[go: up one dir, main page]

WO2022260093A1 - 一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック - Google Patents

一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック Download PDF

Info

Publication number
WO2022260093A1
WO2022260093A1 PCT/JP2022/023157 JP2022023157W WO2022260093A1 WO 2022260093 A1 WO2022260093 A1 WO 2022260093A1 JP 2022023157 W JP2022023157 W JP 2022023157W WO 2022260093 A1 WO2022260093 A1 WO 2022260093A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
prepreg
reinforcing fiber
reinforced plastic
resin
Prior art date
Application number
PCT/JP2022/023157
Other languages
English (en)
French (fr)
Inventor
和也 江藤
朋宏 中西
博士 木川
義成 山本
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2023527902A priority Critical patent/JPWO2022260093A1/ja
Priority to CN202280040647.XA priority patent/CN117425687A/zh
Publication of WO2022260093A1 publication Critical patent/WO2022260093A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Definitions

  • the present disclosure relates to a unidirectionally reinforced fiber prepreg, a fiber reinforced plastic sheet using the same, a method for producing a fiber reinforced plastic, and a fiber reinforced plastic.
  • FRP fiber-reinforced plastic
  • chopped reinforcing fibers used in injection molding and kneaded with resin, or cut into a predetermined shape, set in a mold and molded in one press.
  • a sheet molding compound that can do
  • thermoplastic prepreg as a unidirectional reinforcing fiber prepreg (see, for example, Patent Document 3)
  • a high temperature of 200°C or higher is required as a press molding condition after lamination.
  • the pressing temperature is lowered to room temperature, localized internal strain is likely to occur due to the shrinkage of the resin due to the temperature change. It is necessary to correct distortion by performing heat treatment in the applied state.
  • Patent Document 1 JP-A-63-17435
  • Patent Document 2 JP-A-6-15756
  • Patent Document 3 JP-A-2007-121895
  • Deformation such as warping is likely to occur in thin FRP that is made by laminating and curing thin unidirectional reinforcing fiber prepregs, and localized internal strain is concentrated in FRP even if deformation such as warping is not apparent. There is also a part. Therefore, when a large-sized FRP is punched or cut into a part, the part may be deformed due to the release of the local internal strain. These deformations are caused by the fact that the thin unidirectional reinforcing fiber prepreg has excessive drape properties and is extremely difficult to laminate.
  • a single sheet of prepreg is pre-molded while being heated in advance without being laminated, and then a plurality of prepregs are laminated and secondary molding is performed by press molding at a temperature lower than the temperature during the primary molding.
  • Unidirectional reinforced fiber prepreg that is hard to cause deformation such as warping and is hard to cause deformation such as warping even when punching or cutting after secondary molding, fiber reinforced plastic sheet using the same, and method for manufacturing fiber reinforced plastic , and to provide a fiber-reinforced plastic.
  • the tensile modulus of the reinforcing fiber is in the range of 70 GPa to 790 GPa
  • the fiber basis weight is in the range of 5 g/m 2 to 80 g/m 2
  • the matrix resin is a thermoplastic resin
  • the residual volatile content in the matrix resin is 2.0% by mass or less
  • the width of the unidirectional reinforcing fiber prepreg is in the range of 250 mm to 1150 mm
  • the coefficient of variation of the fiber basis weight per unit area measured for a section cut out to a width of 50 mm and a length of 100 mm from the entire width of the unidirectional reinforcing fiber prepreg is within 6%
  • the content of the matrix resin with respect to the entire unidirectional reinforcing fiber prepreg is in the
  • Unidirectional reinforcing fiber prepreg. ⁇ 2> The unidirectional reinforcing fiber prepreg according to ⁇ 1>, wherein the matrix resin is a phenoxy resin having a residual volatile content of 1.5% by mass or less.
  • ⁇ 3> A fiber-reinforced plastic sheet obtained by heating and curing one unidirectionally-reinforced fiber prepreg according to ⁇ 1> or ⁇ 2>.
  • ⁇ 4> A primary molding step of heating the unidirectional reinforcing fiber prepreg according to ⁇ 1> or ⁇ 2> to a first temperature and curing it alone to form a sheet; a secondary molding step of laminating a plurality of the sheets and pressing them at a second temperature lower than the first temperature to integrate them into a fiber-reinforced plastic;
  • a method for producing a fiber-reinforced plastic comprising: ⁇ 5> A fiber-reinforced plastic produced by the method according to ⁇ 4>, wherein the amount of warping of a piece having a width of 50 mm and a length of 150 mm is 5 mm or less when the piece is cut out.
  • a single sheet of prepreg is pre-molded while being heated without being laminated, and then a plurality of prepregs are laminated and secondary molding is performed by press molding at a temperature lower than the temperature during the primary molding.
  • Unidirectional reinforced fiber prepreg that is less prone to deformation such as warping and is less likely to be deformed such as warping even when punched or cut after secondary molding, and fiber reinforced plastic sheets and fiber reinforced plastics using the prepreg.
  • a manufacturing method and a fiber reinforced plastic are provided.
  • FIG. 2 is a schematic diagram showing an example of a laminate obtained by laminating FRPs obtained by primary molding of unidirectional reinforcing fiber prepreg so that the fiber directions of each layer are different.
  • the numerical range represented by using “to” is, if the numerical value described before and after “to” is not attached with “more” or “less than”, these numerical values as lower and upper limits.
  • a numerical range when "more than” or “less than” is attached to the numerical value described before and after “-” means a range that does not include these numerical values as the lower or upper limit.
  • the upper limit of one step of the numerical range may be replaced with the upper limit of the other step of the numerical range. You may substitute the indicated values.
  • the lower limit value of a certain stepwise numerical range may be replaced with the lower limit value of another stepwise stated numerical range, or may be replaced with the values shown in the examples.
  • the inventors of the present disclosure set the matrix resin of the thin unidirectional reinforcing fiber prepreg, which is an intermediate base material for obtaining FRP, to a thermoplastic resin, and set the tensile modulus of the reinforcing fiber, the fiber basis weight, and the content of the matrix resin to If it is within the predetermined range, only one layer of prepreg is cured in advance (primary molding), and then a plurality of FRPs that have been primarily molded are laminated and press-molded at a temperature lower than the primary molding temperature (secondary molding). ), deformation such as warping is unlikely to occur, and even if deformation such as warping does not become apparent, deformation such as warping is unlikely to occur when processing parts from large FRP by punching or cutting. It was found that FRP can be obtained.
  • the unidirectional reinforcing fiber prepreg according to the present disclosure (sometimes referred to as "thin unidirectional reinforcing fiber prepreg” or simply “prepreg” in the present disclosure) includes reinforcing fibers and a matrix resin, and the reinforcing fibers is impregnated with a matrix resin into a unidirectional fiber base material that is aligned in one direction. Furthermore, the prepreg according to the present disclosure has the following properties (a) to (g). (a) The tensile modulus of the reinforcing fibers is in the range of 70 GPa to 790 GPa. (b) The fiber areal weight in the prepreg is in the range of 5 g/m 2 to 80 g/m 2 .
  • the matrix resin is a thermoplastic resin;
  • the content of the matrix resin with respect to the entire prepreg is in the range of 20% by mass to 60% by mass.
  • the width is in the range of 250 mm to 1150 mm;
  • the coefficient of variation of the fiber basis weight per unit area measured by cutting out a section of 50 mm in width and 100 mm in length from the entire width is within 6%.
  • the residual volatile content in the matrix resin is 2.0% by mass or less.
  • the reinforcing fibers used in the prepreg according to the present disclosure have a tensile modulus of 70 GPa or more and 790 MPa or less. If the tensile modulus of the reinforcing fiber is less than 70 GPa, the number of layers must be increased in order to ensure strength when producing a fiber-reinforced plastic, and FRP with high specific rigidity cannot be obtained even if the thickness is thin. . On the other hand, since the tensile modulus of elasticity of the reinforcing fibers is 790 GPa or less, it is possible to obtain a prepreg that can be easily laminated even if the thickness is small.
  • reinforcing fibers in the present disclosure include carbon fibers, glass fibers, basalt fibers, boron fibers, alumina fibers, ceramic fibers such as SiC fibers, and organic fibers such as aramid fibers. Glass fibers or carbon fibers are preferred, and carbon fibers are more preferred. Glass fiber and carbon fiber are described below as preferred reinforcing fibers.
  • the glass fiber that can be preferably used in the prepreg according to the present disclosure is a roving prepared by arranging a plurality of glass filaments having a filament diameter of 10 to 23 ⁇ m so as to be 100 to 5000 tex, and its tensile modulus is 70 GPa.
  • various glass fibers having compositions such as E glass fiber (general purpose glass fiber) composition, high strength glass fiber composition, low dielectric constant glass fiber composition, etc. can be used.
  • the surface of the glass fiber is preferably treated with a silane coupling agent for the purpose of improving wettability at the interface between the glass fiber and the matrix resin.
  • Carbon fibers that can be preferably used in the prepreg according to the present disclosure have a tensile modulus of 230 GPa to 790 GPa. If the tensile modulus of the carbon fiber is 230 GPa or more, a carbon fiber reinforced plastic (CFRP) with high specific rigidity can be obtained even if the thickness is thin. prepreg can be obtained. From this point of view, the tensile modulus of the carbon fiber is preferably 230 GPa to 620 GPa, more preferably 230 GPa to 450 GPa. The tensile modulus of carbon fiber is a value measured in accordance with JIS R 7606:2000 "Carbon fiber-Testing method for tensile properties of single fiber".
  • the strand strength is not particularly limited, but from the viewpoint of obtaining CFRP with a high specific strength, it is preferably 3000 to 7000 MPa, more preferably 3400 to 6500 MPa, and further It is preferably 4000 to 5500 MPa.
  • the carbon fiber used in the prepreg according to the present disclosure may be either polyacrylonitrile (hereinafter referred to as PAN)-based carbon fiber or pitch-based carbon fiber, and a mixture of PAN-based carbon fiber and pitch-based carbon fiber is used. good too. It is preferable to use PAN-based carbon fiber because the PAN-based carbon fiber has a higher expression ratio of bending strength to strand strength than pitch-based carbon fiber. In addition, it is preferable to use non-twisted carbon fibers because the openability of the carbon fibers is high, the surface smoothness of the thin unidirectional reinforcing fiber prepreg is good, and the portion where carbon fibers are not present can be reduced.
  • PAN polyacrylonitrile
  • pitch-based carbon fiber pitch-based carbon fiber
  • non-twisted carbon fibers because the openability of the carbon fibers is high, the surface smoothness of the thin unidirectional reinforcing fiber prepreg is good, and the portion where carbon fibers are not present can be reduced.
  • the prepreg according to the present disclosure has an overall width (the overall width perpendicular to the fiber direction of the unidirectional fiber base material) in the range of 250 mm to 1150 mm. Further, the reinforcing fiber mass per unit area in the prepreg, that is, the fiber areal weight is within the range of 5 g/m 2 to 80 g/m 2 . By setting the fiber basis weight to 5 g/m 2 or more , it is possible to manufacture extremely thin parts. , the maximum thickness of the prepreg can be within the allowable range.
  • the fiber basis weight is more preferably 10 g/m 2 to 50 g/m 2 , still more preferably 20 g/m 2 to 50 g/m 2 .
  • the reinforcing fibers can be expanded with high uniformity when manufacturing the prepreg, the thickness unevenness is small, and warping, etc., is suppressed when hot and pressure molding is performed. It is possible to obtain a prepreg with a higher quality.
  • the prepreg according to the present disclosure has a variation coefficient of fiber basis weight per unit area of 6% or less, which is measured by cutting the entire width into a width of 50 mm and a length of 100 mm. If the coefficient of variation exceeds 6%, the local variation in the basis weight of the reinforcing fibers in the prepreg increases, so when the cut prepreg is cured, a large amount of warpage occurs and many cured sheets are judged to be defective. Productivity suffers greatly.
  • the coefficient of variation of fiber basis weight can be obtained by the following procedure. A 50 mm wide ⁇ 100 mm long piece (sample) is obtained by cutting the prepreg at intervals of 50 mm in the width direction.
  • the prepreg according to the present disclosure is obtained by heating one sheet of the prepreg from room temperature (20 ° C.) to 160 ° C. at a rate of 3 ° C./min and holding it at 160 ° C. for 60 minutes at a surface pressure of 1 kg / cm 2 to cure and fiber.
  • a reinforced plastic sheet FRP sheet
  • the amount of warping of a 250 mm ⁇ 250 mm piece cut from the FRP sheet is preferably 10 mm or less, more preferably 5 mm or less. If the amount of warping of the FRP sheet is 10 mm or less, the warping of the reinforced fiber plastic produced by laminating the FRP sheets can be greatly reduced.
  • the warpage of the FRP sheet is measured by placing a 250 mm ⁇ 250 mm piece cut out from the FRP sheet on a surface plate and measuring the maximum height from the surface plate using a vernier caliper.
  • the prepreg according to the present disclosure contains a thermoplastic resin (sometimes referred to as a "thermoplastic resin matrix” in the present disclosure) as a matrix resin in a range of 20% to 60% by mass with respect to the entire prepreg.
  • a thermoplastic resin sometimes referred to as a "thermoplastic resin matrix” in the present disclosure
  • thermoplastic resin matrices include phenoxy resins, acrylic resins, polyamide resins, polyvinyl chloride resins, polystyrene resins, ABS resins, polyacetal resins, polycarbonate resins, polyester resins (PET, PBT, LCP, etc.), polyolefins (polyethylene, polypropylene others), modified polyphenylene ether resin, aromatic polyether ketone resin (PEEK, PEKK, etc.), thermoplastic polyimide resin, polyamideimide resin, polyetherimide, polyphenylene sulfide, polysulfone, polyphenylsulfone, polyethersulfone, etc. .
  • the thermoplastic resin matrix is preferably a phenoxy resin from the viewpoint of prepreg strength, affinity with reinforcing fibers, workability, and the like.
  • a phenoxy resin is a linear polymer obtained from a condensation reaction between a dihydric phenol compound and epihalohydrin, or a polyaddition reaction between a dihydric phenol compound and a bifunctional epoxy resin, and is an amorphous thermoplastic resin. .
  • the weight average molecular weight (Mw) of the phenoxy resin is, for example, in the range of 10,000 to 200,000, preferably in the range of 20,000 to 100,000, more preferably 30,000. 000 to 80,000. If the Mw of the phenoxy resin is too low, the strength of the molded product will be poor, and if it is too high, workability and workability will tend to be poor. In addition, Mw is measured by gel permeation chromatography (GPC) and indicates a value converted using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • the hydroxyl equivalent (g/eq) of the phenoxy resin that can be used in the present disclosure is, for example, within the range of 50 to 1000, preferably within the range of 50 to 750, and particularly preferably within the range of 50 to 500. is. If the hydroxyl equivalent of the phenoxy resin is too low, the number of hydroxyl groups increases and the water absorption rate increases, so there is a concern that the mechanical properties of the FRP may deteriorate. On the other hand, if the hydroxyl equivalent of the phenoxy resin is too high, the number of hydroxyl groups will decrease, resulting in a decrease in affinity with the adherend. The mechanical properties of the obtained FRP may deteriorate.
  • the thermoplastic resin contained in the prepreg may be one kind alone, or two or more kinds may be used. From the viewpoint of making it easier to laminate the produced FRP sheets and integrate them by pressing for secondary molding, it is preferable that the thermoplastic resin has a glass transition temperature (Tg) of 90 to 160 ° C. Tg is 90 to 160 ° C. is more preferably 50% by mass or more of the thermoplastic resin contained in the prepreg. The lower the Tg of the thermoplastic resin, the better the moldability of the prepreg, but the greater the fluidity of the resin. When manufacturing an FRP by laminating and integrating a plurality of FRP sheets obtained by heat-curing the prepreg of the present disclosure alone, it becomes difficult to control the thickness of the FRP.
  • Tg glass transition temperature
  • the Tg of the thermoplastic resin is preferably in the range of 90 to 160°C.
  • the Tg of the thermoplastic resin is measured at a temperature within the range of 20 to 280 ° C. with a temperature increase of 10 ° C./min using a differential scanning calorimeter, and is a numerical value calculated from the peak value of the second scan. is.
  • Phenoxy resins are produced from raw material compounds in a solution or in the absence of solvent by a known method. are also called in-situ polymerizable phenoxy resins or thermoplastic epoxy resins.
  • Both phenoxy resin and in-situ polymerizable phenoxy resin are linear polymers made up of a bifunctional phenol compound and a bifunctional epoxy resin, but the molecular weight and molecular weight distribution of the phenoxy resin are controlled within a certain range. However, even if it is heated, the polymerization does not progress any further.
  • any of the phenoxy resin produced in solution, the phenoxy resin produced in the absence of solvent, and the in-situ polymerization type phenoxy resin can be used. It is desirable that the volatile content is 1.5% by mass or less. Residual volatile matter is mainly due to low molecular weight components and residual solvents. This causes the fiber-reinforced plastic sheet to warp.
  • the prepreg of the present disclosure has a small fiber basis weight of 5 g/m 2 to 80 g/m 2 , if the residual volatile content exceeds 1.5% by mass, large warpage is likely to occur.
  • the remaining volatile content of the phenoxy resin was measured by heating the prepreg sample in an oven at 200°C for 1.5 hours to volatilize the volatile content, and measuring the weight of the sample before and after heating. The mass A of the remaining volatile matter is obtained from the difference. Then, the weight of the sample after heating is B, the phenoxy resin in the sample is dissolved in a solvent (THF), the reinforcing fibers are separated by filtration, and the solvent adhering to the separated reinforcing fibers is removed in an oven at 200 ° C.
  • THF solvent
  • the mass D of the phenoxy resin in the prepreg (remaining volatile content is 0% by mass) is determined by the following formula.
  • Phenoxy resin mass in prepreg D B-C
  • the residual volatile content of the phenoxy resin in the prepreg before heating can be calculated from the following formula.
  • Remaining volatile content of phenoxy resin (% by mass) A/D x 100% That is, the term "residual volatile matter in the matrix resin" in the present disclosure means a value obtained by dividing the residual volatile matter amount A contained in the matrix resin by the matrix resin amount D excluding the residual volatile matter.
  • the residual volatile content in the matrix resin is 2.0% by mass or less, preferably 1.5% by mass or less, and 1.0% by mass or less, regardless of the type of matrix resin. More preferably, 0.5% by mass or less is even more preferable.
  • Examples of the dihydric phenol compound used in the production of the phenoxy resin are shown below.
  • Bisphenol A bisphenol F (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), bisphenol fluorene, biscresol-fluorene (manufactured by Osaka Gas Chemicals Co., Ltd.), Bis-E, Bis-Z, BisOC-FL, BisP-AP , BisP-CDE, BisP-HTG, BisP-MIBK, BisP-3MZ, SBOC, Bis25X-F (manufactured by Honshu Chemical Industry Co., Ltd.), bisphenols such as bisphenol S, hydroquinone, methylhydroquinone, dibutylhydroquinone, resorcinol , methylresorcin, catechol, benzenediols such as methylcatechol; naphthalenediols such as naphthalenediol; and biphenols such as biphenol, dimethylbiphenol
  • Bifunctional epoxy resins used in the production of phenoxy resins include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenolacetophenone type epoxy resin, diphenyl sulfide type epoxy resin, and diphenyl ether type epoxy resin.
  • Bisphenol type epoxy resins such as epoxy resins, bisphenol fluorene type epoxy resins, biphenol type epoxy resins, diphenyldicyclopentadiene type epoxy resins, alkylene glycol type epoxy resins, dihydroxynaphthalene type epoxy resins, dihydroxybenzene type epoxy resins and these Substitutions with methyl groups can be mentioned, and bisphenol-type epoxy resins, biphenol-type epoxy resins and their substitutions with methyl groups are preferred. These divalent epoxy resins may be used alone or in combination of two or more.
  • a reaction catalyst (polymerization catalyst) is used in the production of the phenoxy resin.
  • Any reaction catalyst may be used as long as it is a compound having a catalytic ability to promote the reaction between an epoxy group and a phenolic hydroxyl group. , cyclic amines, imidazoles, and the like.
  • organic phosphorus compounds such as triphenylphosphine (TPP), tri-o-tolylphosphine (TOTP) and tris(p-methoxyphenyl)phosphine (TPAP), 2,3-dihydro-1H-pyrrolo[1,2- a]
  • TPP triphenylphosphine
  • TOTP tri-o-tolylphosphine
  • TPAP tris(p-methoxyphenyl)phosphine
  • 2,3-dihydro-1H-pyrrolo[1,2- a] The use of imidazoles such as benzimidazole (TB-Z) is preferred.
  • a reaction retarder can also be used for the polymerization of the phenoxy resin. Due to the necessity of uniformly liquefying the precursor composition and reducing the viscosity as much as possible when mixing the two components, the mixture is often heated. Therefore, it is preferable to delay the reaction to maintain a low-viscosity state.
  • Aryl borates are used as reaction retardants. These are used singly or in combination of two or more.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction.
  • Organic solvents such as dimethylsulfoxide and sulfolane are included.
  • a combination of a plurality of these solvents, or a mixed solvent of an organic solvent and an inorganic solvent (such as water) may be used.
  • the polymerization reaction is carried out at a reaction temperature that does not decompose the catalyst used.
  • the reaction temperature is 50 to 240° C.
  • the reaction pressure is usually normal pressure, and if the heat of reaction needs to be removed, flash evaporation/condensation reflux method of the solvent used, indirect cooling method, or a combination of these methods can be used. done.
  • the reaction temperature can be ensured by performing the reaction under high pressure using an autoclave.
  • the phenoxy resin obtained by this method can be used as a varnish as it is, or it can be made into a solid resin containing almost no solvent by removing the solvent using an evaporator or the like.
  • the unidirectional fiber base material is impregnated as it is, and then it is prepregized through a drying process. or the like to be impregnated and prepregized.
  • varnish and solid resin are subjected to secondary processing such as making fibers, films, and powders, and then mixed with reinforcing fibers (commingled method). It may be processed into an FRP molding material called a semi-preg by applying pressure impregnation (film stack method) or coating a unidirectional fiber base material using a powder coating method.
  • the raw material compound and the reaction catalyst are mixed to form a precursor composition, which is heated to cause a polyaddition reaction.
  • raw materials that have been heated and melted in advance may be mixed, or a maximum of about 10% by mass of a solvent such as cyclohexanone or methyl ethyl ketone may be added.
  • the dihydric phenol compound is 0.95 to 1.05 mol per 1 mol of the bifunctional epoxy resin
  • the curing catalyst is the bifunctional epoxy resin. and the total amount of the dihydric phenol compound is preferably 0.05 to 5 parts by mass.
  • phenoxy resin in the absence of solvent does not differ greatly from the production method of phenoxy resin in a solvent, but the in situ polymerization type phenoxy resin that can obtain phenoxy resin in situ without using a reactor etc.
  • the degree of polymerization of the resin can be adjusted within an arbitrary range.
  • In-situ phenoxy resins are preferred phenoxy resins in the present disclosure because they can be impregnated in the oligomeric state into unidirectional fiber substrates to make prepregs.
  • high temperature and high pressure are required as it is.
  • the amount of resin applied to the release paper is such that the content of the entire prepreg is 20 to 60% by mass, more preferably 25 to 55% by mass, and still more preferably 30%. ⁇ 50% by mass.
  • the content of the phenoxy resin By setting the content of the phenoxy resin to 20% by mass or more, it can be applied to the release paper with high uniformity without unevenness, and the monofilament of the reinforcing fiber can be impregnated with the resin with high uniformity.
  • the content of the phenoxy resin By setting the content of the phenoxy resin to 60% by mass or less with respect to the entire prepreg, it is possible to increase the strength of the unidirectional fiber base material with the fiber basis weight described above.
  • the content in the case of using a thermoplastic resin other than the phenoxy resin as the matrix resin is also the same as the above range.
  • the method for producing the thin unidirectional reinforcing fiber prepreg according to the present disclosure is not particularly limited, and the reinforcing fibers having a tensile modulus in the range of 70 GPa to 790 GPa are aligned in one direction, and the fiber basis weight is 5 g/m 2 to 80 g/m.
  • the unidirectional fiber base material in the range of 2 is impregnated with a thermoplastic resin matrix so that the resin content of the entire prepreg is in the range of 20% to 60% by mass. can.
  • Preliminary opening> when commercially available carbon fiber bundles (strands) are used as carbon fibers having a tensile modulus in the range of 230 GPa to 790 GPa, the carbon fiber bundles are separated by fiber opening means before impregnating the carbon fiber base material with the matrix resin. It is desirable to preliminarily spread the fibers as uniformly as possible so that the fiber basis weight is in the range of 5 g/m 2 to 80 g/m 2 , so that the strand width of the carbon fibers is expanded in advance.
  • a technique for opening carbon fiber strands for example, a technique of applying a laminar flow of gas crosswise to the strands to open the strands in the width direction (see, for example, Japanese Patent Application Laid-Open No. 11-200136), A technique can be applied in which the carbon fibers are opened under a constant tension while being heated and brought into contact with a plurality of rolls vibrating laterally and longitudinally. If strands are damaged during pre-spreading, fluff or the like will be generated, and this part will cause unevenness in the thickness of the thin unidirectional reinforcing fiber prepreg. A fiber opening method that utilizes a laminar flow of gas with less contact between the fibers is desirable.
  • the width of the strands to be spread in advance is such that one or more strands are spread in the width direction and arranged so as not to overlap each other to produce a thin unidirectional reinforcing fiber prepreg using a unidirectional fiber base material. It is desirable to spread the width to the same extent as the value obtained by dividing the width of the thin unidirectional reinforcing fiber prepreg to be produced by the number of bobbins used to produce the carbon fiber base material.
  • a carbon fiber substrate formed by opening a carbon fiber bundle is impregnated with the matrix resin so that the content of the matrix resin with respect to the entire prepreg is in the range of 20% by mass to 60% by mass.
  • the form of the matrix resin may be, for example, a heat-melted varnish, or a coated paper obtained by coating a release paper with an in-situ polymerizable phenoxy resin.
  • Additives such as carbon black may be added to the resin depending on the use of the prepreg.
  • the carbon fiber substrate can be impregnated with the phenoxy resin by stacking coated paper on one or both sides of the carbon fiber substrate and applying heat and pressure.
  • heating is performed by a group of three or more heating rolls at a line speed of, for example, 10.0 to 1.0 m/min. Pressure is applied at a temperature of 60 to 100° C. and a linear pressure of 5 to 25 kg/cm.
  • a thin unidirectional reinforcing fiber prepreg according to the present disclosure can be obtained through the above steps. It is preferable that one side of the prepreg is separated from the release paper and separately protected with a cover film such as a polyethylene film. Also, the thickness of the unidirectional reinforcing fiber prepreg according to the present disclosure is not particularly limited, but can be, for example, 20 to 50 ⁇ m.
  • the thin unidirectional reinforcing fiber prepreg according to the present disclosure can be laminated and integrated to produce an FRP.
  • the prepreg according to the present disclosure is heated and cured independently (one sheet) without being laminated, and after the primary molding is performed, a plurality of sheets cured by the primary molding are formed.
  • the heating temperature (first temperature) in the primary molding and the heating temperature (second temperature) in the secondary molding should be equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin matrix. If a mold phenoxy resin is used, heat molding can be performed at a relatively low temperature (for example, 120 to 160° C.) for both primary molding and secondary molding.
  • the thin unidirectional reinforcing fiber prepreg according to the present disclosure manufactured as described above has, for example, a release paper coated with a silicone release agent adhered to one surface, and a prepreg on the other surface.
  • a polyethylene film is adhered as a cover film to the .
  • the polyethylene film is peeled off and replaced with a release-treated fluorine-based film.
  • the release paper is peeled off and replaced with a release-treated fluorine-based film.
  • the primary molding can be performed without disturbing the carbon fibers in the prepreg.
  • the prepreg and the fluorine-based film are brought into close contact with each other by removing the air while squeezing with a spatula, for example, so that air does not enter between the prepreg and the fluorine-based film.
  • the primary molding may be performed by pressing as it is without replacing it with a fluorine-based film, but the silicone mold release agent coated on the release paper is transferred to the surface of the prepreg, and adhesion is performed in the secondary molding. There is a risk of obstruction. Therefore, it is preferable to peel off the polyethylene film and the release paper and attach the above fluorine-based film.
  • the thin unidirectional reinforcing fiber prepreg has a high drape property, the drape property is suppressed to some extent because the release paper or the fluorine-based film is in close contact with the prepreg in this replacement work.
  • a prepreg whose both sides are replaced with fluorine-based films is subjected to primary molding with a press.
  • the temperature is raised from room temperature (for example, 20° C.) to 160° C. (first temperature) at a rate of 3° C./min, and held at 160° C. for 60 minutes.
  • the surface pressure during holding is preferably 1.0 to 5.0 kg/cm 2 .
  • a sheet (FRP sheet) obtained by curing one layer (one sheet) of thin unidirectional reinforcing fiber prepreg in the primary molding preferably has a tearing load exceeding 1 N in the fiber direction.
  • the tear load in the fiber direction of the unidirectional reinforcing fiber prepreg was measured by inserting a slit of 30 mm in the fiber direction from one end of a sample cut so that the carbon fiber length was 100 mm, and inserting a slit of 30 mm in the center in the width direction of the sample, and bending the left side of the slit downward.
  • the right side of the tool is fixed to a force gauge, and while the angle formed by the left and right sides of the slit is maintained at 180°, the lower tool is moved until the sample is completely torn.
  • the tear load in the fiber direction of the unidirectional reinforcing fiber prepreg is preferably 1.5 N or more, more preferably 2.0 N or more. If the tearing load exceeds 1N, the FRP sheet will not easily tear during lamination work in secondary molding, so that the handleability will be greatly improved.
  • ⁇ Secondary molding> A plurality of sheets (FRP sheets) obtained by curing one layer (one sheet) of thin unidirectional reinforcing fiber prepreg in primary molding are stacked and secondary molding is performed. For example, three FRP sheets after primary molding are prepared, and the fluorine-based films on the surfaces in contact with each other are peeled off and laminated. For example, as shown in FIG. 1, the fiber directions of the FRP sheets 10A, 10B, and 10C are set to 0°/90°/0° in order from the bottom with respect to the fiber direction x of the FRP sheet 10A located at the bottom. Laminate. It is recommended to fuse the four corners with an iron or the like so that the layers do not shift during secondary molding.
  • a laminate obtained by laminating three FRP sheets after primary molding is subjected to secondary molding with a press in a state in which fluorine-based films are arranged on the upper and lower surfaces of the laminate. Since the FRP sheet is hardened to some extent by the primary molding, it is easy to handle.
  • pressing is performed at a temperature (second temperature) lower than the temperature (first temperature) in primary molding. For example, the temperature is raised from room temperature to 130° C. (second temperature) at a rate of 3 to 50° C./min and held at 130° C. for 30 minutes.
  • the surface pressure during holding is preferably 1.0 to 10.0 kg/cm 2 .
  • the amount of warpage of a piece (sample) cut out to a size of 50 mm ⁇ 150 mm is 5 mm or less, A thin, high-strength FRP with reduced deformation such as warpage can be obtained. Since thickness unevenness tends to occur near the edges of the manufactured FRP, a sample of the above size is cut out, excluding a portion up to 25 mm from the edge, placed on a surface plate, and each warp amount is measured.
  • the number of samples having an amount of warp of more than 5 mm is 1/20 or less, and it is particularly preferable that all the samples have an amount of warp of 5 mm or less.
  • the method of molding FRP using the thin unidirectional reinforcing fiber prepreg according to the present disclosure is not limited to a plate shape, and can be molded into various shapes using a mold having a desired shape. .
  • lamination can be performed arbitrarily, but it is preferable to form a pseudo-isotropic lamination of 7 layers or less, and from the characteristics of the prepreg according to the present disclosure that an FRP that is thin and has little warpage can be obtained, more preferably 5 layers is as follows, and most preferably three or less layers are laminated in a quasi-isotropic manner.
  • epoxy resin A1: Bisphenol A type liquid epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188 g / eq)
  • [Polymerization catalyst] C1 tri-o-tolylphosphine (manufactured by Hokko Chemical Industry Co., Ltd.: trade name: “TOTP”)
  • E1 PAN-based carbon fiber (manufactured by Toray Industries, Inc., Torayca (registered trademark) M30SC-18000, tensile modulus: 294 GPa, tensile strength: 5490 MPa, fineness: 0.760 g/m, density: 1.73 g/cm 3 )
  • E2 PAN-based carbon fiber (manufactured by Toray Industries, Inc., Torayca (registered trademark) T700SC-12000, tensile modulus: 230 GPa, tensile strength: 4900 MPa, fineness: 0.800 g/m, density: 1.8 g/cm 3 )
  • E3 PAN-based carbon fiber (manufactured by Mitsubishi Chemical Corporation, Pyrofil (registered trademark) HR40-12M, tensile modulus: 375 GPa, tensile strength: 4410 MPa, density: 1.82 g/cm 3 )
  • E4 Glass fiber (manufactured by Mitsubishi
  • Example 1 ⁇ Production of prepreg> A solution obtained by dissolving 3 parts by mass of C1 in 3 parts by mass of cyclohexanone was added to a mixture of 188 parts by mass of A1 and 112 parts by mass of B1, and kneaded in a planetary mixer to obtain a precursor composition (F1). Obtained. Using a reverse roll coater type resin coating device, the precursor composition (F1) is uniformly coated on a release paper coated with a silicone release agent at a coating temperature of 40 ° C., and the resin basis weight is 15 g / m 2 , a coated paper having a width of 500 mm and a length of 100 m.
  • a plurality of bobbins wound with carbon fiber (E1) strands are prepared, and the strands pulled out from each bobbin are preliminarily opened and the width of each strand is expanded to 30 mm.
  • the carbon fibers are arranged side by side without gaps.
  • a carbon fiber substrate (E1') having a width of 500 mm was prepared.
  • the coated paper coated with the precursor composition (F1) from the lower surface of the carbon fiber substrate (E1′) and the release paper from the upper surface were passed through press rolls at a temperature of 100 ° C. and a linear pressure of 20 kg / cm.
  • a thin unidirectional reinforcing fiber prepreg (G1) was produced by impregnating with heat and pressure.
  • the obtained thin unidirectional reinforcing fiber prepreg (G1) had a fiber basis weight of 25.4 g/m 2 , a variation coefficient of fiber basis weight of 4.5%, a resin content of 37.3% by mass, and residual volatilization was 0.30% by weight.
  • the coefficient of variation of fiber basis weight and residual volatile content are values measured and calculated by the methods described above.
  • a prepreg (G1) is cut into 500 mm squares, and a Tedlar (registered trademark) film manufactured by DuPont as a fluorine-based film is pasted together in place of the polyethylene cover on the upper surface and the release paper on the lower surface.
  • a Tedlar (registered trademark) film manufactured by DuPont as a fluorine-based film is pasted together in place of the polyethylene cover on the upper surface and the release paper on the lower surface.
  • the thickness of the resulting CFRP sheet was 30 ⁇ m at the center of the 500 mm square. Also, when a 250 mm ⁇ 250 mm piece cut out from the CFRP sheet was placed on a surface plate and the maximum height (amount of warpage) from the surface plate was measured using a vernier caliper, the amount of warpage was 5 mm.
  • Example 2 A thin unidirectional reinforcing fiber prepreg (G2) was produced in the same manner as in Example 1, except that carbon fibers (E2) whose strand width had been pre-spread and expanded to 30 mm were used as the carbon fibers. did.
  • the thin unidirectional reinforcing fiber prepreg (G2) has a fiber basis weight of 26.1 g/m 2 , a coefficient of variation of the fiber basis weight of 5.5%, a resin content of 36.5% by mass, and a residual volatile content of 0. 0.31 mass %.
  • Example 3 A thin unidirectional reinforcing fiber prepreg (G3) was produced in the same manner as in Example 1, except that carbon fibers (E3), which had been pre-spread and the width of the strands had been expanded to 25 mm, were used as the carbon fibers. did.
  • the thin unidirectional reinforcing fiber prepreg (G3) has a fiber basis weight of 25.2 g/m 2 , a coefficient of variation of the fiber basis weight of 5.7%, a resin content of 37.0% by mass, and a residual volatile content of 0. 0.24 mass %.
  • Example 4 A thin unidirectional reinforcing fiber prepreg (G4) was produced in the same manner as in Example 1, except that glass fibers (E4), which had been pre-spread and the width of the strands had been expanded to 5 mm, were used as the reinforcing fibers. did.
  • the thin unidirectional reinforcing fiber prepreg (G4) has a fiber basis weight of 79.3 g/m 2 , a coefficient of variation of the fiber basis weight of 5.1%, a resin content of 40.8% by mass, and a residual volatile content of 0. 0.38 mass %.
  • Example 2 The thin unidirectional reinforcing fiber prepreg obtained in Example 2 was laminated in the same manner as in Reference Example 1 to produce a CFRP. Twenty-seven samples were obtained by cutting the produced CFRP into a predetermined shape, and waviness, warpage, and curling were evaluated based on the presence or absence of gaps when placed on a surface plate. As a result, 12 rejected products were generated.
  • Example 3 The thin unidirectional reinforcing fiber prepreg obtained in Example 3 was laminated in the same manner as in Reference Example 1 to produce a CFRP. Twenty-seven samples were obtained by cutting the produced CFRP into a predetermined shape, and waviness, warpage, and curling were evaluated based on the presence or absence of gaps when placed on a surface plate. As a result, 18 rejected products were generated.
  • Example 4 In the same manner as in Example 1, except that carbon fibers (E3) that had been preliminarily opened and had a strand width of 50 mm were used as reinforcing fibers, and that the adjacent carbon fibers were overlapped by 10 mm each. A thin unidirectional reinforcing fiber prepreg (G5) was produced.
  • the thin unidirectional reinforcing fiber prepreg (G5) has a fiber basis weight of 25.6 g/m 2 , a coefficient of variation of the fiber basis weight of 8.9%, a resin content of 37% by mass, and a residual volatile content of 0.35. % by mass.
  • Example 2 After the primary molding and secondary molding were performed in the same manner as in Example 1 to form CFRP, 27 samples cut into a predetermined shape were measured for waviness, waviness, and wavy depending on the presence or absence of gaps when placed on a surface plate. Warp and curl were evaluated.
  • the thickness of the FRP sheet after the primary molding was 92 ⁇ m at the center of the 500 mm square, and the amount of warpage of the 250 mm ⁇ 250 mm section was 12 mm.
  • a thin unidirectional reinforcing fiber prepreg (G6) was produced in the same manner as in Example 1 except that a thermoplastic epoxy resin (DENATITE XNR6850A/XNH6850EY) manufactured by Nagase ChemteX Co., Ltd. was used as the matrix resin in the production of the prepreg. .
  • the thin unidirectional reinforcing fiber prepreg (G6) has a fiber basis weight of 24.9 g/m 2 , a coefficient of variation of the fiber basis weight of 5.8%, a resin content of 36.8% by mass, and a residual volatile content of 2. .1 mass %.
  • Example 2 After the primary molding and secondary molding were performed in the same manner as in Example 1 to form CFRP, 27 samples cut into a predetermined shape were measured for waviness, waviness, and wavy depending on the presence or absence of gaps when placed on a surface plate. Warp and curl were evaluated.
  • the thickness of the FRP sheet after the primary molding was 89 ⁇ m at the center of the 500 mm square, and the amount of warpage of the 250 mm ⁇ 250 mm section was 13 mm.
  • the prepreg according to the present disclosure was pre-molded while heating one sheet without lamination, and then laminated with a plurality of sheets at a temperature lower than the curing temperature during the primary molding. It can be seen that by performing secondary forming by press molding, deformation such as warping is less likely to occur, and FRP that is less likely to cause deformation such as warping when punching or cutting after secondary forming can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

強化繊維が一方向に引き揃えられた一方向繊維基材にマトリックス樹脂が含浸されている一方向強化繊維プリプレグであって、強化繊維の引張弾性率が70GPa~790GPaの範囲であり、繊維目付が5g/m~80g/mの範囲であり、マトリックス樹脂が熱可塑性樹脂であり、マトリックス樹脂中の残揮発分が2.0質量%以下であり、一方向強化繊維プリプレグの幅が250mm~1150mmの範囲であり、一方向強化繊維プリプレグの全幅に対して幅50mm×長さ100mmに切り出された切片について測定した単位面積あたりの繊維目付の変動係数が6%以内であり、一方向強化繊維プリプレグ全体に対するマトリックス樹脂の含有率が20質量%~60質量%の範囲である、一方向強化繊維プリプレグ及びその応用。

Description

一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック
 本開示は、一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチックに関する。
 近年、精密機器に使用されるシャッター板や板バネなどの部材は、繊維強化プラスチック(FRP)化が進んでいる。当該部材は厚みが0.1mm程度のものであるが剛性が必要とされるため、FRPには比強度と比剛性が高いことが求められる。
 FRPを得るための中間基材としては、射出成形に用いられる、強化繊維をチョップ化して樹脂と混練したものや、所定の形状に裁断したのちに金型にセットして1回のプレスで成形が行えるシートモールディングコンパウンドと言われるものがある。より高い比強度と比弾性率を得るためには、強化繊維の方向(繊維方向)が揃った一方向強化繊維プリプレグを使用することが好ましい。
 FRPの厚みが0.1mm程度の部品において強度や剛性の疑似等方性を確保する為には、一方向強化繊維プリプレグの厚みが0.03mm程度の薄物一方向強化繊維プリプレグを3~5枚積層して、加熱しながらプレスして硬化させる技術が知られている(例えば特許文献1参照)。
 しかし、厚みが0.03mm程度の一方向強化繊維プリプレグを積層して硬化させたFRPには、波打ち、カールあるいは反り等(本開示において、まとめて「反り等」と記す場合がある。)の変形が発生し易い。
 このような変形が生じたFRPの部品を修正するために、荷重を加えた状態で熱処理を行なって歪修正を行う技術が知られている(例えば特許文献2参照)。
 また、一方向強化繊維プリプレグとして熱可塑性プリプレグが存在するが(例えば特許文献3参照)、積層後のプレス成形条件が200℃以上の高温が必要である。プレス時の温度から室温に下げた場合に温度変化による樹脂の収縮により、局部的内部歪が発生しやすく、細かい部品に加工した際に波打ち、反りあるいはカール等の変形が発生するため、荷重を加えた状態で熱処理を行う歪修正が必要となる。
  特許文献1:特開昭63-17435号公報
  特許文献2:特開平6-15756号公報
  特許文献3:特開2007-121895号公報
 薄物一方向強化繊維プリプレグを積層して硬化させた薄肉のFRPには反り等の変形が発生しやすく、反り等の変形は顕在化しない場合でもFRP中には局部的内部歪が集中している部分もある。そのため、大判のFRPから打ち抜きや切断加工で部品に加工した際に、局部的内部歪が解放されて部品に変形が生じる場合がある。
 これらの変形の原因として、薄物一方向強化繊維プリプレグはドレープ性が過大であり、積層するのが非常に困難であること、また、積層ができても繊維が乱れたり、積層層間に空気を巻き込む等の不具合が発生することが考えられる。
 また、薄物一方向強化繊維プリプレグを積層する際に、一方向に引き揃えられている強化繊維を乱すと、FRPの強度や弾性率が設計上の強度や弾性率を発現することができない。
 本開示は、プリプレグを積層せずに予め1枚で加熱しながら1次成形した後、複数枚積層して1次成形時の温度よりも低い温度でプレス成形による2次成形を行った場合に、反り等の変形が発生し難く、2次成形後に打ち抜きや切断加工した際も反り等の変形が生じ難い一方向強化繊維プリプレグ、並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチックを提供することを目的とする。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 強化繊維が一方向に引き揃えられた一方向繊維基材にマトリックス樹脂が含浸されている一方向強化繊維プリプレグであって、
 前記強化繊維の引張弾性率が70GPa~790GPaの範囲であり、
 繊維目付が5g/m~80g/mの範囲であり、
 前記マトリックス樹脂が熱可塑性樹脂であり、
 前記マトリックス樹脂中の残揮発分が2.0質量%以下であり、
 前記一方向強化繊維プリプレグの幅が250mm~1150mmの範囲であり、
 前記一方向強化繊維プリプレグの全幅に対して幅50mm×長さ100mmに切り出された切片について測定した単位面積あたりの前記繊維目付の変動係数が6%以内であり、
 前記一方向強化繊維プリプレグ全体に対する前記マトリックス樹脂の含有率が20質量%~60質量%の範囲である、
一方向強化繊維プリプレグ。
<2> 前記マトリックス樹脂は、前記残揮発分が1.5質量%以下のフェノキシ樹脂である<1>に記載の一方向強化繊維プリプレグ。
<3> <1>または<2>に記載の一方向強化繊維プリプレグ1枚を加熱硬化させた繊維強化プラスチックシート。
<4> <1>または<2>に記載の一方向強化繊維プリプレグを第1温度に加熱して単独で硬化させたシートに成形する1次成形工程と、
 複数枚の前記シートを積層して前記第1温度よりも低い第2温度でプレスして一体化させることにより繊維強化プラスチックに成形する2次成形工程と、
を含む繊維強化プラスチックの製造方法。
<5> <4>に記載の方法によって製造され、幅50mm×長さ150mmの切片を切り出した場合に前記切片の反り量が5mm以下である繊維強化プラスチック。
 本開示によれば、プリプレグを積層せずに予め1枚で加熱しながら1次成形した後、複数枚積層して1次成形時の温度よりも低い温度でプレス成形による2次成形を行った場合に、反り等の変形が発生し難く、2次成形後に打ち抜きや切断加工した際も反り等の変形が生じ難い一方向強化繊維プリプレグ、並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチックが提供される。
一方向強化繊維プリプレグを1次成形したFRPを各層の繊維方向が異なるように積層して積層体とする一例を示す概略図である。
 以下、本開示の一例である実施形態について説明する。
 なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値に「超」又は「未満」が付されていない場合は、これらの数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これらの数値を下限値又は上限値として含まない範囲を意味する。
 本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。また、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示の発明者らは、FRPを得る為の中間基材である薄物一方向強化繊維プリプレグのマトリックス樹脂を熱可塑性樹脂とし、強化繊維の引張弾性率、繊維目付、マトリックス樹脂の含有率をそれぞれ所定の範囲内とすれば、予めプリプレグ1層だけを硬化(1次成形)させ、その後、1次成形したFRPを複数枚積層し、1次成形温度よりも低い温度でプレス成形(2次成形)を行うことで、反り等の変形が発生し難く、また、反り等の変形は顕在化しない場合でも、大判のFRPから打ち抜きや切断加工で部品に加工した際に反り等の変形が生じ難いFRPが得られることを見出した。
 本開示に係る一方向強化繊維プリプレグ(本開示において「薄物一方向強化繊維プリプレグ」又は単に「プリプレグ」と称する場合がある。)は、強化繊維及びマトリックス樹脂を含んで構成されており、強化繊維が一方向に引き揃えられた一方向繊維基材にマトリックス樹脂が含浸されている。さらに、本開示に係るプリプレグは、以下(a)~(g)の特性を有している。
(a)強化繊維の引張弾性率が70GPa~790GPaの範囲である。
(b)プリプレグ中の繊維目付が5g/m~80g/mの範囲である。
(c)マトリックス樹脂が熱可塑性樹脂である。
(d)プリプレグ全体に対するマトリックス樹脂の含有率が20質量%~60質量%の範囲である。
(e)幅が250mm~1150mmの範囲である。
(f)全幅に対して幅50mm×長さ100mmの切片を切り出して測定した単位面積あたりの繊維目付の変動係数が6%以内である。
(g)マトリックス樹脂中の残揮発分が2.0質量%以下である。
<強化繊維>
 本開示に係るプリプレグに用いられる強化繊維は、その引張弾性率が70GPa以上790MPa以下のものである。強化繊維の引張弾性率が70GPa未満であると繊維強化プラスチックを作製する場合に強度を確保するために積層数を多くしなければならず、厚みが薄くても比剛性の高いFRPが得られない。一方、強化繊維の引張弾性率790GPa以下であることで厚みが薄くても積層等の作業が容易なプリプレグを得ることが出来る。
 本開示における強化繊維は、炭素繊維やガラス繊維のほか、バサルト繊維やボロン繊維、アルミナ繊維、SiC繊維などのセラミック繊維、アラミド繊維などの有機繊維などが例示される。ガラス繊維または炭素繊維であることが好ましく、より好ましくは炭素繊維である。以下、好ましい強化繊維として、ガラス繊維と炭素繊維について説明する。
(ガラス繊維)
 本開示に係るプリプレグにおいて好ましく用いることができるガラス繊維は、フィラメント径が10~23μmのガラスフィラメントを複数本引き揃えて100~5000texとなるように調整されたロービングであり、その引張弾性率が70GPa以上であれば、Eガラス繊維(汎用ガラス繊維)組成、高強度ガラス繊維組成、低誘電率ガラス繊維組成等の組成を有する種々のガラス繊維を用いることができる。
 また、ガラス繊維の表面は、ガラス繊維とマトリックス樹脂との界面における濡れ性の向上を目的にシランカップリング剤で処理されていることが好ましい。シランカップリング剤としてビニルトリス(β‐メトキシエトキシ)シラン、γ‐メタクリロキシプロピルトリメトキシシラン、N‐β‐(アミノエチル)γ‐アミノプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、β‐(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン等が例示される。
(炭素繊維)
 本開示に係るプリプレグにおいて好ましく用いることができる炭素繊維の引張弾性率は230GPa~790GPaである。炭素繊維の引張弾性率が230GPa以上であることで厚みが薄くても比剛性の高い炭素繊維強化プラスチック(CFRP)が得られ、790GPa以下であることで厚みが薄くても積層等の作業が可能なプリプレグを得ることが出来る。かかる観点から、炭素繊維の引張弾性率は、230GPa~620GPaが好ましく、230GPa~450GPaがさらに好ましい。なお、炭素繊維の引張弾性率は、JIS R 7606:2000「炭素繊維-単繊維の引張特性の試験方法」に準拠して測定された値である。
 本開示に係るプリプレグに用いられる炭素繊維の機械的物性として、ストランド強度は特に限定されないが、比強度が高いCFRPを得る観点から、好ましくは3000~7000MPaであり、より好ましくは3400~6500MPa、さらに好ましくは4000~5500MPaである。
 本開示に係るプリプレグに用いられる炭素繊維は、ポリアクリロニトリル(以下、PANという)系炭素繊維又はピッチ系炭素繊維のいずれでもよく、PAN系炭素繊維とピッチ系炭素繊維が混合されたものを用いてもよい。
 なお、ストランド強度に対する曲げ強度の発現率はピッチ系炭素繊維よりもPAN系炭素繊維の方が高いので、PAN系炭素繊維を使用することが好ましい。
 また、無撚糸の炭素繊維を使用した方が炭素繊維の開繊性が高いため、薄物一方向強化繊維プリプレグの表面平滑性がよく、炭素繊維が存在しない部分を減らすことができるので好ましい。
 本開示に係るプリプレグは、その全幅(一方向繊維基材の繊維方向に対して直角方向である全体幅)が250mmから1150mmの範囲である。
 また、プリプレグ中の単位面積あたりの強化繊維質量、すなわち繊維目付は5g/m~80g/mの範囲内である。繊維目付を5g/m以上とすることで肉厚が極薄の部品を製造することができ、80g/m以下とすることでFRPに疑似等方性の特徴を持たす為の積層時において、プリプレグの最大厚みとして許容される範囲とすることができる。繊維目付は、より好ましくは10g/m~50g/m、さらに好ましくは20g/m~50g/mである。繊維目付を特に20g/m以上とすることで、プリプレグを製造する際に強化繊維を高い均一性で拡幅することができ、厚みムラが小さく、加熱加圧成形する際に反り等が抑制される、より品位良好なプリプレグを得ることができる。
 本開示に係るプリプレグは、JIS K7071:1988を参考にして、その全幅に対して幅50mm×長さ100mmにカットして測定した単位面積あたりの繊維目付の変動係数が6%以内である。変動係数が6%を超えてしまうとプリプレグ中の強化繊維目付量の局所的なばらつきが大きくなるため、カッティングしたプリプレグを硬化した際に大きな反りを生じて不良判定となる硬化シートが多発し、生産性が大きく損なわれてしまう。ここで、繊維目付の変動係数は下記の手順で求めることができる。
 プリプレグを幅方向に50mm間隔で、幅50mm×長さ100mmに切り出した切片(サンプル)を得る。例えば、幅が500mmのプリプレグであれば10個のサンプルを得る。各サンプルのマトリックス樹脂をテトロヒドロフラン(THF)で溶解し、単位面積あたりの繊維目付(g/mm)を測定する。各サンプルの繊維目付の標準偏差をs、平均値をxaveとした場合に、繊維目付の変動係数CV(%)は下記式によって算出される。
 CV=(s/xave)×100(%)
 本開示に係るプリプレグは、前記プリプレグ1枚を室温(20℃)から160℃まで3℃/分で昇温し、面圧1kg/cmで160℃で60分間保持することにより硬化して繊維強化プラスチックシート(FRPシート)を作製したときに、FRPシートから切り出された250mm×250mmの切片の反り量が10mm以下であることが望ましく、5mm以下であることがより望ましい。FRPシートの反り量が10mm以下であると、FRPシートを積層することで作製した強化繊維プラスチックの反りを大きく低減することができる。
 なお、FRPシートの反りは、FRPシートから切り出された250mm×250mmの切片を定盤に置いて定盤からの最大高さについてノギスを用いて測定する。
<マトリックス樹脂>
 本開示に係るプリプレグは、マトリックス樹脂として熱可塑性樹脂(本開示において「熱可塑性樹脂マトリックス」と称する場合がある。)をプリプレグ全体に対する含有率が20質量%~60質量%となる範囲で含んでいる。
 熱可塑性樹脂マトリックスとしては、フェノキシ樹脂、アクリル系樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ABS樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂(PET、PBT、LCP他)、ポリオレフィン(ポリエチレン、ポリプロピレン他)、変性ポリフェニレンエーテル樹脂、芳香族ポリエーテルケトン樹脂(PEEK、PEKK他)、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド、ポリフェニレンサルファイド、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンなどが挙げられる。
 熱可塑性樹脂マトリックスは、プリプレグの強度、強化繊維との親和性、加工性などの観点から、フェノキシ樹脂が好ましい。
 フェノキシ樹脂とは、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる線形の高分子であり、非晶質の熱可塑性樹脂である。
 フェノキシ樹脂の平均分子量は、重量平均分子量(Mw)として、例えば10,000~200,000の範囲内であるが、好ましくは20,000~100,000の範囲内であり、より好ましくは30,000~80,000の範囲内である。フェノキシ樹脂のMwが低すぎると成形体の強度が劣り、高すぎると作業性や加工性に劣るものとなり易い。なお、Mwはゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値を示す。
 本開示で用いることができるフェノキシ樹脂の水酸基当量(g/eq)は、例えば50~1000の範囲内であるが、好ましくは50~750の範囲内であり、特に好ましくは50~500の範囲内である。フェノキシ樹脂の水酸基当量が低すぎると水酸基が増えることで吸水率が上がるため、FRPの機械物性が低下する懸念がある。一方、フェノキシ樹脂の水酸基当量が高すぎると水酸基が少なくなるので、被着体との親和性が低下してしまい、本開示に係るプリプレグを1層で加熱成形させたものを再度プレス成形して得られたFRPの機械物性が低下する恐れがある。
 プリプレグに含まれる熱可塑性樹脂は1種単独でもよいし、2種以上を用いてもよいが、熱可塑性樹脂は、一方向繊維基材と一体化させてプリプレグを形成する観点、1次成形によって作製したFRPシートを積層して2次成形のプレス加工によって一体化し易くする観点などから、ガラス転移温度(Tg)が90~160℃の熱可塑性樹脂であることが好ましく、Tgが90~160℃の熱可塑性樹脂がプリプレグに含まれる熱可塑性樹脂の50質量%以上であることがより好ましい。
 熱可塑性樹脂のTgが低いほど、プリプレグの成形性は良くなるが、樹脂の流動性が大きくなり、例えば、熱可塑性樹脂を一方向繊維基材に含浸させてプリプレグを形成する際にカスレや繊維の乱れを誘発したり、本開示のプリプレグを単独で加熱硬化させたFRPシートを複数枚積層して一体化させたFRPを製造する場合、FRPの厚みを制御し難くなる。一方、Tgが高くなると溶融粘度が高くなる傾向にあるために、一方向繊維基材にボイドなどの欠陥を抑制して含浸させることや、2次加工の一体化の際にシート間の気泡を除去することが難しく、より高温のプロセスが必要とされる。かかる観点から、熱可塑性樹脂のTgは90~160℃の範囲内であることが好ましい。なお、熱可塑性樹脂のTgは、示差走査熱量測定装置を用い、10℃/分の昇温条件で、20~280℃の範囲内の温度で測定し、セカンドスキャンのピーク値より計算された数値である。
 フェノキシ樹脂は、溶液中あるいは無溶媒下にて原料化合物から公知の方法で製造されるが、無溶媒下で製造されるフェノキシ樹脂のうち、原料化合物をin situで重合させて得られるフェノキシ樹脂については、現場重合型フェノキシ樹脂もしくは熱可塑性エポキシ樹脂とも呼称される。
 フェノキシ樹脂と現場重合型フェノキシ樹脂は、いずれも2官能フェノール化合物と2官能エポキシ樹脂による直鎖状のポリマーであるということは同じであるが、フェノキシ樹脂は分子量及び分子量分布が一定範囲内に制御され、加熱してもそれ以上重合が進まないのに対して、現場重合型フェノキシ樹脂は、加熱により分子量の増加が確認されることが異なる。
 本開示では、溶液中で製造したフェノキシ樹脂、無溶媒下で製造されたフェノキシ樹脂、現場重合型フェノキシ樹脂のいずれであっても使用することができるが、プリプレグのマトリックス樹脂であるフェノキシ樹脂の残揮発分が1.5質量%以下となることが望ましい。残揮発分は主に低分子量成分や残留溶媒によるものであるが、これらの過剰な残留溶媒の存在は熱による溶融固化や重合硬化の際の体積収縮を増幅し、プリプレグを硬化させた際に繊維強化プラスチックシートに反りを生じさせてしまう。特に本開示のプリプレグはその繊維目付が5g/m~80g/mと小さいため、残揮発分が1.5質量%を超えると大きな反りが発生しやすい。
 なお、フェノキシ樹脂の残揮発分の測定は、プリプレグのサンプルを200℃のオーブンにて1.5時間加熱して揮発分を揮発させ、加熱前後のサンプルの質量測定を行うことにより加熱前後の重量差により残揮発分の質量Aを求める。次いで、加熱後のサンプルの重量をBとし、サンプル中のフェノキシ樹脂を溶剤(THF)により溶解した後に濾過により強化繊維を分離し、分離した強化繊維に付着している溶剤を200℃のオーブンにて1時間加熱して完全に揮発した後に測定した強化繊維重量をCとし、下記式によりプリプレグ中のフェノキシ樹脂の質量D(残揮発分0質量%)を求める。
 プリプレグ中のフェノキシ樹脂質量D=B-C
 次いで下記式により、加熱前のプリプレグのフェノキシ樹脂の残揮発分を算出することができる。
 フェノキシ樹脂の残揮発分(質量%)=A/D×100%
 すなわち、本開示における「マトリックス樹脂中の残揮発分」とは、マトリックス樹脂に含まれる残揮発分量Aを、残揮発分を除いたマトリックス樹脂量Dで除した値を意味する。
 なお、本開示に係るプリプレグは、マトリックス樹脂の種類に関わらず、マトリックス樹脂中の残揮発分が2.0質量%以下であり、1.5質量%以下が好ましく、1.0質量%以下がより好ましく、0.5質量%以下がさらに好ましい。
 フェノキシ樹脂の製造に用いる2価フェノール化合物としては、例えば以下に例示するが、2官能であれば下記に示す限りではない。ビスフェノールA、ビスフェノールF(以上、日鉄ケミカル&マテリアル株式会社製)、ビスフェノールフルオレン、ビスクレゾ-ルフルオレン(以上、大阪ガスケミカル株式会社製)、Bis-E、Bis-Z、BisOC-FL、BisP-AP、BisP-CDE、BisP-HTG、BisP-MIBK、BisP-3MZ、SBOC、Bis25X-F(以上、本州化学工業株式会社製)、ビスフェノールSなどのビスフェノール類や、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、カテコール、メチルカテコールなどのベンゼンジオール類や、ナフタレンジオールなどのナフタレンジオール類や、ビフェノール、ジメチルビフェノール、テトラメチルビフェノールなどのビフェノール類などがあり、これらの内、ビスフェノール化合物類又はビフェノール化合物類が好ましい。
 なお、これら2価フェノール化合物は単独でも、2種以上を組合わせて使用してもよい。
 また、フェノキシ樹脂の製造に用いる2官能エポキシ樹脂類としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、などのビスフェノール型エポキシ樹脂や、ビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂及びこれらのメチル基による置換体を挙げることができ、ビスフェノール型エポキシ樹脂およびビフェノール型エポキシ樹脂並びにこれらのメチル基による置換体が好ましい。
 なお、これら2価エポキシ樹脂は単独でも、2種以上を組合わせて使用してもよい。
 フェノキシ樹脂の製造に際しては反応触媒(重合触媒)を使用する。反応触媒は、エポキシ基とフェノール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよく、アルカリ金属化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩、環状アミン類、イミダゾール類などが挙げられる。中でもトリフェニルフォスフィン(TPP)、トリ-o-トリルホスフィン(TOTP)やトリス(p-メトキシフェニル)ホスフィン(TPAP)等の有機リン化合物、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール(TB-Z)等のイミダゾール類の使用が好ましい。
 なお、これらの触媒は単独で使用してもよく、2種類以上を併用してもよい。
 フェノキシ樹脂の重合には反応遅延剤を用いることもできる。2液混合の際に前駆体組成物を均一液状化するとともに粘度をできるだけ低下させる必要性から、しばしば加温される。そのため、反応を遅らせて低粘度な状態を維持させることが好ましく、トリ-n-ブチルボレート、トリ-n-オクチルボレート、トリ-n-ドデシルボレート等のトリアルキルボレート類、トリフェニルボレート等のトアリールボレート類が反応遅延剤として使用される。これらは、1種または2種以上を組み合わせて用いられる。
 フェノキシ樹脂を溶液中で製造する場合、その反応溶媒としては、反応を阻害しないものであれば特に限定されない。例えば、ベンゼン、トルエン、キシレン、メタノール、アルコール、ブチルアルコール、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、ブチロラクトン、ジオキサン、テトラヒドロフラン、アセトフェノン、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホランなどの有機溶媒が挙げられる。これらを複数組み合わせた、または有機溶媒と無機系溶媒(水など)との混合溶媒であっても良い。
 重合反応は、使用する触媒が分解しない程度の反応温度で行う。反応温度は、50~240℃、反応圧力は通常、常圧であり、反応熱の除去が必要な場合は、使用する溶剤のフラッシュ蒸発・凝縮還流法、間接冷却法、またはこれらの併用法により行われる。
 また、メチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することもできる。
 本方法で得られたフェノキシ樹脂はそのままワニスとして、または蒸発器等を用いた脱溶媒処理をすることにより、溶媒をほとんど含まない固形状の樹脂とされる。
 その後、フェノキシ樹脂は、ワニス状態であれば一方向繊維基材にそのまま含浸させたのちに乾燥工程を経てプリプレグ化され、固形状の樹脂であれば、溶融状態で一方向繊維基材に含浸ダイなどを用いて含浸されてプリプレグ化される。
 さらに、ワニスや固形状の樹脂を繊維やフィルム、パウダー化するなど2次加工して、強化繊維と混織(コミングルド法)したり、フィルムと一方向繊維基材を重ねてロールプレス機などにより加圧含浸(フィルムスタック法)したり、粉体塗工法を用いて一方向繊維基材に塗工されることでセミプレグと呼称されるFRP成形材料に加工してもよい。
 一方、フェノキシ樹脂を無溶媒下にて製造する場合は、原料化合物と反応触媒を混合して前駆体組成物とし、これを加熱により重付加反応させることによって行う。このとき、原料や反応触媒の混合状態を最適化させるために予め加熱融解させた原料を混合してもよいし、最大で10質量%程度のシクロヘキサノンやメチルエチルケトン等の溶剤を添加させてもよい。
 また、樹脂組成物における各成分の含有量は使用する化合物によるが、2官能エポキシ樹脂1モルに対して、2価フェノール化合物を0.95~1.05モルとし、硬化触媒を2官能エポキシ樹脂と2価フェノール化合物の総量に対して0.05~5質量部とすることが好ましい。
 無溶媒下でのフェノキシ樹脂の製造も溶媒中でのフェノキシ樹脂の製造方法と大きく条件が変わるものではないが、反応器などを使わずにin situでフェノキシ樹脂を得ることができる現場重合型フェノキシ樹脂は、その重合度合いを任意の範囲で調整することができる。現場重合型フェノキシ樹脂は、オリゴマーの状態で一方向繊維基材に含浸させてプリプレグを作製することができるため、本開示において好ましいフェノキシ樹脂である。
 一般的に高分子量体(ポリマー)を一方向繊維基材に含浸させるためにはそのままであれば高温高圧が必要となるため、含浸不良によるボイドの発生や強化繊維の折損などの問題が起き、溶剤を使用する場合は残留溶媒によるボイドの発生や溶剤の揮発に伴う乾燥収縮による反りが生じやすい。
 一方、オリゴマーの場合はポリマーよりも分子量が小さいために溶融粘度が低いので、例えば、本開示に係るプリプレグを製造する際、塗工機にて加熱溶融しながら離型紙に一定量のフェノキシ樹脂を塗布した塗工紙を溶剤を使用することなく低温で簡単に製造することができる。
 このような塗工紙を製造する場合、離型紙に塗布する樹脂量は、プリプレグ全体に対する含有率が、20~60質量%となる量とし、より好ましくは25~55質量%、さらに好ましくは30~50質量%である。フェノキシ樹脂の含有率を20質量%以上とすることで、離型紙に斑なく高い均一性で塗布することができ、強化繊維のモノフィラメントの周りに高い均一性で樹脂を含浸させることができる。一方、プリプレグ全体に対するフェノキシ樹脂の含有率を60質量%以下とすることで、前述した繊維目付で一方向繊維基材による高強度化を図ることができる。
 なお、マトリックス樹脂としてフェノキシ樹脂以外の熱可塑性樹脂を用いる場合の含有率も上記範囲と同様である。
[プリプレグの製造方法]
 本開示に係る薄物一方向強化繊維プリプレグを製造する方法は特に限定されず、引張弾性率が70GPa~790GPaの範囲である強化繊維が一方向に揃い、繊維目付が5g/m~80g/mの範囲にある一方向繊維基材に対し、熱可塑性樹脂マトリックスをプリプレグ全体に対する樹脂含有率が20質量%~60質量%の範囲となるように含浸させて一体化することによって製造することができる。以下、本開示に係る薄物一方向強化繊維プリプレグの製造方法の一例として、強化繊維として炭素繊維を用いる場合について説明するが、本開示に係る薄物一方向強化繊維プリプレグは以下の製造方法に限定されるものではない。
<予備開繊>
 例えば、引張弾性率が230GPa~790GPaの範囲内にある炭素繊維として市販の炭素繊維束(ストランド)を用いる場合、炭素繊維基材にマトリックス樹脂を含浸させる前に、開繊手段によって炭素繊維束をできるだけ均一に予備開繊して繊維目付が5g/m~80g/mの範囲となるように炭素繊維のストランド幅を予め広げておくことが望ましい。
 炭素繊維のストランドを開繊する方法としては、例えば層流の気体をストランドに対して交差するように当ててストランドを幅方向に開繊する技術(例えば特開平11-200136号公報参照)や、炭素繊維を一定の張力下で、熱を与えながら、かつ横振動および縦振動する複数本のロール上を接触させながら開繊する技術を適用することができる。
 なお、予備開繊においてストランドにダメージを与えると毛羽などが発生し、その部分は薄物一方向強化繊維プリプレグの厚みムラの原因となるので、予備開繊は、ストランドとロール等の開繊手段との接触が少ない、層流の気体を利用する開繊方法が望ましい。
 予め広げるストランド幅は、1つ又は複数のストランドを幅方向に広げて重ならないように並べた状態を一方向繊維基材として薄物一方向強化繊維プリプレグを製造する為、マトリックス樹脂を含浸させる一方向炭素繊維基材の作製に使用するボビン数で、製造する薄物一方向強化繊維プリプレグの幅を割った数値と同じ程度に広げておくことが望ましい。
<マトリックス樹脂の含浸>
 炭素繊維束を開繊して形成した炭素繊維基材に対し、プリプレグ全体に対するマトリックス樹脂の含有率が、20質量%~60質量%の範囲となるように含浸させる。マトリックス樹脂の形態としては、例えば、加熱溶融されたワニス状態でも良いし、離型紙に現場重合型フェノキシ樹脂を塗布した塗工紙を用いてもよい。なお、プリプレグの用途に応じて樹脂にカーボンブラックなどの添加剤を加えてもよい。
 例えば、炭素繊維基材の片面又は両面に塗工紙を重ねて加熱加圧することによりフェノキシ樹脂を炭素繊維基材に含浸させることができる。
 このように熱可塑性樹脂マトリックスを炭素繊維基材、すなわち炭素繊維層間に含浸させる工程では、例えば、10.0~1.0m/分のライン速度下で、3本以上の加熱ロール群にて加熱温度60~100℃、線圧5~25kg/cmで加圧する。
 上記工程を経て本開示に係る薄物一方向強化繊維プリプレグを得ることができる。なお、プリプレグの片方の面は、離型紙を剥離してポリエチレンフィルムなどのカバーフィルムで別途保護することが好ましい。
 また、本開示に係る一方向強化繊維プリプレグの厚みは特に限定されないが、例えば、20~50μmの厚みとすることができる。
[FRPの製造方法]
 本開示に係る薄物一方向強化繊維プリプレグは、積層して一体化させることでFRPを作製することができる。反り等の変形が生じることを抑制するため、本開示に係るプリプレグを積層せずに単独(1枚)で加熱して硬化させる1次成形を行った後、1次成形によって硬化したシートを複数枚積層して1次成形時の温度より低温で一体化させる2次成形を行うことが好ましい。1次成形における加熱温度(第1温度)及び2次成形における加熱温度(第2温度)は、熱可塑性樹脂マトリックスのガラス転移温度(Tg)以上とするが、例えば、熱可塑性樹脂マトリックスとして現場重合型フェノキシ樹脂を用いれば、1次成形、2次成形とも比較的低温(例えば120~160℃)で加熱成形することができる。
<1次成形>
 上記のようにして製造された本開示に係る薄物一方向強化繊維プリプレグは、例えば一方の面にはシリコーン離型剤がコーティングされた離型紙が密着しており、他方の面にはプリプレグの上にはカバーフィルムとしてポリエチレンフィルムが密着している。
 まず、プリプレグ1層を硬化させるために、ポリエチレンフィルムを剥がして、離型処理が施されたフッ素系フィルムに貼り替える。その次に離型紙を剥がして、離型処理が施されたフッ素系フィルムに貼り替える。この手順でフッ素系フィルムへの貼り替えを行うことで、プリプレグ中の炭素繊維を乱すことなく1次成形を行うことができる。その際に、プリプレグとフッ素系フィルムの間に空気が入らない様に、例えばへらでしごきながら空気を抜き、プリプレグとフッ素系フィルムを密着させることが好ましい。
 なお、フッ素系フィルムに貼り替えることなく、そのままプレスで1次成形を行ってもよいが、離型紙にコーティングされているシリコーン離型剤がプリプレグの表面に転写して、2次成形において接着を阻害するおそれがある。そのため、ポリエチレンフィルムと離型紙を剥がして前述のフッ素系フィルムに貼り替えることが好ましい。
 薄物一方向強化繊維プリプレグはドレープ性が高いが、この貼り替え作業では離型紙又はフッ素系フィルムがプリプレグに密着している為、ドレープ性がある程度抑制されている。また、プリプレグ同士を積層する場合はお互いのプリプレグのタック(ベタツキ)の為、ずれて貼り合わせた場合などはやり直しができないが、プリプレグとフッ素系フィルムの貼り合わせではその様な問題が発生しないので、強化繊維を乱すことなく作業ができる。
 プリプレグの両面をフッ素系フィルムに貼り替えたものを、プレスにて1次成形を行う。室温(例えば20℃)から160℃(第1温度)まで3℃/分で昇温し、160℃で60分間保持する。保持する際の面圧は1.0~5.0kg/cmが好ましい。
 1次成形で薄物一方向強化繊維プリプレグを1層(1枚)で硬化させて得られたシート(FRPシート)は、その繊維方向における引裂き荷重が1Nを超えていることが好ましい。一方向強化繊維プリプレグの繊維方向における引裂き荷重は、炭素繊維長が100mmになるようにカットしたサンプルの片側端部から繊維方向に30mmのスリットをサンプル幅方向中央に入れ、スリットの左側を下治具、右側をフォースゲージに固定し、スリットの左右がなす角度を180°に保ちながら下治具をサンプルが完全に裂けるまで移動させることにより測定される。一方向強化繊維プリプレグの繊維方向における引裂き荷重は、好ましくは1.5N以上であり、より好ましくは2.0N以上である。引裂き荷重が1Nを超えていると2次成形における積層作業時などにFRPシートが裂けにくくなるのでハンドリング性が大幅に向上する。
<2次成形>
 1次成形で薄物一方向強化繊維プリプレグを1層(1枚)で硬化させて得られたシート(FRPシート)を複数枚重ねて2次成形を行う。
 例えば、1次成形後のFRPシートを3枚用意し、互いに接触する面のフッ素系フィルムを剥離して積層する。例えば図1に示すように一番下に位置するFRPシート10Aの繊維方向xに対し、各FRPシート10A、10B、10Cの繊維方向が下から順に0°/90°/0°となるように積層する。2次成形時に各層がズレない様に、四隅をアイロン等で融着させておくと良い。
 1次成形後のFRPシートを3枚積層した積層体の上下面にフッ素系フィルムを配置した状態で、プレスにて2次成形を行う。なお、1次成形によってFRPシートはある程度硬化されているため、ハンドリングし易い。2次成形では、1次成形における温度(第1温度)よりも低い温度(第2温度)でプレスする。例えば、室温から130℃(第2温度)まで3~50℃/分で昇温し、130℃で30分間保持する。保持する際の面圧は1.0~10.0kg/cmが好ましい。
 このように本開示に係る薄物一方向強化繊維プリプレグを用いて2段階の成形によってFRPを製造することで、50mm×150mmのサイズに切り出された切片(サンプル)の反り量が5mm以下であり、反り等の変形が低減された、薄く、高強度なFRPを得ることができる。なお、製造したFRPの端部付近は厚みムラが生じ易いため、端部から25mmまでの部分を除いて上記サイズのサンプルを切り出し、定盤上に載置して各反り量を測定する。20枚以上のサンプルを切り出して反り量が5mmを超えるサンプルが20分の1以下であることが好ましく、全てのサンプルの反り量が5mm以下であることが特に好ましい。
 なお、本開示に係る薄物一方向強化繊維プリプレグを用いてFRPを成形する方法は、板状に限らず、所望の形状を有する金型を使用して様々な形状の成形体とすることができる。また、積層も任意に行えるが、7層以下の疑似等方的な積層にすることが好ましく、薄く、かつ反りの小さいFRPが得られるという本開示に係るプリプレグの特徴から、より好ましくは5層以下であり、最も好ましくは3層以下の疑似等方的な積層を行うことである。
 以下、本開示に係るプリプレグ及びFRPについて実施例を挙げてさらに具体的に説明する。ただし、本開示は以下の実施例によって限定されるものではない。
 実施例で用いた材料は以下のとおりである。
[エポキシ樹脂]
A1:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128、エポキシ当量188g/eq)
[フェノール化合物]
B1:ビスフェノールA(日鉄ケミカル&マテリアル株式会社製、純度99.9%)
[重合触媒]
C1:トリ-o-トリルホスフィン(北興化学工業(株)製:商品名:「TOTP」)
[強化繊維]
E1:PAN系炭素繊維(東レ株式会社製、トレカ(登録商標)M30SC-18000、引張弾性率:294GPa、引張強度:5490MPa、繊度:0.760g/m、密度:1.73g/cm
E2:PAN系炭素繊維(東レ株式会社製、トレカ(登録商標)T700SC-12000、引張弾性率:230GPa、引張強度:4900MPa、繊度:0.800g/m、密度:1.8g/cm
E3:PAN系炭素繊維(三菱ケミカル株式会社製、パイロフィル(登録商標)HR40-12M、引張弾性率:375GPa、引張強度:4410MPa、密度:1.82g/cm
E4:ガラス繊維(日本電気硝子株式会社製、AR320S-920/S、引張弾性率:74GPa、引張強度:1500MPa、繊度:320tex、密度:2.80g/cm
[実施例1]
<プリプレグの製造>
 A1:188質量部とB1:112質量部を配合した混合物に、C1:3質量部をシクロヘキサノン3質量部に溶解した溶液を添加し、プラネタリーミキサーで混練して前駆体組成物(F1)を得た。
 リバースロールコーター方式の樹脂コーティング装置を用いて、前駆体組成物(F1)を、シリコーン離型剤を塗布した離型紙上にコーティング温度40℃で均一に塗工して、樹脂目付15g/m、幅500mm、長さ100mの塗工紙とした。
 続いて、炭素繊維(E1)ストランドが巻かれたボビンを複数本用意し、各ボビンから引き出したストランドをあらかじめ予備開繊して各ストランドの幅を30mmに広げた炭素繊維を隙間なく並列させて幅500mmの炭素繊維基材(E1´)を準備した。
 炭素繊維基材(E1´)の下面から前駆体組成物(F1)を塗工した塗工紙、上面から離型紙で挟み込むようにしてプレスロールに通し、温度100℃、線圧20kg/cmにて加熱加圧含浸させることによって薄物一方向強化繊維プリプレグ(G1)を作製した。プレスロール後、上面の離型紙を剥がしてポリエチレンカバー(厚さ:20μm)に貼り替えた。
 得られた薄物一方向強化繊維プリプレグ(G1)の繊維目付は25.4g/mであり、繊維目付の変動係数は4.5%であり、樹脂含有率が37.3質量%、残揮発分が0.30質量%であった。
 なお、繊維目付の変動係数及び残揮発分は前述した方法によって測定及び算出した値である。
<CFRPの製造>
 上記のようにして得た薄物一方向強化繊維プリプレグ(G1)に対し、下記の手順で1次成形及び2次成形を行ってCFRPを製造した。
(1次成形)
 プリプレグ(G1)を500mm角にカットし、フッ素系フィルムとしてデュポン社製テドラー(商標登録)フィルムを上面のポリエチレンカバー及び下面の離型紙に替えて貼り合わせる。
 さらに上下からアルミ板(A5052、500mm角、5mm厚)で挟み込んだのち、プレスにセットし、室温から160℃まで3℃/分で昇温し、160℃で60分間保持する。保持する際の面圧は1kg/cmである。保持が終了したらプレスから取り出し徐冷する。
 プレス後、上下のアルミ板を剥離してCFRPシートを得た。得られたCFRPシートの板厚は500mm角の中央で30μmであった。
 また、CFRPシートから切り出した250mm×250mmの切片を定盤に置いて定盤からの最大高さ(反り量)についてノギスを用いて測定したところ、反り量は5mmであった。
(2次成形)
 1次成形によって得られた500mm角のCFRPシート3枚を、繊維方向が一番下に位置するCFRPシートの繊維方向xに対してそれぞれ0°/90°/0°となるように積層し、上下面にテドラー(商標登録)フィルムを配置し、更に上下からアルミ板(A5052、500mm角、5mm厚)で挟み込む。これをプレスにセットし、室温から130℃まで10℃/分で昇温し、130℃で30分間保持する。保持する際の面圧は5kg/cmとする。保持が終了したらプレスから取り出し徐冷する。
 プレス後、上下のアルミ板及びフィルムを剥離してCFRPを得た。得られたCFRPの板厚は500mm角の中央で90μmであった。
<波打ち、反り、カールの評価>
 2次成形で得られた500mm角の端部から25mm内側の部分から、繊維方向xに150mm、繊維方向xに対して直角方向に50mmの長方形のサンプルを工作用のステンレスカッターで27枚切り出した。
 切出したサンプルを定盤の上に置き、目視にてサンプル端部と定盤の間における隙間の有無を確認し、波打ち、反り、又はカールによる隙間が5mmを超えるものを不合格とした。不合格品は発生しなかった。
[実施例2]
 炭素繊維としてあらかじめ予備開繊をしてストランドの幅を30mmに広げておいた炭素繊維(E2)を用いたこと以外は実施例1と同様の方法で薄物一方向強化繊維プリプレグ(G2)を作製した。
 薄物一方向強化繊維プリプレグ(G2)の繊維目付は26.1g/mであり、繊維目付の変動係数は5.5%であり、樹脂含有率が36.5質量%、残揮発分が0.31質量%であった。
 実施例1と同様の方法で1次成形及び2次成形を行ってCFRP化した後、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。不合格品は発生しなかった。
 なお、1次成形後のCFRPシートから切り出した250mm×250mmの切片の反り量は6mmであった。
[実施例3]
 炭素繊維としてあらかじめ予備開繊をしてストランドの幅を25mmに広げておいた炭素繊維(E3)を用いたこと以外は実施例1と同様の方法で薄物一方向強化繊維プリプレグ(G3)を作製した。
 薄物一方向強化繊維プリプレグ(G3)の繊維目付は25.2g/mであり、繊維目付の変動係数は5.7%であり、樹脂含有率が37.0質量%、残揮発分が0.24質量%であった。
 実施例1と同様の方法で1次成形及び2次成形を行ってCFRP化した後、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。不合格品は1枚発生した。
 なお、1次成形後のCFRPシートから切り出した250mm×250mmの切片の反り量は4mmであった。
[実施例4]
 強化繊維としてあらかじめ予備開繊をしてストランドの幅を5mmに広げておいたガラス繊維(E4)を用いたこと以外は実施例1と同様の方法で薄物一方向強化繊維プリプレグ(G4)を作製した。
 薄物一方向強化繊維プリプレグ(G4)の繊維目付は79.3g/mであり、繊維目付の変動係数は5.1%であり、樹脂含有率が40.8質量%、残揮発分が0.38質量%であった。
 実施例1と同様の方法で1次成形及び2次成形を行ってGFRP化した後、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。不合格品は1枚発生した。
 なお、1次成形後のCFRPシートから切り出した250mm×250mmの切片の反り量は7mmであった。
[参考例1]
 実施例1で得られた薄物一方向強化繊維プリプレグを500mm角にカットしたものを3枚用意した。
 2枚のプリプレグのポリエチレンカバーを剥がし、2枚のプリプレグの繊維方向がそれぞれ0°/90°になる様にポリエチレンカバーを剥がした面を慎重に、皺が入らない様に積層した。さらに、残りのプリプレグのポリエチレンカバーを剥がし、積層したプリプレグの一方の面側の離型紙を慎重に剥がして各繊維方向が0°/90°/0°の積層状態になる様に慎重に積層した。
 積層が完了したら、片面の離型紙を慎重に剥ぎ、剥いだ面にテドラー(商標登録)フィルムを貼り合わせ、他方の面も同様に離型紙を慎重に剥いだ後、テドラー(商標登録)フィルムを貼り合わせる。
 上下からアルミ板(A5052、500mm角、5mm厚)で挟み込んだのち、プレスにセットし、室温から160℃まで3℃/分で昇温し、160℃で60分間保持する。保持する際の面圧は1kg/cmとする。保持が終了したらプレスから取り出し徐冷する。
 このようにして得られたCFRPの板厚は500mm角の中央で90μmであった。
 実施例1と同様の方法で、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。その結果、不合格品は10枚発生した。
[参考例2]
 実施例2で得られた薄物一方向強化繊維プリプレグを参考例1と同様の方法で積層してCFRPを作製した。作製したCFRPを所定の形状に切断した27枚のサンプルを得て、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。その結果、不合格品は12枚発生した。
[参考例3]
 実施例3で得られた薄物一方向強化繊維プリプレグを参考例1と同様の方法で積層してCFRPを作製した。作製したCFRPを所定の形状に切断した27枚のサンプルを得て、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。その結果、不合格品は18枚発生した。
[比較例4]
 強化繊維としてあらかじめ予備開繊をしてストランドの幅を50mmに広げておいた炭素繊維(E3)を用い、隣接する炭素繊維と10mmずつオーバーラップさせたこと以外は実施例1と同様の方法で薄物一方向強化繊維プリプレグ(G5)を作製した。
 薄物一方向強化繊維プリプレグ(G5)の繊維目付は25.6g/mであり、繊維目付の変動係数は8.9%であり、樹脂含有率が37質量%、残揮発分が0.35質量%であった。
 実施例1と同様の方法で1次成形及び2次成形を行ってCFRP化した後、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。1次成形後のFRPシートの板厚は500mm角の中央で92μm、250mm×250mm切片の反り量は12mmであり、2次成形後の不合格品は15枚発生した。
[比較例5]
 プリプレグの製造に際して、マトリックス樹脂としてナガセケムテックス社製の熱可塑性エポキシ樹脂(DENATITE XNR6850A/XNH6850EY)を使用したこと以外は実施例1と同様の方法で薄物一方向強化繊維プリプレグ(G6)を作製した。
 薄物一方向強化繊維プリプレグ(G6)の繊維目付は24.9g/mであり、繊維目付の変動係数は5.8%であり、樹脂含有率が36.8質量%、残揮発分が2.1質量%であった。
 実施例1と同様の方法で1次成形及び2次成形を行ってCFRP化した後、所定の形状に切断した27枚のサンプルについて、定盤上に置いた場合の隙間の有無によって、波打ち、反り、カールの評価を行った。1次成形後のFRPシートの板厚は500mm角の中央で89μm、250mm×250mm切片の反り量は13mmであり、2次成形後の合格品は1枚もなかった。
 以上の実施例及び比較例から、本開示に係るプリプレグは、積層せずに予め1枚で加熱しながら1次成形した後、複数枚積層して1次成形時の硬化温度よりも低い温度でプレス成形による2次成形を行うことで、反り等の変形が発生し難く、2次成形後に打ち抜きや切断加工した際も反り等の変形が生じ難いFRPを製造することができることが分かる。
 2021年6月8日に出願された日本特許出願2021-095867の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10A,10B,10C 繊維強化プラスチック(FRP)

Claims (5)

  1.  強化繊維が一方向に引き揃えられた一方向繊維基材にマトリックス樹脂が含浸されている一方向強化繊維プリプレグであって、
     前記強化繊維の引張弾性率が70GPa~790GPaの範囲であり、
     繊維目付が5g/m~80g/mの範囲であり、
     前記マトリックス樹脂が熱可塑性樹脂であり、
     前記マトリックス樹脂中の残揮発分が2.0質量%以下であり、
     前記一方向強化繊維プリプレグの幅が250mm~1150mmの範囲であり、
     前記一方向強化繊維プリプレグの全幅に対して幅50mm×長さ100mmに切り出された切片について測定した単位面積あたりの前記繊維目付の変動係数が6%以内であり、
     前記一方向強化繊維プリプレグ全体に対する前記マトリックス樹脂の含有率が20質量%~60質量%の範囲である、
    一方向強化繊維プリプレグ。
  2.  前記マトリックス樹脂は、前記残揮発分が1.5質量%以下のフェノキシ樹脂である請求項1に記載の一方向強化繊維プリプレグ。
  3.  請求項1または請求項2に記載の一方向強化繊維プリプレグ1枚を加熱硬化させた繊維強化プラスチックシート。
  4.  請求項1または請求項2に記載の一方向強化繊維プリプレグを第1温度に加熱して単独で硬化させたシートに成形する1次成形工程と、
     複数枚の前記シートを積層して前記第1温度よりも低い第2温度でプレスして一体化させることにより繊維強化プラスチックに成形する2次成形工程と、
    を含む繊維強化プラスチックの製造方法。
  5.  請求項4に記載の方法によって製造され、幅50mm×長さ150mmの切片を切り出した場合に前記切片の反り量が5mm以下である繊維強化プラスチック。
     
PCT/JP2022/023157 2021-06-08 2022-06-08 一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック WO2022260093A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023527902A JPWO2022260093A1 (ja) 2021-06-08 2022-06-08
CN202280040647.XA CN117425687A (zh) 2021-06-08 2022-06-08 单向增强纤维预浸料、使用该预浸料的纤维增强塑料片、纤维增强塑料的制造方法以及纤维增强塑料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-095867 2021-06-08
JP2021095867 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022260093A1 true WO2022260093A1 (ja) 2022-12-15

Family

ID=84426098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023157 WO2022260093A1 (ja) 2021-06-08 2022-06-08 一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック

Country Status (4)

Country Link
JP (1) JPWO2022260093A1 (ja)
CN (1) CN117425687A (ja)
TW (1) TW202313810A (ja)
WO (1) WO2022260093A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143275A (ja) * 1992-11-09 1994-05-24 Nippon Steel Chem Co Ltd ピッチ系炭素繊維プリプレグ
US5364700A (en) * 1985-12-27 1994-11-15 Amoco Corporation Prepregable resin composition and composite
JP2014111727A (ja) * 2012-10-31 2014-06-19 Dunlop Sports Co Ltd 繊維強化エポキシ樹脂材料、および、これから形成された管状体
JP2015196777A (ja) * 2014-04-01 2015-11-09 Jx日鉱日石エネルギー株式会社 プリプレグ、炭素繊維強化複合材料、ロボットハンド部材及びその原料樹脂組成物
WO2018124215A1 (ja) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 金属-繊維強化樹脂材料複合体、その製造方法及び接着シート
JP2019089931A (ja) * 2017-11-14 2019-06-13 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び成形体
JP2020050833A (ja) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 プリプレグ及びその成形物
JP2021024922A (ja) * 2019-08-02 2021-02-22 Eneos株式会社 プリプレグの製造方法及びプリプレグ
WO2021106588A1 (ja) * 2019-11-27 2021-06-03 Dic株式会社 プリプレグ用樹脂組成物、プリプレグ及び成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364700A (en) * 1985-12-27 1994-11-15 Amoco Corporation Prepregable resin composition and composite
JPH06143275A (ja) * 1992-11-09 1994-05-24 Nippon Steel Chem Co Ltd ピッチ系炭素繊維プリプレグ
JP2014111727A (ja) * 2012-10-31 2014-06-19 Dunlop Sports Co Ltd 繊維強化エポキシ樹脂材料、および、これから形成された管状体
JP2015196777A (ja) * 2014-04-01 2015-11-09 Jx日鉱日石エネルギー株式会社 プリプレグ、炭素繊維強化複合材料、ロボットハンド部材及びその原料樹脂組成物
WO2018124215A1 (ja) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 金属-繊維強化樹脂材料複合体、その製造方法及び接着シート
JP2019089931A (ja) * 2017-11-14 2019-06-13 Jxtgエネルギー株式会社 プリプレグ、繊維強化複合材料及び成形体
JP2020050833A (ja) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 プリプレグ及びその成形物
JP2021024922A (ja) * 2019-08-02 2021-02-22 Eneos株式会社 プリプレグの製造方法及びプリプレグ
WO2021106588A1 (ja) * 2019-11-27 2021-06-03 Dic株式会社 プリプレグ用樹脂組成物、プリプレグ及び成形品

Also Published As

Publication number Publication date
TW202313810A (zh) 2023-04-01
JPWO2022260093A1 (ja) 2022-12-15
CN117425687A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
US11384211B2 (en) In-situ polymerized type thermoplastic prepreg, thermoplastic composite, and methods of manufacturing the same
JP5669849B2 (ja) 熱可塑性複合体並びにそれらを製造および使用する方法
CN103946012B (zh) 剥离层、使用其的表面制备和结合复合结构的方法
KR20190134621A (ko) 금속-섬유 강화 수지 재료 복합체 및 그의 제조 방법
JP6250393B2 (ja) 改善された複合材料
CN117754942A (zh) 用于复合结构的表面材料
GB2485453A (en) A composite structure or laminate
WO2018147331A1 (ja) 繊維強化樹脂シート
EP3898207B1 (en) Automated placement of prepreg tapes to form composite parts
EP3613585B1 (en) Fiber-reinforced composite material molded article and method for producing same
KR102087409B1 (ko) 프리프레그, 이를 이용한 복합재 및 이의 제조 방법
EP3766923B1 (en) Sheet molding compound and carbon fiber composite material molded article
EP3393769B1 (en) Electrically conductive materials, related process and use
WO2022260093A1 (ja) 一方向強化繊維プリプレグ並びにそれを用いた繊維強化プラスチックシート、繊維強化プラスチックの製造方法、及び繊維強化プラスチック
JP2022174669A (ja) 炭素繊維強化プラスチック成形用材料、一方向炭素繊維基材、及び炭素繊維強化プラスチック成形体
JP2022152406A (ja) 熱伝導性部材
JP2025067206A (ja) 積層体及び積層体の賦形方法
RU2792624C2 (ru) Композитный материал и способ его получения
JP2024052261A (ja) 繊維強化樹脂部材の加工方法及び複合部材
JP2023006197A (ja) 樹脂フィルム、プリプレグ、繊維強化プラスチック、及び樹脂組成物。
JP2018066000A (ja) 強化繊維基材および繊維強化樹脂
KR101975003B1 (ko) 하이브리드 프리프레그 칩 제조장치, 이에 의해 제조된 하이브리드 프리프레그 칩, 이를 이용한 칩매트 제조방법 및 이에 의해 제조된 칩매트
TW202328311A (zh) 絲束預浸料以及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040647.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023527902

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820272

Country of ref document: EP

Kind code of ref document: A1