させる場合がある。したがって、O含有量は0.0060%以下である。O含有量は0.0050%以下、0.0045%以下又は0.0040%以下であってもよい。
 本発明の実施形態に係る板厚中心部の基本化学組成は上記のとおりである。さらに、当該板厚中心部は、必要に応じて、残部のFeの一部に替えて以下の任意選択元素のうち少なくとも1種を含有してもよい。例えば、板厚中心部は、Cr:0~2.00%、Mo:0~1.00%及びB:0~0.0100%からなる群より選択される少なくとも1種を含有してもよい。また、板厚中心部は、Ti:0~0.30%、Nb:0~0.30%及びV:0~0.50%からなる群より選択される少なくとも1種を含有してもよい。また、板厚中心部は、Cu:0~1.00%及びNi:0~1.00%からなる群より選択される少なくとも1種を含有してもよい。また、板厚中心部は、Ca:0~0.040%、Mg:0~0.040%及びREM:0~0.040%からなる群より選択される少なくとも1種を含有してもよい。以下、これらの任意選択元素について詳しく説明する。
[Cr:0~2.00%]
 クロム(Cr)は、焼入れ性を高めて鋼板を高強度化するのに有効な元素である。Cr含有量は0%であってもよいが、このような効果を得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.01%以上、0.10%以上又は0.20%以上であってもよい。一方で、Crを過度に含有すると、Crが鋼板の板厚中心部に偏析して粗大なCr炭化物が形成し、鋼板の伸びを低下させる場合がある。したがって、Cr含有量は2.00%以下であることが好ましい。Cr含有量は1.80%以下、1.00%以下、0.50%以下であってもよい。
[Mo:0~1.00%]
 モリブデン(Mo)は、Crと同様に鋼板の高強度化に有効な元素である。Mo含有量は0%であってもよいが、このような効果を得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.01%以上、0.05%以上又は0.10%以上であってもよい。一方で、Moを過度に含有すると、粗大なMo炭化物が形成して鋼板の冷間加工性を低下させる場合がある。したがって、Mo含有量は1.00%以下であることが好ましい。Mo含有量は0.90%以下、0.80%以下又は0.60%以下であってもよい。
[B:0~0.0100%]
 ホウ素(B)は、鋼板の高強度化に有効な元素である。B含有量は0%であってもよいが、このような効果を得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0005%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Bを過度に含有すると、靭性及び又は溶接性が低下する場合がある。したがって、B含有量は0.0100%以下であることが好ましい。B含有量は0.0080%以下、0.0060%以下又は0.0040%以下であってもよい。
[Ti:0~0.30%]
 チタン(Ti)は、炭化物の形態制御に有効な元素であり、フェライトの強度増加を促す元素でもある。Ti含有量は0%であってもよいが、これらの効果を得るためには、Ti含有量は0.001%以上であることが好ましい。Ti含有量は0.005%以上、0.01%以上又は0.02%以上であってもよい。一方で、Tiを過度に含有すると、粗大な酸化物又は窒化物が鋼中に生成して鋼板の加工性を低下させる場合がある。したがって、Ti含有量は0.30%以下であることが好ましい。Ti含有量は0.20%以下、0.15%以下又は0.10%以下であってもよい。
[Nb:0~0.30%]
 ニオブ(Nb)は、Tiと同様に炭化物の形態制御に有効な元素であり、ピン止め効果により組織を微細化して鋼板の靭性向上に寄与する元素でもある。Nb含有量は0%であってもよいが、これらの効果を得るためには、Nb含有量は0.001%以上であることが好ましい。Nb含有量は0.005%以上、0.01%以上又は0.02%以上であってもよい。一方で、Nbを過度に含有すると、微細で硬質なNb炭化物が多数析出し、鋼板強度の上昇とともに延性が低下し、鋼板の加工性を低下させる場合がある。したがって、Nb含有量は0.30%以下であることが好ましい。Nb含有量は0.20%以下、0.15%以下又は0.10%以下であってもよい。
[V:0~0.50%]
 バナジウム(V)は、Ti及びNbと同様に炭化物の形態制御に有効な元素であり、ピン止め効果により組織を微細化して鋼板の靭性向上に寄与する元素でもある。V含有量は0%であってもよいが、これらの効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.005%以上、0.01%以上又は0.02%以上であってもよい。一方で、Vを過度に含有すると、微細でV炭化物が多数析出し、鋼板強度の上昇とともに延性が低下し、鋼板の加工性を低下させる場合がある。したがって、V含有量は0.50%以下であることが好ましい。V含有量は0.30%以下、0.20%以下又は0.10%以下であってもよい。
[Cu:0~1.00%]
 銅(Cu)は、鋼板の強度向上に有効な元素である。Cu含有量は0%であってもよいが、このような効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Cuを過度に含有すると、赤熱脆性を招いて熱間圧延での生産性が低下する場合がある。したがって、Cu含有量は1.00%以下であることが好ましい。Cu含有量は0.80%以下、0.60%以下又は0.40%以下であってもよい。
[Ni:0~1.00%]
 ニッケル(Ni)は、Cuと同様に鋼板の強度向上に有効な元素である。Ni含有量は0%であってもよいが、このような効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Niを過度に含有すると、延性が低下して鋼板の加工性を低下させる場合がある。したがって、Ni含有量は1.00%以下であることが好ましい。Ni含有量は0.80%以下、0.60%以下又は0.40%以下であってもよい。
[Ca:0~0.040%]
 カルシウム(Ca)は、微量添加により硫化物の形態を制御することができる元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。Ca含有量は0.0005%以上、0.001%以上又は0.005%以上であってもよい。一方で、Caを過度に含有すると、粗大なCa酸化物が生成して鋼板の加工性を低下させる場合がある。したがって、Ca含有量は0.040%以下であることが好ましい。Ca含有量は0.030%以下、0.020%以下又は0.015%以下であってもよい。
[Mg:0~0.040%]
 マグネシウム(Mg)は、Caと同様に微量添加により硫化物の形態を制御することができる元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0005%以上、0.001%以上又は0.005%以上であってもよい。一方で、Mgを過度に含有すると、粗大な介在物が生成して鋼板の加工性を低下させる場合がある。したがって、Mg含有量は0.040%以下であることが好ましい。Mg含有量は0.030%以下、0.020%以下又は0.015%以下であってもよい。
[REM:0~0.040%]
 希土類金属(REM)は、Ca及びMgと同様に微量添加により硫化物の形態を制御することができる元素である。REM含有量は0%であってもよいが、このような効果を得るためには、REM含有量は0.0001%以上であることが好ましい。REM含有量は0.0005%以上、0.001%以上又は0.005%以上であってもよい。一方で、REMを過度に含有すると、粗大な介在物が生成して鋼板の加工性を低下させる場合がある。したがって、REM含有量は0.040%以下であることが好ましい。REM含有量は0.030%以下、0.020%以下又は0.015%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
(その他)
 さらに、板厚中心部は、以下の元素を意図的又は不可避的に含有してもよく、それらによって本発明の効果が阻害されることはない。これらの元素は、W:0~0.10%、Ta:0~0.10%、Co:0~0.50%、Sn:0~0.050%、Sb:0~0.050%、As:0~0.050%、及びZr:0~0.050%である。これらの元素の含有量はそれぞれ0.0001%以上又は0.001%以上であってもよい。
 本発明の実施形態に係る板厚中心部において、上記の元素以外の残部は、Fe及び不純物からなる。不純物とは、鋼板又はその板厚中心部を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
[1.50≦[Si]+[Mn]+[Al]+[Cr]≦20.00]
 本発明の実施形態に係る板厚中心部の化学組成は、下記式を満たす必要がある。
   1.50≦[Si]+[Mn]+[Al]+[Cr]≦20.00
 式中、[Si]、[Mn]、[Al]及び[Cr]は各元素の含有量(質量%)である。先に説明したとおり、本発明の実施形態に係る高強度鋼板では、最表層部に形成される内部酸化物が鋼板の表面硬さを向上させる上で極めて重要である。当該内部酸化層は、主として冷間圧延後の焼鈍処理の際に鋼板中の比較的酸化しやすい成分、例えばSi、Mn、Al及びCrが焼鈍雰囲気中の酸素と結合することで鋼板の最表層部に形成される。したがって、内部酸化層を鋼板の表面硬さを向上させるのに十分な厚さ、具体的には鋼板表面から3μm以上の厚さまで形成させるためには、これらの元素が鋼中に合計で一定量以上含有されている必要がある。本発明の実施形態に係る板厚中心部の化学組成は、各合金元素の含有量を先に説明した範囲内に制御しつつ、Si、Mn、Al及びCrの合計の含有量が1.50%以上、すなわち[Si]+[Mn]+[Al]+[Cr]≧1.50を満たすように制御される。このような板厚中心部の化学組成と特に焼鈍処理の条件等を適切に組み合わせることで、3μm以上の厚さを有する内部酸化層を確実に形成することが可能となる。その結果として、高い表面硬さを達成して鋼板表面における疵の発生を抑制するとともに、優れた耐摩耗性を達成することが可能となる。
 Si、Mn、Al及びCrの合計の含有量は、1.60%以上、1.70%以上、1.80%以上、1.90%以上、2.00%以上、2.20%以上又は2.50%以上であってもよい。一方で、Si、Mn、Al及びCrの合計の含有量が高すぎると、内部酸化物の形成を促進して表面硬さを高くするという観点からは必ずしも不利に影響はしないものの、個々の合金元素の含有量が高くなりすぎるためにそれに関連する特性が低下する場合がある。したがって、Si、Mn、Al及びCrの合計の含有量は、20.00%以下とする。例えば、Si、Mn、Al及びCrの合計の含有量は、15.00%以下、12.00%以下、10.00%以下、9.00%以下、8.00%以下又は7.00%以下であってもよい。
[板厚中心部のミクロ組織]
[焼戻しマルテンサイト:85%以上]
 板厚中心部のミクロ組織は、面積率で、85%以上の焼戻しマルテンサイトを含む。焼戻しマルテンサイトは高強度かつ強靭な組織である。本発明に係る実施形態においては、先に説明した所定の化学組成、特には0.10%以上のC含有量を有するとともに、板厚中心部において焼戻しマルテンサイトを85%以上含むことで、高い引張強度、具体的には1250MPa以上の引張強度を確実に達成することが可能となる。焼戻しマルテンサイトの面積率は86%以上、88%以上又は90%以上であってもよい。焼戻しマルテンサイトの面積率の上限は、特に限定されず100%であってもよい。例えば、焼戻しマルテンサイトの面積率は98%以下、96%以下又は94%以下であってもよい。
[フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種:合計で15%未満]
 板厚中心部のミクロ組織は、面積率で、85%以上の焼戻しマルテンサイトを含むという要件を満足する限り、他の任意の組織を含んでいてよい。特に限定されないが、例えば、板厚中心部において、フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種の面積率の合計は15%未満とすることが好ましい。
 フェライトは、軟質な組織であるため変形しやすく、鋼板の延性向上に寄与する。したがって、鋼板の延性向上の観点から、板厚中心部のミクロ組織はフェライトを含んでいてもよい。しかしながら、焼戻しマルテンサイトの硬質組織とフェライトの軟質組織の界面は破壊の起点となり得るため、フェライトを過度に含む場合には、鋼板における穴広げ性を低下させる場合がある。また、ベイナイトは硬質であるため、鋼板の強度向上に寄与する。したがって、鋼板の強度向上の観点から、板厚中心部のミクロ組織はベイナイトを含んでいてもよい。しかしながら、ベイナイトを過度に含む場合には、鋼板の強度は向上するものの、ミクロ組織の均一性が低下して鋼板における穴広げ性を低下させる場合がある。ベイナイトは、ラス間に炭化物を有する上部ベイナイト、ラス内に炭化物を有する下部ベイナイト、炭化物を有さないベイニティックフェライト、ベイナイトのラス境界が回復し不鮮明となったグラニュラーベイニティックフェライトのいずれであってもよく、それらの混合組織であってもよい。
 パーライトは、軟質なフェライトと硬質なセメンタイトが層状に並んだ硬質な組織であり、鋼板の強度向上に寄与する組織である。したがって、鋼板の強度向上の観点から、板厚中心部のミクロ組織はパーライトを含んでいてもよい。しかしながら、軟質なフェライトと硬質なセメンタイトとの界面は破壊の起点となり得るため、パーライトを過度に含む場合には、鋼板における穴広げ性を低下させる場合がある。また、残留オーステナイトは、加工誘起変態(TRIP)効果により鋼板の延性向上に寄与する組織である。したがって、鋼板の延性向上の観点から、板厚中心部のミクロ組織は残留オーステナイトを含んでいてもよい。一方で、残留オーステナイトは、加工誘起変態により焼入れままマルテンサイトに変態するため、残留オーステナイトを過度に含む場合には、鋼板における穴広げ性を低下させる場合がある。
 フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種の面積率の合計を15%未満に制御することで、これらの組織を過度に含むことの不利益、より具体的には本発明の目的とは関係しない穴広げ性の低下を確実に回避することができ、一方でこれらの組織に起因する追加の効果を十分に発現させることができる。フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種の面積率の合計は0%であってもよいが、例えば、1%以上、3%以上、4%以上又は5%以上であってもよい。また、フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種の面積率の合計は14%以下、12%以下、11%以下又は10%以下であってもよい。
[焼入れままマルテンサイト:5%未満]
 焼入れままマルテンサイトとは、焼戻されていないマルテンサイト、すなわち炭化物を含まないマルテンサイトを言うものである。焼入れままマルテンサイトは非常に硬質な組織である。したがって、焼入れままマルテンサイトの面積率は0%であってもよいが、強度向上の観点から1%以上又は2%以上であってもよい。一方で、焼入れままマルテンサイトは脆い組織でもあるため、より高い靭性を確保する観点からは、焼入れままマルテンサイトの面積率は5%未満とすることが好ましい。焼入れままマルテンサイトの面積率は4%以下又は3%以下であってもよい。
[板厚中心部におけるミクロ組織の同定及び面積率の算出]
[焼戻しマルテンサイト及びベイナイト]
 板厚中心部におけるミクロ組織の同定及び面積率の算出は以下のようにして行われる。まず、鋼板の圧延方向に平行な板厚断面を有する試料を採取し、当該断面を観察面とする。この観察面をナイタール試薬で腐食し、腐食された観察面のうち、鋼板表面から板厚の1/4位置を中心とする100μm×100μmの領域を観察領域とする。この観察領域を電界放射型走査型電子顕微鏡(FE-SEM)を用いて1000~50000倍にて観察する。この観察領域において組織内部に含まれるセメンタイトの位置及びセメンタイトの配列から、以下のようにして焼戻しマルテンサイト及びベイナイトを同定する。焼戻しマルテンサイトでは、マルテンサイトラスの内部にセメンタイトが存在するが、マルテンサイトラスとセメンタイトの結晶方位が2種類以上あり、セメンタイトが複数のバリアントを持つことから、焼戻しマルテンサイトを同定することができる。このようにして同定された焼戻しマルテンサイトの面積率をポイントカウンティング法(ASTM E562準拠)によって算出する。一方、ベイナイトの存在状態としては、ラス状のベイニティックフェライトの界面にセメンタイト又は残留オーステナイトが存在している場合や、ラス状のベイニティックフェライトの内部にセメンタイトが存在している場合がある。ラス状のベイニティックフェライトの界面にセメンタイト又は残留オーステナイトが存在している場合には、ベイニティックフェライトの界面がわかるため、ベイナイトを同定することができる。また、ラス状のベイニティックフェライトの内部にセメンタイトが存在している場合には、ベイニティックフェライトとセメンタイトの結晶方位関係が1種類であり、セメンタイトが同一のバリアントを持つことから、ベイナイトを同定することができる。このようにして同定されたベイナイトの面積率をポイントカウンティング法によって算出する。
[フェライト]
 まず、鋼板の圧延方向に平行な板厚断面を有する試料を採取し、当該断面を観察面とする。この観察面のうち、鋼板表面から板厚の1/4位置を中心とする100μm×100μmの領域を観察領域とする。この観察領域を走査型電子顕微鏡によって1000~50000倍にて観察することにより電子チャンネリングコントラスト像を得る。電子チャンネリングコントラスト像は、結晶粒内の結晶方位差をコントラストの差として検出する手法であり、この電子チャンネリングコントラスト像において均一なコントラストの部分がフェライトである。このようにして同定されたフェライトの面積率をポイントカウンティング法によって算出する。
[パーライト]
 焼戻しマルテンサイト及びベイナイトに関連して説明したナイタール試薬で腐食された観察領域を光学顕微鏡によって1000~50000倍にて観察し、観察像において暗いコントラストの領域をパーライトとして同定する。同定されたパーライトの面積率をポイントカウンティング法によって算出する。
[残留オーステナイト]
 残留オーステナイトの体積率は、X線回折法により測定する。まず、上記のように採取した試料のうち鋼板の表面から板厚の1/4位置までを機械研磨及び化学研磨により除去し、鋼板の表面から板厚の1/4位置の面を露出させる。露出した面にMoKα線を照射し、bcc相の(200)面及び(211)面、並びにfcc相の(200)面、(220)面及び(311)面の回折ピークの積分強度比を求める。この回折ピークの積分強度比から、残留オーステナイトの体積率が算出される。この算出方法としては、一般的な5ピーク法が用いられる。算出された残留オーステナイトの体積率を残留オーステナイトの面積率として決定する。
[焼入れままマルテンサイト]
 まず、フェライトの同定に用いた観察面と同様の観察面をレペラ液でエッチングし、フェライトの同定と同様の領域を観察領域とする。レペラ液による腐食では、マルテンサイト及び残留オーステナイトは腐食されない。そのため、レペラ液によって腐食された観察領域をFE-SEMで観察し、腐食されていない領域をマルテンサイト及び残留オーステナイトとして同定する。同定されたマルテンサイト及び残留オーステナイトの合計面積率をポイントカウンティング法によって算出する。次に、上で決定した残留オーステナイトの面積率をこの合計面積率から差し引くことにより、焼入れままマルテンサイトの面積率が決定される。
[表層軟質部]
 上記の板厚中心部の片側又は両側に形成される表層軟質部は10μm超から板厚の5.0%以下の厚さを有し、かつ板厚中心部の平均ビッカース硬さ(Hc)の0.50倍以下の平均ビッカース硬さ(Hs)を有する(すなわち、Hs/Hc≦0.50)。10μm超の厚さを有しかつHs/Hc≦0.50を満足させることで鋼板の片側又は両側に表層軟質部を設けた効果を確実に発揮させることができ、結果として鋼板の曲げ加工性を顕著に向上させることが可能となる。例えば、曲げ加工性の向上効果をより高めるために、表層軟質部の厚さは、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上、又は40μm以上であってもよい。また、表層軟質部の厚さは、板厚の4.5%以下、4.0%以下、3.5%以下、3.0%以下又は2.5%以下であってもよい。板厚中心部の両側に表層軟質部が形成される場合には、一方の側の表層軟質部の厚さと他方の側の表層軟質部の厚さは同じであってもよいし又は異なっていてもよい。同様に、曲げ加工性の向上効果をより高めるために、表層軟質部の平均ビッカース硬さ(Hs)と板厚中心部の平均ビッカース硬さ(Hc)の比(Hs/Hc)は、0.50倍未満、0.49倍以下、0.48倍以下、0.47倍以下、0.46倍以下又は0.45倍以下であってもよい。Hs/Hcの下限は特に限定されないが、例えば、Hs/Hcは、0.20倍以上、0.25倍以上又は0.30倍以上であってもよい。板厚中心部の両側に表層軟質部が形成される場合には、一方の側の表層軟質部に関するHs/Hcと他方の側の表層軟質部に関するHs/Hcは同じであってもよいし又は異なっていてもよい。
 本発明において、「表層軟質部の厚さ」、「板厚中心部の平均ビッカース硬さ(Hc)」及び「表層軟質部の平均ビッカース硬さ(Hs)」は、以下のようにして決定され、ビッカース硬さ試験については、JIS Z 2244-1:2020に準拠して行われる。まず、鋼板の板厚1/2位置でのビッカース硬さを押し込み荷重10g重で測定し、次いでその位置から板厚に垂直な方向でかつ圧延方向に平行な線上に同様に押し込み荷重10g重で合計3点以上、例えば5点又は10点のビッカース硬さを測定し、それらの平均値が板厚中心部の平均ビッカース硬さ(Hc)として決定される。各測定点の間隔は、圧痕の4倍以上の距離とすることが好ましい。圧痕の4倍以上の距離とは、ビッカース硬さの測定の際にダイヤモンド圧子によって生じた圧痕の矩形状開口における対角線の長さの4倍以上の距離を意味するものである。次に、グロー放電発光表面分析装置(GDS)を用いて表面から深さ方向にC濃度を測定し、表面からC濃度が次第に増加して母相の平均C濃度(板厚中心部のC含有量)の1/2になるまでの領域を表層軟質部と定義し、表層軟質部の厚さ(μm)及び板厚に占めるその割合(%)が決定される。このようにして決定された表層軟質部内でランダムに10点のビッカース硬さを押し込み荷重10g重で測定し、それらの平均値を算出することによって表層軟質部の平均ビッカース硬さ(Hs)が決定される。板厚中心部の両側に表層軟質部が形成される場合には、上で説明したのと同様に測定することで、他方の側の表層軟質部の厚さ及び平均ビッカース硬さ(Hs)が決定される。
[表層軟質部のミクロ組織]
[フェライト:80%以上]
 表層軟質部のミクロ組織は、面積率で、80%以上のフェライトを含む。フェライトは軟質な組織であるため変形しやすい組織である。それゆえ、表層軟質部においてフェライトを80%以上含むことで、高い曲げ加工性を達成することができる。フェライトの面積率は82%以上、85%以上、87%以上又は90%以上であってもよい。フェライトの面積率の上限は、特に限定されず100%であってもよい。例えば、フェライトの面積率は98%以下、96%以下又は94%以下であってもよい。
[焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種:合計で20%未満]
 表層軟質部のミクロ組織は、面積率で、80%以上のフェライトを含むという要件を満足する限り、他の任意の組織を含んでいてよい。特に限定されないが、例えば、表層軟質部において、焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種の面積率の合計は20%未満とすることが好ましい。
 焼戻しマルテンサイト及びベイナイトは硬質な組織である。また、残留オーステナイトは加工誘起変態により硬質な焼入れままマルテンサイトに変態する。このため、鋼板における曲げ加工性をさらに改善する観点から、例えば、焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種の面積率の合計は18%以下、16%以下、14%以下又は12%以下であってもよい。焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種の面積率の合計は0%であってもよいが、例えば、1%以上、3%以上、5%以上、8%以上又は10%以上であってもよい。
[パーライト:5%未満]
 上記のとおり、表層軟質部のミクロ組織は、面積率で80%以上のフェライトを含むことで十分高い曲げ加工性を達成することができるが、鋼板の曲げ加工性をさらに改善する観点から、硬質組織であるパーライトの面積率は5%未満とすることが好ましい。パーライトの面積率は4.5%以下、4%以下又は3%以下であってもよい。一方で、パーライトの面積率の下限は、特に限定されず0%であってもよい。例えば、パーライトの面積率は1%以上又は2%以上であってもよい。
[焼入れままマルテンサイト:5%未満]
 パーライトの場合と同様に、鋼板の曲げ加工性をさらに改善する観点から、硬質組織である焼入れままマルテンサイトの面積率は5%未満とすることが好ましい。焼入れままマルテンサイトの面積率は4%以下又は3%以下であってもよい。一方で、焼入れままマルテンサイトの面積率の下限は、特に限定されず0%であってもよい。例えば、焼入れままマルテンサイトの面積率は1%以上又は2%以上であってもよい。
[表層軟質部におけるミクロ組織の同定及び面積率の算出]
 表層軟質部におけるミクロ組織の同定及び面積率の算出は以下のようにして行われる。まず、鋼板の圧延方向に平行な板厚断面を有する試料を採取し、当該断面を観察面とする。この観察面のうち、表層軟質部と定義される範囲内において板厚方向に偏りがないようにランダムに複数の観察領域を選択する。これらの観察領域の合計面積は、2.0×10-92以上とする。残留オーステナイト以外のミクロ組織の同定及び面積率の算出は、観察領域が異なることを除いて、板厚中心部におけるミクロ組織の同定及び面積率の算出と同じである。
[残留オーステナイト]
 表層軟質部の残留オーステナイトの体積率は、電子後方散乱回折法(EBSD)を用いて観察領域の結晶方位情報を取得することにより求められる。具体的には、まず、鋼板の圧延方向に平行な板厚断面を有する試料を採取する。当該断面を観察面とし、エメリー紙による湿式研磨、1μmの平均粒子サイズを有するダイヤモンド砥粒による研磨、及び化学研磨を観察面に順次施す。次いで、研磨された観察面のうち表層軟質部と定義される範囲内において板厚方向に偏りがないようにランダムに複数の観察領域を選択し、合計で2.0×10-92以上の領域の結晶方位を0.05μm間隔で取得する。結晶方位のデータ取得ソフトとしては、株式会社TSLソリューションズ製のソフトウェア「OIM Data Collection TM(ver.7)」を用いる。取得した結晶方位情報は、株式会社TSLソリューションズ製のソフトウェア「OIM Analysis TM(ver.7)」でbcc相とfcc相に分離する。このfcc相が残留オーステナイトである。このようにして得られた残留オーステナイトの体積率を残留オーステナイトの面積率として決定する。
[表層軟質部の化学組成]
 本発明の実施形態においては、表層軟質部の化学組成は、表面近傍の炭素濃度が低くなること以外は基本的に板厚中心部の化学組成と同等である。先に説明した表層軟質部の定義から、表層軟質部のC含有量は、板厚中心部のC含有量の0.5倍以下となる。
[内部酸化層の厚さ:3μm以上]
 本発明の実施形態においては、表層軟質部は、鋼板の表面(鋼板の表面にめっき層が存在する場合には、めっき層と鋼板の界面)から3μm以上の厚さを有する内部酸化層を含む。3μm以上の厚さを有する内部酸化層を含むことで、当該内部酸化層中に数多く存在する微細な酸化物粒子によって鋼中に含まれる転位の運動がピン止めされ、その結果として鋼板の表面硬さを顕著に向上させることができると考えらえる。内部酸化層の厚さは4μm以上、5μm以上、6μm以上、8μm以上又は10μm以上であってもよい。内部酸化層の厚さの上限は特に限定されないが、例えば、内部酸化層の厚さは30μm以下、25μm以下又は20μm以下であってもよい。
 内部酸化層の厚さは、鋼板の表面から鋼板の板厚方向(鋼板の表面に垂直な方向)に進んだ場合における鋼板表面から内部酸化物が存在する最も遠い位置までの距離をいう。内部酸化層の厚さは、鋼板の圧延方向に平行でかつ鋼板の表層部分を含む板厚断面を有する試料を採取し、当該断面をSEM観察することによって決定される。測定する深さは鋼板の表面から50μmまでの領域とする。
[表層近傍のボイド面積率:3.0%以下]
 本発明の実施形態においては、鋼板の表面(鋼板の表面にめっき層が存在する場合には、めっき層と鋼板の界面)から10μmの深さ位置までの領域におけるボイド面積率が3.0%以下である。表層近傍に一定量以上のボイド(空隙)が存在する場合には、鋼板が何らかの外力、例えば曲げ加工などの外力を受けた場合に当該ボイドが起点となって剥離等による疵の発生が生じる場合がある。本発明の実施形態によれば、鋼板の表面から10μmの深さ位置までの領域におけるボイド面積率を3.0%以下に制御することで、このような疵の発生を確実に抑制することが可能となる。当該ボイド面積率は2.0%以下、1.5%以下、又は1.0%以下であってもよい。当該ボイド面積率の下限は特に限定されず0%であってもよい。例えば、当該ボイド面積率は0.1%以上又は0.5%以上であってもよい。
 本発明において、ボイド面積率は以下のようにして決定される。まず、バフ研磨で観察面を鏡面仕上げにしたものを観察試料とする。次いで、SEMにより観察試料の表面又はめっき層と地鉄の界面から5μm下を中心として倍率9000倍で撮影し、10μm×10μmの領域を1視野として、隣り合う連続した15視野の反射電子凹凸像を得る。凹凸部分が観察された領域をエネルギー分散型X線分光器(EDS)により分析し、介在物か空隙かの判別を行い、純粋な空隙部分のみをボイドとして計上し、SEMにより撮影した10μm×150μmの領域に占めるボイドの割合をボイド面積率として決定する。
[板厚]
 本発明の実施形態に係る高強度鋼板は、一般的に0.6~6.0mmの板厚を有する。特に限定されないが、板厚は1.0mm以上、1.2mm以上若しくは1.4mm以上であってもよく、及び/又は5.0mm以下、4.0mm以下、3.0mm以下若しくは2.5mm以下であってもよい。
[めっき]
 本発明の実施形態に係る高強度鋼板は、耐食性の向上等を目的として、表層軟質部の表面にめっき層をさらに含んでもよい。めっき層は、溶融めっき層及び電気めっき層のいずれでもよい。溶融めっき層は、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、溶融Zn-Al合金めっき層、溶融Zn-Al-Mg合金めっき層、溶融Zn-Al-Mg-Si合金めっき層等を含む。電気めっき層は、例えば、電気亜鉛めっき層、電気Zn-Ni合金めっき層等を含む。好ましくは、めっき層は、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、又は電気亜鉛めっき層である。めっき層の付着量は、特に制限されず一般的な付着量でよい。
[機械特性]
 本発明の実施形態に係る高強度鋼板によれば、優れた機械特性、例えば1250MPa以上の引張強度を達成することができる。引張強度は、好ましくは1300MPa以上であり、より好ましくは1350MPa以上である。上限は特に限定されないが、例えば、引張強度は2000MPa以下、1800MPa以下又は1650MPa以下であってもよい。同様に、本発明の実施形態に係る高強度鋼板によれば、高い硬度を達成することができ、より具体的には400Hv超の板厚中心部の平均ビッカース硬さ(Hc)(すなわち板厚1/2位置での平均ビッカース硬さ)を達成することができる。板厚中心部の平均ビッカース硬さ(Hc)は、好ましくは415Hv以上であり、より好ましくは430Hv以上である。さらに、本発明の実施形態に係る高強度鋼板によれば、優れた曲げ加工性を達成することができ、より具体的には10%以上の全伸びを達成することができる。全伸びは、好ましくは11%以上、より好ましくは12%以上である。上限は特に限定されないが、例えば、全伸びは25%以下又は20%以下であってもよい。引張強度及び全伸びは、鋼板の板幅方向に平行な方向(C方向)から採取したJIS5号試験片に基づいてJIS Z2241:2011に準拠した引張試験を行うことで測定される。
 本発明の実施形態に係る高強度鋼板は、改善された曲げ加工性を有しかつ疵の発生に対する抵抗性が高く、外観性状を良好に維持することができるため、例えば自動車の特に外観性も要求される骨格部材としての使用に非常に有用である。また、当該高強度鋼板は、表面硬さが高くそれゆえ耐摩耗性にも優れるため、例えば建設機械用クレーンのブームなど、高強度に加えて、高い曲げ加工性及び耐摩耗性が求められる用途においても非常に適している。
<高強度鋼板の製造方法>
 次に、本発明の実施形態に係る高強度鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る高強度鋼板を製造するための特徴的な方法の例示を意図するものであって、当該高強度鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明の実施形態に係る高強度鋼板の製造方法は、
 板厚中心部に関連して上で説明した化学組成を有するスラブを1100~1250℃の温度に加熱し、次いで仕上げ圧延し、仕上げ圧延された鋼板を直ちに40℃/秒以上の平均冷却速度で冷却して590℃以下の温度で巻き取ることを含む熱間圧延工程であって、前記仕上げ圧延の終了温度が840~1050℃であり、巻き取り後の熱延コイルの最高温度が580℃以下に制御され、かつ前記最高温度から500℃までの温度域における保持時間が4時間以下に制限される熱間圧延工程、
 得られた熱延鋼板を酸洗する工程、
 酸洗された熱延鋼板を30~80%の圧下率で冷間圧延する冷間圧延工程、
 得られた冷延鋼板を酸素分圧PO2(atm)の対数logPO2が-20~-16の雰囲気中(Ac3-30)℃以上の温度域で加熱することを含む焼鈍工程、
 前記冷延鋼板を0.5~20℃/秒の平均冷却速度で680~780℃の温度まで1次冷却し、次いで20℃/秒超の平均冷却速度で25~600℃の温度まで2次冷却することを含む冷却工程、及び
 前記冷延鋼板を100~400℃の温度域で150~1000秒の時間にわたり停留させることを含む焼戻し工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
[熱間圧延工程]
[スラブの加熱]
 まず、板厚中心部に関連して上で説明した化学組成を有するスラブが加熱される。使用するスラブは、生産性の観点から連続鋳造法において鋳造することが好ましいが、造塊法又は薄スラブ鋳造法によって製造してもよい。使用されるスラブは、高強度鋼板を得るために合金元素を比較的多く含有している。このため、スラブを熱間圧延に供する前に加熱して合金元素をスラブ中に固溶させる必要がある。加熱温度が1100℃未満であると、合金元素がスラブ中に十分に固溶せずに粗大な合金炭化物が残り、熱間圧延中に脆化割れを生じる場合がある。このため、加熱温度は1100℃以上であることが好ましい。加熱温度の上限は、特に限定されないが、加熱設備の能力や生産性の観点から1250℃以下であることが好ましい。
[粗圧延]
 本方法では、例えば、加熱されたスラブに対し、板厚調整等のために、仕上げ圧延の前に粗圧延を施してもよい。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
[仕上げ圧延]
 加熱されたスラブ又はそれに加えて必要に応じて粗圧延されたスラブは、次に仕上げ圧延を施される。上記のように使用されるスラブは合金元素を比較的多く含有しているため、熱間圧延の際に圧延荷重を大きくする必要がある。このため、熱間圧延は高温で行われることが好ましい。特に仕上げ圧延の終了温度は、鋼板の金属組織の制御の点で重要である。仕上げ圧延の終了温度が低いと、金属組織の不均一となり、成形性が低下する場合がある。このため、仕上げ圧延の終了温度は840℃以上であることが好ましい。一方で、オーステナイトの粗大化を抑制するため、仕上げ圧延の終了温度は1050℃以下であることが好ましい。
[巻き取り]
 次に、仕上げ圧延された鋼板は、直ちに40℃/秒以上、例えば40~100℃/秒の平均冷却速度で冷却され、次いで590℃以下の温度で巻き取られる。仕上げ圧延後冷却開始までの時間が長いか、仕上げ圧延後の平均冷却速度が遅いか又は巻取温度が高いと、熱延鋼板の表層において内部酸化層の形成が促進されてしまう。形成された内部酸化層はその後の酸洗によっても十分に除去することができないため、内部酸化層を含む状態で冷間圧延工程が行われることになる。この場合には、冷間圧延の際に内部酸化物の周囲にボイドが形成され、最終的に得られる鋼板において3.0%以下のボイド面積率を達成することができない場合がある。熱間圧延工程におけるこのような内部酸化層の形成を確実に抑制するためには、仕上げ圧延された鋼板は、直ちに40℃/秒以上の平均冷却速度で冷却する必要があり、より具体的には仕上げ圧延後3秒以内に40℃/秒以上の平均冷却速度で冷却される。同じ理由から、巻取温度は590℃以下とする必要があり、好ましくは550℃未満である。
 巻き取り後の熱延コイル(熱延鋼板)の最高温度は580℃以下に制御され、かつ当該熱延コイルの最高温度から500℃までの温度域における保持時間は4時間以下に制限される。冷間圧延の際に内部酸化物の周囲にボイドが形成されるのを抑制するためには、仕上げ圧延後の冷却及び巻取温度の制御に加えて、巻き取り後の熱延コイルの熱履歴を適切に制御することも重要である。例えば、巻き取り後の熱延コイルに対して冷延性を確保するために保熱処理を施すことがあるが、このような保熱処理が高温でかつ処理時間が長いと、熱延コイルの酸化スケールや表層の内部酸化層が厚く生成する場合がある。このような場合には、その後の酸洗によっても、これらを十分に除去することができず、熱延コイルの幅方向や長手方向に沿って除去のムラが生じ、これに起因してボイドが発生する場合がある。鋼組織の変態は発熱反応であるため、変態速度によっては巻き取り後であっても温度が巻取温度よりも上昇する場合がある。したがって、巻き取り後の熱延コイルの熱履歴を適切に監視及び制御して、過度な酸化スケールや内部酸化層の形成を抑制することが極めて重要となる。好ましくは、巻き取り後の熱延コイルの最高温度は570℃以下に制御され、かつ当該熱延コイルの最高温度から500℃までの温度域における保持時間は3.5時間以下に制限される。温度の測定方法及び測定場所は特に限定されないが、例えば熱延コイルの内側端部から当該熱延コイルの長さ方向の外側端部に向かって約25mの位置における温度を、外部からサーモビューアーで測定してもよいし又は熱電対を熱延コイルに挿入することで測定してもよい。
[酸洗工程]
 次に、得られた熱延鋼板は、当該熱延鋼板の表面に形成された酸化スケールを除去するために酸洗される。酸洗は、酸化スケールを除去するのに適切な条件下で実施すればよく、一回でもよいし、あるいは酸化スケールを確実に取り除くために複数回に分けて実施してもよい。
[冷間圧延工程]
 酸洗された熱延鋼板は、冷間圧延工程において30~80%の圧下率で冷延圧延される。冷間圧延の圧下率を30%以上とすることで冷延鋼板の形状を平坦に保ち、最終製品における延性の低下を抑制することができる。冷間圧延の圧下率は、好ましくは50%以上である。一方で、冷間圧延の圧下率を80%以下とすることにより、圧延荷重が過大になって圧延が困難となることを防ぐことができる。冷間圧延の圧下率は、好ましくは70%以下である。圧延パスの回数及びパス毎の圧下率は、特に限定されず、冷間圧延全体の圧下率が上記範囲となるように適宜設定すればよい。
[焼鈍工程]
[雰囲気の酸素分圧PO2(atm)の対数logPO2:-20~-16]
[焼鈍温度域:(Ac3-30)℃以上]
 得られた冷延鋼板は、例えば連続焼鈍ラインの加熱炉及び均熱炉において、炉内雰囲気の酸素分圧PO2(atm)の対数logPO2を-20~-16に維持しつつ、(Ac3-30)℃以上の温度域で加熱されて焼鈍を施される。ここで、Ac3点は、下記式に基づいて近似的に算出することができる。
 Ac3=937.2-436.5×[C]+56×[Si]-19.7×[Mn]-16.3×[Cu]-26.6×[Ni]-4.9×[Cr]+38.1×[Mo]+124.8×[V]+136.3×[Ti]-19.1×[Nb]+198.4×[Al]+3315×[B]
 式中、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Ti]、[Nb]、[Al]及び[B]は鋼板中の各元素の含有量(質量%)である。
 上記のような比較的酸化性の雰囲気でかつ高温の条件下で焼鈍を施すことにより、鋼板の表層部を脱炭により軟化して所望の表層軟質部を形成するとともに、雰囲気からの酸素を鋼中に拡散させて鋼板の表面近傍に所望の内部酸化層を形成することができる。より具体的には、加熱炉及び均熱炉において(Ac3-30)℃以上の温度域で加熱することにより鋼板の表層部における脱炭が進み、表層部の炭素量が低下する。表層部の炭素量が低下することで表層部の焼入れ性が低下するため、表層部において適切な量のフェライトを得ることが可能となる。このような脱炭を促進させるため、炉内雰囲気の酸素分圧PO2(atm)を適切な範囲に制御する必要がある。雰囲気の酸素分圧PO2の対数logPO2が-20以上であると、酸素ポテンシャルが十分に高くなって脱炭が進行する。加えて、このような酸化性の雰囲気下では、雰囲気から鋼中への酸素の拡散が促進されて、鋼板の表面近傍に存在するSi、Al、Mn及びCr等の内部酸化が進行し、鋼板の表面近傍に十分な厚さ、より具体的には3μm以上の厚さを有する内部酸化層を形成することができる。logPO2は、好ましくは-19以上である。一方で、logPO2を-16以下に制御することで、酸素ポテンシャルが高すぎることによる過度な脱炭及び内部酸化を抑制することができる。このため、所望の表層軟質部及び内部酸化層を確実に得ることができる。また、Si、Al及びMn等だけでなく、素地鋼板自体も酸化されてしまうことが抑制され、鋼板における所望の表面状態をより得やすくすることができる。logPO2は、好ましくは-17以下である。本方法によれば、冷間圧延工程後の焼鈍工程において内部酸化層が形成されるため、熱間圧延工程において内部酸化層が形成する場合と比較して、冷間圧延の際に内部酸化物の周囲にボイドが形成されることがなく、最終的に得られる鋼板において3.0%以下のボイド面積率を確実に達成することができる。
 加えて、焼鈍工程において(Ac3-30)℃以上の温度域で加熱することで、焼鈍中にオーステナイトが生成し、板厚中心部における最終組織として所定量の焼戻しマルテンサイトを得やすくすることができる。このため、鋼板における所望の高強度を達成することが可能となる。一方で、焼鈍の温度域が高すぎると、鋼板の特性上は問題ないが、生産性が低下する。このため、焼鈍工程の加熱温度域は1100℃以下であることが好ましく、950℃以下であることがより好ましい。例えば、表層軟質部を鋼板の片側のみに形成する場合には、本焼鈍工程の際に2枚の冷延鋼板を重ねて、上で説明した条件下での焼鈍を施すことにより鋼板の一方の表層部のみを脱炭して軟化するようにしてもよい。
[冷却工程]
 焼鈍工程に続いて、表層軟質部及び板厚中心部において所望の組織を形成するために、得られた冷延鋼板が0.5~20℃/秒の平均冷却速度で680~780℃の温度まで1次冷却され、次いで20℃/秒超の平均冷却速度で25~600℃の温度まで2次冷却される。
[1次冷却:0.5~20℃/秒の平均冷却速度で680~780℃の温度まで冷却]
 1次冷却の平均冷却速度を20℃/秒以下とすることにより、表層軟質部におけるフェライトの生成を促進することができる。また、1次冷却における平均冷却速度の上限は、冷却工程を1次冷却と2次冷却の2段階に分けた効果を確実に得るために規定されるものである。このような観点から、1次冷却の平均冷却速度は、好ましくは18℃/秒以下、より好ましくは16℃/秒以下である。冷却工程をこのような2段階とすることで、例えば表層軟質部においてパーライト等を生成させずに又はパーライト等の生成を抑制しつつ、より高いフェライトの面積率を達成することができる。一方、1次冷却の平均冷却速度を0.5℃/秒以上とすることにより、表層軟質部だけでなく板厚中心部におけるフェライト変態及びパーライト変態の過度な進行が抑制されるため、板厚中心部において所定量の焼戻しマルテンサイトを得やすくすることができる。1次冷却の平均冷却速度は、好ましくは1℃/秒以上、より好ましくは2℃/秒以上である。また、1次冷却の冷却停止温度を680℃以上とすることにより、表層軟質部においてフェライト以外の組織が多く生成して鋼板の曲げ加工性が低下することを抑制することができる。1次冷却の冷却停止温度は、好ましくは700℃以上である。一方、1次冷却の冷却停止温度を780℃以下とすることにより、表層軟質部におけるフェライトの生成を促進することができる。
[2次冷却:20℃/秒超の平均冷却速度で25~600℃の温度まで冷却]
 2次冷却の平均冷却速度及び冷却停止温度は、板厚中心部において所定量の焼戻しマルテンサイトを得るための焼入れままマルテンサイトを形成する上で特に重要である。焼入れままマルテンサイトは、25~600℃の温度域において変態前のオーステナイト粒に存在する微量の転位を核として変態することで生成する。1次冷却後、25~600℃の温度域に到達するまでの平均冷却速度を20℃/秒超とすることにより、変態前のオーステナイト粒に含まれる転位の消滅を抑制することができる。その結果として、板厚中心部の最終組織において85%以上の焼戻しマルテンサイトを確実に達成することができる。2次冷却の平均冷却速度は、好ましくは23℃/秒以上である。また、2次冷却の冷却停止温度は25℃以上であるが、生産性をより向上させる観点から、好ましくは100℃以上である。一方、冷却停止温度を600℃以下とすることにより、板厚中心部におけるフェライト、ベイナイト及びパーライトの生成を抑制しつつ、所定量のマルテンサイトの生成を確実にすることができる。2次冷却の冷却停止温度は、好ましくは500℃以下である。
[焼戻し工程]
 冷却工程後の冷延鋼板は、板厚中心部において主として焼入れままマルテンサイトを含む。したがって、次の焼戻し工程においてこの焼入れままマルテンサイトを焼戻しマルテンサイトに焼戻す必要がある。より具体的には、焼戻し工程では、冷延鋼板を100~400℃の温度域で150~1000秒の時間にわたり停留させることにより、板厚中心部における焼入れままマルテンサイトを焼戻しマルテンサイトに焼戻して、板厚中心部が主として焼入れままマルテンサイトを含む場合と比較して、鋼板の加工性を向上させることができる。停留温度を100℃以上とすることで焼戻しの効果を確実に得ることができる。一方で、停留温度を400℃以下とすることにより、過度な焼戻しを抑制して鋼板の強度を高いレベルに維持することが可能となる。また、停留時間を150秒以上とすることで、所定量の焼戻しマルテンサイトを得ることを確実にすることができる。一方で、生産性の観点から、停留時間は1000秒以下とすることが好ましい。
[めっき処理及び表面処理]
 めっき処理として鋼板に溶融亜鉛めっき処理を行う場合、例えば、亜鉛めっき浴の温度より40℃低い温度以上かつ亜鉛めっき浴の温度より50℃高い温度以下の温度に鋼板を加熱又は冷却し、当該鋼板を亜鉛めっき浴に通す。このような溶融亜鉛めっき処理により、表面に溶融亜鉛めっき層を備えた鋼板、すなわち溶融亜鉛めっき鋼板が得られる。溶融亜鉛めっき層は、例えば、Fe:7~15質量%、並びに残部:Zn、Al及び不純物からなる化学組成を有する。また、溶融亜鉛めっき層は亜鉛合金であってもよい。
 溶融亜鉛めっき処理後に合金化処理を行う場合、例えば、溶融亜鉛めっき鋼板を460℃以上600℃以下の温度に加熱する。加熱温度が460℃未満では、合金化が不十分な場合がある。一方で、加熱温度が600℃超では、合金化が過剰となって耐食性が劣化する場合がある。このような合金化処理により、表面に合金化溶融亜鉛めっき層を備えた鋼板、すなわち合金化溶融亜鉛めっき鋼板が得られる。
 また、電気めっき処理、蒸着めっき処理等のめっき処理を鋼板に施してもよく、さらに、電気めっき処理後に合金化処理を行ってもよい。また、有機皮膜の形成、フィルムラミネート、有機塩類又は無機塩類処理、ノンクロム処理等の表面処理を鋼板に施してもよい。
[後工程の焼戻し]
 最後に、鋼板の強度等を調整するため、任意選択で、鋼板に追加の焼戻しを施してもよい。このような焼戻しは、特に限定されず、例えば200~500℃の温度域に鋼板を2秒以上停留させることにより実施してもよい。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[例A]
 本例では、まず、表1に示す化学組成を有する板厚20mmの連続鋳造スラブを1100~1250℃の範囲内の所定の温度に加熱し、仕上げ圧延の終了温度が840~1050℃となるような条件下で熱間圧延を実施し、仕上げ圧延後3秒以内に40℃/秒の平均冷却速度で冷却し、次いで表2に示す巻取温度で巻き取った。巻き取り後の熱延コイルは最高温度を580℃以下に制御するとともに、当該熱延コイルの最高温度から500℃までの温度域における保持時間は3.5時間以下とした。熱延コイルの温度は、当該熱延コイルの内側端部から長さ方向の外側端部に向かって約25mの位置に熱電対を挿入することで測定した。次に、得られた熱延鋼板を酸洗し、次いで表2に示す圧下率にて冷間圧延を実施した。次に、得られた冷延鋼板に表2に示す条件下で焼鈍を施すことにより鋼板の表層部を脱炭して軟化し、次いで同様に表2に示す条件下で冷却及び焼戻しを実施した。表3において、表層軟質部を片側のみに設けている鋼板は、焼鈍工程の際に2枚の冷延鋼板を重ねて焼鈍を施すことにより鋼板の一方の表層部のみを脱炭して軟化したものである。最後に、必要に応じて、めっき及び合金化並びに追加の焼戻し処理を行って製品の鋼板を得た。得られた鋼板から採取した試料について、板厚中心部に相当する部分の化学組成を分析したところ、表1に示す化学組成と変化がなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板の特性は以下の方法によって測定及び評価した。
[表層軟質部の厚さ、板厚中心部の平均ビッカース硬さ(Hc)及び表層軟質部の平均ビッカース硬さ(Hs)]
 「表層軟質部の厚さ」、「板厚中心部の平均ビッカース硬さ(Hc)」及び「表層軟質部の平均ビッカース硬さ(Hs)」は、以下のようにして決定し、ビッカース硬さ試験については、JIS Z 2244-1:2020に準拠して行った。まず、鋼板の板厚1/2位置でのビッカース硬さを押し込み荷重10g重で測定し、次いでその位置から板厚に垂直な方向でかつ圧延方向に平行な線上に同様に押し込み荷重10g重で合計5点のビッカース硬さを測定し、それらの平均値を板厚中心部の平均ビッカース硬さ(Hc)として決定した。各測定点の間隔は、圧痕の4倍以上の距離とした。次に、GDSを用いて表面から深さ方向にC濃度を測定し、表面からC濃度が次第に増加して母相の平均C濃度の1/2になるまでの領域を表層軟質部と定義し、表層軟質部の厚さ(%)を決定した。このようにして決定された表層軟質部内でランダムに10点のビッカース硬さを押し込み荷重10g重で測定し、それらの平均値を算出することによって表層軟質部の平均ビッカース硬さ(Hs)を決定した。
[内部酸化層厚さ]
 内部酸化層の厚さは、鋼板の圧延方向に平行でかつ鋼板の表層部分を含む板厚断面を有する試料を採取して当該断面をSEM観察し、鋼板の表面から鋼板の板厚方向(鋼板の表面に垂直な方向)に進んだ場合における鋼板表面から内部酸化物が存在する最も遠い位置までの距離を測定することによって決定した。測定深さは鋼板の表面から50μmまでの領域とした。
[表層近傍のボイド面積率]
 表層近傍のボイド面積率は以下のようにして決定した。まず、バフ研磨で観察面を鏡面仕上げにしたものを観察試料とした。次いで、SEMにより観察試料の表面又はめっき層と地鉄の界面から5μm下を中心として倍率9000倍で撮影し、10μm×10μmの領域を1視野として、隣り合う連続した15視野の反射電子凹凸像を得た。凹凸部分が観察された領域をEDSにより分析し、介在物か空隙かの判別を行い、純粋な空隙部分のみをボイドとして計上し、SEMにより撮影した10μm×150μmの領域に占めるボイドの割合をボイド面積率として決定した。
[引張強度及び全伸び]
 引張強度TS及び全伸びt-Elは、鋼板の板幅方向に平行な方向(C方向)から採取したJIS5号試験片に基づいてJIS Z2241:2011に準拠した引張試験を行うことで測定した。
[曲げ加工性の評価]
 曲げ加工性は、VDA(ドイツ自動車工業会規格)238-100:2017-04に準拠した曲げ試験により曲げ角度α(°)を測定することにより評価した。
[疵発生の評価]
 疵の発生は、室温で鋼板の表面(鋼板の表面にめっき層が存在する場合には、めっき層と鋼板の界面)から5μmの深さ位置を、ビッカース硬さ試験機(荷重100g重)で10箇所圧下した際に、圧痕の周囲に長さ3μm以上の微小き裂が発生するか否かによって評価した。具体的には、微小き裂が発生しなかった場合を合格(OK)、微小き裂が発生した場合を不合格(NG)として評価した。
 引張強度が1250MPa以上、全伸びが10%以上、曲げ角度が70°以上、及び微小き裂が発生しなかった場合を、改善された曲げ加工性を有しかつ疵の発生についても抑制可能な高強度鋼板として評価した。その結果を表3に示す。表3において、表層軟質部が板厚中心部の両側に形成されている鋼板については、一方の側の表層軟質部及び内部酸化層に関する値のみを示している。しかしながら、これらの鋼板はその両側で同じ処理を行って製造されているため、表層軟質部及び内部酸化層に関する値は、鋼板の両側で実質的に同じであり、実際に幾つかの鋼板においてこれらの値が鋼板の両側で同じであることを確認した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3を参照すると、比較例22では、焼戻しマルテンサイト及び焼入れままマルテンサイトの合計面積率は比較的高かったが、C含有量が低かったために引張強度が低下した。比較例23では、C含有量が高かったために引張強度は向上したものの、曲げ加工性が低下した。比較例24では、Si含有量が高かったために曲げ加工性が低下した。比較例25では、Mn含有量が高かったために曲げ加工性が低下した。比較例26では、Al含有量が高かったために粗大なAl酸化物が生成したものと考えられ、その結果として曲げ加工性が低下した。比較例27では、Cr含有量が高かったために粗大なCr炭化物が生成したものと考えられ、その結果として曲げ加工性が低下した。比較例28では、Si、Mn、Al及びCrの合計含有量が低かったために、内部酸化層を十分に形成することができず、その結果として表面硬さが低下し、微小き裂の発生が観察された。比較例29では、巻取温度が高かったために熱間圧延工程の際に内部酸化層が形成されてしまった。このため、その後の冷間圧延の際に内部酸化物の周囲にボイドが形成されたと考えられ、その結果として最終製品の鋼板において表層近傍のボイド面積率を十分に低減できず、微小き裂の発生が観察された。比較例30では、2次冷却の停止温度が高かったために板厚中心部において所望量の焼戻しマルテンサイトが生成せず、結果として引張強度が低下した。比較例31では、1次冷却の平均冷却速度が速かったために、表層軟質部においてフェライトを十分に生成させることができず、その結果としてHs/Hcの値が高くなり、曲げ加工性が低下した。比較例32では、焼鈍工程における酸素分圧PO2の対数logPO2が低かったために、脱炭が促進されず、内部酸化層を十分に形成することができなかった。その結果として表面硬さが低下し、微小き裂の発生が観察された。
 これとは対照的に、実施例1~21では、所定の化学組成及び/又はミクロ組織を有する板厚中心部及び表層軟質部をそれらの平均ビッカース硬さがHs/Hc≦0.50を満足するよう制御し、さらに内部酸化層を鋼板表面から3μm以上の厚さとしつつ、表層近傍のボイド面積率を3.0%以下に制御することで、1250MPa以上の高強度を有するにもかかわらず曲げ加工性を改善することができ、さらには鋼板表面における疵の発生についても顕著に抑制することができた。
[例B]
 本例では、巻き取り後の熱履歴の制御が、得られる鋼板の特性に与える影響について調べた。具体的には、表3の実施例16を基準(巻き取り後の熱延コイルの最高温度567℃及び当該最高温度から500℃までの温度域における保持時間3.5時間)とし、比較例33及び34において巻き取り後の熱延コイルの最高温度及び当該最高温度から500℃までの温度域における保持時間を変化させた。比較例33及び34における他の製造条件は、実施例16と同じであった。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4を参照すると、巻き取り後の熱延コイルの最高温度が580℃以下であり、当該最高温度から500℃までの温度域における保持時間が4時間以下である実施例16では、既に表3でも示したように、最終製品の鋼板において表層近傍のボイド面積率が0.0%であって、それゆえ3.0%以下に十分に低減されていた。その結果として、実施例16では微小き裂の発生は観察されなかった。一方で、巻き取り後の熱延コイルの最高温度が580℃超の比較例33及び最高温度から500℃までの温度域における保持時間が4時間超の比較例34では、表層近傍のボイド面積率を3.0%以下に制御することができず、微小き裂の発生が観察された。この結果は、巻き取り後の熱延コイルの最高温度が高いか又は保持時間が長かったために熱間圧延工程の際に内部酸化層が形成されてしまい、その後の冷間圧延の際に内部酸化物の周囲にボイドが形成されたことに起因するものと考えられる。

Claims (4)

  1.  板厚中心部と、前記板厚中心部の片側又は両側に形成された表層軟質部とを含む高強度鋼板であって、
     前記板厚中心部が、質量%で、
     C:0.10~0.30%、
     Si:0.01~2.50%、
     Mn:0.10~10.00%、
     P:0.100%以下、
     S:0.0500%以下、
     Al:0~1.50%、
     N:0.0100%以下、
     O:0.0060%以下、
     Cr:0~2.00%、
     Mo:0~1.00%、
     B:0~0.0100%、
     Ti:0~0.30%、
     Nb:0~0.30%、
     V:0~0.50%、
     Cu:0~1.00%、
     Ni:0~1.00%、
     Ca:0~0.040%、
     Mg:0~0.040%、
     REM:0~0.040%、並びに
     残部:Fe及び不純物からなり、
     1.50≦[Si]+[Mn]+[Al]+[Cr]≦20.00を満たし、式中、[Si]、[Mn]、[Al]及び[Cr]は各元素の含有量(質量%)である化学組成を有し、
     面積率で、
     焼戻しマルテンサイト:85%以上を含むミクロ組織を有し、
     前記表層軟質部が、10μm超から板厚の5.0%以下の厚さを有し、
     面積率で、
     フェライト:80%以上を含むミクロ組織を有し、
     前記高強度鋼板の表面から3μm以上の厚さを有する内部酸化層を含み、
     前記板厚中心部の平均ビッカース硬さ(Hc)と前記表層軟質部の平均ビッカース硬さ(Hs)がHs/Hc≦0.50を満たし、
     前記高強度鋼板の表面から10μmの深さ位置までの領域におけるボイド面積率が3.0%以下である、高強度鋼板。
  2.  前記板厚中心部が、面積率で、
     焼戻しマルテンサイト:85%以上、
     フェライト、ベイナイト、パーライト、及び残留オーステナイトの少なくとも1種:合計で15%未満、並びに
     焼入れままマルテンサイト:5%未満からなるミクロ組織を有する、請求項1に記載の高強度鋼板。
  3.  前記表層軟質部が、面積率で、
     フェライト:80%以上、
     焼戻しマルテンサイト、ベイナイト、及び残留オーステナイトの少なくとも1種:合計で20%未満、
     パーライト:5%未満、並びに
     焼入れままマルテンサイト:5%未満からなるミクロ組織を有する、請求項1又は2に記載の高強度鋼板。
  4.  前記表層軟質部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、又は電気亜鉛めっき層をさらに含む、請求項1~3のいずれか1項に記載の高強度鋼板。
PCT/JP2022/027462 2021-08-02 2022-07-12 高強度鋼板 WO2023013372A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280051030.8A CN117677726A (zh) 2021-08-02 2022-07-12 高强度钢板
MX2024001087A MX2024001087A (es) 2021-08-02 2022-07-12 Lamina de acero de alta resistencia.
EP22852798.2A EP4382628A1 (en) 2021-08-02 2022-07-12 High-strength steel sheet
JP2023539733A JP7640906B2 (ja) 2021-08-02 2022-07-12 高強度鋼板
KR1020247003011A KR20240027747A (ko) 2021-08-02 2022-07-12 고강도 강판
US18/568,329 US20240287663A1 (en) 2021-08-02 2022-07-12 High strength steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126979 2021-08-02
JP2021126979 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013372A1 true WO2023013372A1 (ja) 2023-02-09

Family

ID=85155955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027462 WO2023013372A1 (ja) 2021-08-02 2022-07-12 高強度鋼板

Country Status (7)

Country Link
US (1) US20240287663A1 (ja)
EP (1) EP4382628A1 (ja)
JP (1) JP7640906B2 (ja)
KR (1) KR20240027747A (ja)
CN (1) CN117677726A (ja)
MX (1) MX2024001087A (ja)
WO (1) WO2023013372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176529A1 (ja) * 2023-02-22 2024-08-29 日本製鉄株式会社 鋼板及びその製造方法
JP7674697B1 (ja) * 2024-04-30 2025-05-12 日本製鉄株式会社 鋼板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105385A1 (ja) * 2010-02-26 2011-09-01 Jfeスチール株式会社 曲げ性に優れた超高強度冷延鋼板
JP2013163827A (ja) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2014227583A (ja) 2013-05-24 2014-12-08 新日鐵住金株式会社 曲げ加工性と耐摩耗性に優れた高強度熱延鋼板及びその製造方法
WO2016120914A1 (ja) * 2015-01-30 2016-08-04 Jfeスチール株式会社 高強度めっき鋼板およびその製造方法
WO2018151331A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 高強度鋼板
WO2020262651A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034334A (ja) 2013-07-12 2015-02-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
JP2015193907A (ja) 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法
WO2016111272A1 (ja) 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
WO2016111274A1 (ja) 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
JP6010144B2 (ja) 2015-01-09 2016-10-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
WO2016111273A1 (ja) 2015-01-09 2016-07-14 株式会社神戸製鋼所 高強度めっき鋼板、並びにその製造方法
WO2016111275A1 (ja) 2015-01-09 2016-07-14 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
US11472159B2 (en) 2019-03-28 2022-10-18 Nippon Steel Corporation High strength steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105385A1 (ja) * 2010-02-26 2011-09-01 Jfeスチール株式会社 曲げ性に優れた超高強度冷延鋼板
JP2013163827A (ja) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2014227583A (ja) 2013-05-24 2014-12-08 新日鐵住金株式会社 曲げ加工性と耐摩耗性に優れた高強度熱延鋼板及びその製造方法
WO2016120914A1 (ja) * 2015-01-30 2016-08-04 Jfeスチール株式会社 高強度めっき鋼板およびその製造方法
WO2018151331A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 高強度鋼板
WO2020262651A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176529A1 (ja) * 2023-02-22 2024-08-29 日本製鉄株式会社 鋼板及びその製造方法
WO2024176528A1 (ja) * 2023-02-22 2024-08-29 日本製鉄株式会社 鋼板及びその製造方法
WO2024176527A1 (ja) * 2023-02-22 2024-08-29 日本製鉄株式会社 鋼板及びその製造方法
JP7674697B1 (ja) * 2024-04-30 2025-05-12 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
US20240287663A1 (en) 2024-08-29
CN117677726A (zh) 2024-03-08
MX2024001087A (es) 2024-02-27
EP4382628A1 (en) 2024-06-12
JPWO2023013372A1 (ja) 2023-02-09
KR20240027747A (ko) 2024-03-04
JP7640906B2 (ja) 2025-03-06

Similar Documents

Publication Publication Date Title
JP7103509B2 (ja) 高強度鋼板
CN112074620B (zh) 镀锌钢板及其制造方法
KR102604112B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
CN112041475B (zh) 镀锌钢板及其制造方法
US11459647B2 (en) High-strength cold rolled steel sheet and method for manufacturing same
JP6314520B2 (ja) 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法
JP7160199B2 (ja) 鋼板
KR20200124293A (ko) 고강도 냉연 강판 및 그의 제조 방법
CN111344423B (zh) 高强度冷轧钢板
JP7120461B2 (ja) 鋼板
US11359256B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
CN104114731A (zh) 钢板、镀敷钢板和它们的制造方法
CN113195764A (zh) 热浸镀锌钢板及其制造方法
JP7640906B2 (ja) 高強度鋼板
CN109689910A (zh) 钢板
JP7674676B2 (ja) 鋼板及びその製造方法
WO2023153096A1 (ja) 冷延鋼板
WO2024128245A1 (ja) 鋼板および鋼板の製造方法
KR20230125022A (ko) 냉연 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539733

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18568329

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317085853

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280051030.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001087

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20247003011

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003011

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852798

Country of ref document: EP

Effective date: 20240304