[go: up one dir, main page]

WO2022262020A1 - 无取向硅钢及其生产方法 - Google Patents

无取向硅钢及其生产方法 Download PDF

Info

Publication number
WO2022262020A1
WO2022262020A1 PCT/CN2021/105008 CN2021105008W WO2022262020A1 WO 2022262020 A1 WO2022262020 A1 WO 2022262020A1 CN 2021105008 W CN2021105008 W CN 2021105008W WO 2022262020 A1 WO2022262020 A1 WO 2022262020A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
silicon steel
oriented silicon
rolling
normalization
Prior art date
Application number
PCT/CN2021/105008
Other languages
English (en)
French (fr)
Inventor
岳重祥
陆佳栋
吴圣杰
钱红伟
Original Assignee
江苏省沙钢钢铁研究院有限公司
张家港扬子江冷轧板有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 张家港扬子江冷轧板有限公司, 江苏沙钢集团有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Priority to JP2023574637A priority Critical patent/JP2024521220A/ja
Priority to EP21945603.5A priority patent/EP4332264A4/en
Priority to KR1020237041091A priority patent/KR20240008867A/ko
Priority to US18/570,323 priority patent/US20240279782A1/en
Publication of WO2022262020A1 publication Critical patent/WO2022262020A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the invention belongs to the technical field of iron and steel material preparation, and relates to a non-oriented silicon steel and a production method thereof.
  • Non-oriented silicon steel is the iron core material of the motor and generator rotor working in the rotating magnetic field, and its quality stability is of great significance for improving the quality level of the motor.
  • the Si content of low- and medium-grade non-oriented silicon steel is controlled at 0.5% to 1.7%.
  • the existing general production process is generally steelmaking-slab casting-hot rolling-acid rolling-annealing-coating and finishing.
  • equiaxed ferrite + deformed ferrite is obtained in the hot rolling process, and the ferrite grain size and the proportion of equiaxed ferrite are significantly affected by the rolling temperature and coiling temperature in the hot rolling process;
  • the rolling temperature and coiling temperature at the head and tail of the hot-rolled coil are lower than those in the middle of the hot-rolled coil, which in turn leads to lower ferrite in the head and tail than in the middle.
  • the body grains are fine and the proportion of deformed ferrite is high.
  • the finished coil of non-oriented silicon steel has high iron loss at the head and tail, low magnetic induction intensity, and there is a problem of inconsistent magnetic properties throughout the coil.
  • the current countermeasures mainly include annealing head and tail speed reduction production, that is, in the annealing process, the head and tail of the steel coil are annealed.
  • the roll speed is lower than the roll speed when the middle part of the steel coil is annealed, in order to improve the consistency of the magnetic properties of the coil through annealing.
  • this countermeasure leads to the adjustment of the roll speed during production, which increases the difficulty of production and reduces production efficiency. Increase the production cost of the annealing process.
  • the purpose of the present invention is to provide a non-oriented silicon steel and its production method, without significantly increasing the production cost and meeting the requirements of small and medium-sized motors for medium and low-grade non-oriented silicon steel.
  • one embodiment of the present invention provides a non-oriented silicon steel, the chemical composition of which includes: C ⁇ 0.004%, S ⁇ 0.004%, Si: 0.8-1.1%, Mn: 0.2-0.4 %, P ⁇ 0.03%, Nb ⁇ 0.004%, V ⁇ 0.006%, Ti ⁇ 0.005%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cu ⁇ 0.03%, N ⁇ 0.004%, Al:0.15 ⁇ 0.30% or Al ⁇ 0.02%, others are Fe and unavoidable inclusions; the thickness of the non-oriented silicon steel is 0.500 ⁇ 0.005mm, which is processed through steelmaking, slab casting, hot rolling, normalization, acid continuous rolling, and finished annealing in sequence. , cooling, coating and finishing preparation;
  • the casting slab obtained in the casting slab process is heated to 1060-1120°C and kept for more than 150 minutes, and then rolled into an intermediate slab with a thickness of 40-45mm, and then the intermediate slab is finished rolling and coiled to a thickness of 3.00mm.
  • the finishing rolling start temperature ⁇ A r1 872°C+1000*(11*[Si]-14*[Mn]+21*[Al]), where [Si] , [Mn], [Al] are the mass percentages of Si, Mn, and Al in the slab, respectively; finishing rolling temperature ⁇ 820°C, coiling temperature ⁇ 560°C;
  • the normalization temperature is 850-900°C
  • the annealing temperature is 820 ⁇ 880 °C.
  • the normalization temperature fluctuates by ⁇ 10°C, and the production is performed at a constant speed.
  • the annealing time is 50 ⁇ 5s, and the annealing temperature fluctuates by ⁇ 10° C., and the annealing is produced at a constant speed.
  • one embodiment of the present invention provides a method for producing non-oriented silicon steel, which includes the following steps,
  • the hot-rolled coils are subjected to normalization and acid continuous rolling in sequence to obtain chilled coils with a thickness of 0.500 ⁇ 0.005mm, wherein the normalization temperature is 850-900°C;
  • the chilled coil is annealed at a constant speed in a mixed atmosphere of H 2 +N 2 in a continuous annealing furnace, and the annealing temperature of the finished product is 820-880°C; the annealed steel strip is cooled, coated and finished to obtain Non-oriented silicon steel.
  • step 3 normalize for 120-150 s under pure dry N 2 atmosphere.
  • step 3 the normalized temperature fluctuates by ⁇ 10°C, and the production is performed at a constant rate.
  • the annealing time is 50 ⁇ 5s, and the annealing temperature fluctuates by ⁇ 10° C., and the annealing speed is constant for production.
  • the iron loss P 1.5/50 of the obtained non-oriented silicon steel ⁇ 4.2W/kg and the iron loss P 1.5/50 fluctuation of the head, middle and tail ⁇ 0.2W/kg, the magnetic induction intensity B 5000 ⁇ 1.72T and the magnetic induction intensity of the head, middle and tail B 5000 fluctuations ⁇ 0.02T.
  • one embodiment of the present invention provides a method for producing non-oriented silicon steel, which includes the following steps,
  • the hot-rolled coils are subjected to normalization and acid continuous rolling in sequence to obtain chilled coils with a thickness of 0.500 ⁇ 0.005mm, wherein the normalization temperature is 850-900°C;
  • the chilled coil is annealed at a constant speed in a mixed atmosphere of H 2 +N 2 in a continuous annealing furnace, and the annealing temperature of the finished product is 820-880°C; the annealed steel strip is cooled, coated and finished to obtain Non-oriented silicon steel.
  • the finished product of non-oriented silicon steel with a thickness of 0.500 ⁇ 0.005mm prepared by the above production method has an iron loss of P 1.5/50 ⁇ 4.2W/kg, a magnetic induction intensity of B 5000 ⁇ 1.72T, and excellent magnetic properties.
  • the magnetic properties of non-oriented silicon steel with a Si content of 1.4-1.7% are basically the same, which can meet the needs of small and medium-sized motors for medium and low-grade non-oriented silicon steel, and the magnetic properties of the coil are consistent, and the iron loss P 1.5/50 fluctuation of the head, middle and tail ⁇ 0.2 W/kg, magnetic induction intensity B 5000 fluctuation ⁇ 0.02T;
  • the normalization process is added, the production cost will not increase, which ensures lower production cost and has extremely high economic value.
  • the combination of the hot rolling process and the normalizing process can give full play to the effect of the normalizing process on improving the structure of the hot-rolled non-oriented silicon steel sheet and the magnetic properties of the finished product, and reduce the cost of the steelmaking, hot rolling, acid continuous rolling, normalizing and annealing processes. Production costs, to ensure that the cost of the whole process does not increase.
  • the content of the Si element that improves the magnetic properties is reduced from the existing 1.4-1.7% to 0.8-1.1%, and the precious metals Sn and Sb used to improve the magnetic properties are no longer added, and the addition of the Mn element is reduced. , thus reducing the cost of steelmaking alloys under the premise of obtaining the same magnetic properties as the existing chemical composition.
  • the low-temperature rolling and low-temperature coiling process is used in the hot rolling process. On the one hand, it reduces the temperature requirements of the heating furnace and adopts low-temperature heating, which reduces energy consumption and production costs compared with the existing hot rolling process; The surface oxide scale of the rolled plate is reduced, reducing burning loss, increasing the yield and reducing production costs.
  • the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the hot-rolling process and reduces the production cost of the hot-rolling process as a whole.
  • the internal distortion of the hot-rolled coil increases compared with conventional high-temperature rolling and high-temperature coiling, and the difficulty of normalization is reduced, which can realize low-temperature and high-speed production in the normalization process ;
  • the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the normalization process and reduces the production cost of the normalization process as a whole.
  • the hot rolling adopts low-temperature rolling and low-temperature coiling processes, compared with the prior art, the oxide scale on the surface of the steel plate is easier to remove in the acid continuous rolling process, and the acid continuous rolling process is correspondingly reduced.
  • the difficulty of pickling in the pickling process improves the surface quality of the product and the production rate; at the same time, the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the pickling continuous rolling process and reduces the acidity on the whole. Production costs for the continuous rolling process.
  • the structure of the head, middle and tail of the obtained steel coil is uniform, so that the annealing process can be produced at a constant speed and low temperature, which reduces production difficulty, improves production efficiency, and reduces production costs.
  • Fig. 1 is the obtained metallographic structure photo of the hot-rolled coil plate in comparative example 1 by microscopic metallographic structure detection;
  • Fig. 2 is the obtained metallographic structure photo of the hot-rolled coil plate in comparative example 2 by microscopic metallographic structure detection;
  • Fig. 3 is the obtained metallographic structure photo of the hot-rolled coil plate in comparative example 3 by microscopic metallographic structure detection;
  • Fig. 4 is the obtained metallographic structure photograph of the hot-rolled coil plate in embodiment 1 through micrometallographic structure detection;
  • Fig. 5 is the obtained metallographic structure photograph of the hot-rolled coil plate in embodiment 2 through micrometallographic structure detection
  • FIG. 6 is a photo of the metallographic structure of the hot-rolled coil after the normalization process in Comparative Example 2 through microscopic metallographic examination.
  • One embodiment of the present invention provides a non-oriented silicon steel and a production method of the non-oriented silicon steel.
  • the Si content is 0.8-1.1% by mass percentage
  • the Mn content is 0.2-0.4% by mass percentage.
  • the production method includes the steps of steelmaking, slab casting, hot rolling, normalization, acid continuous rolling, finished product annealing, cooling, coating and finishing in sequence. The production method is described in detail below in accordance with the following steps.
  • Step 1) Steelmaking is carried out according to the Si mass percentage of 0.8-1.1% and the Mn mass percentage of 0.2-0.4% in the chemical composition, and Sn and Sb are not added during the steel-making process, and a cast slab is prepared.
  • This step 1 is the steelmaking process and the billet casting process.
  • the steelmaking process may include molten iron desulfurization, converter smelting, RH refining and other processes carried out in sequence, which may be implemented using existing feasible technological means and will not be described in detail.
  • the steelmaking is carried out according to the mass percentage of Si in the chemical composition of 0.8-1.1%, and the mass percentage of Mn in the range of 0.2-0.4%, and no Sn and Sb are added during the steelmaking process.
  • the mass percentage of Si in the composition is 0.8-1.1%
  • the mass percentage of Mn is 0.2-0.4%, and does not contain Sn and Sb.
  • the chemical components of the cast slab and the final non-oriented silicon steel product include: C ⁇ 0.004%, S ⁇ 0.004%, Si: 0.8-1.1%, Mn: 0.2-0.4%, P ⁇ 0.03%, Nb ⁇ 0.004%, V ⁇ 0.006%, Ti ⁇ 0.005%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cu ⁇ 0.03%, N ⁇ 0.004%, Al: 0.15 ⁇ 0.30%, others are Fe and not avoid inclusions.
  • the chemical composition of the cast slab and the final non-oriented silicon steel product includes: C ⁇ 0.004%, S ⁇ 0.004%, Si: 0.8-1.1%, Mn: 0.2-0.4% in terms of mass percentage , P ⁇ 0.03%, Nb ⁇ 0.004%, V ⁇ 0.006%, Ti ⁇ 0.005%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cu ⁇ 0.03%, N ⁇ 0.004%, Al ⁇ 0.02%, others are Fe and Inevitable inclusion.
  • the cast slab obtained in step 1 has a thickness ⁇ 200mm and a length of 10-11m.
  • Step 2 Heat the slab obtained in step 1 to 1060-1120°C and keep it warm for more than 150 minutes, then roll it into an intermediate slab with a thickness of 40-45mm, and then finish rolling and coiling the intermediate slab to obtain a thickness of 3.00 ⁇ 0.25mm of hot-rolled coils.
  • This step 2 is the hot rolling process.
  • the finish rolling temperature is controlled to be ⁇ 820°C, and the coiling temperature is ⁇ 560°C.
  • the hot rolling process adopts low-temperature rolling and low-temperature coiling processes to ensure that all passes in the finish rolling are carried out in the ferrite area, and the final rolling pass of the finish rolling is carried out in the low-temperature ferrite area , so, there is no ⁇ / ⁇ phase transformation in the finishing rolling process, and the obtained hot-rolled coil has a single-phase structure of fully deformed ferrite, and based on this structure, the heat dissipation rate of the hot-rolled coil is different at the head, middle and tail It can still ensure the uniformity of the structure under the same conditions, and then lay the foundation for the subsequent acquisition of non-oriented silicon steel products with consistent magnetic properties throughout the coil.
  • the hot rolling process adopts low-temperature rolling and low-temperature coiling processes, thereby reducing the requirement for the temperature of the heating furnace, and adopting low-temperature heating to reduce the solid solution of precipitates in the slab, which is beneficial to the growth of grains in the structure. Large, thereby ensuring the excellent magnetic properties of the subsequent non-oriented silicon steel product, and reducing the production cost compared with the existing hot rolling process.
  • Step 3 The hot-rolled coils obtained in Step 2 are subjected to normalization and continuous acid rolling in sequence to obtain chilled coils with a thickness of 0.500 ⁇ 0.005mm, wherein the normalization temperature is 850-900°C.
  • the normalization process is applied in the production of high-grade non-oriented silicon steel, that is, the production process route of high-grade non-oriented silicon steel adopts steelmaking-slab-hot rolling-normalization-acid continuous rolling-annealing-coating and finishing
  • adding a normalization process like high-grade non-oriented silicon steel can improve the inconsistent magnetic properties of the head, middle and tail to a certain extent, but it will lead to hot-rolled coils Compared with the inside, the grains on the surface of the plate grow abnormally, which leads to serious color difference on the surface of the steel coil after acid continuous rolling, and increases the production cost.
  • step 2 hot-rolling process by adopting low-temperature rolling, low-temperature coiling process in aforementioned step 2 hot-rolling process, obtain the hot-rolled coil plate that is fully deformed ferrite structure, lay the foundation for normalization process like this, To avoid the problem that the grains on the surface of the steel coil grow abnormally compared to the inside of the steel coil during the normalization treatment as mentioned above, that is, the grains of the steel coil after the normalization treatment grow uniformly everywhere, and the normal chemical The sequence can also ensure that the final non-oriented silicon steel has better magnetic properties; moreover, the fully deformed ferrite structure of the hot-rolled coil has accumulated extremely high storage energy, which can reduce the difficulty of normalization and realize the normalization process.
  • the magnetic properties of the final obtained non-oriented silicon steel can be greatly improved.
  • the chemical In terms of composition the content of Si element that improves the magnetic properties is reduced from the existing 1.4-1.7% to 0.8-1.1%, the noble metals Sn and Sb used to improve the magnetic properties are no longer added, and the addition of Mn elements is reduced.
  • the existing chemical composition has the same magnetic properties, and the cost of the alloy can be reduced.
  • the normalization temperature fluctuates by ⁇ 10°C, that is, the normalization temperature is controlled within the fluctuation range of ⁇ 10°C, so that the maximum and minimum temperature values during normalization do not exceed a difference of 20°; and often In the process of constant speed production, that is, the roll speed is constant when normalizing the head, middle and tail of the steel coil.
  • the surface scale of the hot-rolled coil is reduced, reducing burning loss, and compared with the prior art In other words, it is easier to remove the oxide scale on the surface of the steel plate in the acid continuous rolling process of step 3, correspondingly reducing the difficulty of pickling in the acid continuous rolling process, improving the product surface quality and production rate; in addition, as mentioned above , by adopting low-temperature heating in the hot rolling process of the aforementioned step 2, it is beneficial to the growth of the grain of the structure, and combined with the increase of the normalization process, the thickness of the hot-rolled coil in step 2 can be increased from the existing 2.0 to 2.5mm to 3.00 ⁇ 0.25mm, and the greater the thickness of the hot-rolled coil, the greater the amount of steel pickled in the acid tandem rolling process by the step 3 at the same roll speed, thereby improving the production rate of the acid tandem rolling process, The production cost
  • the thickness of the hot-rolled coil can be increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, and the thickness of the hot-rolled coil Increase, in turn, can greatly reduce the difficulty of the hot rolling process in the hot rolling process, and improve the production efficiency of the hot rolling process.
  • step 3 three-stage pickling is performed with HCl first, and then rinsing, drying, and cold rolling are performed to obtain chilled coils.
  • Step 4) The chilled coil obtained in step 3 is annealed at a constant speed in a continuous annealing furnace in a mixed atmosphere of H 2 +N 2 , and the annealing temperature of the finished product is 820-880° C.; Finishing to obtain finished non-oriented silicon steel.
  • the step 4 is the finished annealing process, cooling process, coating and finishing process.
  • the structure of the head, middle and tail of the obtained steel coil is uniform, and the annealing process of the finished product in step 4 adopts low temperature and constant speed production, and then through conventional cooling , coating and finishing, can obtain non-oriented silicon steel with a thickness of 0.500 ⁇ 0.005mm with excellent magnetic properties and consistent magnetic properties at the head, middle and tail.
  • Productivity
  • the constant-speed production in the finished product annealing process that is, in the finished product annealing process
  • the constant-speed production that is, the roll speed when annealing the head, middle and tail of the steel coil is constant.
  • the annealing time is 50 ⁇ 5s, and the finished annealing temperature fluctuates by ⁇ 10°C, that is, the difference between the maximum and minimum temperatures during the finished annealing does not exceed 20°.
  • the steel strip after the finished annealing is cooled by adopting three-stage cooling to effectively control the residual stress of the steel strip to ⁇ 50 MPa, which is beneficial to the control of the shape of the strip.
  • the non-oriented silicon steel according to one embodiment of the present invention is prepared by the above production method, the thickness of the non-oriented silicon steel is 0.500 ⁇ 0.005mm, and, as mentioned above, its chemical composition includes: C ⁇ 0.004 %, S ⁇ 0.004%, Si:0.8 ⁇ 1.1%, Mn:0.2 ⁇ 0.4%, P ⁇ 0.03%, Nb ⁇ 0.004%, V ⁇ 0.006%, Ti ⁇ 0.005%, Cr ⁇ 0.03%, Ni ⁇ 0.03% , Cu ⁇ 0.03%, N ⁇ 0.004%, Al: 0.15 ⁇ 0.30% or Al ⁇ 0.02%, others are Fe and unavoidable inclusions.
  • the iron loss of the non-oriented silicon steel is P 1.5/50 ⁇ 4.2W/kg, the magnetic induction intensity B 5000 ⁇ 1.72T, and the magnetic properties are excellent, which are basically the same as those of the existing non-oriented silicon steel with Si content of 1.4-1.7%.
  • Small and medium-sized motors need medium and low-grade non-oriented silicon steel, and the magnetic properties of the coil are consistent, the iron loss P 1.5/50 fluctuation of the head, middle and tail ⁇ 0.2W/kg, and the magnetic induction intensity B 5000 fluctuation ⁇ 0.02T, that is, non-oriented
  • the difference between the maximum and minimum values of iron loss P 1.5/50 at the head, middle and tail of finished silicon steel coils is ⁇ 0.2W/kg, and the difference between the maximum and minimum values of B 5000 at the head, middle and tail is ⁇ 0.02T.
  • the finished non-oriented silicon steel product prepared by the production method has excellent magnetic properties, which can meet the requirements of small and medium-sized motors for medium and low-grade non-oriented silicon steel, and the magnetic properties of the coil are consistent, and the iron loss of the head, middle and tail is P 1.5/50 And the fluctuation of magnetic induction intensity B 5000 is small, which improves the stability of magnetic properties of non-oriented silicon steel products;
  • the normalization process is added, the production cost will not increase, which ensures lower production cost and has extremely high economic value.
  • the combination of the hot rolling process and the normalizing process can give full play to the effect of the normalizing process on improving the structure of the hot-rolled non-oriented silicon steel sheet and the magnetic properties of the finished product, and reduce the cost of the steelmaking, hot rolling, acid continuous rolling, normalizing and annealing processes. Production costs, to ensure that the cost of the whole process does not increase.
  • the content of the Si element that improves the magnetic properties is reduced from the existing 1.4-1.7% to 0.8-1.1%, and the precious metals Sn and Sb used to improve the magnetic properties are no longer added, and the addition of the Mn element is reduced. , thus reducing the cost of steelmaking alloys under the premise of obtaining the same magnetic properties as the existing chemical composition.
  • the low-temperature rolling and low-temperature coiling process is used in the hot rolling process. On the one hand, it reduces the temperature requirements of the heating furnace and adopts low-temperature heating, which reduces energy consumption and production costs compared with the existing hot rolling process; The surface oxide scale of the rolled plate is reduced, reducing burning loss, increasing the yield and reducing production costs.
  • the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the hot-rolling process and reduces the production cost of the hot-rolling process as a whole.
  • the internal distortion of the hot-rolled coil increases compared with conventional high-temperature rolling and high-temperature coiling, and the difficulty of normalization is reduced, which can realize low-temperature and high-speed production in the normalization process ;
  • the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the normalization process and reduces the production cost of the normalization process as a whole.
  • the hot rolling adopts low-temperature rolling and low-temperature coiling processes, compared with the prior art, the oxide scale on the surface of the steel plate is easier to remove in the acid continuous rolling process, and the acid continuous rolling process is correspondingly reduced.
  • the difficulty of pickling in the pickling process improves the surface quality of the product and the production rate; at the same time, the thickness of the hot-rolled coil is increased from the existing 2.0-2.5mm to 3.00 ⁇ 0.25mm, which improves the production rate of the pickling continuous rolling process and reduces the acidity on the whole. Production costs for the continuous rolling process.
  • the structure of the head, middle and tail of the obtained steel coil is uniform, so that the annealing process can be produced at a constant speed and low temperature, which reduces production difficulty, improves production efficiency, and reduces production costs.
  • the chemical composition of the cast slab is shown in Table 1 in mass percentage, the thickness of the cast slab is also shown in Table 1, and the length is 10-11m.
  • the cast slab obtained in step 1 is heated, then rolled into an intermediate slab, and then the intermediate slab is finished rolled and coiled to obtain a hot-rolled coil.
  • a r1 872°C+1000*(11*[ Si]-14*[Mn]+21*[Al])
  • control the finish rolling start temperature to be less than or equal to A r1 .
  • the finishing rolling temperature is controlled to be ⁇ 820°C, and the coiling temperature is ⁇ 560°C to obtain a fully deformed structure.
  • Comparative Examples 1-3 conventional high-temperature final rolling and high-temperature coiling processes were adopted to obtain as many recrystallized structures as possible.
  • Table 2 shows the heating temperature, holding time, intermediate billet thickness, finish rolling start temperature, finish rolling finish temperature, coiling temperature, and hot-rolled coil thickness of Comparative Examples 1-3 and Examples 1-2.
  • Comparative Examples 1-3 and Examples 1-2 were tested respectively, and the obtained test results are shown in Figures 1-5, from which it can be found that: Comparative Examples 1-3
  • the microstructures are all composite microstructures of deformed ferrite and equiaxed ferrite; the microstructures of Examples 1-2 are all fully deformed ferrite microstructures, but do not contain equiaxed ferrite microstructures.
  • the hot-rolled coils obtained in Comparative Example 1 and Comparative Example 3 obtained in Step 2 are directly acid-rolled to obtain chilled coils with a thickness of 0.500 ⁇ 0.005mm; the hot-rolled coils obtained in Comparative Example 2 obtained in Step 2 and Examples 1-2 Coils are subjected to normalization and acid continuous rolling in sequence to obtain chilled coils with a thickness of 0.500 ⁇ 0.005mm.
  • the normalization is carried out in a pure dry N2 atmosphere, and the normalization temperature is 850-900°C.
  • each comparative example and embodiment such as normalization temperature, normalization duration, normalization temperature fluctuation, pickling speed, chilled coil thickness and raw material thickness are shown in Table 3.
  • the microstructure of the hot-rolled coils obtained after the normalization process in Comparative Example 2 and Examples 1 to 2 were tested respectively, and it was found that: referring to the test results of Comparative Example 2 shown in Figure 6, the results of Comparative Example 2
  • the surface of the hot-rolled coil after the normalization process has abnormal grain growth; while the structure of the hot-rolled coil obtained in Examples 1-2 after the normalization process is a complete equiaxed ferrite structure, and the structure is uniform.
  • the chilled coils obtained after pickling have good surface quality. It can be seen that the thickness of the hot-rolled coils in Examples 1-2 before continuous acid rolling is 3.00 mm, which is higher than the thickness of 2.50 mm in Comparative Examples 1-3, and the actual production efficiency of Examples 1-2 is high.
  • the chilled coil obtained in step 3 is finished annealed in a mixed atmosphere of H 2 +N 2 in a continuous annealing furnace.
  • Comparative Example 2 and Examples 1 to 2 were produced at a constant speed throughout the entire process, and Comparative Examples 1 and 3 were produced at a reduced speed from the head to the tail in order to eliminate the difference between the head, middle and tail as much as possible; wherein, the annealing temperature fluctuated by ⁇ 10°C, that is, the finished product
  • the maximum and minimum temperature values during annealing do not exceed a difference of 20°.
  • the annealed steel strip is cooled, coated and finished to obtain the finished product of non-oriented silicon steel.
  • three-stage cooling is adopted to cool the finished annealed steel strip to effectively control the residual stress of the steel strip to ⁇ 50MPa, which is beneficial to the control of the shape of the strip.
  • the finished product annealing temperature, annealing time, annealing speed, head and tail annealing time and head and tail annealing speed are shown in Table 4 respectively.
  • Comparative Example 1 and Comparative Example 3 without the normalization process, even if the head and tail of the annealing process have been slowed down, the difference in magnetic properties between the head and tail and the middle cannot be completely eliminated; Comparative Example 2 and Example 1 ⁇ 2.
  • the annealing process is produced at a constant speed throughout the whole process, and the difference in magnetic properties between the head and tail and the middle part is small; but the grains on the surface of the normalization process in Comparative Example 2 grow abnormally, resulting in inferior surface quality of the finished product.
  • the iron loss of the obtained non-oriented silicon steel product is low, the fluctuation of iron loss in the head, middle and tail is small, the magnetic induction intensity B 5000 is greatly increased, and the magnetic induction intensity of the head, middle and tail B 5000 fluctuates little.
  • the non-oriented silicon steel produced by one embodiment of the present invention has high production efficiency and low cost; moreover, the magnetic properties of the obtained non-oriented silicon steel product are higher than those with the same Si content
  • the existing non-oriented silicon steel for example, embodiment 1 ⁇ 2 non-oriented silicon steel Si content 0.94%, 1.05%, does not contain the magnetic property of Sn, is higher than prior art comparative example 3 non-oriented silicon steel Si content 1.54%+0.025%
  • the magnetic properties of Sn non-oriented silicon steel), and the annealing process is produced at a constant speed, and the magnetic properties of the head, middle and tail are highly consistent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种无取向硅钢及其生产方法。所述生产方法包括:按照Si 0.8~1.1%、Mn 0.2~0.4%、不添加Sn和Sb进行炼钢,并制坯;将铸坯加热到1060~1120℃并保温150min以上,而后轧成厚度40~45mm的中间坯,再经精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,精轧开轧温度≤872℃+1000*(11*[Si]-14*[Mn]+21*[Al]);精轧终轧温度≤820℃,卷取温度≤560℃;常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,常化温度850~900℃;成品退火温度820~880℃,退火后经冷却、涂层和精整,得到无取向硅钢。

Description

无取向硅钢及其生产方法
本申请要求了申请日为2021年06月17日,申请号为202110670657.9,发明名称为“无取向硅钢及其生产方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于钢铁材料制备技术领域,涉及一种无取向硅钢及其生产方法。
背景技术
无取向硅钢是在旋转磁场中工作的电动机和发电机转子的铁芯材料,其质量稳定性对于提升电机质量水平具有重要意义。中低牌号无取向硅钢Si含量控制在0.5%~1.7%,现有通用的生产工艺路线一般为炼钢-铸坯-热轧-酸连轧-退火-涂层和精整。其中,热轧工序中得到等轴铁素体+变形铁素体,铁素体晶粒尺寸及等轴铁素体的占比受热轧工序中的轧制温度和卷取温度影响极为明显;而由于热轧卷板的头尾散热快,使得热轧卷板的头尾处的轧制温度和卷取温度比热轧卷板的中部低,进而导致与中部相比,头尾部的铁素体晶粒细小且变形铁素体比例高。最终,无取向硅钢的成品卷的头尾部铁损高、磁感应强度低,存在通卷磁性能不一致的问题。
为了解决中低牌号无取向硅钢的通卷磁性能不一致的问题,现在的应对方法主要有退火头尾降速生产,也即,在退火工序中,针对钢卷的头部和尾部进行退火时的辊速小于针对钢卷的中部进行退火时的辊速,以期通过退火来改善通卷磁性能的一致性,然而,该应对方法导致生产中要调整辊速,增加生产难度,且降低生产效率、提高退火工序的生产成本。
发明内容
针对现有技术所存在的问题,本发明的目的在于提供一种无取向硅钢及其生产方法,在不显著增加生产成本、满足中小型电机对中低牌号无取向硅钢的要求的前提下,解决无取向硅钢的通卷磁性能不一致的问题。
为实现上述发明目的,本发明一实施方式提供了一种无取向硅钢,其化学成分以质量百分比计包括:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%或者Al≤0.02%,其它为Fe及不可避免的夹杂;所述无取向硅钢的厚度为0.500±0.005mm,其通过依序进行的炼钢、铸坯、热轧、常化、酸连轧、成品退火、冷却、涂层和精整制备而成;
在炼钢工序期间不添加Sn和Sb;
在热轧工序中:将铸坯工序所得铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其 中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
在常化工序中,常化温度为850~900℃;
在成品退火工序中,恒速生产,退火温度为820~880℃。
优选地,所述无取向硅钢的铁损P 1.5/50≤4.2W/kg且头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000≥1.72T且头中尾的磁感应强度B 5000波动≤0.02T。
优选地,常化工序中,在纯干N 2气氛下常化120~150s。
优选地,常化工序中,常化温度波动±10℃,且恒速生产。
优选地,退火工序中,退火时间50±5s,且退火温度波动±10℃,且退火恒速生产。
为实现上述发明目的,本发明一实施方式提供了一种无取向硅钢的生产方法,其包括以下步骤,
1)在不添加Sn和Sb的情况下进行炼钢,并制备出铸坯,铸坯的化学成分以质量百分比计为:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%或者Al≤0.02%,其它为Fe及不可避免的夹杂;
2)将铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
3)将热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中常化温度为850~900℃;
4)将冷硬卷采用连续退火炉在H 2+N 2的混合气氛中恒速进行成品退火,成品退火温度为820~880℃;退火后的钢带经冷却、涂层和精整,得到无取向硅钢。
优选地,步骤3中,在纯干N 2气氛下常化120~150s。
优选地,步骤3中,常化温度波动±10℃,且恒速生产。
优选地,步骤4中,退火时间50±5s,且退火温度波动±10℃,且退火恒速生产。
优选地,所得无取向硅钢的铁损P 1.5/50≤4.2W/kg且头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000≥1.72T且头中尾的磁感应强度B 5000波动≤0.02T。
为实现上述发明目的,本发明一实施方式提供了一种无取向硅钢的生产方法,其包括以下步骤,
1)按照化学成分中Si质量百分比0.8~1.1%、Mn质量百分比0.2~0.4%进行炼钢,且炼钢期间不添加Sn和Sb,并制备出铸坯;
2)将铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
3)将热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中常化温度为850~900℃;
4)将冷硬卷采用连续退火炉在H 2+N 2的混合气氛中恒速进行成品退火,成品退火温度为820~880℃;退火后的钢带经冷却、涂层和精整,得到无取向硅钢。
与现有技术相比,本发明的有益效果为:
(1)采用所述生产方法制备得到的厚度为0.500±0.005mm的无取向硅钢成品,铁损P 1.5/50≤4.2W/kg,磁感应强度B 5000≥1.72T,磁性能优异,与现有Si含量1.4~1.7%的无取向硅钢的磁性能基本相同,能够满足中小型电机对中低牌号无取向硅钢的需求,并且通卷磁性能一致,头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000波动≤0.02T;
(2)通过在热轧工序中采用低温轧制、低温卷取工艺,获得呈完全变形铁素体组织的热轧卷板,再结合增加的常化工序,保证最终所得无取向硅钢具有较佳的磁性能的同时,在成品退火工序中恒速生产的情况下,解决现有技术中无取向硅钢成品的头中尾磁性能不一致的问题,并避免常化处理时钢卷出现表面晶粒相较于内部而言异常长大的情况;
(3)尽管增加了常化工序,但生产成本并不会增加,保证较低的生产成本,具有极高的经济价值。具体地,热轧工序和常化工序的结合,充分发挥常化工序对无取向硅钢热轧钢板组织和成品磁性能改善效果,降低炼钢、热轧、酸连轧、常化和退火各工序生产成本,确保全流程成本不增加。炼钢工序,化学成分方面,将提高磁性能的Si元素含量由现有的1.4~1.7%降低到0.8~1.1%、不再添加用于提高磁性能的贵金属Sn和Sb、减少Mn元素的添加,如此在取得与现有化学成分相同的磁性能的前提下,降低炼钢合金成本。热轧工序中采用低温轧制、低温卷取工艺,一方面,降低对加热炉温度要求,采用低温加热,相对于现有的热轧工序减少能耗、降低生产成本;另一方面,使得热轧卷板的表面氧化铁皮减少,降低烧损,提高成材率降低生产成本。同时,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升热轧工序的生产速率,整体上降低热轧工序的生产成本。常化工序,由于热轧采用低温轧制、低温卷取工艺,热轧卷板内部畸变能较常规高温轧制、高温卷取增加,常化难度降低,可实现常化工序中的低温高速生产;另 外,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升常化工序的生产速率,整体上降低常化工序的生产成本。酸连轧工序,由于热轧采用低温轧制、低温卷取工艺,进而相对现有技术而言,使得钢板表面的氧化铁皮更容易在酸连轧工序中去除干净,相应降低了酸连轧工序中的酸洗难度,提升产品表面质量以及生产速率;同时,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升酸连轧工序的生产速率,整体上降低酸连轧工序的生产成本。退火工序,由于采用热轧工序和常化工序的结合,所得钢卷的头中尾组织均匀,使得退火工序可以采用恒速低温生产,降低生产难度,提升生产效率,进而降低生产成本。
附图说明
图1是对比例1中的热轧卷板通过显微金相组织检测所得金相组织照片;
图2是对比例2中的热轧卷板通过显微金相组织检测所得金相组织照片;
图3是对比例3中的热轧卷板通过显微金相组织检测所得金相组织照片;
图4是实施例1中的热轧卷板通过显微金相组织检测所得金相组织照片;
图5是实施例2中的热轧卷板通过显微金相组织检测所得金相组织照片;
图6是对比例2中常化工序后的热轧卷板通过显微金相组织检测所得金相组织照片。
具体实施方式
本发明一实施方式提供了一种无取向硅钢,以及该无取向硅钢的生产方法。所述无取向硅钢的化学成分中,Si含量以质量百分比为0.8~1.1%,Mn含量以质量百分比为0.2~0.4%,其通过依序进行的炼钢、铸坯、热轧、常化、酸连轧、成品退火、冷却、涂层和精整制备而成。也即,所述生产方法包括依序进行的炼钢、铸坯、热轧、常化、酸连轧、成品退火、冷却、涂层和精整等各个工序。下面对所述生产方法按照以下各步骤进行详细介绍。
步骤1)按照化学成分中Si质量百分比0.8~1.1%、Mn质量百分比0.2~0.4%进行炼钢,且炼钢期间不添加Sn和Sb,并制备出铸坯。
该步骤1,也即炼钢工序和铸坯工序。
炼钢工序可包括依序进行的铁水脱硫、转炉冶炼、RH精炼等工艺,具体可采用现有可行的工艺手段予以实施,不予赘述。其中,按照化学成分中Si质量百分比0.8~1.1%、Mn质量百分比0.2~0.4%进行炼钢,且炼钢期间不添加Sn和Sb,相应的,所得铸坯和最终所得无取向硅钢成品的化学成分中Si质量百分比0.8~1.1%、Mn质量百分比0.2~0.4%、不含Sn和Sb。
一实施方式中,所得铸坯和最终所得无取向硅钢成品的化学成分以质量百分比计包括:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%,其它为Fe及不可 避免的夹杂。或者,再一实施方式中,所得铸坯和最终所得无取向硅钢成品的化学成分以质量百分比计包括:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al≤0.02%,其它为Fe及不可避免的夹杂。
优选地,该步骤1中所得铸坯的厚度≥200mm,长度为10~11m。
步骤2)将步骤1中所得铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板。
该步骤2,也即热轧工序。其中:精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为步骤1所得铸坯中Si、Mn、Al的质量百分比。也即,根据步骤1所得铸坯中Si、Mn、Al的质量百分比[Si]、[Mn]、[Al],计算得到A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),在该步骤2中,控制精轧开轧温度小于等于A r1。并且,控制精轧终轧温度≤820℃,卷取温度≤560℃。
如此,本实施方式中,热轧工序采用低温轧制、低温卷取工艺,确保精轧中各道次均在铁素体区进行,且精轧的终轧道次在低温铁素体区进行,如此,精轧过程中不存在γ/α的相变,所得热轧卷板的组织为完全变形铁素体的单相组织,而基于该组织,热轧卷板在头中尾散热速度不一样的情况下依然可以保证组织均匀性,进而,为后续获得通卷磁性能一致的无取向硅钢成品奠定基础。
另外,本实施方式中,热轧工序采用低温轧制、低温卷取工艺,从而降低对加热炉温度要求降低,采用低温加热,减少铸坯中析出物的固溶,有利于组织晶粒的长大,进而保证后续所得无取向硅钢成品的磁性能优异,且相对于现有的热轧工序降低生产成本。
步骤3)将步骤2所得热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中常化温度为850~900℃。
该步骤3中,也即常化工序和酸连轧工序。
通常常化工序应用在高牌号无取向硅钢的生产中,也即高牌号无取向硅钢的生产工艺路线采用炼钢-铸坯-热轧-常化-酸连轧-退火-涂层和精整,然而,对于中低牌号无取向硅钢的现有生产方法而言,如高牌号无取向硅钢一样增加常化工序,尽管一定程度上可以改善头中尾磁性能不一致的情况,但是会导致热轧卷板的表面晶粒相较于内部而言异常长大,导致酸连轧之后钢卷的表面严重色差判次,且增加生产成本。而本实用新型的生产方法中,通过在前述步骤2热轧工序中采用低温轧制、低温卷取工艺,获得呈完全变形铁素体组织的热轧卷板,如此为常化工序奠定基础,避免如上所述现有的常化处理时钢卷出现表面晶粒相较于内部而言异常长大的问题,也即使得常 化处理后的钢卷各处晶粒均匀长大,并且常化工序还可以保证最终所得无取向硅钢具有较佳的磁性能;再者,热轧卷板的完全变形铁素体组织积累了极高的储存能,从而可以降低常化难度,实现常化工序中的低温高速生产,从而避免因常化工序的增加而过度增加生产成本;另外,由于常化工序的顺利实施,可以大大提升最终所得无取向硅钢具有的磁性能,在此情况下,本发明化学成分方面,将提高磁性能的Si元素含量由现有的1.4~1.7%降低到0.8~1.1%、不再添加用于提高磁性能的贵金属Sn和Sb、减少Mn元素的添加,如此可以取得与现有化学成分相同的磁性能,并可以降低合金成本。
进一步优选地,常化工序中,在纯干N 2气氛下常化120~150s。另外,优选地,常化工序中,常化温度波动±10℃,即常化温度控制在波动范围±10℃,如此,常化期间温度最大值和最小值不超过20°差值;且常化工序中,恒速生产,也即针对钢卷的头部、中部、尾部进行常化时的辊速恒定不变。
并且,本实施方式中,通过在前述步骤2热轧工序中采用低温加热、低温轧制、低温卷取工艺,使得热轧卷板的表面氧化铁皮减少,降低烧损,进而相对现有技术而言,使得钢板表面的氧化铁皮更容易在该步骤3的酸连轧工序中去除干净,相应降低了酸连轧工序中的酸洗难度,提升产品表面质量以及生产速率;另外,如前所述,通过在前述步骤2热轧工序中采用低温加热,利于组织晶粒的长大,并且结合常化工序的增加,使得步骤2的热轧卷板厚度可以由现有的2.0~2.5mm增厚至3.00±0.25mm,而热轧卷板的厚度越大,则相同辊速下通过该步骤3的酸连轧工序中酸洗处理的钢量越大,进而提升酸连轧工序的生产速率,整体上降低酸连轧工序的生产成本。
另外,如前所述,由于热轧工序中低温加热和常化工序的结合,使得热轧卷板厚度可以由现有的2.0~2.5mm增厚至3.00±0.25mm,热轧卷板厚度的增大,反过来又可以大幅度降低热轧工序中热轧过程的难度,提升热轧工序的生产效率。
进一步优选地,该步骤3的酸连轧工序中,先采用HCl进行三级酸洗,而后经漂洗、烘干、冷轧,得到冷硬卷。
步骤4)将步骤3所得冷硬卷采用连续退火炉在H 2+N 2的混合气氛中恒速进行成品退火,成品退火温度为820~880℃;退火后的钢带经冷却、涂层和精整,得到无取向硅钢成品。
该步骤4,也即成品退火工序、冷却工序、涂层和精整工序。
本实施方式中,通过前述可知,基于步骤2热轧工序和步骤3常化工序,所得钢卷的头中尾组织均匀,进而该步骤4中成品退火工序采用低温恒速生产,再通过常规的冷却、涂层和精整,即可获得磁性能优异且头中尾磁性能一致的厚度为0.500±0.005mm的无取向硅钢,无需如现有 技术一般采用退火头尾降速生产,降低生产难度、提升生产效率。
其中,成品退火工序的恒速生产,也即成品退火工序中,恒速生产,也即针对钢卷的头部、中部、尾部进行退火时的辊速恒定不变。
进一步优选地,该步骤4的成品退火工序中,退火时间50±5s,成品退火温度波动±10℃,也即,成品退火期间温度最大值和最小值不超过20°差值。
进一步优选地,该步骤4的冷却工序中,采用三段式冷却对成品退火后的钢带进行冷却,有效控制钢带的残余应力≤50MPa,有利于板形的控制。
本发明一实施方式的无取向硅钢,其采用上述生产方法制备而成,该无取向硅钢的厚度为0.500±0.005mm,并且,如前所述,其化学成分以质量百分比计包括:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%或者Al≤0.02%,其它为Fe及不可避免的夹杂。
该无取向硅钢的铁损P 1.5/50≤4.2W/kg,磁感应强度B 5000≥1.72T,磁性能优异,与现有Si含量1.4~1.7%的无取向硅钢的磁性能基本相同,能够满足中小型电机对中低牌号无取向硅钢的需求,并且通卷磁性能一致,头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000波动≤0.02T,也即,无取向硅钢成品钢卷的头中尾的铁损P 1.5/50的最大值和最小值的差值≤0.2W/kg、且头中尾的B 5000的最大值和最小值的差值≤0.02T。
与现有技术相比,本发明的有益效果在于:
(1)采用所述生产方法制备所得无取向硅钢成品,磁性能优异,能够满足中小型电机对中低牌号无取向硅钢的要求,并且通卷磁性能一致,头中尾的铁损P 1.5/50和磁感应强度B 5000的波动小,提升了无取向硅钢成品的磁性能稳定性;
(2)通过在热轧工序中采用低温轧制、低温卷取工艺,获得呈完全变形铁素体组织的热轧卷板,再结合增加的常化工序,保证最终所得无取向硅钢具有较佳的磁性能的同时,在成品退火工序中恒速生产的情况下,解决现有技术中无取向硅钢成品的头中尾磁性能不一致的问题,并避免常化处理时钢卷出现表面晶粒相较于内部而言异常长大的情况;
(3)尽管增加了常化工序,但生产成本并不会增加,保证较低的生产成本,具有极高的经济价值。具体地,热轧工序和常化工序的结合,充分发挥常化工序对无取向硅钢热轧钢板组织和成品磁性能改善效果,降低炼钢、热轧、酸连轧、常化和退火各工序生产成本,确保全流程成本不增加。炼钢工序,化学成分方面,将提高磁性能的Si元素含量由现有的1.4~1.7%降低到0.8~1.1%、不再添加用于提高磁性能的贵金属Sn和Sb、减少Mn元素的添加,如此在取得与现有化学成分相同的磁性能的前提下,降低炼钢合金成本。热轧工序中采用低温轧制、低温卷取工 艺,一方面,降低对加热炉温度要求,采用低温加热,相对于现有的热轧工序减少能耗、降低生产成本;另一方面,使得热轧卷板的表面氧化铁皮减少,降低烧损,提高成材率降低生产成本。同时,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升热轧工序的生产速率,整体上降低热轧工序的生产成本。常化工序,由于热轧采用低温轧制、低温卷取工艺,热轧卷板内部畸变能较常规高温轧制、高温卷取增加,常化难度降低,可实现常化工序中的低温高速生产;另外,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升常化工序的生产速率,整体上降低常化工序的生产成本。酸连轧工序,由于热轧采用低温轧制、低温卷取工艺,进而相对现有技术而言,使得钢板表面的氧化铁皮更容易在酸连轧工序中去除干净,相应降低了酸连轧工序中的酸洗难度,提升产品表面质量以及生产速率;同时,热轧卷板厚度由现有的2.0~2.5mm增厚至3.00±0.25mm,提升酸连轧工序的生产速率,整体上降低酸连轧工序的生产成本。退火工序,由于采用热轧工序和常化工序的结合,所得钢卷的头中尾组织均匀,使得退火工序可以采用恒速低温生产,降低生产难度,提升生产效率,进而降低生产成本。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
下面通过3个对比例和2个实施例来进一步说明本发明的有益效果,当然,这2个实施例仅为本发明所含众多变化实施例中的一部分,而非全部。3个对比例和2个实施例分别提供了一种无取向硅钢,其生产方法具体如下。
步骤1)
炼钢,而后制备出铸坯,铸坯的化学成分以质量百分比计如表1所示,铸坯的厚度同样如表1所示、长度为10~11m。
[表1]
Figure PCTCN2021105008-appb-000001
步骤2)
将步骤1中所得铸坯经过加热,而后轧制成中间坯,再将中间坯经过精轧、卷取得到热轧卷板。其中,实施例1和实施例2根据步骤1所得铸坯中Si、Mn、Al的质量百分比[Si]、[Mn]、 [Al],计算得到A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),在该步骤2中,控制精轧开轧温度小于等于A r1。并且,控制精轧终轧温度≤820℃,卷取温度≤560℃,以获得完全变形组织。而对比例1~3采取常规高温终轧、高温卷取工艺,以获得尽量多的再结晶组织。
对比例1~3和实施例1~2的加热温度、保温时长、中间坯厚度、精轧开轧温度、精轧终轧温度、卷取温度、热轧卷板厚度如表2所示。
[表2]
Figure PCTCN2021105008-appb-000002
在此,对对比例1~3和实施例1~2所得的热轧卷板分别进行显微金相组织检测,所得检测结果如图1~5所示,从中可以发现:对比例1~3的组织均为变形铁素体和等轴铁素体的复合组织;实施例1~2的组织均为完全变形铁素体组织,而不含等轴铁素体组织。
步骤3)
将步骤2所得对比例1和对比例3所得热轧卷板直接进行酸连轧,得到厚度为0.500±0.005mm的冷硬卷;将步骤2所得对比例2和实施例1~2所得热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中,常化在在纯干N 2气氛下进行,常化温度为850~900℃。
具体地,各个对比例以及实施例的关键参数,例如常化温度、常化时长、常化温度波动、酸洗速度、冷硬卷厚度及原料厚度如表3所示。
[表3]
Figure PCTCN2021105008-appb-000003
在此,对对比例2和实施例1~2中常化工序后所得的热轧卷板分别进行显微金相组织检测,发现:参图6所示对比例2的检测结果,对比例2的常化工序后的热轧卷板的表面出现异常晶粒长大;而实施例1~2常化工序后所得热轧卷板的组织为完全等轴铁素体组织,组织均匀。
另外,对比例1~3和实施例1~2中,酸洗后所得冷硬卷均表面质量良好。可见,实施例1~2在酸连轧之前的热轧卷板的厚度3.00mm,高于对比例1~3的厚度2.50mm,实施例1~2实际生 产效率高。
步骤4)
将步骤3所得冷硬卷采用连续退火炉在H 2+N 2的混合气氛中进行成品退火。在成品退火期间,对比例2和实施例1~2全程恒速生产,对比例1和3采用头尾降速生产以期尽量消除头中尾差异;其中,退火温度波动±10℃,也即,成品退火期间温度最大值和最小值不超过20°差值。
退火后的钢带经冷却、涂层和精整,得到无取向硅钢成品。冷却工序中,采用三段式冷却对成品退火后的钢带进行冷却,有效控制钢带的残余应力≤50MPa,有利于板形的控制。
其中,成品退火温度、退火时间、退火速度、头尾退火时间和头尾退火速度分别如表4所示。
[表4]
  退火温度(℃) 退火时间(S) 退火速度(m/min) 头尾退火时间(S) 头尾退火速度(m/min)
对比例1 900 55 150 61 135
对比例2 900 55 150 55 150
对比例3 950 55 150 61 135
实施例1 850 55 150 55 150
实施例2 850 55 150 55 150
对对比例1~3和实施例1~2所得的无取向硅钢成品进行检测,磁性能和表面判定结果如表5所示。
[表5]
Figure PCTCN2021105008-appb-000004
从表5可见:对比例1和对比例3,未经过常化工序,即使退火过程头尾进行了降速生产,也不能完全消除头尾与中部磁性能的差异;对比例2和实施例1~2,经过常化工序,退火过程全程恒速生产,头尾与中部磁性能差异较小;但对比例2常化过程表面出现晶粒异常长大,导致成品表面质量判次。
而结合整个生产过程来看,实施例1~2与对比例3相比,Si、Mn元素的含量均大大降低且炼钢过程中不添加Sn(成品中所含Sn为铁水中或者其它合金中不可避免所引入的),,也即炼钢合金成本降低,而且,热轧卷板厚度增加,提高了热轧、常化、酸连轧速度,降低生产成本,退火过程恒速生产提高退火生产效率降低成本,如此,在整体合金成本和生产成本低的情况下,获 得的无取向硅钢成品的铁损低、头中尾铁损波动小、磁感应强度B 5000大幅度升高、且头中尾磁感应强度B 5000波动小。
总的来讲,从上述实施例1~2可以看出,采用本发明一实施方式生产无取向硅钢,生产效率高、成本低;并且,所得无取向硅钢成品的磁性能高于同等含量Si含量的现有无取向硅钢(例如,实施例1~2无取向硅钢Si含量0.94%、1.05%,不含Sn的磁性能,高于现有技术对比例3无取向硅钢Si含量1.54%+0.025%Sn的无取向硅钢的磁性能),且退火过程恒速生产,头中尾的磁性能一致性高。

Claims (11)

  1. 一种无取向硅钢,其特征在于,其化学成分以质量百分比计包括:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%或者Al≤0.02%,其它为Fe及不可避免的夹杂;所述无取向硅钢的厚度为0.500±0.005mm,其通过依序进行的炼钢、铸坯、热轧、常化、酸连轧、成品退火、冷却、涂层和精整制备而成;
    在炼钢工序期间不添加Sn和Sb;
    在热轧工序中:将铸坯工序所得铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
    在常化工序中,常化温度为850~900℃;
    在成品退火工序中,恒速生产,退火温度为820~880℃。
  2. 根据权利要求1所述的无取向硅钢,其特征在于,其铁损P 1.5/50≤4.2W/kg且头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000≥1.72T且头中尾的磁感应强度B 5000波动≤0.02T。
  3. 根据权利要求1所述的无取向硅钢,其特征在于,常化工序中,在纯干N 2气氛下常化120~150s。
  4. 根据权利要求1所述的无取向硅钢,其特征在于,常化工序中,常化温度波动±10℃,且恒速生产。
  5. 根据权利要求1所述的无取向硅钢,其特征在于,退火工序中,退火时间50±5s,且退火温度波动±10℃,且恒速生产。
  6. 一种无取向硅钢的生产方法,其特征在于,包括以下步骤,
    1)在不添加Sn和Sb的情况下进行炼钢,并制备出铸坯,铸坯的化学成分以质量百分比计为:C≤0.004%,S≤0.004%,Si:0.8~1.1%,Mn:0.2~0.4%,P≤0.03%,Nb≤0.004%,V≤0.006%,Ti≤0.005%,Cr≤0.03%,Ni≤0.03%,Cu≤0.03%,N≤0.004%,Al:0.15~0.30%或者Al≤0.02%,其它为Fe及不可避免的夹杂;
    2)将铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
    3)将热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中常化温度为850~900℃;
    4)将冷硬卷采用连续退火炉在H 2+N 2的混合气氛中恒速进行成品退火,成品退火温度为820~880℃;退火后的钢带经冷却、涂层和精整,得到无取向硅钢。
  7. 根据权利要求6所述的无取向硅钢的生产方法,其特征在于,步骤3中,在纯干N 2气氛下常化120~150s。
  8. 根据权利要求6所述的无取向硅钢的生产方法,其特征在于,步骤3中,常化温度波动±10℃,且恒速生产。
  9. 根据权利要求6所述的无取向硅钢的生产方法,其特征在于,步骤4中,退火时间50±5s,且退火温度波动±10℃,且恒速生产。
  10. 根据权利要求6所述的无取向硅钢的生产方法,其特征在于,所得无取向硅钢的铁损P 1.5/50≤4.2W/kg且头中尾的铁损P 1.5/50波动≤0.2W/kg、磁感应强度B 5000≥1.72T且头中尾的磁感应强度B 5000波动≤0.02T。
  11. 一种无取向硅钢的生产方法,其特征在于,包括以下步骤,
    1)按照化学成分中Si质量百分比0.8~1.1%、Mn质量百分比0.2~0.4%进行炼钢,且炼钢期间不添加Sn和Sb,并制备出铸坯;
    2)将铸坯加热到1060~1120℃并保温150min以上,而后轧制成厚度40~45mm的中间坯,再将中间坯经过精轧、卷取得到厚度为3.00±0.25mm的热轧卷板,其中,精轧开轧温度≤A r1=872℃+1000*(11*[Si]-14*[Mn]+21*[Al]),式中[Si]、[Mn]、[Al]分别为铸坯中Si、Mn、Al的质量百分比;精轧终轧温度≤820℃,卷取温度≤560℃;
    3)将热轧卷板依序进行常化、酸连轧,得到厚度为0.500±0.005mm的冷硬卷,其中常化温度为850~900℃;
    4)将冷硬卷采用连续退火炉在H 2+N 2的混合气氛中恒速进行成品退火,成品退火温度为820~880℃;退火后的钢带经冷却、涂层和精整,得到无取向硅钢。
PCT/CN2021/105008 2021-06-17 2021-07-07 无取向硅钢及其生产方法 WO2022262020A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023574637A JP2024521220A (ja) 2021-06-17 2021-07-07 無方向性ケイ素鋼及びその生産方法
EP21945603.5A EP4332264A4 (en) 2021-06-17 2021-07-07 NON-ORIENTED SILICON STEEL AND PRODUCTION PROCESS THEREOF
KR1020237041091A KR20240008867A (ko) 2021-06-17 2021-07-07 무방향성 규소강 및 그 생산 방법
US18/570,323 US20240279782A1 (en) 2021-06-17 2021-07-07 Non-oriented silicon steel and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110670657.9 2021-06-17
CN202110670657.9A CN113403537B (zh) 2021-06-17 2021-06-17 无取向硅钢及其生产方法

Publications (1)

Publication Number Publication Date
WO2022262020A1 true WO2022262020A1 (zh) 2022-12-22

Family

ID=77684583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105008 WO2022262020A1 (zh) 2021-06-17 2021-07-07 无取向硅钢及其生产方法

Country Status (6)

Country Link
US (1) US20240279782A1 (zh)
EP (1) EP4332264A4 (zh)
JP (1) JP2024521220A (zh)
KR (1) KR20240008867A (zh)
CN (1) CN113403537B (zh)
WO (1) WO2022262020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287626A (zh) * 2023-03-23 2023-06-23 首钢智新迁安电磁材料有限公司 一种提高取向硅钢磁性均匀性的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427023B (zh) * 2022-01-13 2023-08-25 武汉钢铁有限公司 一种提升常规流程中低牌号无取向硅钢性能均匀性的方法
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法
CN115558758B (zh) * 2022-10-13 2024-07-26 张家港扬子江冷轧板有限公司 一种无取向硅钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243717A (ja) * 1989-03-16 1990-09-27 Nippon Steel Corp 板厚方向の磁気特性の均一な良電磁厚板の製造方法
JP2001131636A (ja) * 1999-11-02 2001-05-15 Nippon Steel Corp 磁性の均一な無方向性電磁鋼板の製造方法
CN102102141A (zh) * 2009-12-22 2011-06-22 鞍钢股份有限公司 改善取向硅钢板组织均匀性的热轧工艺
CN102634742A (zh) * 2012-04-01 2012-08-15 首钢总公司 一种无Al的取向电工钢及其制备方法
CN104141092A (zh) * 2014-07-17 2014-11-12 北京首钢股份有限公司 一种立体卷铁芯变压器用无取向电工钢及其生产方法
CN105779731A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 提高低牌号无取向电工钢电磁性能的热轧板常化工艺
CN109112268A (zh) * 2018-11-02 2019-01-01 东北大学 一种改善无取向硅钢磁性能的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343683B (zh) * 2008-09-05 2011-04-20 首钢总公司 一种低铁损高磁感无取向电工钢的制造方法
CN101603145B (zh) * 2009-07-28 2011-12-07 首钢总公司 一种高效电机用无取向电工钢的制造方法
CN104726764B (zh) * 2013-12-23 2017-04-26 鞍钢股份有限公司 一种无取向电工钢生产方法
CN104480383B (zh) * 2014-11-24 2016-11-02 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢的生产方法
CN108286021B (zh) * 2018-03-27 2020-01-21 东北大学 一种高磁感无取向硅钢板的制备方法
CN108486453B (zh) * 2018-03-27 2020-03-31 东北大学 一种低铁损高磁感无取向硅钢板的制备方法
CN109252101B (zh) * 2018-11-02 2020-04-28 东北大学 一种提高无取向硅钢磁性能的方法
CN110042310A (zh) * 2019-05-29 2019-07-23 张家港扬子江冷轧板有限公司 高效无取向硅钢及其制备方法
CN110241359A (zh) * 2019-07-30 2019-09-17 马鞍山钢铁股份有限公司 一种超高效定频压缩机用无取向电工钢及其制备方法
CN110735088A (zh) * 2019-11-22 2020-01-31 马鞍山钢铁股份有限公司 一种薄板坯生产的无取向硅钢及其制造方法
CN111455150A (zh) * 2020-04-22 2020-07-28 马鞍山钢铁股份有限公司 一种非标厚度电动自行车电机用无取向电工钢及其生产方法
CN111793771A (zh) * 2020-06-10 2020-10-20 宝钢湛江钢铁有限公司 一种低铁损低时效高强度50w800无取向硅钢及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243717A (ja) * 1989-03-16 1990-09-27 Nippon Steel Corp 板厚方向の磁気特性の均一な良電磁厚板の製造方法
JP2001131636A (ja) * 1999-11-02 2001-05-15 Nippon Steel Corp 磁性の均一な無方向性電磁鋼板の製造方法
CN102102141A (zh) * 2009-12-22 2011-06-22 鞍钢股份有限公司 改善取向硅钢板组织均匀性的热轧工艺
CN102634742A (zh) * 2012-04-01 2012-08-15 首钢总公司 一种无Al的取向电工钢及其制备方法
CN104141092A (zh) * 2014-07-17 2014-11-12 北京首钢股份有限公司 一种立体卷铁芯变压器用无取向电工钢及其生产方法
CN105779731A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 提高低牌号无取向电工钢电磁性能的热轧板常化工艺
CN109112268A (zh) * 2018-11-02 2019-01-01 东北大学 一种改善无取向硅钢磁性能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4332264A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287626A (zh) * 2023-03-23 2023-06-23 首钢智新迁安电磁材料有限公司 一种提高取向硅钢磁性均匀性的方法
CN116287626B (zh) * 2023-03-23 2023-09-15 首钢智新迁安电磁材料有限公司 一种提高取向硅钢磁性均匀性的方法

Also Published As

Publication number Publication date
US20240279782A1 (en) 2024-08-22
EP4332264A4 (en) 2024-11-13
CN113403537A (zh) 2021-09-17
KR20240008867A (ko) 2024-01-19
JP2024521220A (ja) 2024-05-28
EP4332264A1 (en) 2024-03-06
CN113403537B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN113403537B (zh) 无取向硅钢及其生产方法
CN112609130B (zh) 高牌号无取向硅钢及其生产方法
CN114196887B (zh) 新能源驱动电机用无取向硅钢及其生产方法
US10032548B2 (en) Preparation method of oriented high silicon steel
CN107245647B (zh) 一种基于薄带连铸制备发达{100}面织构无取向硅钢薄带的方法
CN107164690A (zh) 一种基于薄带连铸制备{100}面发达织构无取向硅钢薄带的方法
CN102102141A (zh) 改善取向硅钢板组织均匀性的热轧工艺
CN108411205B (zh) Csp流程生产高磁感低铁损无取向电工钢的方法
CN103882293B (zh) 无取向电工钢及其生产方法
CN104726670B (zh) 一种短流程中薄板坯制备高磁感取向硅钢的方法
CN107779727A (zh) 一种取向硅钢的生产方法
CN118460827B (zh) 无取向硅钢及其制备方法
CN114737129A (zh) 一种卷绕式电机铁芯用高性能无取向硅钢及其生产方法
CN107164693B (zh) 一种基于薄带连铸高硅钢冷轧带钢的制备方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN101748263B (zh) 一种取向硅钢板坯的加热方法
CN110643891B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN113403455A (zh) 无取向硅钢的生产方法
CN113621774B (zh) 高硅无取向电工钢及其生产方法
CN113621894A (zh) 一种FeCrAl合金钢带的制备方法
CN118048574B (zh) 无取向硅钢及其生产方法
CN117127110A (zh) 表面优良的高牌号无取向硅钢及其制备方法
JP2703468B2 (ja) 高磁束密度一方向性電磁鋼板の安定製造方法
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237041091

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237041091

Country of ref document: KR

Ref document number: 2021945603

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021945603

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: 2023574637

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18570323

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE