JPH0194221A - Object state detector - Google Patents
Object state detectorInfo
- Publication number
- JPH0194221A JPH0194221A JP62252203A JP25220387A JPH0194221A JP H0194221 A JPH0194221 A JP H0194221A JP 62252203 A JP62252203 A JP 62252203A JP 25220387 A JP25220387 A JP 25220387A JP H0194221 A JPH0194221 A JP H0194221A
- Authority
- JP
- Japan
- Prior art keywords
- light
- distance
- intensity
- liquid
- voltage value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 abstract description 37
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 230000004907 flux Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 6
- 239000003350 kerosene Substances 0.000 description 5
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000252210 Cyprinidae Species 0.000 description 1
- 241001474791 Proboscis Species 0.000 description 1
- 241000718541 Tetragastris balsamifera Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Measurement Of Optical Distance (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、対象物、例えは燃料タンク内におけるカッリ
ン、灯油等の状態、例えば残置を検出する対象物状態検
出器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an object state detector that detects the state of an object, such as kerosene, kerosene, etc., in a fuel tank, for example, whether it is left behind.
従来、タンク内におけるカッリン、灯油等の液体の7A
量を検出するのに、液面にフロー1〜球を浮かベフロー
ト球が液面とともに上下に移動することを利用して機械
的に検出する対象物状態検出器(上記例の場合は液面検
出器)が一般的に用いられている。Conventionally, 7A of liquids such as Karin and kerosene in tanks
Object state detector that mechanically detects the amount by floating the flow 1 ~ sphere on the liquid surface and using the movement of the float sphere up and down with the liquid surface (in the above example, the object status detector vessels) are commonly used.
しかしながら、−■−述したような従来の対象物状態検
出器では、フロー1〜球が上下に移動するので可動部を
必要としこのために検出器自体を小型化するには限度が
あり、さらに、機械的に検出を行なうため、構成部材の
錆びつき等による故障が起き易いという問題点があった
。However, in the conventional object state detector as described above, since the flow 1 ~ sphere moves up and down, a movable part is required, which limits the ability to miniaturize the detector itself. Since the detection is performed mechanically, there is a problem in that failures are likely to occur due to rusting of the component parts.
また液体の残量判定を必要とする場合に、タンクの機種
か異なる□ときには一般に検出器から所定の桟板となっ
た液体の液面までの基準「1階が異なるのでフロート珠
を用いる検出の仕方ではタンクの機種ごとにそれぞれ専
用の検出器を作らなければならないという問題があった
。In addition, when it is necessary to determine the remaining amount of liquid, if the tank model is different □, generally the standard from the detector to the liquid level on a predetermined cross plate is different. However, there was a problem in that a dedicated detector had to be made for each type of tank.
本発明は、信頼性か高くかつ小型化することが可能であ
るとともに、対象物の表面、例えば液面までの基準距離
か変った場合にも調整の容易な対象物状態検出器を提供
することを目的としている。The present invention provides an object state detector that is highly reliable and can be miniaturized, and that can be easily adjusted even when the reference distance to the surface of the object, for example, the liquid level, changes. It is an object.
本発明は、電磁波または超音波を対象物に入射させる入
射手段と、対象物から出射した電磁波または超音波の強
度により対象物の状態を検出する検出手段とを側え、対
象物に入射する電磁波または超音波の拡がり角は、可変
となっていることを特徴とする対象物状態検出器によっ
て、」−記従来技術の問題点を改善するものである。The present invention provides an electromagnetic wave incident on the object, which includes an input means for making electromagnetic waves or ultrasonic waves incident on the object, and a detection means for detecting the state of the object based on the intensity of the electromagnetic waves or ultrasonic waves emitted from the object. Alternatively, the problems of the prior art described in "-" can be improved by using an object state detector characterized in that the spread angle of ultrasonic waves is variable.
〔作用〕
本発明では、電磁波または超音波を対象1吻、例えば液
体の液面に入射させ対象1勿から出射した電磁波または
超音波の強度により対象物の状態、例えは液体の残量を
検出する。対象物の状態は電磁波または超音波により非
接触て検出されるので、検出器自体を小型にし信頼性を
高めることがてきる。ところで本発明ではさらに対象物
に入射する電磁波または超音波の拡がり角を例えは入射
手段の光源、投光レンズ間の間隔を変化させることによ
り調整できるので、対象物を収容する容器、例えはタン
クの種fiか箕なり対象物人血までの基?V−110雛
か箕なるような場合にも対象物の残量を同じ精疫で判定
できる。[Operation] In the present invention, electromagnetic waves or ultrasonic waves are applied to the proboscis of the object 1, for example, the liquid surface, and the state of the object, for example, the remaining amount of the liquid, is detected based on the intensity of the electromagnetic waves or ultrasonic waves emitted from the object 1. do. Since the state of the object is detected in a non-contact manner using electromagnetic waves or ultrasonic waves, the detector itself can be made smaller and its reliability can be improved. However, in the present invention, the spread angle of electromagnetic waves or ultrasonic waves incident on the object can be adjusted by, for example, changing the distance between the light source of the input means and the projection lens. Is the seed fi or the base of the object human blood? Even in the case of V-110 chicks or minnows, the remaining amount of the object can be determined using the same method.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明に係る対象物状態検出器の一実施例の栢
成図である。FIG. 1 is a schematic diagram of an embodiment of the object state detector according to the present invention.
本実施例の対象物状態検出器1は、電磁波を出力する光
源2と、光源2の発光光束の拡がり角を任意に設定でき
る投光レンズ3と、対象物4からの出射光すなわち反射
光を集光するための受光レンズ5と、反射光を光電変換
するための受光素子6とを備えている。The object state detector 1 of this embodiment includes a light source 2 that outputs electromagnetic waves, a projection lens 3 that can arbitrarily set the divergence angle of the emitted light beam of the light source 2, and a light emitted from the object 4, that is, reflected light. It includes a light receiving lens 5 for condensing light and a light receiving element 6 for photoelectrically converting reflected light.
対象Th4は、例えばガソリン等の液体である。The target Th4 is, for example, a liquid such as gasoline.
光源2.投光レンズ3.受光しンス5および受光素子6
は同一光軸上に配置され、電磁波は対象物4としての液
体の液面に垂直に入射し、反射されるようになっている
。すなわち第1図の対象物状態検出器1は、その中心軸
線が光学系の光軸と一致するようタンク(図示せず)に
回動自在に取付けられている。Light source 2. Projection lens 3. Light receiving field 5 and light receiving element 6
are arranged on the same optical axis, and the electromagnetic waves are perpendicularly incident on the liquid surface of the object 4 and are reflected. That is, the object state detector 1 shown in FIG. 1 is rotatably attached to a tank (not shown) so that its central axis coincides with the optical axis of the optical system.
さらに、本実施例では、光源2と投光レンズ3との間隔
を調整することにより発光光束の拡がり角θを調節でき
るようになっている。Furthermore, in this embodiment, by adjusting the distance between the light source 2 and the projection lens 3, the spread angle θ of the emitted light beam can be adjusted.
第2図(a) 、 (b)はそれぞれ光源2と投光レン
ズ3との間隔の調節機構の側断面図、正面図である。FIGS. 2(a) and 2(b) are a side sectional view and a front view of a mechanism for adjusting the distance between the light source 2 and the projection lens 3, respectively.
第2図において、光源2は例えば発光ダイオー−ロ
−
ドであり、この光源2の発光点20がら投光レンズ3の
前主点位置までの間隔をaとする。光源2は、取付具2
1に固定され、投光レンズ3は、レンズボルタ22に取
付?−Jられている。取付具2]とレンズホルダ22と
は螺合しており、レンズホルタ22を回ずと、光源2と
投光レンズ3との間隔aか変わるようになっている。ま
た取付具21にはI−字形部材23が突設されている。In FIG. 2, the light source 2 is, for example, a light emitting diode.
- and the distance from the light emitting point 20 of the light source 2 to the front principal point position of the projection lens 3 is a. Light source 2 is attached to fixture 2
1 and the projection lens 3 is attached to the lens bolt 22? -J is being treated. The fitting 2] and the lens holder 22 are screwed together, and by rotating the lens holder 22, the distance a between the light source 2 and the light projecting lens 3 can be changed. Further, an I-shaped member 23 is provided on the fixture 21 in a protruding manner.
L字形部材23は、孔24を有し、この孔24内には、
L字形部材23の先端部に位置決めされるボール25を
レンズホルタ22の側壁に向がって付勢するなめのバネ
26が収容されている。一方、レンズボルダ22の側壁
には7字形溝27か形成されており、取イ」具21に対
してレンズボルダ22を所定星回ずとポール25か7字
形溝27に嵌まり、レンズホルタ22はより力を加えな
ければ回らないようになっている。これにより投光レン
ズ3の繰出し量ずな、わち間隔aの変化量は、取付具2
1とレンズホルタ22とを螺合さぜるネジのピッチと、
レンズホルタ22」二の7字形溝27の位置とによって
定められ、間隔a、を変化さぜることによって後述のよ
うに拡がり角θを調節できる。The L-shaped member 23 has a hole 24 in which:
A rectangular spring 26 is housed at the tip of the L-shaped member 23 to bias the ball 25 toward the side wall of the lens holder 22. On the other hand, a 7-shaped groove 27 is formed in the side wall of the lens holder 22, and when the lens bolder 22 is rotated a predetermined number of times with respect to the removal tool 21, the pole 25 is fitted into the 7-shaped groove 27, and the lens holder 22 is tightened with more force. It will not turn unless you add . As a result, the amount of extension of the projecting lens 3, that is, the amount of change in the interval a, is
1 and the pitch of the screw that screws together the lens holder 22;
It is determined by the position of the 7-shaped groove 27 in the lens holder 22, and by changing the distance a, the divergence angle θ can be adjusted as described below.
このような構成では、光源2からの電磁波の強度を■。In such a configuration, the intensity of the electromagnetic waves from the light source 2 is ■.
、その拡がり角をθ、液面の反射率をR1投光レンズ3
から液面までの距離をI7.投光レンズ3の口径をd
、受光レンズ5の有効径をdrρ
とすると、受光素子6に入射する反射光の強度Iは、
[:16−R2・tan” (θ/ 2 ) :]
・−−−−−(1)として与えられる。なお、反射光の
強度■は、液体の液面によって主に鏡面反射された反射
光の強度である。, its spread angle is θ, and the reflectance of the liquid surface is R1.
The distance from to the liquid level is I7. The aperture of the projection lens 3 is d
, the effective diameter of the light-receiving lens 5 is drρ, the intensity I of the reflected light incident on the light-receiving element 6 is [:16-R2・tan" (θ/2):]
----Given as (1). Note that the intensity of the reflected light (2) is the intensity of the reflected light mainly specularly reflected by the surface of the liquid.
(1)式において、I 、R,d 、d は一定
Orp
である。また拡がり角θは、対象物状態検出器]を1つ
の種類のタンクで動作させている間、一定であるとする
と、反射光の強度■は、液面までのf?Ii II I
−の2乗に反比例して変化する。これにより、受光索子
6に入射した反射光を光電流として取出しこれを受光素
子6の後段の処理回路において信号電圧に変換して、液
面までの距離I−を電圧値として求めこの電圧値が所定
の参照電圧値と一致したときに距離りが所定の基準圧H
1,、oになったと判定し、タンク内の液体は所定の残
量となったと判定することができる。このようにして、
本実施例の対象物状態検出器1では、フロー1〜球のよ
うな機構的な部材を用いずに電磁波により非接触で液面
の高さ並ひに残量を検出できるので、検出器自体を小型
にしかつ信顆性を高めることができる。In formula (1), I, R, d, and d are constant Orp. Also, assuming that the divergence angle θ is constant while the object state detector is operated in one type of tank, the intensity of the reflected light is f? Ii II I
It changes in inverse proportion to the square of -. As a result, the reflected light incident on the light-receiving element 6 is extracted as a photocurrent, which is converted into a signal voltage in a processing circuit subsequent to the light-receiving element 6, and the distance I- to the liquid surface is determined as a voltage value. When H matches the predetermined reference voltage value, the distance reaches the predetermined reference voltage H
1,, o, and it can be determined that the liquid in the tank has reached a predetermined remaining amount. In this way,
In the object state detector 1 of this embodiment, the height of the liquid level and the remaining amount can be detected in a non-contact manner using electromagnetic waves without using mechanical members such as flow 1 to spheres. can be made smaller and have higher reliability.
ところで、液体を収容するタンクの種類、形状ごとに残
量判定の基準となる基準「ト離I、。が異なる場合があ
る。このような場合にタンクの種類が変わって基準距離
り。が変化したときにも、後段の処理回路において参照
電圧値をタンクの種類ごとに調節することにより、同じ
残量の液面レベルを検出できる。しかしながら反射光強
度■は、「[l@Lの自乗に反比例するため、基準距離
1−oが2倍あるいはそれ以上相違するような場合には
、信号電圧が著しく小さくなり、残量の検出誤差か大き
くなる恐れがある。ずなわちタンクの種類ごとに残量判
定精度が異なるようになる。By the way, the standard distance I, which is the standard for determining the remaining amount, may differ depending on the type and shape of the tank that houses the liquid.In such cases, the type of tank changes and the standard distance I. changes. By adjusting the reference voltage value for each type of tank in the subsequent processing circuit, it is possible to detect the same remaining liquid level. However, the reflected light intensity ■ is Because it is inversely proportional, if the reference distance 1-o differs by a factor of two or more, the signal voltage will become significantly smaller, and there is a risk that the error in detecting the remaining amount will increase. The remaining amount determination accuracy will differ.
このため本実11例では、参照電圧値を調節するのでは
なく、液面までの距離しか基準圧M L oとなったと
きに受光素子6に入射する反射光の強度■がタンクの種
類が変っても一定となるよう、タンクの種類が変わるご
とに拡がり角θを調節するようにする。すなわち、受光
素子6に入射する反射光の強度■がタンクの種類によら
ずに常に一定であるようにするためには、(1)式にお
いて、拡かり角θをタンクの種類ごとに変えて、この拡
がり角θと基準圧ilL。どの間に
jan (θ/ 2 ) −1,、o= C1=−−
−−・(2)の関係をもたぜる必要かある。なおC1は
〔■。Therefore, in this 11th example, instead of adjusting the reference voltage value, the intensity of the reflected light incident on the light receiving element 6 when the reference pressure M Lo is only the distance to the liquid level is determined by the type of tank. The spread angle θ should be adjusted each time the type of tank changes so that it remains constant. In other words, in order to ensure that the intensity ■ of the reflected light incident on the light receiving element 6 is always constant regardless of the type of tank, in equation (1), the divergence angle θ is changed for each type of tank. , this spread angle θ and the reference pressure ilL. Between jan (θ/2) −1,, o= C1=−-
---Is it necessary to bring about the relationship in (2)? Note that C1 is [■.
・R・ (d −d )/(16・I)〕1/
2rp
の一定値をもつ。・R・ (d − d ) / (16・I)] 1/
It has a constant value of 2rp.
また、投光レンズ3の焦点距離をfとし、光源2の発光
点20の大きさが無視できる程度に小さいとすると、拡
かり角θと、投光レンズ3の焦点距離f1発光点20と
投光レンズ3の前主点位置との間隔aとの間には、
tan (θ/ 2) =C(f a ) ・d p
/ (2・ a−f)) ・
・・・・・(3)の関係が成り立ち、(3)式から拡が
り角θを調節するには、間隔aを変化させれば良いこと
かわがる。Furthermore, assuming that the focal length of the projecting lens 3 is f and the size of the light emitting point 20 of the light source 2 is negligibly small, the divergence angle θ, the focal length f1 of the projecting lens 3 and the light emitting point 20 are The distance a between the front principal point position of the optical lens 3 and the distance a is tan (θ/2) = C(f a ) d p
/ (2・a-f))・
...The relationship (3) holds true, and it can be seen from equation (3) that in order to adjust the divergence angle θ, it is sufficient to change the interval a.
そこで拡がり角θと基準距離Loとの関係のかわりに間
隔aと基準距離り。どの関係を得るため(2)式および
(3)式から、拡がり角θを消去すると、次式を得るこ
とができる。Therefore, instead of the relationship between the spread angle θ and the reference distance Lo, the distance a and the reference distance. To obtain which relationship, the following equation can be obtained by eliminating the divergence angle θ from equations (2) and (3).
a= (f−d −Lo )
/ (2、c −t’+a −r、o、 −
−−−−−(4)rp
(4)式かられかるように基準距離Loがタンクの種類
ごとに変わっても、投光レンズ3を光源2に対し移動さ
せて、これらの間隔aを調節することにより、液体が所
定の残量となったときに受光素子6に入射する反射光の
強度Iをタンクの種類によらずに同じにすることかでき
て、後段の処理回路において参照電圧値を何ら調節する
ことなく、電圧値か所定の参照電圧値になったときに所
定の残量であるとの判定を行なうことかできる。a= (f-d-Lo)/(2,c-t'+a-r,o,-
------- (4) rp Even if the reference distance Lo changes depending on the type of tank, as seen from equation (4), the distance a can be adjusted by moving the projection lens 3 relative to the light source 2. By doing so, it is possible to make the intensity I of the reflected light incident on the light receiving element 6 the same regardless of the type of tank when the liquid reaches a predetermined remaining amount, and the reference voltage value can be set in the subsequent processing circuit. It is possible to determine that a predetermined remaining amount is present when the voltage value reaches a predetermined reference voltage value without making any adjustment.
なお、光源2の発光点20と投光レンズ3との間隔aは
、前述したように投光レンズ3を取付げているレンズホ
ルタ22を取イ」具21に対して回すことによって調節
される。The distance a between the light emitting point 20 of the light source 2 and the projection lens 3 is adjusted by rotating the lens holder 22 to which the projection lens 3 is attached relative to the tool 21, as described above.
第3図(a)乃至(C)はそれぞれ、本実施例の対象物
状態検出器1を大きさの異なる3種類のタンク30,3
1.32に取付けた状態を示す図であり、第4図(a)
乃至(C)はそれぞれ、基準距離Loか各々相違してい
る第3図(a)乃至(C)の各場合に間隔aを調節する
ことによって得られる反射光強度■を示す図である。な
お第3図(a)乃至(C)において対象物状態検出器1
−は、投光レンズ3の焦点距離fが10mm、投光レン
ズ3の口径d が6 mm 、受光レンズ5の有効径d
、が]、 8 mm 。FIGS. 3(a) to 3(C) show the object state detector 1 of this embodiment in three types of tanks 30 and 3 of different sizes.
Fig. 4(a) is a diagram showing the state in which it is attached to 1.32.
3A to 3C are diagrams showing the reflected light intensity ■ obtained by adjusting the interval a in each case of FIGS. 3A to 3C, in which the reference distance Lo is different. In addition, in FIGS. 3(a) to (C), the object state detector 1
− means that the focal length f of the light emitting lens 3 is 10 mm, the aperture d of the light emitting lens 3 is 6 mm, and the effective diameter d of the light receiving lens 5.
, 8 mm.
光源2からの電磁波の強度IoがlQmwに設定された
。また液面での反射率Rを0.02.I/■oを0.0
01に設定しな。以上の数値により、定数C1は]、8
.97となる。さらに第3図(a)乃至(C)において
液面までの基準距離Loをそれぞれ200mm、 50
0+nm、 1000mmとした。The intensity Io of the electromagnetic waves from the light source 2 was set to lQmw. In addition, the reflectance R at the liquid surface was set to 0.02. I/■o 0.0
Do not set it to 01. Based on the above values, the constant C1 is ], 8
.. It becomes 97. Furthermore, in FIGS. 3(a) to (C), the reference distance Lo to the liquid level is 200 mm and 50 mm, respectively.
0+nm, 1000mm.
これらの値を(4)式に代入して、光′a2の発光点2
0から投光レンズ3の前主点位置までの間隔aを求める
と、間隔aは第3図(a)の例では7.60mm、第3
図(b)の例では8.881m、第3図(C)の例では
9.41.mmとなり、各場合の拡がり角θはそれぞれ
10.84°、4.357°。Substituting these values into equation (4), the light emitting point 2 of light 'a2
0 to the front principal point position of the projection lens 3, the distance a is 7.60 mm in the example of FIG.
The example in Figure (b) is 8.881 m, and the example in Figure 3 (C) is 9.41 m. mm, and the divergence angle θ in each case is 10.84° and 4.357°, respectively.
2.1.75°になる。これらの数値を(1)式に代入
すると、判定すべき液体の残量の基準圧1ftL。2.It becomes 1.75°. Substituting these values into equation (1) yields a reference pressure of 1 ftL for the remaining amount of liquid to be determined.
の前後における反射光の強度■は、各場合について第4
図(a)乃至(C)のように求まる。The intensity of the reflected light before and after is determined by the fourth
It is determined as shown in Figures (a) to (C).
第4図(a)乃至(C)の各々において設定された残量
判定の基準距離■−8に対し、許容誤差εを±5%に設
定すると、反射光の強度■は、異なる3種類のタンク3
0,31.32のいずれにおいても、9.1乃至11,
1μWの範囲に入る。When the tolerance ε is set to ±5% for the reference distance ■-8 for determining the remaining capacity set in each of Figures 4 (a) to (C), the intensity ■ of the reflected light will vary depending on the three different types. tank 3
0, 31.32, 9.1 to 11,
It falls within the range of 1μW.
一方、受光素子6Fに集光される反射光の強度■は、受
光素子6において線形的に光電流値に変換され、この光
電流値は図示しないか後段の処理回路において線形的に
電圧値に変換され増幅されるので、増幅された結果の信
号電圧は、反射光の強度Iと比例しタンクの種類か異な
っても同じ誤差範囲をとる。従って、信号電圧を常に一
定な参照電圧値と比較することにより、いずれの種類の
タンクであっても、同じ判定精度を得ることかできる。On the other hand, the intensity ■ of the reflected light focused on the light receiving element 6F is linearly converted into a photocurrent value in the light receiving element 6, and this photocurrent value is linearly converted into a voltage value in a processing circuit (not shown) or in a subsequent stage. Since it is converted and amplified, the signal voltage as a result of the amplification is proportional to the intensity I of the reflected light and has the same error range regardless of the type of tank. Therefore, by always comparing the signal voltage with a constant reference voltage value, the same determination accuracy can be obtained for any type of tank.
このように本実施例では、間隔aを変化させて拡がり角
θを調整しタンクの種類によらずに液体の残量判定の精
度を同じにすることができるか、間隔aを変化させるか
わりに、投光レンズ3自体の光学定数を変化させて拡が
り角θを調節することも可能である。In this way, in this embodiment, it is possible to adjust the spread angle θ by changing the interval a to make the accuracy of determining the remaining amount of liquid the same regardless of the type of tank, or instead of changing the interval a. It is also possible to adjust the divergence angle θ by changing the optical constants of the projection lens 3 itself.
また上述の実施例では、対象物状態検出器1の光学系を
同一光軸となるよう配置し入射光を液面に垂直に入射さ
せ入射光と反射光の光路を一致させていたが、入射光を
垂直でない所定の角度で入射させ、入射光と反射光の光
路が対象物状態検出器の中心軸線に対し対称となるよう
光源2.投光レンズ3と受光レンズ5.受光素子6とを
異なる光軸」−に配置してら艮い。たたしこの場合にも
対象物状態検出器の中心軸線が常に液面と垂直に保−1
,2−
持されるようにする必要がある。しかしなから、入射光
と反射光の光路を相違させた場合には、光路が同一の場
合に比べて小型化には適さずまた検出感度か低下するの
で、燃料タンク等の′Wi造上、光学系を同一光軸上に
配置することのできない特別な用途等に限って用いるの
か良い。In addition, in the above embodiment, the optical systems of the object state detector 1 are arranged so that they have the same optical axis, and the incident light is incident perpendicularly to the liquid surface, so that the optical paths of the incident light and the reflected light are made to coincide. The light source 2. makes light incident at a predetermined angle that is not perpendicular, and makes the optical path of the incident light and reflected light symmetrical with respect to the central axis of the object state detector. Light emitting lens 3 and light receiving lens 5. The light receiving element 6 and the light receiving element 6 may be arranged on different optical axes. However, in this case as well, the center axis of the object state detector is always kept perpendicular to the liquid level.
, 2- It is necessary to ensure that it is maintained. However, if the optical paths of the incident light and the reflected light are different, it is not suitable for miniaturization and the detection sensitivity decreases compared to the case where the optical paths are the same. It is good to use it only for special applications where optical systems cannot be placed on the same optical axis.
さらに上述の実施例では液面からの反射光の強度を検出
するとしたか、液体を透過した透過光の強度を検出する
ことにより、液■1の高さすなわち液体の残量を検出す
るようにしても良い。たたし、透過光強度を検出する場
合には、入射光の光学系と透過光の光学系を解れた位置
に別々に設けねばならず、簡乍な構造で入射光の光路と
透過光の光路とを正確に一致させるのは難しい。Furthermore, in the above embodiment, the height of the liquid 1, that is, the remaining amount of the liquid, is detected by detecting the intensity of the reflected light from the liquid surface or by detecting the intensity of the transmitted light that has passed through the liquid. It's okay. However, when detecting the intensity of transmitted light, the optical system for the incident light and the optical system for the transmitted light must be installed separately at separate locations, and a simple structure can be used to separate the optical path of the incident light and the optical system of the transmitted light. It is difficult to match the optical path accurately.
また、対象物4を燃料タンク内のカッリン、灯油等の液
体としたが、液体に限らず、例えば米櫃内の米粒などの
粒状物あるいは使用中摩耗するような固体としても良い
。対象物4が粒状物、固体の場合でもそれに見合った波
長の電磁波を用いることにより同様の仕方で残量等の状
態を検出することかできる。Further, although the object 4 is a liquid such as kerosene or kerosene in a fuel tank, it is not limited to a liquid, and may be a granular object such as rice grains in a rice rack, or a solid that wears out during use. Even when the object 4 is granular or solid, the remaining amount and other conditions can be detected in the same manner by using electromagnetic waves with a wavelength appropriate for the object.
さらには、電磁波に限らず、超音波によって対象物4の
状態を検出するようにしても良い。Furthermore, the state of the object 4 may be detected not only by electromagnetic waves but also by ultrasonic waves.
以」二に説明したように、本発明では、電磁波または超
音波を対象物に入射させ対象物から出射した電磁波また
は超音波の強度により対象物の状態を検出するようにし
ているので、従来の機械的な検出器に比べて小型にする
ことかできるとともに故障等を減少させることができる
。さらに対象物に入射する電磁波または超音波の拡がり
角は可変となっているので、対象物を収容するタンク等
の容器の種類か界なり基準距離が変わる場合にも容器の
種類によらずに残量判定精度が同じとなるよう容易に調
節できる。As explained in Section 2 below, in the present invention, electromagnetic waves or ultrasonic waves are incident on the object and the state of the object is detected based on the intensity of the electromagnetic waves or ultrasonic waves emitted from the object. It can be made smaller than a mechanical detector, and failures can be reduced. Furthermore, since the spread angle of the electromagnetic waves or ultrasonic waves incident on the target object is variable, even if the standard distance changes depending on the type of container such as a tank containing the target object, it will not remain regardless of the type of container. It can be easily adjusted so that the amount determination accuracy is the same.
第1図は本発明に係る対象物状態検出器の一実施例の構
成図、第2図(a) 、 (b)はそれぞれ光源と投光
レンズとの間隔の調節機構の側断面図、正面図、第3図
(a)乃至(C)はそれぞれ大きさの異なる3種類のタ
ンクへの対象物状態検出器の取付状態を示す図、第4図
(a)乃至(c)はそれぞれ第3図(a)乃至(C)の
取付状態のときに算出された液面までの距離と反射光強
度との関係を示す図である。
1・・・対象物状態検出器、2・・・光源、3・・・投
光レンズ、4・・・対象物、5・・・受光レンズ、6・
・・受光素子、a・・・光源、投光レンズ間の間隔、θ
・・・拡がり角、Lo・・・基準距離特許出願人
浜松ホトニクス株式会社代理人 弁理士 植 本
雅 泊−1,6−
(a)
距離L (mm)
第4図
(b) (C)FIG. 1 is a block diagram of an embodiment of the object state detector according to the present invention, and FIGS. 2(a) and 2(b) are side sectional views and front views of a mechanism for adjusting the distance between the light source and the projecting lens, respectively. Figures 3(a) to 3(C) are diagrams showing how the object condition detectors are attached to three types of tanks of different sizes, and Figures 4(a) to 4(c) are diagrams showing how the object condition detectors are attached to three types of tanks of different sizes, respectively. It is a figure which shows the relationship between the distance to a liquid level calculated in the installation state of FIGS. (a) thru|or (C), and reflected light intensity. DESCRIPTION OF SYMBOLS 1...Target state detector, 2...Light source, 3...Light projecting lens, 4...Target, 5...Light receiving lens, 6...
...Light receiving element, a... Distance between light source and light emitting lens, θ
... Divergence angle, Lo... Reference distance Patent applicant
Hamamatsu Photonics Co., Ltd. Representative Patent Attorney Masa Tomari Uemoto -1,6- (a) Distance L (mm) Figure 4 (b) (C)
Claims (1)
と、対象物から出射した電磁波または超音波の強度によ
り対象物の状態を検出する検出手段とを備え、対象物に
入射する電磁波または超音波の拡がり角は、可変となっ
ていることを特徴とする対象物状態検出器。 2)前記拡がり角は、対象物までの基準距離が変わる場
合にも前記検出手段への電磁波または超音波の強度か同
じとなるように変えられることを特徴とする特許請求の
範囲第1項に記載の対象物状態検出器。 3)前記拡がり角は、前記入射手段の光源と投光レンズ
間の間隔を変化させることにより調節されることを特徴
とする特許請求の範囲第1項に記載の対象物状態検出器
。[Scope of Claims] 1) An input means for injecting electromagnetic waves or ultrasonic waves into an object, and a detection means for detecting the state of the object based on the intensity of the electromagnetic waves or ultrasonic waves emitted from the object; An object state detector characterized in that the spread angle of incident electromagnetic waves or ultrasonic waves is variable. 2) The divergence angle is changed so that the intensity of the electromagnetic waves or ultrasonic waves to the detection means remains the same even when the reference distance to the object changes. The object state detector described. 3) The object state detector according to claim 1, wherein the divergence angle is adjusted by changing the distance between the light source of the input means and the projection lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62252203A JPH0194221A (en) | 1987-10-06 | 1987-10-06 | Object state detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62252203A JPH0194221A (en) | 1987-10-06 | 1987-10-06 | Object state detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0194221A true JPH0194221A (en) | 1989-04-12 |
JPH0525288B2 JPH0525288B2 (en) | 1993-04-12 |
Family
ID=17233935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62252203A Granted JPH0194221A (en) | 1987-10-06 | 1987-10-06 | Object state detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0194221A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013653A1 (en) * | 2004-08-04 | 2006-02-09 | Mitsubishi Denki Kabushiki Kaisha | Sensor for transmitting and receiving ultrasonic wave radiation, position detector, and dehumidifier |
CN105759072A (en) * | 2014-12-02 | 2016-07-13 | 财团法人工业技术研究院 | Optical anemometry system |
WO2022255342A1 (en) * | 2021-06-03 | 2022-12-08 | ローム株式会社 | Liquid surface height detecting device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425794A (en) * | 1977-07-28 | 1979-02-26 | Oki Kaiyo Electronics Kk | Sounddwave depthhmeasuring system for suspension liquid |
JPS55166215U (en) * | 1979-05-17 | 1980-11-29 | ||
JPS6125011A (en) * | 1984-07-13 | 1986-02-03 | Genichiro Kinoshita | Optical distance measuring device |
-
1987
- 1987-10-06 JP JP62252203A patent/JPH0194221A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425794A (en) * | 1977-07-28 | 1979-02-26 | Oki Kaiyo Electronics Kk | Sounddwave depthhmeasuring system for suspension liquid |
JPS55166215U (en) * | 1979-05-17 | 1980-11-29 | ||
JPS6125011A (en) * | 1984-07-13 | 1986-02-03 | Genichiro Kinoshita | Optical distance measuring device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013653A1 (en) * | 2004-08-04 | 2006-02-09 | Mitsubishi Denki Kabushiki Kaisha | Sensor for transmitting and receiving ultrasonic wave radiation, position detector, and dehumidifier |
CN105759072A (en) * | 2014-12-02 | 2016-07-13 | 财团法人工业技术研究院 | Optical anemometry system |
WO2022255342A1 (en) * | 2021-06-03 | 2022-12-08 | ローム株式会社 | Liquid surface height detecting device |
Also Published As
Publication number | Publication date |
---|---|
JPH0525288B2 (en) | 1993-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1211484B1 (en) | Deviation detection device, rotary laser apparatus with the same, and position determining system with deviation detecting/correcting device | |
EP0762143B1 (en) | Chromatic optical ranging sensor | |
EP1195615A2 (en) | Position determining system | |
JP2621430B2 (en) | Light sensor | |
EP3551993A1 (en) | Optical particle sensor module | |
JPH02236108A (en) | Solar sensor | |
CN111721235B (en) | Photoelectric edge detection system and detection method thereof | |
JPH0726806B2 (en) | Distance measuring device | |
EP1471565A2 (en) | Mapping device for semiconductor wafers | |
JPH0194221A (en) | Object state detector | |
US5315373A (en) | Method of measuring a minute displacement | |
US4529304A (en) | Zone sensing apparatus | |
JPH0345322B2 (en) | ||
CN115773864A (en) | A Measurement Method of Total Integral Scattering of Highly Reflective Optical Elements Based on Optical Cavity Ring-Down Technology | |
JPS5834313A (en) | Active type distance measuring device | |
US6317200B1 (en) | Positional measurement with normalized signal processing | |
JPS6432105A (en) | Angle deviation measuring instrument for flat plate member | |
JPS6370110A (en) | Distance measuring apparatus | |
KR100296634B1 (en) | Position measuring device and method using optical pickup | |
JP2001501726A (en) | Optical sensor for tilt angle measurement | |
JPH02203246A (en) | Grain size distribution measuring instrument | |
US6693705B2 (en) | Apparatus for measuring slant angle of solid immersion lens | |
JPH0783828A (en) | Variable-angle absolute reflectance measuring instrument | |
CN218895821U (en) | Liquid level detection device utilizing liquid refraction principle | |
SU1469345A1 (en) | Photoelectric accumulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |