[go: up one dir, main page]

WO2022255342A1 - Liquid surface height detecting device - Google Patents

Liquid surface height detecting device Download PDF

Info

Publication number
WO2022255342A1
WO2022255342A1 PCT/JP2022/022070 JP2022022070W WO2022255342A1 WO 2022255342 A1 WO2022255342 A1 WO 2022255342A1 JP 2022022070 W JP2022022070 W JP 2022022070W WO 2022255342 A1 WO2022255342 A1 WO 2022255342A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
light
component
water level
calculation formula
Prior art date
Application number
PCT/JP2022/022070
Other languages
French (fr)
Japanese (ja)
Inventor
匡 小林
志織 東
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023525844A priority Critical patent/JPWO2022255342A1/ja
Publication of WO2022255342A1 publication Critical patent/WO2022255342A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Definitions

  • the invention disclosed in this specification relates to a liquid level detection device.
  • the object of the invention disclosed in this specification is to provide a liquid level detection device capable of improving the detection accuracy of the liquid level.
  • the liquid level detection device disclosed in this specification includes a light source that irradiates light toward the liquid surface, an optical sensor that receives light reflected from the liquid surface, and an output from the optical sensor. and a detection unit that detects the liquid level height based on the corresponding relationship between the detected light value and the liquid level.
  • FIG. 1 is a diagram showing a configuration example of a water level detection device.
  • FIG. 2 is a diagram showing a configuration example of a color sensor.
  • FIG. 3 is a schematic diagram showing an experimental environment for experiments using the water level detection device.
  • FIG. 4 is a view of the substrate viewed in a direction perpendicular to the substrate surface.
  • FIG. 5 is a table showing an example of calculated water level results for each color component.
  • FIG. 6 is a table showing an example of variations in water level calculated for each color component.
  • FIG. 7A is a graph plotting the actual water level in the table of FIG. 5 on the horizontal axis and the water level calculated from the R component detection value on the vertical axis.
  • FIG. 7B is a graph plotting the actual water level in the table of FIG.
  • FIG. 7C is a graph plotting the actual water level in the table of FIG. 5 on the horizontal axis and the water level calculated from the B component detection value on the vertical axis.
  • FIG. 8 is a table showing an example of water level results calculated based on infrared component detection values.
  • FIG. 9 is a table showing an example of variations in water level calculated based on infrared component detection values.
  • FIG. 10 is a graph plotting the results shown in FIG.
  • FIG. 11 is a diagram schematically showing a configuration example when the water level detection device is mounted on equipment.
  • FIG. 12 is a diagram illustrating a configuration example of a calibration unit;
  • FIG. 1 is a diagram showing a configuration example of a water level detection device.
  • a water level detector is an example of a liquid level detector.
  • the water level detection device 1 shown in FIG. 1 has a substrate 2, a color sensor 3, a white LED 4, a control section 5, a switch SW and a resistor R. Color sensor 3 , white LED 4 , switch SW, and resistor R are mounted on substrate 2 .
  • the control unit 5 is, for example, a microcomputer.
  • a white LED (an example of a light source) 4 is a chip LED that emits white light.
  • the switch SW and the resistor R are arranged on a path through which a current flows to the white LED 4 by the power supply voltage VCC.
  • the switch SW is controlled to be turned on and off by the controller 5 . By turning on/off the switch SW, the white LED 4 can be switched between light emission and light extinguishing.
  • the resistor R limits the current flowing through the white LED 4 and adjusts the amount of white light.
  • a color sensor (an example of an optical sensor) 3 is a sensor IC capable of detecting color components of light. Specifically, the color components are an R component (red component), a G component (green component), and a B component (blue component).
  • the white LED 4 emits white light.
  • the white LED 4 irradiates the water surface (not shown) with white light.
  • the color sensor 3 receives light reflected by a water surface or the like and detects color components.
  • the color sensor 3 outputs the detected color components to the controller 5 as digital data. Digital data output from the color sensor 3 is, for example, 16-bit data.
  • the control unit 5 has a bit conversion unit 51 and a detection unit 52 .
  • the bit conversion unit 51 converts the digital data output from the color sensor 3 into 8-bit digital data, for example.
  • the detection unit 52 calculates the water level based on the bit-converted color component detection value and the calculation formula 5A for calculating the water level. Calculation formula 5A is stored in advance in control unit 5 (detection unit 52). The details of the calculation formula 5A will be described later.
  • the color sensor 3 can also detect IR (infrared) components in addition to RGB components.
  • FIG. 2 is a diagram showing a configuration example of the color sensor 3.
  • the color sensor 3 shown in FIG. 2 includes light receiving elements 31A, 31B, 31C and 31D, ADCs (AD converters) 32A, 32B and 32C, a logic circuit 33, an infrared blocking filter 34, a red light transmission filter 35A, It has a green light transmission filter 35B, a blue light transmission filter 35C, an infrared transmission filter 35D, and a switch .
  • the light receiving element 31A generates an analog current signal corresponding to the amount of red light incident through the infrared cutoff filter 34 and the red light transmission filter 35A. That is, the light receiving element 31A detects the R component (red component) of the input light.
  • the light receiving element 31B generates an analog current signal corresponding to the amount of green light incident through the infrared cut filter 34 and the green light transmission filter 35B. That is, the light receiving element 31B detects the G component (green component) of the input light.
  • the light receiving element 31C generates an analog current signal corresponding to the amount of blue light incident through the infrared cut filter 34 and the blue light transmission filter 35C. That is, the light receiving element 31C detects the B component (blue component) of the input light.
  • the light receiving element 31D generates an analog current signal corresponding to the amount of infrared light incident through the infrared transmission filter 35D. That is, the light receiving element 31D detects the IR component (infrared component) of the input light.
  • a photodiode, a phototransistor, or the like can be suitably used as each of the light receiving elements 31A, 31B, 31C, and 31D.
  • the ADCs 32A and 32B convert the analog current signals from the light receiving elements 31A and 31B into, for example, 16-bit digital data and output them. Also, the ADC 32C converts the analog current signal from either the light receiving element 31C or 31D into digital data according to the switching of the switch 36, and outputs the digital data.
  • the infrared cutoff filter 34 cuts off the IR component contained in the input light on the upstream side of each of the red light transmission filter 35A, the green light transmission filter 35B, and the blue light transmission filter 35C. By providing such an infrared blocking filter 34, the RGB components can be detected with high accuracy.
  • the logic circuit 33 sends digital data as RGB component detection signals and IR component detection signals output from the ADCs 32A, 32B, and 32C to the control unit 5 by I2C communication.
  • FIG. 3 is a schematic diagram showing an experimental environment for an experiment using the water level detection device 1.
  • FIG. 4 is a diagram of the substrate 2 viewed in a direction perpendicular to the substrate surface of the substrate 2 (hereinafter simply referred to as the vertical direction) (X direction).
  • a water level detection device 1 (the control unit 5 is not shown in FIG. 3), a petri dish 6, drawing paper 7, and a dark box 8 were used.
  • Petri dish 6 is a container capable of containing water 9 . Water 9 and petri dish 6 are transparent.
  • the substrate 2 was arranged above the petri dish 6 so that the bottom surface 61A inside the petri dish 6 and the color sensor 3 and the white LED 4 faced each other in the vertical direction (X direction) (that is, the X direction is the vertical direction).
  • the distance L between the bottom surface 61A and the color sensor 3 was set to 15 mm.
  • a vernier caliper was used to set the distance L.
  • a white drawing paper 7 was placed below the bottom 61 of the petri dish 6 .
  • the substrate 2, the color sensor 3, the white LED 4, the petri dish 6, and the drawing paper 7 were placed inside the dark box 8. As a result, external light is blocked by the dark box 8, and detection of the external light by the color sensor 3 is suppressed.
  • the larger the value of the actual water level H the larger the detection values for each of RGB. This is probably because the greater the water level H, the shorter the distance from the white LEDs 4 to the water surface 91 and the less the amount of attenuation of the white light between the white LEDs 4 and the water surface 91 .
  • the above formulas (1), (2), and (3) are formulas for calculating the water level from the R component detection value, G component detection value, and B component detection value, respectively.
  • the average value of the water level values obtained by substituting the R component detection value sampled as described above into the right side of the above equation (1) is the actual water level (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm ) are shown in the table of FIG. That is, the average value of the three calculated water level values obtained by the formula (1) was calculated per one actual water level. Similar results for the G and B components using equations (2) and (3) above are also shown in FIG.
  • Fig. 7A shows a graph in which the actual water level in the table of Fig. 5 is plotted on the horizontal axis and the water level calculated from the R component detection value is plotted on the vertical axis ("calculated value" in Fig. 7A). Note that FIG. 7A also shows plots of actual water levels on both the horizontal axis and the vertical axis (“ideal value” in FIG. 7A). Similar graphs for the G component and B component are shown in FIGS. 7B and 7C, respectively.
  • the results calculated for each (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm) are shown in the table of FIG. That is, the variation of the three calculated water level values obtained by the formula (1) was calculated per one actual water level.
  • FIG. 6 also shows similar results for the G component and the B component using the above formulas (2) and (3).
  • the variation in the water level calculated from the detected values is small for any of the R, G, and B components. 3 ⁇ indicates the reproducibility of the calculated water level, and the reproducibility was high.
  • the control unit 5 (detection unit 52) as the calculation formula 5A (FIG. 1)
  • the control unit 5 (detection The unit 52) can detect the water level with high accuracy based on the output from the color sensor 3.
  • FIG. That is, water levels other than the water level at intervals of 2 mm as described above can also be detected.
  • the average value of the water level calculated by each of two or more of the above formulas (1), (2), and (3) may be calculated. That is, it is possible to detect the water level using at least one of the above formulas (1), (2), and (3).
  • FIG. 8 shows the result corresponding to FIG. 5 mentioned above based on the above equation (4).
  • 10 shows a graph in which the results shown in FIG. 8 are plotted.
  • FIG. 9 shows the result corresponding to FIG. 6 described above based on the above equation (4). From these results, it was found that the water level can be detected with high accuracy based on the value of the infrared component detected by the color sensor 3 and the above equation (4). Therefore, the above formula (4) may be stored in the control section 5 (the detection section 52) as the calculation formula 5A to detect the water level. Since the second-order coefficient of the above equation (4) is small, an approximation of the first-order expression may be calculated. Also, the value of each coefficient in the above equation (4) is, of course, only an example.
  • FIG. 11 schematically shows a configuration example in which the water level detection device 1 is mounted on a toilet tank 100 as an example of applicable equipment.
  • the toilet tank 100 has a housing portion 60.
  • the substrate 2 , the color sensor 3 and the white LED 4 included in the water level detection device 1 are arranged above inside the housing portion 60 .
  • the containing portion 60 can contain the water 9 .
  • the color of the housing portion 60 itself is white.
  • the experimental environment described above is adapted to the environment when the water level detection device 1 is mounted on the toilet tank 100.
  • a white sheet material may be arranged on the inner bottom surface of the housing portion 60 or may be arranged below the transparent bottom portion of the housing portion 60.
  • the container part 60 may be a container for uses other than the toilet tank.
  • control unit 5 may perform calibration in order to cope with aging.
  • the secular change is, for example, a change in the state of the water 9 stored in the storage portion 60 .
  • the control section 5 has a calibration section 53 as shown in FIG.
  • the calibration section 53 has a measurement implementation section 531 , a calculation formula generation section 532 , a water level calculation section 533 , a 3 ⁇ calculation section 534 , and a calculation formula selection section 535 .
  • the measurement execution unit 531 irradiates white light from the white LED 4 and measures the RGB component detection values from the color sensor 3 when the water level information is acquired. The measurement is performed multiple times (eg, three times) for each same water level.
  • the calculation formula generation unit 532 calculates a water level calculation formula for each component based on the water level indicated by the water level information and the RGB component detection values obtained by the measurement.
  • the water level calculation unit 533 calculates the water level by substituting the RGB component detection values obtained above into each water level calculation formula calculated above.
  • the 3 ⁇ calculator 534 calculates 3 ⁇ of the water level calculated above for each same water level indicated by the water level information (that is, equivalent to FIG. 6 described above).
  • the calculation formula selection unit 535 selects the water level calculation formula with the least variation from the water level calculation formulas for each of the RGB components based on the 3 ⁇ calculated above. Thereafter, the water level is detected based on the selected water level calculation formula. Therefore, the water level calculation formula used for water level detection is updated in accordance with aging.
  • the liquid stored in the storage unit 60 may be colored opaque water, or may be colored liquid other than water (for example, ink). Further, the liquid contained in the containing portion 60 may be gel-like. Also, the color of the sheet material or the color of the housing portion 60 may be a color other than white. In these cases, for example, in the experimental stage, among the calculation formulas calculated from the detected values of each of the R, G, and B components measured by the color sensor 3, a formula with good accuracy is selected and sent to the control unit 5. Store. It should be noted that the calibration function described above can also deal with changes in quality of the liquid, such as a change to opaque water or a change in liquid to a gel state.
  • an optical sensor that measures the detection value of only one of the R, G, B, and IR components may be used.
  • an illuminance sensor may be used instead of the color sensor 3, and the water level may be detected based on a calculation formula for calculating the water level from the illuminance.
  • a table representing the correspondence between the detected values of RGB components and the water level is created in advance, and the control unit 5 detects the water level based on the table. You may make it That is, it is not always necessary to detect the water level by calculation using a calculation formula.
  • the liquid level detection device (1) disclosed in this specification includes a light source (4) that irradiates light toward the liquid surface (91), and a light source (4) that receives light reflected from the liquid surface.
  • a configuration comprising an optical sensor (3), an optical detection value output from the optical sensor, and a detection unit (52) for detecting the liquid level height based on the correspondence relationship between the optical detection value and the liquid level height. (first configuration).
  • the correspondence relationship is a calculation formula (5A) for calculating the liquid level height from the light detection value, and the detection unit calculates the liquid level height based on the calculation formula may be calculated (second configuration).
  • the calculation formula may be a linear formula or a quadratic formula (third configuration).
  • the optical sensor outputs the light detection value of at least one of an R (red) component, a G (green) component, and a B (blue) component
  • the detection unit may have the correspondence relationship between the light detection value of at least one of the R component, the G component, and the B component and the liquid level (fourth configuration).
  • the optical sensor outputs the light detection value of the infrared component
  • the detection section outputs the light detection value of the infrared component and the liquid level height.
  • a measurement execution unit (531) that measures the light detection values of the RGB components by the light sensor when information on the liquid level is acquired; a calculation formula generator (532) for calculating a liquid level height calculation formula for each component of the RGB components based on the liquid level height information and the light detection value obtained by the measurement; a liquid level height calculation unit (533) for calculating the liquid level height based on the calculated liquid level height calculation formula and the light detection value obtained by the measurement; a variation calculation unit (534) for calculating a variation index of the calculated liquid level for each same liquid level indicated by the information on the liquid level; a calculation formula selection unit (535) that selects a liquid level height calculation formula from the liquid level height calculation formulas for each of the components based on the calculated variation index; (sixth configuration).
  • the light source and the optical sensor may be mounted on the same substrate (seventh configuration).
  • the liquid surface may be a water surface (eighth configuration).
  • the device (100) disclosed in this specification includes a liquid level detection device (1) having any one of the first to eighth configurations, and a storage section ( 60) and (ninth configuration).
  • a white member is further provided below the bottom of the housing portion or on the bottom surface inside the housing portion, and the light source (4) is capable of emitting white light.
  • a certain configuration may be used (tenth configuration).
  • the bottom portion of the accommodating portion may be white, and the light source may emit white light (eleventh configuration).
  • the liquid level detection device disclosed in this specification can be used, for example, to detect the water level.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

A liquid surface height detecting device (1) includes: a light source (4) for radiating light toward a liquid surface; a light sensor (3) for receiving reflected light from the liquid surface; and a detecting unit (52) for detecting a liquid surface height on the basis of a light detection value output from the light sensor, and a correspondence relationship between the light detection value and the liquid surface height.

Description

液面高さ検出装置Liquid level detector
 本明細書中に開示されている発明は、液面高さ検出装置に関する。 The invention disclosed in this specification relates to a liquid level detection device.
 従来、各種の水位計が知られている。従来の水位計としては、例えば、いわゆるフロート方式のものが知られている(例えば特許文献1)。 Conventionally, various water level gauges are known. As a conventional water level gauge, for example, a so-called float type one is known (for example, Patent Document 1).
実開平4-24028号公報Japanese Utility Model Laid-Open No. 4-24028
 昨今、水位計においては、水位の検出精度を向上させることが要望されている。 In recent years, there has been a demand for improved water level detection accuracy in water level gauges.
 上記状況に鑑み、本明細書中に開示されている発明は、液面高さの検出精度を向上させることが可能な液面高さ検出装置を提供することを目的とする。 In view of the above situation, the object of the invention disclosed in this specification is to provide a liquid level detection device capable of improving the detection accuracy of the liquid level.
 例えば、本明細書中に開示されている液面高さ検出装置は、光を液面に向かって照射する光源と、前記液面での反射光を受光する光センサと、前記光センサから出力される光検出値と、光検出値と液面高さとの対応関係に基づき、液面高さを検出する検出部と、を有する構成としている。 For example, the liquid level detection device disclosed in this specification includes a light source that irradiates light toward the liquid surface, an optical sensor that receives light reflected from the liquid surface, and an output from the optical sensor. and a detection unit that detects the liquid level height based on the corresponding relationship between the detected light value and the liquid level.
 本明細書中に開示されている発明によれば、液面高さの検出精度を向上させることが可能となる。 According to the invention disclosed in this specification, it is possible to improve the detection accuracy of the liquid level height.
図1は、水位検出装置の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a water level detection device. 図2は、カラーセンサの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a color sensor. 図3は、水位検出装置を用いた実験の実験環境を示す概略図である。FIG. 3 is a schematic diagram showing an experimental environment for experiments using the water level detection device. 図4は、基板面に垂直な方向に基板を視た図である。FIG. 4 is a view of the substrate viewed in a direction perpendicular to the substrate surface. 図5は、色成分ごとの算出された水位の結果例を示す表である。FIG. 5 is a table showing an example of calculated water level results for each color component. 図6は、色成分ごとの算出された水位のばらつきの一例を示す表である。FIG. 6 is a table showing an example of variations in water level calculated for each color component. 図7Aは、図5の表における実際の水位を横軸に、R成分検出値から算出した水位を縦軸としてプロットしたグラフである。FIG. 7A is a graph plotting the actual water level in the table of FIG. 5 on the horizontal axis and the water level calculated from the R component detection value on the vertical axis. 図7Bは、図5の表における実際の水位を横軸に、G成分検出値から算出した水位を縦軸としてプロットしたグラフである。FIG. 7B is a graph plotting the actual water level in the table of FIG. 5 on the horizontal axis and the water level calculated from the G component detection value on the vertical axis. 図7Cは、図5の表における実際の水位を横軸に、B成分検出値から算出した水位を縦軸としてプロットしたグラフである。FIG. 7C is a graph plotting the actual water level in the table of FIG. 5 on the horizontal axis and the water level calculated from the B component detection value on the vertical axis. 図8は、赤外線成分検出値に基づき算出された水位の結果例を示す表である。FIG. 8 is a table showing an example of water level results calculated based on infrared component detection values. 図9は、赤外線成分検出値に基づき算出された水位のばらつきの一例を示す表である。FIG. 9 is a table showing an example of variations in water level calculated based on infrared component detection values. 図10は、図8に示す結果をプロットしたグラフである。FIG. 10 is a graph plotting the results shown in FIG. 図11は、水位検出装置を機器に搭載する場合の構成例を模式的に示す図である。FIG. 11 is a diagram schematically showing a configuration example when the water level detection device is mounted on equipment. 図12は、キャリブレーション部の構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of a calibration unit;
 以下に、例示的な実施形態について図面を参照して説明する。 Exemplary embodiments are described below with reference to the drawings.
<1.水位検出装置の構成>
 図1は、水位検出装置の構成例を示す図である。水位検出装置は、液面高さ検出装置の一例である。図1に示す水位検出装置1は、基板2と、カラーセンサ3と、白色LED4と、制御部5と、スイッチSWと、抵抗Rと、を有している。カラーセンサ3、白色LED4、スイッチSW、および抵抗Rは、基板2に実装される。制御部5は、例えばマイコンである。
<1. Configuration of water level detection device>
FIG. 1 is a diagram showing a configuration example of a water level detection device. A water level detector is an example of a liquid level detector. The water level detection device 1 shown in FIG. 1 has a substrate 2, a color sensor 3, a white LED 4, a control section 5, a switch SW and a resistor R. Color sensor 3 , white LED 4 , switch SW, and resistor R are mounted on substrate 2 . The control unit 5 is, for example, a microcomputer.
 白色LED(光源の一例)4は、白色光を発光するチップLEDである。スイッチSWおよび抵抗Rは、電源電圧VCCによって白色LED4に電流が流れる経路に配置される。スイッチSWは、制御部5によりオンオフを制御される。スイッチSWのオンオフにより、白色LED4の発光・消灯を切り替えることができる。抵抗Rは、白色LED4に流れる電流を制限し、白色光の光量を調整する。 A white LED (an example of a light source) 4 is a chip LED that emits white light. The switch SW and the resistor R are arranged on a path through which a current flows to the white LED 4 by the power supply voltage VCC. The switch SW is controlled to be turned on and off by the controller 5 . By turning on/off the switch SW, the white LED 4 can be switched between light emission and light extinguishing. The resistor R limits the current flowing through the white LED 4 and adjusts the amount of white light.
 カラーセンサ(光センサの一例)3は、光の色成分を検出可能なセンサICである。上記色成分は、具体的には、R成分(赤色成分)、G成分(緑色成分)、B成分(青色成分)である。制御部5によりスイッチSWがオン状態とされることで白色LED4は白色光を発光する。白色LED4は、白色光を図示しない水の水面に照射する。カラーセンサ3は、水面などで反射された光を受光して色成分を検出する。カラーセンサ3は、検出した色成分をデジタルデータとして制御部5へ出力する。カラーセンサ3が出力するデジタルデータは、例えば16ビットデータである。 A color sensor (an example of an optical sensor) 3 is a sensor IC capable of detecting color components of light. Specifically, the color components are an R component (red component), a G component (green component), and a B component (blue component). When the switch SW is turned on by the controller 5, the white LED 4 emits white light. The white LED 4 irradiates the water surface (not shown) with white light. The color sensor 3 receives light reflected by a water surface or the like and detects color components. The color sensor 3 outputs the detected color components to the controller 5 as digital data. Digital data output from the color sensor 3 is, for example, 16-bit data.
 制御部5は、ビット変換部51と、検出部52と、を有している。ビット変換部51は、カラーセンサ3から出力されるデジタルデータを例えば8ビットのデジタルデータに変換する。検出部52は、ビット変換後の色成分検出値と、水位を算出するための算出式5Aに基づき、水位を算出する。算出式5Aは、制御部5(検出部52)にあらかじめ格納されている。算出式5Aの詳細については、後述する。 The control unit 5 has a bit conversion unit 51 and a detection unit 52 . The bit conversion unit 51 converts the digital data output from the color sensor 3 into 8-bit digital data, for example. The detection unit 52 calculates the water level based on the bit-converted color component detection value and the calculation formula 5A for calculating the water level. Calculation formula 5A is stored in advance in control unit 5 (detection unit 52). The details of the calculation formula 5A will be described later.
 なお、後述するように、カラーセンサ3は、RGB成分に加えて、IR(赤外線)成分を検出することも可能である。 As will be described later, the color sensor 3 can also detect IR (infrared) components in addition to RGB components.
<2.カラーセンサの構成>
 図2は、カラーセンサ3の構成例を示す図である。図2に示すカラーセンサ3は、受光素子31A,31B,31C,31Dと、ADC(ADコンバータ)32A,32B,32Cと、ロジック回路33と、赤外線遮断フィルタ34と、赤色光透過フィルタ35Aと、緑色光透過フィルタ35Bと、青色光透過フィルタ35Cと、赤外線透過フィルタ35Dと、スイッチ36と、を有している。
<2. Configuration of Color Sensor>
FIG. 2 is a diagram showing a configuration example of the color sensor 3. As shown in FIG. The color sensor 3 shown in FIG. 2 includes light receiving elements 31A, 31B, 31C and 31D, ADCs (AD converters) 32A, 32B and 32C, a logic circuit 33, an infrared blocking filter 34, a red light transmission filter 35A, It has a green light transmission filter 35B, a blue light transmission filter 35C, an infrared transmission filter 35D, and a switch .
 受光素子31Aは、赤外線遮断フィルタ34および赤色光透過フィルタ35Aを介して入射される赤色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子31Aは、入力光のR成分(赤色成分)を検出する。 The light receiving element 31A generates an analog current signal corresponding to the amount of red light incident through the infrared cutoff filter 34 and the red light transmission filter 35A. That is, the light receiving element 31A detects the R component (red component) of the input light.
 受光素子31Bは、赤外線遮断フィルタ34および緑色光透過フィルタ35Bを介して入射される緑色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子31Bは、入力光のG成分(緑色成分)を検出する。 The light receiving element 31B generates an analog current signal corresponding to the amount of green light incident through the infrared cut filter 34 and the green light transmission filter 35B. That is, the light receiving element 31B detects the G component (green component) of the input light.
 受光素子31Cは、赤外線遮断フィルタ34および青色光透過フィルタ35Cを介して入射される青色光の光量に応じたアナログ電流信号を生成する。すなわち、受光素子31Cは、入力光のB成分(青色成分)を検出する。 The light receiving element 31C generates an analog current signal corresponding to the amount of blue light incident through the infrared cut filter 34 and the blue light transmission filter 35C. That is, the light receiving element 31C detects the B component (blue component) of the input light.
 受光素子31Dは、赤外線透過フィルタ35Dを介して入射される赤外線の光量に応じたアナログ電流信号を生成する。すなわち、受光素子31Dは、入力光のIR成分(赤外線成分)を検出する。 The light receiving element 31D generates an analog current signal corresponding to the amount of infrared light incident through the infrared transmission filter 35D. That is, the light receiving element 31D detects the IR component (infrared component) of the input light.
 上記の受光素子31A,31B,31C,31Dとしては、それぞれ、フォトダイオードあるいはフォトトランジスタなどを好適に用いることができる。 A photodiode, a phototransistor, or the like can be suitably used as each of the light receiving elements 31A, 31B, 31C, and 31D.
 ADC32A,32Bは、受光素子31A,31Bからのアナログ電流信号を例えば16ビットのデジタルデータに変換して出力する。また、ADC32Cは、受光素子31C,31Dいずれかからのアナログ電流信号をスイッチ36の切り替えに応じてデジタルデータに変換して出力する。 The ADCs 32A and 32B convert the analog current signals from the light receiving elements 31A and 31B into, for example, 16-bit digital data and output them. Also, the ADC 32C converts the analog current signal from either the light receiving element 31C or 31D into digital data according to the switching of the switch 36, and outputs the digital data.
 赤外線遮断フィルタ34は、赤色光透過フィルタ35A、緑色光透過フィルタ35B、および、青色光透過フィルタ35Cそれぞれの上流側で、入力光に含まれるIR成分を遮断する。このような赤外線遮断フィルタ34を設けることにより、RGB成分を精度良く検出することができる。 The infrared cutoff filter 34 cuts off the IR component contained in the input light on the upstream side of each of the red light transmission filter 35A, the green light transmission filter 35B, and the blue light transmission filter 35C. By providing such an infrared blocking filter 34, the RGB components can be detected with high accuracy.
 ロジック回路33は、ADCロジック機能(=ADCの時分割制御機能)、および、I2Cインターフェイス機能(=データ信号SDAとクロック信号SCLの通信機能)を備えている。ロジック回路33は、ADC32A,32B,32Cから出力されるRGB成分検出信号およびIR成分検出信号としてのデジタルデータをI2C通信によって制御部5に送出する。 The logic circuit 33 has an ADC logic function (= ADC time-division control function) and an I2C interface function (= data signal SDA and clock signal SCL communication function). The logic circuit 33 sends digital data as RGB component detection signals and IR component detection signals output from the ADCs 32A, 32B, and 32C to the control unit 5 by I2C communication.
<3.実験環境>
 次に、水位検出装置1を用いて実施した実験について述べる。図3は、水位検出装置1を用いた実験の実験環境を示す概略図である。図4は、基板2の基板面に垂直な方向(以下、単に垂直方向)(X方向)に基板2を視た図である。
<3. Experiment environment>
Next, an experiment conducted using the water level detection device 1 will be described. FIG. 3 is a schematic diagram showing an experimental environment for an experiment using the water level detection device 1. As shown in FIG. FIG. 4 is a diagram of the substrate 2 viewed in a direction perpendicular to the substrate surface of the substrate 2 (hereinafter simply referred to as the vertical direction) (X direction).
 図3に示すように、実験環境としては、水位検出装置1(図3では制御部5は図示せず)、シャーレ6、画用紙7と、暗箱8と、を用いた。シャーレ6は、水9を収容可能とする容器である。水9およびシャーレ6は、透明である。 As shown in FIG. 3, as an experimental environment, a water level detection device 1 (the control unit 5 is not shown in FIG. 3), a petri dish 6, drawing paper 7, and a dark box 8 were used. Petri dish 6 is a container capable of containing water 9 . Water 9 and petri dish 6 are transparent.
 シャーレ6の内部の底面61Aと、カラーセンサ3および白色LED4とが垂直方向(X方向)に対向するように、基板2をシャーレ6の上方に配置させた(すなわち、X方向は上下方向)。このとき、底面61Aとカラーセンサ3との間の距離Lを15mmに設定した。なお、距離Lの設定には、ノギスを用いた。 The substrate 2 was arranged above the petri dish 6 so that the bottom surface 61A inside the petri dish 6 and the color sensor 3 and the white LED 4 faced each other in the vertical direction (X direction) (that is, the X direction is the vertical direction). At this time, the distance L between the bottom surface 61A and the color sensor 3 was set to 15 mm. A vernier caliper was used to set the distance L.
 また、シャーレ6の底部61の下方には、白色の画用紙7を配置させた。 In addition, a white drawing paper 7 was placed below the bottom 61 of the petri dish 6 .
 また、基板2、カラーセンサ3、白色LED4、シャーレ6、および、画用紙7は、暗箱8の内部に配置させた。これにより、外光を暗箱8により遮断し、外光がカラーセンサ3により検出されることを抑制するようにした。 Also, the substrate 2, the color sensor 3, the white LED 4, the petri dish 6, and the drawing paper 7 were placed inside the dark box 8. As a result, external light is blocked by the dark box 8, and detection of the external light by the color sensor 3 is suppressed.
<4.実験方法>
 実験は、次のような手順で実施した。
<4. Experimental method>
The experiment was carried out in the following procedure.
(試行1.)
 まず、図3に示す環境において、水9がシャーレ6に収容されていない状態、すなわち水位=0mmの状態で、白色LED4から白色光をシャーレ6に向かって照射し、カラーセンサ3により光の色成分を測定した。この場合、白色LED4から射出された白色光は、シャーレ6の底部61を透過して画用紙7で反射してカラーセンサ3により受光される。
(Trial 1.)
First, in the environment shown in FIG. Ingredients were measured. In this case, the white light emitted from the white LED 4 is transmitted through the bottom 61 of the petri dish 6 and reflected by the drawing paper 7 to be received by the color sensor 3 .
(試行2.)
 次に、水9をシャーレ6に収容させた状態で、白色LED4から白色光を水9の水面91に向かって照射し、カラーセンサ3により光の色成分を測定した。この場合、図3に示すように、白色LED4から射出された白色光WL1の一部は、水面91で反射して反射光WL2としてカラーセンサ3により受光される。また、白色光WL1の一部が水面91を透過した透過光WL3は、シャーレ6の底部61を透過して画用紙7で反射して反射光WL4としてカラーセンサ3により受光される。なお、ここでは、水9の水位(液面高さ)Hを2mm、4mm、6mm、8mm、10mmと順に増やしながら、上記測定を実施する。
(Trial 2.)
Next, with the water 9 contained in the petri dish 6 , white light was emitted from the white LED 4 toward the water surface 91 of the water 9 , and the color components of the light were measured by the color sensor 3 . In this case, as shown in FIG. 3, part of the white light WL1 emitted from the white LED 4 is reflected by the water surface 91 and received by the color sensor 3 as reflected light WL2. Transmitted light WL3, which is part of the white light WL1 transmitted through the water surface 91, is transmitted through the bottom 61 of the petri dish 6, reflected by the drawing paper 7, and received by the color sensor 3 as reflected light WL4. Here, the above measurement is performed while increasing the water level (liquid level height) H of the water 9 in order of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm.
 上記試行1.および試行2.のセットを、計3回繰り返した。  The above trial 1. and trial 2. was repeated a total of 3 times.
<5.実験結果>
 上記実験手順による光測定により、0mmから10mmまでの2mmごとの水位Hのそれぞれについて、R成分、G成分、B成分それぞれの検出値がカラーセンサ3により測定された。すなわち、R成分、G成分、B成分それぞれについて、3(試行回数)×6(水位の数)=18個の検出値がサンプルされた。このようなサンプル値は、制御部5により取得された。
<5. Experiment results>
By optical measurement according to the above experimental procedure, the detected values of the R component, the G component, and the B component were measured by the color sensor 3 for each water level H of 2 mm from 0 mm to 10 mm. That is, 3 (number of trials)×6 (number of water levels)=18 detection values were sampled for each of the R component, G component, and B component. Such sample values were acquired by the control unit 5 .
 実際の水位Hの値が大きいほど、RGBそれぞれの検出値は大きくなる結果であった。これは、水位Hが大きいほど、白色LED4から水面91までの距離が短くなり、白色LED4から水面91までの間での白色光の減衰量が少なくなるためと考えられる。 As a result, the larger the value of the actual water level H, the larger the detection values for each of RGB. This is probably because the greater the water level H, the shorter the distance from the white LEDs 4 to the water surface 91 and the less the amount of attenuation of the white light between the white LEDs 4 and the water surface 91 .
 そして、R成分の検出値と実際の水位Hの値に基づき、2次式の近似式を下記(1)式のように算出した。
 水位(R)[mm]=-0.0000026R2+0.0241R-44.653 (1)
Then, based on the detected value of the R component and the value of the actual water level H, a quadratic approximation was calculated as shown in the following equation (1).
Water level (R) [mm] = -0.0000026R2 + 0.0241R - 44.653 (1)
 また、G成分の検出値と実際の水位Hの値に基づき、2次式の近似式を下記(2)式のように算出した。
 水位(G)[mm]=-0.00000031G2+0.0080G-40.774 (2)
Also, based on the detected value of the G component and the value of the actual water level H, an approximation of the quadratic equation was calculated as shown in the following equation (2).
Water level (G) [mm] = -0.00000031G2 + 0.0080G - 40.774 (2)
 また、B成分の検出値と実際の水位Hの値に基づき、2次式の近似式を下記(3)式のように算出した。
 水位(B)[mm]=-0.00000079B2+0.0127B-40.749 (3)
Also, based on the detected value of the B component and the value of the actual water level H, an approximate expression of the quadratic expression was calculated as shown in the following expression (3).
Water level (B) [mm] = -0.00000079B2 + 0.0127B - 40.749 (3)
 上記(1)式、(2)式、(3)式は、それぞれR成分検出値、G成分検出値、B成分検出値から水位を算出する算出式となる。 The above formulas (1), (2), and (3) are formulas for calculating the water level from the R component detection value, G component detection value, and B component detection value, respectively.
 ここで、上記のようにサンプルされたR成分検出値を上記(1)式の右辺に代入して得られる水位の値の平均値を実際の水位(0mm、2mm、4mm、6mm、8mm、10mm)ごとに算出した結果を図5の表に示す。すなわち、1つの実際の水位あたり、(1)式により得られる3個の算出水位値の平均値を算出した。上記(2)式、(3)式を用いたG成分、およびB成分についての同様の結果も図5に示す。 Here, the average value of the water level values obtained by substituting the R component detection value sampled as described above into the right side of the above equation (1) is the actual water level (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm ) are shown in the table of FIG. That is, the average value of the three calculated water level values obtained by the formula (1) was calculated per one actual water level. Similar results for the G and B components using equations (2) and (3) above are also shown in FIG.
 図5の表における実際の水位を横軸に、R成分検出値から算出した水位を縦軸としてプロットしたグラフを図7Aに示す(図7Aの「算出値」)。なお、図7Aには、横軸、縦軸ともに実際の水位としてプロットしたものも示す(図7Aの「理想値」)。G成分、B成分それぞれについての同様のグラフを図7B、図7Cに示す。 Fig. 7A shows a graph in which the actual water level in the table of Fig. 5 is plotted on the horizontal axis and the water level calculated from the R component detection value is plotted on the vertical axis ("calculated value" in Fig. 7A). Note that FIG. 7A also shows plots of actual water levels on both the horizontal axis and the vertical axis (“ideal value” in FIG. 7A). Similar graphs for the G component and B component are shown in FIGS. 7B and 7C, respectively.
 図7A,7B,7Cに示すように、R、G、Bいずれの成分についても、検出値から算出した水位は、2mm間隔である実際の水位において有意差があることがわかる。そして、算出した水位と実際の水位との誤差は小さい。  As shown in Figures 7A, 7B, and 7C, for any of the R, G, and B components, it can be seen that the water level calculated from the detected value has a significant difference in the actual water level at intervals of 2 mm. The error between the calculated water level and the actual water level is small.
 また、上記のようにサンプルされたR成分検出値を上記(1)式の右辺に代入して得られる水位の値の3σ(=ばらつきを表す指標の一例、σ:標準偏差)を実際の水位(0mm、2mm、4mm、6mm、8mm、10mm)ごとに算出した結果を図6の表に示す。すなわち、1つの実際の水位あたり、(1)式により得られる3個の算出水位値のばらつきを算出した。なお、上記(2)式、(3)式を用いたG成分、およびB成分についての同様の結果も図6に示す。 In addition, 3σ (=an example of an index representing variation, σ: standard deviation) of the water level value obtained by substituting the R component detection value sampled as described above into the right side of the above equation (1) is calculated as the actual water level. The results calculated for each (0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm) are shown in the table of FIG. That is, the variation of the three calculated water level values obtained by the formula (1) was calculated per one actual water level. FIG. 6 also shows similar results for the G component and the B component using the above formulas (2) and (3).
 図6に示すように、R、G、Bいずれの成分についても、検出値から算出した水位のばらつきは小さい。3σは算出される水位の再現度を示しており、再現度が高い結果となった。  As shown in Fig. 6, the variation in the water level calculated from the detected values is small for any of the R, G, and B components. 3σ indicates the reproducibility of the calculated water level, and the reproducibility was high.
 このような実験結果から、上記(1)式、(2)式、(3)式のいずれによっても、色成分の検出値から水位を精度良く算出することが可能となることが分かった。従って、上記(1)式、(2)式、(3)式のうちいずれかの式を算出式5A(図1)として制御部5(検出部52)に格納すれば、制御部5(検出部52)は、カラーセンサ3からの出力に基づいて高精度に水位を検出することができる。すなわち、上記のような2mm間隔での水位以外の水位についても検出できる。 From these experimental results, it was found that the water level can be calculated with high accuracy from the detected color component values by any of the above formulas (1), (2), and (3). Therefore, if one of the formulas (1), (2), and (3) is stored in the control unit 5 (detection unit 52) as the calculation formula 5A (FIG. 1), the control unit 5 (detection The unit 52) can detect the water level with high accuracy based on the output from the color sensor 3. FIG. That is, water levels other than the water level at intervals of 2 mm as described above can also be detected.
 なお、このようにR、G、Bいずれの成分についての算出式も精度が良好となるのは、水9およびシャーレ6が透明であり、白色の画用紙7を設けているためと考えられる。 The reason why the calculation formulas for all of the R, G, and B components are accurate is considered to be that the water 9 and petri dish 6 are transparent and the white drawing paper 7 is provided.
 また、上記(1)式、(2)式、(3)式のいずれも2次の係数が小さいため、1次式として近似式を算出してもよい。1次式の算出式としたほうが、制御部5での演算負荷を抑えることができる。 In addition, since the second-order coefficients of all of the above formulas (1), (2), and (3) are small, an approximation formula may be calculated as a first-order formula. The computational load on the control unit 5 can be reduced by using a linear calculation formula.
 また、上記(1)式、(2)式、(3)式のうちいずれか2つ以上の式のそれぞれにより算出される水位の平均値を算出してもよい。すなわち、上記(1)式、(2)式、(3)式のうち少なくともいずれかの式を用いて水位を検出することが可能である。 Also, the average value of the water level calculated by each of two or more of the above formulas (1), (2), and (3) may be calculated. That is, it is possible to detect the water level using at least one of the above formulas (1), (2), and (3).
 なお、上記(1)式、(2)式、(3)式の各係数の値は、当然に一例にすぎず、環境に応じて任意の値をとりうる。 It should be noted that the values of the coefficients in the above formulas (1), (2), and (3) are, of course, only examples, and can take arbitrary values depending on the environment.
<6.赤外線成分による水位算出>
 さらに、上記(試行1.)(試行2.)で示した手順と同様の手順で、カラーセンサ3による赤外線成分の検出値の測定を実施した。これにより、赤外線成分について、3(試行回数)×6(水位の数)=18個の検出値がサンプルされた。
<6. Water level calculation by infrared component>
Furthermore, the detection value of the infrared component by the color sensor 3 was measured in the same procedure as that shown in (Trial 1.) and (Trial 2.) above. As a result, 3 (number of trials) x 6 (number of water levels) = 18 detection values were sampled for the infrared component.
 そして、赤外線成分の検出値と実際の水位Hの値に基づき、2次式の近似式を下記(4)式のように算出した。
 水位(IR)[mm]=-0.00170IR2+0.590IR-40.955 (4)
Then, based on the detected value of the infrared component and the value of the actual water level H, an approximation of the quadratic formula was calculated as shown in the following formula (4).
Water level (IR) [mm] = -0.00170IR2 + 0.590IR - 40.955 (4)
 ここで、上記(4)式に基づく先述した図5に対応する結果を図8に示す。また、図8に示す結果をプロットしたグラフを図10に示す。さらに、上記(4)式に基づく先述した図6に対応する結果を図9に示す。これらの結果から、カラーセンサ3による赤外線成分の検出値と上記(4)式に基づいて水位を精度良く検出できることが分かった。従って、上記(4)式を算出式5Aとして制御部5(検出部52)に格納して水位を検出するようにしてもよい。なお、上記(4)式の2次の係数は小さいため、1次式の近似式を算出してもよい。また、上記(4)式の各係数の値は、当然に一例に過ぎない。 Here, FIG. 8 shows the result corresponding to FIG. 5 mentioned above based on the above equation (4). 10 shows a graph in which the results shown in FIG. 8 are plotted. Further, FIG. 9 shows the result corresponding to FIG. 6 described above based on the above equation (4). From these results, it was found that the water level can be detected with high accuracy based on the value of the infrared component detected by the color sensor 3 and the above equation (4). Therefore, the above formula (4) may be stored in the control section 5 (the detection section 52) as the calculation formula 5A to detect the water level. Since the second-order coefficient of the above equation (4) is small, an approximation of the first-order expression may be calculated. Also, the value of each coefficient in the above equation (4) is, of course, only an example.
<7.機器への適用>
 図11は、水位検出装置1を適用機器の一例としてのトイレタンク100に搭載する場合の構成例を模式的に示す。
<7. Application to equipment>
FIG. 11 schematically shows a configuration example in which the water level detection device 1 is mounted on a toilet tank 100 as an example of applicable equipment.
 図11に示すように、トイレタンク100は、収容部60を有する。水位検出装置1に含まれる基板2、カラーセンサ3、および白色LED4は、収容部60内部の上方に配置される。収容部60は、水9を収容可能である。収容部60自体の色は、白色である。 As shown in FIG. 11, the toilet tank 100 has a housing portion 60. The substrate 2 , the color sensor 3 and the white LED 4 included in the water level detection device 1 are arranged above inside the housing portion 60 . The containing portion 60 can contain the water 9 . The color of the housing portion 60 itself is white.
 すなわち、先述した実験環境は、水位検出装置1をトイレタンク100に搭載する場合の環境に合わせている。なお、図11の構成に限らず例えば、白色のシート材を、収容部60の内部の底面上に配置してもよいし、収容部60の透明な底部の下方に配置してもよい。また、収容部60は、トイレタンク以外の用途での容器であってもよい。 That is, the experimental environment described above is adapted to the environment when the water level detection device 1 is mounted on the toilet tank 100. 11, for example, a white sheet material may be arranged on the inner bottom surface of the housing portion 60 or may be arranged below the transparent bottom portion of the housing portion 60. FIG. Moreover, the container part 60 may be a container for uses other than the toilet tank.
<8.キャリブレーション>
 また、経年変化に対応するために制御部5は、キャリブレーションを実施してもよい。上記経年変化は、例えば、収容部60に収容される水9の状態の変化である。この場合、制御部5は、図12に示すように、キャリブレーション部53を有する。キャリブレーション部53は、測定実施部531と、算出式生成部532と、水位算出部533と、3σ算出部534と、算出式選択部535と、を有する。
<8. Calibration>
In addition, the control unit 5 may perform calibration in order to cope with aging. The secular change is, for example, a change in the state of the water 9 stored in the storage portion 60 . In this case, the control section 5 has a calibration section 53 as shown in FIG. The calibration section 53 has a measurement implementation section 531 , a calculation formula generation section 532 , a water level calculation section 533 , a 3σ calculation section 534 , and a calculation formula selection section 535 .
 測定実施部531は、水位の情報を取得したときに、白色LED4による白色光の照射およびカラーセンサ3によるRGB成分検出値の測定を実施する。当該測定は、同じ水位ごとに複数回(例えば3回)実施される。算出式生成部532は、上記水位の情報が示す水位と、上記測定により取得されたRGB成分検出値とに基づき、各成分についての水位算出式を算出する。水位算出部533は、上記で算出された各水位算出式に、上記で取得されたRGB成分検出値を代入して水位を算出する。3σ算出部534は、上記水位の情報が示す同じ水位ごとの上記で算出された水位の3σを算出する(すなわち、先述した図6に相当)。そして、算出式選択部535は、上記で算出された3σに基づき、RGB各成分についての水位算出式から、ばらつきの最も少ない水位算出式を選択する。以降、選択された水位算出式に基づいて水位が検出される。従って、経年変化に応じて、水位検出に用いられる水位算出式が更新される。 The measurement execution unit 531 irradiates white light from the white LED 4 and measures the RGB component detection values from the color sensor 3 when the water level information is acquired. The measurement is performed multiple times (eg, three times) for each same water level. The calculation formula generation unit 532 calculates a water level calculation formula for each component based on the water level indicated by the water level information and the RGB component detection values obtained by the measurement. The water level calculation unit 533 calculates the water level by substituting the RGB component detection values obtained above into each water level calculation formula calculated above. The 3σ calculator 534 calculates 3σ of the water level calculated above for each same water level indicated by the water level information (that is, equivalent to FIG. 6 described above). Then, the calculation formula selection unit 535 selects the water level calculation formula with the least variation from the water level calculation formulas for each of the RGB components based on the 3σ calculated above. Thereafter, the water level is detected based on the selected water level calculation formula. Therefore, the water level calculation formula used for water level detection is updated in accordance with aging.
<9.その他>
 以上、例示的な実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変形が可能である。
<9. Others>
Although exemplary embodiments have been described above, various modifications of the embodiments are possible within the spirit and scope of the present invention.
 例えば、収容部60に収容される液体は、色が付与された不透明な水であってもよいし、色の付与された水以外の液体(例えばインクなど)であってもよい。また、収容部60に収容される液体は、ゲル状であってもよい。また、シート材の色、あるいは収容部60の色は、白色以外の色であってもよい。これらの場合、例えば、実験段階において、カラーセンサ3により測定されるR、G、Bの各成分検出値により算出される各算出式のうち精度の良好な式を選択して、制御部5に格納する。なお、上記のキャリブレーション機能により、例えば不透明な水への変化、液体のゲル状への変化など、液体の変質に対応することもできる。 For example, the liquid stored in the storage unit 60 may be colored opaque water, or may be colored liquid other than water (for example, ink). Further, the liquid contained in the containing portion 60 may be gel-like. Also, the color of the sheet material or the color of the housing portion 60 may be a color other than white. In these cases, for example, in the experimental stage, among the calculation formulas calculated from the detected values of each of the R, G, and B components measured by the color sensor 3, a formula with good accuracy is selected and sent to the control unit 5. Store. It should be noted that the calibration function described above can also deal with changes in quality of the liquid, such as a change to opaque water or a change in liquid to a gel state.
 また、カラーセンサ3の代わりに、R,G,B,IRのうちいずれか1つの成分のみの検出値を測定する光センサを用いてもよい。また、カラーセンサ3の代わりに照度センサを用い、照度から水位を算出する算出式に基づき水位を検出してもよい。 Also, instead of the color sensor 3, an optical sensor that measures the detection value of only one of the R, G, B, and IR components may be used. Alternatively, an illuminance sensor may be used instead of the color sensor 3, and the water level may be detected based on a calculation formula for calculating the water level from the illuminance.
 また、先述した実験で得られた水位の算出式に基づき、RGB成分などの検出値と水位との対応関係を表すテーブルをあらかじめ作成しておき、制御部5が当該テーブルに基づいて水位を検出するようにしてもよい。すなわち、必ずしも算出式による算出によって水位を検出しなくてもよい。 Further, based on the formula for calculating the water level obtained in the experiment described above, a table representing the correspondence between the detected values of RGB components and the water level is created in advance, and the control unit 5 detects the water level based on the table. You may make it That is, it is not always necessary to detect the water level by calculation using a calculation formula.
<10.総括>
 以下では、上記で説明した種々の実施形態について総括的に述べる。
<10. Summary>
The following provides a general description of the various embodiments described above.
 例えば、本明細書中に開示されている液面高さ検出装置(1)は、光を液面(91)に向かって照射する光源(4)と、前記液面での反射光を受光する光センサ(3)と、前記光センサから出力される光検出値と、光検出値と液面高さとの対応関係に基づき、液面高さを検出する検出部(52)と、を有する構成としている(第1の構成)。 For example, the liquid level detection device (1) disclosed in this specification includes a light source (4) that irradiates light toward the liquid surface (91), and a light source (4) that receives light reflected from the liquid surface. A configuration comprising an optical sensor (3), an optical detection value output from the optical sensor, and a detection unit (52) for detecting the liquid level height based on the correspondence relationship between the optical detection value and the liquid level height. (first configuration).
 また、上記第1の構成において、前記対応関係は、前記光検出値から前記液面高さを算出する算出式(5A)であり、前記検出部は、前記算出式に基づき前記液面高さを算出する構成としてもよい(第2の構成)。 Further, in the first configuration, the correspondence relationship is a calculation formula (5A) for calculating the liquid level height from the light detection value, and the detection unit calculates the liquid level height based on the calculation formula may be calculated (second configuration).
 また、上記第2の構成において、前記算出式は、1次式、あるいは2次式である構成としてもよい(第3の構成)。 In addition, in the above second configuration, the calculation formula may be a linear formula or a quadratic formula (third configuration).
 また、上記第1から第3のいずれかの構成において、前記光センサは、R(赤色)成分、G(緑色)成分、B(青色)成分の少なくともいずれかの前記光検出値を出力し、前記検出部は、前記R成分、前記G成分、前記B成分の少なくともいずれかの前記光検出値と前記液面高さとの前記対応関係を有する構成としてもよい(第4の構成)。 In any one of the first to third configurations, the optical sensor outputs the light detection value of at least one of an R (red) component, a G (green) component, and a B (blue) component, The detection unit may have the correspondence relationship between the light detection value of at least one of the R component, the G component, and the B component and the liquid level (fourth configuration).
 また、上記第1から第4のいずれかの構成において、前記光センサは、赤外線成分の前記光検出値を出力し、前記検出部は、前記赤外線成分の前記光検出値と前記液面高さとの前記対応関係を有する構成としてもよい(第5の構成)。 Further, in any one of the first to fourth configurations, the optical sensor outputs the light detection value of the infrared component, and the detection section outputs the light detection value of the infrared component and the liquid level height. (fifth configuration).
 また、上記第2または第3の構成において、液面高さの情報を取得したときに、前記光センサによるRGB成分の前記光検出値の測定を実施する測定実施部(531)と、
 前記液面高さの情報と前記測定により取得された前記光検出値とに基づき、前記RGB成分の各成分についての液面高さ算出式を算出する算出式生成部(532)と、
 算出された前記液面高さ算出式と、前記測定により取得された前記光検出値とに基づき、液面高さを算出する液面高さ算出部(533)と、
 前記液面高さの情報が示す同じ液面高さごとに、算出された前記液面高さのばらつき指標を算出するばらつき算出部(534)と、
 算出された前記ばらつき指標に基づき、前記各成分についての液面高さ算出式から液面高さ算出式を選択する算出式選択部(535)と、
 を含むキャリブレーション部(53)をさらに有する構成としてもよい(第6の構成)。
Further, in the second or third configuration, a measurement execution unit (531) that measures the light detection values of the RGB components by the light sensor when information on the liquid level is acquired;
a calculation formula generator (532) for calculating a liquid level height calculation formula for each component of the RGB components based on the liquid level height information and the light detection value obtained by the measurement;
a liquid level height calculation unit (533) for calculating the liquid level height based on the calculated liquid level height calculation formula and the light detection value obtained by the measurement;
a variation calculation unit (534) for calculating a variation index of the calculated liquid level for each same liquid level indicated by the information on the liquid level;
a calculation formula selection unit (535) that selects a liquid level height calculation formula from the liquid level height calculation formulas for each of the components based on the calculated variation index;
(sixth configuration).
 また、上記第1から第6のいずれかの構成において、前記光源と前記光センサは、同じ基板に実装されている構成としてもよい(第7の構成)。 Further, in any one of the first to sixth configurations, the light source and the optical sensor may be mounted on the same substrate (seventh configuration).
 また、上記第1から第7のいずれかの構成において、前記液面は、水面である構成としてもよい(第8の構成)。 Further, in any one of the first to seventh configurations, the liquid surface may be a water surface (eighth configuration).
 また、本明細書に開示されている機器(100)は、上記第1から第8のいずれかの構成の液面高さ検出装置(1)と、液体(9)を収容可能な収容部(60)と、を有する構成としている(第9の構成)。 In addition, the device (100) disclosed in this specification includes a liquid level detection device (1) having any one of the first to eighth configurations, and a storage section ( 60) and (ninth configuration).
 また、上記第9の構成において、前記収容部の底部の下方あるいは前記収容部の内部の底面上に配置される白色の部材をさらに有し、前記光源(4)は、白色光を発光可能である構成としてもよい(第10の構成)。 Further, in the ninth configuration, a white member is further provided below the bottom of the housing portion or on the bottom surface inside the housing portion, and the light source (4) is capable of emitting white light. A certain configuration may be used (tenth configuration).
 また、上記第9の構成において、前記収容部の底部は、白色であり、前記光源は、白色光を発光可能である構成としてもよい(第11の構成)。 Further, in the ninth configuration, the bottom portion of the accommodating portion may be white, and the light source may emit white light (eleventh configuration).
 本明細書中に開示されている液面高さ検出装置は、例えば、水位の検出に利用することができる。 The liquid level detection device disclosed in this specification can be used, for example, to detect the water level.
   1   水位検出装置
   2   基板
   3   カラーセンサ
   4   白色LED
   5   制御部
   5A  算出式
   6   シャーレ
   7   画用紙
   8   暗箱
   9   水
  31A,31B,31C,31D 受光素子
  32A,32B,32C ADC
  33   ロジック回路
  34   赤外線遮断フィルタ
  35A  赤色光透過フィルタ
  35B  緑色光透過フィルタ
  35C  青色光透過フィルタ
  35D  赤外線透過フィルタ
  36   スイッチ
  51   ビット変換部
  52   検出部
  53   キャリブレーション部
  60   収容部
  61   底部
  61A   底面
  91   水面
 100   トイレタンク
 531   測定実施部
 532   算出式生成部
 533   水位算出部
 534   3σ算出部
 535   算出式選択部
   R   抵抗
  SW   スイッチ
1 water level detector 2 substrate 3 color sensor 4 white LED
5 control unit 5A calculation formula 6 petri dish 7 drawing paper 8 dark box 9 water 31A, 31B, 31C, 31D light receiving element 32A, 32B, 32C ADC
33 Logic circuit 34 Infrared cut filter 35A Red light transmission filter 35B Green light transmission filter 35C Blue light transmission filter 35D Infrared transmission filter 36 Switch 51 Bit converter 52 Detector 53 Calibration unit 60 Storage unit 61 Bottom 61A Bottom 91 Water surface 100 Toilet Tank 531 Measurement implementation unit 532 Calculation formula generation unit 533 Water level calculation unit 534 3σ calculation unit 535 Calculation formula selection unit R Resistance SW Switch

Claims (11)

  1.  光を液面に向かって照射する光源と、
     前記液面での反射光を受光する光センサと、
     前記光センサから出力される光検出値と、光検出値と液面高さとの対応関係に基づき、液面高さを検出する検出部と、
     を有する液面高さ検出装置。
    a light source that irradiates light toward the liquid surface;
    an optical sensor that receives reflected light from the liquid surface;
    a detection unit that detects the liquid level height based on the light detection value output from the optical sensor and the correspondence relationship between the light detection value and the liquid level height;
    A liquid level detection device having
  2.  前記対応関係は、前記光検出値から前記液面高さを算出する算出式であり、
     前記検出部は、前記算出式に基づき前記液面高さを算出する、請求項1に記載の液面高さ検出装置。
    The correspondence relationship is a calculation formula for calculating the liquid level height from the light detection value,
    2. The liquid level detector according to claim 1, wherein said detector calculates said liquid level based on said calculation formula.
  3.  前記算出式は、1次式、あるいは2次式である、請求項2に記載の液面高さ検出装置。 The liquid level detection device according to claim 2, wherein the calculation formula is a linear formula or a quadratic formula.
  4.  前記光センサは、R(赤色)成分、G(緑色)成分、B(青色)成分の少なくともいずれかの前記光検出値を出力し、
     前記検出部は、前記R成分、前記G成分、前記B成分の少なくともいずれかの前記光検出値と前記液面高さとの前記対応関係を有する、請求項1から請求項3のいずれか1項に記載の液面高さ検出装置。
    the optical sensor outputs the light detection value of at least one of an R (red) component, a G (green) component, and a B (blue) component;
    4. The detection unit according to any one of claims 1 to 3, wherein the detection unit has the correspondence relationship between the light detection value of at least one of the R component, the G component, and the B component and the liquid level. The liquid level detection device according to 1.
  5.  前記光センサは、赤外線成分の前記光検出値を出力し、
     前記検出部は、前記赤外線成分の前記光検出値と前記液面高さとの前記対応関係を有する、請求項1から請求項4のいずれか1項に記載の液面高さ検出装置。
    The optical sensor outputs the light detection value of the infrared component,
    The liquid level detection device according to any one of claims 1 to 4, wherein the detection unit has the correspondence relationship between the light detection value of the infrared component and the liquid level.
  6.  液面高さの情報を取得したときに、前記光センサによるRGB成分の前記光検出値の測定を実施する測定実施部と、
     前記液面高さの情報と前記測定により取得された前記光検出値とに基づき、前記RGB成分の各成分についての液面高さ算出式を算出する算出式生成部と、
     算出された前記液面高さ算出式と、前記測定により取得された前記光検出値とに基づき、液面高さを算出する液面高さ算出部と、
     前記液面高さの情報が示す同じ液面高さについて、算出された前記液面高さのばらつき指標を算出するばらつき算出部と、
     算出された前記ばらつき指標に基づき、前記各成分についての液面高さ算出式から液面高さ算出式を選択する算出式選択部と、
     を含むキャリブレーション部をさらに有する、請求項2または請求項3に記載の液面高さ検出装置。
    a measurement execution unit that measures the light detection values of the RGB components by the light sensor when information on the liquid level is acquired;
    a calculation formula generating unit that calculates a liquid level height calculation formula for each of the RGB components based on the liquid level height information and the light detection value obtained by the measurement;
    a liquid level height calculation unit that calculates the liquid level height based on the calculated liquid level height calculation formula and the light detection value obtained by the measurement;
    a variation calculation unit that calculates a variation index of the calculated liquid level height for the same liquid level level indicated by the information on the liquid level level;
    a calculation formula selection unit that selects a liquid level height calculation formula from liquid level height calculation formulas for each of the components based on the calculated variation index;
    4. The liquid level detection device according to claim 2 or 3, further comprising a calibration section including:
  7.  前記光源と前記光センサは、同じ基板に実装されている、請求項1から請求項6のいずれか1項に記載の液面高さ検出装置。 The liquid level detection device according to any one of claims 1 to 6, wherein the light source and the optical sensor are mounted on the same substrate.
  8.  前記液面は、水面である、請求項1から請求項7のいずれか1項に記載の液面高さ検出装置。 The liquid level detection device according to any one of claims 1 to 7, wherein the liquid level is a water level.
  9.  請求項1から請求項8のいずれか1項に記載の液面高さ検出装置と、
     液体を収容可能な収容部と、を有する、機器。
    A liquid level detection device according to any one of claims 1 to 8;
    and a container capable of containing a liquid.
  10.  前記収容部の底部の下方あるいは前記収容部の内部の底面上に配置される白色の部材をさらに有し、
     前記光源は、白色光を発光可能である、請求項9に記載の機器。
    further comprising a white member arranged below the bottom of the housing portion or on the bottom surface inside the housing portion;
    10. The device of Claim 9, wherein the light source is capable of emitting white light.
  11.  前記収容部の底部は、白色であり、
     前記光源は、白色光を発光可能である、請求項9に記載の機器。
    The bottom of the housing part is white,
    10. The device of Claim 9, wherein the light source is capable of emitting white light.
PCT/JP2022/022070 2021-06-03 2022-05-31 Liquid surface height detecting device WO2022255342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525844A JPWO2022255342A1 (en) 2021-06-03 2022-05-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093476 2021-06-03
JP2021093476 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255342A1 true WO2022255342A1 (en) 2022-12-08

Family

ID=84323398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022070 WO2022255342A1 (en) 2021-06-03 2022-05-31 Liquid surface height detecting device

Country Status (2)

Country Link
JP (1) JPWO2022255342A1 (en)
WO (1) WO2022255342A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684197A (en) * 1979-12-07 1981-07-09 Kobe Steel Ltd Detecting method for filling rate of flux in flux-cored wire for welding
JPS63169521A (en) * 1987-01-07 1988-07-13 Toshiba Corp Displacement gauge
JPS6484119A (en) * 1987-09-27 1989-03-29 Hamamatsu Photonics Kk Object state detector
JPH0194221A (en) * 1987-10-06 1989-04-12 Hamamatsu Photonics Kk Object state detector
JPH01173833A (en) * 1987-12-28 1989-07-10 Yamaha Corp Liquid remaining amount sensor
JPH01203919A (en) * 1988-02-10 1989-08-16 Hamamatsu Photonics Kk Distance detector
US5831268A (en) * 1996-11-25 1998-11-03 Morita; Yoshimitsu Sensing device for reflective clear material using infrared LED
JP2000153339A (en) * 1998-11-19 2000-06-06 Isuzu Motors Ltd Detection of packing degree of fluidic material and instrument for detecting packing degree

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684197A (en) * 1979-12-07 1981-07-09 Kobe Steel Ltd Detecting method for filling rate of flux in flux-cored wire for welding
JPS63169521A (en) * 1987-01-07 1988-07-13 Toshiba Corp Displacement gauge
JPS6484119A (en) * 1987-09-27 1989-03-29 Hamamatsu Photonics Kk Object state detector
JPH0194221A (en) * 1987-10-06 1989-04-12 Hamamatsu Photonics Kk Object state detector
JPH01173833A (en) * 1987-12-28 1989-07-10 Yamaha Corp Liquid remaining amount sensor
JPH01203919A (en) * 1988-02-10 1989-08-16 Hamamatsu Photonics Kk Distance detector
US5831268A (en) * 1996-11-25 1998-11-03 Morita; Yoshimitsu Sensing device for reflective clear material using infrared LED
JP2000153339A (en) * 1998-11-19 2000-06-06 Isuzu Motors Ltd Detection of packing degree of fluidic material and instrument for detecting packing degree

Also Published As

Publication number Publication date
JPWO2022255342A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
KR101548017B1 (en) Optical property measuring device
KR100653483B1 (en) indication apparatus of transmitted type and control method of the indicated color
US7116417B2 (en) Spectrometer and method for correcting wavelength displacement of spectrometer
CN110736949B (en) Digital multimeter calibration method and related device
KR101676210B1 (en) Light sensor system and method for processing light sensor signals
KR102012219B1 (en) Apparatus and method for measuring skin color
WO2022255342A1 (en) Liquid surface height detecting device
US7499163B2 (en) System and method for applying correction factors related to ambient conditions
JP2016134532A (en) Reflective sensor device and manufacturing method thereof
US20180356286A1 (en) Spectroscopic Color Measurement Device and Method for Calculating Spectral Reflectance
US5029251A (en) Transducer for measuring angles of inclination, angular positions and other positions, and apparatus comprising such transducer
US7447438B2 (en) Calibration of digital diagnostics information in an optical transceiver prior to reporting to host
US5739914A (en) Colorimetric instrument
JP2024041242A (en) Distance measurement device
WO2020189412A1 (en) Sensor
WO2022250043A1 (en) Color detection device
CN114324224A (en) Signal output device and concentration measurement system
US10514300B2 (en) Spectrocolorimetric device and conversation rule setting method
US6509963B2 (en) Photometric apparatus
JP2024110205A (en) Distance Measuring Device
RU2292525C1 (en) A fiber-optic sensor
US20230020275A1 (en) Proximity sensing device
EP2135044B1 (en) Diagnosing an electronic sensor
Joh et al. Use color sensors for precise measurement
JPH09243559A (en) Concentration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525844

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816088

Country of ref document: EP

Kind code of ref document: A1