[go: up one dir, main page]

WO2022270991A1 - 신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법 - Google Patents

신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법 Download PDF

Info

Publication number
WO2022270991A1
WO2022270991A1 PCT/KR2022/009082 KR2022009082W WO2022270991A1 WO 2022270991 A1 WO2022270991 A1 WO 2022270991A1 KR 2022009082 W KR2022009082 W KR 2022009082W WO 2022270991 A1 WO2022270991 A1 WO 2022270991A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
converting
poly
hydroxybutyrate
dehydrogenase
Prior art date
Application number
PCT/KR2022/009082
Other languages
English (en)
French (fr)
Inventor
김서형
이경창
임재형
하효석
장동은
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN202280057841.9A priority Critical patent/CN117916385A/zh
Priority to EP22828838.7A priority patent/EP4349994A4/en
Priority to US18/573,610 priority patent/US20240318208A1/en
Priority to JP2023579221A priority patent/JP2024522860A/ja
Publication of WO2022270991A1 publication Critical patent/WO2022270991A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010614-Hydroxybutyrate dehydrogenase (1.1.1.61)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01024Succinate-semialdehyde dehydrogenase (NAD+) (1.2.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • This application relates to a novel method for producing poly-4-hydroxybutyrate and/or 1,4-butanediol and microorganisms using the poly-4-hydroxybutyrate production pathway.
  • the problem to be solved by the present application is to provide a novel method for producing poly-4-hydroxybutyrate and 1,4-butanediol and a microorganism for producing poly-4-hydroxybutyrate and/or 1,4-butanediol. is to do
  • One object of the present application is to provide a method for producing 1,4-butanediol.
  • One object of the present application is to provide a microorganism for producing poly-4-hydroxybutyrate and/or 1,4-butanediol.
  • One object of the present application is to provide a method for producing poly-4-hydroxybutyrate.
  • 1 is a diagram showing a production pathway of poly-4-hydroxybutyrate and 1,4-butanediol using an oxidative TCA pathway.
  • FIG. 2 is a diagram showing a poly-4-hydroxybutyrate and 1,4-butanediol production pathway using a reduced TCA pathway.
  • 3 is a diagram showing a production pathway of poly-4-hydroxybutyrate and 1,4-butanediol using a glyoxylate pathway.
  • 4 to 6 are views showing a method for enhancing the phosphoenolpyruvate-oxalate pathway in the production pathway of poly-4-hydroxybutyrate and 1,4-butanediol using the reduced TCA pathway.
  • Figure 7 is a diagram showing the poly-4-hydroxybutyrate production results using the reduced TCA pathway.
  • Figure 8 is a diagram showing the poly-4-hydroxybutyrate production results using the glyoxylate pathway.
  • One aspect of the present application provides a method for producing 1,4-butanediol comprising the following (1) to (5):
  • the above (1) to (4) are succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA, respectively.
  • succinate semialdehyde dehydrogenase Selected from the group consisting of succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA transferase, and poly(3-hydroxyalkanoate) polymerase Any one or more of them may be enriched by a foreign polypeptide, a polynucleotide encoding the same, or a microorganism containing a vector containing the same, but is not limited thereto.
  • the production method of the present application may have increased poly-4-hydroxybutyrate productivity.
  • the present application activates the reduced TCA pathway using oxaloacetate by introducing a gene in the poly-4-hydroxybutyrate production step; high productivity fermentation process; And / or the poly-4-hydroxybutyrate production ability may be increased by recycling carbon dioxide generated in fermentation through a reduced TCA pathway.
  • the productivity of 1,4-butanediol may be further increased according to the increase in productivity of poly-4-hydroxybutyrate.
  • the 1,4-butanediol production method of the present application is any one or more pathways selected from the group consisting of a TCA cycle, a reductive TCA cycle, and a glyoxylate cycle. can include more. This pathway may be conversion to succinyl-coA.
  • the method for producing 1,4-butanediol of the present application may include a TCA pathway. At this time, pyruvate produced through the glycolysis pathway of one molecule of glucose can be converted into succinyl-coA through the TCA pathway.
  • the TCA pathway includes (a1) converting pyruvate to acetyl-coA; (b1) converting acetyl-coA and oxaloacetate to citrate; (c1) converting citrate to isocitrate; (d1) converting isocitrate to ⁇ -ketoglutarate; (e1) converting ⁇ -ketoglutarate to succinyl-coA; and (f1) converting pyruvate into oxaloacetate.
  • (d1) may be a step of converting isocitrate to ⁇ -ketoglutarate and carbon dioxide
  • (e1) may be a step of converting ⁇ -ketoglutarate to succinyl-coA and carbon dioxide.
  • (a1) to (f1) are pyruvate dehydrogenase, citrate synthase, aconitase, and isocitrate dehydrogenase, respectively.
  • dehydrogenase), ⁇ -ketoglutarate dehydrogenase ( ⁇ -ketoglutarate dehydrogenase), and pyruvate carboxylase (pyruvate carboxylase) any one or more polypeptides selected from the group consisting of; a microorganism comprising the polypeptide, a polynucleotide encoding the same, a vector comprising the polynucleotide, or a combination thereof; And it may be to use any one or more selected from the group consisting of its culture, but is not limited thereto.
  • the production method may further include (g1) converting phosphoenolpyruvate into oxaloacetate, but is not limited thereto.
  • the (g1) is a phosphoenolpyruvate carboxylase polypeptide; a microorganism comprising the polypeptide, a polynucleotide encoding the same, a vector comprising the polynucleotide, or a combination thereof; And it may be to use any one or more selected from the group consisting of its culture, but is not limited thereto.
  • transcription of the phosphoenolpyruvate carboxylase gene (ppc) may not be inhibited under at least one limiting condition selected from the group consisting of nitrogen, sulfur, phosphorus, and magnesium. However, it is not limited thereto.
  • the production method of the present application may include a step of limiting one or more selected from the group consisting of nitrogen, phosphorus, sulfur, and magnesium, but is not limited thereto.
  • the production method of the present application includes a step of limiting at least one selected from the group consisting of nitrogen, phosphorus, sulfur, and magnesium, compared to a method that does not include the step of limiting poly-4- Production of hydroxybutyrate and/or 1,4-butanediol may not be reduced, but is not limited thereto.
  • the transcription may not be inhibited by a promoter, but is not limited thereto.
  • the promoter may be a polynucleotide represented by SEQ ID NO: 45 having promoter activity
  • the target gene of the nucleotide sequence represented by SEQ ID NO: 45 having the promoter activity may be a polynucleotide encoding phosphoenolpyruvate carboxylase can
  • the rTCA pathway is strengthened and the production of poly-4-hydroxybutyrate and/or 1,4-butanediol can be increased. Under nitrogen-limiting conditions, poly-4-hydroxybutyrate and/or 1,4-hydroxybutyrate and/or 1,4-hydroxybutyrate and/or 1,4 -Can be effective in the production of butanediol.
  • the production method may be one in which step (g1) is intensified, but is not limited thereto.
  • the method for producing 1,4-butanediol of the present application may include a reduced TCA pathway.
  • oxaloacetate does not undergo the decarboxylation process included in the oxidative TCA pathway, so that malate, fumarate, and succinate are formed without generating additional carbon dioxide. It can be converted to succinyl-coA via
  • the reduced TCA pathway includes (a2) converting oxaloacetate to malate; (b2) converting malate to fumarate; (c2) converting fumarate to succinate; and (d2) converting succinate into succinyl-coA, but is not limited thereto.
  • the production method of the present application may further include (e2) converting phosphoenolpyruvate into oxaloacetate prior to the reduced TCA pathway.
  • (e2) may be the same as (g1).
  • the production method of the present application may be one in which the reduced TCA pathway is enhanced, and the reduced TCA pathway enhancement may include enhancement of (e2) converting phosphoenolpyruvate to oxaloacetate. It may, but is not limited thereto.
  • the reduced TCA pathway may be enhanced by one or more selected from the group consisting of the following (I) to (XII), but is not limited thereto:
  • the step of converting the phosphoenolpyruvate to oxaloacetate attenuates pyruvate kinase and enhances carbonic anhydrase; attenuating pyruvate kinase and enhancing phosphoenolpyruvate carboxylase; modulating citrate synthase and enhancing phosphoenolpyruvate carboxylase; modulating citrate synthase and enhancing carbonic anhydrase; And it may be enhanced by attenuating pyruvate kinase, enhancing phosphoenolpyruvate carboxylase, and enhancing pyruvate carboxylase, optionally enhancing carbonic anhydrase, NAD + -dependent malate dehydrogenase Attenuates NADP + -dependent malate dehydrogenase, attenuates phosphogluconate dehydratase, attenuates KHG/KDPG aldolase, aspartate aminotransfera
  • the reduced TCA pathway (II) enhances phosphoenolpyruvate carboxylase; (VI) attenuates NAD + -dependent malate dehydrogenase;
  • (X) aspartate aminotransferase It may include weakening.
  • the reduced TCA pathway may be enriched with (II) phosphoenolpyruvate carboxylase.
  • the reduced TCA pathway may be one in which (VI) NAD + -dependent malate dehydrogenase and (VII) NADP + -dependent malate dehydrogenase are attenuated.
  • the reduced TCA pathway is (X) aspartate aminotransferase may be weakened.
  • the production yield of poly-4-hydroxybutyrate and/or 1,4-butanediol may be increased by recycling carbon dioxide generated in fermentation through the rTCA pathway of the present application.
  • the method for producing 1,4-butanediol of the present application may include a glyoxylate pathway.
  • the glyoxylate pathway includes (a3) converting isocitrate to glyoxylate and succinate; (b3) converting glyoxylate and acetyl-coA to maleate and coA; (c3) converting citrate to isocitrate; (d3) converting pyruvate to oxaloacetate; (e3) converting phosphoenolpyruvate to oxaloacetate; (f3) converting oxaloacetate and acetyl-coA to citrate; (g3) converting malate to fumarate; (h3) converting fumarate to succinate; and (i3) converting succinate to succinyl-coA.
  • (f3) may be the same as (b1), (g3) may be the same as (b2), (h3) may be the same as (c2), and (i3) may be the same as (d1).
  • the glyoxylate pathway comprises (i) enhancing citrate synthase; (ii) attenuation of isocitrate dehydrogenase; (iii) isocitrate lyase enhancement; (iv) enhancing isocitrate dehydrogenase kinase/phosphatase; (v) enhancing malate synthase G; And (vi) it may be by any one or more selected from the group consisting of malate synthase A (malate synthase A) enhancement, but is not limited thereto.
  • the method of the present application including the glyoxylate pathway includes (j3) converting ⁇ -ketoglutarate to succinyl-coA and/or (k3) converting oxaloacetate to maleate
  • the step may be more attenuated, but is not limited thereto.
  • Both succinate and maleate which are products of the glyoxylate pathway, can be converted to succinyl-coA using the reduced TCA pathway.
  • succinate semialdehyde dehydrogenase can catalyze a reaction in which succinyl-coA (SuCoA) is converted to succinate semialdehyde (SSA). is an enzyme in The succinate semialdehyde dehydrogenase may be mixed with SucD.
  • the SucD protein of the present application may be derived from Clostridium Kluyveri , and is included in SucD as long as it has the same sequence or activity.
  • the SucD protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 1 or an amino acid sequence having at least 80% homology or identity therewith, or consisting essentially of the amino acid sequence. there is.
  • the succinate semialdehyde dehydrogenase gene may be used interchangeably with sucD , a polynucleotide encoding succinate semialdehyde dehydrogenase, and the like.
  • the sucD gene may include, for example, the nucleotide sequence of SEQ ID NO: 2, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • 4-hydroxybutyric acid dehydrogenase refers to the enzyme that converts succinate semialdehyde (SSA) to 4-hydroxybutyrate (4HB). An enzyme that can catalyze a reaction.
  • the 4-hydroxybutyric acid dehydrogenase may be mixed with succinate semialdehyde reductase and 4HbD.
  • the 4HbD protein of the present application may be derived from Arabidopsis thaliana , and is included in 4HbD as long as it has the same sequence or activity.
  • the 4HbD protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 3 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the 4-hydroxybutyric acid dehydrogenase gene may be used interchangeably with 4hbD , a polynucleotide encoding 4-hydroxybutyric acid dehydrogenase, and the like.
  • the 4hbD gene may include, for example, the nucleotide sequence of SEQ ID NO: 4, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • 4-hydroxybutyryl-CoA transferase means that 4-hydroxybutyrate (4HB) is 4-hydroxybutyryl coA (4-hydroxybutyryl-CoA transferase). ; 4HBCoA) is an enzyme that can catalyze the conversion reaction.
  • the 4-hydroxybutyryl-coA transferase may be mixed with OrfZ.
  • the OrfZ protein of the present application may be derived from Clostridium Kluyveri , and is included in OrfZ as long as it has the same sequence or activity.
  • the OrfZ protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 5 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the 4-hydroxybutyryl-coA transferase gene may be used interchangeably with orfZ , a polynucleotide encoding 4-hydroxybutyryl-coA transferase, and the like.
  • the orfZ gene may include, for example, the nucleotide sequence of SEQ ID NO: 6, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • amino acid and gene sequences of SucD, 4HbD, and/or OrfZ may be obtained from US 9084467 B2, but are not limited thereto.
  • Poly (3-hydroxyalkanoate) polymerase refers to two or more 4-hydroxybutyryl coA (4HBCoA) poly-4- It is an enzyme that can catalyze the polymerization reaction with hydroxybutyrate (poly-4-hydroxybutyrate; P4HB).
  • the poly(3-hydroxyalkanoate) polymerase may be mixed with PhaC.
  • the PhaC protein of the present application may be derived from various microorganisms, specifically Pseudomonas putida ( Pseudomonas putida ) or Ralstonia eutropha ( Ralstonia eutropha ) It may be derived, and it may be a fusion protein derived from these and is included in PhaC as long as it has the same sequence or activity.
  • the PhaC protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 7 or an amino acid sequence having 80% or more homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • amino acid sequence and gene sequence of PhaC can be obtained from WO 2014058655 A1, but is not limited thereto.
  • the poly(3-hydroxyalkanoate) polymerase gene may be used interchangeably with phaC , a polynucleotide encoding poly(3-hydroxyalkanoate) polymerase, and the like.
  • the phaC gene may include, for example, the nucleotide sequence of SEQ ID NO: 8, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • pyruvate dehydrogenase is an enzyme capable of catalyzing a reaction in which pyruvate is converted to acetyl-coA
  • Citrate synthase is an enzyme capable of catalyzing the reaction of condensing oxaloacetate and acetyl-coA to produce citrate
  • Aconitase is an enzyme capable of catalyzing the reaction in which citrate is converted to isocitrate
  • Isocitrate dehydrogenase is an enzyme capable of catalyzing a reaction in which isocitrate is converted to ⁇ -ketoglutarate
  • ⁇ -ketoglutarate dehydrogenase is an enzyme capable of catalyzing a reaction in which ⁇ -ketoglutarate is converted to succinyl-coA
  • Succinyl-coA synthetase is an enzyme capable of catalyzing a reaction in which succinyl-coA is converted to succinate
  • the pyruvate dehydrogenase to pyruvate carboxylase may be enzymes included in the TCA pathway, may be endogenous to microorganisms or production methods, or may be enhanced compared to wild-type enzymes.
  • pyruvate kinase is an enzyme capable of catalyzing a reaction in which phosphoenolpyruvate (PEP) is converted to pyruvate.
  • PEP phosphoenolpyruvate
  • the pyruvate kinase may be mixed with Pyk.
  • the Pyk protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in Pyk as long as it has the same sequence or activity.
  • the Pyk protein of the present application may be attenuated, and is included in Pyk as long as it has the same sequence or activity.
  • the Pyk protein of the present application comprises, has, consists of, or consists essentially of SEQ ID NO: 9, SEQ ID NO: 11, or an amino acid sequence having 80% or more homology or identity thereto, or consisting essentially of the amino acid sequence. of) may be
  • the pyruvate kinase gene may be used interchangeably with polynucleotides encoding pykA, pykF, and pyruvate kinase.
  • the pykA and pykF genes may include, for example, the nucleotide sequence of SEQ ID NO: 10 or SEQ ID NO: 12, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • phosphoenolpyruvate carboxylase (PEP carboxylase) is an enzyme that catalyzes a reaction in which phosphoenolpyruvate is converted to oxaloacetate.
  • the phosphoenolpyruvate carboxylase may be mixed with PPC.
  • the PPC protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in PPC as long as it has the same sequence or activity.
  • the PPC protein of the present application may be enriched, and is included in PPC as long as it has the same sequence or activity.
  • the PPC protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 13 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the phosphoenolpyruvate carboxylase gene may be used interchangeably with polynucleotides encoding ppc and phosphoenolpyruvate carboxylase.
  • the ppc gene may include, for example, the nucleotide sequence of SEQ ID NO: 14, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • the microorganism of the present application is poly-4-hydroxybutyrate under any one or more nutrient-limiting conditions selected from the group consisting of nitrogen, sulfur, phosphorus, and magnesium. It has productivity, and in particular, may have its increased productivity, but is not limited thereto.
  • the microorganism of the present application inhibits transcription of a phosphoenolpyruvate carboxylase gene (ppc) under nitrogen, sulfur, phosphorous, and/or magnesium limiting conditions. It may further include a promoter that does not receive.
  • ppc phosphoenolpyruvate carboxylase gene
  • the promoter may be a polynucleotide represented by SEQ ID NO: 45 having promoter activity
  • the target gene of the nucleotide sequence represented by SEQ ID NO: 45 having the promoter activity may be a polynucleotide encoding phosphoenolpyruvate carboxylase can Production of poly-4-hydroxybutyrate and/or 1,4-butanediol can be increased when a promoter in which the transcription of ppc is not inhibited under nitrogen-limiting conditions is used.
  • coli's ppc expression is inhibited under nitrogen-restricted conditions, but microorganisms do not inhibit the transcription of the phosphoenolpyruvate carboxylase gene (ppc) under nitrogen-restricted conditions, and the promoter has an activity equal to or higher than that of the wild-type ppc promoter.
  • ppc phosphoenolpyruvate carboxylase gene
  • the promoter has an activity equal to or higher than that of the wild-type ppc promoter.
  • it may be effective in the production of poly-4-hydroxybutyrate and/or 1,4-butanediol.
  • carbonic anhydrase is an enzyme capable of catalyzing the decomposition of hydrogencarbonate into carbon dioxide and water.
  • the carbonic anhydrase may be an enzyme that serves as an auxiliary to phosphoenolpyruvate carboxylase, and bicarbonate (HCO 3 -) is required for the smooth performance of PPC.
  • Dragases can be enzymes capable of producing HCO 3 - from carbon dioxide.
  • the carbonic anhydrase may be mixed with EcaA.
  • the EcaA protein of the present application may be derived from Nostoc sp., and is included in EcaA as long as it has the same sequence or activity.
  • the EcaA protein of the present application may be enriched, and is included in EcaA as long as it has the same sequence or activity.
  • the EcaA protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 15 or an amino acid sequence having 80% or more homology or identity thereto, or may be one that consists essentially of the amino acid sequence. there is.
  • the carbonic anhydrase gene may be used interchangeably with ecaA and a polynucleotide encoding carbonic anhydrase.
  • the ecaA gene may include, for example, the nucleotide sequence of SEQ ID NO: 16, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • citrate synthase is an enzyme capable of catalyzing the reaction of condensing oxaloacetate and acetyl-coA to produce citrate.
  • the citrate synthase may be mixed with GltA.
  • the GltA protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in GltA as long as it has the same sequence or activity.
  • the GltA protein of the present application may be regulated, and is included in GltA as long as it has the same sequence or activity.
  • the GltA protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 17 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the citrate synthase gene may be mixed with polynucleotides encoding gltA and citrate synthase.
  • the gltA gene may include, for example, the nucleotide sequence of SEQ ID NO: 18, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • pyruvate carboxylase is an enzyme capable of catalyzing a reaction in which phosphoenolpyruvate is converted to oxaloacetate.
  • the pyruvate carboxylase may be mixed with Pyc.
  • the Pyc protein of the present application may be derived from Rhizobium etli , and is included in Pyc as long as it has the same sequence or activity.
  • the Pyc protein of the present application may be enriched or foreign, and is included in Pyc as long as it has the same sequence or activity.
  • the Pyc protein of the present application may include, have, consist of, or consist of SEQ ID NO: 19 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the pyruvate carboxylase gene may be used interchangeably with polynucleotides encoding pyc and pyruvate carboxylase.
  • the pyc gene may include, for example, the nucleotide sequence of SEQ ID NO: 20, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • NAD + -dependent malate dehydrogenase is an enzyme capable of catalyzing the reaction of converting malate to pyruvate .
  • the NAD + -dependent maleate dehydrogenase may be mixed with MaeA.
  • the MaeA protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in MaeA as long as it has the same sequence or activity.
  • the MaeA protein of the present application may be attenuated, and is included in MaeA as long as it has the same sequence or activity.
  • the MaeA protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 21 or an amino acid sequence having 80% or more homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the NAD + -dependent malate dehydrogenase gene may be used interchangeably with polynucleotides encoding maeA and NAD + -dependent malate dehydrogenase.
  • the maeA gene may include, for example, the nucleotide sequence of SEQ ID NO: 22, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • NADP + -dependent malate dehydrogenase is an enzyme capable of catalyzing the reaction of converting malate to pyruvate .
  • the NADP + -dependent maleate dehydrogenase may be mixed with MaeB.
  • the MaeB protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in MaeB as long as it has the same sequence or activity.
  • the MaeB protein of the present application may be attenuated, and is included in MaeB as long as it has the same sequence or activity.
  • the MaeB protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 23 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • NADP + -dependent malate dehydrogenase gene may be used interchangeably with polynucleotides encoding maeB and NADP + -dependent malate dehydrogenase.
  • the maeB gene may include, for example, the nucleotide sequence of SEQ ID NO: 24, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • phosphogluconate dehydratase means that 6-phospho-D-gluconate is 2-dihydro-3-deoxy-6- It is an enzyme that can catalyze the conversion of phospho-D-gluconate (2-dehydro-3-deoxy-6-phospho-D-gluconate). It can be.
  • the EDD protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in EDD as long as it has the same sequence or activity.
  • the EDD protein of the present application may be attenuated, and is included in EDD as long as it has the same sequence or activity.
  • the EDD protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 25 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the phosphogluconate dehydratase gene may be used interchangeably with edd and polynucleotides encoding phosphogluconate dehydratase.
  • the edd gene may include, for example, the nucleotide sequence of SEQ ID NO: 26, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • 2-keto-4-hydroxyglutarate:2-keto-3-deoxygluconate 6-phosphate aldolase (2-keto-4-hydroxyglutarate:2-keto-3-deoxygluconate 6- phosphate aldolase; KHG/KDPG aldolase)
  • KHG/KDPG aldolase is an enzyme that can catalyze the conversion of 4-hydroxy-2-oxoglutarate to glyoxylate and pyruvate.
  • the phosphogluconate dehydratase may be mixed with KHG/KDPG aldolase and Eda.
  • the Eda protein of the present application may be endogenous or derived from the genus Escherichia or Escherichia coli , and is included in Eda as long as it has the same sequence or activity.
  • the Eda protein of the present application may be attenuated, and is included in Eda as long as it has the same sequence or activity.
  • the Eda protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 27 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the KHG/KDPG aldolase gene may be used interchangeably with polynucleotides encoding eda and KHG/KDPG aldolase.
  • the eda gene may include, for example, the nucleotide sequence of SEQ ID NO: 28, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • aminotransferase is an enzyme capable of catalyzing the reaction of converting 2-oxoglutarate and aspartate to glutamate and oxoacetate.
  • the aspartate aminotransferase may be mixed with AspC.
  • the AspC protein of the present application may be endogenous or derived from the genus Escherichia or Escherichia coli , and is included in AspC as long as it has the same sequence or activity.
  • the AspC protein of the present application may be attenuated, and is included in AspC as long as it has the same sequence or activity.
  • the AspC protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 29 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the aspartate aminotransferase gene may be used interchangeably with aspC, a polynucleotide encoding aspartate aminotransferase, and the like.
  • the aspC gene may include, for example, the nucleotide sequence of SEQ ID NO: 30, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • glucose-specific phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) enzyme IIBC component is a part of PTS, an enzyme involved in glucose transport.
  • the glucose-specific PTS enzyme IIBC component can enhance the reduced TCA pathway by increasing the phosphoenolpyruvate pool.
  • the glucose-specific PTS enzyme IIBC component may be used interchangeably with IIBC.
  • the IIBC protein of the present application is endogenous, Escherichia genus, Escherichia coli ( Escherichia coli ) It may be derived, and is included in IIBC as long as it has the same sequence or activity.
  • the IIBC protein of the present application may be attenuated, and included in IIBC as long as it has the same sequence or activity.
  • the IIBC protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 31 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the glucose-specific PTS enzyme IIBC component gene may be used interchangeably with ptsG, a polynucleotide encoding the glucose-specific PTS enzyme IIBC component, and the like.
  • the ptsG gene may include, for example, the nucleotide sequence of SEQ ID NO: 32, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • a "bicarbonate transporter” is a transporter that transports bicarbonate and can increase the entry of carbon dioxide into cells.
  • the bicarbonate transporter can be mixed with SbtA.
  • the SbtA protein of the present application may be derived from Synechocyctis sp. , and is included in IIBC as long as it has the same sequence or activity.
  • the SbtA protein of the present application may be enriched, foreign, or derived from Cyanobacteria, but is included in SbtA as long as it has the same sequence or activity.
  • the SbtA protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 33 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the SbtA gene may be used interchangeably with sbtA, a polynucleotide encoding a bicarbonate transporter, and the like.
  • the sbtA gene may include, for example, the nucleotide sequence of SEQ ID NO: 34, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • isocitrate dehydrogenase is an enzyme capable of catalyzing the reaction of converting isocitrate to 2-oxoglutarate.
  • the isocitrate dehydrogenase may be mixed with Icd.
  • the Icd protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in Icd as long as it has the same sequence or activity.
  • the Icd protein of the present application may be attenuated, but included in Icd as long as it has the same sequence or activity.
  • the Icd protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 35 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the Icd gene may be used interchangeably with icd , a polynucleotide encoding isocitrate dehydrogenase, and the like.
  • the icd gene may include, for example, the nucleotide sequence of SEQ ID NO: 36, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • isocitrate lyase is an enzyme capable of catalyzing the reaction that converts isocitrate to glyoxylate and succinate.
  • the isocitrate lyase may be mixed with AceA.
  • the AceA protein of the present application may be endogenous or derived from Escherichia genus or Escherichia coli , and is included in AceA as long as it has the same sequence or activity.
  • the AceA protein of the present application may be enhanced, but is included in AceA as long as it has the same sequence or activity.
  • the AceA protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 37 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the AceA gene may be used interchangeably with aceA, a polynucleotide encoding isocitrate lyase, and the like.
  • the aceA gene may include, for example, the nucleotide sequence of SEQ ID NO: 38, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • isocitrate dehydrogenase kinase/phosphatase is an enzyme capable of catalyzing the phosphorylation or dephosphorylation of isocitrate dehydrogenase.
  • the isocitrate dehydrogenase kinase/phosphatase can attenuate Icd, and the isocitrate dehydrogenase kinase/phosphatase can be mixed with AceK.
  • the AceK protein of the present application may be endogenous or derived from the genus Escherichia or Escherichia coli , and is included in AceK as long as it has the same sequence or activity.
  • the AceK protein of the present application may be enhanced, but included in AceK as long as it has the same sequence or activity.
  • the AceK protein of the present application comprises, has, consists of, or consists essentially of SEQ ID NO: 39, or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence.
  • the AceK gene may be used interchangeably with aceK, a polynucleotide encoding isocitrate dehydrogenase kinase/phosphatase, and the like.
  • the aceK gene may include, for example, the nucleotide sequence of SEQ ID NO: 40, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • malate synthase G is an enzyme capable of catalyzing the reaction of converting glyoxylate and acetyl-coA to malate.
  • the malate synthase G may be mixed with GlcB.
  • the GlcB protein of the present application may be endogenous or derived from the genus Escherichia or Escherichia coli , and is included in GlcB as long as it has the same sequence or activity.
  • the GlcB protein of the present application may be enhanced, but included in GlcB as long as it has the same sequence or activity.
  • the GlcB protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 41 or an amino acid sequence having at least 80% homology or identity thereto, or consisting essentially of the amino acid sequence. there is.
  • the GlcB gene may be used interchangeably with polynucleotides encoding glcB, malate synthase G, and the like.
  • the glcB gene may include, for example, the nucleotide sequence of SEQ ID NO: 42, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • malate synthase A is an enzyme capable of catalyzing a reaction of converting glyoxylate and acetyl-coA into malate.
  • the malate synthase A may be mixed with AceB.
  • the AceB protein of the present application may be endogenous or derived from the genus Escherichia or Escherichia coli , and is included in AceB as long as it has the same sequence or activity.
  • the AceB protein of the present application may be enriched, but is included in AceB as long as it has the same sequence or activity.
  • the AceB protein of the present application may include, have, consist of, or consist essentially of SEQ ID NO: 43 or an amino acid sequence having at least 80% homology or identity thereto, or may be essentially consisting of the amino acid sequence. there is.
  • the AceB gene may be used interchangeably with aceB, a polynucleotide encoding malate synthase A, and the like.
  • the aceB gene may include, for example, the nucleotide sequence of SEQ ID NO: 44, and may consist of a nucleotide sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • Amino acid sequences of the enzymes may be obtained from various databases such as NCBI's GenBank, which is a known database, but are not limited thereto.
  • polypeptide or protein comprising the amino acid sequence described in a specific sequence number', 'a polypeptide or protein consisting of the amino acid sequence described in a specific sequence number', or 'a polypeptide or protein having an amino acid sequence described in a specific sequence number'
  • a protein having an amino acid sequence in which some sequence is deleted, modified, substituted, conservatively substituted, or added can also be used in this application. is self-explanatory. For example, the addition of sequences that do not alter the function of the protein, naturally occurring mutations, silent mutations thereof, or conservative substitutions to the N-terminus, internal, and/or C-terminus of the amino acid sequence It is a case of having
  • the protein of the present application comprises the amino acid sequence of a specific SEQ ID NO, or at least 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91% of the amino acid sequence of a specific SEQ ID NO. , 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology or identity.
  • any amino acid sequence having the above homology or identity and exhibiting efficacy corresponding to the protein is included within the scope of the present application even if some sequences have amino acid sequences that are deleted, modified, substituted or added.
  • the "conservative substitution” refers to the substitution of one amino acid with another amino acid having similar structural and/or chemical properties. Such amino acid substitutions can generally occur based on similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the polypeptide.
  • the term 'homology' or 'identity' refers to the degree of identical or similarity between two given amino acid sequences or base sequences and may be expressed as a percentage.
  • the terms homology and identity are often used interchangeably.
  • Sequence homology or identity of conserved polynucleotides or polypeptides can be determined by standard alignment algorithms, together with default gap penalties established by the program used. Substantially homologous or identical sequences are generally the entire sequence or a portion corresponding to at least about 50%, 60%, 70%, 80% or 90% of the full-length and intermediate or It can hybridize under highly stringent conditions. It is obvious that hybridization also includes hybridization with polynucleotides containing common codons or codons considering codon degeneracy in polynucleotides.
  • GAP program can define the total number of symbols in the shorter of the two sequences divided by the number of similarly arranged symbols (i.e., nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional penalty of 0.10 for each symbol in each gap (or 10 gap opening penalty, 0.5 gap extension penalty); and (3) no penalty for end gaps.
  • sequence of the gene (eg, sucD) of the present application can be obtained from various databases such as NCBI's GenBank, which is a known database, but is not limited thereto.
  • sucD gene from Clostridium kluyveri has SEQ ID NO: 2;
  • the 4hbD gene from Arabidopsis thaliama is SEQ ID NO: 4;
  • the orfZ gene from Clostridium kluyveri is SEQ ID NO: 6;
  • the poly(3-hydroxyalkanoate) polymerase fusion protein phaC3/C1 gene from Pseudomonas putida/Ralstonia eutropha is SEQ ID NO: 8; pykA, pykF, ppc, gltA, maeA, maeB from Escherichia coli.
  • edd, eda, ptsG, icd, aceA, aceK, glcB, and aceB genes are SEQ ID NOs: 10, 12, 14, 18, 22, 24, 26, 28, 30, 32, 36. 38, 40, 42, and 44;
  • the ecaA gene from the genus Nostock has SEQ ID NO: 16;
  • the pyc gene from rhizobium etley has SEQ ID NO: 20;
  • the sbtA gene derived from the genus Synechocystis may include, have, or consist of the nucleotide sequence of SEQ ID NO: 34, but is not limited thereto.
  • the gene of the present application may be codon-optimized to be suitable for a microorganism of the genus Escherichia or the genus Corynebacterium, but is not limited thereto.
  • polynucleotide is a DNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are connected in a long chain shape by covalent bonds.
  • the polynucleotide or gene of the present application has various modifications in the coding region within the range that does not change the amino acid sequence of the polypeptide due to codon degeneracy or in consideration of codons preferred in organisms intended to express a specific polypeptide.
  • the polynucleotide or gene is, for example, SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 , 42, and / or may include a nucleotide sequence of 44, and homology or identity thereto is 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more It may consist of a nucleotide sequence, but is not limited thereto.
  • polynucleotide or gene of the present application is hybridized under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to all or part of the nucleotide sequence of the present application, Any sequence encoding an amino acid sequence may be included without limitation.
  • stringent condition means a condition that allows specific hybridization between polynucleotides. Such conditions are specifically described in the literature (eg, J. Sambrook et al., ibid.).
  • polynucleotides with high homology or identity 40% or more, specifically 90% or more, more specifically 95% or more, 96% or more, 97% or more, 98% or more, more specifically 99% or more 60°C, 1 ⁇ SSC, 0.1% SDS, which is a condition in which polynucleotides of the same identity or identity do not hybridize and polynucleotides having less homology or identity do not hybridize, or washing conditions of conventional southern hybridization.
  • 60° C. 0.1 ⁇ SSC, 0.1% SDS, more specifically at a salt concentration and temperature corresponding to 68 ° C., 0.1 ⁇ SSC, 0.1% SDS, conditions for washing once, specifically 2 to 3 times are listed.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • complementary is used to describe the relationship between nucleotide bases that are capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine.
  • the polynucleotides of the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the entire sequence.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60 °C, 63 °C or 65 °C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Appropriate stringency for hybridizing polynucleotides depends on the length of the polynucleotide and the degree of complementarity, parameters well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).
  • a microorganism comprising a polypeptide, a polynucleotide encoding the same, or a combination thereof; And using any one or more selected from the group consisting of cultures thereof, culturing a microorganism including the polypeptide, a polynucleotide encoding the same, or a combination thereof, and / or a specific substance from the cultured microorganism or medium (for example, succinate semialdehyde, 4-hydroxybutyrate, or 4-hydroxybutyryl coA, etc.) may be recovered, but is not limited thereto.
  • succinate semialdehyde, 4-hydroxybutyrate, or 4-hydroxybutyryl coA, etc. may be recovered, but is not limited thereto.
  • Attenuation in the production method of the present application may be attenuation of a specific pathway or step, or attenuation of an enzyme involved in the pathway or step.
  • the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.
  • Attenuation of the enzyme may be the enzyme polypeptide; a microorganism comprising the polypeptide, a polynucleotide encoding the same, a vector comprising the polynucleotide, or a combination thereof; And it may be to reduce, delete, or inactivate any one or more selected from the group consisting of its culture.
  • "attenuation" in the production method of the present application also includes "attenuation of polypeptide activity”.
  • Enhancement in the production method of the present application may be enhancement of a specific pathway or step, and may be enhancement of enzymes involved in the pathway or step.
  • the enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • Enrichment of the enzyme may include the enzyme polypeptide; a microorganism comprising the polypeptide, a polynucleotide encoding the same, a vector comprising the polynucleotide, or a combination thereof; And it may be to increase, activate, or overexpress any one or more selected from the group consisting of its culture.
  • "enhancement" in the production method of the present application also includes “enhancement” of polypeptide activity.
  • modulation may be the above “strengthening” and/or “weakening”, but is not limited thereto.
  • the step of decomposing (5) poly-4-hydroxybutyrate into 1,4-butanediol may be to use a chemical method, and may be to use thermal decomposition, hydrogenation, or a combination thereof, but poly As long as -4-hydroxybutyrate can be decomposed into 1,4-butanediol, it is not limited thereto.
  • Another aspect of the present application is succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA transferase, and poly(3-hydroxyalkanoate)
  • a microorganism comprising a polymerase polypeptide, a polynucleotide encoding the same, a vector comprising the polynucleotide, or a combination thereof.
  • the microorganism of the present application since the microorganism preferentially produces cell-friendly poly-4-hydroxybutyrate, the microorganism of the present application may have an increased poly-4-hydroxybutyrate-producing ability, and accordingly, 1,4-butanedi It may be that the productivity of all is further increased.
  • the microorganism of the present application introduces a gene in the poly-4-hydroxybutyrate production step to activate the reduced TCA pathway using oxaloacetate; high productivity fermentation process; And / or the poly-4-hydroxybutyrate production ability may be increased by recycling carbon dioxide generated in fermentation through a reduced TCA pathway.
  • the microorganism is succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA transferase, and poly (3-hydroxyalkanoate) polymer
  • the activity of any one or more polypeptides selected from the group consisting of lase may be enhanced:
  • the succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA transferase, and/or poly(3-hydroxyalkanoate) polymer may be an exogenous introduction, but is not limited thereto.
  • the gene encoding the succinate semialdehyde dehydrogenase and/or 4-hydroxybutyryl-coA transferase may be derived from Clostridium kluyberry, and 4-hydroxybutyric acid dehydrogenase
  • the gene encoding the agent may be derived from Arabidopsis thaliana , but is not limited thereto.
  • the gene encoding the poly(3-hydroxyalkanoate) polymerase may be derived from Pseudomonas putida or Ralstonia eutropha , but is not limited thereto.
  • the microorganism may include a TCA pathway.
  • the microorganism is composed of pyruvate dehydrogenase, citrate synthase, aconitase, isocitrate dehydrogenase, ⁇ -ketoglutarate dehydrogenase, and pyruvate carboxylase. It may include any one or more polypeptides selected from the group, a polynucleotide encoding the same, or a combination thereof, but is not limited thereto.
  • the microorganism of the present application may include a reduced TCA pathway and may be enhanced.
  • the microorganism of the present application may include one or more selected from the group consisting of the following (I) to (XII), but is not limited thereto:
  • the microorganism of the present application is (II) enriched for phosphoenolpyruvate carboxylase
  • the microorganism of the present application may include (II) enrichment of phosphoenolpyruvate carboxylase.
  • the microorganism of the present application may include (VI) attenuating NAD+-dependent malate dehydrogenase and (VII) attenuating NADP+-dependent malate dehydrogenase.
  • the microorganism of the present application may include (X) attenuated aspartate aminotransferase.
  • the gene encoding the pyruvate carboxylase may be a foreign gene, and may be specifically derived from Rhizobium etli , but is not limited thereto.
  • the regulation of the citrate synthase may be due to genetic mutation, but is not limited thereto.
  • the microorganism of the present application may include a glyoxylate pathway and may be enhanced.
  • the microorganism of the present application may include one or more selected from the group consisting of the following (i) to (vi), but is not limited thereto:
  • the succinate semialdehyde dehydrogenase and the like are as described in other embodiments.
  • the microorganism of the present application may be capable of producing poly-4-hydroxybutyrate under any one or more nutrient limitation conditions selected from the group consisting of nitrogen, sulfur, phosphorus, and magnesium, but is not limited thereto.
  • the microorganism of the present application may be one in which the transcription of the phosphoenolpyruvate carboxylase gene (ppc) is not inhibited under at least one limiting condition selected from the group consisting of nitrogen, sulfur, phosphorus, and magnesium. , but not limited thereto.
  • ppc phosphoenolpyruvate carboxylase gene
  • the microorganism of the present application maintains the ability to produce poly-4-hydroxybutyrate compared to the condition without the nutrient limitation under any one or more nutrient limitation conditions selected from the group consisting of nitrogen, phosphorus, sulfur, and magnesium, or It may not be reduced, but is not limited thereto.
  • a microorganism containing or enriched with a polypeptide of interest in the present application may include a polypeptide of interest, a polynucleotide encoding the same, or a vector containing the same.
  • the vector of the present application may include a DNA product containing the nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to express the target polypeptide in a suitable host.
  • the expression control region may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating termination of transcription and translation.
  • the vector After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can integrate into the genome itself.
  • Vectors used in the present application are not particularly limited, and any vectors known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors , pBluescriptII-based, pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used.
  • pDZ, pDC, pDCM2 (Republic of Korea Patent Publication No. 10-2020-0136813), pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pIMR53 vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for chromosomal insertion into a cell. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for determining whether the chromosome is inserted may be further included.
  • the selectable marker is used to select cells transformed with a vector, that is, to determine whether a target nucleic acid molecule has been inserted, and can exhibit selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. markers may be used. In an environment treated with a selective agent, only cells expressing the selectable marker survive or exhibit other expression traits, so transformed cells can be selected.
  • the term "transformation” means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide can be expressed in the host cell, it may be inserted into and located in the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide includes DNA and/or RNA encoding a polypeptide of interest.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.
  • operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide encoding the target polypeptide of the present application.
  • succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, 4-hydroxybutyryl-coA transferase, and poly(3-hydroxyalkanoate) polymers of the present application Microorganisms containing the lase polypeptide, the polynucleotide encoding the same, the vector containing the polynucleotide, or a combination thereof have higher levels of succinate semialdehyde dehydrogenase, 4-hydroxybutyric acid dehydrogenase, and Genase, 4-hydroxybutyryl-coA transferase, and poly(3-hydroxyalkanoate) polymerase activities may be enhanced, but are not limited thereto.
  • microorganism or “strain” includes both wild-type microorganisms and microorganisms that have been genetically modified naturally or artificially, and are specific for reasons such as insertion of foreign genes or enhancement of the activity of endogenous genes. It may be a microorganism with an enhanced mechanism.
  • the microorganism of the present application may be Escherichia or Corynebacterium , specifically Escherichia coli or Corynebacterium glitamicum ( Corynebacterium glutamicum) , but is not limited thereto.
  • the microorganism of the present application may be used for producing poly-4-hydroxybutyrate, and the poly-4-hydroxybutyrate produced therefrom produces 1,4-butanediol by a chemical process, so that the microorganism of the present application is 1 It can be used for producing ,4-butanediol, but is not limited thereto.
  • the microorganisms of the present application are polypeptides (eg, SucD, 4HbD, OrfZ, PhaC, PPC, EcaA, Glta, Pyc, AceK, and/or AceA, etc.) that are the subject of reinforcement or introduction of the present application, polypeptides encoding them
  • a microorganism comprising any one or more of vectors comprising nucleotides or polynucleotides; microorganisms modified to express a polypeptide or gene that is the subject of enhancement or introduction of the present application; a microorganism expressing a polypeptide or gene that is the subject of enhancement or introduction of the present application; microorganisms having the activity of the polypeptide or gene of the present application; microorganisms modified to attenuate the polypeptide (eg, Pyk, GltA, MaeA, MaeB, Edd, Eda, and/or AspC, etc.) that is the subject of attenuation of the
  • the microorganism of the present application may be a microorganism having the ability to naturally produce the polypeptide of the present application (eg, SucD, MaeA, etc.), 1,4-butanediol and/or poly-4-hydroxybutyrate; Or, a polypeptide, gene, polynucleotide, or a vector containing the same, which is a subject of reinforcement or introduction of the present application, is introduced into a parent strain having no ability to produce polypeptide, 1,4-butanediol and/or poly-4-hydroxybutyrate.
  • a polypeptide, gene, polynucleotide, or a vector containing the same which is a subject of reinforcement or introduction of the present application
  • the polypeptide is strengthened or weakened, or the 1,4-butanediol and/or poly-4-hydroxybutyrate-producing ability is enhanced or endowed. but not limited thereto.
  • the microorganism of the present application is transformed (thereby, enhanced, weakened, introduced, etc.) with the polypeptide, gene, polynucleotide, or vector containing the same of the present application, 1,4-butanediol and / or poly All microorganisms capable of producing -4-hydroxybutyrate or having an increased production capacity may be included.
  • the microorganism of the present application is a natural wild-type microorganism, a microorganism that produces 1,4-butanediol and / or poly-4-hydroxybutyrate, wherein the polypeptide of the present application is expressed or attenuated, and 1,4- It may be a recombinant microorganism having an increased ability to produce butanediol and/or poly-4-hydroxybutyrate.
  • the recombinant microorganism having an increased ability to produce 1,4-butanediol and/or poly-4-hydroxybutyrate is a natural wild-type microorganism or an unmodified polypeptide microorganism of the present application (ie, a microorganism containing a wild-type gene, the present application It may be a microorganism with an increased ability to produce 1,4-butanediol and / or poly-4-hydroxybutyrate compared to a microorganism in which the gene of is not enhanced or introduced, or a microorganism in which the gene of the present application is not weakened). It is not limited.
  • the recombinant microorganism having increased productivity is about 0.001% or more or 0.01% or more compared to the 1,4-butanediol and / or poly-4-hydroxybutyrate production ability of the parent strain or unmodified microorganism before mutation
  • 4-butanediol and / or poly-4-hydroxybutyrate production capacity may be increased, but is not limited thereto as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation.
  • the term “about” includes all ranges of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc., and includes all ranges equivalent to or similar to the ranges following the term “about”. Not limited.
  • the term "unmodified microorganism” does not exclude microorganisms containing mutations that may occur naturally in microorganisms, and are wild-type microorganisms or wild-type microorganisms themselves, or are genetically modified by natural or artificial factors. It can mean microorganisms before being changed.
  • the unmodified microorganism may mean a microorganism before the polypeptide described herein is not expressed, weakened, or introduced.
  • the "unmodified microorganism” may be used interchangeably with "strain before transformation", “microorganism before transformation”, “non-mutated strain”, “unmodified strain”, "non-mutated microorganism” or "reference microorganism".
  • Modification of some or all of the polynucleotides in the microorganism of the present application is (a) genome editing using homologous recombination or genetic scissors (engineered nuclease, e.g., CRISPR-Cas9) using a vector for chromosomal insertion into the microorganism and / or (b) It may be induced by light and/or chemical treatment, such as ultraviolet light and radiation, but is not limited thereto.
  • a method of modifying part or all of the gene may include a method using DNA recombination technology.
  • a part or all of a gene may be deleted by injecting a nucleotide sequence or vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination.
  • the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
  • the term "attenuation" of polypeptide activity is a concept that includes both decreased activity or no activity compared to intrinsic activity.
  • the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.
  • the attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide originally possessed by the microorganism due to mutation of the polynucleotide encoding the polypeptide, inhibition of gene expression of the polynucleotide encoding it, or translation into a polypeptide.
  • the overall level and/or concentration (expression level) of the polypeptide in the cell is lower than that of the native strain due to inhibition of translation, etc., when the polynucleotide is not expressed at all, and/or when the polynucleotide is expressed Even if there is no activity of the polypeptide, it may also be included.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by a parent strain, wild-type or unmodified microorganism before transformation when a character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”. "Inactivation, depletion, reduction, downregulation, reduction, attenuation" of the activity of a polypeptide compared to its intrinsic activity means that it is lower than the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation.
  • Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by applying various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
  • an antisense oligonucleotide eg, antisense RNA
  • an antisense oligonucleotide that binds complementarily to the transcript of the gene encoding the polypeptide
  • It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
  • Deletion of part or all of the gene encoding the polypeptide may include removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
  • modification of the expression control region is a deletion, insertion, non-conservative or conservative substitution, or a combination thereof, resulting in mutations in the expression control region (or expression control sequence), or weaker It may be a replacement with an active sequence.
  • the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling termination of transcription and translation.
  • the 5) modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another initiation codon with a lower polypeptide expression rate than the endogenous initiation codon. It may be substituted with a sequence, but is not limited thereto.
  • the modification of the amino acid sequence or polynucleotide sequence of 3) and 4) above is a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to weaken the activity of the polypeptide.
  • a combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
  • expression of a gene may be inhibited or attenuated by introducing a mutation in a polynucleotide sequence to form a stop codon, but is not limited thereto.
  • antisense oligonucleotide e.g., antisense RNA
  • antisense RNA complementary to the transcript of the gene encoding the polypeptide
  • Weintraub, H. et al. Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
  • the term "enhancement" of polypeptide activity means that the activity of the polypeptide is increased relative to the intrinsic activity.
  • the enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • activation, enhancement, upregulation, overexpression, and increase may include those that exhibit an activity that was not originally possessed, or those that exhibit enhanced activity compared to intrinsic activity or activity before modification.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by a parent strain or unmodified microorganism before transformation when a character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”.
  • “Enhancement”, “upregulation”, “overexpression” or “increase” of the activity of a polypeptide compared to the intrinsic activity means that the activity and/or concentration (expression amount) is improved.
  • the enhancement can be achieved by introducing a foreign polypeptide or by enhancing the activity and/or concentration (expression level) of an endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from an increase in the activity level, expression level, or amount of a product released from the corresponding polypeptide.
  • Enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as the activity of the target polypeptide can be enhanced compared to the microorganism before transformation. Specifically, it may be using genetic engineering and / or protein engineering, which is well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode the modified polypeptide to enhance the activity of the polypeptide
  • It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introducing into the host cell a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the corresponding polypeptide is operably linked. it may be Alternatively, it may be achieved by introducing one copy or two or more copies of a polynucleotide encoding the corresponding polypeptide into the chromosome of the host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited thereto.
  • the vector is as described above.
  • the expression control region may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation.
  • the original promoter may be replaced with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include the CJ1 to CJ7 promoter (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but are not limited thereto.
  • Modification of the nucleotide sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another initiation codon with a higher polypeptide expression rate than the endogenous initiation codon. It may be substituted, but is not limited thereto.
  • Modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide.
  • the combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
  • the replacement may be specifically performed by inserting the polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used at this time may further include a selection marker for checking whether the chromosome is inserted.
  • the selectable marker is as described above.
  • Introduction of a foreign polynucleotide exhibiting the activity of the polypeptide may be introduction of a foreign polynucleotide encoding a polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and expression of the introduced polynucleotide in a host cell can generate a polypeptide and increase its activity.
  • the codon optimization of the polynucleotide encoding the polypeptide is codon optimization of the endogenous polynucleotide to increase transcription or translation in the host cell, or optimization of the transcription or translation of the foreign polynucleotide in the host cell. It may be that the codons of this have been optimized.
  • Analyzing the tertiary structure of the polypeptide to select and modify or chemically modify the exposed site for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored, depending on the degree of sequence similarity. It may be to determine a template protein candidate according to the method, confirm the structure based on this, and modify or modify an exposed portion to be chemically modified to be modified or modified.
  • Such enhancement of polypeptide activity is an increase in the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or unmodified microbial strain, or an increase in the amount of the product produced from the corresponding polypeptide. It may be, but is not limited thereto.
  • modulation of a polypeptide activity may be “enhancing” and/or “attenuating” a polypeptide activity, but is not limited thereto.
  • GltA may have enhanced or weakened activity, but is not limited thereto.
  • Another aspect of the present application provides a method for producing poly-4-hydroxybutyrate (poly(4-hydroxybutyrate); P4HB) comprising culturing the microorganism of the present application.
  • poly-4-hydroxybutyrate is a polymer of 4-hydroxybutyrate and is a compound belonging to polyester.
  • the poly-4-hydroxybutyrate may be mixed with poly-4-hydroxybutanoate (P4HA), and may be represented by Formula 1 below, but is not limited thereto.
  • n is an integer greater than or equal to 1
  • the term "culture” means growing the microorganism of the present application under appropriately controlled environmental conditions.
  • the culturing process may be performed according to appropriate media and culture conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain.
  • the culture may be batch, continuous and/or fed-batch, but is not limited thereto.
  • the microorganism of the present application can be cultured while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing appropriate carbon sources, nitrogen sources, phosphorus, inorganic compounds, amino acids, and/or vitamins.
  • the culture temperature may be maintained at 20 to 35 ° C, specifically 25 to 35 ° C, 28 to 35 ° C, about 10 to 160 hours, about 20 hours to 130 hours, about 24 hours to 120 hours, about It may be cultured for 36 hours to 120 hours, about 48 hours to 120 hours, about 48 hours, about 72 hours, or about 120 hours, but is not limited thereto.
  • Poly-4-hydroxybutyrate produced by the culture of the present application may be secreted into the medium or remain in the microorganism.
  • the poly-4-hydroxybutyrate production method of the present application includes preparing the microorganism of the present application, preparing a medium for culturing the microorganism, or a combination thereof (in any order, in any order), For example, prior to the culturing step, it may be further included.
  • the method for producing poly-4-hydroxybutyrate of the present application may further include a step of recovering poly-4-hydroxybutyrate from the culture medium (culture medium) or the microorganism of the present application. there is.
  • the recovering step may be further included after the culturing step.
  • the collection collects the desired poly-4-hydroxybutyrate using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method. It may be For example, centrifugation, filtration, treatment with a precipitating agent for crystallized proteins (salting out), extraction, cell disruption, sonication, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography It may be used in combination with various chromatography such as chromatography, affinity chromatography, HPLC, or these methods, and the desired poly-4-hydroxybutyrate can be recovered from a medium or microorganism using a suitable method known in the art. can
  • the poly-4-hydroxybutyrate production method of the present application may additionally include a purification step.
  • the purification may be performed using suitable methods known in the art.
  • the recovery step and the purification step are performed temporally (or continuously) regardless of order, or simultaneously Alternatively, it may be integrated and performed in one step, but is not limited thereto.
  • Another aspect of the present application is culturing the microorganism of the present application; Recovering poly-4-hydroxybutyrate from the microorganism or culture medium; and decomposing poly-4-hydroxybutyrate into 1,4-butanediol.
  • the method for producing 1,4-butanediol of the present application may further include decomposing poly-4-hydroxybutyrate produced by the microorganism of the present application into 1,4-butanediol.
  • the decomposing step may be further included after the culturing step or the recovering step.
  • the decomposing step may be performed using a suitable method known in the art.
  • the step of decomposing the poly-4-hydroxybutyrate into 1,4-butanediol may be thermal decomposition, hydrogenation, or a combination thereof.
  • compositions for producing poly-4-hydroxybutyrate comprising the microorganism or a culture thereof of the present application.
  • microorganism poly-4-hydroxybutyrate and the like are as described in other embodiments.
  • composition of the present application may further include any suitable excipient commonly used, and such an excipient may be, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or an isotonic agent, but is limited thereto It is not.
  • excipient commonly used, and such an excipient may be, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or an isotonic agent, but is limited thereto It is not.
  • Another aspect of the present application provides a poly-4-hydroxybutyrate production use of the microorganism or its culture of the present application.
  • Another aspect of the present application provides a use of the microorganism or culture thereof of the present application for producing 1,4-butanediol.
  • microorganism poly-4-hydroxybutyrate and the like are as described in other embodiments.
  • Example 1 P4HB production using phosphoenolpyruvate carboxylase expression regulation and oxidative TCA pathway
  • P4HB production was evaluated using glucose in E. coli.
  • Glucose can be oxidized to one phosphoenolpyruvate (PEP), one acetyl-CoA, and carbon dioxide through the phosphotransferase system.
  • PEP fixes one carbon dioxide and can be converted to oxaloacetate by phosphoenolpyruvate carboxylase (PPC).
  • Acetyl-CoA and oxaloacetate can be oxidized to two carbon dioxide and one succinyl-CoA via citrate.
  • Poly-4-hydroxybutyrate (P4HB) may be produced from succinyl-CoA, an intermediate in this TCA pathway.
  • P4HB from succinyl-CoA is converted to succinyl semialdehyde by NADH or NADPH-dependent succinate semialdehyde dehydrogenase (SucD).
  • Succinyl semialdehyde is converted to 4-hydroxybutyrate (4HB) by NADH-dependent 4-hydroxybutyric acid dehydrogenase (4HbD), which in turn is converted to 4-hydroxybutyric acid dehydrogenase (4HbD). It can be converted to 4-hydroxybutyryl-CoA by butyryl-coA transferase (OrfZ).
  • poly-4-hydroxy from 4-hydroxybutyril-CoA by poly(3-hydroxyalkanoate) polymerase (PhaC) Butyrate (poly-4-hydroxybutyrate; P4HB) was allowed to be produced.
  • SucD, 4HbD, OrfZ, PhaC, PPC and their gene sequences are shown in SEQ ID NO: 1 to SEQ ID NO: 8, SEQ ID NO: 13, and SEQ ID NO: 14.
  • M9-minimum medium containing glucose as a carbon source was used as the medium, and absorbance was measured after incubation in a 96-well plate at 48 hours, 800 rpm, and 37°C.
  • Example 1-2 The three promoters prepared in Example 1-2 were introduced into the microbial strain having the P4HB biosynthetic pathway of Example 1-1, and the following three microorganisms, which are P4HB producing strains, were prepared. SucD, 4HbD, OrfZ, PhaC, PPC and their gene sequences are shown in SEQ ID NO: 1 to SEQ ID NO: 8, SEQ ID NO: 13, and SEQ ID NO: 14.
  • Promoters used for the expression of target genes include PuspA, PsynK1, and PsynK2, and gene information about these can be obtained from ecocyc.org and parts.igem.org.
  • the promoter sequences used are as follows.
  • the target gene was introduced using ligase into a desired vector (pCL) by obtaining gene information from a known database, preparing a gene and primers therefor, and amplifying the target gene through PCR (polymerase chain reaction). .
  • pCL desired vector
  • PCR polymerase chain reaction
  • a chemical synthesis method was also used, which was used when codon optimization was required to ensure smooth expression in E. coli.
  • the promoter and terminator were linked to the target gene through PCR.
  • a general heat shock technique was used. Electroporation technology was used when higher efficiency was required.
  • oligomers were used for attenuation/deletion of specific genes on the chromosome, and Red/ET recombineering, which is generally known, was used, and related techniques were described by Datsenko and Wanner (Proc. Natl. Acad. Sci, USA, 2000, 97,6640). -6645) was used.
  • the oligomers used for deletion are as follows.
  • a flask experiment was performed to test the P4HB production of the three strains prepared in Examples 1-3. Culture conditions were 48 hours, 230 rpm, and 30 ° C., and the medium was prepared and used based on previously published data (US Patent No. 9,084,467 B2). Specifically, a medium was prepared by adding 1x trace salt solution to 1xE2 minimal medium, and its carbon:nitrogen ratio (C/N ratio) was adjusted to 30:1 and used.
  • P4HB analysis conditions were set by referring to published literature (US Patent No. 9,084,467 B2). Briefly, as described above, 1 mL each of the cultures of the three strains was collected and the cells were recovered at 4,000 rpm. After freeze-drying the recovered strain, a preparation for butanolysis of the sample (a preparation obtained by adding 99.9% butanol and 4N HCl to a dioxane solution) was added and heat-treated at 93 ° C. for 6 hours. The heat-treated solution was phase separated at 600 rpm, and an organic phase was collected and analyzed by gas chromatography (GC). A standard reagent of 4-hydroxybutyrate (4HB) was prepared using 10% ⁇ -butyrolactone.
  • GC gas chromatography
  • strain number 4 For efficient rTCA pathway activation, a strain (strain number 4 below) in which the pyruvate kinase gene (pykFA) was removed was prepared. The three strains produced are shown in Table 4 below, and strain number 3 below is the same as strain number 3 in Table 2 above.
  • SucD, 4HbD, OrfZ, PhaC, PPC and their gene sequences are shown in SEQ ID NO: 1 to SEQ ID NO: 8, SEQ ID NO: 13, and SEQ ID NO: 14.
  • MaeAB, AspC, PykFA, and their gene sequences are shown in SEQ ID NO: 9 to SEQ ID NO: 12, SEQ ID NO: 21 to SEQ ID NO: 24, SEQ ID NO: 29, and SEQ ID NO: 30.
  • the concentration of PEP in cells is preserved by controlling the carbon flow from PEP to pyruvate, and based on this, activation of the PEP carboxylase pathway can be promoted. This suggests that the intracellular concentration of oxaloacetate, which is essential for the rTCA pathway, can be increased.
  • strains with additionally removed aminotransferase (AspC) and malate dehydrogenase (MaeAB) were also produced. (Strain No. 5) was used to evaluate rTCA-based P4HB production.
  • P4HB productivity was evaluated for the strains in Table 4 in the same manner as in Examples 1-4, and when the rTCA pathway was activated, cell growth was improved, and as shown in FIG. 7, the strain into which the rTCA pathway was introduced (strain In Nos. 4 and 5), it was confirmed that the yield of P4HB was improved from about 28% to a maximum of 43% compared to the strain in which the rTCA pathway was not introduced (Strain No. 3). When using the rTCA route, the theoretical maximum yield of P4HB from the existing 48 wt% level could be improved to 58 wt%.
  • Example 3 P4HB production using the glyoxylate pathway
  • isocitrate dehydrogenase (icd) on the TCA pathway was removed to forcibly induce carbon flow into the glyoxylate pathway.
  • E. coli-derived isocitrate lyase (aceA) and malate synthase (aceB) are introduced, but the existing wild-type promoter in the introduced microorganism is replaced with a synthetic promoter to produce glucose-based They were not subjected to catabolic repression.
  • the two strains produced are shown in Table 5 below.
  • SucD, 4HbD, OrfZ, PhaC, PPC and their gene sequences are shown in SEQ ID NO: 1 to SEQ ID NO: 8, SEQ ID NO: 13, and SEQ ID NO: 14.
  • the following Icd, AceBA, and gene sequences thereof are shown in SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 43, and SEQ ID NO: 44.
  • both succinate and maleate which are products of the glyoxylate pathway, can be converted to succinyl-CoA using the reduced TCA pathway.
  • the produced succinyl-CoA can be converted to P4HB through the P4HB generation pathway of Example 1-1 above.
  • 50 mM of Monosodium glutamate (MSG) was added to externally reinforce glutamate.
  • MSG Monosodium glutamate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 출원은 신규한 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올 생산방법 및 폴리-4-하이드록시부티레이트 생산 경로를 이용하는 미생물에 관한 것으로, 산화적 TCA 경로, 환원형 TCA 경로 또는 글리옥실레이트 경로를 이용하여 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산능을 증가시키고자 한다.

Description

신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법
본 출원은 신규한 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올 생산방법 및 폴리-4-하이드록시부티레이트 생산 경로를 이용하는 미생물에 관한 것이다.
1,4-부탄다이올을 생산하기 위하여, 고효율 생산 미생물 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 미생물을 이용한 1,4-부탄다이올 생산은 대체로 4-히드록시부틸알데히드 생성 반응을 동반하나(US 9121042 B2), 4-히드록시부틸알데히드는 알데히드의 일종으로서 미생물에 유해한 단점이 있다.
또한, 현재까지 알려진 바이오 1,4-부탄다이올 생산 기술 중 하나로서, 1,4-부탄다이올 직접 발효로 포도당에서 발효를 통해 1,4-부탄다이올을 미생물에서 바로 생산하는 방법이나, 1,4-부탄다이올 자체의 미생물에 대한 독성으로 인해 생산성에 제약이 있다. 따라서, 효과적인 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산능 증가를 위한 연구가 여전히 필요한 실정이다.
본 출원의 해결하고자 하는 과제는 신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법 및 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올 생산용 미생물을 제공하는 것이다.
본 출원의 하나의 목적은 1,4-부탄다이올 생산방법을 제공한다.
본 출원의 하나의 목적은 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올 생산용 미생물을 제공한다.
본 출원의 하나의 목적은 폴리-4-하이드록시부티레이트 생산방법을 제공한다.
본 출원의 방법 또는 미생물을 이용할 경우, 효과적인 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산이 가능하다.
도 1은 산화적 TCA 경로를 이용한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산 경로를 나타내는 도이다.
도 2는 환원형 TCA 경로를 이용한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산 경로를 나타내는 도이다.
도 3은 글리옥실레이트 경로를 이용한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산 경로를 나타내는 도이다.
도 4 내지 도 6는 환원형 TCA 경로를 이용한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산 경로에서 포스포에놀피루베이트-옥살레이트 경로 강화 방법을 나타내는 도이다.
도 7은 환원형 TCA 경로를 이용한 폴리-4-하이드록시부티레이트 생산 결과를 나타낸 도이다.
도 8은 글리옥실레이트 경로를 이용한 폴리-4-하이드록시부티레이트 생산 결과를 나타낸 도이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 출원의 하나의 양태는 하기 (1) 내지 (5)를 포함하는 1,4-부탄다이올 생산방법을 제공한다:
(1) 숙시닐-coA (succinyl-coA; SuCoA)를 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)로 전환하는 단계;
(2) 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)를 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)로 전환하는 단계;
(3) 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)를 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)로 전환하는 단계;
(4) 둘 이상의 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)를 중합하여 폴리-4-하이드록시부티레이트(poly-4-hydroxybutyrate; P4HB)를 생산하는 단계; 및
(5) 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해시키는 단계.
상기 (1) 내지 (4)는 각각 숙시네이트 세미알데하이드 디하이드로게나제(succinate semialdehyde dehydrogenase), 4-하이드록시부티릭산 디하이드로게나제 (4-hydroxybutyric acid dehydrogenase), 4-하이드록시부티릴-coA 트랜스퍼라제 (4-hydroxybutyryl-CoA transferase), 및 폴리(3-하이드록시알카노에이트) 폴리머라제(Poly(3-hydroxyalkanoate) polymerase)로 이루어지는 군에서 선택되는 어느 하나 이상의 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것일 수 있으나, 이에 제한되지 않는다.
상기 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제로 이루어진 군에서 선택되는 어느 하나 이상은 외래 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이를 포함하는 벡터를 포함하는 미생물에 의해 강화된 것일 수 있으나, 이에 제한되지 않는다.
포도당 발효로 직접 1,4-부탄다이올을 생산하는 경우에는 1,4-부탄다이올의 미생물에 대한 독성으로 인해 생산성에 제약이 있다. 반면, 본 출원에서 세포 친화적인 폴리-4-하이드록시부티레이트를 우선적으로 생산하므로 본 출원의 생산방법은 폴리-4-하이드록시부티레이트 생산성이 증가된 것일 수 있다. 또한, 본 출원은 폴리-4-하이드록시부티레이트 생산 단계에서 유전자를 도입하여 옥살로아세테이트를 이용한 환원형 TCA 경로를 활성화; 고생산성 발효공정; 및/또는 환원형 TCA 경로를 통해 발효에서 발생하는 이산화탄소를 재이용으로 폴리-4-하이드록시부티레이트 생산능이 증가된 것일 수 있다. 또한, 이와 같은 폴리-4-하이드록시부티레이트 생산성 증가에 따라 1,4-부탄다이올의 생산성이 추가로 증가된 것일 수 있다.
본 출원의 1,4-부탄다이올 생산방법은 TCA 경로(TCA cycle), 환원형 TCA 경로(reductive TCA cycle), 및 글리옥실레이트 경로(glyoxylate cycle)로 이루어진 군에서 선택되는 어느 하나 이상의 경로를 더 포함할 수 있다. 상기 경로는 숙시닐-coA로 전환하는 것일 수 있다.
일 구현 예로, 본 출원의 1,4-부탄다이올 생산방법은 TCA 경로를 포함하는 것일 수 있다. 이 때, 포도당 한 분자는 해당과정(glycolysis pathway)을 통해 생산된 피루베이트가 TCA 경로를 거쳐 숙시닐-coA로 전환될 수 있다.
상기 TCA 경로는 (a1) 피루베이트를 아세틸-coA로 전환하는 단계; (b1) 아세틸-coA 및 옥살로아세테이트를 시트레이트로 전환하는 단계; (c1) 시트레이트를 아이소시트레이트로 전환하는 단계; (d1) 아이소시트레이트를 α-케토글루타레이트로 전환하는 단계; (e1) α-케토글루타레이트를 숙시닐-coA로 전환하는 단계; 및 (f1) 피루베이트를 옥살로아세테이트로 전환하는 단계로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것일 수 있다.
상기 (d1)은 아이소시트레이트에서 α-케토글루타레이트 및 이산화탄소로 전환되는 단계일 수 있고, 상기 (e1)은 α-케토글루타레이트에서 숙시닐-coA 및 이산화탄소로 전환되는 단계일 수 있다.
일 구현 예로, 상기 (a1) 내지 (f1)은 각각 피루베이트 디하이드로게나제(pyruvate dehydrogenase), 시트레이트 신타아제(citrate synthase), 아코니타제(aconitase), 아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase), α-케토글루타레이트 디하이드로게나제(α-ketoglutarate dehydrogenase), 및 피루베이트 카복실라아제(pyruvate carboxylase)로 이루어지는 군에서 선택되는 어느 하나 이상의 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것일 수 있으나, 이에 제한되지 않는다.
상기 생산방법은 (g1) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계를 더 포함하는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 (g1) 은 포스포에놀피루베이트 카복실라제(phosphoenolpyruvate carboxylase) 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 생산방법은 질소, 황, 인, 및 마그네슘으로 구성되는 군에서 선택되는 하나 이상의 제한 조건에서 포스포에놀피루베이트 카복실라제 유전자(ppc)의 전사가 저해받지 않는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 생산방법은 질소, 인, 황, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상을 제한시키는 단계를 포함하는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 생산방법은 질소, 인, 황, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상이 제한시키는 단계를 포함하더라도 상기 제한시키는 단계를 포함하지 않는 방법에 비해 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올이 생산이 감소되지 않는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 전사는 프로모터에 의해 저해받지 않는 것일 수 있으나, 이에 제한되지 않는다. 상기 프로모터는 프로모터 활성을 가지는 서열번호 45로 표시되는 폴리뉴클레오티드일 수 있고, 상기 프로모터 활성을 가지는 서열번호 45로 표시되는 뉴클레오티드 서열의 목적 유전자는 포스포에놀피루베이트 카복실라제를 코딩하는 폴리뉴클레오티드일 수 있다. 질소제한 조건에서 ppc 의 전사가 저해받지 않는 프로모터를 사용할 경우 rTCA 경로가 강화되고 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산이 증가될 수 있다. 질소제한 조건에서 포스포에놀피루베이트 카복실라제 유전자(ppc)의 전사가 저해받지 않으면서 야생형 ppc 프로모터와 동등 이상의 활성을 갖는 프로모터를 사용할 경우, 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산에 효과적일 수 있다.
일 구현 예로, 상기 생산방법은 (g1) 단계가 강화된 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 1,4-부탄다이올 생산방법은 환원형 TCA 경로를 포함하는 것일 수 있다. 상기 환원형 TCA 경로를 통해 옥살로아세테이트는 산화적 TCA 경로에 포함된 카복시이탈(decarboxylation) 과정을 거치지 않아 부가적인 이산화탄소 발생 없이 말레이트(malate), 푸마레이트(fumarate), 및 숙시네이트(succinate)를 거쳐 숙시닐-coA로 전환될 수 있다.
상기 환원형 TCA 경로는 (a2) 옥살로아세테이트를 말레이트로 전환하는 단계; (b2) 말레이트를 푸마레이트로 전환하는 단계; (c2) 푸마레이트를 숙시네이트로 전환하는 단계; 및 (d2) 숙시네이트를 숙시닐-coA로 전환하는 단계로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
본 출원의 생산방법은 상기 환원형 TCA 경로에 앞서, (e2) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계가 더 포함된 것일 수 있다. 상기 (e2)는 상기 (g1)와 동일할 수 있다.
일 구현 예로, 본 출원의 생산방법은 환원형 TCA 경로가 강화된 것일 수 있으며, 상기 환원형 TCA 경로 강화는 (e2) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계의 강화를 포함할 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 환원형 TCA 경로는 하기 (I) 내지 (XII)로 이루어진 군에서 선택되는 어느 하나 이상에 의해 강화된 것일 수 있으나, 이에 제한되지 않는다:
(I) 피루베이트 키나아제(pyruvate kinase) 약화; (II) 포스포에놀피루베이트 카복실라제(PEP carboxylase) 강화; (III) 카보닉 안하이드라제(carbonic anhydrase) 강화; (IV) 시트레이트 신타아제(citrate synthase) 조절; (V) 피루베이트 카복실라제(pyruvate carboxylase) 강화; (VI) NAD+-의존성 말레이트 디하이드로게나제(NAD+-dependent malate dehydrogenase) 약화; (VII) NADP+-의존성 말레이트 디하이드로게나제(NADP+-dependent malate dehydrogenase) 약화; (VIII) 포스포글루코네이트 디하이드라타아제(phosphogluconate dehydratase) 약화; (IX) 2-케토-4-하이드록시글루타레이트:2-케토-3-디옥시글루코네이트 6-포스페이트 알돌레이즈(2-keto-4-hydroxyglutarate:2-keto-3-deoxygluconate 6-phosphate aldolase; KHG/KDPG aldolase) 약화; (X) 아스파테이트 아미노트랜스퍼라제(aspartate aminotransferase) 약화; (XI) 글루코스-특이적 PTS 효소 IIBC 컴포넌트(glucose-specific PTS enzyme IIBC component) 약화; 및 (XII) 바이카보네이트 트랜스포터(bicarbonate transporter) 강화.
일 구현 예로, 상기 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계는 피루베이트 키나아제 약화 및 카보닉 안하이드라제 강화; 피루베이트 키나아제 약화 및 포스포에놀피루베이트 카복실라제 강화; 시트레이트 신타아제 조절 및 포스포에놀피루베이트 카복실라제 강화; 시트레이트 신타아제 조절 및 카보닉 안하이드라제 강화; 및 피루베이트 키나아제 약화, 포스포에놀피루베이트 카복실라제 강화, 및 피루베이트 카복실라제 강화에 의해 강화된 것일 수 있으며, 선택적으로 카보닉 안하이드라제 강화, NAD+-의존성 말레이트 디하이드로게나제 약화, NADP+-의존성 말레이트 디하이드로게나제 약화, 포스포글루코네이트 디하이드라타아제 약화, KHG/KDPG 알돌레이즈 약화, 아스파테이트 아미노트랜스퍼라제 약화, 글루코스-특이적 PTS 효소 IIBC 컴포넌트 약화; 및/또는 바이카보네이트 트랜스포터 강화로 구성되는 군에서 선택되는 어느 하나 이상에 의해 강화된 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 환원형 TCA 경로는 (II) 포스포에놀피루베이트 카복실라제 강화; (VI) NAD+-의존성 말레이트 디하이드로게나제 약화;
(VII) NADP+-의존성 말레이트 디하이드로게나제 약화; 및/또는
(X) 아스파테이트 아미노트랜스퍼라제 약화를 포함하는 것일 수 있다.
일 구현 예로, 상기 환원형 TCA 경로는 (II) 포스포에놀피루베이트 카복실라제가 강화된 것일 수 있다.
일 구현 예로, 상기 환원형 TCA 경로는 (VI) NAD+-의존성 말레이트 디하이드로게나제 및 (VII) NADP+-의존성 말레이트 디하이드로게나제가 약화된 것일 수 있다.
일 구현 예로, 상기 환원형 TCA 경로는 (X) 아스파테이트 아미노트랜스퍼라제가 약화된 것일 수 있다.
일 구현 예로, 본 출원의 rTCA 경로를 통해 발효에서 발생되는 이산화탄소를 재이용하여 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올 생산 수율을 증가시키는 것일 수 있다.
일 구현 예로, 본 출원의 1,4-부탄다이올 생산방법은 글리옥실레이트 경로를 포함하는 것일 수 있다.
상기 글리옥실레이트 경로는 (a3) 아이소시트레이트를 글리옥실레이트(glyoxylate) 및 숙시네이트(succinate)로 전환하는 단계; (b3) 글리옥실레이트(glyoxylate) 및 아세틸-coA를 말레이트 및 coA로 전환하는 단계; (c3) 시트레이트를 아이소시트레이트로 전환하는 단계; (d3) 피루베이트를 옥살로아세테이트로 전환하는 단계; (e3) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계; (f3) 옥살로아세테이트 및 아세틸-coA를 시트레이트로 전환하는 단계; (g3) 말레이트를 푸마레이트로 전환하는 단계; (h3) 푸마레이트를 숙시네이트로 전환하는 단계; 및 (i3) 숙시네이트를 숙시닐-coA로 전환하는 단계로 구성되는 군에서 어느 하나 이상을 더 포함하는 것일 수 있으나, 이에 제한되지 않는다. 상기 (f3)은 (b1)과, 상기 (g3)은 (b2)와, 상기 (h3)은 (c2)와, 상기 (i3)은 상기 (d1)와 동일할 수 있다.
일 구현 예로, 상기 글리옥실레이트 경로는 (i) 시트레이트 신타아제(citrate synthase) 강화; (ii) 아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase) 약화; (iii) 아이소시트레이트 리아제(isocitrate lyase) 강화; (iv) 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈(Isocitrate dehydrogenase kinase/phosphatase) 강화; (v) 말레이트 신타아제 G(malate synthase G) 강화; 및 (vi) 말레이트 신타아제 A(malate synthase A) 강화로 이루어진 군에서 선택되는 어느 하나 이상에 의한 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 글리옥실레이트 경로를 포함하는 본 출원의 방법은 (j3) α-케토글루타레이트를 숙시닐-coA로 전환하는 단계 및/또는 (k3) 옥살로아세테이트를 말레이트로 전환하는 단계가 더 약화된 것일 수 있으나, 이에 제한되지 않는다.
상기 글리옥실레이트 경로의 생성물인 숙시네이트 및 말레이트는 모두 환원형 TCA 경로를 이용하여 숙시닐-coA로 전환될 수 있다.
본 출원에서, "숙시네이트 세미알데하이드 디하이드로게나제(succinate semialdehyde dehydrogenase)"는 숙시닐-coA (succinyl-coA; SuCoA)가 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 숙시네이트 세미알데하이드 디하이드로게나제는 SucD와 혼용될 수 있다.
일 구현 예로, 본 출원의 SucD 단백질은 클로스트리듐 클루이베리(Clostridium Kluyveri) 유래일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 SucD에 포함된다. 일 구현 예로, 본 출원의 SucD 단백질은 서열번호 1 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 숙시네이트 세미알데하이드 디하이드로게나제 유전자는 sucD, 숙시네이트 세미알데하이드 디하이드로게나제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 sucD 유전자는 예를 들면 서열번호 2의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "4-하이드록시부티릭산 디하이드로게나제 (4-hydroxybutyric acid dehydrogenase)"는 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)가 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 4-하이드록시부티릭산 디하이드로게나제는 숙시네이트 세미알데하이드 리덕타제(succinate semialdehyde reductase) 및 4HbD와 혼용될 수 있다.
일 구현 예로, 본 출원의 4HbD 단백질은 아라비돕시스 탈리아나(Arabidopsis thaliana) 유래일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 4HbD에 포함된다. 일 구현 예로, 본 출원의 4HbD 단백질은 서열번호 3 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 4-하이드록시부티릭산 디하이드로게나제 유전자는 4hbD, 4-하이드록시부티릭산 디하이드로게나제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 4hbD 유전자는 예를 들면 서열번호 4의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "4-하이드록시부티릴-coA 트랜스퍼라제 (4-hydroxybutyryl-CoA transferase)"는 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)가 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 4-하이드록시부티릴-coA 트랜스퍼라제는 OrfZ와 혼용될 수 있다.
일 구현 예로, 본 출원의 OrfZ 단백질은 클로스트리듐 클루이베리(Clostridium Kluyveri) 유래일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 OrfZ에 포함된다. 일 구현 예로, 본 출원의 OrfZ 단백질은 서열번호 5 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 4-하이드록시부티릴-coA 트랜스퍼라제 유전자는 orfZ, 4-하이드록시부티릴-coA 트랜스퍼라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 orfZ 유전자는 예를 들면 서열번호 6의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 SucD, 4HbD, 및/또는 OrfZ 의 아미노산 및 유전자 서열은 US 9084467 B2에서 얻을 수 있으나, 이에 제한되지 않는다.
본 출원에서, "폴리(3-하이드록시알카노에이트) 폴리머라제(Poly(3-hydroxyalkanoate) polymerase)"는 둘 이상의 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)를 폴리-4-하이드록시부티레이트(poly-4-hydroxybutyrate; P4HB)로 중합하는 반응을 촉매할 수 있는 효소이다. 상기 폴리(3-하이드록시알카노에이트) 폴리머라제는 PhaC와 혼용될 수 있다.
일 구현 예로, 본 출원의 PhaC 단백질은 다양한 미생물 유래일 수 있고, 구체적으로는 슈도모나스 푸티다(Pseudomonas putida) 또는 랄스토니아 유트로파(Ralstonia eutropha) 유래일 수 있으며, 이들 유래의 융합 단백질일 수 있고 이와 동일한 서열 또는 활성을 갖는 한 PhaC에 포함된다.
일 구현 예로, 본 출원의 PhaC 단백질은 서열번호 7 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
일 구현 예로, 상기 PhaC의 아미노산 서열 및 유전자 서열은 WO 2014058655 A1에서 얻을 수 있으나, 이에 제한되지 않는다.
본 출원에서, 폴리(3-하이드록시알카노에이트) 폴리머라제 유전자는 phaC, 폴리(3-하이드록시알카노에이트) 폴리머라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 phaC 유전자는 예를 들면 서열번호 8의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, 피루베이트 디하이드로게나제(pyruvate dehydrogenase)는 피루베이트가 아세틸-coA로 전환되는 반응을 촉매할 수 있는 효소; 시트레이트 신타아제(citrate synthase)는 옥살로아세테이트 및 아세틸-coA를 축합하여 시트레이트를 생성하는 반응을 촉매할 수 있는 효소; 아코니타제(aconitase)는 시트레이트가 아이소시트레이트로 전환되는 반응을 촉매할 수 있는 효소; 아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase)는 아이소시트레이트가 α-케토글루타레이트로 전환되는 반응을 촉매할 수 있는 효소; α-케토글루타레이트 디하이드로게나제(α-ketoglutarate dehydrogenase)는 α-케토글루타레이트가 숙시닐-coA로 전환되는 반응을 촉매할 수 있는 효소; 숙시닐-coA 신테타아제(succinyl-coA synthetase)는 숙시닐-coA가 숙시네이트로 전환되는 반응을 촉매할 수 있는 효소; 및 피루베이트 카복실라아제(pyruvate carboxylase)는 피루베이트가 옥살로아세테이트로 전환되는 반응을 촉매할 수 있는 효소를 의미한다.
상기 피루베이트 디하이드로게나제 내지 피루베이트 카복실라아제는 TCA 경로에 포함되는 효소일 수 있으며, 미생물 또는 생산방법에 내재적인 것일 수 있고, 또는 야생형 효소에 비해 강화된 것일 수 있다.
본 출원에서, "피루베이트 키나아제(pyruvate kinase)"는 포스포에놀피루베이트(phosphoenolpyruvate; PEP)가 피루베이트로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 피루베이트 키나아제는 Pyk와 혼용될 수 있다.
일 구현 예로, 본 출원의 Pyk 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 Pyk에 포함된다.
일 구현 예로, 본 출원의 Pyk 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 Pyk에 포함된다. 일 구현 예로, 본 출원의 Pyk 단백질은 서열번호 9, 서열번호 11 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 피루베이트 키나아제 유전자는 pykA, pykF, 및 피루베이트 키나아제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 pykA, pykF 유전자는 예를 들면 서열번호 10 또는 서열번호 12의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "포스포에놀피루베이트 카복실라제(PEP carboxylase)"는 포스포에놀피루베이트가 옥살로아세테이트로 전환되는 반응을 촉매하는 효소이다. 상기 포스포에놀피루베이트 카복실라제는 PPC와 혼용될 수 있다.
일 구현 예로, 본 출원의 PPC 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 PPC에 포함된다.
일 구현 예로, 본 출원의 PPC 단백질은 강화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 PPC에 포함된다. 일 구현 예로, 본 출원의 PPC 단백질은 서열번호 13 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 포스포에놀피루베이트 카복실라제 유전자는 ppc 및 포스포에놀피루베이트 카복실라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 ppc 유전자는 예를 들면 서열번호 14 의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 질소(nitrogen), 황(sulfur), 인(phosphorous), 및 마그네슘(magnesium)으로 구성되는 군에서 선택되는 어느 하나 이상의 영양소 제한 조건에서도 폴리-4-하이드록시부티레이트 생산능이 있고, 특히, 이의 증가된 생산능을 갖는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 질소(nitrogen), 황(sulfur), 인(phosphorous), 및/또는 마그네슘(magnesium) 제한 조건에서 포스포에놀피루베이트 카복실라제 유전자(ppc)의 전사가 저해받지 않는 프로모터를 더 포함하는 것일 수 있다. 상기 프로모터는 프로모터 활성을 가지는 서열번호 45로 표시되는 폴리뉴클레오티드일 수 있고, 상기 프로모터 활성을 가지는 서열번호 45로 표시되는 뉴클레오티드 서열의 목적 유전자는 포스포에놀피루베이트 카복실라제를 코딩하는 폴리뉴클레오티드일 수 있다. 질소제한 조건에서 ppc 의 전사가 저해받지 않는 프로모터를 사용할 경우 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산이 증가될 수 있다. 기존 대장균의 ppc 발현은 질소제한 조건에서 저해를 받으나, 미생물은 질소제한 조건에서 포스포에놀피루베이트 카복실라제 유전자(ppc)의 전사가 저해받지 않으면서 야생형 ppc 프로모터와 동등 이상의 활성을 갖는 프로모터를 사용할 경우, 폴리-4-하이드록시부티레이트 및/또는 1,4-부탄다이올의 생산에 효과적일 수 있다.
본 출원에서, "카보닉 안하이드라제(carbonic anhydrase)"는 하이드로젠카보네이트(hydrogencarbonate)를 이산화탄소 및 물로 분해하는 것을 촉매할 수 있는 효소이다. 상기 카보닉 안하이드라제는 포스포에놀피루베이트 카복실라제의 보조 역할을 수행하는 효소일 수 있고, PPC의 원활한 성능발휘를 위해서는 중탄산염(Bicarbonate; HCO3-) 공급이 필요한데, 카보닉 안하이드라제는 이산화탄소로부터 HCO3-를 생산할 수 있는 효소일 수 있다. 상기 카보닉 안하이드라제는 EcaA와 혼용될 수 있다.
일 구현 예로, 본 출원의 EcaA 단백질은 노스톡 속(Nostoc sp.) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 EcaA에 포함된다.
일 구현 예로, 본 출원의 EcaA 단백질은 강화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 EcaA에 포함된다. 일 구현 예로, 본 출원의 EcaA 단백질은 서열번호 15 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 카보닉 안하이드라제 유전자는 ecaA 및 카보닉 안하이드라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 ecaA 유전자는 예를 들면 서열번호 16의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "시트레이트 신타아제(citrate synthase)" 옥살로아세테이트 및 아세틸-coA를 축합하여 시트레이트를 생성하는 반응을 촉매할 수 있는 효소이다. 상기 시트레이트 신타아제는 GltA와 혼용될 수 있다.
일 구현 예로, 본 출원의 GltA 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 GltA에 포함된다.
일 구현 예로, 본 출원의 GltA 단백질은 조절된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 GltA에 포함된다. 일 구현 예로, 본 출원의 GltA 단백질은 서열번호 17 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 시트레이트 신타아제 유전자는 gltA 및 시트레이트 신타아제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 gltA 유전자는 예를 들면 서열번호 18의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "피루베이트 카복실라제(pyruvate carboxylase)"는 포스포에놀피루베이트가 옥살로아세테이트로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 피루베이트 카복실라제는 Pyc와 혼용될 수 있다.
일 구현 예로, 본 출원의 Pyc 단백질은 리조븀 에틀리(Rhizobium etli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 Pyc 에 포함된다.
일 구현 예로, 본 출원의 Pyc 단백질은 강화된 것일 수 있고, 외래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 Pyc에 포함된다. 일 구현 예로, 본 출원의 Pyc 단백질은 서열번호 19 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 피루베이트 카복실라제 유전자는 pyc 및 피루베이트 카복실라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 pyc 유전자는 예를 들면 서열번호 20의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "NAD+-의존성 말레이트 디하이드로게나제(NAD+-dependent malate dehydrogenase)"는 말레이트를 피루베이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 NAD+-의존성 말레이트 디하이드로게나제는 MaeA와 혼용될 수 있다.
일 구현 예로, 본 출원의 MaeA 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 MaeA에 포함된다.
일 구현 예로, 본 출원의 MaeA 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 MaeA 에 포함된다. 일 구현 예로, 본 출원의 MaeA 단백질은 서열번호 21 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, NAD+-의존성 말레이트 디하이드로게나제 유전자는 maeA 및 NAD+-의존성 말레이트 디하이드로게나제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 maeA 유전자는 예를 들면 서열번호 22의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "NADP+-의존성 말레이트 디하이드로게나제(NADP+-dependent malate dehydrogenase)"는 말레이트를 피루베이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 NADP+-의존성 말레이트 디하이드로게나제는 MaeB와 혼용될 수 있다.
일 구현 예로, 본 출원의 MaeB 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 MaeB에 포함된다.
일 구현 예로, 본 출원의 MaeB 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 MaeB 에 포함된다. 일 구현 예로, 본 출원의 MaeB 단백질은 서열번호 23 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, NADP+-의존성 말레이트 디하이드로게나제 유전자는 maeB 및 NADP+-의존성 말레이트 디하이드로게나제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 maeB 유전자는 예를 들면 서열번호 24의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "포스포글루코네이트 디하이드라타아제(phosphogluconate dehydratase"는 6-포스포-D-글루코네이트(6-phospho-D-gluconate)가 2-디하이드로-3-디옥시-6-포스포-D-글루코네이트(2-dehydro-3-deoxy-6-phospho-D-gluconate)로 전환되는 반응을 촉매할 수 있는 효소이다. 상기 포스포글루코네이트 디하이드라타아제는 EDD와 혼용될 수 있다.
일 구현 예로, 본 출원의 EDD 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 EDD에 포함된다.
일 구현 예로, 본 출원의 EDD 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 EDD 에 포함된다. 일 구현 예로, 본 출원의 EDD 단백질은 서열번호 25 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 포스포글루코네이트 디하이드라타아제 유전자는 edd 및 포스포글루코네이트 디하이드라타아제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 edd 유전자는 예를 들면 서열번호 26의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "2-케토-4-하이드록시글루타레이트:2-케토-3-디옥시글루코네이트 6-포스페이트 알돌레이즈(2-keto-4-hydroxyglutarate:2-keto-3-deoxygluconate 6-phosphate aldolase; KHG/KDPG aldolase)"는 4-하이드록시-2-옥소글루타레이트를 글리옥실레이트 및 피루베이트로의 전환을 촉매할 수 있는 효소이다. 상기 포스포글루코네이트 디하이드라타아제는 KHG/KDPG 알돌레이즈, Eda와 혼용될 수 있다.
일 구현 예로, 본 출원의 Eda 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 Eda에 포함된다.
일 구현 예로, 본 출원의 Eda 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 Eda 에 포함된다. 일 구현 예로, 본 출원의 Eda 단백질은 서열번호 27 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, KHG/KDPG 알돌레이즈 유전자는 eda 및 KHG/KDPG 알돌레이즈를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 eda 유전자는 예를 들면 서열번호 28의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "아스파테이트 아미노트랜스퍼라제(aspartate aminotransferase)"는 2-옥소글루타레이트 및 아스파테이트를 글루타메이트 및 옥소아세테이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 아스파테이트 아미노트랜스퍼라제는 AspC와 혼용될 수 있다.
일 구현 예로, 본 출원의 AspC 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 AspC에 포함된다.
일 구현 예로, 본 출원의 AspC 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 AspC 에 포함된다. 일 구현 예로, 본 출원의 AspC 단백질은 서열번호 29 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 아스파테이트 아미노트랜스퍼라제 유전자는 aspC, 아스파테이트 아미노트랜스퍼라제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 aspC 유전자는 예를 들면 서열번호 30의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "글루코스-특이적 PTS 효소 IIBC 컴포넌트(glucose-specific phosphoenolpyruvate-dependent sugar phosphotransferase system(PTS) enzyme IIBC component)"는 포도당 수송에 관여하는 효소인 PTS 의 부분이다. 일 구현 예로, 상기 글루코스-특이적 PTS 효소 IIBC 컴포넌트는 포스포에놀피루베이트 pool을 증가시켜, 환원형 TCA 경로를 강화시킬 수 있다. 상기 글루코스-특이적 PTS 효소 IIBC 컴포넌트는 IIBC와 혼용될 수 있다.
일 구현 예로, 본 출원의 IIBC 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 IIBC에 포함된다.
일 구현 예로, 본 출원의 IIBC 단백질은 약화된 것일 수 있고, 이와 동일한 서열 또는 활성을 갖는 한 IIBC에 포함된다. 일 구현 예로, 본 출원의 IIBC 단백질은 서열번호 31 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, 글루코스-특이적 PTS 효소 IIBC 컴포넌트 유전자는 ptsG, 글루코스-특이적 PTS 효소 IIBC 컴포넌트를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 ptsG 유전자는 예를 들면 서열번호 32의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "바이카보네이트 트랜스포터(bicarbonate transporter)"는 중탄산염(bicarbonate)을 수송하는 운반체로서, 이산화탄소의 세포 내 유입을 증가시킬 수 있다. 상기 바이카보네이트 트랜스포터 는 SbtA와 혼용될 수 있다.
일 구현 예로, 본 출원의 SbtA 단백질은 시네코시스티스 속(Synechocyctis sp.)유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 IIBC에 포함된다.
일 구현 예로, 본 출원의 SbtA 단백질은 강화된 것일 수 있고, 외래일 수 있으며, 시아노박테리아(Cyanobacteria) 유래일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 SbtA에 포함된다. 일 구현 예로, 본 출원의 SbtA 단백질은 서열번호 33 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, SbtA 유전자는 sbtA, 바이카보네이트 트랜스포터를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 sbtA 유전자는 예를 들면 서열번호 34의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase)"는 아이소시트레이트를 2-옥소글루타레이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 아이소시트레이트 디하이드로게나제는 Icd와 혼용될 수 있다.
일 구현 예로, 본 출원의 Icd 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 Icd에 포함된다.
일 구현 예로, 본 출원의 Icd 단백질은 약화된 것일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 Icd에 포함된다. 일 구현 예로, 본 출원의 Icd 단백질은 서열번호 35 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, Icd 유전자는 icd, 아이소시트레이트 디하이드로게나제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 icd 유전자는 예를 들면 서열번호 36의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "아이소시트레이트 리아제(isocitrate lyase)"아이소시트레이트를 글리옥실레이트 및 숙시네이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 아이소시트레이트 리아제는 AceA와 혼용될 수 있다.
일 구현 예로, 본 출원의 AceA 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 AceA에 포함된다.
일 구현 예로, 본 출원의 AceA 단백질은 강화된 것일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 AceA에 포함된다. 일 구현 예로, 본 출원의 AceA 단백질은 서열번호 37 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, AceA 유전자는 aceA, 아이소시트레이트 리아제를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 aceA 유전자는 예를 들면 서열번호 38의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈(Isocitrate dehydrogenase kinase/phosphatase)"는 아이소시트레이트 디하이드로게나제를 인산화 또는 탈인산화를 촉매할 수 있는 효소이다. 일 구현 예로, 상기 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈는 Icd를 약화시킬 수 있다, 상기 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈는 AceK와 혼용될 수 있다.
일 구현 예로, 본 출원의 AceK 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 AceK에 포함된다.
일 구현 예로, 본 출원의 AceK 단백질은 강화된 것일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 AceK에 포함된다. 일 구현 예로, 본 출원의 AceK 단백질은 서열번호 39, 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, AceK 유전자는 aceK, 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 aceK 유전자는 예를 들면 서열번호 40의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "말레이트 신타아제 G(malate synthase G)" 글리옥실레이트와 아세틸-coA를 말레이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 말레이트 신타아제 G는 GlcB와 혼용될 수 있다.
일 구현 예로, 본 출원의 GlcB 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 GlcB에 포함된다.
일 구현 예로, 본 출원의 GlcB 단백질은 강화된 것일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 GlcB에 포함된다. 일 구현 예로, 본 출원의 GlcB 단백질은 서열번호 41 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, GlcB 유전자는 glcB, 말레이트 신타아제 G를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 glcB 유전자는 예를 들면 서열번호 42의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
본 출원에서, "말레이트 신타아제 A(malate synthase A)"는 글리옥실레이트와 아세틸-coA를 말레이트로 전환하는 반응을 촉매할 수 있는 효소이다. 상기 말레이트 신타아제 A는 AceB와 혼용될 수 있다.
일 구현 예로, 본 출원의 AceB 단백질은 내재적이거나, 에스케리키아속, 에스케리키아 콜라이(Escherichia coli) 유래일 수 있으며, 이와 동일한 서열 또는 활성을 갖는 한 AceB에 포함된다.
일 구현 예로, 본 출원의 AceB 단백질은 강화된 것일 수 있으나, 이와 동일한 서열 또는 활성을 갖는 한 AceB에 포함된다. 일 구현 예로, 본 출원의 AceB 단백질은 서열번호 43 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하거나, 가지거나, 이루어지거나, 상기 아미노산 서열로 필수적으로 이루어지는(essentially consisting of) 것일 수 있다.
본 출원에서, AceB 유전자는 aceB, 말레이트 신타아제 A를 코딩하는 폴리뉴클레오티드 등과 혼용될 수 있다. 상기 aceB 유전자는 예를 들면 서열번호 44의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
상기 효소들(예를 들어, SucD 등)의 아미노산 서열은 공지의 데이터 베이스인 NCBI의 GenBank 등 다양한 데이터 베이스에서 그 서열을 얻을 수 있으나, 이에 제한되지 않는다.
본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 포함하는 폴리펩티드 또는 단백질', '특정 서열번호로 기재된 아미노산 서열로 이루어진 폴리펩티드 또는 단백질' 또는 '특정 서열번호로 기재된 아미노산 서열을 갖는 폴리펩티드 또는 단백질'라고 기재되어 있더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 아미노산 서열 N-말단, 내부, 그리고/또는 C-말단에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.
구체적으로, 본 출원의 단백질은 특정 서열번호의 아미노산 서열을 포함하거나, 또는 특정 서열번호의 아미노산 서열과 적어도 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 상기 상동성 또는 동일성을 가지며, 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.
본 출원에서 용어, '상동성 (homology)' 또는 '동일성 (identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 동일 또는 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%에 해당하는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화에는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
또한, 임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
본 출원의 유전자(예를 들어, sucD)는 공지의 데이터 베이스인 NCBI의 GenBank 등 다양한 데이터 베이스에서 그 서열을 얻을 수 있으나, 이에 제한되지 않는다.
일 예로, 클로스트리듐 클루이베리 유래의 sucD 유전자는 서열번호 2; 아라비돕시스 탈리아마 유래의 4hbD유전자는 서열번호 4; 클로스트리듐 클루이베리 유래의 orfZ 유전자는 서열번호 6; 슈도모나스 푸티다/랄스토니아 유트로파 유래의 폴리(3-하이드록시알카노에이트) 폴리머라제 융합 단백질 phaC3/C1 유전자는 서열번호 8; 에스케리키아 콜라이 유래의 pykA, pykF, ppc, gltA, maeA, maeB. edd, eda, ptsG, icd, aceA, aceK, glcB,aceB 유전자는 각각 서열번호 10, 12, 14, 18, 22, 24, 26, 28, 30, 32, 36. 38, 40, 42, 및 44; 노스톡 속 유래의 ecaA 유전자는 서열번호 16; 리조븀 에틀리 유래의 pyc 유전자는 서열번호 20; 및 시네코시스티스 속 유래의 sbtA 유전자는 서열번호 34의 염기서열을 포함하거나, 가지거나, 또는 이루어지는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 유전자는 에스케리키아 속 또는 코리네박테리움 속 미생물에 적합하도록 코돈 최적화된 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 가닥이다.
본 출원의 폴리뉴클레오티드 또는 유전자는 코돈의 축퇴성(degeneracy)으로 인하여 또는 특정한 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 상기 폴리뉴클레오티드 또는 유전자는 예를 들면 서열번호 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 및/또는 44의 염기서열을 포함할 수 있으며, 이와 상동성 또는 동일성이 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
또한, 본 출원의 폴리뉴클레오티드 또는 유전자는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 본 출원의 아미노산 서열을 코딩하는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 40% 이상, 구체적으로 90% 이상, 보다 구체적으로 95% 이상, 96% 이상, 97% 이상, 98% 이상, 더욱 구체적으로 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1ХSSC, 0.1% SDS, 구체적으로 60℃, 0.1ХSSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1ХSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원에서, 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것은, 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 미생물을 배양 및/또는 상기 배양된 미생물 또는 배지로부터 특정 물질(예를 들어, 숙시네이트 세미알데하이드, 4-하이드록시부티레이트, 또는 4-하이드록시부티릴 coA 등)을 회수하는 것일 수 있으나, 이에 제한되지 않는다.
본 출원의 생산방법에서의 "약화"는 특정한 경로 또는 단계의 약화일 수 있고, 상기 경로나 단계에 관여하는 효소의 약화일 수 있다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다. 상기 효소의 약화는 상기 효소 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 감소, 결실, 또는 불활성화시키는 것일 수 있다. 본 출원의 생산방법이 미생물을 이용할 수 있다는 점에서, 본 출원의 생산방법에서의 "약화"는 "폴리펩티드 활성의 약화"도 포함한다.
본 출원의 생산방법에서의 "강화"는 특정한 경로 또는 단계의 강화일 수 있고, 상기 경로나 단계에 관여하는 효소의 강화일 수 있다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 상기 효소의 강화는 상기 효소 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 증가, 활성화, 또는 과발현시키는 것일 수 있다. 본 출원의 생산방법이 미생물을 이용할 수 있다는 점에서, 본 출원의 생산방법에서의 "강화"는 폴리펩티드 활성의 "강화"도 포함한다.
본 출원에서 용어, "조절"은 상기 "강화"및/또는 "약화"일 수 있으나, 이에 제한되지 않는다.
본 출원에서 상기 (5) 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계는 화학적 방법을 이용하는 것일 수 있으며, 열분해, 수소화, 또는 이들의 조합을 이용하는 것일 수 있으나, 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해할 수 있는 한, 이에 제한되지 않는다.
본 출원의 다른 하나의 양태는 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물을 제공한다.
상기 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 폴리(3-하이드록시알카노에이트) 폴리머라제 폴리펩티드, 폴리뉴클레오티드, 벡터, 하기 1,4-부탄다이올, TCA 경로, 환원형 TCA 경로, 피루베이트 디하이드로게나제, 시트레이트 신타아제, 아코니타제, 아이소시트레이트 디하이드로게나제, α-케토글루타레이트 디하이드로게나제, 피루베이트 카복실라아제, (I) 내지 (XII), (i) 내지 (vi), 및 이와 관련된 효소들 등은 다른 양태에서 설명한 바와 같다.
본 출원에서 상기 미생물은 세포 친화적인 폴리-4-하이드록시부티레이트를 우선적으로 생산하는 것이므로 본 출원의 미생물은 폴리-4-하이드록시부티레이트 생산능이 증가된 것일 수 있고, 이에 따라 1,4-부탄다이올의 생산능이 추가로 증가된 것일 수 있다. 또한, 본 출원의 미생물은 폴리-4-하이드록시부티레이트 생산 단계에서 유전자를 도입하여 옥살로아세테이트를 이용한 환원형 TCA 경로 활성화; 고생산성 발효공정; 및/또는 환원형 TCA 경로를 통해 발효에서 발생하는 이산화탄소를 재이용으로 폴리-4-하이드록시부티레이트 생산능이 증가된 것일 수 있다.
일 구현 예로, 상기 미생물은 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제로 구성되는 군에서 선택되는 어느 하나 이상의 폴리펩티드의 활성이 강화된 것일 수 있다:
일 구현 예로, 상기 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및/또는 폴리(3-하이드록시알카노에이트) 폴리머라제를 코딩하는 유전자는 외래 도입된 것일 수 있으나, 이에 제한되지 않는다.
일 예로, 상기 숙시네이트 세미알데하이드 디하이드로게나제, 및/또는 4-하이드록시부티릴-coA 트랜스퍼라제를 코딩하는 유전자는 클로스트리디움 클루이베리 유래일 수 있고, 4-하이드록시부티릭산 디하이드로게나제를 코딩하는 유전자는 아라비돕시스 탈리아나(Arabidopsis thaliana) 유래일 수 있으나, 이에 제한되지 않는다.
일 예로, 상기 폴리(3-하이드록시알카노에이트) 폴리머라제를 코딩하는 유전자는 슈도모나스 푸티다(Pseudomonas putida) 또는 랄스토니아 유트로파(Ralstonia eutropha) 유래일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 미생물은 TCA 경로를 포함하는 것일 수 있다.
일 구현 예로, 상기 미생물은 피루베이트 디하이드로게나제, 시트레이트 신타아제, 아코니타제, 아이소시트레이트 디하이드로게나제, α-케토글루타레이트 디하이드로게나제, 및 피루베이트 카복실라아제로 이루어지는 군에서 선택되는 어느 하나 이상의 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 환원형 TCA 경로를 포함하는 것일 수 있고, 강화된 것일 수 있다.
일 구현 예로, 본 출원의 미생물은 하기 (I) 내지 (XII)로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않는다:
(I) 피루베이트 키나아제 약화;
(II) 포스포에놀피루베이트 카복실라제 강화;
(III) 카보닉 안하이드라제 강화;
(IV) 시트레이트 신타아제 조절;
(V) 피루베이트 카복실라제 강화;
(VI) NAD+-의존성 말레이트 디하이드로게나제 약화;
(VII) NADP+-의존성 말레이트 디하이드로게나제 약화;
(VIII) 포스포글루코네이트 디하이드라타아제 약화;
(IX) 2-케토-4-하이드록시글루타레이트 KDPG:2-케토-3-디옥시글루코네이트 6-포스페이트 알돌레이즈 약화;
(X) 아스파테이트 아미노트랜스퍼라제 약화;
(XI) 글루코스-특이적 PTS 효소 IIBC 컴포넌트 약화; 및
(XII) 바이카보네이트 트랜스포터 강화
일 구현 예로, 본 출원의 미생물은 (II) 포스포에놀피루베이트 카복실라제 강화;
(VI) NAD+-의존성 말레이트 디하이드로게나제 약화;
(VII) NADP+-의존성 말레이트 디하이드로게나제 약화; 및/또는
(X) 아스파테이트 아미노트렌스트랜스퍼라제 약화를 포함할 수 있다.
일 구현 예로, 본 출원의 미생물은 (II) 포스포에놀피루베이트 카복실라제 강화를 포함할 수 있다.
일 구현 예로, 본 출원의 미생물은 (VI) NAD+-의존성 말레이트 디하이드로게나제 약화 및 (VII) NADP+-의존성 말레이트 디하이드로게나제 약화를 포함할 수 있다.
일 구현 예로, 본 출원의 미생물은 (X) 아스파테이트 아미노트렌스트랜스퍼라제 약화를 포함할 수 있다.
일 구현 예로, 상기 피루베이트 카복실라제를 코딩하는 유전자는 외래 유전자일 수 있으며, 구체적으로 리조븀 에틀리(Rhizobium etli) 유래일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 상기 시트레이트 신타아제 조절은 유전자 변이에 의한 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 글리옥실레이트 경로를 포함하는 것일 수 있으며, 강화된 것일 수 있다.
일 구현 예로, 본 출원의 미생물은 하기 (i) 내지 (vi)로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것일 수 있으나, 이에 제한되지 않는다:
(i) 시트레이트 신타아제 강화;
(ii) 아이소시트레이트 디하이드로게나제 약화;
(iii) 아이소시트레이트 리아제 강화;
(iv) 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈 강화;
(v) 말레이트 신타아제 G 강화; 및
(vi) 말레이트 신타아제 A 강화.
상기 숙시네이트 세미알데하이드 디하이드로게나제 등은 다른 양태에서 설명한 바와 같다.
일 구현 예로, 본 출원의 미생물은 질소, 황, 인, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상의 영양소 제한 조건에서도 폴리-4-하이드록시부티레이트 생산능이 있는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 질소, 황, 인, 및 마그네슘으로 구성되는 군에서 선택되는 하나 이상의 제한 조건에서 포스포에놀피루베이트 카복실라제 유전자(ppc)의 전사가 저해받지 않는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원의 미생물은 질소, 인, 황, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상의 영양소 제한 조건에서도 상기 영양소 제한이 없는 조건에 비해 폴리-4-하이드록시부티레이트 생산능이 유지되거나 감소되지 않는 것일 수 있으나, 이에 제한되지 않는다.
일 구현 예로, 본 출원에서 목적하는 폴리펩티드(예를 들어, SucD, PhaC, OrfZ)가 포함되거나 강화된 미생물은 목적하는 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드 또는 이를 포함하는 벡터를 포함하는 것일 수 있다.
본 출원의 벡터는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2(대한민국 공개특허공보 제10-2020-0136813호), pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, pIMR53 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다.
일 구현 예로, 본 출원의 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 또는 이들의 조합을 포함하는 미생물은 이들을 포함하지 않는 미생물에 비해 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제 활성이 강화된 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어, "미생물" 또는 "균주"는 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거는 등의 원인으로 인해서 특정 기작이 강화된 미생물일 수 있다.
일 구현 예로, 본 출원의 미생물은 에스케리키아 속(Genus Escherichia) 또는 코리네박테리움 속(Genus Corynebacterium)일 수 있으며, 구체적으로 에스케리키아 콜라이 (Escherichia coli) 또는 코리네박테리움 글리타미쿰 ( Corynebacterium glutamicum)일 수 있으나, 이에 제한되지 않는다.
본 출원의 미생물은 폴리-4-하이드록시부티레이트 생산용일 수 있으며, 이로부터 생산된 폴리-4-하이드록시부티레이트는 화학적 공정에 의해 1,4-부탄다이올을 생산하여, 본 출원의 미생물이 1,4-부탄다이올 생산에 이용될 수 있으나, 이에 제한되지 않는다.
본 출원의 미생물은 본 출원의 강화 또는 도입의 대상이 되는 폴리펩티드(예를 들어, SucD, 4HbD, OrfZ, PhaC, PPC, EcaA, Glta, Pyc, AceK, 및/또는 AceA 등), 이를 코딩하는 폴리뉴클레오티드, 또는 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 미생물; 본 출원의 강화 또는 도입의 대상이 되는 폴리펩티드 또는 유전자를 발현하도록 변형된 미생물; 본 출원의 강화 또는 도입의 대상이 되는 폴리펩티드 또는 유전자를 발현하는 미생물; 본 출원의 폴리펩티드 또는 유전자를 활성을 갖는 미생물; 본 출원의 약화의 대상이 되는 폴리펩티드(예를 들어, Pyk, GltA, MaeA, MaeB, Edd, Eda, 및/또는 AspC 등)가 약화되도록 변형된 미생물; 및/또는 본 출원의 약화의 대상이 되는 폴리펩티드 또는 유전자 또는 이의 활성이 약화된 미생물 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.
본 출원의 미생물은 자연적으로 본 출원의 폴리펩티드(예를 들어, SucD, MaeA 등), 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능을 가지고 있는 미생물; 또는 폴리펩티드, 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 없는 모균주에 본 출원의 강화 또는 도입의 대상이 되는 폴리펩티드, 유전자, 폴리뉴클레오티드, 또는 이를 포함하는 벡터가 도입되거나, 약화의 대상이 되는 유전자 또는 폴리뉴클레오티드 또는 이의 활성이 약화되어 폴리펩티드가 강화 또는 약화, 또는 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 강화되거나 부여된 미생물일 수 있으나 이에 제한되지 않는다.
일 예로, 본 출원의 미생물은 본 출원의 폴리펩티드, 유전자, 폴리뉴클레오티드, 또는 이를 포함하는 벡터로 형질전환(이에 따라, 강화, 약화, 도입 등)되어, 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트를 생산할 수 있거나 생산능이 증가된 미생물을 모두 포함할 수 있다.
예를 들어, 본 출원의 미생물은 천연의 야생형 미생물, 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트를 생산하는 미생물에 본 출원의 폴리펩티드 가 발현되거나 약화되어, 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 증가된 재조합 미생물일 수 있다. 상기 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 증가된 재조합 미생물은, 천연의 야생형 미생물 또는 본 출원의 폴리펩티드 비변형 미생물 (즉, 야생형 유전자를 포함하는 미생물, 본 출원의 유전자가 강화되거나 도입되지 않는 미생물, 또는 본 출원의 유전자가 약화되지 않은 미생물)에 비하여 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다.
일 예로, 상기 생산능이 증가된 재조합 미생물은 변이 전 모균주 또는 비변형 미생물의 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능에 비하여 약 0.001% 이상 또는 0.01% 이상 1,4-부탄다이올 및/또는 폴리-4-하이드록시부티레이트 생산능이 높아진 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 상기 용어 "약(about)"은 ±0.5, ±0.4, ±0.3, ±0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다.
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 미생물을 제외하는 것이 아니며, 야생형 미생물 또는 천연형 미생물 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 미생물을 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 폴리펩티드가 발현되지 않거나, 약화되지 않거나, 도입되기 전의 미생물을 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 균주", "변형 전 미생물", "비변이 균주", "비변형 균주", "비변이 미생물" 또는 "기준 미생물"과 혼용될 수 있다.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, 폴리펩티드 활성의 "약화"는 내재적 활성에 비하여 활성이 감소되거나 또는 활성이 없는 것을 모두 포함하는 개념이다. 상기 약화는 불활성화(inactivation), 결핍(deficiency), 하향조절(down-regulation), 감소(decrease), 저하(reduce), 감쇠(attenuation) 등의 용어와 혼용될 수 있다.
상기 약화는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드의 변이 등으로 폴리펩티드 자체의 활성이 본래 미생물이 가지고 있는 폴리펩티드의 활성에 비해 감소 또는 제거된 경우, 이를 코딩하는 폴리뉴클레오티드의 유전자의 발현 저해 또는 폴리펩티드로의 번역(translation) 저해 등으로 세포 내에서 전체적인 폴리펩티드 활성 정도 및/또는 농도(발현량)가 천연형 균주에 비하여 낮은 경우, 상기 폴리뉴클레오티드의 발현이 전혀 이루어지지 않은 경우, 및/또는 폴리뉴클레오티드의 발현이 되더라도 폴리펩티드의 활성이 없는 경우 역시 포함할 수 있다. 상기 "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주, 야생형 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "불활성화, 결핍, 감소, 하향조절, 저하, 감쇠"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 낮아진 것을 의미한다.
이러한 폴리펩티드의 활성의 약화는, 당업계에 알려진 임의의 방법에 의하여 수행될 수 있으나 이로 제한되는 것은 아니며, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다(예컨대, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드 활성의 약화는
1) 폴리펩티드를 코딩하는 유전자 전체 또는 일부의 결손;
2) 폴리펩티드를 코딩하는 유전자의 발현이 감소하도록 발현조절영역(또는 발현조절서열)의 변형;
3) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 구성하는 아미노산 서열의 변형(예컨대, 아미노산 서열 상의 1 이상의 아미노산의 삭제/치환/부가);
4) 폴리펩티드의 활성이 제거 또는 약화되도록 상기 폴리펩티드를 코딩하는 유전자 서열의 변형 (예를 들어, 폴리펩티드의 활성이 제거 또는 약화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 핵산염기 서열 상의 1 이상의 핵산염기의 삭제/치환/부가);
5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입;
7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가;
8) 폴리펩티드를 코딩하는 유전자 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE); 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
예컨대,
상기 1) 폴리펩티드를 코딩하는 상기 유전자 일부 또는 전체의 결손은, 염색체 내 내재적 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드 전체의 제거, 일부 뉴클레오티드가 결실된 폴리뉴클레오티드로의 교체 또는 마커 유전자로 교체일 수 있다.
또한, 상기 2) 발현조절영역(또는 발현조절서열)의 변형은, 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 발현조절영역(또는 발현조절서열) 상의 변이 발생, 또는 더욱 약한 활성을 갖는 서열로의 교체일 수 있다. 상기 발현조절영역에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.
또한, 상기 5) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 낮은 다른 개시코돈을 코딩하는 염기서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
또한, 상기 3) 및 4)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은 폴리펩티드의 활성을 약화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 약한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 없도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 폴리뉴클레오티드 서열 내 변이를 도입하여 종결 코돈을 형성시킴으로써, 유전자의 발현을 저해하거나 약화시킬 수 있으나, 이에 제한되지 않는다.
상기 6) 폴리펩티드를 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입은 예를 들어 문헌 [Weintraub, H. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986]을 참고할 수 있다.
상기 7) 리보솜(ribosome)의 부착이 불가능한 2차 구조물을 형성시키기 위하여 폴리펩티드를 코딩하는 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열의 부가는 mRNA 번역을 불가능하게 하거나 속도를 저하시키는 것일 수 있다.
상기 8) 폴리펩티드를 코딩하는 유전자서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터의 부가(Reverse transcription engineering, RTE)는 상기 폴리펩티드를 코딩하는 유전자의 전사체에 상보적인 안티센스 뉴클레오티드를 만들어 활성을 약화하는 것일 수 있다.
본 출원에서 용어, 폴리펩티드 활성의 "강화"는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "강화", "상향조절", "과발현" 또는 "증가"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량)를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드 활성의 강화는
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;
5) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
보다 구체적으로,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도 발현량이 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, 폴리펩티드 활성의 "조절"은 상기 폴리펩티드 활성의 "강화"및/또는 폴리펩티드 활성의 "약화"일 수 있으나, 이에 제한되지 않는다. 일 구현 예로, GltA는 활성이 강화 또는 약화된 것일 수 있으나, 이에 제한되지 않는다.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물을 배양하는 단계를 포함하는 폴리-4-하이드록시부티레이트(poly-4-hydroxybutyrate, poly(4-hydroxybutyrate); P4HB) 생산방법을 제공한다.
본 출원에서 용어 "폴리-4-하이드록시부티레이트"는 4-하이드록시부티레이트의 중합체로서 폴리에스터에 속하는 화합물이다. 상기 폴리-4-하이드록시부티레이트는 폴리-4-하이드록시부타노에이트(poly-4-hydroxybutanoate, P4HA)와 혼용될 수 있으며, 하기 화학식 1로 표시되는 것일 수 있으나, 이에 제한되지 않는다.
Figure PCTKR2022009082-appb-img-000001
(상기 n은 1 이상의 정수)
본 출원에서, 용어 "배양"은 본 출원의 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원에서, 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 출원의 배양에서 배양온도는 20 내지 35℃ 구체적으로는 25 내지 35℃, 28 내지 35℃를 유지할 수 있고, 약 10 내지 160 시간, 약 20 시간 내지 130 시간, 약 24 시간 내지 120 시간, 약 36 시간 내지 120 시간, 약 48시간 내지 120시간, 약 48 시간, 약 72 시간, 또는 약 120 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 배양에 의하여 생산된 폴리-4-하이드록시부티레이트는 배지 중으로 분비되거나 미생물 내에 잔류할 수 있다.
본 출원의 폴리-4-하이드록시부티레이트 생산방법은, 본 출원의 미생물을 준비하는 단계, 상기 미생물을 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다.
본 출원의 폴리-4-하이드록시부티레이트 생산방법은, 상기 미생물 배양에 따른 배지(배양이 수행된 배지) 또는 본 출원의 미생물로부터 폴리-4-하이드록시부티레이트를 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 폴리-4-하이드록시부티레이트를 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 세포 파쇄, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 폴리-4-하이드록시부티레이트를 회수할 수 있다.
또한, 본 출원의 폴리-4-하이드록시부티레이트 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 폴리-4-하이드록시부티레이트 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 이시적(또는 연속적)으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물을 배양하는 단계; 상기 미생물 또는 배지로부터 폴리-4-하이드록시부티레이트를 회수하는 단계; 및 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계를 포함하는 1,4-부탄다이올 생산방법을 제공한다.
본 출원의 1,4-부탄다이올 생산방법은 본 출원의 미생물이 생산한 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계를 추가로 포함하는 것일 수 있다. 본 출원의 1,4-부탄다이올 생산방법에 있어서, 상기 분해하는 단계는 상기 배양하는 단계 또는 상기 회수하는 단계 이후에 추가로 포함될 수 있다. 상기 분해하는 단계는 당해 기술분야에 공지된 적합한 방법을 이용하여 수행할 수 있다. 일 구현 예로, 상기 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계는 열분해, 수소화, 또는 이들의 조합일 수 있다.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물 또는 이의 배양물을 포함하는 폴리-4-하이드록시부티레이트 생산용 조성물을 제공한다.
상기 미생물, 폴리-4-하이드록시부티레이트 등은 다른 양태에서 설명한 바와 같다.
본 출원의 조성물은 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물 또는 이의 배양물의 폴리-4-하이드록시부티레이트 생산 용도를 제공한다.
본 출원의 또 다른 하나의 양태는 본 출원의 미생물 또는 이의 배양물의 1,4-부탄다이올 생산 용도를 제공한다.
상기 미생물, 폴리-4-하이드록시부티레이트 등은 다른 양태에서 설명한 바와 같다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 하기 실시예는 본 출원을 예시하기 위한 바람직한 실시양태에 불과한 것이며 따라서, 본 출원의 권리범위를 이에 한정하는 것으로 의도되지는 않는다. 한편, 본 명세서에 기재되지 않은 기술적인 사항들은 본 출원의 기술 분야 또는 유사 기술 분야에서 숙련된 통상의 기술자이면 충분히 이해하고 용이하게 실시할 수 있다.
실시예 1: 포스포에놀피루베이트 카복실라제 발현 조절 및 산화적 TCA(Oxidative TCA) 경로를 이용한 P4HB 생산
1-1: 산화적 TCA (Oxidative TCA; oTCA) 경로를 이용한 P4HB 생산 경로
대장균에서 포도당을 사용하여 P4HB 생산을 평가하였다. 포도당은 포스포트랜스퍼라제(Phosphotransferase) 시스템을 통해 하나의 포스포에놀피루베이트(Phosphoenolpyruvate; PEP)와 하나의 아세틸-coA 및 이산화탄소로 산화될 수 있다. PEP는 하나의 이산화탄소를 고정하며 옥살로아세테이트(oxaloacetate)로 포스포에놀피루베이트 카복실라제(PEP carboxylase; PPC)에 의해서 전환될 수 있다. 아세틸-coA와 옥살로아세테이트는 시트레이트(citrate)를 거쳐 2개의 이산화탄소와 하나의 숙시닐-CoA(succinyl-coA)로 산화될 수 있다. 폴리-4-하이드록시부티레이트(P4HB)는 이 TCA 경로의 중간 물질인 숙시닐-CoA로부터 생산이 가능할 수 있다. 숙시닐-CoA로부터 P4HB의 생산은 NADH 혹은 NADPH 의존적인 숙시네이트 세미알데하이드 디하이드로게나제(succinate semialdehyde dehydrogenase; SucD)에 의해서 숙시닐 세미알데하이드(succinyl semialdehyde)로 전환된다. 숙시닐 세미알데하이드는 NADH 의존적인 4-하이드록시부티릭산 디하이드로게나제 (4-hydroxybutyric acid dehydrogenase; 4HbD)에 의해서 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)로 전환되며 이는 다시 4-하이드록시부티릴-coA 트랜스퍼라제(4-hydroxybutyryl-CoA transferase; OrfZ)에 의해서 4-하이드록시부티릴-coA(4-hydrxybutyril-CoA)로 전환될 수 있다. 최종적으로, 폴리(3-하이드록시알카노에이트) 폴리머라제(Poly(3-hydroxyalkanoate) polymerase; PhaC)에 의해서 4-하이드록시부티릴-coA(4-hydrxybutyril-CoA)로부터 폴리-4-하이드록시부티레이트(poly-4-hydroxybutyrate; P4HB)가 생성될 수 있도록 하였다.
전술한 SucD, 4HbD, OrfZ, PhaC, PPC 및 이들의 유전자 서열은 서열번호 1 내지 서열번호 8, 서열번호 13, 및 서열번호 14에 나타내었다.
1-2: 포스포에놀피루베이트 카복실라제 발현 조절용 프로모터 제작
균체 성장에 필수적인 질소원을 제한함으로써 균체 성장을 억제시키고 탄소 흐름을 목표 물질인 P4HB로 유도시킴으로써 이의 생산성을 증가시키고자 하였다. 다만, 대장균의 포스포에놀피루베이트 카복실라제(PEP carboxylase)를 코딩하는 ppc 유전자의 프로모터가 질소 제한 조건에서 조절인자(Nac, DNA-binding transcriptional dual regulator)에 의해 발현이 저해되므로, 이를 극복하기 위한 프로모터를 제작하고자 하였다.
이를 위하여, 야생의 프로모터(Pn)와 동등 또는 그 이상의 발현 세기를 가지며 조절인자 Nac의 영향을 받지 않는 프로모터를 제작하였으며, Pn 프로모터 서열은 다음과 같다.
5'- TCGCAGCATTTGACGTCACCGCTTTTACGTGGCTTTATAAAAGACGACGAAAAGCAAAGCCCGAGCATATTCGCGCCAATGCGACGTGAAGGATACAGGGCTATCAAACGATAAGATGGGGTGTCTGGGGTAAT-3' (서열번호 60)
하였으며, 그 결과, 하기 표 1에 나타난 바와 같이, Pn과 동일한 세기의 프로모터 1종(Psynk1) 및 약 15배 강한 프로모터 1종(PsynK2)을 확인하였다.
프로모터 종류 GFP/OD
Pn 2.2 ± 0.3
PsynK1 2.6 ± 0.4
PsynK2 32.2 ± 2.2
배지는 포도당을 탄소원으로 하는 M9-최소 배지를 사용하였고, 48시간, 800rpm, 37℃조건으로 96웰 플레이트에서 배양 후 흡광도를 측정하였다.
1-3: P4HB 생산 균주 제작
실시예 1-2에서 제작한 프로모터 3종을 실시예 1-1의 P4HB 생합성 경로가 구축되어 있는 미생물 균주에 도입하여 P4HB 생산 균주인 다음과 같은 미생물 3종을 제작하였다. 하기 SucD, 4HbD, OrfZ, PhaC, PPC 및 이들의 유전자 서열은 서열번호 1 내지 서열번호 8, 서열번호 13, 및 서열번호 14에 나타내었다.
균주 대표 유전자형
#1 Pn-ppc, PuspA-sucD*-4hbD*-phaC*
#2 PsynK2-ppc, PuspA-sucD*-4hbD*-phaC*
#3 PsynK1-ppc, PuspA-sucD*-4hbD*-phaC*
목표 유전자의 발현을 위해 사용된 프로모터들은 PuspA, PsynK1, 및 PsynK2 가 있으며 이들에 관한 유전자 정보는 ecocyc.org 와 parts.igem.org 에서 수득할 수 있다. 사용된 프로모터 서열은 다음과 같다.
- PsynK1 (5'-tttacagctagctcagtcctaggtattatgctagc-3'); 서열번호 45
- PsynK2 (5'-ctgacagctagctcagtcctaggtataatgctagc-3'); 서열번호 46
- PuspA (5'-AACCACTATCAATATATTCATGTCGAAAATTTGTTTATCTAACGAGTAAGCAAGGCGGATTGACGGATCATCCGGGTCGCTATAAGGTATAGTTCGCAGGACGCGGGTGACGTAACGGCACAAGAAACG-3'); 서열번호 47
전술한 P4HB 생합성 경로가 구축되어 있는 미생물 제작에는 범용적으로 사용되는 기술을 적용하였다 (대표문헌:Sambrook et al., Molecular cloning: A Laboratory Manual, Thrid Ed, Cold Spring Harbor Laboratory, New York (2001)). 구체적으로, 목적 유전자는 공지의 데이터베이스에서 유전자 정보를 수득하고 유전자 및 이를 위한 프라이머를 제작하여, PCR(polymerase chain reaction)을 통해 대상 유전자를 증폭함으로써 원하는 벡터(pCL)에 리가아제를 사용하여 도입하였다. 또는, 화학적으로 합성하는 방법도 사용하였으며, 이는 대장균에서 발현이 원활이 이루어 지도록 코돈 최적화가 필요할 경우에 사용하였다. 목표 유전자의 발현을 위해서는 프로모터와 터미네이터를 PCR를 통해 대상 유전자에 연결하였다. 이렇게 제작된 벡터를 대상 균주에 도입하기 위해서, 일반적인 열충격(Heat shock) 기술을 사용하였다. 더 높은 효율이 필요할 경우는 전기천공(Electroporation) 기술을 사용하였다
유전자 발현 외에 염색체 상에서 특정 유전자의 약화/결실은 올리고머를 사용하였고, 일반적으로 알려진 Red/ET recombineering 을 이용하였으며, 관련 기술은 Datsenko and Wanner (Proc. Natl. Acad. Sci, USA, 2000, 97,6640-6645)에 보고된 기술을 사용하였다. 결실에 사용된 올리고머는 다음과 같다.
pykF-Left (서열번호 48)
GAAAGCAAGTTTCTCCCATCCTTCTCAACTTAAAGACTAAGACTGTCATG
pykF-right (서열번호 49)
GATATACAAATTAATTCACAAAAGCAATATTACAGGACGTGAACAGATGC
pykA-Left (서열번호 50)
TTTCATGTTCAAGCAACACCTGGTTGTTTCAGTCAACGGAGTATTACATG
pykA-right (서열번호 51)
TGGCGTTTTCGCCGCATCCGGCAACGTACTTACTCTACCGTTAAAATACG
maeB-left (서열번호 52)
TTCAGGGTAAGCGTGAGAGTTAAAAAAAATTACAGCGGTTGGGTTTGCGC
maeB-right (서열번호 53)
TTGCCCACACACTTTATTTGTGAACGTTACGTGAAAGGAACAACCAAATG
maeA-left (서열번호 54)
CCCGGTAGCCTTCACTACCGGGCGCAGGCTTAGATGGAGGTACGGCGGTA
maeA-right (서열번호 55)
GGCCGACGCCCTGGCGGTAAAGCAAAGACGATAAAAGCCCCCCAGGGATG
aspC-left (서열번호 56)
TTTTCAGCGGGCTTCATTGTTTTTAATGCTTACAGCACTGCCACAATCGC
aspC-right (서열번호 57)
TACCCTGATAGCGGACTTCCCTTCTGTAACCATAATGGAACCTCGTCATG
Icd-left (서열번호 58)
AACGTGGTGGCAGACGAGCAAACCAGTAGCGCTCGAAGGAGAGGTGAATG
Icd-right (서열번호 59)
CCCGTTAATAAATTTAACAAACTACGGCATTACATGTTTTCGATGATCGC
1-4: P4HB 생산 균주의 P4HB 생산능 평가
실시예 1-3에서 제작한 균주 3종의 P4HB 생산 테스트를 진행하기 위해 플라스크 실험을 수행하였다. 배양 조건은 48시간, 230rpm, 및 30℃ 이며, 배지는 이전 공개된 자료를 바탕으로 제작하여 사용하였다 (미국 특허 번호 9,084,467 B2). 구체적으로, 1xE2 최소 배지에 1x 미량원소(Trace salt solution)를 첨가하여 배지를 제조하였으며, 이의 탄소:질소 비율 (C/N ratio)을 30:1로 조절하여 사용하였다.
P4HB 분석 조건은 공개된 문헌(미국 특허 번호 9,084,467 B2)을 참조하여 설정하였다. 간략히 설명하면, 전술한 바와 같이 균주 3종의 배양물을 각각 1 mL 채취하여 4,000rpm에서 균체를 회수하였다. 회수한 균주를 동결건조한 후, 샘플의 부탄올 용해(Butanolysis)를 진행하기 위한 제제(Dioxane 용액에 99.9% 부탄올 및 4N HCl를 첨가한 제제)를 첨가하고 93 ℃에서 6시간동안 열처리 하였다. 열처리한 용액을 600 rpm에서 상분리시키고, 유기상(Organic phase)을 채취하여 가스 크로마토그래피(GC) 분석하였다. 4-하이드록시부티레이트(4HB)의 표준 시약은 10% γ -부티로락톤(γ-butyrolactone)을 사용하여 제조하였다.
위와 같은 조건을 사용하여 분석을 진행한 결과, 하기 표 3에 나타나는 바와 같이, 질소제한을 받지 않은 프로모터인 PsynK1을 포함한 균주에서 Pn을 포함한 균주보다 P4HB 농도가 22% 향상된 것을 확인하였다.
균주 P4HB 농도 (g/L)
#1 14.13 ± 0.05
#2 14.81 ± 0.10
#3 17.29 ± 0.02
한편, 표 3으로부터 지나치게 강한 프로모터를 사용할 경우 (PsynK2) 질소 제한 인자에 영향을 받지 않더라도 P4HB 생산성이 향상되지 않는 것을 추가로 확인하였다.
실시예 2: 환원형 TCA (rTCA) 경로를 이용한 P4HB 생산
포스포에놀피루베이트 카복실라제의 카복실화 반응으로 고정된 이산화탄소를 환원형 TCA 경로를 이용하여 P4HB 생산 경로로 유도하고자 하였다. 환원형 TCA 경로를 통한 P4HB 생산에서 포스포에놀피루베이트 카복실라제 효소를 통해 포스포에놀피루베이트로부터 생성된 옥살로아세테이트는 산화적(oxidative) TCA 경로에 포함된 탈카복실화(decarboxylation) 과정을 거치지 않아 이산화탄소발생 없이 말레이트(malate), 푸마레이트(fumarate), 및 숙시네이트(succinate)를 거쳐 숙시닐-CoA까지 환원될 수 있다. 생성된 숙시닐-CoA는 실시예 1-1의 경로와 동일한 방법을 거쳐 P4HB로 전환될 수 있다.
효율적인 rTCA경로 활성화를 위해 피루베이트 키나아제(pyruvate kinase) 유전자 (pykFA)가 제거된 균주(하기 균주번호 4)를 제작하였다. 제작한 균주 3종은 하기 표 4에 나타내었으며, 하기 균주번호 3은 전술한 표 2의 균주번호 3과 동일하다. 하기 SucD, 4HbD, OrfZ, PhaC, PPC 및 이들의 유전자 서열은 서열번호 1 내지 서열번호 8, 서열번호 13, 및 서열번호 14에 나타내었다. 또한, 하기 MaeAB, AspC, PykFA, 및 이들의 유전자 서열은 서열번호 9 내지 서열번호 12, 서열번호 21 내지 서열번호 24, 서열번호 29, 서열번호 30에 나타내었다.
균주 대표 유전자 형
#3 PsynK1-ppc, PuspA-sucD*-4hbD*-phaC*
#4 ΔpykFA PsynK1-ppc, PuspA-sucD*-4hbD*-phaC*
#5 ΔmaeAB ΔaspC ΔpykFA PsynK1-ppc, PupA-sucD*-4hbD*-phaC*
피루베이트 키나아제를 제거할 경우 PEP에서 피루베이트로 향하는 탄소흐름을 제어하여 PEP의 세포 내 농도를 보존하고, 이를 바탕으로 PEP 카복실라제 경로 활성화를 촉진할 수 있다. 이를 통해 rTCA 경로에 필수적인 옥살로아세테이트의 세포 내 농도를 높일 수 있음을 시사한다.
추가적으로, 확보된 옥살로아세테이트와 말레이트 등의 rTCA 경로상의 경쟁경로를 제거하기 위해 아미노트랜스퍼라제(aspartate aminotransferase; AspC) 와 말레이트 디하이드로게나제(malic enzyme; MaeAB)를 추가로 제거한 균주 또한 제작(상기 균주번호 5)하여 rTCA기반 P4HB 생산 평가를 진행하였다.
상기 표 4의 균주를 대상으로 실시예 1-4와 동일한 방법으로 P4HB 생산성 평가를 하였으며, rTCA 경로가 활성화 될 경우 균체 성장이 향상되었고, 도 7에 나타나는 바와 같이, rTCA 경로가 도입된 균주(균주번호 4 및 5)에서 rTCA 경로가 도입되지 않은 균주(균주번호 3)에 비해 P4HB 수율이 약 28%에서 최대 43%까지 향상된 것을 확인하였다. rTCA 경로를 이용할 경우 기존 48 wt% 수준의 P4HB 이론적 최대 수율을 58 wt%까지 향상시킬 수 있었다.
실시예 3: 글리옥실레이트 경로를 이용한 P4HB 생산
글리옥실레이트 경로(Glyoxylate cycle)를 이용하여 P4HB 생산을 함으로써 2-옥소글루타레이트(2-oxoglutartate)의 탈카복실화(decarboxylation) 경로를 우회하여 이산화탄소로의 탄소 손실을 줄여 결과적으로 P4HB의 생산 수율을 증가시키고자 하였다.
이 경로의 활성화를 위해서 TCA 경로 상의 아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase; icd)를 제거하여 탄소흐름을 강제적으로 글리옥실레이트 경로로 유도시켰다. 글리옥실레이트 경로의 활성화를 위해 대장균 유래의 아이소시트레이트 리아제(isocitrate lyase; aceA) 및 말레이트 신타아제(malate synthase; aceB)를 도입하되 도입되는 미생물 내의 기존 야생형 프로모터를 합성 프로모터로 교체하여 포도당 기반 카타볼릭 억제(Catabolic repression)을 받지 않도록 하였다. 제작한 균주 2종은 하기 표 5에 나타내었다. 하기 SucD, 4HbD, OrfZ, PhaC, PPC 및 이들의 유전자 서열은 서열번호 1 내지 서열번호 8, 서열번호 13, 및 서열번호 14에 나타내었다. 또한, 하기 Icd, AceBA, 및 이의 유전자 서열은 서열번호 35, 서열번호 36, 서열번호 38, 서열번호 39, 서열번호 43, 및 서열번호 44에 나타내었다.
균주 대표 유전자 형
#6 △icd PsynK1-ppc, PuspA-sucD*-4hbD*-phaC*
#7 △icd PsynK1-ppc, PuspA-sucD*-4hbD*-phaC*, pCL-PsynK1-aceBA
이 때, 글리옥실레이트 경로의 생성물인 숙시네이트와 말레이트 모두 환원형 TCA 경로를 이용하여 숙시닐-CoA로 전환될 수 있다. 생성된 숙시닐-CoA는 위 실시예 1-1의 P4HB 생성 경로를 통해 P4HB로 전환 될 수 있다. 이렇게 제작된 균주의 발효 시, 글루탐산(glutamate)을 외부에서 보강해 주기 위해 Monosodium glutamate (MSG) 50mM을 첨가하였다. 이렇게 제작된 균주를 포도당 배지에 배양하여 PHA 생산을 확인한 결과, 도 8에 나타난 바와 같이, 2.7g/L의 PHA가 생산됨(균주번호 7 GLU+MSG)을 확인하였다. 글리옥실레이트 경로가 도입 되지 않은 균주(균주번호 6)에서 PHA 생산은 0.9g/L에 그쳤으며 글리옥실레이트 경로가 도입되어 있더라도 포도당이 없을 경우(균주번호 7 MSG) PHA는 생산은 관측되지 않았다. 본 방법을 통해 기존의 이론적 최대 수율 48 wt% 에서 58wt%까지 향상시킬 수 있었다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (38)

  1. (1) 숙시닐-coA (succinyl-coA; SuCoA)를 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)로 전환하는 단계;
    (2) 숙시네이트 세미알데하이드 (succinate semialdehyde; SSA)를 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)로 전환하는 단계;
    (3) 4-하이드록시부티레이트(4-hydroxybutyrate; 4HB)를 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)로 전환하는 단계;
    (4) 둘 이상의 4-하이드록시부티릴 coA(4-hydroxybutyryl coA; 4HBCoA)를 중합하여 폴리-4-하이드록시부티레이트(poly-4-hydroxybutyrate; P4HB)를 생산하는 단계; 및
    (5) 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계를 포함하는 1,4-부탄다이올 생산방법.
  2. 제1항에 있어서, 상기 (1) 내지 (4)는 숙시네이트 세미알데하이드 디하이드로게나제(succinate semialdehyde dehydrogenase), 4-하이드록시부티릭산 디하이드로게나제 (4-hydroxybutyric acid dehydrogenase), 4-하이드록시부티릴-coA 트랜스퍼라제 (4-hydroxybutyryl-CoA transferase), 및 폴리(3-하이드록시알카노에이트) 폴리머라제(Poly(3-hydroxyalkanoate) polymerase)로 이루어지는 군에서 선택되는 어느 하나 이상의 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것인, 생산방법.
  3. 제1항에 있어서, 상기 생산방법은 TCA 경로를 더 포함하는 것인, 생산방법.
  4. 제3항에 있어서, 상기 TCA 경로는
    (a1) 피루베이트를 아세틸-coA로 전환하는 단계;
    (b1) 아세틸-coA 및 옥살로아세테이트를 시트레이트로 전환하는 단계;
    (c1) 시트레이트를 아이소시트레이트로 전환하는 단계;
    (d1) 아이소시트레이트를 α-케토글루타레이트로 전환하는 단계;
    (e1) α-케토글루타레이트를 숙시닐-coA로 전환하는 단계; 및
    (f1) 피루베이트를 옥살로아세테이트로 전환하는 단계로 구성되는 군에서 선택되는 어느 하나 이상을 포함하는 것인, 생산방법.
  5. 제1항에 있어서, 상기 생산방법은 (g1) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계를 더 포함하는 것인, 생산방법.
  6. 제5항에 있어서, 상기 (g1) 은 포스포에놀피루베이트 카복실라제(phosphoenolpyruvate carboxylase) 폴리펩티드; 상기 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 미생물; 및 이의 배양물로 구성되는 군에서 선택되는 어느 하나 이상을 이용하는 것인, 생산방법.
  7. 제1항에 있어서, 상기 생산방법은 (g1) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계가 강화된 것인, 생산방법.
  8. 제1항에 있어서, 상기 생산방법은 환원형 TCA 경로(reductive TCA cycle)를 더 포함하는 것인, 생산방법.
  9. 제8항에 있어서, 상기 환원형 TCA 경로는 (a2) 옥살로아세테이트를 말레이트로 전환하는 단계;
    (b2) 말레이트를 푸마레이트로 전환하는 단계;
    (c2) 푸마레이트를 숙시네이트로 전환하는 단계; 및
    (d2) 숙시네이트를 숙시닐-coA로 전환하는 단계로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것인, 생산방법.
  10. 제8항에 있어서, 상기 생산방법은 (e2) 포스포에놀피루베이트에서 피루베이트로 전환하는 단계가 약화된 것인, 생산방법.
  11. 제8항에 있어서, 상기 환원형 TCA 경로는 하기 (I) 내지 (XII)로 이루어진 군에서 선택되는 어느 하나 이상에 의해 강화된 것인, 생산방법:
    (I) 피루베이트 키나아제(pyruvate kinase) 약화;
    (II) 포스포에놀피루베이트 카복실라제(PEP carboxylase) 강화;
    (III) 카보닉 안하이드라제(carbonic anhydrase) 강화;
    (IV) 시트레이트 신타아제(citrate synthase) 조절;
    (V) 피루베이트 카복실라제(pyruvate carboxylase) 강화;
    (VI) NAD+-의존성 말레이트 디하이드로게나제(NAD+-dependent malate dehydrogenase) 약화;
    (VII) NADP+-의존성 말레이트 디하이드로게나제(NADP+-dependent malate dehydrogenase) 약화;
    (VIII) 포스포글루코네이트 디하이드라타아제(phosphogluconate dehydratase) 약화;
    (IX) 2-케토-4-하이드록시글루타레이트 KDPG:2-케토-3-디옥시글루코네이트 6-포스페이트 알돌레이즈(2-keto-4-hydroxyglutarate:2-keto-3-deoxygluconate 6-phosphate; KHG/KDPG aldolase) 약화;
    (X) 아스파테이트 아미노트랜스퍼라제(aspartate aminotransferase) 약화;
    (XI) 글루코스-특이적 PTS 효소 IIBC 컴포넌트(glucose-specific PTS enzyme IIBC component) 약화; 및
    (XII) 바이카보네이트 트랜스포터(bicarbonate transporter) 강화.
  12. 제1항에 있어서, 상기 생산방법은 글리옥실레이트 경로를 더 포함하는 것인, 생산방법.
  13. 제12항에 있어서, 상기 글리옥실레이트 경로는
    (a3) 아이소시트레이트를 글리옥실레이트 및 숙시네이트로 전환하는 단계;
    (b3) 글리옥실레이트 및 아세틸-coA를 말레이트 및 coA로 전환하는 단계;
    (c3) 시트레이트를 아이소시트레이트로 전환하는 단계;
    (d3) 피루베이트를 옥살로아세테이트로 전환하는 단계;
    (e3) 포스포에놀피루베이트를 옥살로아세테이트로 전환하는 단계;
    (f3) 옥살로아세테이트를 시트레이트로 전환하는 단계;
    (g3) 말레이트를 푸마레이트로 전환하는 단계;
    (h3) 푸마레이트를 숙시네이트로 전환하는 단계; 및
    (i3) 숙시네이트를 숙시닐-coA로 전환하는 단계로 구성되는 군에서 어느 하나 이상을 더 포함하는 것인, 생산방법.
  14. 제13항에 있어서, (j3) α-케토글루타레이트를 숙시닐-coA로 전환하는 단계가 약화된 것인, 생산방법.
  15. 제13항에 있어서, (k3) 옥살로아세테이트를 말레이트로 전환하는 단계가 약화된 것인, 생산방법.
  16. 제13항에 있어서, 상기 글리옥실레이트 경로는 (i) 내지 (v)로 이루어진 군에서 선택되는 어느 하나 이상에 의해 강화된 것인, 생산방법:
    (i) 시트레이트 신타아제(citrate synthase) 강화;
    (ii) 아이소시트레이트 디하이드로게나제(isocitrate dehydrogenase) 약화;
    (iii) 아이소시트레이트 리아제(isocitrate lyase) 강화;
    (iv) 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈(Isocitrate dehydrogenase kinase/phosphatase) 강화;
    (v) 말레이트 신타아제 G(malate synthase G) 강화; 및
    (vi) 말레이트 신타아제 A(malate synthase A) 강화.
  17. 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 미생물.
  18. 제17항에 있어서, 상기 숙시네이트 세미알데하이드 디하이드로게나제, 4-하이드록시부티릭산 디하이드로게나제, 4-하이드록시부티릴-coA 트랜스퍼라제, 및 폴리(3-하이드록시알카노에이트) 폴리머라제로 구성되는 군에서 선택되는 어느 하나 이상의 폴리펩티드는 외래 도입된 것인, 미생물.
  19. 제17항에 있어서, 상기 숙시네이트 세미알데하이드 디하이드로게나제 및 4-하이드록시부티릴-coA 트랜스퍼라제 폴리펩티드는 클로스트리듐 클루이베리(Clostridium kluyveri) 유래이고, 상기 4-하이드록시부티릭산 디하이드로게나제 폴리펩티드는 아라비돕시스 탈리아나(Arabidopsis thaliana) 유래이며, 상기 폴리(3-하이드록시알카노에이트) 폴리머라제는 슈도모나스 푸티다(Pseudomonas putida) 또는 랄스토니아 유트로파(Ralstonia eutropha) 유래인 것인, 미생물.
  20. 제17항에 있어서, 상기 미생물은 TCA 경로를 포함하는 것인, 미생물.
  21. 제17항에 있어서, 상기 미생물은 피루베이트 디하이드로게나제, 시트레이트 신타아제, 아코니타제, 아이소시트레이트 디하이드로게나제, α-케토글루타레이트 디하이드로게나제, 및 피루베이트 카복실라아제로 이루어지는 군에서 선택되는 어느 하나 이상의 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이들의 조합을 포함하는 것인, 미생물.
  22. 제17항에 있어서, 상기 미생물은 환원형 TCA 경로를 포함하는 것인, 미생물.
  23. 제17항에 있어서, 상기 미생물은 하기 (I) 내지 (XII)로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것인, 미생물:
    (I) 피루베이트 키나아제 약화;
    (II) 포스포에놀피루베이트 카복실라제 강화;
    (III) 카보닉 안하이드라제 강화;
    (IV) 시트레이트 신타아제 조절;
    (V) 피루베이트 카복실라제 강화;
    (VI) NAD+-의존성 말레이트 디하이드로게나제 약화;
    (VII) NADP+-의존성 말레이트 디하이드로게나제 약화;
    (VIII) 포스포글루코네이트 디하이드라타아제 약화;
    (IX) 2-케토-4-하이드록시글루타레이트 KDPG:2-케토-3-디옥시글루코네이트 6-포스페이트 알돌레이즈 약화;
    (X) 아스파테이트 아미노트랜스퍼라제 약화;
    (XI) 글루코스-특이적 PTS 효소 IIBC 컴포넌트 약화; 및
    (XII) 바이카보네이트 트랜스포터 강화.
  24. 제17항에 있어서, 상기 미생물은 글리옥실레이트 경로를 포함하는 것인, 미생물.
  25. 제17항에 있어서, 상기 미생물은 하기 (i) 내지 (vi)로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는 것인, 미생물:
    (i) 시트레이트 신타아제 강화;
    (ii) 아이소시트레이트 디하이드로게나제 약화;
    (iii) 아이소시트레이트 리아제 강화;
    (iv) 아이소시트레이트 디하이드로게나제 키나아제/포스파테이즈 강화;
    (v) 말레이트 신타아제 G 강화; 및
    (vi) 말레이트 신타아제 A 강화.
  26. 제17항에 있어서, 상기 미생물은 1,4-부탄다이올 생산에 이용되는 것인, 미생물.
  27. 제17항에 있어서, 상기 미생물은 폴리-4-하이드록시부티레이트 생산용인 것인, 미생물.
  28. 제17항에 있어서, 상기 미생물은 코리네박테리움 속 또는 에스케리키아 속인 것인, 미생물.
  29. 제17항에 있어서, 상기 미생물은 질소, 황, 인, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상의 영양소 제한 조건에서도 폴리-4-하이드록시부티레이트 생산능이 있는 것인, 미생물.
  30. 제17항에 있어서, 상기 미생물은 프로모터 활성을 가지는 서열번호 45로 표시되는 뉴클레오티드 서열을 포함하는 미생물.
  31. 제30항에 있어서, 상기 프로모터 활성을 가지는 서열번호 45로 표시되는 뉴클레오티드 서열의 목적 유전자는 포스포에놀피루베이트 카복실라제를 코딩하는 폴리뉴클레오티드인 것인, 미생물.
  32. 제17항 내지 제31항 중 어느 한 항의 미생물을 배양하는 단계를 포함하는 폴리-4-하이드록시부티레이트 생산방법.
  33. 제32항에 있어서, 상기 생산방법은 상기 미생물 또는 배지로부터 폴리-4-하이드록시부티레이트를 회수하는 단계를 포함하는, 폴리-4-하이드록시부티레이트 생산방법.
  34. 제32항에 있어서, 상기 미생물을 배양하는 단계는 질소, 황, 인, 및 마그네슘으로 구성되는 군에서 선택되는 어느 하나 이상의 영양소를 제한한 배지에서 미생물을 배양하는 단계를 포함하는 것인, 생산방법.
  35. 제17항 내지 제31항 중 어느 한 항의 미생물을 배양하는 단계;
    상기 미생물 또는 배지로부터 폴리-4-하이드록시부티레이트를 회수하는 단계; 및
    폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계를 포함하는 1,4-부탄다이올 생산방법.
  36. 제35항에 있어서, 상기 폴리-4-하이드록시부티레이트를 1,4-부탄다이올로 분해하는 단계는 열분해, 수소화, 또는 이들의 조합인 것인, 1,4-부탄다이올 생산방법.
  37. 제17항의 미생물 또는 이의 배양물을 포함하는 폴리-4-하이드록시부티레이트 생산용 조성물.
  38. 제17항의 미생물 또는 이의 배양물의 폴리-4-하이드록시부티레이트 생산 용도.
PCT/KR2022/009082 2021-06-25 2022-06-24 신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법 WO2022270991A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280057841.9A CN117916385A (zh) 2021-06-25 2022-06-24 用于生产聚-4-羟基丁酸酯和1,4-丁二醇的新方法
EP22828838.7A EP4349994A4 (en) 2021-06-25 2022-06-24 NEW PROCESS FOR THE PRODUCTION OF POLY-4-HYDROXYBUTYRATE AND 1,4-BUTANEDIOL
US18/573,610 US20240318208A1 (en) 2021-06-25 2022-06-24 Novel method for producing poly-4-hydroxybutyrate and 1,4-butanediol
JP2023579221A JP2024522860A (ja) 2021-06-25 2022-06-24 新規なポリ-4-ヒドロキシブチレート及び1,4-ブタンジオール生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0083270 2021-06-25
KR20210083270 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270991A1 true WO2022270991A1 (ko) 2022-12-29

Family

ID=84544676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009082 WO2022270991A1 (ko) 2021-06-25 2022-06-24 신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법

Country Status (5)

Country Link
US (1) US20240318208A1 (ko)
EP (1) EP4349994A4 (ko)
JP (1) JP2024522860A (ko)
CN (1) CN117916385A (ko)
WO (1) WO2022270991A1 (ko)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
WO2014058655A1 (en) 2012-10-10 2014-04-17 Metabolix Polyhydroxyalkanoate copolymer compositions and methods of making the same
US20150159184A1 (en) * 2012-03-20 2015-06-11 Metabolix, Inc. Genetically Engineered Microorganisms for the Production of Poly-4-Hydroxybutyrate
US9084467B2 (en) 2010-02-11 2015-07-21 Metabolix, Inc. Process for gamma-butyrolactone production
US9121042B2 (en) 2012-07-30 2015-09-01 Samsung Electronics Co., Ltd. Enzyme used in biosynthesis of 1, 4-BDO and screening method of the same
US20160264978A1 (en) * 2011-06-22 2016-09-15 Genomatica, Inc. Microorganisms for producing 1,4-butanediol and methods related thereto
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
KR102023618B1 (ko) * 2012-07-27 2019-09-20 삼성전자주식회사 1,4-bdo 생성능이 개선된 변이 미생물 및 이를 이용한 1,4-bdo의 제조방법
KR102041627B1 (ko) * 2009-06-04 2019-11-06 게노마티카 인코포레이티드 1,4-부탄다이올 생산용 미생물 및 관련 방법
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
KR20200136813A (ko) 2020-03-17 2020-12-08 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989113B1 (en) * 2013-04-26 2024-04-10 Genomatica, Inc. Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR102041627B1 (ko) * 2009-06-04 2019-11-06 게노마티카 인코포레이티드 1,4-부탄다이올 생산용 미생물 및 관련 방법
US9084467B2 (en) 2010-02-11 2015-07-21 Metabolix, Inc. Process for gamma-butyrolactone production
EP2534141B1 (en) * 2010-02-11 2016-04-20 Metabolix, Inc. Process for gamma-butyrolactone production
US20160264978A1 (en) * 2011-06-22 2016-09-15 Genomatica, Inc. Microorganisms for producing 1,4-butanediol and methods related thereto
US20150159184A1 (en) * 2012-03-20 2015-06-11 Metabolix, Inc. Genetically Engineered Microorganisms for the Production of Poly-4-Hydroxybutyrate
KR102023618B1 (ko) * 2012-07-27 2019-09-20 삼성전자주식회사 1,4-bdo 생성능이 개선된 변이 미생물 및 이를 이용한 1,4-bdo의 제조방법
US9121042B2 (en) 2012-07-30 2015-09-01 Samsung Electronics Co., Ltd. Enzyme used in biosynthesis of 1, 4-BDO and screening method of the same
WO2014058655A1 (en) 2012-10-10 2014-04-17 Metabolix Polyhydroxyalkanoate copolymer compositions and methods of making the same
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
KR20200136813A (ko) 2020-03-17 2020-12-08 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, S. F. ET AL., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO ET AL., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DATSENKOWANNER, PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
NAKASHIMA N ET AL.: "Bacterial cellular engineering by genome editing and gene silencing", INT J MOL SCI, vol. 15, no. 2, 2014, pages 2773 - 2793, XP055376889, DOI: 10.3390/ijms15022773
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
NUCL. ACIDS RES., vol. 14, 1986, pages 6745
PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL., TRENDS GENET, vol. 16, 2000, pages 276 - 277
SAMBROOK ET AL., MOLECULAR CLONING, 2012
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY
See also references of EP4349994A4
SITNICKA ET AL.: "Functional Analysis of Genes", ADVANCES IN CELL BIOLOGY, vol. 2, 2010, pages 1 - 16
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
WEINTRAUB, H. ET AL.: "Antisense-RNA as a molecular tool for genetic analysis", REVIEWS - TRENDS IN GENETICS, vol. 1, no. 1, 1986

Also Published As

Publication number Publication date
EP4349994A1 (en) 2024-04-10
JP2024522860A (ja) 2024-06-21
EP4349994A4 (en) 2025-07-09
CN117916385A (zh) 2024-04-19
KR20230000995A (ko) 2023-01-03
US20240318208A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
WO2020204427A1 (ko) 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021049866A1 (ko) L-쓰레오닌 배출 단백질의 변이체 및 이를 이용한 l-쓰레오닌 생산 방법
WO2019164348A1 (ko) 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021150029A1 (ko) Nadp 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 포함하는 미생물을 이용하여 l-아미노산을 생산하는 방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2017069578A1 (ko) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2019017706A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
WO2022225075A1 (ko) 신규한 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2022270991A1 (ko) 신규한 폴리-4-하이드록시부티레이트 및 1,4-부탄다이올 생산방법
WO2024144283A1 (ko) 외래 글루타민 신테타제가 도입된 미생물 및 이를 이용한 l-트립토판의 생산 방법
WO2022231036A1 (ko) 신규한 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2023277307A1 (ko) 고농도 l-글루탐산을 생산하기 위한 균주 및 이를 이용한 l-글루탐산 생산방법
WO2022244932A1 (ko) 신규 프로모터 및 이의 용도
WO2022124786A1 (ko) 신규한 감마-아미노부티르산 퍼미에이즈 변이체 및 이를 이용한 이소류신 생산 방법
WO2022231042A1 (ko) 신규한 변이체 및 이를 이용한 l-발린 생산 방법
WO2024181764A1 (ko) 변이체 폴리펩티드 및 이를 이용한 l-글루탐산 생산 방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163904A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022231027A1 (ko) 신규한 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2023054881A1 (ko) 신규한 아세토하이드록시산 신테아제 변이체 및 이를 이용한 l-이소류신 생산방법
WO2024196193A1 (ko) 변이형 트레오닌/호모세린 배출 단백질 및 이를 이용한 l-아미노산 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023579221

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022828838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828838

Country of ref document: EP

Effective date: 20240104

WWE Wipo information: entry into national phase

Ref document number: 202280057841.9

Country of ref document: CN