[go: up one dir, main page]

WO2022234750A1 - 原料溶液の製造方法、成膜方法及び製品ロット - Google Patents

原料溶液の製造方法、成膜方法及び製品ロット Download PDF

Info

Publication number
WO2022234750A1
WO2022234750A1 PCT/JP2022/015869 JP2022015869W WO2022234750A1 WO 2022234750 A1 WO2022234750 A1 WO 2022234750A1 JP 2022015869 W JP2022015869 W JP 2022015869W WO 2022234750 A1 WO2022234750 A1 WO 2022234750A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
raw material
material solution
mist
producing
Prior art date
Application number
PCT/JP2022/015869
Other languages
English (en)
French (fr)
Inventor
武紀 渡部
洋 橋上
崇寛 坂爪
和行 宇野
茉莉香 太田
Original Assignee
信越化学工業株式会社
国立大学法人 和歌山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社, 国立大学法人 和歌山大学 filed Critical 信越化学工業株式会社
Priority to CN202280032175.3A priority Critical patent/CN117242554A/zh
Priority to JP2023518643A priority patent/JP7610231B2/ja
Priority to EP22798857.3A priority patent/EP4335950A1/en
Priority to KR1020237037463A priority patent/KR20240004411A/ko
Priority to US18/288,845 priority patent/US20240124974A1/en
Publication of WO2022234750A1 publication Critical patent/WO2022234750A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for producing a raw material solution for film formation by the mist CVD method, a film formation method by the mist CVD method, and a product lot of a crystalline oxide film.
  • PLD pulsed laser deposition
  • MBE molecular beam epitaxy
  • high vacuum film deposition equipment capable of realizing a non-equilibrium state such as sputtering. It has become possible to manufacture oxide semiconductors that could not be manufactured by the melt method or the like.
  • a mist chemical vapor deposition (Mist CVD) method for growing crystals on a substrate using atomized mist-like raw materials has been developed. It has become possible to fabricate gallium oxide ( ⁇ -Ga 2 O 3 ) with a corundum structure. As a semiconductor with a large bandgap, ⁇ -Ga 2 O 3 is expected to be applied to next-generation switching elements capable of achieving high withstand voltage, low loss and high heat resistance.
  • Patent Document 1 describes a tubular furnace type mist CVD apparatus.
  • Patent Document 2 describes a fine channel type mist CVD apparatus.
  • Patent Document 3 describes a linear source type mist CVD apparatus.
  • Patent Document 4 describes a tubular furnace mist CVD apparatus, which differs from the mist CVD apparatus described in Patent Document 1 in that a carrier gas is introduced into the mist generator.
  • Patent Document 5 describes a mist CVD apparatus which is a rotating stage in which a substrate is placed above a mist generator and a susceptor is mounted on a hot plate.
  • JP-A-1-257337 Japanese Patent Application Laid-Open No. 2005-307238 JP 2012-46772 A Japanese Patent No. 5397794 JP 2014-63973 A
  • the mist CVD method does not require a high temperature and can produce a metastable phase crystal structure such as the corundum structure of ⁇ -Ga 2 O 3 .
  • this method has a problem that the film formation speed is low.
  • a film of a solid solution of two or more elements such as a solid solution with aluminum oxide or indium oxide, there is a problem that reproducibility of the composition in the film is not good.
  • the present invention has been made to solve the above problems, and is a raw material solution for forming a film by a mist CVD method, which is excellent in film forming speed and for forming a solid solution of two or more elements.
  • the present invention has been made to achieve the above objects, and is a method for producing a raw material solution for forming a film by a mist CVD method, wherein a solute containing a metal element is mixed with a solvent and stirred at a temperature is 30° C. or higher.
  • the raw material solution production method can be such that the stirring temperature is set to 35°C or higher.
  • the raw material solution production method can be such that the stirring time is set to 60 hours or less.
  • the composition in the film is stable and the process reproducibility is improved, and the raw material solution that enables film formation at a high film formation speed can be produced in a short time, so productivity is high and industrially very effective. Processes can be constructed.
  • the method for producing a raw material solution may use, as the solute, one containing at least one of the metal element of gallium or aluminum and a halogen.
  • the raw material solution can be produced by using a material containing at least one of the metal elements of gallium and aluminum as the solute, and adding acetylacetone to the solvent in which the solute is mixed, followed by stirring.
  • the method for producing the raw material solution may be such that the stirring temperature is set to 95°C or lower.
  • the method for producing the raw material solution can be such that the stirring time is set to 1 minute or more.
  • the composition in the film is stable and the process reproducibility is improved, and the raw material solution that enables film formation at a high film formation speed can be produced in a short time, so productivity is high and industrially very effective. Processes can be constructed.
  • a mist generation step of misting a raw material solution in a misting section to generate mist and supplying a carrier gas for conveying the mist to the misting section.
  • a carrier gas supplying step a transporting step of transporting the mist from the mist generating section to the film forming chamber via a supply pipe connecting the mist generating section and the film forming chamber with the carrier gas, and a film forming step of heat-treating the mist to form a film on a substrate, and producing the raw material solution by the above-described method for producing a raw material solution.
  • the film formation rate is high, and when a solid solution of two or more elements is formed, film formation can be performed with high reproducibility of the composition in the film.
  • the present invention also provides a product lot containing two or more crystalline oxide films containing two or more metal elements produced from the same raw material solution lot, wherein the metal component in the crystalline oxide film is A product lot is provided in which the variation in the composition of the metal element having the maximum composition among the crystalline oxide films is within 5.0%.
  • At this time, at least one of gallium and aluminum can be included as the metal element.
  • the solute in the raw material solution is dispersed and homogenized, thereby greatly improving the film formation rate and forming a solid solution of two or more elements. Even in this case, it is possible to manufacture a raw material solution that enables film formation by the mist CVD method with excellent reproducibility of the composition in the film. Further, according to the product lot of the present invention, when used as a semiconductor device, the reproducibility is very good, and it is industrially useful.
  • FIG. 1 is a schematic configuration diagram showing an example of a film forming apparatus used in the present invention
  • FIG. It is a figure explaining an example of the misting part used for this invention.
  • FIG. 4 is a diagram showing the results of an experiment investigating the time required for acetylacetonating aluminum.
  • FIG. 4 shows the time required for aluminum acetylacetonate production to saturate. It is a figure which shows the relationship between raw material stirring temperature and film-forming speed.
  • the present inventors have found a method for producing a raw material solution for forming a film by a mist CVD method, in which a solute containing a metal element is mixed with a solvent and stirred at a temperature of
  • the method of manufacturing the raw material solution at 30°C or higher enables film formation by the mist CVD method, which has excellent film formation speed and excellent reproducibility of the composition in the film even when forming a film of a solid solution of two or more elements.
  • the present invention was completed by discovering that a raw material solution can be produced.
  • the present inventors have found that a product lot containing two or more crystalline oxide films containing two or more metal elements produced from the same raw material solution lot, wherein the metal in the crystalline oxide film When used as a semiconductor device, reproducibility is very good when used as a semiconductor device by a product lot in which the variation in the composition of the metal element having the maximum component composition is within 5.0% among the crystalline oxide films. , found that industrially useful product lots can be taken, and completed the present invention.
  • the term "mist” as used in the present invention refers to a general term for fine particles of liquid dispersed in gas, and includes what is called fog, liquid droplets, and the like.
  • the film formation apparatus 101 includes a mist formation section 120 that forms a mist from the source solution 104a to generate mist, a carrier gas supply section 130 that supplies a carrier gas for transporting the mist, a mist formation section 120, and a film formation chamber 107. It has at least a supply pipe 109 to which the mist is conveyed by the carrier gas, and a film formation chamber 107 for heat-treating the mist supplied together with the carrier gas from the supply pipe 109 to form a film on the substrate 110 .
  • the mist generating unit 120 mists the raw material solution 104a to generate mist.
  • the misting means is not particularly limited as long as it can mist the raw material solution 104a, and may be a known misting means, but it is preferable to use a misting means using ultrasonic vibration. This is because mist can be made more stably.
  • the mist generation unit 120 includes a mist generation source 104 containing a raw material solution 104a, a container 105 containing a medium capable of transmitting ultrasonic vibrations, such as water 105a, and an ultrasonic oscillator attached to the bottom surface of the container 105.
  • 106 may be included.
  • the mist generation source 104 which is a container containing the raw material solution 104a, can be accommodated in the container 105 containing the water 105a using a support (not shown).
  • the ultrasonic transducer 106 and the oscillator 116 may be connected.
  • misting section can constitute a misting section in a film forming system according to the present invention, which will be described later.
  • the carrier gas supply section 130 has a carrier gas source 102a that supplies carrier gas.
  • a flow control valve 103a for adjusting the flow rate of the carrier gas sent from the carrier gas source 102a may be provided.
  • a carrier gas source 102b for dilution that supplies a carrier gas for dilution and a flow control valve 103b for adjusting the flow rate of the carrier gas for dilution sent out from the carrier gas source 102b for dilution can also be provided as necessary. .
  • the type of carrier gas is not particularly limited, and can be appropriately selected according to the film to be deposited. Examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. Also, the number of carrier gases may be one, or two or more. For example, as the second carrier gas, a diluent gas obtained by diluting the same gas as the first carrier gas with another gas (for example, diluted 10 times) may be used, or air may be used.
  • the flow rate of carrier gas is not particularly limited. For example, when forming a film on a 30 mm square substrate, the flow rate of the carrier gas is preferably 0.01 to 20 L/min, more preferably 1 to 10 L/min.
  • the film forming apparatus 101 has a supply pipe 109 that connects the misting section 120 and the film forming chamber 107 .
  • the mist is transported by the carrier gas from the mist generation source 104 of the mist generator 120 through the supply pipe 109 and supplied into the film forming chamber 107 .
  • a quartz tube, a glass tube, a resin tube, or the like can be used as the supply tube 109, for example.
  • a mechanism for transporting mist including such a supply pipe can constitute a transport section in a film forming system according to the present invention, which will be described later.
  • a substrate 110 is placed in the deposition chamber 107, and a heater 108 for heating the substrate 110 can be provided.
  • the heater 108 may be provided inside the film forming chamber 107 as shown in FIG. 1 or may be provided outside the film forming chamber 107 .
  • the deposition chamber 107 may be provided with an exhaust port 112 for exhaust gas at a position that does not affect the supply of mist to the substrate 110 .
  • the substrate 110 may be placed on the top surface of the film formation chamber 107 to face down, or the substrate 110 may be placed on the bottom surface of the film formation chamber 107 to face up.
  • a film forming mechanism including such a film forming chamber can constitute a film forming section in a film forming system according to the present invention, which will be described later.
  • the substrate 110 is not particularly limited as long as it can form a film and can support a film, and a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • the thickness of the substrate is not particularly limited, it is preferably 10 to 2000 ⁇ m, more preferably 50 to 800 ⁇ m.
  • the size of the substrate 110 is not particularly limited. Substrate areas of 10 mm 2 or more, more preferably 100 mm 2 or more can be used, and substrates with diameters of 2 to 8
  • the raw material solution 104a is a mixture solution in which a solute containing at least a metal element is mixed with a solvent.
  • the material of the solute contained in the solution is not particularly limited as long as it can be misted, and it may be an inorganic material or an organic material.
  • Metals or metal compounds are preferably used, for example, those containing one or more metals selected from gallium, iron, indium, aluminum, vanadium, titanium, chromium, rhodium, nickel and cobalt may be used. I don't mind.
  • a solution obtained by mixing a metal in the form of a complex or a salt with a solvent such as an organic solvent or water and dissolving or dispersing the metal can be suitably used.
  • Salt forms include, for example, halide salts such as metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in a solvent such as a hydrogen halide such as hydrobromic acid, hydrochloric acid or hydroiodic acid can also be used as the salt solution.
  • forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • An acetylacetonate complex can also be formed by adding acetylacetone to the aforementioned salt solution and mixing.
  • the raw material solution contains either halogen or acetylacetone, or both.
  • the metal concentration in the raw material solution 104a is not particularly limited, and can be, for example, 0.005 to 1 mol/L.
  • the hydrohalic acid includes, for example, hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. Among them, hydrobromic acid and hydroiodic acid are preferable.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like.
  • the raw material solution may contain a dopant.
  • a dopant is not specifically limited. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium, or niobium, or p-type dopants such as copper, silver, cobalt, iridium, rhodium, magnesium, nickel, and the like.
  • the temperature at which the solute containing the metal element is mixed with the solvent and stirred is set to 30° C. or higher.
  • the stirring temperature is 35° C.
  • the upper limit of the temperature during stirring is desirably 95° C. or less. This is because such a stirring temperature suppresses evaporation of the solvent and stabilizes the solute concentration.
  • the stirring time is preferably 60 hours or less, and preferably 1 minute or more. As a result, the composition in the film is stabilized, the process reproducibility is improved, and a raw material solution that enables film formation at a high film formation rate can be produced, making it possible to construct an industrially very effective process. In addition, a decrease in productivity can be suppressed.
  • a mechanism for performing such a raw material solution manufacturing method can constitute a raw material solution manufacturing section in a film forming system according to the present invention, which will be described later.
  • the stirring method and means are not particularly limited.
  • a stirrer with a heating mechanism or the like can be suitably used, but industrially, it can be embodied by using a container equipped with a heating and heat retaining mechanism and a stirrer or the like.
  • stirring may be performed by rotating a propeller or blades provided in the stirring vessel, or by blowing in a gas (inert gas, high-pressure steam, etc.) that does not alter the raw material solution.
  • the solution can be externally circulated by a pump and jetted into the vessel as a jet stream to create a circulating flow in the tank for agitation.
  • the operator may stir using a stirring rod or the like. It is also possible to use the stirring methods and means exemplified above.
  • Such stirring means can constitute stirring means in a film forming system according to the present invention, which will be described later.
  • Fig. 3 shows experimental results of evaluating how aluminum acetylacetonate is produced when acetylacetone is mixed with an aluminum chloride aqueous solution at various temperatures and stirred, based on changes in the amount of absorption of infrared light near a wave number of 1540 cm -1 . is.
  • a stirring temperature of 50°C aluminum acetylacetonate is produced and saturated in several minutes, whereas at 23°C, saturation is reached in about 30 hours.
  • the time required for saturation was read from FIG. 3 and plotted against the stirring temperature in FIG. It can be seen that the higher the liquid temperature, the more rapidly the necessary time decreases, and that the reaction can be sufficiently stabilized and completed in about 15 hours or less if the stirring temperature is 30° C. or higher. In this case, considering productivity and process stability, the stirring time should be 60 hours or less.
  • the stirring temperature is less than 30°C, the amount of mist generated decreases due to aggregation of the solute.
  • the stirring temperature By setting the stirring temperature to 30° C. or higher, the effect of improving the dispersibility of the solute can also be obtained. As a result, it is considered that the amount of mist generated increases and the film forming speed increases.
  • a solute containing at least one metal element of gallium or aluminum and a halogen it is preferable to use a solute containing at least one metal element of gallium or aluminum and a halogen.
  • a raw material solution capable of forming a film of gallium oxide or a solid solution containing gallium oxide, or a film of aluminum oxide or a solid solution containing aluminum oxide particularly stably and at a higher film-forming rate.
  • a solute containing at least one of gallium and aluminum it is preferable to use a solute containing at least one of gallium and aluminum, and to add acetylacetone to the solvent mixed with the solute and stir the mixture.
  • acetylacetone it is possible to manufacture a raw material solution that can form a film with improved reproducibility of the composition of gallium oxide or a solid solution containing gallium oxide, or aluminum oxide or a solid solution containing aluminum oxide.
  • the raw material solution 104a produced by the method for producing the raw material solution described above is placed in the mist generation source 104, the substrate 110 is placed in the film forming chamber 107, and the heater 108 is activated.
  • the flow control valves 103a and 103b are opened to supply the carrier gas from the carrier gas sources 102a and 102b into the film forming chamber 107.
  • the carrier gas is supplied. Adjust the flow rate and the flow rate of the carrier gas for dilution.
  • the ultrasonic oscillator 106 is vibrated, and the vibration is propagated to the raw material solution 104a through the water 105a, thereby misting the raw material solution 104a and generating mist.
  • a carrier gas for transporting mist is supplied to the misting section 120 .
  • the mist is transported from the mist generating section 120 to the film forming chamber 107 via the supply pipe 109 that connects the mist generating section 120 and the film forming chamber 107 with a carrier gas.
  • a heat treatment is performed to heat the mist transported to the film formation chamber 107 to cause a thermal reaction, thereby forming a film on part or all of the surface of the substrate 110 .
  • the heat treatment is not particularly limited as long as the mist reacts by heating. It can be appropriately set according to the raw material and the film-formed material.
  • the heating temperature can be in the range of 120-600°C, preferably in the range of 200-600°C, more preferably in the range of 300-550°C.
  • the heat treatment for film formation may be performed under vacuum, under a non-oxygen atmosphere, under a reducing gas atmosphere, under an air atmosphere, or under an oxygen atmosphere, and may be appropriately set according to the film to be deposited.
  • the reaction pressure may be under atmospheric pressure, under increased pressure or under reduced pressure, but film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
  • a buffer layer may be appropriately provided between the substrate and the film.
  • Materials for the buffer layer include Al2O3 , Ga2O3 , Cr2O3 , Fe2O3 , In2O3 , Rh2O3 , V2O3 , Ti2O3 , and Ir2O . 3 , etc. are preferably used.
  • the method of forming the buffer layer is not particularly limited, and it can be formed by a known method such as a sputtering method or a vapor deposition method. It's easy and convenient.
  • one or more metals selected from aluminum, gallium, chromium, iron, indium, rhodium, vanadium, titanium, and iridium are dissolved or dispersed in water in the form of complexes or salts.
  • forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • Salt forms include, for example, metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in hydrobromic acid, hydrochloric acid, hydroiodic acid, or the like can also be used as an aqueous salt solution.
  • the solute concentration is preferably 0.005 to 1 mol/L, and the stirring temperature for dissolution is 30° C. or higher.
  • the buffer layer can also be formed under the same conditions as above. After forming the buffer layer to a predetermined thickness, the film is formed by the film forming method according to the present invention.
  • the thickness of the buffer layer is preferably 0.1 ⁇ m to 2 ⁇ m.
  • the film obtained by the film forming method according to the present invention may be heat-treated at 200 to 600° C., for example. As a result, unreacted species and the like in the film are removed, and a higher quality film can be obtained.
  • the heat treatment may be performed in air, in an oxygen atmosphere, or in an inert gas atmosphere such as nitrogen or argon.
  • the heat treatment time is appropriately determined, and can be, for example, 5 to 240 minutes.
  • composition of the metal component can be determined by known methods such as atomic emission spectrometry, mass spectrometry, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and energy dispersive X-ray fluorescence spectrometry. be.
  • the variation in the composition of the metal components can be evaluated by the following method. That is, for each film obtained by performing film formation twice or more under the same conditions, the composition of the metal component is determined by a known method, and the maximum value, Using the minimum value, the value obtained by (maximum value ⁇ minimum value) ⁇ (maximum value+minimum value) ⁇ 100(%) is taken as the variation.
  • the "same conditions” are set values of things that can be actively changed, such as gas flow rate and deposition temperature. are also included in the “same conditions”. Substrates, raw materials, etc. can be regarded as "same conditions” if they are manufactured in the same production lot.
  • a product lot that includes a plurality of crystalline oxide films and has small variations in metal elements contained in the crystalline oxide films among the crystalline oxide films.
  • it is a product lot containing two or more crystalline oxide films obtained using a raw material solution lot obtained by the method for producing a raw material solution according to the present invention. More specifically, a product lot containing two or more crystalline oxide films containing two or more metal elements produced from the same raw material solution lot, wherein the composition of the metal components in the crystalline oxide film It is possible to manufacture a product lot in which the variation among the crystalline oxide films in the composition of the metal element with the maximum is within 5.0%. It preferably contains at least one of gallium and aluminum as a metal element.
  • a product lot of such a crystalline oxide film can be used, for example, as a semiconductor device. It can also be used as a buffer layer when forming a semiconductor film. When used for such purposes, the reproducibility is very good and it is industrially useful.
  • the thickness of the crystalline oxide film according to the present invention is not particularly limited. For example, it may be 0.05 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m.
  • the size ( area) of the crystalline oxide film that can be produced is not particularly limited, and depends on the size of the deposition surface of the substrate. Obtainable.
  • a film formation system according to the present invention is a film formation system including a raw material solution production unit for producing the raw material solution described above and a film formation apparatus. That is, the system for forming a crystalline oxide film according to the present invention includes a raw material solution manufacturing unit for manufacturing a raw material solution for forming a mist, the raw material solution containing a solute containing a metal element and a solvent; a misting unit for atomizing or dropletizing the raw material solution to generate a mist; a conveying unit for conveying the mist to a film forming unit using a carrier gas; The film forming system includes a film forming unit that performs heat treatment on the substrate to form a film.
  • the raw material solution producing section has a stirring means for stirring at a temperature of 30° C. or higher when the solute containing the metal element is mixed with the solvent and stirred.
  • the raw material solution production unit is controlled by the control unit, so that when the solute containing the metal element is mixed with the solvent and stirred, the temperature is set to 30 ° C. or higher and the raw material is stirred. It may be one that produces a solution.
  • a crystalline oxide film may be formed by controlling each part of the film forming apparatus, such as the mist generating part, the conveying part, and the film forming part, by the control part. With such a control unit, it is also possible to provide a film forming system capable of performing the processes described in the above-described raw material solution manufacturing method and film forming method.
  • the stirring means may have a stirring temperature of 35°C or higher and 95°C or lower. Moreover, the stirring means may set the stirring time to 60 hours or less. Furthermore, the stirring time may be one minute or more.
  • the raw material solution produced by the raw material solution producing section may contain at least one of gallium or aluminum metal element and halogen as a solute. Moreover, the raw material solution may contain at least one of gallium and aluminum as a solute, and the stirring means may add acetylacetone to a solvent in which the solute is mixed and stir the mixture.
  • the film forming apparatus 101 includes a carrier gas source 102a that supplies a carrier gas, a flow control valve 103a that adjusts the flow rate of the carrier gas sent from the carrier gas source 102a, and a dilution carrier gas that supplies a dilution carrier gas.
  • raw material solution Preparation of the raw material solution was performed as follows. Ultrapure water was used as the solvent, and gallium bromide was used as the solute. The gallium concentration was set to 0.1 mol/L, and this was used as the raw material solution 104a.
  • substrate 110 As the substrate 110, a square c-plane sapphire substrate cut into 3 cm sides was placed in the deposition chamber 107, and the temperature was raised to 500° C. by operating the heater .
  • the raw material solution 104 a produced as described above was accommodated in the mist generation source 104 . Subsequently, the flow control valves 103a and 103b are opened to supply the carrier gas from the carrier gas sources 102a and 102b into the film forming chamber 107. After sufficiently replacing the atmosphere in the film forming chamber 107 with the carrier gas, the carrier gas is supplied. The flow rate was adjusted to 2 L/min, and the flow rate of the carrier gas for dilution was adjusted to 6 L/min. Nitrogen was used as the carrier gas.
  • the ultrasonic oscillator 106 was vibrated at 2.4 MHz, and the vibration was propagated through the water 105a to the raw material solution 104a, thereby misting the raw material solution 104a to generate mist.
  • This mist was introduced into the film formation chamber 107 through the supply pipe 109 by the carrier gas.
  • a thin film of gallium oxide was formed on the substrate 110 by thermally reacting the mist in the film forming chamber 107 under the condition of 500° C. under atmospheric pressure.
  • the film formation time was 30 minutes.
  • Example 2 to 6 Film formation and evaluation were carried out in the same manner as in Example 1 except that the stirring temperatures when the solute was mixed with the solvent and stirred were 35, 42, 65, 80 and 90° C., respectively. As a result, the average film thicknesses were 1.2, 1.2, 1.3, 1.2 and 1.2 ⁇ m in order, and the deposition rates were 2.4, 2.3, 2.5, 2.5 and 2 in order. .4 ⁇ m/hour.
  • FIG. 1 A graph summarizing the film formation rates of Examples 1 to 6 and Comparative Examples 1 to 3 is shown in FIG. It can be seen that when the stirring temperature is 30° C. or higher, the film formation rate is generally constant regardless of the stirring temperature, and the film formation rate is stable and sufficiently high. It is considered that this is because the reaction of the solute proceeds more easily and the concentration of the solute after the reaction is stabilized. On the other hand, if the stirring temperature is low, aggregates and the like are formed in the solution, which is thought to reduce the amount of mist generated.
  • Example 7 Gallium chloride and aluminum chloride were weighed so that the molar ratio was 3:7, and mixed with ultrapure water. The total concentration of solutes was 0.02 mol/L. Furthermore, 0.06 mol/L of acetylacetone was mixed with this. The resulting mixed liquid was stirred at 50° C. for 10 minutes to obtain a raw material solution. A film was formed in the same manner as in Example 1 except for this. By ⁇ -2 ⁇ scanning with an X-ray diffractometer, a peak appeared between the ⁇ -Ga 2 O 3 peak position and the ⁇ -Al 2 O 3 peak position, and a solid solution of Ga 2 O 3 and Al 2 O 3 was obtained. I found out. When the same experiment was performed again, the X-ray diffraction peak appeared at the same place as the first time, and it was found that the reproducibility of the film composition was good.
  • Example 8 Film formation was repeated 5 times under the same conditions as in Example 7 to produce product lots containing 5 crystalline oxide films.
  • the composition of the (AlGa) 2 O 3 film of the obtained product lot was determined by energy dispersive X-ray fluorescence analysis using a scanning electron microscope (JSM-IT200, manufactured by JEOL Ltd.).
  • JSM-IT200 scanning electron microscope
  • the Ga compositions were 82, 80, 80, 81 and 79%, respectively.
  • the variation in the composition of Ga is 1.9%, and the reproducibility is very good.
  • Example 9 film formation was repeated five times under the same conditions as in Example 7, except that the molar ratio of gallium chloride and aluminum chloride was 1:9, to produce product lots.
  • the composition of the (AlGa) 2 O 3 film of the obtained product lot was determined by the same method as in Example 8. As a result, the composition of Ga was 54, 53, 49, 49 and 50%, respectively. The variation in the composition of Ga is 4.9%, and the reproducibility is very good.
  • Example 9 film formation was repeated five times under the same conditions as in Example 9, except that the temperature during stirring was 28° C., to produce product lots.
  • the composition of the (AlGa) 2 O 3 film of the obtained product lot was determined by the same method as in Example 8. As a result, the composition of Ga was 53, 59, 48, 57 and 52%, respectively. Variation in the composition of Ga was 10.3%, resulting in poor reproducibility.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Molding Of Porous Articles (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本発明は、ミストCVD法により成膜を行うための原料溶液の製造方法であって、金属元素を含む溶質を溶媒に混合して撹拌する温度を30℃以上とする原料溶液の製造方法、及び、該原料溶液の製造方法により製造した原料溶液を用いるミストCVDによる成膜方法である。これにより、ミストCVD法により成膜を行うための原料溶液であって、成膜速度に優れ、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れた成膜を可能とする原料溶液の製造方法、及び、成膜速度に優れ、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れたミストCVDによる成膜方法が提供される。

Description

原料溶液の製造方法、成膜方法及び製品ロット
 本発明は、ミストCVD法により成膜を行うための原料溶液の製造方法、ミストCVD法による成膜方法及び結晶性酸化物膜の製品ロットに関する。
 従来、パルスレーザー堆積法(Pulsed laser deposition:PLD)、分子線エピタキシー法(Molecular beam epitaxy:MBE)、スパッタリング法等の非平衡状態を実現できる高真空成膜装置が開発されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきた。また、霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α-Ga)の作製が可能となってきた。α-Gaは、バンドギャップの大きな半導体として、高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。
 ミストCVD法に関して、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1に記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。
特開平1-257337号公報 特開2005-307238号公報 特開2012-46772号公報 特許第5397794号公報 特開2014-63973号公報
 ミストCVD法は、他のCVD法とは異なり高温にする必要もなく、α-Gaのコランダム構造のような準安定相の結晶構造も作製可能である。しかし、この方法は、成膜速度が小さいという問題があった。また、例えば酸化アルミニウムや酸化インジウムなどとの固溶体のように、2以上の元素の固溶体を成膜する際には膜中組成の再現性がよくないといった問題があった。
 本発明は、上記問題を解決するためになされたものであり、ミストCVD法により成膜を行うための原料溶液であって、成膜速度に優れ、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れた成膜を可能とする原料溶液の製造方法及び半導体装置として用いた場合再現性が非常に良好であり、工業的に有用な結晶性酸化物膜の製品ロットを提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、ミストCVD法により成膜を行うための原料溶液の製造方法であって、金属元素を含む溶質を溶媒に混合して撹拌する温度を30℃以上とする原料溶液の製造方法を提供する。
 このような原料溶液の製造方法によれば、ミストCVD法により成膜を行う場合に、成膜速度を高くすることができ、さらに、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性を向上することが可能な原料溶液を製造できる。
 このとき、前記撹拌する温度を35℃以上とする原料溶液の製造方法とすることができる。
 これにより、成膜速度をより向上し、また、膜中組成の再現性をより向上することが可能な原料溶液を安定して製造できる。
 このとき、前記撹拌する時間を60時間以下とする原料溶液の製造方法とすることができる。
 これにより、膜中組成が安定しプロセス再現性が向上すると共に、高い成膜速度での成膜が可能となる原料溶液を短時間で製造できるため、生産性が高く工業的に非常に有効なプロセスを構築可能となる。
 このとき、前記溶質として、ガリウム又はアルミニウムの少なくとも一方の前記金属元素及びハロゲンを含むものを用いる原料溶液の製造方法とすることができる。
 これにより、安定かつより高い成膜速度で酸化ガリウム又は酸化ガリウムを含む固溶体、もしくは、酸化アルミニウム又は酸化アルミニウムを含む固溶体を成膜することが可能な原料溶液を製造できる。
 このとき、前記溶質として、ガリウム又はアルミニウムの少なくとも一方の前記金属元素を含むものを用い、前記溶質を混合した前記溶媒にアセチルアセトンを添加して撹拌する原料溶液の製造方法とすることができる。
 これにより、酸化ガリウム又は酸化ガリウムを含む固溶体、もしくは、酸化アルミニウム又は酸化アルミニウムを含む固溶体の膜中組成の再現性をより向上して成膜を行うことが可能な原料溶液を製造できる。
 このとき、前記撹拌する温度を95℃以下とする原料溶液の製造方法とすることができる。
 このような範囲であれば、溶媒の蒸発が抑えられ、溶質濃度が安定するため、原料溶液をより安定して製造できる。
 このとき、前記撹拌する時間を1分以上とする原料溶液の製造方法とすることができる。
 これにより、膜中組成が安定しプロセス再現性が向上すると共に、高い成膜速度での成膜が可能となる原料溶液を短時間で製造できるため、生産性が高く工業的に非常に有効なプロセスを構築可能となる。
 このとき、ミストCVD法による成膜方法であって、ミスト化部において原料溶液をミスト化してミストを発生させるミスト発生工程と、前記ミストを搬送するためのキャリアガスを前記ミスト化部に供給するキャリアガス供給工程と、前記ミスト化部と成膜室とを接続する供給管を介して前記ミスト化部から前記成膜室へと前記ミストを前記キャリアガスにより搬送する搬送工程と、前記搬送されたミストを熱処理して基板上に成膜を行う成膜工程とを含み、前記原料溶液を上述の原料溶液の製造方法により製造する成膜方法とすることができる。
 これにより、成膜速度が高く、さらに、2以上の元素の固溶体を成膜する際には膜中組成の再現性が高い成膜を行うことができる。
 本発明は、また、同一の原料溶液ロットから製造された、2以上の金属元素を含む結晶性酸化物膜を2つ以上含む製品ロットであって、前記結晶性酸化物膜中における金属成分の組成が最大である金属元素の組成の前記結晶性酸化物膜間のバラツキが5.0%以内のものである製品ロットを提供する。
 これにより、半導体装置として用いた場合再現性が非常に良好であり、工業的に有用なものとなる。
 このとき、前記金属元素として、ガリウム又はアルミニウムの少なくとも一方を含むものとすることができる。
 これにより、半導体装置としてより適したものとなる。
 以上のように、本発明の原料溶液の製造方法によれば、原料溶液中の溶質が分散ならびに均一化され、これにより、成膜速度を大きく改善するとともに、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れたミストCVD法による成膜を可能とする原料溶液を製造することができる。また、本発明の製品ロットによれば、半導体装置として用いた場合再現性が非常に良好であり、工業的に有用なものとなる。
本発明で用いられる成膜装置の一例を示す概略構成図である。 本発明に用いられるミスト化部の一例を説明する図である。 アルミニウムのアセチルアセトナート化に要する時間を調べた実験結果を示す図である。 アルミニウムアセチルアセトナート生成が飽和するまでに要する時間を示す図である。 原料撹拌温度と成膜速度の関係を示す図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、ミストCVD法により成膜を行うための原料溶液であって、成膜速度に優れ、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れた成膜を可能とする原料溶液の製造方法及び半導体装置として用いた場合再現性が非常に良好であり、工業的に有用な結晶性酸化物膜の製品ロットが求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、ミストCVD法により成膜を行うための原料溶液の製造方法であって、金属元素を含む溶質を溶媒に混合して撹拌する温度を30℃以上とする原料溶液の製造方法により、成膜速度に優れ、2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れたミストCVD法による成膜を可能とする原料溶液を製造できることを見出し、本発明を完成した。また、本発明者らは、同一の原料溶液ロットから製造された、2以上の金属元素を含む結晶性酸化物膜を2つ以上含む製品ロットであって、前記結晶性酸化物膜中における金属成分の組成が最大である金属元素の組成の前記結晶性酸化物膜間のバラツキが5.0%以内のものである製品ロットにより、半導体装置として用いた場合、再現性が非常に良好であり、工業的に有用な製品ロットとることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。
 (成膜装置)
 まず、本発明に係る成膜方法に好適に用いられる成膜装置について説明する。図1に成膜装置101の一例を示す。成膜装置101は、原料溶液104aをミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、ミスト化部120と成膜室107とを接続し、キャリアガスによってミストが搬送される供給管109と、供給管109からキャリアガスとともに供給されたミストを熱処理して、基板110上に成膜を行う成膜室107とを少なくとも有している。
 (ミスト化部)
 ミスト化部120では、原料溶液104aをミスト化してミストを発生させる。ミスト化手段は、原料溶液104aをミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
 このようなミスト化部120の一例を図2に示す。ミスト化部120は、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されることができる。さらに、超音波振動子106と発振器116とが接続されていてもよい。そして、発振器116を作動させると超音波振動子106が振動し、水105aを介してミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されることができる。このようなミスト化部は、後述の本発明に係る成膜システムにおけるミスト化部を構成することができる。
 (キャリアガス供給部)
 図1に示すように、キャリアガス供給部130はキャリアガスを供給するキャリアガス源102aを有する。このとき、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
 キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第2のキャリアガスとして、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどをさらに用いてもよく、空気を用いることもできる。キャリアガスの流量は特に限定されない。例えば、30mm角の基板上に成膜する場合には、キャリアガスの流量は0.01~20L/分とすることが好ましく、1~10L/分とすることがより好ましい。
 (供給管)
 成膜装置101は、ミスト化部120と成膜室107とを接続する供給管109を有する。この場合、ミストは、ミスト化部120のミスト発生源104から供給管109を介してキャリアガスによって搬送され、成膜室107内に供給される。供給管109は、例えば、石英管やガラス管、樹脂製のチューブなどを使用することができる。このような供給管を含むミストの搬送を行う機構は、後述の本発明に係る成膜システムにおける搬送部を構成することができる。
 (成膜室)
 成膜室107内には基板110が設置されており、該基板110を加熱するためのヒーター108を備えることができる。ヒーター108は、図1に示されるように成膜室107の内部に設けられていてもよいし、成膜室107の外部に設けられていてもよい。また、成膜室107には、基板110へのミストの供給に影響を及ぼさない位置に、排ガスの排気口112が設けられてもよい。また、基板110を成膜室107の上面に設置するなどして、フェイスダウンとしてもよいし、基板110を成膜室107の底面に設置して、フェイスアップとしてもよい。このような成膜室を含む成膜を行う機構は、後述の本発明に係る成膜システムにおける成膜部を構成することができる。
 (基板)
 基板110は、成膜可能であり膜を支持できるものであれば特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、シリコン、サファイア、石英、ガラス、タンタル酸リチウム、タンタル酸カリウム、ニオブ酸リチウム、酸化ガリウム、等が挙げられるが、これに限られるものではない。基板の厚さは特に限定されないが、好ましくは10~2000μmであり、より好ましくは50~800μmである。基板110の大きさは特に限定されない。基板面積が10mm以上、より好ましくは100mm以上のものを用いることもできるし、直径が2~8インチ(50~200mm)あるいはそれ以上の基板を用いることもできる。
 (原料溶液)
 本発明において、原料溶液104aは少なくとも金属元素を含む溶質を溶媒に混合させた混合物の溶液である。ミスト化が可能であれば溶液に含まれる溶質の材料は特に限定されず、無機材料であっても、有機材料であってもよい。金属又は金属化合物が好適に用いられ、例えば、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含むものを使用してもかまわない。このような原料溶液として、金属を錯体又は塩の形態で、溶媒、例えば有機溶媒又は水に混合して溶解又は分散させたものを好適に用いることができる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩のようなハロゲン化塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸のようなハロゲン化水素等を溶媒として溶解したものも塩の溶液として用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。前述した塩の溶液にアセチルアセトンを添加して混合することによっても、アセチルアセトナート錯体を形成することができる。以上のようにして原料溶液を用意すると、原料溶液中にはハロゲン又はアセチルアセトンのいずれかもしくはその両方を含むことになる。なお、原料溶液104a中の金属濃度は特に限定されず、0.005~1mol/Lなどとすることができる。
 なお、事前にアセチルアセトンとアンモニア水を混合して作製されるアセチルアセトンのアンモニウム塩を添加することによっても、アセチルアセトンを添加する場合と同様の効果が得られる。この場合の方が反応を早く進行させることができ、好ましい。
 原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、なかでも、臭化水素酸またはヨウ化水素酸が好ましい。酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
 原料溶液には、ドーパントが含まれていてもよい。ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、コバルト、イリジウム、ロジウム、マグネシウム、ニッケル等のp型ドーパントなどが挙げられる。
 (原料溶液の製造方法)
 次に、本発明に係る原料溶液の製造方法について説明する。本発明に係る原料溶液の製造方法においては、金属元素を含む溶質を溶媒に混合して撹拌する温度を30℃以上とする。これにより、ミストCVD法により成膜を行う場合に、成膜速度を高くすることが可能な原料溶液を製造できる。また、2以上の元素の固溶体を成膜する場合であっても、膜中組成の再現性を向上することが可能な原料溶液を製造できる。撹拌する温度は35℃以上とすると、より安定して成膜速度及び膜中組成の再現性を向上することが可能な原料溶液を製造することができ、好ましい。撹拌時の温度の上限は95℃以下とすることが望ましい。このような撹拌温度であれば、溶媒の蒸発が抑えられ、溶質濃度が安定するためである。撹拌時間は60時間以下が好ましく、また、1分以上が好ましい。これにより、膜中組成が安定しプロセス再現性が向上すると共に、高い成膜速度での成膜が可能となる原料溶液を製造できるため、工業的に非常に有効なプロセスを構築可能となる。また、生産性の低下も抑制できる。このような原料溶液の製造方法を行う機構は、後述の本発明に係る成膜システムにおける原料溶液製造部を構成することができる。
 撹拌方法、手段は特に限定されない。加熱機構付きのスターラーなどが好適に用いることができるが、工業的には加熱、保温機構を備えた容器と、撹拌機などを用いることで具現化することができる。その他、撹拌は、撹拌を行う容器内に設けられたプロペラや羽根の回転で行っても良いし、原料溶液を変質させない気体(不活性ガスや高圧水蒸気等)を吹き込むことにより行ってもよい。また、ポンプにより溶液を外部循環させジェット流として容器内に噴射し、槽内に循環流を作ることで撹拌することもできる。原料溶液の量や撹拌時間によっては、作業者が撹拌棒などを用いて撹拌を行ってもよい。また、以上例示した撹拌方法、手段を併用することも可能である。このような撹拌を行う手段は、後述の本発明に係る成膜システムにおける撹拌手段を構成することができる。
 図3は、塩化アルミニウム水溶液にアセチルアセトンを各温度で混合して撹拌した際に、アルミニウムアセチルアセトナートが生成する様子を、波数1540cm-1付近の赤外光の吸収量の変化で評価した実験結果である。撹拌温度が50℃では数分でアルミニウムアセチルアセトナートが生成して飽和するのに対し、23℃では30時間程度で飽和に至る。図3から、飽和までに要する時間を読み取り、撹拌温度に対してプロットしたものが図4である。液温が高いほど、必要時間は急激に減少し、撹拌温度が30℃以上であれば概ね15時間以下で反応が十分に安定して終了することがわかる。この場合、生産性やプロセスの安定性を考慮すれば、撹拌時間は60時間以下とするのがよい。反応が終了した原料溶液をミストCVD法に用いることで、再現性に優れた成膜を安定して行うことができる。
 また、撹拌温度が30℃未満では、溶質が凝集するなどしてミストの発生量そのものが減少してしまっていた。撹拌温度を30℃以上とすることで、溶質の分散性を改善する効果も得られる。この結果、ミストの発生量が多くなり成膜速度が向上すると考えられる。
 特に、溶質としては、ガリウム又はアルミニウムの少なくとも一方の金属元素及びハロゲンを含むものを用いることが好ましい。これにより、特に、安定かつより高い成膜速度で酸化ガリウム又は酸化ガリウムを含む固溶体、もしくは、酸化アルミニウム又は酸化アルミニウムを含む固溶体を成膜することが可能な原料溶液を製造できる。
 また、溶質として、ガリウム又はアルミニウムの少なくとも一方の金属元素を含むものを用い、さらに、溶質を混合した溶媒にアセチルアセトンを添加して撹拌することが好ましい。これにより、特に、酸化ガリウム又は酸化ガリウムを含む固溶体、もしくは、酸化アルミニウム又は酸化アルミニウムを含む固溶体の膜中組成の再現性をより向上して成膜を行うことが可能な原料溶液を製造できる。
 (成膜方法)
 次に、以下、図1を参照しながら、本発明に係る成膜方法の一例を説明する。前述の原料溶液の製造方法で製造した原料溶液104aをミスト発生源104内に収容し、基板110を成膜室107内に載置して、ヒーター108を作動させる。次に、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節する。
 次に、ミスト発生工程として、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを発生させる。
 次に、キャリアガス供給工程として、ミストを搬送するためのキャリアガスをミスト化部120に供給する。
 次に、搬送工程として、ミスト化部120と成膜室107とを接続する供給管109を介して、ミスト化部120から成膜室107へと、ミストをキャリアガスにより搬送する。
 次に、成膜工程として、成膜室107に搬送されたミストを加熱し熱反応を生じさせる熱処理を行い、基板110の表面の一部又は全部に成膜を行う。熱処理は、加熱によりミストが反応すればよく、反応条件等も特に限定されない。原料や成膜物に応じて適宜設定することができる。例えば、加熱温度は120~600℃の範囲であり、好ましくは200℃~600℃の範囲であり、より好ましくは300℃~550℃の範囲とすることができる。
 成膜の熱処理は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
 (バッファ層)
 上記成膜にあたっては、基板と膜の間に適宜バッファ層を設けてもよい。バッファ層の材料としては、Al、Ga、Cr、Fe、In、Rh、V、Ti、Ir、等が好適に用いられる。バッファ層の形成方法は特に限定されず、スパッタ法、蒸着法など公知の方法により成膜することができるが、上記のようなミストCVD法を用いる場合は、原料溶液を適宜変更するだけで形成でき簡便である。具体的には、アルミニウム、ガリウム、クロム、鉄、インジウム、ロジウム、バナジウム、チタン、イリジウム、から選ばれる1種又は2種以上の金属を、錯体又は塩の形態で水に溶解又は分散させたものを原料水溶液として好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。この場合も、溶質濃度は0.005~1mol/Lが好ましく、溶解するときの撹拌温度は30℃以上とする。他の条件についても、上記と同様にすることでバッファ層を形成することが可能である。バッファ層を所定の厚さ成膜した後、本発明に係る成膜方法により成膜を行う。バッファ層の厚さとしては0.1μm~2μmが好ましい。
 (成膜後熱処理)
 また、本発明に係る成膜方法で得られた膜を、例えば200~600℃で熱処理してもよい。これにより、膜中の未反応種などが除去され、より高品質の膜を得ることができる。熱処理は、空気中、酸素雰囲気中で行ってもよいし、窒素やアルゴン等の不活性ガス雰囲気下で行ってもかまわない。熱処理時間は適宜決定されるが、例えば、5~240分とすることができる。
 基板上に成膜を行った場合には基板と膜を含む積層体が得られるが、この積層体から公知の方法を用いて基板を除去して自立膜とすることも可能である。
 上記金属成分の組成は、原子発光分析法、質量分析法、X線光電子分光法、二次イオン質量分析法、エネルギー分散型蛍光X線分析法、などの公知の方法により決定することが可能である。
 金属成分の組成のバラツキは以下の方法により評価することができる。すなわち、同じ条件で2回以上の成膜を行って得られたそれぞれの膜について、公知の方法で金属成分の組成を決定し、バラツキを評価する対象の金属成分の組成に対して最大値、最小値を用いて、(最大値-最小値)÷(最大値+最小値)×100(%)で得られる値をバラツキとするものである。ここで、「同じ条件」とは、ガス流量、成膜温度など積極的に変更が可能なものの設定値とし、これらが同じであれば、例えば外気温や天気など制御不能なものが変化しても「同じ条件」に含まれる。基板や原料などは同一の製造ロットであれば「同じ条件」とみなせる。
 以上のような成膜方法を用いることで、複数の結晶性酸化物膜を含み、結晶性酸化物膜間で、結晶性酸化物膜に含まれる金属元素のバラツキの小さい製品ロットを製造することができる。具体的には、本発明に係る原料溶液の製造方法により得られる原料溶液ロットを用いて得られる結晶性酸化物膜を2つ以上含む製品ロットである。より具体的には、同一の原料溶液ロットから製造された、2以上の金属元素を含む結晶性酸化物膜を2つ以上含む製品ロットであって、結晶性酸化物膜中における金属成分の組成が最大である金属元素の組成の結晶性酸化物膜間のバラツキが5.0%以内のものである製品ロットを製造することができる。金属元素として、ガリウム又はアルミニウムの少なくとも一方を含むものであることが好ましい。
 このような結晶性酸化物膜の製品ロットは、例えば半導体装置として用いることができる。また、半導体膜を成膜する際のバッファ層としても用いることができる。このような用途に使用した場合、再現性が非常に良好であり、工業的に有用である。
 本発明に係る結晶性酸化物膜においては、膜厚は特に限定されない。例えば、0.05~100μmであってもよく、好ましくは0.1~50μmであり、より好ましくは0.5~20μmである。
 作製可能な結晶性酸化物膜の大きさ(面積)は特に限定されず、基板の成膜面の大きさに依存するが、10mm以上、より好ましくは100mm以上の結晶性酸化物膜を得ることができる。
 (成膜システム)
 また、本発明に係る成膜システムについて説明する。本発明に係る成膜システムは、上述の原料溶液を製造する原料溶液製造部と、成膜装置を含む成膜システムである。すなわち、本発明に係る結晶性酸化物膜の成膜システムは、ミスト化するための原料溶液であって、金属元素を含む溶質と溶媒とを含む原料溶液を製造する原料溶液製造部と、製造した前記原料溶液を霧化又は液滴化してミストを生成するミスト化部と、前記ミストをキャリアガスにより成膜部に搬送する搬送部と、前記ノズルから前記ミストを基板上へ供給して前記基板上にて熱処理して成膜を行う成膜部とを含む成膜システムである。そして、上記原料溶液製造部は、金属元素を含む溶質を溶媒に混合して撹拌するときに、温度を30℃以上として撹拌を行う撹拌手段を備えるものである。本発明に係る成膜システムにおいては、原料溶液製造部が制御部により制御されることで、金属元素を含む溶質を溶媒に混合して撹拌するときに温度を30℃以上として撹拌を行い、原料溶液を製造するものであってもよい。同様に、成膜装置が備えるミスト生成部、搬送部、成膜部等の各部が制御部により制御されることで、結晶性酸化物膜を成膜するものであってもよい。このような制御部により、上述の原料溶液の製造方法や成膜方法で説明したような処理を行うことが可能な成膜システムとすることもできる。
 撹拌手段は、撹拌する温度を35℃以上、95℃以下とするものであってもよい。また、撹拌手段は、前記撹拌する時間を60時間以下とするものであってもよい。さらに、撹拌する時間を1分以上とするものであってもよい。
 原料溶液製造部で製造される原料溶液は、溶質として、ガリウム又はアルミニウムの少なくとも一方の金属元素及びハロゲンを含むものであってもよい。また、原料溶液は、溶質として、ガリウム又はアルミニウムの少なくとも一方の金属元素を含むものとし、撹拌手段は、溶質を混合した溶媒にアセチルアセトンを添加して撹拌するものであってもよい。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 [実施例1]
 図1を参照しながら、本実施例で用いた成膜装置101を説明する。成膜装置101は、キャリアガスを供給するキャリアガス源102aと、キャリアガス源102aから送り出されるキャリアガスの流量を調節するための流量調節弁103aと、希釈用キャリアガスを供給する希釈用キャリアガス源102bと、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bと、原料溶液104aが収容されるミスト発生源104と、水105aが収容された容器105と、容器105の底面に取り付けられた超音波振動子106と、ヒーター108を具備する成膜室107と、ミスト発生源104から成膜室107までをつなぐ石英製の供給管109とを備えている。
 (原料溶液)
 原料溶液の作製は次のようにして行った。溶媒は超純水、溶質は臭化ガリウムを用い、これらを混合して、液温52℃を保持するようヒーターで加熱しながら10分間撹拌した。ガリウム濃度は0.1mol/Lとし、これを原料溶液104aとした。
 (基板)
 基板110として1辺3cmに切出した正方形のc面サファイア基板を、成膜室107内に載置しヒーター108を作動させて温度を500℃に昇温した。
 (成膜)
 上述のようにして製造した原料溶液104aをミスト発生源104内に収容した。続いて、流量調節弁103a、103bを開いてキャリアガス源102a、102bからキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2L/分に、希釈用キャリアガスの流量を6L/分にそれぞれ調節した。キャリアガスとしては窒素を用いた。
 次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管109を経て成膜室107内に導入した。そして、大気圧下、500℃の条件で、成膜室107内でミストを熱反応させて、基板110上に酸化ガリウムの薄膜を形成した。成膜時間は30分とした。
 (評価)
 基板110上に形成した薄膜について、X線回折により、α-Gaが形成されていることを確認した。次いで、FILMETRICS社の光干渉式膜厚計F-50を用い膜厚を測定した。測定箇所を基板110上の面内の9点として、平均膜厚を算出した。この結果、平均膜厚1.2μm、成膜速度2.4μm/時間であった。
 [実施例2~6]
 溶質を溶媒に混合して撹拌するときの撹拌温度をそれぞれ35、42、65、80、90℃とし、これ以外は実施例1と同様に成膜、評価を行った。この結果、平均膜厚は順に1.2、1.2、1.3、1.2、1.2μm、成膜速度は順に2.4、2.3、2.5、2.5、2.4μm/時間であった。
 [比較例1~3]
 撹拌温度をそれぞれ10、18、28℃とし、これ以外は実施例1と同様に成膜、評価を行った。この結果、平均膜厚は順に0.1、0.6、1.0μm、成膜速度は順に0.3、1.1、2.0μm/時間であった。
 実施例1~6及び比較例1~3の成膜速度をまとめたグラフを図5に示す。撹拌温度が30℃以上となると、成膜速度は撹拌温度によらず概ね一定となって、安定して十分に高い成膜速度となっているのがわかる。これは溶質の反応が進行しやすくなり、反応後の溶質の濃度が安定するためと考えられる。一方、撹拌温度が低いと、溶液中に凝集物などが形成し、ミストの発生量が減少するためと考えられる。
 [実施例7]
 塩化ガリウムと塩化アルミをモル比で3:7となるよう秤量し、超純水に混合した。溶質の合計濃度を0.02mol/Lとした。さらに、これにアセチルアセトンを0.06mol/L混合した。得られた混合液を50℃で10分撹拌し、原料溶液とした。これ以外は実施例1と同様に成膜を行った。X線回折装置でω―2θスキャンにより、α-Gaピーク位置とα-Alピーク位置の間にピークが出現し、GaとAlの固溶体が得られたことがわかった。同様の実験を再度行ったところ、X線回折のピークは1回目と同じ場所に出現し、膜組成の再現性が良好であることがわかった。
 [実施例8]
 実施例7と同じ条件で5回の成膜を繰り返し行い、5つの結晶性酸化物膜を含む製品ロットを製造した。得られた製品ロットの(AlGa)膜について、日本電子社製走査型電子顕微鏡(JSM-IT200)を用い、エネルギー分散型蛍光X線分析法により組成を決定した。この結果、Gaの組成はそれぞれ82、80、80、81、79%であった。Gaの組成のバラツキは1.9%であり、再現性が非常に優れている。
 [実施例9]
 実施例7において、塩化ガリウムと塩化アルミをモル比で1:9としたこと以外は実施例7と同じ条件で5回の成膜を繰り返し行い、製品ロットを製造した。得られた製品ロットの(AlGa)膜について、実施例8と同じ方法により組成を決定した。この結果、Gaの組成はそれぞれ54、53、49、49、50%であった。Gaの組成のバラツキは4.9%であり、再現性が非常に優れている。
 [比較例4]
 実施例9において、撹拌時の温度を28℃としたこと以外は実施例9と同じ条件で5回の成膜を繰り返し行い、製品ロットを製造した。得られた製品ロットの(AlGa)膜について、実施例8と同じ方法により組成を決定した。この結果、Gaの組成はそれぞれ53、59、48、57、52%であった。Gaの組成のバラツキは10.3%であり、再現性が悪化した。
 以上のとおり、本発明の実施例によれば、成膜速度に優れた原料溶液を製造することができ、さらに2以上の元素の固溶体を成膜する場合であっても膜中組成の再現性に優れた成膜を可能とする原料溶液を製造することができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  ミストCVD法により成膜を行うための原料溶液の製造方法であって、
     金属元素を含む溶質を溶媒に混合して撹拌する温度を30℃以上とすることを特徴とする原料溶液の製造方法。
  2.  前記撹拌する温度を35℃以上とすることを特徴とする請求項1に記載の原料溶液の製造方法。
  3.  前記撹拌する時間を60時間以下とすることを特徴とする請求項1又は請求項2に記載の原料溶液の製造方法。
  4.  前記溶質として、ガリウム又はアルミニウムの少なくとも一方の前記金属元素及びハロゲンを含むものを用いることを特徴とする請求項1から3のいずれか一項に記載の原料溶液の製造方法。
  5.  前記溶質として、ガリウム又はアルミニウムの少なくとも一方の前記金属元素を含むものを用い、
     前記溶質を混合した前記溶媒にアセチルアセトンを添加して撹拌することを特徴とする請求項1から4のいずれか一項に記載の原料溶液の製造方法。
  6.  前記撹拌する温度を95℃以下とすることを特徴とする請求項1から5のいずれか一項に記載の原料溶液の製造方法。
  7.  前記撹拌する時間を1分以上とすることを特徴とする請求項1から6のいずれか一項に記載の原料溶液の製造方法。
  8.  ミストCVD法による成膜方法であって、
     ミスト化部において原料溶液をミスト化してミストを発生させるミスト発生工程と、
     前記ミストを搬送するためのキャリアガスを前記ミスト化部に供給するキャリアガス供給工程と、
     前記ミスト化部と成膜室とを接続する供給管を介して前記ミスト化部から前記成膜室へと前記ミストを前記キャリアガスにより搬送する搬送工程と、
     前記搬送されたミストを熱処理して基板上に成膜を行う成膜工程とを含み、
     前記原料溶液を請求項1から7のいずれか一項に記載の原料溶液の製造方法により製造することを特徴とする成膜方法。
  9.  同一の原料溶液ロットから製造された、2以上の金属元素を含む結晶性酸化物膜を2つ以上含む製品ロットであって、
     前記結晶性酸化物膜中における金属成分の組成が最大である金属元素の組成の前記結晶性酸化物膜間のバラツキが5.0%以内のものであることを特徴とする製品ロット。
  10.  前記金属元素として、ガリウム又はアルミニウムの少なくとも一方を含むものであることを特徴とする請求項9に記載の製品ロット。
PCT/JP2022/015869 2021-05-04 2022-03-30 原料溶液の製造方法、成膜方法及び製品ロット WO2022234750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280032175.3A CN117242554A (zh) 2021-05-04 2022-03-30 原料溶液的制造方法、成膜方法及制品批次
JP2023518643A JP7610231B2 (ja) 2021-05-04 2022-03-30 原料溶液の製造方法、成膜方法及び製品ロット
EP22798857.3A EP4335950A1 (en) 2021-05-04 2022-03-30 Method for producing source solution, method for forming film, and product lot
KR1020237037463A KR20240004411A (ko) 2021-05-04 2022-03-30 원료용액의 제조방법, 성막방법 및 제품로트
US18/288,845 US20240124974A1 (en) 2021-05-04 2022-03-30 Method of producing raw material solution, method of film-forming and production lot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078230 2021-05-04
JP2021078230 2021-05-04

Publications (1)

Publication Number Publication Date
WO2022234750A1 true WO2022234750A1 (ja) 2022-11-10

Family

ID=83907811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015869 WO2022234750A1 (ja) 2021-05-04 2022-03-30 原料溶液の製造方法、成膜方法及び製品ロット

Country Status (7)

Country Link
US (1) US20240124974A1 (ja)
EP (1) EP4335950A1 (ja)
JP (1) JP7610231B2 (ja)
KR (1) KR20240004411A (ja)
CN (2) CN217781272U (ja)
TW (2) TWM633288U (ja)
WO (1) WO2022234750A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
US20150221506A1 (en) * 2014-02-06 2015-08-06 Precursor Energetics, Inc. Molecular precursor compounds for abigzo zinc-group 13 mixed oxide materials
WO2016027861A1 (ja) * 2014-08-21 2016-02-25 東ソー・ファインケム株式会社 化学的に安定なアルキルアルミニウム溶液、アルキルアルミニウム加水分解組成物溶液、アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品、その製造方法、酸化アルミニウム薄膜の製造方法、パッシベーション膜の製造方法、パッシベーション膜、それを用いた太陽電池素子
JP2021031358A (ja) * 2019-08-28 2021-03-01 信越化学工業株式会社 積層構造体、半導体装置及び積層構造体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
US20150221506A1 (en) * 2014-02-06 2015-08-06 Precursor Energetics, Inc. Molecular precursor compounds for abigzo zinc-group 13 mixed oxide materials
WO2016027861A1 (ja) * 2014-08-21 2016-02-25 東ソー・ファインケム株式会社 化学的に安定なアルキルアルミニウム溶液、アルキルアルミニウム加水分解組成物溶液、アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品、その製造方法、酸化アルミニウム薄膜の製造方法、パッシベーション膜の製造方法、パッシベーション膜、それを用いた太陽電池素子
JP2021031358A (ja) * 2019-08-28 2021-03-01 信越化学工業株式会社 積層構造体、半導体装置及び積層構造体の製造方法

Also Published As

Publication number Publication date
KR20240004411A (ko) 2024-01-11
EP4335950A1 (en) 2024-03-13
TW202309330A (zh) 2023-03-01
TWM633288U (zh) 2022-10-21
JPWO2022234750A1 (ja) 2022-11-10
CN117242554A (zh) 2023-12-15
JP7610231B2 (ja) 2025-01-08
CN217781272U (zh) 2022-11-11
US20240124974A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP7374282B2 (ja) ガリウム含有膜の成膜方法
JP7285889B2 (ja) 酸化ガリウム半導体膜の製造方法及び成膜装置
JP7674279B2 (ja) 成膜装置及び成膜方法
JP7432904B2 (ja) 酸化ガリウム半導体膜及び原料溶液
JP2024023981A (ja) 結晶性酸化物薄膜、積層体及び結晶性酸化物薄膜の製造方法
JP7610231B2 (ja) 原料溶液の製造方法、成膜方法及び製品ロット
WO2023062889A1 (ja) 成膜装置及び製造方法
JP7622072B2 (ja) 成膜方法
JP7436333B2 (ja) 成膜方法及び成膜装置
US20230151485A1 (en) Film forming apparatus and film forming method
JP7313530B2 (ja) 成膜方法
JP7265517B2 (ja) 成膜方法
JP7274024B2 (ja) 成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288845

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347074192

Country of ref document: IN

Ref document number: 202280032175.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023518643

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022798857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798857

Country of ref document: EP

Effective date: 20231204