[go: up one dir, main page]

WO2011105385A1 - 曲げ性に優れた超高強度冷延鋼板 - Google Patents

曲げ性に優れた超高強度冷延鋼板 Download PDF

Info

Publication number
WO2011105385A1
WO2011105385A1 PCT/JP2011/053882 JP2011053882W WO2011105385A1 WO 2011105385 A1 WO2011105385 A1 WO 2011105385A1 JP 2011053882 W JP2011053882 W JP 2011053882W WO 2011105385 A1 WO2011105385 A1 WO 2011105385A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
surface layer
soft
thickness
Prior art date
Application number
PCT/JP2011/053882
Other languages
English (en)
French (fr)
Inventor
河村健二
瀬戸一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP11747346.2A priority Critical patent/EP2540854B1/en
Priority to US13/580,421 priority patent/US8951367B2/en
Priority to CN201180011003.XA priority patent/CN102770568B/zh
Publication of WO2011105385A1 publication Critical patent/WO2011105385A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel plate suitable for a strength member of an automotive part that requires excellent bendability and delayed fracture resistance.
  • ultra-high-strength cold-rolled steel sheet As a structural part of an automobile, it is an important selection criterion to have good bendability and stretch flangeability. Furthermore, since ultra-high strength cold-rolled steel sheets having a tensile strength of 1270 MPa or more are concerned about delayed fracture, it is also necessary to have good delayed fracture resistance.
  • DP steel in which hard martensite is dispersed in soft ferrite ground and strength and workability are improved at the same time is known and widely used.
  • this DP steel has good ductility, it has a problem in bendability and cannot be applied to parts manufactured by severe bending. Further, due to the presence of soft ferrite, it is difficult to ensure a tensile strength exceeding 1270 MPa.
  • Patent Documents 1 to 4 disclose the following steel sheets and manufacturing methods.
  • Patent Document 1 for the purpose of improving bending workability and spot weldability, a hard central layer including a decarburized and annealed surface layer and a soft layer of 10 vol% on the surface layer and a residual austenite of 10 vol% or more on the inner layer.
  • a high-strength steel sheet having the following and a method for producing the same are disclosed.
  • martensite is formed at the time of molding, voids are generated at the interface between the soft ferrite and the hard phase, and crack generation and crack propagation occur easily. May adversely affect bendability.
  • Patent Document 2 a cold-rolled steel sheet having a soft layer of C: 0.1 wt% or less on the surface layer of 3 to 15% on both surfaces and the balance being a composite structure of less than 10% of retained austenite and a low-temperature transformation phase or ferrite And a manufacturing method is disclosed.
  • a soft layer of C: 0.1 wt% or less on the surface layer because the surface hardness of the steel sheet is extremely lowered and the fatigue characteristics are lowered. There is no mention of delayed fracture.
  • Patent Document 3 describes a cold-rolled steel sheet having a surface layer of 10 ⁇ m to 200 ⁇ m mainly composed of ferrite, and an inner layer mainly composed of bainite and martensite, and a manufacturing method thereof.
  • the surface layer portion of 10 ⁇ m to 200 ⁇ m is mainly composed of ferrite, which is not preferable because there is a problem that the fatigue characteristics are inferior.
  • Patent Document 4 describes a cold-rolled steel sheet and a manufacturing method excellent in stretch flangeability in which the metal structure is substantially a martensite single phase except for a surface layer within 10 ⁇ m. Although it is described that ferrite may be formed on the outermost layer with a thickness of 10 ⁇ m or less, it is not a technique of actively generating a surface soft layer, controlling the amount of generation and improving workability, and Insufficient bendability.
  • an ultra-high-strength cold-rolled steel sheet having both good bendability and high strength of 1270 MPa or more and excellent delayed fracture resistance has not been obtained.
  • the present invention was made to solve the above problems, and an object thereof is to provide an ultra-high-strength cold-rolled steel sheet having a thickness of 0.8 to 1.6 mm that is excellent in bendability and delayed fracture resistance. To do.
  • the present inventors have intensively studied from the aspects of steel composition and metal structure. As a result, by controlling the steel components to an appropriate range and optimizing the structure, it has excellent bendability and tensile strength of 1270 MPa or more, and at the same time, ultra-high strength of thin materials with excellent delayed fracture characteristics after molding It has been found that a cold-rolled steel sheet can be obtained.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the present invention it is possible to obtain a thin ultra-high strength cold-rolled steel sheet having an ultra-high strength with a tensile strength of 1270 MPa or more, and excellent in bendability and delayed fracture resistance. It can be applied as a difficult-to-form member such as an automobile structural member that has been difficult to apply. Furthermore, when the ultra-high-strength cold-rolled steel sheet of the present invention is used as an automobile structural member, it contributes to reducing the weight of the automobile, improving safety, and the like, which is extremely useful industrially.
  • the chemical component and the metal structure according to the present invention will be described in detail.
  • the% indication of the chemical component means all mass% (mass%) unless otherwise specified.
  • [Chemical composition] C 0.15-0.30%
  • C is indispensable for strengthening steel using the low temperature transformation phase.
  • the strength of the low temperature transformation phase tends to be proportional to the C content.
  • a soft part exists in the steel sheet surface layer, and C is required to be 0.15% or more in order to obtain a tensile strength of 1270 MPa or more.
  • C is set to be 0.15% or more and 0.30% or less.
  • it is 0.15% or more and 0.25% or less.
  • Si 0.01 to 1.8% Si is an element that improves ductility and contributes to strength improvement, and the effect is not exhibited at less than 0.01%. On the other hand, even if the content exceeds 1.8%, the effect is saturated. Moreover, when it contains excessively, the electrical resistance at the time of resistance welding increases, weldability is inhibited, and there is a tendency to deteriorate the chemical resistance and corrosion resistance after coating. Accordingly, Si is set to 0.01% or more and 1.8% or less. Preferably, it is 0.01% or more and 1.0% or less.
  • Mn 1.5 to 3.0% Mn contributes to refinement of crystal grains through the action of lowering the Ar 3 transformation point, and has the action of increasing the strength without greatly reducing the ductility and the hole expansion ratio ⁇ . Mn is also an important element that suppresses surface cracking caused by hot brittleness due to S. Further, Mn is an austenite stabilizing element, and Mn is required to be 1.5% or more in order to stably obtain a low-temperature transformation phase in the cooling process from austenite existing during heat annealing from the viewpoint of securing strength. is there.
  • Mn is made 1.5% to 3.0%.
  • P 0.05% or less
  • P is an element that contributes to strengthening of the steel sheet by forming a solid solution in the steel.
  • it is also an element that lowers the bond strength of grain boundaries by segregation to the grain boundaries and degrades workability, and also reduces chemical conversion treatment properties, corrosion resistance, etc. by concentration on the steel sheet surface.
  • P exceeds 0.05%, the above-described adverse effect appears remarkably. For this reason, P needs to be 0.05% or less.
  • P can be made 0.001% or more.
  • S 0.005% or less S is an element that adversely affects workability.
  • S increases, it exists as an inclusion of MnS, and in particular, the local ductility of the material is lowered and workability is lowered. Also, the presence of sulfides deteriorates the weld zone toughness. By setting S to 0.005% or less, such adverse effects can be avoided, and the press workability can be remarkably improved. For this reason, S is made into 0.005% or less.
  • S can be made 0.0001% or more.
  • Al 0.005 to 0.05%
  • Al is an element effective for improving the yield of deoxidation and carbide forming elements, and in order to fully exhibit this effect, 0.005% or more is required as Al. Moreover, it is also an essential element for improving the cleanliness of the steel sheet. From this point, 0.005% or more is necessary as Al. If Al is less than 0.005%, the removal of Si-based inclusions is incomplete, and there are many starting points of delayed fracture, so that delayed fracture is likely to occur. On the other hand, when Al is added in excess of 0.05%, not only the effect is saturated, but also workability is deteriorated, and problems such as an increased tendency of occurrence of surface defects occur. From the above, Al is made 0.005% or more and 0.05% or less.
  • N 0.005% or less
  • this invention steel can contain the following elements.
  • Ti, Nb, and V have the effect of suppressing delayed fracture by refining crystal grains and contributing to uniform structure. This effect is exhibited when the content of Ti and Nb is 0.001% or more, and V is 0.01% or more. However, if any of them is contained in a large amount, carbonitride is formed, which is not preferable. Therefore, Ti and Nb can be contained in a range of 0.001% or more and 0.10% or less, and V can be contained in a range of 0.01% or more and 0.50% or less.
  • B when B is added, it exhibits the effect of suppressing delayed fracture through grain boundary strengthening due to preferential segregation at the grain boundaries. In order to obtain this effect, B must be 0.0001% or more. On the other hand, even if the content exceeds 0.005%, the effect tends to be saturated. Therefore, B is preferably contained in the range of 0.0001 to 0.005%.
  • Cu, Ni, Mo, and Cr are elements that contribute to strength if added, and in order to obtain this effect, each is preferably made 0.01% or more.
  • the effect is saturated even if it contains more than 0.50% in each case, any of them may contain one or more from this group in the range of 0.01% or more and 0.50% or less. it can.
  • the high-tensile steel sheet according to the present invention has a substantially tempered martensite single-phase structure.
  • the substantial structure is because the remaining structure may include unavoidable untransformed retained austenite and ferrite structure.
  • the tissue can be identified appropriately by combining observation with an optical microscope (400 to 600 times) and observation with a scanning electron microscope (hereinafter abbreviated as “SEM”) at a magnification of 1000 times, but can also be confirmed by other methods.
  • SEM scanning electron microscope
  • the ratio of the metal structure was obtained by calculating the area ratio of the metal structure using an image processing apparatus and expressing this value as a volume ratio in%.
  • the structure in the center is tempered martensite
  • the structure in the center is substantially a tempered martensite single phase to ensure strength and formability.
  • ferrite should not be included.
  • the structure of the central portion does not need to be completely tempered martensite, and may contain ferrite and / or retained austenite as long as it is less than 3%. This is because the effect on the mechanical properties of the steel sheet is negligible within this range.
  • the microstructure of the central portion can be specified by observing a microstructure having a thickness of 1/2 part with an optical microscope and an SEM.
  • Hardness and thickness of steel sheet surface soft part The hardness of the steel sheet was measured with a Vickers tester with a load of 50 g (test force; 0.49 N) at intervals of 20 ⁇ m from the surface part to the center part of the sheet thickness cross section. ) Formula and the following formula (2) formula, the hardness and thickness of the steel plate surface soft layer can be determined.
  • the steel plate of the present invention has a softer region in the surface layer portion of the steel plate than in the central portion of the steel plate.
  • the soft region is confirmed by measuring the hardness from the steel sheet surface layer portion toward the center portion as described above.
  • the steel sheet surface soft layer in the present invention is a region defined by the following formula (1) among the soft regions.
  • the steel sheet surface layer soft part needs to satisfy the hardness ratio with respect to the center part defined by the following formula.
  • Hv (S) / Hv (C) exceeds 0.8, the difference from the hardness of the center is small, and there is no improvement effect on the bendability and delayed fracture resistance of the steel sheet.
  • / Hv (C) is 0.8 or less.
  • the fatigue characteristic of a steel plate is improved by setting it as this range.
  • the hardness Hv (C) of the central portion of the steel plate is the average of five points measured in the region of the half thickness portion.
  • the thickness of the steel sheet surface layer soft part defined by the above formula (1) needs to satisfy the following formula (2).
  • t (S) thickness of steel sheet surface layer soft part
  • t sheet thickness
  • the thickness t (S) of steel sheet surface layer soft part is measured from the steel sheet surface layer part to the sheet thickness center direction, and the steel sheet surface layer part
  • the thickness of the region having a hardness of 0.8 ⁇ Hv (C) or less is obtained, and the sum of the thicknesses of the layers existing on the front and back surfaces of the steel plate is represented.
  • the thickness t (S) of the steel sheet surface soft part is less than 0.10 of the sheet thickness t, no significant improvement effect of the bendability of the steel sheet is observed, and no improvement effect of the delayed fracture resistance is recognized. Therefore, it is set to 0.10 or more.
  • it exceeds 0.30 the strength of the steel sheet is remarkably lowered and it is extremely difficult to maintain a high strength exceeding 1270 MPa.
  • the structure of the steel sheet soft part defined by the conditions of both the above formulas (1) and (2) is 90% by volume ratio of the tempered martensite to the entire structure of the steel sheet soft layer. That's it. Formability such as the above-described bending workability can be ensured by making the steel plate surface soft part 90% or more of tempered martensite.
  • the soft surface portion of the steel plate in the region where the hardness was measured was observed with an optical microscope (400 to 600 times) and SEM over the entire region from the surface layer to the center of the plate thickness. Observation (1000 times) is performed, and further quantification is performed by image processing to obtain an average volume ratio of the region. In the range of less than 5 ⁇ m from the surface layer, some ferrite may be present, but the volume ratio is preferably less than 10%.
  • the surface layer portion has a structure mainly composed of ferrite, the fatigue characteristics are greatly deteriorated and the decrease in tensile strength is increased. Therefore, the smaller the ferrite structure, the better.
  • the plate thickness of the steel plate is 0.8 to 1.6 mm, it is difficult to maintain the strength of 1270 MPa or more when ferrite is generated in the region in the direction of the center of the plate thickness of 5 ⁇ m or more from the surface layer of the steel plate. Therefore, it is preferable that no ferrite exists in this region.
  • the soft layer of the surface layer is deformed in a balanced manner with the inner thickness layer while relaxing the stress generated in the surface layer of the steel sheet during bending, and has excellent bending workability, An ultra-high-strength steel sheet having excellent delayed fracture resistance can be obtained.
  • the details of why the delayed fracture resistance is excellent are not known, but the residual stress due to press working, especially the stress of the surface layer, has decreased, and the structure has a uniform structure mainly composed of tempered martensite at the center in the thickness direction. Therefore, it is estimated that the void that becomes the starting point of the crack is less likely to occur.
  • the hardness of the soft portion of the steel sheet surface layer is made softer than the hardness of the central part of the steel plate by decarburization annealing, so that the formula (1) can be satisfied.
  • steel having the same composition as that of the steel plate is used as a raw material, and hot rolling, decarburization annealing after pickling and cold rolling, or hot rolling, pickling, decarburization after cold rolling. Annealing. Subsequently, after heating and soaking at Ar 3 point or higher by continuous annealing, it is rapidly cooled to Ms point or lower.
  • decarburization annealing by hot rolling, pickling, cold rolling, and subsequent continuous annealing, heating and soaking to Ar 3 point or higher, and then rapidly cooling to Ms point or lower.
  • the amount of decarburization is not particularly specified.
  • the thickness of the steel sheet is 0.8 to 1.6 mm
  • the C amount at a position of 30 ⁇ m from the outermost layer is less than 0.10%
  • the soft surface layer is not preferred because it tends to be a structure mainly composed of ferrite, and the strength is greatly reduced.
  • the method of decarburization annealing is not particularly defined, but for example, the carbon concentration in the steel sheet can be lowered by annealing in an oxygen-containing atmosphere or a high dew point atmosphere.
  • the process of heating and soaking to 3 or more points of Ar by continuous annealing to the process of rapid cooling is particularly important in carrying out the present invention.
  • Water cooling is preferable in that the temperature unevenness is reduced and the cooling rate can be easily secured.
  • the rapid cooling method is not limited to water cooling, and gas jet cooling, mist cooling, roll cooling and the like can be used alone or in combination.
  • tempering is performed in the range of 150 to 400 ° C.
  • the tempering temperature exceeds 300 ° C.
  • the strength is greatly reduced, and in order to ensure 1270 MPa, it is necessary to add a large amount of alloy elements, so 150 to 300 ° C. is preferable.
  • Other known production methods can be used for producing the steel according to the present invention.
  • Table 2 is a result of mainly investigating the influence of the chemical composition of the steel sheet with the decarburization annealing conditions kept constant at 30 ° C. and 700 ° C. ⁇ 30 min.
  • Table 3 shows the decarburization conditions, soaking temperature, and tempering. This is a result of examining the mechanical characteristics (tensile characteristics, hole expansion ratio, bending characteristics) and delayed fracture resistance by changing the temperature appropriately and changing the soft part thickness ( ⁇ m) and the central structure.
  • the steel sheet surface layer soft part and the steel sheet center part are simply abbreviated as “soft part” and “center part”, respectively.
  • the center structure of the steel sheet is polished at the position of 1/2 the plate thickness, after nital etching, optical microscope observation (400 times) and SEM observation (1000 times) to confirm the presence or absence of ferrite structure, If present, the ferrite fraction (area fraction) was measured by image processing, and this was used as the volume fraction.
  • the thickness corresponding to the surface soft part is measured by the hardness distribution measurement in advance on the front and back layers to obtain the sum, then polishing, nital etching, optical microscope observation, SEM observation (1000 The structure of the soft surface layer was observed.
  • the hardness of the steel sheet was measured at an interval of 20 ⁇ m by a 5-point average by a Vickers test with a load of 50 g (test force; 0.49 N) to obtain a hardness distribution of the cross section in the thickness direction. Further, the hardness at the central portion of the plate thickness is an average value of five points in the region of 1/2 plate thickness. That is, from the hardness distribution of the cross section in the plate thickness direction obtained here, the thickness of the steel plate surface layer satisfying the hardness of 0.8 ⁇ Hv (C) or less is obtained as described above, and the thickness is obtained. Was observed.
  • the tensile test was performed using JIS No. 5 test specimens taken in the direction perpendicular to rolling as the longitudinal direction in accordance with JIS Z 2241.
  • the hole expansion test was conducted in accordance with Japan Iron and Steel Federation Standard JFS T 1001.
  • the bending test was performed by cutting a strip test piece perpendicular to the rolling direction, performing bending at 180 ° U by changing the bending radius, and evaluating the critical bending radius. In addition, if a critical bending radius is 5.0 mm or less, it can be said that it is excellent in bendability.
  • the delayed fracture test a test piece similar to the bending test was used, and a U-bend test piece with a bending radius R of 5 mm was immersed in hydrochloric acid of pH 3 and evaluated by a cracking time.
  • the maximum immersion time was 96 hr, and the presence or absence of cracking at this point was used as an indicator of delayed fracture resistance.
  • the test piece was produced with the bending radius R of the limit bending radius R value + 1 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

曲げ性および耐遅れ破壊特性に優れた薄物の超高強度冷延鋼板を提供する。C:0.15~0.30% 、Si:0.01~1.8%、Mn:1.5~3.0%、P:0.05%以下、S:0.005%以下 、Al:0.005~0.05%、N:0.005%以下を含有し、残部がFeおよび不可避不純物か らなり、以下の式を満たす鋼板表層軟質部を有し、 Hv(S)/Hv(C) ≦ 0.8 ・・・・・(1) Hv(S):鋼板表層軟質部の硬度、Hv(C):鋼板中心部の硬度 0.10 ≦ t(S)/t ≦ 0.30 ・・・・・(2) t(S):鋼板表層軟質部の厚さ、t:板厚 かつ前記鋼板表層軟質部は焼戻しマルテンサイトが体積率90%以上であり、前記鋼板中心部の組織は 焼戻しマルテンサイトであり、引張強度が1270MPa以上であることを特徴とする曲げ性に優れる 超高強度冷延鋼板。

Description

曲げ性に優れた超高強度冷延鋼板
 本発明は、優れた曲げ性および耐遅れ破壊特性が要求される自動車用部品の強度部材等に好適な鋼板に関するものである。
 近年、環境保全につながる燃費向上の観点から、自動車用鋼板の高強度化が強く求められている。自動車会社では、CO排出量規制強化に対応するため、引張強度で1270MPaを超える鋼板の適用検討も開始している。部品をより軽量化する観点からはさらなる鋼板の薄肉化が指向されており、板厚0.8~1.6mmの薄物に対する要望も強くなってきている。一般的に、引張強度1270MPa以上の超高強度冷延鋼板では、絞り成形や張出し成形といった軟鋼板で適用される成形手法は適用できず、成形手法としては曲げ成形および伸びフランジ成形が主体となる。したがって、自動車の構造部品として超高強度冷延鋼板を用いる場合、良好な曲げ性および伸びフランジ性を備えることが重要な選定基準となる。さらに、引張強度1270MPa以上の超高強度冷延鋼板では、遅れ破壊が懸念されることから、良好な耐遅れ破壊特性を具備する必要もある。
 加工性の良い超高強度冷延鋼板として、軟らかいフェライト地に硬質のマルテンサイトを分散させて強度と加工性とを同時に高めたDP鋼が知られており、広く用いられている。しかし、このDP鋼は、確かに延性は良好であるものの曲げ性に問題があり、厳しい曲げ加工を行われて製造される部品には適用できない。また軟質なフェライトの存在のため、1270MPaを超える引張強度の確保は困難である。
 ところで、鋼板の曲げ加工においては、曲げ外周表層部の円周方向に大きな引張応力が、また、曲げ内周表層部に大きな圧縮応力がかかるため、超高強度冷延鋼板の曲げ性には表層部の状態も大きく影響し、表層に軟質層を有することで、曲げ加工時に鋼板表面に生じる引張応力、圧縮応力を緩和し、曲げ性が改善されることが知られている。このような表層に軟質層を有する高強度鋼板に関しては、特許文献1~4に以下のような鋼板および製造方法が開示されている。
 まず、特許文献1では、曲げ加工性とスポット溶接性を改善することを目的とし、表層を脱炭焼鈍し、表層に10vol%の軟質層と内層に10vol%以上の残留オーステナイトを含む硬質中心層を有する高強度鋼板およびその製造方法が開示されている。しかしながら、中心層に残留オーステナイトを10vol%以上も含有させるため、成形時にマルテンサイトを形成し、軟質なフェライトと硬質相の界面でボイドを生成し、亀裂発生、亀裂の伝播が容易に起こるため、曲げ性に悪影響を及ぼす場合がある。
 特許文献2では、表層にC:0.1wt%以下の軟質層を両面に3~15%有し、残部を10%未満の残留オーステナイトと低温変態相あるいはフェライトとの複合組織とする冷延鋼板および製造方法が開示されている。しかしながら、表層にC:0.1wt%以下の軟質層を有することは、鋼板の表面硬度が極端に低下し疲労特性が低下するので好ましくない。また、遅れ破壊に関する記載も一切無い。
 特許文献3では、表層10μm~200μmの部分がフェライト主体からなり、内層部分が、ベイナイト、マルテンサイトを主体とする冷延鋼板およびその製造方法が記載されている。しかしながら、表層10μm~200μmの部分はフェライト主体であり、疲労特性が劣位となる問題があり好ましくない。
 特許文献4では、表層10μm以内を除き、金属組織が実質的にマルテンサイト単相とした伸びフランジ性に優れた冷延鋼板および製造方法が記載されている。厚さが10μm以内の最表層にフェライトが生成することがある、と記載されているが、表層軟質層を積極的に生成させ、生成量を制御し加工性を向上するという技術ではなく、しかも曲げ性が不充分である。
特開平2−175839号公報 特開平5−195149号公報 特開平10−130782号公報 特開2002−161336号公報
 以上のように、現状では、良好な曲げ性と1270MPa以上の高強度を両立し、かつ耐遅れ破壊特性に優れた超高強度冷延鋼板は得られていない。
本発明は、上記問題点を解決するためになされたもので、曲げ性および耐遅れ破壊特性に優れた板厚0.8~1.6mmの超高強度冷延鋼板を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく、鋼成分及び金属組織などの面から鋭意研究した。その結果、鋼成分を適正範囲に制御し、かつ組織を最適化することにより、優れた曲げ性と1270MPa以上の引張強度を有すると同時に、成形後の遅れ破壊特性に優れた薄物の超高強度冷延鋼板が得られることを見出した。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
(1)mass%で、C:0.15~0.30%、Si:0.01~1.8%、Mn:1.5~3.0%、P:0.05%以下、S:0.005%以下、Al:0.005~0.05%、N:0.005%以下を含有し、残部がFeおよび不可避不純物からなり、以下の(1)および(2)で規定する式を満たす鋼板表層軟質部を有し、
 Hv(S)/Hv(C) ≦ 0.8 ・・・・・(1)
 Hv(S):鋼板表層軟質部の硬度、Hv(C):鋼板中心部の硬度
 0.10 ≦ t(S)/t ≦ 0.30 ・・・・・(2)
 t(S):鋼板表層軟質部の厚さ、t:板厚
かつ前記鋼板表層軟質部は焼戻しマルテンサイトが体積率90%以上であり、前記鋼板中心部の組織は焼戻しマルテンサイトであり、
引張強度が1270MPa以上であることを特徴とする曲げ性に優れる超高強度冷延鋼板。
(2)さらに、mass%で、Ti:0.001~0.10%、Nb:0.001~0.10%、V:0.01~0.50%のうちから1種以上を含有することを特徴とする(1)に記載の曲げ性に優れる超高強度冷延鋼板。
(3)さらに、mass%で、B:0.0001~0.005%を含有することを特徴とする(1)または(2)に記載の曲げ性に優れる超高強度冷延鋼板。(4)さらに、mass%で、Cu:0.01~0.50%、Ni:0.01~0.50%、Mo:0.01~0.50%、Cr:0.01~0.50%のうちから1種以上を含有することを特徴とする(1)~(3)のいずれかに記載の曲げ性に優れる超高強度冷延鋼板。
 本発明によれば、引張強度1270MPa以上の超高強度を有し、しかも曲げ性と耐遅れ破壊特性にも優れた薄物の超高強度冷延鋼板を得ることができ、従来、高強度鋼板の適用が困難であった、例えば自動車構造部材等の難成形の部材として適用することが可能となる。さらに、自動車構造部材として本発明の超高強度冷延鋼板を用いた場合、自動車の軽量化、安全性向上などに寄与し、産業上極めて有益である。
 以下に、本発明の実施の形態について、詳細に説明する。
まず、本発明にかかる化学成分および金属組織に分けて具体的に説明する。また、以下、化学成分の%表示は特に言及しない限り、すべて質量%(mass%)を意味する。
 [化学成分]
 C:0.15~0.30%
Cは低温変態相を利用して鋼を強化するために必要不可欠である。一般に、低温変態相の強度はC量に比例する傾向にある。鋼板表層に軟質部が存在し、1270MPa以上の引張強度を得るにはCは0.15%以上必要である。しかし、Cを0.30%超えて含有すると、溶接部靭性が著しく劣化する。また、鋼板の強度が大きくなりすぎ、鋼板の延性など加工性も著しく低下する傾向にある。以上より、Cは0.15%以上0.30%以下とする。好ましくは、0.15%以上0.25%以下が望ましい。
 Si:0.01~1.8%
 Siは延性を改善するとともに強度向上に寄与する元素であり、その効果は0.01%未満では発揮されない。一方、1.8%を越えて含有してもその効果は飽和する。また過度に含有することにより抵抗溶接時の電気抵抗の増加を伴い溶接性を阻害し、また、化成処理、塗装後耐食性を劣化させる傾向がある。以上より、Siは0.01%以上1.8%以下とする。好ましくは、0.01%以上1.0%以下とする。
 Mn:1.5~3.0%
 Mnは、Ar変態点を低下させる作用を通じ、結晶粒の微細化に寄与し、延性や穴拡げ率λを大きく低下させることなく強度を高める作用を有する。また、Mnは、Sによる熱間脆性に起因する表面割れを抑制する重要な元素でもある。さらに、Mnはオ−ステナイト安定化元素であり、強度確保の点から加熱焼鈍時に存在するオ−ステナイトから冷却過程において安定的に低温変態相を得るには、Mnは1.5%以上必要である。一方、3.0%を越えて含有すると、Mnの偏析などに起因し組織は不均一化し、加工性や成形後の耐遅れ破壊特性が劣化する傾向にある。以上より、Mnは1.5%以上3.0%以下とする。
 P:0.05%以下
 Pは、鋼中に固溶して鋼板の強化に寄与する元素である。一方で、粒界への偏析により粒界の結合力を低下させ加工性を劣化させ、また鋼板表面への濃化により化成処理性、耐食性などを低下させる元素でもある。Pが0.05%を超えると、上記悪影響は顕著に現れる。このため、Pは0.05%以下にする必要がある。なお、Pの過度の低減は製造コストの増加を伴うため、この観点を考慮し、Pは0.001%以上とすることができる。
 S:0.005%以下
 Sは加工性に悪影響を及ぼす元素である。Sが増加するとMnSの介在物として存在し、特に材料の局部的な延性を低下させ、加工性を低下させる。また硫化物の存在により溶接部靭性も悪くなる。Sを0.005%以下とすることにより、このような悪影響を避けることができ、プレス加工性を顕著に改善することが可能となる。このため、Sを0.005%以下とする。なお、Sの過度の低減は製造コストの増加を伴うため、この観点を考慮して、Sは0.0001%以上とすることができる。
 Al:0.005~0.05%
 Alは、脱酸および炭化物形成元素の歩留りを向上させるために有効な元素であり、この効果を十分に発揮するためには、Alとして、0.005%以上が必要である。また、鋼板清浄度を向上させるために必須の元素でもあり、この点からもAlとして、0.005%以上必要である。Alが0.005%未満の場合、Si系介在物の除去が不完全となり、遅れ破壊の起点が多数存在することになり、遅れ破壊しやすくなる。一方、Alを0.05%を超えて添加した場合、効果が飽和するのみでなく、加工性が劣化し、表面欠陥の発生傾向の増大などの問題を生じる。以上より、Alは0.005%以上0.05%以下とする。
 N:0.005%以下
 Nの含有量が多い場合、窒化物を多数形成し、遅れ破壊の起点となり遅れ破壊しやすくなる。そのためにNは0.005%以下に制限する必要がある。なお、Nの過度の低減は製造コストの増加を伴うため、この観点を考慮して、Nは0.0001%以上とすることができる。
 また、本発明鋼では上記成分範囲に加えて、下記の元素を含有することができる。
Ti、Nb、Vは、添加すれば、結晶粒を微細化し組織の均一化に寄与することにより、遅れ破壊を抑制する効果がある。この効果が発揮されるのは、Ti、Nbでは0.001%以上であり、Vは0.01%以上である。しかし、いずれも多量に含有すると炭窒化物を形成するため好ましくない。したがって、Ti、Nbは0.001%以上0.10%以下の範囲で、Vは0.01%以上0.50%以下の範囲で一種以上を含有することができる。
 また、Bは添加すれば結晶粒界への優先偏析による粒界強化などを通じて遅れ破壊を抑制する効果を発現する。この効果を得る場合、Bは0.0001%以上が必要である。一方、0.005%を超えて多量に含有しても、その効果は飽和する傾向にある。よって、Bは0.0001~0.005%の範囲で含有することが好ましい。
 さらに、Cu、Ni、Mo、Crは、添加すれば、強度に寄与する元素であり、この効果を得るには、各々0.01%以上とすることが好ましい。一方、各々0.50%超えて多量に含有してもその効果は飽和するので、いずれも、0.01%以上0.50%以下の範囲であればこの群から一種以上を含有することができる。
 なお、本発明の鋼板において、上記の成分以外はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内であれば上記以外の成分の含有を拒むものではない。
[金属組織]
 本発明に係る高張力鋼板は、実質的に焼戻しマルテンサイト単相組織である。ここで、実質的にとしたのは、残部組織は不可避的に存在する未変態の残留オーステナイトおよびフェライト組織等を含む場合があるからである。組織の特定は光学顕微鏡観察(400倍~600倍)および走査型電子顕微鏡(以下「SEM」と略す)による1000倍の観察を組み合わせ適宜確認できるが、その他の方法によることもできる。以下、金属組織の割合は、画像処理装置を用いて金属組織の面積率を求めこの値を体積率として%表示した。
 ・中心部の組織は焼戻しマルテンサイト
 中心部の組織は、強度および成形性を確保するため、実質的に焼戻しマルテンサイト単相とする。微量のフェライトが生成した場合にはそこが応力集中の起点となり耐遅れ破壊特性が急激に低下するため、フェライトは含んではならない。ただし、中心部の組織は完全に焼戻しマルテンサイトである必要は無く、3%未満であればフェライトおよび/または残留オーステナイトを含んでもよい。この範囲内であれば、鋼板の機械的性質に及ぼす影響は無視できるからである。ここで、中心部の組織は板厚1/2部のミクロ組織を光学顕微鏡およびSEMにて観察して特定することができる。
 ・鋼板表層軟質部の硬度と厚さ
 鋼板の硬度を板厚断面を表面部分から中心部に渡って20μm間隔で荷重50g(試験力;0.49N)のビッカース試験機により測定し、下記(1)式および下記(2)式の条件を具備する鋼板表層軟質部の硬度および厚さを求めることができる。
 本発明の鋼板は、鋼板表層部に鋼板中心部よりも軟質な領域を有する。該軟質な領域は、上記のようにして鋼板表層部から中心部に向けて硬度測定を行うことにより確認される。本発明における鋼板表層軟質部は、上記軟質な領域のうち、下記(1)式により定義される領域である。
 すなわち、本発明において、鋼板表層軟質部は、以下の式で規定する中心部に対する硬度比を満足する必要がある。
 Hv(S)/Hv(C) ≦ 0.8・・・・(1)
 Hv(S):鋼板表層軟質部の硬度、Hv(C):鋼板中心部の硬度
すなわち、鋼板表層軟質部は0.8×Hv(C)以下の硬度を有する領域である。Hv(S)/Hv(C)が0.8を超える場合には中心部の硬度との差が小さく、鋼板の曲げ性および耐遅れ破壊特性に対し向上効果を有しないため、Hv(S)/Hv(C)は0.8以下とする。また、この範囲とすることで、鋼板の疲労特性が改善される。
なお、ここで鋼板中心部の硬度Hv(C)は板厚1/2部の領域の5点測定の平均を用いる。
 また、上記(1)式により規定される鋼板表層軟質部の厚さは下記(2)式を満足する必要がある。
 0.10 ≦ t(S)/t ≦ 0.30・・・・・・・・(2)
 t(S):鋼板表層軟質部の厚さ、t:板厚
 ここで、鋼板表層軟質部の厚さt(S)は、鋼板表層部から板厚中心方向にかけて硬度を測定し、鋼板表層部における0.8×Hv(C)以下の硬度を有する領域の厚さを求め、鋼板の表裏面に存在する当該層の厚さの和を表したものである。鋼板表層軟質部の厚さt(S)が板厚tの0.10未満の場合には、鋼板の曲げ性の著しい向上効果は認められず、また耐遅れ破壊特性の向上効果も認められないことから、0.10以上とする。また、0.30を超える場合には、鋼板強度が著しく低下し1270MPaを越える高強度を維持することが極めて困難となるため、0.30以下とする。
・鋼板表層軟質部の組織
 上記(1)式および(2)式の両方の条件で規定される鋼板表層軟質部の組織は、焼戻しマルテンサイトが鋼板表層軟質部の組織全体に対する体積率で90%以上である。鋼板表層軟質部を焼戻しマルテンサイト90%以上にすることにより上述した曲げ加工性等の成形性を確保することができる。
 この領域の焼戻しマルテンサイトの体積率を求めるには、硬度を測定した近傍の領域の鋼板表層軟質部を表層から板厚中心部に渡って全域に光学顕微鏡観察(400倍~600倍)およびSEM観察(1000倍)を行い、さらに画像処理により定量化を行ないその領域の平均の体積率を求めることにより行う。表層から5μm未満の範囲においては一部フェライトが存在してもよいが、その体積率は10%未満が好ましい。表層部においてフェライトが主体の組織となる場合、疲労特性が大幅に劣化し、引張強度の低下も大きくなるため、フェライト組織は少ないほど好ましい。例えば鋼板の板厚が0.8~1.6mmの場合には、鋼板の表層から5μm以上板厚中心部方向の領域においてフェライトが生成した場合、1270MPa以上の強度を維持することが困難となるため、この領域ではフェライトは存在しないことが好ましい。
 以上のように成分、組織を限定することにより、曲げ加工時に表層軟質部が鋼板表層に生じる応力を緩和しつつ板厚内部層とバランスよく変形し、すぐれた曲げ加工性を有し、しかも、耐遅れ破壊特性にも優れた超高強度鋼板とすることができる。耐遅れ破壊特性に優れる理由について詳細はわかっていないが、プレス加工による残留応力、特に表層部の応力が低下したこと、板厚方向中心部において組織が焼戻しマルテンサイトを主体にした均一組織としたことで、亀裂の起点となるボイドが発生し難くなったためと推定している。
 本発明鋼を製造するには、例えば脱炭焼鈍により鋼板表層軟質部の硬度を鋼板中心部の硬度に比して軟質とし、前記(1)式を満足するようにできる。具体的にはまず、上記鋼板の組成と同様の組成を有する鋼を素材とし、熱間圧延、酸洗後に脱炭焼鈍し冷間圧延、あるいは熱間圧延、酸洗、冷間圧延後脱炭焼鈍する。次いで、続く連続焼鈍でAr点以上に加熱・均熱した後、Ms点以下まで急速冷却する。もしくは、熱間圧延、酸洗、冷間圧延、続く連続焼鈍で脱炭焼鈍した後、Ar点以上に加熱・均熱した後、Ms点以下まで急速冷却する。脱炭量は特に規定するものではないが、例えば鋼板の板厚が0.8~1.6mmの場合には、最表層からの距離30μmの位置におけるC量が0.10%未満の場合、表層軟質部はフェライト主体の組織となりやすく強度が大幅に低下するため好ましくない。
 脱炭焼鈍の方法は特に規定するものではないが、例えば、酸素含有雰囲気や高露点雰囲気中で焼鈍することにより鋼板中の炭素濃度を下げることができる。製造工程のうち、連続焼鈍でAr点以上に加熱・均熱した工程から急速冷却する工程までは、本発明を実施する上で特に重要であり、急速冷却の方法としては、板幅方向での温度ムラを少なくし、容易に冷却速度を確保できる点で水冷が好ましい。しかし、急冷方法は、水冷に限定されるわけではなく、ガスジェット冷却、ミスト冷却、ロール冷却などを単独または併用して用いることもできる。
 その後、150~400℃の範囲で焼戻し処理を行う。なお、焼戻し温度は300℃を超える場合強度が大きく低下し、1270MPa確保するためには合金元素を多量に添加する必要があるため、150~300℃が好ましい。本発明に係る鋼を製造する方法にはその他公知の製造方法を用いることができる。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す成分の鋼を溶製し連続鋳造でスラブとした。そして、加熱炉中で1200℃まで加熱し、850℃以上の仕上げ温度で、熱間圧延を行い、500~650℃の温度範囲で巻取り、次いで、酸洗、冷間圧延を行った後、脱炭焼鈍し、連続焼鈍を行い、超高強度冷延鋼板となした。また、鋼板表層軟質部の脱炭焼鈍条件は高露点雰囲気下にて700−800℃×15~60分の熱処理を実施した。なお、連続焼鈍では表2に示す条件にて、均熱、冷却、焼戻しを行った。また、得られた鋼板の成分を分析したが表1と同じであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2は脱炭焼鈍条件を露点30℃、700℃×30minと一定にして、鋼板化学成分の影響を主として調査したものであり、また、表3は、脱炭条件、均熱温度、焼き戻し温度、を適宜変化させ軟質部厚さ(μm)、中心部組織を変化させ、機械的特性(引張特性、穴広げ率、曲げ特性)および耐遅れ破壊特性を調査した結果である。各表において鋼板表層軟質部および鋼板中心部をそれぞれ単に「軟質部」および「中心部」と略している。
 鋼板中心部組織は、板厚1/2位置にて、研磨、ナイタールエッチング後、光学顕微鏡観察(400倍)およびSEM観察(1000倍)を行い、フェライト組織の有無を確認し、フェライト組織が存在した場合には画像処理によりフェライト分率(面積分率)を測定しこれを体積分率とした。表層軟質部の組織観察するにあたっては事前に硬度分布測定により、表層軟質部に該当する厚みを表裏層で測定し和を求め、その後、研磨、ナイタールエッチングし、光学顕微鏡観察、SEM観察(1000倍)にて、表層軟質部の組織観察を実施した。なお、鋼板の硬度は荷重50g(試験力;0.49N)のビッカース試験により5点平均により20μm間隔で測定し、板厚方向の断面の硬度分布を得た。また、板厚中心部の硬度は板厚1/2部の領域の5点平均の値である。すなわち、ここで得た板厚方向の断面の硬度分布から前記したように硬度が0.8×Hv(C)以下を満足する鋼板表層の領域を鋼板軟質部としてその厚さを求め、その領域の観察を行った。
 引張試験は、JIS Z 2241に準拠して、圧延直角方向を長手方向として採取したJIS 5号試験片を用いて行った。穴拡げ試験は、日本鉄鋼連盟規格JFS T 1001に準拠して実施した。曲げ試験はJIS Z 2248に基づき、圧延方向と垂直に、短冊試験片を切り出し、曲げ半径を変えて180°U曲げを行い、臨界曲げ半径で評価した。なお、臨界曲げ半径が、5.0mm以下であれば曲げ性に優れると言える。
 遅れ破壊試験は、曲げ試験と同様の試験片を用い、曲げ半径Rを5mmとしてU曲げした試験片をpH3の塩酸に浸漬し割れ時間により評価した。最大浸漬時間は96hrとし、この時点で割れ発生有無を耐遅れ破壊性の指標とした。なお、限界曲げ半径Rが5mm以上の材料については、限界曲げ半径R値+1mmの曲げ半径Rにて試験片を作製した。ここで、浸漬時間が96hrで割れの発生が認められない場合(>96hrの場合)耐遅れ破壊性に優れていると言える。
 以上の結果を上述したように表2~表3に併記する。表2~表3から明らかなように、比較例と本発明例を比較すると、本発明例は1270MPa以上の引張強度を有し、曲げ性及び耐遅れ破壊特性に優れていることが分かる。

Claims (4)

  1.  mass%で、C:0.15~0.30%、Si:0.01~1.8%、Mn:1.5~3.0%、P:0.05%以下、S:0.005%以下、Al:0.005~0.05%、N:0.005%以下を含有し、残部がFeおよび不可避不純物からなり、以下の(1)および(2)で規定する式を満たす鋼板表層軟質部を有し、
     Hv(S)/Hv(C) ≦ 0.8 ・・・・・(1)
     Hv(S):鋼板表層軟質部の硬度、Hv(C):鋼板中心部の硬度
     0.10 ≦ t(S)/t ≦ 0.30 ・・・・・(2)
     t(S):鋼板表層軟質部の厚さ、t:板厚
    かつ前記鋼板表層軟質部は焼戻しマルテンサイトが体積率90%以上であり、前記鋼板中心部の組織は焼戻しマルテンサイトであり、
    引張強度が1270MPa以上であることを特徴とする曲げ性に優れる超高強度冷延鋼板。
  2.  さらに、mass%で、Ti:0.001~0.10%、Nb:0.001~0.10%、V:0.01~0.50%のうちから1種以上を含有することを特徴とする請求項1に記載の曲げ性に優れる超高強度冷延鋼板。
  3.  さらに、mass%で、B:0.0001~0.005%を含有することを特徴とする請求項1または2に記載の曲げ性に優れる超高強度冷延鋼板。
  4.  さらに、mass%で、Cu:0.01~0.50%、Ni:0.01~0.50%、Mo:0.01~0.50%、Cr:0.01~0.50%のうちから1種以上を含有することを特徴とする請求項1~3のいずれかに記載の曲げ性に優れる超高強度冷延鋼板。
PCT/JP2011/053882 2010-02-26 2011-02-16 曲げ性に優れた超高強度冷延鋼板 WO2011105385A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11747346.2A EP2540854B1 (en) 2010-02-26 2011-02-16 Super-high strength cold-rolled steel sheet having excellent bending properties
US13/580,421 US8951367B2 (en) 2010-02-26 2011-02-16 Ultra high strength cold rolled steel sheet having excellent bendability
CN201180011003.XA CN102770568B (zh) 2010-02-26 2011-02-16 弯曲性优良的超高强度冷轧钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010041715A JP4977879B2 (ja) 2010-02-26 2010-02-26 曲げ性に優れた超高強度冷延鋼板
JP2010-041715 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105385A1 true WO2011105385A1 (ja) 2011-09-01

Family

ID=44506791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053882 WO2011105385A1 (ja) 2010-02-26 2011-02-16 曲げ性に優れた超高強度冷延鋼板

Country Status (7)

Country Link
US (1) US8951367B2 (ja)
EP (1) EP2540854B1 (ja)
JP (1) JP4977879B2 (ja)
KR (1) KR20120101596A (ja)
CN (1) CN102770568B (ja)
TW (1) TWI406956B (ja)
WO (1) WO2011105385A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011978A1 (ja) 2016-07-15 2018-01-18 新日鐵住金株式会社 溶融亜鉛めっき鋼板
WO2020136988A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2020136989A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR20210108461A (ko) 2019-02-06 2021-09-02 닛폰세이테츠 가부시키가이샤 용융 아연 도금 강판 및 그 제조 방법
WO2023013372A1 (ja) * 2021-08-02 2023-02-09 日本製鉄株式会社 高強度鋼板
US11685963B2 (en) 2018-05-01 2023-06-27 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
US11859259B2 (en) 2018-05-01 2024-01-02 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468534B (zh) 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
JP6017341B2 (ja) 2013-02-19 2016-10-26 株式会社神戸製鋼所 曲げ性に優れた高強度冷延鋼板
KR101730432B1 (ko) 2013-03-29 2017-04-26 제이에프이 스틸 가부시키가이샤 강재 및 수소용 용기 그리고 그들의 제조 방법
CN103215505B (zh) * 2013-04-18 2015-08-26 首钢总公司 超高强热连轧带钢及其生产方法
US10196705B2 (en) * 2013-12-11 2019-02-05 Arcelormittal Martensitic steel with delayed fracture resistance and manufacturing method
KR101568511B1 (ko) * 2013-12-23 2015-11-11 주식회사 포스코 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
JP6306481B2 (ja) 2014-03-17 2018-04-04 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
US20170145528A1 (en) * 2014-06-17 2017-05-25 Gary M. Cola, JR. High Strength Iron-Based Alloys, Processes for Making Same, and Articles Resulting Therefrom
WO2016013145A1 (ja) * 2014-07-25 2016-01-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101725274B1 (ko) * 2015-10-16 2017-04-10 삼화스틸(주) 고강도 강판 및 그 제조방법
WO2017168957A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
AU2017263399B2 (en) 2016-05-10 2022-03-24 United States Steel Corporation High strength steel products and annealing processes for making the same
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
KR101967959B1 (ko) * 2016-12-19 2019-04-10 주식회사 포스코 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
KR101886171B1 (ko) * 2017-01-31 2018-08-08 삼화스틸(주) 고항복비를 갖는 고강도 강판의 제조방법
CA3053661A1 (en) * 2017-02-20 2018-08-23 Nippon Steel Corporation Hot stamped body
EP3584347B1 (en) * 2017-02-20 2023-12-06 Nippon Steel Corporation Steel sheet
EP3584340B1 (en) * 2017-02-20 2024-01-10 Nippon Steel Corporation Steel sheet
JP6443592B1 (ja) * 2017-02-20 2018-12-26 新日鐵住金株式会社 高強度鋼板
WO2018151331A1 (ja) * 2017-02-20 2018-08-23 新日鐵住金株式会社 高強度鋼板
MX2019009881A (es) * 2017-02-20 2019-10-22 Nippon Steel Corp Lamina de acero.
US20200001342A1 (en) * 2017-02-20 2020-01-02 Nippon Steel Corporation Hot stamped body
EP3604594A4 (en) 2017-03-30 2020-02-05 JFE Steel Corporation HOT PRESSED ELEMENT AND METHOD FOR MANUFACTURING SUCH A HOT PRESSED ELEMENT
CN110199045B (zh) * 2017-04-28 2021-12-24 日本制铁株式会社 高强度钢板及其制造方法
KR102020435B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
KR101999019B1 (ko) * 2017-12-24 2019-07-10 주식회사 포스코 초고강도 냉연강판 및 그 제조방법
MX2021001956A (es) * 2018-08-22 2021-04-28 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la fabricacion de la misma.
EP3825433B1 (en) 2018-08-22 2023-02-15 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
WO2020039697A1 (ja) 2018-08-22 2020-02-27 Jfeスチール株式会社 高強度鋼板及びその製造方法
PL3856936T3 (pl) 2018-09-26 2023-01-02 Thyssenkrupp Steel Europe Ag Sposób wytwarzania powlekanego płaskiego wyrobu stalowego i powlekany płaski wyrób stalowy
JP6737423B1 (ja) 2018-10-12 2020-08-12 日本製鉄株式会社 骨格部材
JP7196997B2 (ja) 2019-03-29 2022-12-27 日本製鉄株式会社 鋼板
WO2020241500A1 (ja) * 2019-05-24 2020-12-03 日本製鉄株式会社 スポット溶接継手、及びスポット溶接継手の製造方法
WO2020262651A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
JP7356030B2 (ja) * 2020-02-12 2023-10-04 日本製鉄株式会社 自動車構造体の評価性能予測方法、評価性能予測プログラム、及び設計方法
MX2022011344A (es) * 2020-03-16 2022-10-10 Nippon Steel Corp Lamina de acero.
EP4194571A4 (en) * 2020-08-07 2023-11-08 Nippon Steel Corporation GALVANISED STEEL
CN116323992B (zh) * 2020-09-28 2025-02-11 日本制铁株式会社 曲轴
KR20240068702A (ko) 2021-10-21 2024-05-17 닛폰세이테츠 가부시키가이샤 강판
JP7705069B2 (ja) 2021-10-21 2025-07-09 日本製鉄株式会社 鋼板
WO2024029145A1 (ja) 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板
KR20240098202A (ko) * 2022-12-20 2024-06-28 주식회사 포스코 냉연강판 및 그 제조방법
KR20250093731A (ko) * 2023-12-15 2025-06-25 주식회사 포스코 냉연강판 및 그 제조방법
KR20250094793A (ko) * 2023-12-18 2025-06-26 주식회사 포스코 냉연강판 및 그 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175839A (ja) 1988-12-28 1990-07-09 Kawasaki Steel Corp 溶接性、加工性に優れた高強度冷延鋼板およびその製造方法
JPH05195149A (ja) 1992-01-21 1993-08-03 Nkk Corp 曲げ加工性及び衝撃特性の優れた超高強度冷延鋼板
JPH10130782A (ja) 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法
JP2001279378A (ja) * 2000-03-31 2001-10-10 Kobe Steel Ltd 加工性に優れる高強度熱延鋼板
JP2002161336A (ja) 2000-09-12 2002-06-04 Nkk Corp 超高張力冷延鋼板およびその製造方法
JP2005256044A (ja) * 2004-03-10 2005-09-22 Jfe Steel Kk 加工性および塗装後耐食性に優れる高強度冷延鋼板およびその製造方法
JP2006070328A (ja) * 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd 高強度薄鋼板およびその製造方法
JP2006274335A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 超高強度熱延鋼板の製造方法
JP2009030091A (ja) * 2007-07-25 2009-02-12 Jfe Steel Kk 製造安定性に優れた高強度冷延鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108695A (en) * 1973-09-11 1978-08-22 Stahlwerke Peine-Salzgitter A.G. Steel wire
US4180418A (en) * 1973-09-11 1979-12-25 Stahlwerke Peine-Salzgitter A.G. Method of making a steel wire adapted for cold drawing
JP4435953B2 (ja) * 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4119676B2 (ja) * 2002-05-01 2008-07-16 株式会社神戸製鋼所 曲げ加工性に優れた低降伏比型高張力鋼板およびその製造方法
JP4586449B2 (ja) * 2004-02-27 2010-11-24 Jfeスチール株式会社 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP4639996B2 (ja) * 2004-07-06 2011-02-23 住友金属工業株式会社 高張力冷延鋼板の製造方法
US8460800B2 (en) * 2009-03-31 2013-06-11 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in bending workability

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175839A (ja) 1988-12-28 1990-07-09 Kawasaki Steel Corp 溶接性、加工性に優れた高強度冷延鋼板およびその製造方法
JPH05195149A (ja) 1992-01-21 1993-08-03 Nkk Corp 曲げ加工性及び衝撃特性の優れた超高強度冷延鋼板
JPH10130782A (ja) 1996-11-01 1998-05-19 Nippon Steel Corp 超高強度冷延鋼板およびその製造方法
JP2001279378A (ja) * 2000-03-31 2001-10-10 Kobe Steel Ltd 加工性に優れる高強度熱延鋼板
JP2002161336A (ja) 2000-09-12 2002-06-04 Nkk Corp 超高張力冷延鋼板およびその製造方法
JP2005256044A (ja) * 2004-03-10 2005-09-22 Jfe Steel Kk 加工性および塗装後耐食性に優れる高強度冷延鋼板およびその製造方法
JP2006070328A (ja) * 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd 高強度薄鋼板およびその製造方法
JP2006274335A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 超高強度熱延鋼板の製造方法
JP2009030091A (ja) * 2007-07-25 2009-02-12 Jfe Steel Kk 製造安定性に優れた高強度冷延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2540854A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718044B2 (en) 2016-07-15 2020-07-21 Nippon Steel Corporation Hot-dip galvanized steel sheet
KR20180126564A (ko) 2016-07-15 2018-11-27 신닛테츠스미킨 카부시키카이샤 용융 아연 도금 강판
WO2018011978A1 (ja) 2016-07-15 2018-01-18 新日鐵住金株式会社 溶融亜鉛めっき鋼板
US11859259B2 (en) 2018-05-01 2024-01-02 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
US11685963B2 (en) 2018-05-01 2023-06-27 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
WO2020136989A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6760524B1 (ja) * 2018-12-26 2020-09-23 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6760523B1 (ja) * 2018-12-26 2020-09-23 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
US11390932B2 (en) 2018-12-26 2022-07-19 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
WO2020136988A1 (ja) * 2018-12-26 2020-07-02 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
US12157923B2 (en) 2018-12-26 2024-12-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
KR20210108461A (ko) 2019-02-06 2021-09-02 닛폰세이테츠 가부시키가이샤 용융 아연 도금 강판 및 그 제조 방법
US11905570B2 (en) 2019-02-06 2024-02-20 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
WO2023013372A1 (ja) * 2021-08-02 2023-02-09 日本製鉄株式会社 高強度鋼板
JPWO2023013372A1 (ja) * 2021-08-02 2023-02-09
JP7640906B2 (ja) 2021-08-02 2025-03-06 日本製鉄株式会社 高強度鋼板

Also Published As

Publication number Publication date
TWI406956B (zh) 2013-09-01
US8951367B2 (en) 2015-02-10
US20130048151A1 (en) 2013-02-28
CN102770568B (zh) 2014-03-26
JP4977879B2 (ja) 2012-07-18
TW201207125A (en) 2012-02-16
KR20120101596A (ko) 2012-09-13
JP2011179030A (ja) 2011-09-15
CN102770568A (zh) 2012-11-07
EP2540854A1 (en) 2013-01-02
EP2540854A4 (en) 2015-07-29
EP2540854B1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP4977879B2 (ja) 曲げ性に優れた超高強度冷延鋼板
US8840834B2 (en) High-strength steel sheet and method for manufacturing the same
EP2246456B1 (en) High-strength steel sheet and process for production thereof
KR101485236B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP4947176B2 (ja) 超高強度冷延鋼板の製造方法
KR101485237B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조 방법
JP5126844B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
US20220025479A1 (en) Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
MX2011002559A (es) Placa de acero de alta resistencia y metodo de fabricacion de la misma.
WO2013051238A1 (ja) 高強度鋼板およびその製造方法
KR102507715B1 (ko) 고강도 강판 및 그의 제조 방법
JP4586449B2 (ja) 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
WO2020039696A1 (ja) 高強度鋼板及びその製造方法
CN112585290B (zh) 高强度钢板及其制造方法
KR101975136B1 (ko) 고강도 냉연 강판 및 그 제조 방법
EP2740813A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP4525383B2 (ja) 焼付硬化特性に優れる低降伏比高強度鋼板およびその製造方法
JP2005171319A (ja) 延性および伸びフランジ性に優れる高強度冷延鋼板の製造方法
JP5042486B2 (ja) 深絞り用高強度鋼板及び溶融めっき冷延鋼板
JP5092908B2 (ja) 耐二次加工脆性に優れた高強度薄鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011003.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2032/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127022059

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011747346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011747346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13580421

Country of ref document: US