[go: up one dir, main page]

WO2022186248A1 - Resin composition, method for producing polymer fine particles, and method for producing resin composition - Google Patents

Resin composition, method for producing polymer fine particles, and method for producing resin composition Download PDF

Info

Publication number
WO2022186248A1
WO2022186248A1 PCT/JP2022/008754 JP2022008754W WO2022186248A1 WO 2022186248 A1 WO2022186248 A1 WO 2022186248A1 JP 2022008754 W JP2022008754 W JP 2022008754W WO 2022186248 A1 WO2022186248 A1 WO 2022186248A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polymer
monomer
meth
fine particles
Prior art date
Application number
PCT/JP2022/008754
Other languages
French (fr)
Japanese (ja)
Inventor
展祥 舞鶴
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2023503889A priority Critical patent/JPWO2022186248A1/ja
Publication of WO2022186248A1 publication Critical patent/WO2022186248A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters

Definitions

  • the present invention relates to a resin composition, a method for producing polymer fine particles, and a method for producing a resin composition.
  • Radically curable resins such as unsaturated polyester resins and vinyl ester resins are widely used in various applications such as coating materials and molding compositions containing reinforcing materials such as glass fibers. .
  • curable resins have the problem that they are accompanied by large curing shrinkage during curing, and cracks occur in the cured product due to internal stress within the cured product. Therefore, various attempts have been made to impart toughness to these curable resins, which are very brittle materials.
  • Elastomers include polymer microparticles (eg, crosslinked polymer microparticles).
  • Patent Document 1 a specific amount of polymer microparticles (polymer microparticles) as an elastomer are dispersed in a curable resin in the state of primary particles, and if necessary, a specific amount of an epoxy resin and at least one polymerizable non-polymeric polymer in the molecule.
  • a curable resin composition containing a low molecular weight compound having a saturated bond and a molecular weight of less than 300 is disclosed.
  • the curable resin composition of Patent Document 1 has toughness and crack resistance without reducing the heat resistance (Tg), transparency, elastic modulus, surface tackiness, and weather resistance (yellowing) of the resulting cured product. It is disclosed that the adhesive properties can be significantly improved, the viscosity of the composition is low, and the adhesion to the substrate can be improved.
  • One aspect of the present invention has been made in view of the above problems, and its object is to provide a resin composition that is excellent in handleability and storage stability.
  • the present inventors have found that by including a specific amount of a specific polyfunctional monomer as a cross-linking agent in the monomer constituting the graft portion of the polymer fine particles, The inventors have found new knowledge that a resin composition excellent in handleability and storage stability can be provided, and have completed the present invention.
  • the resin composition according to one embodiment of the present invention contains polymer fine particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule
  • the coalesced fine particles (A) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body, and the elastic body is a diene-based rubber, a (meth)acrylate-based One or more selected from the group consisting of rubber and organosiloxane rubber, wherein the graft portion is derived from a first structural unit derived from a first monomer and a second monomer second structural unit, wherein the first monomer is selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers One or more types, the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first structural unit in the graft portion and the When the total
  • the composition according to one embodiment of the present invention contains polymer fine particles (A) and a low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule.
  • the polymer fine particles (A) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body, and the elastic body is a diene rubber, ( One or more selected from the group consisting of meth)acrylate-based rubbers and organosiloxane-based rubbers, wherein the graft portion comprises a first structural unit derived from a first monomer and a second monomer the first monomer is an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer.
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first monomer in the graft portion
  • the second structural unit is more than 0.00% by weight and less than 2.00% by weight
  • the polymer fine particles When the total amount of A) and the low molecular compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the low molecular compound (C) is 50 to 99% by weight. %.
  • the first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers;
  • the monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and in the graft part preparation step, the first monomer and the second monomer
  • the second monomer is used in an amount of more than 0.00% by weight and less than 2.00% by weight when the total of the above is 100% by weight.
  • Embodiment 1 [1. Technical idea of Embodiment 1 of the present invention]
  • a resin composition containing polymer fine particles and a matrix resin having two or more polymerizable unsaturated bonds in the molecule from the viewpoint of handling when using the resin composition, A low viscosity is preferred.
  • phase separation may occur between the polymer fine particles in the resin composition and the matrix resin, which improves the storage stability of the resin composition.
  • the content of the matrix resin having two or more polymerizable unsaturated bonds in the molecule is large in the resin composition (for example, the matrix resin is 90% by weight in 100% by weight of the resin composition).
  • phase separation between the polymer fine particles and the matrix resin was remarkable during long-term storage of the resin composition.
  • the phase separation between the polymer fine particles in the resin composition and the matrix resin was caused by aggregation of the polymer fine particles in the resin composition.
  • the viscosity of the resin composition can be reduced by using a specific polyfunctional monomer as a monomer in the formation (polymerization) of the graft portion of the polymer fine particles.
  • the specific polyfunctional monomer can function as a cross-linking agent.
  • the present inventors conducted further intensive studies in order to achieve both reduction in the viscosity of the resin composition and maintenance of the dispersed state of the polymer fine particles in the resin composition.
  • the present inventors have newly discovered the following knowledge and completed the present invention: in the formation (polymerization) of the graft portion of polymer fine particles, a specific polyfunctional monomer (crosslinking agent) By using a specific amount of, it is possible to reduce the viscosity of the resin composition and maintain the dispersion state of the polymer fine particles in the resin composition.
  • the resin composition according to Embodiment 1 of the present invention contains fine polymer particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule.
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body.
  • the elastic body of the fine polymer particles (A) contains one or more selected from the group consisting of diene rubbers, (meth)acrylate rubbers, and organosiloxane rubbers.
  • the graft portion of the fine polymer particles (A) is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer, and
  • the first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers
  • the second monomer is , is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule.
  • the second structural unit is 0.00%. % by weight and less than 2.00% by weight.
  • the polymer fine particles (A) are 1 to 50% by weight and the matrix resin (B) is 50 to 99% by weight. is.
  • the polymer constituting the graft portion of the polymer fine particles (A) contains the second structural unit derived from the second monomer, whereby the polymer The viscosity of the resin composition can be reduced as compared with the case where the grafted portion of the fine particles (A) does not contain the second structural unit. Therefore, the resin composition according to Embodiment 1 of the present invention has the advantage of being excellent in handleability.
  • the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight.
  • the content of the second structural unit is more than 0.00% by weight and less than 2.00% by weight, the dispersed state of the polymer fine particles (A) in the resin composition can be maintained. Aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the resin composition is stored for a long period of time. Therefore, the resin composition according to Embodiment 1 of the present invention has an advantage of excellent storage stability.
  • polymerizable unsaturated bond means a polymerizable unsaturated bond.
  • the polymerizable unsaturated bond can be said to be a bond that initiates a polymerization reaction with the bond as a starting point.
  • a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule means "a polyfunctional monomer having two or more radically polymerizable reactive groups in the same molecule. ” can also be said.
  • a “radical polymerizable reactive group” means a reactive group having radical polymerizability.
  • the radically polymerizable reactive group can be said to be a reactive group that initiates a radical polymerization reaction with the reactive group as a starting point when a radical attacks the reactive group.
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body.
  • the elastic body includes one or more selected from the group consisting of diene rubber, (meth)acrylate rubber and organosiloxane rubber.
  • the elastic body may contain natural rubber in addition to the rubbers described above.
  • the elastic body can also be called an elastic portion or a rubber particle.
  • (Meth)acrylate as used herein means acrylate and/or methacrylate.
  • the elastic body contains diene rubber (Case A)
  • Case A the resulting resin composition can provide a cured product with excellent toughness and impact resistance.
  • a cured product having excellent toughness and/or impact resistance can also be said to be a cured product having excellent durability.
  • a diene-based rubber is an elastic body containing structural units derived from diene-based monomers.
  • the diene-based monomer can also be called a conjugated diene-based monomer.
  • the diene-based rubber contains (i) 50% to 100% by weight of structural units derived from a diene-based monomer and a diene copolymerizable with the diene-based monomer, out of 100% by weight of the structural units.
  • ком ⁇ онентs derived from vinyl monomers other than system monomers may contain 0% to 50% by weight of structural units derived from vinyl monomers other than system monomers, and (ii) 50% by weight of structural units derived from diene monomers; 100% by weight or less, and 0% by weight or more and less than 50% by weight of structural units derived from vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers, (iii) 60% to 100% by weight of structural units derived from diene-based monomers, and derived from vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers (iv) 70% to 100% by weight of structural units derived from a diene-based monomer, and copolymerized with a diene-based monomer It may contain 0% to 30% by weight of structural units derived from vinyl monomers other than diene monomers, and (v) 80 structural units derived from diene monomers
  • the diene-based rubber may contain, as structural units, structural units derived from (meth)acrylate-based monomers in an amount smaller than the structural units derived from diene-based monomers.
  • diene-based monomers examples include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), and 2-chloro-1,3-butadiene. These diene-based monomers may be used alone or in combination of two or more.
  • Vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers include, for example, styrene, ⁇ -methylstyrene, and monochlorostyrene.
  • Vinylarenes such as , dichlorostyrene; Vinylcarboxylic acids such as acrylic acid and methacrylic acid; Vinyl cyanides such as acrylonitrile and methacrylonitrile; Vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; , propylene, butylene, and isobutylene; and polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene.
  • the vinyl-based monomer A described above may be used alone or in combination of two or more. Among the vinyl-based monomers A described above, styrene is particularly preferable.
  • the structural unit derived from the vinyl-based monomer A is an optional component.
  • the diene-based rubber may be composed only of structural units derived from diene-based monomers.
  • the diene-based rubber may be butadiene rubber (also referred to as polybutadiene rubber) composed of structural units derived from 1,3-butadiene, or butadiene- Styrene rubber (also called polystyrene-butadiene) is preferred, and butadiene rubber is more preferred.
  • the polymer fine particles (A) containing the diene rubber can more effectively exhibit the desired effects.
  • butadiene-styrene rubber is more preferable in that the transparency of the resulting cured product can be enhanced by adjusting the refractive index.
  • the butadiene-styrene rubber contains (i) more than 50% by weight and 100% by weight or less of butadiene-derived structural units and 0% by weight or more and 50% by weight of styrene-derived structural units in 100% by weight of butadiene-styrene rubber. (ii) 60% to 100% by weight of structural units derived from butadiene and 0% to 40% by weight of structural units derived from styrene.
  • (iii) may contain 70% to 100% by weight of structural units derived from butadiene and 0% to 30% by weight of structural units derived from styrene, and (iv) a structure derived from butadiene It may contain 80% to 100% by weight of units and 0% to 20% by weight of structural units derived from styrene, and (v) 90% to 100% by weight of structural units derived from butadiene. , and 0% to 10% by weight of structural units derived from styrene.
  • the butadiene-styrene rubber contains (vi) 70% to 90% by weight of butadiene-derived structural units and 10% to 30% by weight of styrene-derived structural units in 100% by weight of butadiene-styrene rubber.
  • (vii) may contain 70% to 85% by weight of structural units derived from butadiene and 15% to 30% by weight of structural units derived from styrene, and
  • (viii) It may contain 70% to 80% by weight of structural units derived from butadiene and 20% to 30% by weight of structural units derived from styrene, and (ix) 75% by weight of structural units derived from butadiene. % to 80% by weight, and 20% to 25% by weight of structural units derived from styrene.
  • (Meth)acrylate-based rubber is an elastic body containing, as a structural unit, a structural unit derived from a (meth)acrylate-based monomer.
  • the (meth)acrylate rubber contains (i) 50% to 100% by weight of structural units derived from (meth)acrylate monomers in 100% by weight of structural units, and (meth)acrylate 0% to 50% by weight of a structural unit derived from a vinyl monomer other than a (meth)acrylate monomer copolymerizable with the monomer may be included, (ii) (meth ) More than 50% by weight but not more than 100% by weight of structural units derived from acrylate-based monomers, and vinyl units other than (meth)acrylate-based monomers copolymerizable with (meth)acrylate-based monomers It may contain 0% by weight or more and less than 50% by weight of structural units derived from a monomer, (iii) 60% to 100% by weight of structural units derived from a (meth)acrylate mono
  • the (meth)acrylate-based rubber may contain structural units derived from a diene-based monomer in an amount smaller than the structural units derived from the (meth)acrylate-based monomer. good.
  • (meth)acrylate monomers examples include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, and dodecyl (meth)acrylate.
  • Alkyl (meth)acrylates such as stearyl (meth)acrylate and behenyl (meth)acrylate; Aromatic ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate; ) acrylate, hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate; glycidyl (meth)acrylates such as glycidyl (meth)acrylate and glycidylalkyl (meth)acrylate; alkoxyalkyl (meth)acrylates; Allylalkyl (meth)acrylates such as allyl (meth)acrylate and allylalkyl (meth)acrylate; monoethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, etc.
  • Examples include polyfunctional (meth)acrylates. These (meth)acrylate monomers may be used alone or in combination of two or more. Among these (meth)acrylate monomers, ethyl (meth)acrylate, butyl (meth)acrylate and 2-ethylhexyl (meth)acrylate are preferred, and butyl (meth)acrylate is more preferred.
  • the (meth)acrylate rubber is preferably one or more selected from the group consisting of ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber and 2-ethylhexyl (meth)acrylate rubber.
  • butyl (meth)acrylate rubber is more preferred.
  • Ethyl (meth)acrylate rubber is rubber composed of structural units derived from ethyl (meth)acrylate
  • butyl (meth)acrylate rubber is rubber composed of structural units derived from butyl (meth)acrylate
  • a meth)acrylate rubber is a rubber composed of structural units derived from 2-ethylhexyl (meth)acrylate.
  • the glass transition temperature (Tg) of the elastic body is lowered, so that the polymer fine particles (A) and the resin composition having a low Tg can be obtained.
  • the obtained resin composition can provide a cured product having excellent toughness, and (ii) the viscosity of the resin composition can be made lower.
  • the vinyl-based monomer other than the (meth)acrylate-based monomer copolymerizable with the (meth)acrylate-based monomer (hereinafter also referred to as vinyl-based monomer B), the vinyl-based monomer The monomers listed in Form A are included. Only one kind of the vinyl-based monomer B may be used, or two or more kinds thereof may be used in combination. Among the vinyl-based monomers B, styrene is particularly preferred.
  • the structural unit derived from the vinyl monomer B is an optional component.
  • the (meth)acrylate rubber may be composed only of structural units derived from (meth)acrylate monomers.
  • the elastic body contains organosiloxane rubber (Case C)
  • Case C the resulting resin composition has sufficient heat resistance and can provide a cured product with excellent impact resistance at low temperatures.
  • Organosiloxane-based rubbers include, for example, (i) composed of alkyl- or aryl-disubstituted silyloxy units such as dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy.
  • Organosiloxane polymers (ii) organosiloxane polymers composed of alkyl- or aryl-monosubstituted silyloxy units such as organohydrogensilyloxy in which some of the alkyl side chains are substituted with hydrogen atoms. be done. These organosiloxane polymers may be used alone or in combination of two or more.
  • a polymer composed of dimethylsilyloxy units is referred to as dimethylsilyloxy rubber
  • a polymer composed of methylphenylsilyloxy units is referred to as methylphenylsilyloxy rubber.
  • Polymers composed of oxy units are called dimethylsilyloxy-diphenylsilyloxy rubbers.
  • the organosiloxane rubber is (i) dimethylsilyloxy rubber, methylphenylsilyloxy rubber, and dimethylsilyloxy-diphenyl, since the resulting resin composition can provide a cured product having excellent heat resistance. It is preferably one or more selected from the group consisting of silyloxy rubbers, and (ii) more preferably dimethylsilyloxy rubber because it is readily available and economical.
  • the fine polymer particles (A) preferably contain 80% by weight or more, more preferably 90% by weight or more, of the organosiloxane rubber in 100% by weight of the elastic material contained in the fine polymer particles (A). It is more preferable to have According to the configuration, the obtained resin composition can provide a cured product having excellent heat resistance.
  • the elastic body may further contain an elastic body other than diene rubber, (meth)acrylate rubber and organosiloxane rubber.
  • elastic bodies other than diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers include natural rubbers.
  • the elastomer is butadiene rubber, butadiene-styrene rubber, butadiene-(meth)acrylate rubber, ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber, 2-ethylhexyl (meth)acrylate rubber. , dimethylsilyloxy rubber, methylphenylsilyloxy rubber, and dimethylsilyloxy-diphenylsilyloxy rubber, preferably one or more selected from the group consisting of butadiene rubber, butadiene-styrene rubber, butyl (meth)acrylate It is more preferably one or more selected from the group consisting of rubber and dimethylsilyloxy rubber.
  • a crosslinked structure of elastic body From the viewpoint of maintaining the dispersion stability of the polymer fine particles (A) in the thermosetting resin, it is preferable that a crosslinked structure is introduced into the elastic body.
  • a method for introducing a crosslinked structure into the elastic body a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of the elastic body, a monomer capable of constituting the elastic body is mixed with a cross-linkable monomer such as a polyfunctional monomer and/or a mercapto group-containing compound, and then polymerized. . In this specification, manufacturing a polymer such as an elastomer is also referred to as polymerizing the polymer.
  • Methods for introducing a crosslinked structure into an organosiloxane rubber include the following methods: (A) when polymerizing an organosiloxane rubber, a polyfunctional alkoxysilane compound and another material are combined; (B) introducing a reactive group (e.g., (i) a mercapto group and (ii) a reactive vinyl group, etc.) into an organosiloxane-based rubber, and then to the resulting reaction product, (i) a method of radical reaction by adding an organic peroxide or (ii) a polymerizable vinyl monomer or the like, or (C) a polyfunctional monomer when polymerizing an organosiloxane rubber; and/or a method of mixing a crosslinkable monomer such as a mercapto group-containing compound with other materials, followed by polymerization, and the like.
  • a reactive group e.g., (i) a mercapto group and (ii) a reactive vinyl group, etc.
  • a polyfunctional monomer is a monomer having two or more polymerizable unsaturated bonds in the molecule. Said polymerizable unsaturated bond is preferably a carbon-carbon double bond.
  • Examples of polyfunctional monomers include (meth)acrylates having an ethylenically unsaturated double bond, such as allylalkyl (meth)acrylates and allyloxyalkyl (meth)acrylates, butadiene is not included. be done.
  • Examples of monomers having two (meth)acrylic groups include ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and cyclohexanedimethanol.
  • Examples of the polyethylene glycol di(meth)acrylates include triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (600) di(meth)acrylate, and the like. are exemplified.
  • alkoxylated trimethylolpropane tri(meth)acrylates include trimethylolpropane tri(meth)acrylate and trimethylolpropane triethoxy tri(meth)acrylate.
  • examples of monomers having four (meth)acrylic groups include pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, and the like. Furthermore, dipentaerythritol penta(meth)acrylate etc. are illustrated as a monomer which has five (meth)acrylic groups. Furthermore, examples of monomers having six (meth)acrylic groups include ditrimethylolpropane hexa(meth)acrylate. Polyfunctional monomers also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, and the like.
  • polyfunctional monomers that can be preferably used in the polymerization of the elastic body include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol. Di(meth)acrylates, hexanediol di(meth)acrylates, cyclohexanedimethanol di(meth)acrylates, and polyethylene glycol di(meth)acrylates. Only one type of these polyfunctional monomers may be used, or two or more types may be used in combination.
  • Mercapto group-containing compounds include alkyl group-substituted mercaptans, allyl group-substituted mercaptans, aryl group-substituted mercaptans, hydroxy group-substituted mercaptans, alkoxy group-substituted mercaptans, cyano group-substituted mercaptans, amino group-substituted mercaptans, silyl group-substituted mercaptans, and acid group-substituted mercaptans. mercaptans, halo group-substituted mercaptans, acyl group-substituted mercaptans, and the like.
  • alkyl-substituted mercaptan an alkyl-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkyl-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
  • aryl group-substituted mercaptan a phenyl group-substituted mercaptan is preferred.
  • alkoxy-substituted mercaptan an alkoxy-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkoxy-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
  • the acid group-substituted mercaptan is preferably an alkyl group-substituted mercaptan having a carboxyl group and having 1 to 10 carbon atoms or an aryl group-substituted mercaptan having a carboxyl group and having 1 to 12 carbon atoms.
  • the glass transition temperature of the elastic body is preferably 80° C. or lower, more preferably 70° C. or lower, more preferably 60° C. or lower, more preferably 50° C. or lower, more preferably 40° C. or lower, more preferably 30° C. or lower.
  • ° C. or lower is more preferred, 10 ° C. or lower is more preferred, 0 ° C. or lower is more preferred, -20 ° C. or lower is more preferred, -40 ° C. or lower is more preferred, -45 ° C. or lower is more preferred, and -50 ° C. or lower is more preferred.
  • glass transition temperature may be referred to as "Tg”.
  • polymer fine particles (A) having a low Tg and a resin composition having a low Tg can be obtained.
  • the obtained resin composition can provide a cured product having excellent toughness.
  • the viscosity of the resin composition obtained can be made lower.
  • the Tg of the elastic body can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A).
  • Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan ⁇ graph; (2) Regarding the obtained tan ⁇ graph, the tan ⁇ peak temperature is taken as the glass transition temperature.
  • a dynamic viscoelasticity measuring device eg, DVA-200 manufactured by IT Keisoku Co., Ltd.
  • the elastic modulus (rigidity) of the resulting cured product can be suppressed from decreasing, that is, a cured product having a sufficient elastic modulus (rigidity) can be obtained. 20° C. or higher is more preferred, 50° C. or higher is even more preferred, 80° C. or higher is particularly preferred, and 120° C. or higher is most preferred.
  • the Tg of the elastic body can be determined by the composition of the constituent units contained in the elastic body. In other words, the Tg of the resulting elastic body can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the elastic body.
  • a group of monomers that provide a homopolymer having a Tg greater than 0 ° C. is referred to as a monomer group a.
  • a group of monomers that provide a homopolymer having a Tg of less than 0° C. when only one type of monomer is polymerized is referred to as a monomer group b.
  • An elastic body G is defined as an elastic body containing 0 to 50% by weight (more preferably 1 to 35% by weight) of structural units derived from one type of monomer.
  • the elastic body G has a Tg greater than 0°C. Moreover, when the elastic body contains the elastic body G, the obtained resin composition can provide a cured product having sufficient rigidity.
  • a crosslinked structure is introduced into the elastic body.
  • Methods for introducing the crosslinked structure include the methods described above.
  • Examples of monomers that can be included in the monomer group a include, but are not limited to, styrene, unsubstituted vinyl aromatic compounds such as 2-vinylnaphthalene; vinyl-substituted compounds such as ⁇ -methylstyrene; Aromatic compounds; ring-alkylated vinyls such as 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene and 2,4,6-trimethylstyrene Aromatic compounds; Ring alkoxylated vinyl aromatic compounds such as 4-methoxystyrene and 4-ethoxystyrene; Ring halogenated vinyl aromatic compounds such as 2-chlorostyrene and 3-chlorostyrene; 4-acetoxystyrene and the like ring-ester-substituted vinyl aromatic compounds; ring hydroxylated vinyl aromatic compounds such as 4-hydroxystyrene
  • Examples of the monomer group b include ethyl acrylate, butyl acrylate (also known as butyl acrylate), 2-ethylhexyl acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, 2-hydroxyethyl acrylate, and 4-hydroxybutyl acrylate. etc. Only one type of these monomer group b may be used, or two or more types may be used in combination. Among these monomer groups b, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
  • the volume average particle diameter of the elastic body is preferably 0.03 ⁇ m to 50.00 ⁇ m, more preferably 0.05 ⁇ m to 10.00 ⁇ m, more preferably 0.08 ⁇ m to 2.00 ⁇ m, and further preferably 0.10 ⁇ m to 1.00 ⁇ m. It is preferably 0.10 ⁇ m to 0.80 ⁇ m, and particularly preferably 0.10 ⁇ m to 0.50 ⁇ m.
  • the volume average particle diameter of the elastic body is (i) 0.03 ⁇ m or more, an elastic body having a desired volume average particle diameter can be stably obtained, and (ii) when it is 50.00 ⁇ m or less, it can be obtained. The heat resistance and impact resistance of the resulting cured product are improved.
  • the volume-average particle size of the elastic body can be measured by using an aqueous suspension containing the elastic body as a sample and using a dynamic light scattering particle size distribution analyzer or the like.
  • the proportion of the elastic body in the polymer microparticles (A) is preferably 40 to 97% by weight, more preferably 60 to 95% by weight, more preferably 60 to 93% by weight, based on 100% by weight of the entire polymer microparticles (A). is more preferable, 70 to 93% by weight is more preferable, 70 to 90% by weight is more preferable, 70 to 87% by weight is more preferable, and 70 to 85% by weight is even more preferable.
  • the proportion of the elastic body is (i) 40% by weight or more, the resulting resin composition can provide a cured product having excellent toughness and impact resistance, and (ii) is 97% by weight or less. In this case, since the polymer fine particles (A) do not easily aggregate, the resin composition does not become highly viscous, and as a result, the obtained resin composition can be excellent in handleability.
  • the ratio of the elastic material in the fine polymer particles (A) when the ratio of the elastic material in the fine polymer particles (A) increases and the ratio of the graft portion decreases, the elastic material is absorbed by the graft portion. It is exposed as an elastic body without being fully covered, and tends to aggregate. This is because aggregation of the fine polymer particles (A) is prevented by the steric repulsion effect of the graft portion. This aggregation increases the viscosity of the resin composition. This aggregation occurs during production of the resin composition containing the polymer fine particles (A) or over time.
  • the cross-linking of the graft part fixes the graft chain to some extent, suppressing entanglement and reducing the viscosity.
  • the fixation of the grafted chains suppresses the steric repulsion effect, making aggregation more likely to occur over time.
  • the elastomer is swellable in a suitable solvent, but substantially insoluble.
  • the elastic body is preferably insoluble in the thermosetting resin used.
  • the elastic body preferably has a gel content of 60% by weight or more, more preferably 80% by weight or more, even more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
  • the obtained resin composition can provide a cured product having excellent toughness.
  • the method for calculating the gel content is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension.
  • the method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension is not particularly limited. For example, (i) aggregate the polymer microparticles (A) in the aqueous suspension, ) dehydrating the obtained aggregates, and (iii) further drying the aggregates to obtain powder particles of the polymer fine particles (A). Next, 2.0 g of powder particles of polymer fine particles (A) are dissolved in 50 mL of methyl ethyl ketone (MEK).
  • MEK methyl ethyl ketone
  • the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter).
  • MEK soluble matter MEK soluble matter
  • MEK insoluble matter MEK insoluble matter
  • a centrifuge manufactured by Hitachi Koki Co., Ltd., CP60E
  • the obtained MEK lysate was subjected to centrifugation for 1 hour at a rotation speed of 30000 rpm, and the lysate was subjected to MEK soluble. It is separated into a soluble portion and an MEK insoluble portion.
  • a total of 3 sets of centrifugation operations are carried out.
  • the weights of the obtained MEK soluble matter and MEK insoluble matter are measured, and the gel content is calculated from the following formula.
  • the "elastic body" of the fine polymer particles (A) may consist of only one type of elastic body having the same composition of structural units.
  • the "elastic body” of the fine polymer particles (A) is one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body" of the fine polymer particles (A) may consist of a plurality of types of elastic bodies having different compositions of structural units.
  • the "elastic body” of the fine polymer particles (A) may be two or more selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body” of the fine polymer particles (A) may be one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the "elastic body" of the fine polymer particles (A) may be a plurality of types of diene-based rubbers, (meth)acrylate-based rubbers, or organosiloxane-based rubbers each having a different composition of structural units.
  • the "elastic body" of the fine polymer particles (A) is composed of a plurality of types of elastic bodies having different compositions of structural units.
  • each of the plurality of types of elastic bodies is defined as elastic body 1 , elastic body 2 , . . . , and elastic body n .
  • n is an integer of 2 or more.
  • the "elastic body" of the fine polymer particles (A) may include a composite of separately polymerized elastic bodies 1 , 2 , . . . , and elastic body n .
  • the "elastic body" of the fine polymer particles (A) may include one elastic body obtained by polymerizing the elastic body 1 , the elastic body 2 , . . . and the elastic body n in order. Such polymerization of a plurality of elastic bodies (polymers) in order is also called multistage polymerization. A single elastic body obtained by multi-stage polymerization of a plurality of types of elastic bodies is also referred to as a multi-stage polymerized elastic body. A method for producing the multi-stage polymer elastic body will be described in detail later.
  • a multistage polymerized elastic body composed of elastic body 1 , elastic body 2 , . . . , and elastic body n will be described.
  • the elastic body n may cover at least a portion of the elastic body n - 1 or may cover the entire elastic body n-1 .
  • part of the elastic body n may be inside the elastic body n-1 .
  • each of the plurality of elastic bodies may form a layered structure.
  • elastic body 1 forms the innermost layer
  • elastic body 2 is formed outside elastic body 1
  • elastic body 2 is formed on the outer side of elastic body 1.
  • a mode in which a layer of the elastic body 3 is formed as the outermost layer of the elastic body outside the layer of the elastic body 2 is also one mode of the present invention.
  • a multi-stage polymerized elastic body in which each of a plurality of elastic bodies forms a layered structure can also be called a multi-layered elastic body.
  • the “elastic body” of the fine polymer particles (A) is (i) a composite of multiple types of elastic bodies, (ii) a multi-stage polymerized elastic body and/or (iii) a multi-layered elastic It may contain a body.
  • the elastic body may further contain a surface-crosslinked polymer in addition to one or more rubbers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • a surface-crosslinked polymer in addition to one or more rubbers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
  • the portion of the elastic body containing the above-mentioned rubber as a main component may be referred to as the "elastic core of the elastic body".
  • the elastic body has an elastic core formed by polymerizing at least one monomer selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber.
  • a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer. is preferred.
  • An embodiment of the present invention will be described below, taking as an example the case where the elastic body further has a surface-crosslinked polymer in addition to the elastic core of the elastic body. In this case, (i) blocking resistance can be improved in the production of the polymer fine particles (A), and (ii) dispersibility of the polymer fine particles (A) in the thermosetting resin becomes better.
  • the surface cross-linked polymer covers at least a part of the elastic core of the elastic body, thereby increasing the elasticity of the elastic body of the fine polymer particles (A).
  • the exposure of the core is reduced, and as a result, the elastic bodies are less likely to stick to each other, thereby improving the dispersibility of the fine polymer particles (A).
  • the elastic body When the elastic body has a surface-crosslinked polymer, it may also have the following effects: (i) the effect of lowering the viscosity of the present resin composition, (ii) the effect of increasing the crosslink density of the elastic body as a whole, and ( iii) The effect of increasing the grafting efficiency of the grafted part.
  • the crosslink density in the elastic core of the elastic means the degree of the number of crosslinked structures in the entire elastic core of the elastic.
  • the surface-crosslinked polymer contains, as structural units, 30 to 100% by weight of structural units derived from a polyfunctional monomer and 0 to 70% by weight of structural units derived from other vinyl monomers, a total of 100 % by weight of the polymer.
  • polyfunctional monomers that can be used for polymerization of the surface-crosslinked polymer include the polyfunctional monomers exemplified in the above section "Crosslinked structure of elastic body".
  • polyfunctional monomers that can be preferably used for polymerization of the surface-crosslinked polymer include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate (e.g. 1,3-butylene glycol dimethacrylate), butanediol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and polyethylene glycol di(meth)acrylates. Only one type of these polyfunctional monomers may be used, or two or more types may be used in combination.
  • the elastomer may comprise a surface cross-linked polymer polymerized independently of the polymerisation of the elastic core of the elastomer, or it may comprise a surface cross-linked polymer polymerized with the elastic core of the elastomer.
  • the fine polymer particles (A) may be a multistage polymer obtained by polymerizing the elastic core of the elastic body and the surface-crosslinked polymer together, and then polymerizing the graft portion.
  • the polymer fine particles (A) may be a multi-stage polymer obtained by multi-stage polymerization of an elastic core of an elastic body, a surface-crosslinked polymer and a graft portion in this order.
  • the surface cross-linked polymer may coat at least a portion of the elastic core of the elastomer.
  • the surface cross-linked polymer can be regarded as a part of the elastic body, and the surface cross-linked polymer can be said to be the surface cross-linked part of the elastic body, as opposed to the elastic core of the elastic body.
  • the graft portion may be (i) graft-bonded to an elastic body other than the surface-crosslinked polymer (that is, the elastic core of the elastic body); It may be grafted to the crosslinked polymer, or (iii) grafted to both the elastic body other than the surface crosslinked polymer (that is, the elastic core of the elastic body) and the surface crosslinked polymer. good.
  • the volume-average particle size of the elastic means the volume-average particle size of the elastic containing the surface-crosslinked polymer.
  • the polymer graft-bonded to the elastic body is referred to as a graft portion.
  • the graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer.
  • the first structural unit is the first monomer (hereinafter, “first monomer”) among the structural units constituting the polymer contained in the graft portion. refers to the part derived from A 1st monomer is 1 or more types selected from the group which consists of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer.
  • the graft part has the first structural unit derived from the first monomer, so that (i) the compatibility between the polymer fine particles (A) and the matrix resin (B) is improved, and (ii) the matrix resin.
  • the dispersibility of the polymer fine particles (A) in (B) is improved, and (iii) the polymer fine particles (A) can be dispersed in the state of primary particles in the resin composition or its cured product.
  • aromatic vinyl monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, and divinylbenzene.
  • vinyl cyan monomers include acrylonitrile and methacrylonitrile.
  • (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
  • (Meth)acrylate as used herein means acrylate and/or methacrylate.
  • the first monomer selected from the group consisting of the above-mentioned aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers.
  • only one type is used as the first monomer. may be used, or two or more may be used in combination as the first monomer.
  • the second structural unit (hereinafter, “second structural unit”) is the second monomer (hereinafter, “second monomer”) among the structural units constituting the polymer contained in the graft portion. refers to the part derived from The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in its molecule.
  • the graft portion having the second structural unit derived from the second monomer can be produced by using the second monomer in addition to the first monomer in the production (polymerization) of the graft portion.
  • the second monomer can crosslink the polymer obtained by polymerizing the first monomer in the production of the graft. Therefore, the second monomer can be said to be a "crosslinking agent", and the second structural unit can be said to be a "structural unit derived from the crosslinking agent".
  • the graft part has the second structural unit derived from the second monomer, so that (i) the polymer fine particles (A) can be prevented from swelling in the resin composition, (ii) the resin composition (iii) the dispersibility of the fine polymer particles (A) in the matrix resin (B) is improved.
  • polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule include the polyfunctional monomers exemplified in the above section "Crosslinked structure of elastic body”.
  • polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule include allyl methacrylate. , ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and polyethylene glycol di(meth)acrylate types are mentioned. Only one type of these polyfunctional monomers may be used as the second monomer, or two or more types may be combined and used as the second monomer.
  • the graft portion preferably contains 10 to 95% by weight, more preferably 30 to 92% by weight, more preferably 50 to 90% by weight of the first structural unit in 100% by weight of the polymer constituting the graft portion. More preferably, 60 to 87% by weight is particularly preferable, and 70 to 85% by weight is most preferable.
  • the content of the second constitutional unit in the polymer constituting the graft portion is 0.00% when the total of the first constitutional unit and the second constitutional unit in the polymer constituting the graft portion is 100% by weight. 00% by weight and less than 2.00% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion is within the above range, the viscosity of the resin composition is reduced and the state of dispersion of the polymer fine particles (A) in the resin composition is maintained. It has the advantage that it is possible to make both
  • the content of the second structural unit in the polymer that constitutes the graft portion is the same as that of the first structural unit in the polymer that constitutes the graft portion.
  • the viscosity of the resin composition is reduced and the polymer in the resin composition It is compatible with maintenance of the dispersed state of the fine particles (A).
  • the content of the second structural unit in the polymer constituting the graft portion is preferably 0.10% by weight or more, more preferably 0.20% by weight or more, and 0.20% by weight or more. It is more preferably 30% by weight or more, more preferably 0.40% by weight or more, more preferably 0.50% by weight or more, and even more preferably 0.55% by weight or more.
  • the content of the second structural unit in the polymer constituting the graft portion is When the total of one structural unit and the second structural unit is 100% by weight, it is preferably 1.80% by weight or less, more preferably 1.70% by weight or less, and 1.60% by weight. is more preferably 1.40% by weight or less, more preferably 1.20% by weight or less, even more preferably 1.00% by weight or less, and 0.80 % by weight or less is even more preferable, and 0.60% by weight or less is particularly preferable.
  • the graft portion may further contain a structural unit derived from a monomer having a reactive group, in addition to the above-described first structural unit and second structural unit.
  • the monomer having a reactive group includes an epoxy group, an oxetane group, a hydroxyl group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, a benzoxazine group, and a cyanate ester group.
  • the grafted portion of the fine polymer particles (A) and the matrix resin (B) (for example, thermosetting resin) can be chemically bonded in the resin composition.
  • the fine polymer particles (A) can be maintained in a good dispersed state without agglomeration of the fine polymer particles (A) in the resin composition or the cured product thereof.
  • epoxy group-containing monomers include glycidyl group-containing vinyl monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and allyl glycidyl ether.
  • monomers having a hydroxyl group include, for example, (i) 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and other hydroxy straight-chain alkyl (meth)acrylates; Acrylates (especially hydroxy linear C1-6 alkyl (meth)acrylates); (ii) caprolactone-modified hydroxy (meth)acrylates; (iii) ⁇ -(hydroxymethyl)methyl acrylate, ⁇ -(hydroxymethyl)ethyl acrylate hydroxy-branched alkyl (meth)acrylates such as; (iv) mono(meth)acrylates of polyester diols (particularly saturated polyester diols) obtained from dihydric carboxylic acids (such as phthalic acid) and dihydric alcohols (such as propylene glycol); hydroxyl group-containing (meth)acrylates, and the like.
  • polyester diols particularly saturated polyester diols obtained from dihydric carboxy
  • monomers having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid
  • dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
  • the monocarboxylic acid is preferably used as the monocarboxylic acid.
  • the graft portion preferably contains 0.5 to 90% by weight, and preferably 1 to 50% by weight, of structural units derived from a monomer having a reactive group in 100% by weight of the polymer constituting the graft portion. is more preferable, more preferably 2 to 35% by weight, and particularly preferably 3 to 20% by weight.
  • the resulting resin composition is A cured product having sufficient impact resistance can be provided, and (ii) when the content is 90% by weight or less, the resulting resin composition can provide a cured product having sufficient impact resistance, and , has the advantage that the storage stability of the resin composition is improved.
  • the structural unit derived from a monomer having a reactive group is preferably contained in the graft portion, and more preferably contained only in the graft portion.
  • the graft portion may contain, as structural units, structural units derived from other monomers in addition to the structural units derived from the monomers described above.
  • the glass transition temperature of the graft portion is preferably 190°C or lower, more preferably 160°C or lower, more preferably 140°C or lower, more preferably 120°C or lower, preferably 80°C or lower, more preferably 70°C or lower, and 60°C.
  • the following is more preferable, 50° C. or less is more preferable, 40° C. or less is more preferable, 30° C. or less is more preferable, 20° C. or less is more preferable, 10° C. or less is more preferable, 0° C. or less is more preferable, and ⁇ 20° C.
  • -40°C or less is more preferable, -45°C or less is more preferable, -50°C or less is more preferable, -55°C or less is more preferable, -60°C or less is more preferable, -65°C or less is More preferably -70°C or less, more preferably -75°C or less, more preferably -80°C or less, more preferably -85°C or less, more preferably -90°C or less, more preferably -95°C or less , -100°C or lower is more preferred, -105°C or lower is more preferred, -110°C or lower is more preferred, -115°C or lower is more preferred, -120°C or lower is even more preferred, and -125°C or lower is particularly preferred.
  • the glass transition temperature of the graft portion is preferably 0° C. or higher, more preferably 30° C. or higher, more preferably 50° C. or higher, more preferably 70° C. or higher, still more preferably 90° C. or higher, and particularly preferably 110° C. or lower. preferable.
  • the Tg of the graft part can be determined by the composition of the constituent units contained in the graft part.
  • the Tg of the obtained graft portion can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the graft portion.
  • the Tg of the graft portion can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A). Specifically, Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan ⁇ graph; (2) Regarding the obtained tan ⁇ graph, the tan ⁇ peak temperature is taken as the glass transition temperature.
  • the highest peak temperature is taken as the glass transition temperature of the graft portion.
  • the fine polymer particles (A) may be a polymer having the same structure as the graft portion and may have a polymer that is not graft-bonded to the elastic body.
  • a polymer having the same structure as the graft portion and not graft-bonded to the elastic body is also referred to as a non-grafted polymer.
  • the non-grafted polymer also constitutes a part of the fine polymer particles (A) according to Embodiment 1 of the present invention.
  • the non-graft polymer can also be said to be a polymer that is not graft-bonded to the elastic body, among the polymers produced in the polymerization of the graft portion.
  • the ratio of the polymer graft-bonded to the elastic body, that is, the graft portion, out of the polymer produced in the polymerization of the graft portion is referred to as the graft ratio.
  • the graft ratio can also be said to be a value represented by (weight of grafted portion)/ ⁇ (weight of grafted portion)+(weight of non-grafted polymer) ⁇ 100.
  • the graft ratio of the graft portion is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more.
  • the graft ratio is 70% or more, there is an advantage that the viscosity of the resin composition does not become too high.
  • the method for calculating the graft ratio is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension. Specifically, the method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension includes (i) coagulating the polymer microparticles (A) in the aqueous suspension, and (ii) A method of obtaining powder particles of polymer fine particles (A) by dehydrating the obtained coagulate and (iii) further drying the coagulate can be mentioned.
  • MEK methyl ethyl ketone
  • the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter).
  • (1) to (3) are performed: (1) Using a centrifuge (CP60E, manufactured by Hitachi Koki Co., Ltd.), the obtained MEK is dissolved at a rotation speed of 30000 rpm for 1 hour.
  • the weight of the polymer other than the graft portion is the charged amount of the monomer constituting the polymer other than the graft portion.
  • a polymer other than the graft portion is, for example, an elastic body.
  • the fine polymer particles (A) contain a surface-crosslinked polymer, which will be described later, the polymer other than the graft portion contains both the elastic body and the surface-crosslinked polymer.
  • the weight of the polymer of the graft portion is the charged amount of the monomers constituting the polymer of the graft portion.
  • the method of coagulating the polymer microparticles (A) is not particularly limited, and a method using a solvent, a method using a coagulant, a method of spraying an aqueous suspension, or the like can be used. .
  • the graft portion may consist of only one type of graft portion having structural units of the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions each having a different composition of structural units.
  • each of the plurality of types of graft portions is designated as graft portion 1 , graft portion 2 , . . . , graft portion n (n is an integer of 2 or more).
  • the graft portion may comprise a composite of graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n , each polymerized separately.
  • the graft portion may contain one polymer obtained by sequentially polymerizing graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n .
  • Such polymerization of a plurality of polymerized portions (graft portions) in order is also referred to as multi-stage polymerization.
  • a polymer obtained by multistage polymerization of a plurality of types of graft portions is also referred to as a multistage polymerization graft portion.
  • a method for producing the multistage polymerized graft portion will be described in detail later.
  • the graft portion When the graft portion consists of multiple types of graft portions, not all of these multiple types of graft portions may be graft-bonded to the elastic body. At least a part of at least one type of graft portion may be graft-bonded to the elastic body, and other types (a plurality of other types) of graft portions are graft portions that are graft-bonded to the elastic body. may be grafted to. Further, when the graft portion is composed of a plurality of types of graft portions, a plurality of types of polymers that are polymers having the same configuration as the plurality of types of graft portions and are not graft-bonded to the elastic body graft polymer).
  • a multi-stage polymerized graft portion composed of graft portion 1 , graft portion 2 , . . . , and graft portion n will be described.
  • the graft portion n may cover at least a portion of the graft portion n ⁇ 1 , or may cover the entirety of the graft portion n ⁇ 1 .
  • a part of the graft portion n may be inside the graft portion n ⁇ 1 .
  • each of the plurality of graft portions may form a layered structure.
  • graft portion 1 forms the innermost layer in the graft portion
  • graft portion 2 is formed on the outer side of graft portion 1 .
  • an aspect in which the layer of the graft portion 3 is formed as the outermost layer outside the layer of the graft portion 2 is also an aspect of the present invention.
  • a multi-stage polymerized graft portion in which each of a plurality of graft portions forms a layered structure can also be called a multi-layer graft portion. That is, in one embodiment of the present invention, the graft portion may include (i) a composite of multiple types of graft portions, (ii) a multi-stage polymerization graft portion and/or (iii) a multi-layer graft portion.
  • the elastic body and the graft portion are polymerized in this order in the production of the polymer microparticles (A), at least a portion of the graft portion may cover at least a portion of the elastic body in the resulting polymer microparticles (A). .
  • the elastic body and the graft portion are polymerized in this order, which means that the elastic body and the graft portion are polymerized in multiple stages.
  • the polymer microparticles (A) obtained by multi-stage polymerization of the elastic body and the graft portion can be said to be a multi-stage polymer.
  • the graft part can cover at least a part of the elastic body, or can cover the entire elastic body.
  • part of the graft portion may enter the inside of the elastic body.
  • At least a portion of the graft portion preferably covers at least a portion of the elastic body. In other words, at least part of the graft portion is preferably present on the outermost side of the fine polymer particles (A).
  • the elastic body and the graft portion may form a layered structure.
  • the elastic body forms the innermost layer (also referred to as a core layer) and the layer of the graft portion is formed as the outermost layer (also referred to as a shell layer) on the outside of the elastic body is also an aspect of the present invention.
  • a structure in which an elastic body is used as a core layer and a graft portion is used as a shell layer can be called a core-shell structure.
  • the polymer fine particles (A) in which the elastic body and the graft part form a layered structure (core-shell structure) can be called a multi-layered polymer or a core-shell polymer. That is, in one embodiment of the present invention, the polymer fine particle (A) may be a multi-stage polymer and/or a multi-layer polymer or core-shell polymer. However, as long as it has an elastic body and a graft portion, the fine polymer particles (A) are not limited to the above configuration.
  • Case D where the polymer fine particles (A) is a multi-stage polymer obtained by multi-stage polymerization of the elastic core of the elastic body, the surface-crosslinked polymer, and the graft portion in this order will be described.
  • the surface-crosslinked polymer impregnates (incorporates) a portion of the surface of the elastic core of the elastic, or impregnates the entire surface of the elastic core of the elastic ( inside).
  • the graft portion may cover a portion of the surface cross-linked polymer or may cover the entire surface cross-linked polymer.
  • the graft part may form a layer of the graft part on the outside of the surface cross-linked polymer while partially impregnating the surface of the surface cross-linked polymer (entering inside). Further, in case D, part of the graft part may impregnate the surface of the elastic core of the elastic body (entering inside) to form a layer of the graft part on the outside of the elastic core of the elastic body. .
  • the elastic core of the elastic body, the surface-crosslinked polymer and the graft portion may have a layered structure.
  • the elastic core of the elastic body is the innermost layer (core layer)
  • the layer of the surface-crosslinked polymer is present as the intermediate layer outside the elastic core of the elastic body
  • the layer of the graft portion is the outermost layer of the surface-crosslinked polymer.
  • An aspect in which it exists as an outer layer (shell layer) is also an aspect of the present invention.
  • the volume average particle diameter (Mv) of the fine polymer particles (A) is preferably from 0.03 ⁇ m to 50.00 ⁇ m, since a highly stable resin composition having a desired viscosity can be obtained.
  • 05 ⁇ m to 10.00 ⁇ m is more preferable, 0.08 ⁇ m to 2.00 ⁇ m is more preferable, 0.10 ⁇ m to 1.00 ⁇ m is still more preferable, 0.10 ⁇ m to 0.80 ⁇ m is even more preferable, 0.10 ⁇ m to 0.50 ⁇ m is particularly preferred.
  • the polymer fine particles (A) are said to have good dispersibility in the matrix resin (B) (for example, thermosetting resin). It also has advantages.
  • the "volume average particle diameter (Mv) of the polymer microparticles (A)” means the volume average particle diameter of the primary particles of the polymer microparticles (A), unless otherwise specified. do.
  • the volume average particle size of the polymer fine particles (A) can be measured using a dynamic light scattering particle size distribution analyzer or the like using an aqueous latex containing the polymer fine particles (A) as a sample.
  • the fine polymer particles (A) can be produced, for example, by polymerizing an elastic body and then graft-polymerizing a polymer forming a graft portion to the elastic body in the presence of the elastic body.
  • the method for producing such polymer microparticles (A) is also included in the scope of the present invention.
  • the method for producing polymer microparticles is a method for producing polymer microparticles (A), in which a diene-based monomer, a (meth)acrylate-based monomer, and an organosiloxane-based monomer an elastic body preparing step of polymerizing one or more monomers selected from the group consisting of a first monomer and a second monomer to the elastic body prepared by the elastic body preparing step; and the first monomer is selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer.
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and in the graft part preparation step, the first monomer When the total of the monomer and the second monomer is 100% by weight, the second monomer is used in an amount of more than 0.00% by weight and less than 2.00% by weight. .
  • the elastic body preparation step is a step of polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers.
  • the elastic body contains at least one selected from the group consisting of diene-based rubbers and (meth)acrylate-based rubbers.
  • one or more monomers selected from the group consisting of diene-based monomers and (meth)acrylate-based monomers may be polymerized.
  • Polymerization of the monomers in this case can be carried out, for example, by a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization. can.
  • the organosiloxane-based monomer may be polymerized in the elastic body preparation step.
  • Polymerization of the monomers in this case can be carried out, for example, by methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. can.
  • the elastic body of the fine polymer particles (A) consists of a plurality of types of elastic bodies (eg, elastic body 1 , elastic body 2 , . . . , elastic body n ) will be described.
  • the elastic bodies 1 1 , 2 2 , . may be manufactured. That is, in this case, the elastic body preparation process includes a preparation process for elastic body 1 , a preparation process for elastic body 2 , . , . Alternatively, in the elastic body preparation step, elastic body 1 , elastic body 2 , . good too.
  • the following steps (1) to (4) can be performed in order to obtain a multi-stage polymerized elastic body: (1) Polymerize the elastic body 1 to obtain the elastic body 1 . (2) then elastic 2 is polymerized in the presence of elastic 1 to obtain a two-step elastic 1+2 ; (3) elastic 3 is then polymerized in the presence of elastic 1+2 to give a three-step elastic; (4) After the same procedure, the elastic body n is polymerized in the presence of the elastic body 1+ 2 +...+(n-1) to obtain the multistage polymerized elastic body 1+2+...+n . obtain.
  • the elastic body preparation step may include the following steps (a) and (b): (a) polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers; (b) one or more monomers selected from the group consisting of polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule and vinyl monomers other than the polyfunctional monomers A step of polymerizing the monomer.
  • An elastic core of an elastic body can be prepared by step (a).
  • the step (b) can prepare a surface-crosslinked polymer of an elastic body.
  • the surface-crosslinked polymer can be formed by polymerizing the monomers used for forming the surface-crosslinked polymer by known radical polymerization in the presence of any polymer (eg, elastic core).
  • any polymer eg, elastic core.
  • the polymerization of the surface-crosslinked polymer is preferably carried out by an emulsion polymerization method.
  • the elastic body preparation step includes step (a) and step (b), said step (b) may be performed simultaneously with said (a), or may be performed after said (a).
  • the elastic body preparation step (i) one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers; , a polyfunctional monomer and a vinyl monomer other than the polyfunctional monomer may be used together to prepare the elastic core and the surface crosslinked polymer at the same time, (ii ) After the use of one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers, polyfunctional monomers and the polyfunctional It is also possible to use a vinyl-based monomer other than the organic monomer and prepare (polymerize) the surface-crosslinked polymer after completing the preparation (polymerization) of the elastic core.
  • the graft portion preparation step is a step of graft-polymerizing the first monomer and the second monomer onto the elastic body prepared in the elastic body preparation step.
  • the graft portion can be formed, for example, by polymerizing a monomer used for forming the graft portion by known radical polymerization in the presence of an elastic body.
  • an elastic body comprising an elastic core or (ii) an elastic body comprising an elastic core and a surface-crosslinked polymer is obtained as an aqueous suspension
  • the graft portion is polymerized by emulsion polymerization. It is preferable to carry out by
  • the graft portion can be manufactured, for example, according to the method described in WO2005/028546.
  • a method of manufacturing a graft portion when the graft portion is composed of a plurality of types of graft portions (for example, graft portion 1 1 , graft portion 2 2 , . . . , graft portion n 2 ) will be described.
  • the graft portion 1 1 , the graft portion 2 2 , . (composite) may be produced. That is, in this case, the graft portion preparation process includes a preparation step for graft portion 1 , a preparation step for graft portion 2 , . , .
  • the graft portion preparation step is a step of sequentially polymerizing the graft portion 1 , the graft portion 2 , . good too.
  • a multistage polymerized graft portion can be obtained by sequentially performing steps (1) to (4) in the graft portion preparation step: (1) Graft portion 1 is polymerized to obtain graft portion 1 . (2) then graft portion 2 is polymerized in the presence of graft portion 1 to obtain a two-step graft portion 1+2 ; (3) graft portion 3 is then polymerized in the presence of graft portion 1 +2 to obtain a three-step graft; (4) After the same procedure, graft portion n is polymerized in the presence of graft portion 1 + 2 + . obtain.
  • the graft portion is composed of a plurality of types of graft portions
  • the graft portions having a plurality of types of graft portions are polymerized, and then the graft portions are graft-polymerized to the elastic body prepared in the elastic body preparation step to obtain fine polymer particles.
  • (A) may be produced.
  • a plurality of types of polymers constituting the graft portion are sequentially subjected to multistage graft polymerization to the elastic body to produce the polymer microparticles (A).
  • the production (polymerization) of the graft portion uses a first monomer and a second monomer.
  • the second monomer can crosslink the polymer obtained from the first monomer. Therefore, in the production of the graft portion, (i) the second monomer is used together with the first monomer, and the cross-linking reaction by the second monomer proceeds simultaneously with the polymerization of the first monomer; Alternatively, (ii) it is preferable to use the second monomer after using the first monomer and allow the cross-linking reaction by the second polymer to proceed after the completion of the polymerization of the first monomer.
  • Polymerization of the elastic body, polymerization of the graft portion (graft polymerization), and polymerization of the surface-crosslinked polymer in the fine polymer particles (A) are performed by known methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. It can be implemented by the method of Among these, the emulsion polymerization method is particularly preferable as the method for producing the polymer fine particles (A).
  • the emulsion polymerization method has the advantages of (i) facilitating compositional design of the polymer microparticles (A) and (ii) facilitating industrial production of the polymer microparticles (A).
  • the method for producing the elastic body, the graft portion, and the surface-crosslinked polymer having any configuration that can be contained in the fine polymer particles (A) will be described.
  • a known emulsifier can be used as an emulsifier (dispersant) for the production of the polymer fine particles (A).
  • emulsifiers include anionic emulsifiers, nonionic emulsifiers, polyvinyl alcohol, alkyl-substituted cellulose, polyvinylpyrrolidone, and polyacrylic acid derivatives.
  • anionic emulsifiers include sulfur-based emulsifiers, phosphorus-based emulsifiers, sarcosic acid-based emulsifiers, and carboxylic acid-based emulsifiers.
  • sulfur-based emulsifiers include sodium dodecylbenzenesulfonate (abbreviation: SDBS).
  • Phosphorus-based emulsifiers include sodium polyoxyethylene lauryl ether phosphate and the like.
  • thermal decomposition initiator When an emulsion polymerization method is adopted as the method for producing the polymer fine particles (A), a thermal decomposition initiator can be used for the production of the polymer fine particles (A).
  • the thermal decomposition initiators include, for example, (i) 2,2′-azobisisobutyronitrile, and (ii) peroxides such as organic and inorganic peroxides, and other known initiators. agents can be mentioned.
  • organic peroxides examples include t-butyl peroxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t- and hexyl peroxide.
  • inorganic peroxides include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
  • a redox initiator can also be used for the production of polymer fine particles (A).
  • the redox initiator includes (i) peroxides such as organic peroxides and inorganic peroxides, and (ii) transition metal salts such as iron (II) sulfate, sodium formaldehyde sulfoxylate, glucose and the like. It is an initiator used in combination with a reducing agent.
  • a chelating agent such as disodium ethylenediaminetetraacetate and, if necessary, a phosphorus-containing compound such as sodium pyrophosphate may be used in combination.
  • a redox initiator When a redox initiator is used, polymerization can be carried out even at a low temperature at which the peroxide is not substantially thermally decomposed, and the polymerization temperature can be set in a wide range. Therefore, it is preferable to use a redox initiator.
  • redox initiators using organic peroxides such as cumene hydroperoxide, dicumyl peroxide, paramenthane hydroperoxide, and t-butyl hydroperoxide as peroxides are preferred.
  • the amount of the thermal decomposition type initiator used, the amount of the redox type initiator used, and the amount of the reducing agent, transition metal salt, chelating agent, etc. used when the redox type initiator is used are within a known range. can be used.
  • a known chain transfer agent is used for the purpose of introducing a crosslinked structure into the elastic body, the graft part or the surface crosslinked polymer, when using a polyfunctional monomer in the polymerization of the elastic body, the graft part or the surface crosslinked polymer.
  • a chain transfer agent can be used within the range of the amount used.
  • a surfactant can be used in the production of the polymer microparticles (A).
  • the types and amounts of the surfactants used are within known ranges.
  • polymer microparticles (A) produced by the method for producing polymer microparticles (A) described above are also included in the scope of the present invention.
  • the polymer microparticles (A) according to Embodiment 1 of the present invention may have the following configuration: from a diene-based monomer, a (meth)acrylate-based monomer, and an organosiloxane-based monomer an elastic body obtained by polymerizing one or more monomers selected from the group consisting of; a graft portion obtained by graft-polymerizing a first monomer and a second monomer to the elastic body; wherein the first monomer is one selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first structural unit and the second The second structural unit is more than 0.00% by weight and less than 2.00% by weight, when the total amount of the second structural unit is 100% by weight.
  • the matrix resin (B) is a resin having two or more polymerizable unsaturated bonds in its molecule. Resins having two or more polymerizable unsaturated bonds in the molecule are not particularly limited, and examples thereof include curable resins having radically polymerizable reactive groups (eg, carbon-carbon double bonds). More specifically, the matrix resin (B) is a curable resin containing an ester bond in the repeating unit constituting the main chain, epoxy (meth)acrylate, urethane (meth)acrylate, polyether (meth)acrylate, acrylic (meth)acrylates, and the like. These curable resins may be used alone or in combination of two or more.
  • Epoxy (meth)acrylate is obtained by addition reaction of polyepoxide such as bisphenol A epoxy resin, unsaturated monobasic acid such as (meth)acrylic acid, and optionally polybasic acid in the presence of a catalyst. It is an addition reaction product obtained by The addition reaction product and, if necessary, a mixture of the addition reaction product and a vinyl monomer are generally referred to as a vinyl ester resin. This production method inevitably leaves a small amount of the raw material polyepoxide. If the polyepoxide does not have a polymerizable unsaturated bond in its molecule, it may remain uncured and adversely affect the physical properties of the cured product (heat resistance, etc.).
  • the content of epoxy (meth)acrylate in 100 parts by weight of the total amount of matrix resin (B) is preferably less than 99 parts by weight, preferably 95 parts by weight. Less than 90 parts by weight is more preferred, less than 80 parts by weight is even more preferred, less than 50 parts by weight is particularly preferred, and less than 30 parts by weight is most preferred. More preferably, the matrix resin (B) does not contain epoxy (meth)acrylate.
  • the "curable resin containing an ester bond in the repeating unit constituting the main chain” is particularly limited as long as it is a curable compound having an ester group and two or more polymerizable unsaturated bonds in the molecule.
  • examples include unsaturated polyesters and polyester (meth)acrylates.
  • the matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates. More than one kind of curable resin is preferred.
  • the matrix resin (B) is one or more selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, and urethane (meth)acrylates from the viewpoint of economy. is preferred. Further, the matrix resin (B) is more preferably one or more selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, and urethane (meth)acrylates, since there is little residual epoxide. Further, from the viewpoint of heat resistance, the matrix resin (B) is more preferably unsaturated polyester or polyester (meth)acrylate. , and that the polymer fine particles (A) are easily dispersed, the matrix resin (B) is particularly preferably polyester (meth)acrylate.
  • the matrix resin (B) preferably contains polyether (meth)acrylate or is polyether (meth)acrylate. From the viewpoint of low viscosity and excellent workability, the matrix resin (B) preferably contains an acrylated (meth)acrylate or is an acrylated (meth)acrylate.
  • the unsaturated polyester is not particularly limited, and examples thereof include those obtained from a condensation reaction between a polyhydric alcohol and an unsaturated polycarboxylic acid or its anhydride.
  • polyhydric alcohols include those having 2 to 12 carbon atoms, such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, and neopentyl glycol.
  • dihydric alcohols preferably dihydric alcohols having 2 to 6 carbon atoms, more preferably propylene glycol. Only one type of these dihydric alcohols may be used, or two or more types may be used in combination.
  • unsaturated polycarboxylic acids include divalent carboxylic acids having 3 to 12 carbon atoms, more preferably divalent carboxylic acids having 4 to 8 carbon atoms. Specific examples include fumaric acid and maleic acid. Only one type of these divalent carboxylic acids may be used, or two or more types may be used in combination.
  • a saturated polycarboxylic acid or an anhydride thereof may be used in combination with the unsaturated polycarboxylic acid or anhydride thereof. It is preferable that the amount of the unsaturated polycarboxylic acid or its anhydride is at least 30 mol % or more based on the total amount (100 mol %) of the acid or its anhydride.
  • saturated polycarboxylic acids or anhydrides thereof include phthalic anhydride, terephthalic acid, isophthalic acid, adipic acid and glutaric acid. These saturated polycarboxylic acids or their anhydrides may be used alone or in combination of two or more.
  • the unsaturated polyester is prepared by combining the polyhydric alcohol and the unsaturated polycarboxylic acid or its anhydride in the presence of an esterification catalyst such as an organic titanate such as tetrabutyl titanate or an organic tin compound such as dibutyltin oxide. It can be obtained by condensation reaction below.
  • an esterification catalyst such as an organic titanate such as tetrabutyl titanate or an organic tin compound such as dibutyltin oxide. It can be obtained by condensation reaction below.
  • the curable unsaturated polyester compound is also commercially available, for example, from Ashland, Reichhold, AOC, and the like.
  • the number average molecular weight of the unsaturated polyester is not particularly limited, but is preferably 400-10,000, more preferably 450-5,000, and particularly preferably 500-3,000.
  • Polyester (meth)acrylate is not particularly limited, for example, polyvalent carboxylic acid or anhydride thereof having a valence of 2 or more, unsaturated monocarboxylic acid having a (meth)acryloyl group, and polyvalence of 2 or more Examples include those obtained by esterifying alcohol as an essential component. Further, the polyester (meth)acrylate is obtained, for example, by subjecting the hydroxyl group of the polyester obtained by the condensation reaction of a polyhydric carboxylic acid or its anhydride and a polyhydric alcohol to an esterification reaction with an unsaturated monocarboxylic acid. Obtainable.
  • the polyester (meth)acrylate is obtained, for example, by subjecting the carboxyl group of the polyester obtained by the condensation reaction of a polyvalent carboxylic acid or its anhydride and a polyhydric alcohol to an esterification reaction with an unsaturated glycidyl ester compound.
  • the carboxyl group of the polyester obtained by the condensation reaction of a polyvalent carboxylic acid or its anhydride and a polyhydric alcohol to an esterification reaction with an unsaturated glycidyl ester compound.
  • polycarboxylic acids or anhydrides thereof include unsaturated carboxylic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, and citraconic acid, or anhydrides thereof.
  • phthalic acid phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, cyclohexanedicarboxylic acid, succinic acid, malonic acid, glutaric acid, adipic acid, Azelaic acid, sebacic acid, 1,12-dodecanedioic acid, dimer acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic anhydride , 4,4′-biphenyldicarboxylic acid and other saturated carboxylic acids or their anhydrides.
  • the polyvalent carboxylic acid or its anhydride is preferably maleic anhydride, fumaric acid, itaconic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, adipic acid or sebacic acid, and phthalic anhydride. More preferred are acids, isophthalic acid and terephthalic acid. Isophthalic acid is particularly preferred from the viewpoint of the low viscosity of the resulting matrix resin (B) and the water resistance of the cured product.
  • polyhydric alcohols examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, neopentyl glycol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-methylpropane-1,3-diol,
  • Examples include hydrogenated bisphenol A, adducts of bisphenol A and alkylene oxides such as propylene oxide and ethylene oxide, and trimethylolpropane.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and hydrogenated bisphenol.
  • A, an adduct of bisphenol A and propylene oxide is preferred, and propylene glycol, neopentyl glycol, hydrogenated bisphenol A, and an adduct of bisphenol A and propylene oxide are more preferred.
  • Neopentyl glycol is particularly preferable from the viewpoint of the resulting matrix resin (B) having a low viscosity and the water resistance and weather resistance of the cured product.
  • a known method can be used for the reaction method for the condensation reaction.
  • the mixing ratio of polyhydric carboxylic acids and polyhydric alcohols is not particularly limited.
  • the presence or absence of additives such as other catalysts and antifoaming agents, and the amounts used are not particularly limited.
  • the reaction temperature and reaction time in the condensation reaction may be appropriately set so that the reaction is completed.
  • the unsaturated monocarboxylic acid is a monobasic acid having at least one (meth)acryloyl group in the molecule.
  • the unsaturated glycidyl ester compound is a glycidyl ester compound having at least one (meth)acryloyl group in the molecule.
  • examples include glycidyl acrylate and glycidyl methacrylate.
  • the polymerization inhibitor is not particularly limited, and conventionally known compounds can be used.
  • hydroquinone methylhydroquinone, pt-butylcatechol, 2-t-butylhydroquinone, trihydroquinone, p-benzoquinone, naphthoquinone, methoxyhydroquinone, phenothiazine, hydroquinone monomethyl ether, trimethylhydroquinone, methylbenzoquinone, 2,6-dihydroquinone, -t-butyl-4-(dimethylaminomethyl)phenol, 2,5-di-t-butylhydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, copper naphthenate, etc. mentioned.
  • molecular oxygen for example, (i) air and (ii) mixed gas of air and inert gas such as nitrogen can be used. In this case, molecular oxygen may be blown into the reaction system (so-called bubbling). In order to sufficiently prevent gelation due to polymerization, it is preferable to use both a polymerization inhibitor and molecular oxygen.
  • the reaction conditions such as reaction temperature and reaction time in the esterification reaction may be appropriately set so as to complete the reaction, and are not particularly limited.
  • Specific examples of the solvent include, but are not particularly limited to, aromatic hydrocarbons such as toluene.
  • the amount of solvent used and the method for removing the solvent after the reaction are not particularly limited. Since water is produced as a by-product in the esterification reaction, it is preferable to remove water, which is a by-product, from the reaction system in order to promote the esterification reaction. A removal method is not particularly limited.
  • the number average molecular weight of the polyester (meth)acrylate is not particularly limited, and is preferably 400 to 10,000, more preferably 450 to 5,000, and particularly preferably 500 to 3,000. .
  • Epoxy (meth)acrylate is not particularly limited, and for example, a polyfunctional epoxy compound having two or more epoxy groups in the molecule, an unsaturated monocarboxylic acid, and optionally a polyvalent carboxylic acid. It can be obtained by an esterification reaction in the presence of an esterification catalyst.
  • polyfunctional epoxy compounds include bisphenol-type epoxy compounds, novolac-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, hydrogenated novolak-type epoxy compounds, and one of the hydrogen atoms of the bisphenol-type epoxy compounds and novolak-type epoxy compounds.
  • examples include halogenated epoxy compounds obtained by substituting a portion with a halogen atom (eg, bromine atom, chlorine atom, etc.). These polyfunctional epoxy compounds may be used alone or in combination of two or more.
  • the bisphenol-type epoxy compound includes, for example, a glycidyl ether-type epoxy compound obtained by reacting epichlorohydrin or methyl epichlorohydrin with bisphenol A or bisphenol F, or a reaction of an alkylene oxide adduct of bisphenol A with epichlorohydrin or methyl epichlorohydrin. Epoxy compounds obtained by.
  • Hydrogenated bisphenol type epoxy compounds include, for example, glycidyl ether type epoxy compounds obtained by reacting epichlorohydrin or methyl epichlorohydrin with hydrogenated bisphenol A or hydrogenated bisphenol F, or alkylene oxide adducts of hydrogenated bisphenol A. and epichlorohydrin or methyl epichlorohydrin and epoxy compounds obtained by the reaction.
  • novolak-type epoxy compounds include epoxy compounds obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
  • hydrogenated novolak-type epoxy compounds include epoxy compounds obtained by reacting hydrogenated phenol novolak or hydrogenated cresol novolac with epichlorohydrin or methyl epichlorohydrin.
  • the average epoxy equivalent of the polyfunctional epoxy compound is preferably in the range of 150-900, particularly preferably in the range of 150-400.
  • Epoxy (meth)acrylates using polyfunctional epoxy compounds having an average epoxy equivalent of more than 900 are likely to lower reactivity and curability of the composition.
  • a polyfunctional epoxy compound having an average epoxy equivalent of less than 150 is used, the physical properties of the composition tend to deteriorate.
  • the unsaturated monocarboxylic acid is a monobasic acid having at least one (meth)acryloyl group in the molecule.
  • examples include acrylic acid and methacrylic acid.
  • Some of these unsaturated monocarboxylic acids can also be converted to cinnamic acid, crotonic acid, sorbic acid, and half esters of unsaturated dibasic acids (mono-2-(methacryloyloxy)ethyl maleate, mono-2-(acryloyloxy) ethyl maleate, mono-2-(methacryloyloxy)propyl maleate, mono-2-(acryloyloxy)propyl maleate, etc.).
  • polyvalent carboxylic acid examples include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, adipic acid, azelaic acid, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, anhydride trimellitic acid, hexahydrophthalic anhydride, 1,6-cyclohexanedicarboxylic acid, dodecanedioic acid, dimer acid and the like.
  • the ratio of the unsaturated monocarboxylic acid and optionally used polyvalent carboxylic acid to the polyfunctional epoxy compound is the total carboxyl groups possessed by the unsaturated monocarboxylic acid and polyvalent carboxylic acid and the polyfunctional epoxy compound. It is preferable that the ratio with the epoxy group is in the range of 1:1.2 to 1.2:1.
  • esterification catalyst conventionally known compounds can be used. Specific examples include tertiary amines such as triethylamine, N,N-dimethylbenzylamine, and N,N-dimethylaniline; trimethyl benzylammonium chloride, quaternary ammonium salts such as pyridinium chloride; phosphonium compounds such as triphenylphosphine, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium idodide; sulfonic acids; and organic metal salts such as zinc octenoate.
  • tertiary amines such as triethylamine, N,N-dimethylbenzylamine, and N,N-dimethylaniline
  • trimethyl benzylammonium chloride quaternary ammonium salts such as pyridinium chloride
  • phosphonium compounds such as triphenylpho
  • reaction method and reaction conditions for carrying out the above reaction are not particularly limited. Moreover, in the esterification reaction, it is more preferable to add a polymerization inhibitor or molecular oxygen to the reaction system in order to prevent gelation due to polymerization.
  • a polymerization inhibitor or molecular oxygen those mentioned in the polyester (meth)acrylate can be used in the same manner.
  • the number average molecular weight of the epoxy (meth)acrylate is not particularly limited, and is preferably 300 to 10,000, more preferably 350 to 5,000, and particularly preferably 400 to 2,500. .
  • Urethane (meth)acrylates are not particularly limited, and examples thereof include those obtained by a urethanization reaction of a polyisocyanate compound, a polyol compound, and a hydroxyl group-containing (meth)acrylate compound. Further, those obtained by the urethanization reaction between a polyol compound and a (meth)acryloyl group-containing isocyanate compound, and those obtained by a urethanization reaction between a hydroxyl group-containing (meth)acrylate compound and a polyisocyanate compound.
  • polyisocyanate compounds include 2,4-tolylene diisocyanate and its hydrides, 2,4-tolylene diisocyanate isomers and their hydrides, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and hexamethylene.
  • Diisocyanate trimer of hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate, dicyclohexylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate; or Millionate MR, Coronate L (Nippon Polyurethane Industry Co., Ltd.
  • polyol compounds include polyether polyols, polyester polyols, polybutadiene polyols, adducts of bisphenol A and alkylene oxides such as propylene oxide and ethylene oxide.
  • the number average molecular weight of the polyether polyol is preferably in the range of 300-5,000, particularly preferably in the range of 500-3,000.
  • Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol, and polyoxymethylene glycol.
  • the polyester polyol preferably has a number average molecular weight in the range of 1,000 to 3,000.
  • a hydroxyl group-containing (meth)acrylate compound is a (meth)acrylate compound having at least one hydroxyl group in the molecule.
  • the hydroxyl group-containing (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, and polypropylene glycol. mono (meth) acrylate and the like.
  • a (meth)acryloyl group-containing isocyanate compound is a type of compound that shares at least one (meth)acryloyl group and an isocyanate group in the molecule.
  • the reaction method in the urethanization reaction is not particularly limited, and reaction conditions such as reaction temperature and reaction time may be appropriately set so as to complete the reaction, and are not particularly limited.
  • reaction conditions such as reaction temperature and reaction time may be appropriately set so as to complete the reaction, and are not particularly limited.
  • reaction conditions such as reaction temperature and reaction time may be appropriately set so as to complete the reaction, and are not particularly limited.
  • the ratio of the isocyanate groups possessed by the polyisocyanate compound to the hydroxyl groups possessed by the polyol compound is in the range of 3.0 to 2.0 to produce a prepolymer having an isocyanate group at the end, and then the hydroxyl group of the hydroxyl group-containing (meth) acrylate. and the isocyanate groups of the prepolymer are approximately equivalent to each other, so that the urethanization reaction can be carried out.
  • a urethanization catalyst is preferably used in the above reaction to promote the urethanization reaction.
  • the urethanization catalyst include tertiary amines such as triethylamine and metal salts such as di-n-butyltin dilaurate, but any general urethanization catalyst can be used.
  • a polymerization inhibitor or molecular oxygen it is preferable to add a polymerization inhibitor or molecular oxygen to prevent gelation due to polymerization.
  • the polymerization inhibitor and molecular oxygen those mentioned in the polyester (meth)acrylate can be used in the same manner.
  • the number average molecular weight of the urethane (meth)acrylate is not particularly limited, preferably 400 to 10,000, more preferably 800 to 8,000, particularly preferably 1,000 to 5,000. is.
  • Polyether (meth)acrylate is not particularly limited, and examples thereof include those obtained by an esterification reaction of polyether polyol and (meth)acrylic acid, but can be obtained by other known techniques. Anything can be used.
  • the number average molecular weight of the polyether polyol is preferably within the range of 100 to 5,000, particularly preferably within the range of 100 to 3,000.
  • Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol, and polyoxymethylene glycol.
  • the number average molecular weight of the polyether (meth)acrylate is not particularly limited, but is preferably 100-5000, more preferably 100-3000, and particularly preferably 100-1000.
  • the acrylated (meth)acrylate is not particularly limited, and includes, for example, those obtained by reacting an epoxy group-containing acrylic resin having two or more epoxy groups in the molecule with (meth)acrylic acid. However, those obtained by known techniques other than this can be arbitrarily used.
  • the number average molecular weight of the acrylated (meth)acrylate is not particularly limited, but is preferably 100-5000, more preferably 100-3000, and particularly preferably 100-1000.
  • the properties of the matrix resin (B) are not particularly limited.
  • the matrix resin (B) preferably has a viscosity of 100 mPa ⁇ s to 1,000,000 mPa ⁇ s at 25°C.
  • the viscosity of the matrix resin (B) at 25° C. is more preferably 50,000 mPa ⁇ s or less, still more preferably 30,000 mPa ⁇ s or less, and particularly preferably 15,000 mPa ⁇ s or less. preferable.
  • the matrix resin (B) has an advantage of excellent fluidity.
  • the matrix resin (B) having a viscosity of 100 mPa ⁇ s to 1,000,000 mPa ⁇ s at 25° C. can also be said to be liquid.
  • the viscosity of the matrix resin (B) is 100 mPa ⁇ at 25° C., since the matrix resin (B) enters the polymer fine particles (A) to prevent fusion between the polymer fine particles (A). s or more, more preferably 500 mPa ⁇ s or more, even more preferably 1000 mPa ⁇ s or more, and particularly preferably 1500 mPa ⁇ s or more.
  • the matrix resin (B) may have a viscosity of greater than 1,000,000 mPa ⁇ s.
  • the matrix resin (B) may be semi-solid (semi-liquid) or solid.
  • the obtained resin composition has the advantage of being less sticky and easier to handle.
  • the matrix resin (B) preferably has an endothermic peak at 25°C or lower, more preferably at 0°C or lower, in a differential scanning calorimetry (DSC) thermogram. According to the above configuration, the matrix resin (B) has an advantage of excellent fluidity.
  • the polymer fine particles (A) when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 10 to 50% by weight. and the matrix resin (B) may be 50 to 90% by weight.
  • the blending ratio of the polymer fine particles (A) and the matrix resin (B) in the resin composition is within the above range, there is an advantage that the resin composition can be used as a high-concentration masterbatch.
  • the polymer fine particles (A) when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 5% by weight to 50% by weight. %, the matrix resin (B) is preferably 50 wt % to 95 wt %, the fine polymer particles (A) are 6 wt % to 50 wt %, and the matrix resin (B) is 50 wt % to 94 wt %. It is more preferable that the polymer fine particles (A) are 7% by weight to 50% by weight, the matrix resin (B) is 50% by weight to 93% by weight, and the polymer fine particles (A) are 8% by weight.
  • the matrix resin (B) is more preferably 50% to 92% by weight, the fine polymer particles (A) are 9% to 50% by weight, and the matrix resin (B) is 50% by weight. It is more preferably 91% by weight, more preferably 10% by weight to 50% by weight of the polymer fine particles (A), and more preferably 50% by weight to 90% by weight of the matrix resin (B), and the polymer fine particles ( More preferably, A) is 15% by weight to 50% by weight, matrix resin (B) is 50% by weight to 85% by weight, polymer fine particles (A) is 20% by weight to 50% by weight, matrix resin (B ) is more preferably 50% to 80% by weight, the fine polymer particles (A) are more preferably 25% to 50% by weight, and the matrix resin (B) is more preferably 50% to 75% by weight.
  • the polymer fine particles (A) are 30% by weight to 50% by weight
  • the matrix resin (B) is 50% by weight to 70% by weight
  • the polymer fine particles (A) are 35% by weight to 50% by weight.
  • the matrix resin (B) is more preferably 50% by weight to 65% by weight.
  • the polymer fine particles (A) are 40% by weight to 50% by weight.
  • the matrix resin (B) may be 50 wt % to 60 wt %
  • the fine polymer particles (A) may be 45 wt % to 50 wt %
  • the matrix resin (B) may be 50 wt % to 55 wt %. There may be.
  • a low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule (hereinafter simply referred to as "low-molecular-weight compound ( C)”) can be added.
  • the low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule has a low molecular weight, it reduces the viscosity of the resin composition according to Embodiment 1 of the present invention, and Improve handling. Further, when the resin composition according to Embodiment 1 of the present invention is cured, it is copolymerized with the matrix resin (B) and incorporated into the cross-linking points of the cured product. Furthermore, in the later-described step of dispersing the polymer fine particles (A) in the state of primary particles in the resin composition, the low-molecular-weight compound (C) can be used as a mixture with the matrix resin (B). It has the effect of facilitating the production process due to the viscosity-lowering effect of the molecular compound (C).
  • the mixing ratio (B/C) of the matrix resin (B) and the low-molecular-weight compound (C) is not particularly limited, but the weight ratio is preferably 9/1 to 3/7.
  • a more preferable upper limit of B/C is 8/2, more preferably 7/3.
  • B/C exceeds 9/1 the viscosity of the resin composition according to Embodiment 1 of the present invention is high, and it may become difficult to handle.
  • a more preferred lower limit for B/C is 4/6, more preferably 5/5. If B/C is less than 3/7, the cured product of the resin composition according to Embodiment 1 of the present invention may become thin due to the volatility of the low-molecular-weight compound (C), or the matrix resin (B) may be left behind.
  • the fine polymer particles (A) may aggregate to reduce the effect of improving toughness.
  • Reaction speed between the (meth)acryloyl group-containing compound and the matrix resin (B) (reaction speed when the (meth)acryloyl group-containing compound is copolymerized with the matrix resin (B) and incorporated into the crosslink points of the cured product) is close to the reaction rate between matrix resins (B) (curing rate between matrix resins (B)). Therefore, the (meth)acryloyl group-containing compound is incorporated into the cross-linking points of the matrix resin (B) when the resin composition according to Embodiment 1 of the present invention containing the low-molecular-weight compound (C) is cured. It is easy to use, that is, it is preferable in terms of the physical properties of the cured product.
  • (meth)acryloyl group-containing compounds include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, cyclohexyl (meth)acrylate, n-hexyl (meth)acrylate, ) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, allyl (meth) ) acrylate, phenyl (meth)acrylate, glycidyl (meth)acrylate, benzyl (meth)acrylate, ⁇ -fluoromethyl acrylate, ⁇ -chloromethyl acrylate, ⁇ -benz
  • a compound having a hydroxyl group improves the cured product by hybrid curing of radical crosslinking and urethane crosslinking by adding an isocyanate compound to the resin composition according to Embodiment 1 of the present invention. It is preferred because it allows quality. Only one type of the low-molecular compound (C) described above may be used, or two or more types may be used in combination.
  • isocyanate compounds added to the resin composition according to Embodiment 1 of the present invention include diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI).
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • Resin (D)> The resin composition according to Embodiment 1 of the present invention may further contain a resin (D).
  • the resin (D) may be a resin of the same type (composition) as the matrix resin (B), or may be a resin of a different type from the matrix resin (B).
  • the resin composition further comprises a resin (D)
  • the resin (D) is the same type of resin as the matrix resin (B).
  • the resin composition obtained contains only the matrix resin (B). looks like
  • the resin (D) is used in the method for producing the resin composition, and the resin (D) is a different type of resin from the matrix resin (B).
  • the matrix resin (B) and the resin (D) can be distinguished from each other in the resulting resin composition.
  • the finally obtained resin composition may contain the resin (D) as a resin other than the matrix resin (B).
  • the resin (D) is, for example, (i) a resin having two or more polymerizable unsaturated bonds in the molecule, (ii) a thermosetting resin, (iii) a thermoplastic resin, or (iv) these (i) Any combination of the resins of (iii).
  • Resins having two or more polymerizable unsaturated bonds in the molecule that can be suitably used as the resin (D) include unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, One or more curable resins selected from the group consisting of polyether (meth)acrylates and acrylated (meth)acrylates.
  • thermosetting resins in the resin (D) include resins containing polymers obtained by polymerizing ethylenically unsaturated monomers, epoxy resins, phenol resins, polyol resins and amino-formaldehyde resins.
  • the content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is 10 parts by weight or more when the total of the fine polymer particles (A) and the matrix resin (B) is 100 parts by weight. is preferably 20 parts by weight or more, more preferably 30 parts by weight or more, even more preferably 50 parts by weight or more, and particularly preferably 70 parts by weight or more.
  • the content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is within the above range, there is an advantage that more of the desired effects of the resin (D) can be enjoyed.
  • the upper limit of the content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is not particularly limited.
  • the total amount of the combined fine particles (A) and the matrix resin (B) is 100 parts by weight, it is preferably 10,000 parts by weight or less, more preferably 5,000 parts by weight or less. It is more preferably 000 parts by weight or less, more preferably 1,000 parts by weight or less, more preferably 750 parts by weight or less, more preferably 500 parts by weight or less, and 300 parts by weight or less. is more preferably 100 parts by weight or less, more preferably 90 parts by weight or less, even more preferably 80 parts by weight or less, and particularly preferably 70 parts by weight or less .
  • the resin composition according to Embodiment 1 of the present invention may further contain a known thermosetting resin other than the matrix resin (B), or may further contain a known thermoplastic resin.
  • the resin composition according to Embodiment 1 of the present invention may further contain an epoxy resin as the resin (D).
  • the content of the epoxy resin is preferably less than 0.5 parts by weight with respect to 100 parts by weight of the total amount of the matrix resin (B) and the low-molecular-weight compound (C). Since the epoxy resin is not incorporated into the cross-linking of the matrix resin (B), which is the main component, if the content is 0.5 parts by weight or more, the heat resistance (Tg) of the cured product may decrease, and the surface of the cured product may deteriorate. Stickiness (surface tackiness) may develop, and the solvent may be easily absorbed, resulting in a decrease in chemical resistance.
  • the content of the epoxy resin is preferably less than 0.3 parts by weight and less than 0.2 parts by weight with respect to 100 parts by weight as the total amount of the matrix resin (B) and the low-molecular-weight compound (C). is more preferred, less than 0.1 part by weight is particularly preferred, and it is most preferred to contain no epoxy resin.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, hydrogenated bisphenol A (or F) type epoxy resin, glycidyl ether type epoxy resin, and aminoglycidyl ether-containing resin.
  • Known epoxy resins such as resins and epoxy compounds obtained by subjecting these epoxy resins to addition reactions with bisphenol A (or F) compounds, polybasic acids and the like can be mentioned.
  • epoxy group-containing compounds such as low-molecular-weight monomers
  • Other epoxy group-containing compounds that do not have a polymerizable unsaturated bond may also adversely affect the physical properties of the cured product if they remain without being incorporated into the cross-linking of the matrix resin (B).
  • the content in the composition is small because it has properties. Specifically, it is preferably 0.5 parts by weight or less, more preferably 0.1 parts by weight or less, relative to 100 parts by weight of the total amount of the matrix resin (B) and the low-molecular-weight compound (C).
  • the resin (D) is at least one thermosetting resin selected from the group consisting of resins containing polymers obtained by polymerizing ethylenically unsaturated monomers, epoxy resins, phenol resins, polyol resins and amino-formaldehyde resins. It may contain a flexible resin.
  • the thermoplastic resin in the resin (D) includes, for example, one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers as structural units. Examples thereof include polymers containing one or more structural units derived from a polymer. Examples of thermoplastic resins for resin (D) include acrylic polymers, vinyl copolymers, polycarbonates, polyamides, polyesters, polyphenylene ethers, polyurethanes and polyvinyl acetates. In the resin (D), only one type of thermoplastic resin may be used, or two or more types may be used in combination.
  • the resin composition according to Embodiment 1 of the present invention may further contain a radical polymerization initiator.
  • the radical polymerization initiator is a curing agent for the matrix resin (B) and the low-molecular-weight compound (C), and is an initiator for cross-linking reaction of polymerizable unsaturated bonds (carbon-carbon double bonds, etc.) in this resin. .
  • a radical polymerization initiator is used together with a curing accelerator and a co-catalyst, if necessary.
  • radical polymerization initiators include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, lauroyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, methyl ethyl ketone peroxide, t- organic peroxides such as butyl peroxybenzoate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy octanoate; and azo compounds such as azobisisobutyronitrile.
  • one or more selected from the group consisting of benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, and methyl ethyl ketone peroxide are preferred, and cumene is more preferred.
  • Hydroperoxide, methyl ethyl ketone peroxide Only one type of the radical polymerization initiator described above may be used, or two or more types may be used in combination.
  • Radical polymerization initiators can be classified according to their optimum use temperature. There are relatively high temperature acting initiators such as cumene hydroperoxide and dicumyl peroxide, and relatively low temperature acting initiators such as benzoyl peroxide and azobisisobutyronitrile. It is preferable to use a combination of two or more radical polymerization initiators having different decomposition temperatures because it is possible to obtain a resin composition having curing activity in a wide temperature range. By combining two or more radical polymerization initiators, for example, while controlling the curing start temperature relatively low, curing progresses and the composition has curing activity even in the late stage of curing when the temperature reaches a high temperature. The reaction rate of the polymerizable unsaturated bonds can be increased, and the physical properties of the cured product can be enhanced.
  • relatively high temperature acting initiators such as cumene hydroperoxide and dicumyl peroxide
  • relatively low temperature acting initiators such as benzoyl peroxide and azobisisobuty
  • the combination of two or more radical polymerization initiators is not particularly limited, but specific examples include a combination of cumene hydroperoxide and methyl ethyl ketone peroxide, t-butyl peroxybenzoate and t-butyl peroxyoctanoate. A combination with, and the like.
  • the 10-hour half-life temperature is an index of the decomposition temperature of the radical polymerization initiator.
  • the difference in 10-hour half-life temperature between the two or more radical polymerization initiators used is preferably 10°C or more, more preferably 20°C or more, and particularly preferably 20°C or more.
  • the curing accelerator is an additive that acts as a catalyst for the decomposition reaction (radical generation reaction) of the radical polymerization initiator, and includes metal salts of naphthenic acid and octenic acid (cobalt salts, tin salts, lead salts, etc.). Cobalt naphthenate is preferred from the viewpoint of improving toughness and appearance.
  • a curing accelerator it should be added in an amount of 0.1 to 1 part by weight per 100 parts by weight of the matrix resin (B) immediately before the curing reaction in order to prevent the curing reaction from occurring rapidly. is preferred.
  • the co-catalyst is an additive for causing radical generation at low temperatures by decomposing the radical polymerization initiator even at low temperatures, and examples thereof include amine compounds such as N,N-dimethylaniline, triethylamine, and triethanolamine. However, N,N-dimethylaniline is preferred because efficient reaction is possible.
  • a co-catalyst it is 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the matrix resin (B) of the present invention, or 1 to 15 parts by weight with respect to 100 parts by weight of the radical polymerization initiator. is preferably added in the range of
  • the resin composition according to Embodiment 1 of the present invention may optionally include, for example, colorants such as pigments and dyes, extender pigments, ultraviolet absorbers, antioxidants, stabilizers (anti-gelling agents), plasticizers, agent, leveling agent, antifoaming agent, silane coupling agent, antistatic agent, flame retardant, lubricant, thickener, viscosity reducer, low shrinkage agent, fiber reinforcement, inorganic filler, organic filler, internal release agent agents, wetting agents, polymerization modifiers, thermoplastic resins, drying agents, dispersing agents, and the like.
  • colorants such as pigments and dyes, extender pigments, ultraviolet absorbers, antioxidants, stabilizers (anti-gelling agents), plasticizers, agent, leveling agent, antifoaming agent, silane coupling agent, antistatic agent, flame retardant, lubricant, thickener, viscosity reducer, low shrinkage agent, fiber reinforcement, inorganic filler, organic filler, internal release agent agents
  • fillers include calcium carbonate, titanium oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, dry silica such as fumed silica, wet silica, crystalline silica, fused silica, bentonite, montmorillonite, silica.
  • Inorganic fillers such as carbon nanotubes and organic fillers such as polymer beads are included.
  • At least one inorganic filler selected from the group consisting of calcium carbonate, aluminum hydroxide, dry silica, clay, talc and glass powder is particularly preferred. Only one filler may be used, or two or more fillers may be used in combination.
  • a filler When a filler is used, it is preferably 5 to 400 parts by weight, more preferably 30 to 300 parts by weight, with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to Embodiment 1 of the present invention. 100 to 200 parts by weight is particularly preferred. If the amount of the filler compounded is less than 5 parts by weight, the surface hardness and rigidity of the resulting cured product may not be sufficiently obtained. When the amount of the filler compounded exceeds 400 parts by weight, the viscosity of the resin composition tends to be too high, and workability during molding tends to deteriorate, and the fluidity of the resin composition in the mold decreases. However, the mechanical properties of the obtained molding may deteriorate.
  • the filler may be subjected to a coupling treatment in order to improve adhesion with the matrix resin (B).
  • a coupling treatment in order to improve adhesion with the matrix resin (B).
  • These coupling agents are not particularly limited, but include silane-based coupling agents, chromium-based coupling agents, titanium-based coupling agents, aluminum-based coupling agents, zirconium-based coupling agents, and the like. be done. Moreover, only one type of these may be used, or two or more types may be used in combination.
  • the thickener is not particularly limited, but inorganic thickeners such as oxides and hydroxides of alkaline earth metals are preferred. Specific examples include magnesium oxide, calcium oxide, magnesium hydroxide and calcium hydroxide.
  • Thermoplastic polymers such as polymethyl methacrylate, which have swelling properties, can also be used as thickeners. Only one type of these thickeners may be used, or two or more types may be used in combination.
  • a thickener When a thickener is used, it is preferably 0.1 to 30 parts by weight, preferably 0.3 to 10 parts by weight is more preferred, and 1 to 3 parts by weight is particularly preferred. If the amount of the thickening agent is less than 0.1 parts by weight, sufficient thickening may not be obtained. If the amount of the filler compounded exceeds 30 parts by weight, the viscosity of the resin composition tends to be too high, resulting in poor workability during molding.
  • low shrinkage agents include polystyrene, polyethylene, polymethyl methacrylate, polyvinyl chloride, polyvinyl acetate, polycaprolactam, saturated polyester, styrene-acrylonitrile copolymer, vinyl acetate-styrene copolymer, styrene.
  • -Divinylbenzene copolymer, methyl methacrylate-polyfunctional methacrylate copolymer, polybutadiene, polyisoprene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, and other rubber-like polymers are used.
  • thermoplastic polymers may be partially introduced with a crosslinked structure.
  • These low shrinkage agents may be used alone or in combination of two or more. When using a low shrinkage agent, it is preferably 2 to 20 parts by weight with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to the first embodiment of the present invention. If the amount is less than 2 parts by weight, the shrinkage reduction effect may not be sufficient, and if the amount exceeds 20 parts by weight, the transparency of the molded product may be lowered and the cost may be increased.
  • fiber reinforcing materials include inorganic fibers such as glass fibers, carbon fibers, metal fibers, and ceramic fibers; organic fibers such as aramid and polyester; natural fibers; not to be
  • the form of the fiber includes roving, cloth, mat, woven fabric, chopped roving, chopped strand, etc., but is not particularly limited. Only one type of these fiber reinforcing materials may be used, or two or more types may be used in combination.
  • a fiber reinforcing material it is preferably 1 to 400 parts by weight with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to Embodiment 1 of the present invention. If it is less than 1 part by weight, the reinforcing effect may not be sufficient, and if it exceeds 400 parts by weight, the surface condition of the cured product may deteriorate.
  • internal release agents include stearic acid, zinc stearate, aluminum stearate, calcium stearate, barium stearate, stearamide, triphenyl phosphate, alkyl phosphate, commonly used waxes, silicone oil and the like.
  • wetting agent commercially available products can be used as they are.
  • commercially available from BYK Chemie Co., Ltd. "W-995", “W-996”, “W-9010”, “W-960”, “W-965", “W-990” and the like. However, these are appropriately selected and used depending on the purpose of use.
  • polymerization modifiers examples include polymerization inhibitors such as hydroquinone, methylhydroquinone, methoxyhydroquinone, and t-butylhydroquinone. These polymerization modifiers are preferably sufficiently dissolved in the thermosetting resin in advance. As antioxidants, hindered phenols such as 2,6-di-t-butylhydroxytoluene are preferably used.
  • UV absorbers such as benzophenone
  • thixotropy imparting agents such as silica
  • flame retardants such as phosphate esters
  • the resin composition according to Embodiment 1 of the present invention is excellent in handleability due to its low viscosity.
  • the resin composition according to Embodiment 1 of the present invention may have a viscosity of less than 6000 mPa ⁇ s at a shear rate (SR) of 10 s ⁇ 1 .
  • SR shear rate
  • the resin composition according to Embodiment 1 of the present invention can maintain the state of dispersion of the polymer fine particles (A) in the resin composition, aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the resin composition is stored for a long period of time. Therefore, the resin composition according to Embodiment 1 of the present invention has excellent storage stability. Conventionally, particularly when the content of a matrix resin having two or more polymerizable unsaturated bonds in the molecule in 100% by weight of the resin composition is large (for example, in 100% by weight of the resin composition, the matrix resin is 90% by weight or more), there is a problem that phase separation is more likely to occur during long-term storage of the resin composition.
  • the content of the matrix resin in the resin composition is 90% by weight or more, when stored for a long period of time, at 60 ° C. It can be stored for days without phase separation.
  • a method for measuring the storage stability of the resin composition will be described in detail in Examples described later.
  • Embodiment 2 [Technical idea of Embodiment 2 of the present invention]
  • a composition containing fine polymer particles and a low-molecular-weight compound having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule from the viewpoint of handleability when using the composition, it is preferable that the viscosity of the material is low.
  • a composition (resin composition) conventionally, when the resin composition is stored for a long period of time, the polymer fine particles in the resin composition and the resin may undergo phase separation, that is, there is room for improvement in the storage stability of the resin composition. there were.
  • the resin composition contains a large amount of resin having two or more polymerizable unsaturated bonds in the molecule (for example, the resin is 90% by weight or more in 100% by weight of the resin composition.
  • the resin is 90% by weight or more in 100% by weight of the resin composition.
  • phase separation between the polymer fine particles and the resin was remarkable due to long-term storage of the resin composition.
  • the phase separation between the polymer fine particles in the resin composition and the matrix resin was caused by aggregation of the polymer fine particles in the resin composition.
  • a composition containing fine polymer particles and the low-molecular-weight compound has handleability and two or more polymerizable unsaturated bonds in the molecule of the fine polymer particles and the low-molecular-weight compound.
  • the inventors conducted extensive studies.
  • the present inventor newly found the following findings: (1) A composition containing the polymer microparticles and the low-molecular-weight compound by using a specific polyfunctional monomer as a monomer in the formation (polymerization) of the graft portion of the polymer microparticles. Being able to reduce the viscosity of things.
  • the specific polyfunctional monomer can function as a cross-linking agent.
  • the present inventors have found that the viscosity of a composition containing fine polymer particles and the low-molecular-weight compound is reduced, and that two or more molecules are present in the molecule of the fine polymer particles and the low-molecular-weight compound.
  • a composition resin composition
  • further studies were conducted.
  • the present inventors have newly discovered the following knowledge and completed the present invention: in the formation (polymerization) of the graft portion of polymer fine particles, a specific polyfunctional monomer (crosslinking agent) By using a specific amount of, the viscosity of the composition containing the polymer fine particles and the low-molecular compound is reduced, and the polymer fine particles and the low-molecular-weight compound have two or more polymerizable heteroatoms in the molecule. It is possible to achieve both maintenance of the dispersed state of the polymer fine particles in the composition (resin composition) containing the resin having a saturated bond.
  • the second composition according to Embodiment 2 of the present invention contains polymer fine particles (A) and a low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule. is doing.
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body.
  • the elastic body of the fine polymer particles (A) contains one or more selected from the group consisting of diene rubbers, (meth)acrylate rubbers, and organosiloxane rubbers.
  • the graft portion of the fine polymer particles (A) is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer, and
  • the first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers
  • the second monomer is , is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule.
  • the second structural unit is 0.00%. % by weight and less than 2.00% by weight.
  • the polymer fine particles (A) and the low molecular weight compound (C) are 100% by weight, the polymer fine particles (A) are 1 to 50% by weight and the low molecular compound (C) is 50 to 99% by weight. % by weight.
  • the polymer constituting the graft portion of the polymer fine particles (A) contains the second structural unit derived from the second monomer, thereby The viscosity of the second composition can be reduced as compared with the case where the graft portion of the coalesced fine particles (A) does not contain the second constitutional unit. Therefore, the second composition according to Embodiment 2 of the present invention has the advantage of being excellent in handleability.
  • the second composition may further contain a resin (D).
  • a resin (D) in the second composition according to Embodiment 2 of the present invention, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight Furthermore, since the content of the second structural unit is more than 0.00% by weight and less than 2.00% by weight, the dispersed state of the polymer fine particles (A) in the second composition can be maintained. Aggregation of the polymer fine particles (A) can be prevented. As a result, when the second composition further contains the resin (D), phase separation between the polymer fine particles (A) and the resin (D) in the second composition occurs when the second composition is stored for a long period of time. has the advantage of being less likely to occur. Therefore, the second composition according to Embodiment 2 of the present invention has the advantage of being excellent in storage stability.
  • the polymer fine particles (A) when the total amount of the polymer fine particles (A) and the low-molecular compound (C) is 100% by weight, the polymer fine particles (A) is 10 to 50% by weight. %, and the low molecular weight compound (C) may be 50 to 90% by weight.
  • the mixing ratio of the polymer fine particles (A) and the low-molecular-weight compound (C) in the second composition is within the above range, there is an advantage that the second composition can be used as a high-concentration masterbatch.
  • the polymer fine particles (A) are 5% by weight to 50% by weight, preferably 50% to 95% by weight of the low molecular weight compound (C), 6% to 50% by weight of the fine polymer particles (A), and 50% to 50% by weight of the low molecular weight compound (C) It is more preferably 94% by weight, more preferably 7% to 50% by weight of the polymer fine particles (A) and 50% to 93% by weight of the low-molecular-weight compound (C), and the polymer fine particles ( More preferably, A) is 8% to 50% by weight, the low molecular weight compound (C) is 50% to 92% by weight, and the polymer fine particles (A) is 9% to 50% by weight, and the low molecular compound (C) is more preferably 50% to 91% by weight, the fine polymer particles (A) are 10% to 50% by weight, and
  • the polymer fine particles (A) are 15% by weight to 50% by weight, the low-molecular-weight compound (C) is 50% by weight to 85% by weight, and the polymer fine particles (A) are 20% by weight. It is more preferable that the content of the polymer fine particles (A) is 25% to 50% by weight and the low molecular weight compound (C) is 50% by weight. % to 75% by weight, more preferably 30% to 50% by weight of the fine polymer particles (A) and 50% to 70% by weight of the low-molecular-weight compound (C). More preferably, the fine particles (A) are 35% by weight to 50% by weight, and the low molecular weight compound (C) is 50% by weight to 65% by weight.
  • the second composition according to Embodiment 2 of the present invention when the total amount of the polymer fine particles (A) and the low-molecular weight compound (C) is 100% by weight, the polymer fine particles (A) are 40% by weight to 50% by weight, the low molecular weight compound (C) may be 50% to 60% by weight, the polymer fine particle (A) is 45% to 50% by weight, and the low molecular weight compound (C) is 50% by weight to It may be 55% by weight.
  • the second composition according to Embodiment 2 of the present invention when the blending ratio of the polymer fine particles (A) and the low-molecular-weight compound (C) in the second composition according to Embodiment 2 of the present invention is within the above range, the second composition is used as a higher-concentration masterbatch. It has the further advantage of being able to
  • the second composition according to Embodiment 2 of the present invention may further contain a resin (D).
  • "Resin (D)" is as described for the resin composition according to Embodiment 1, and will not be repeated here.
  • the content of the resin (D) in the second composition according to Embodiment 2 of the present invention is 10 parts by weight when the total of the fine polymer particles (A) and the low-molecular-weight compound (C) is 100 parts by weight. parts by weight or more, more preferably 20 parts by weight or more, more preferably 30 parts by weight or more, even more preferably 50 parts by weight or more, particularly 70 parts by weight or more preferable.
  • the content of the resin (D) in the second composition according to Embodiment 2 of the present invention is within the above range, there is an advantage that more of the desired effects of the resin (D) can be enjoyed.
  • the upper limit of the content of the resin (D) in the second composition according to Embodiment 2 of the present invention is not particularly limited, but from the viewpoint of maintaining excellent handleability and storage stability of the present second composition .
  • the total of the fine polymer particles (A) and the low-molecular-weight compound (C) is 100 parts by weight, it is preferably 10,000 parts by weight or less, more preferably 5,000 parts by weight or less. , more preferably 2,000 parts by weight or less, more preferably 1,000 parts by weight or less, more preferably 750 parts by weight or less, more preferably 500 parts by weight or less, It is more preferably 100 parts by weight or less, more preferably 90 parts by weight or less, even more preferably 80 parts by weight or less, and 70 parts by weight or less. is particularly preferred.
  • the second composition according to Embodiment 2 of the present invention may further contain a known thermosetting resin, or may further contain a known thermoplastic resin.
  • the second composition according to Embodiment 2 of the present invention may further contain an epoxy resin as the resin (D).
  • the content of the epoxy resin is preferably less than 0.5 parts by weight with respect to 100 parts by weight of the low molecular weight compound (C).
  • the content of the epoxy resin is 0.5 parts by weight or more, the heat resistance (Tg) of the cured product is lowered, the surface of the cured product is sticky (surface tackiness), and the solvent is easily absorbed.
  • the chemical resistance may decrease.
  • the content of the epoxy resin is preferably less than 0.3 parts by weight, more preferably less than 0.2 parts by weight, and 0.1 parts by weight with respect to 100 parts by weight of the low molecular weight compound (C). It is particularly preferred that the content is less than, and most preferred that it contains no epoxy resin.
  • the second composition according to Embodiment 2 of the present invention further contains other components, they are as described for the resin composition according to Embodiment 1, and will not be repeated here. Regarding the amounts of other components to be added, the description of the resin composition according to Embodiment 1 is applied by replacing the “matrix resin (B)” with the “low molecular weight compound (C)”. are omitted.
  • the second composition according to Embodiment 2 of the present invention has excellent handleability due to its low viscosity.
  • the second composition according to Embodiment 2 of the present invention may have a viscosity of less than 1600 mPa ⁇ s at a shear rate (SR) of 10 s ⁇ 1 .
  • the second composition according to Embodiment 2 of the present invention can maintain the dispersion state of the polymer fine particles (A) in the composition, aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the second composition is stored for a long period of time. Therefore, the second composition according to Embodiment 2 of the present invention has excellent storage stability. Conventionally, particularly when the content of a matrix resin having two or more polymerizable unsaturated bonds in the molecule in 100% by weight of the composition is large (for example, in 100% by weight of the composition, the matrix resin is 90 % by weight or more), there is a problem that phase separation is more likely to occur during long-term storage of the composition. For example, in the second composition according to Embodiment 2 of the present invention, even when the content of the matrix resin in the composition is 90% by weight or more, when stored for a long period of time, at 60 ° C. It can be stored for days without phase separation.
  • the method for producing a resin composition according to Embodiment 1 of the present invention includes polymer fine particles (A) produced by the above-described method for producing polymer fine particles, and two or more polymerizable unsaturated bonds in the molecule. and a matrix resin (B), wherein in the mixing step, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles A configuration in which the polymer fine particles (A) and the matrix resin (B) are mixed at a mixing ratio of 1 to 50% by weight of (A) and 50 to 99% by weight of the matrix resin (B). is.
  • the resin composition according to Embodiment 1 of the present invention is a composition in which polymer fine particles (A) are dispersed in the state of primary particles in a curable resin composition containing a matrix resin (B) as a main component. .
  • Various methods can be used for obtaining a composition in which the polymer fine particles (A) are dispersed in the state of primary particles.
  • a method of removing unnecessary components such as water after bringing into contact with the matrix resin (B) and/or the low-molecular-weight compound (C)
  • a method of extracting the polymer fine particles (A) once with an organic solvent and then extracting the matrix resin (B) and / Or a method of removing the organic solvent after mixing with the low-molecular-weight compound (C), etc., but it is preferable to use the method described in International Publication No. 2005/28546.
  • the mixing step in the method for producing the resin composition according to Embodiment 1 of the present invention may be configured to include the following first to third steps in this order: containing the fine polymer particles (A) After mixing the aqueous latex with an organic solvent that exhibits partial solubility in water, the resulting mixture is brought into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent in an aqueous phase.
  • the "organic solvent exhibiting partial solubility in water” means that when the aqueous latex of the polymer fine particles (A) is mixed with the organic solvent, the polymer fine particles (A) can be mixed without substantially solidifying and depositing. At least one or two or more organic solvents or organic solvent mixtures that can be achieved can be used without limitation. It is preferably 5% by weight or more and 30% by weight or less. When the solubility in water at 20° C. of the organic solvent partially soluble in water is 40% by weight or less, the aqueous latex of the polymer particles (A) is not coagulated, and the mixing operation can be performed smoothly. can. In addition, when the solubility in water at 20° C. of the organic solvent partially soluble in water is 5% by weight or more, it can be sufficiently mixed with the aqueous latex of the polymer particles (A), and can be smoothly mixed. operation can be performed.
  • organic solvent exhibiting partial solubility in water examples include esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketones such as acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone; ethanol , (iso)propanol, butanol and other alcohols; tetrahydrofuran, tetrahydropyran, dioxane, diethyl ether and other ethers; benzene, toluene, xylene and other aromatic hydrocarbons; methylene chloride, chloroform and other halogenated hydrocarbons or a mixture thereof, which satisfies the above range of solubility in water at 20°C.
  • an organic solvent containing 50% by weight or more of methyl ethyl ketone is more preferably used as an organic solvent exhibiting partial solubility in water from the viewpoints of affinity with a reactive polymerizable organic compound and ease of availability. Furthermore, an organic solvent containing 75% by weight or more of methyl ethyl ketone is particularly preferably used.
  • the composition for example, the present resin composition
  • the polymer fine particles (A) in which the polymer fine particles (A) are dispersed in the state of primary particles in a resin containing the matrix resin (B) as a main component
  • An aqueous latex containing the coalesced fine particles (A) (specifically, a reaction mixture after the production of the polymer fine particles (A) by emulsion polymerization) is added to an aqueous latex having a solubility in water at 20°C of 5% by weight or more and 40% by weight or less.
  • the resulting mixture After mixing with an organic solvent, the resulting mixture is further mixed with an excess amount of water to form a first step of aggregating the polymer fine particles (A), and separating and separating the aggregated polymer fine particles (A) from the liquid phase.
  • the obtained aggregates of polymer fine particles (A) are mixed again with an organic solvent to obtain an organic solvent dispersion of polymer fine particles (A) in a second step; and a third step of distilling off the organic solvent from the resulting mixture after mixing with the resin (B) and/or the low-molecular-weight compound (C).
  • the matrix resin (B) or the mixture of the matrix resin (B) and the low-molecular-weight compound (C) is liquid at 23°C because the third step is facilitated. Furthermore, it is more preferable that the matrix resin (B) alone is liquid at 23°C.
  • liquid at 23°C means that the softening point is 23°C or lower and that the material exhibits fluidity at 23°C.
  • a resin composition produced by the method for producing a resin composition described above is also included in the scope of the present invention.
  • a cured product obtained by curing the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention in other words, the resin composition according to Embodiment 1 of the present invention or the present invention
  • the fine polymer particles (A) can be uniformly dispersed in the state of primary particles.
  • a cured product obtained by curing the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention is also an embodiment of the present invention.
  • the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention can be used for various uses, and the uses are not particularly limited.
  • the resin composition or the second composition is, for example, an adhesive, a coating material, a binder for reinforcing fibers, a composite material, a molding material for a 3D printer, a sealant, an electronic substrate, an ink binder, a wood chip binder, or a binder for rubber chips. , foam chip binders, binders for castings, bedrock consolidation materials for floor materials and ceramics, and urethane foams.
  • urethane foam examples include automobile seats, automobile interior parts, sound absorbing materials, vibration damping materials, shock absorbers (shock absorbing materials), heat insulating materials, construction floor material cushions, and the like.
  • the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention is used as an adhesive, a coating material, a binder for reinforcing fibers, a composite material, and a molding of a 3D printer. It is more preferably used as materials, encapsulants, and electronic substrates.
  • An embodiment of the present invention may have the following configuration.
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
  • the elastic body includes one or more selected from the group consisting of diene rubber, (meth)acrylate rubber, and organosiloxane rubber,
  • the graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
  • the first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
  • the elastic body is an elastic core of an elastic body obtained by polymerizing one or more monomers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers, and organosiloxane-based rubbers; a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
  • the matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates.
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
  • the elastic body includes one or more selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber,
  • the graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
  • the first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
  • the polymer fine-particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is is 50 to 99% by weight.
  • the elastic body is an elastic core of an elastic body obtained by polymerizing one or more monomers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers, and organosiloxane-based rubbers; a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
  • the second structural unit exceeds 0.00% by weight and is 1.00% by weight. % by weight, the composition according to any one of [10] to [13].
  • the matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates.
  • the first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, In the graft portion preparation step, the second monomer exceeds 0.00% by weight when the total of the first monomer and the second monomer is 100% by weight.
  • the elastic body preparation step includes the following steps (a) and (b): (a) polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers; (b) a step of polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
  • the mixing step when the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is A method for producing a composition, wherein the fine polymer particles (A) and the low-molecular-weight compound (C) are mixed at a compounding ratio in which the molecular compound (C) is 50 to 99% by weight.
  • polymer microparticles (A); (i) a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule, or (ii) a low molecular weight compound (C ), and
  • the fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
  • the elastic body includes one or more selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber
  • the graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
  • the first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer
  • the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds
  • the polymer fine particle (A) is 1 to 50% by weight when the total of the polymer fine particle (A) and the matrix resin (B) is 100% by weight. % by weight, and the matrix resin (B) is 50 to 99% by weight, (ii) when the low-molecular-weight compound (C) is contained, the polymer fine-particles (A) is 1 ⁇ 50% by weight, and the low molecular weight compound (C) is 50-99% by weight.
  • PGP paramenthane hydroperoxide
  • a water-based latex (R-1) containing an elastic body (elastic body core) mainly composed of polystyrene-butadiene rubber was obtained.
  • the volume-average particle size of the elastic body (core of the elastic body) contained in the obtained aqueous latex was 90 nm.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • BHP 0.035 parts by weight t-butyl hydroperoxide
  • an aqueous latex (L1) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L1) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 0.00% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP butyl hydroperoxide
  • aqueous latex (L2) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L2) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 0.59% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.7 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.3 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP butyl hydroperoxide
  • aqueous latex (L3) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L3) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.76% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP butyl hydroperoxide
  • aqueous latex (L4) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L4) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 3.53% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.0 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 1.0 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP butyl hydroperoxide
  • aqueous latex (L5) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L5) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 5.88% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • MMA methyl methacrylate
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP t-butyl hydroperoxide
  • aqueous latex (L6) containing polymer fine particles (A) was obtained.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the obtained aqueous latex (L6) was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.60% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • AMA allyl methacrylate
  • BHP t-butyl hydroperoxide
  • MMA methyl methacrylate
  • BA butyl acrylate
  • HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP t-butyl hydroperoxide
  • the volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L7) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.60% by weight when set to 100% by weight.
  • EDTA 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes.
  • AMA allyl methacrylate
  • BHP t-butyl hydroperoxide
  • MMA methyl methacrylate
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • AMA allyl methacrylate
  • BHP t-butyl hydroperoxide
  • the volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm.
  • the solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L8) obtained was 30% by weight.
  • the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.67% by weight when set to 100% by weight.
  • methyl methacrylate (MMA), butyl acrylate (BA) and 4-hydroxybutyl acrylate (4HBA) are the first monomers.
  • monomer and allyl methacrylate (AMA) is the second monomer.
  • Table 1 summarizes the blending amounts of each component of the polymer microparticles (A).
  • the "content of the second structural unit” described in Table 1 is the second structural unit when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion is 100% by weight. It is the content of the structural unit of No. 2.
  • the resin composition (A-1) contains 40% by weight of the fine polymer particles (A) when the total amount of the fine polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-2) was obtained in the same manner as in Example 1, except that the latex (L3) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-2) contains 40% by weight of the polymer particles (A) when the total of the polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-3) was obtained in the same manner as in Example 1, except that the latex (L1) was used as the latex of the polymer fine particles (A).
  • the resin composition (A-3) contains 40% by weight of the fine polymer particles (A) when the total amount of the fine polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-4) was obtained in the same manner as in Example 1, except that the latex (L4) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-4) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-5) was obtained in the same manner as in Example 1, except that the latex (L5) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-5) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-6) was obtained in the same manner as in Example 1, except that the latex (L6) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-6) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-7) was obtained in the same manner as in Example 1, except that the latex (L7) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-7) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a resin composition (A-8) was obtained in the same manner as in Example 1, except that the latex (L8) was used as the latex of the fine polymer particles (A).
  • the resin composition (A-8) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
  • a digital viscometer DV-II+Pro type manufactured by BROOKFIELD was used to measure the viscosity of the resin compositions prepared in Examples and Comparative Examples.
  • the viscosity was measured at a measurement temperature of 25° C. and a shear rate (SR) of 10 s ⁇ 1 using a spindle CPE-52 depending on the viscosity range.
  • the storage stability of the resin compositions prepared in Examples and Comparative Examples was evaluated by mixing 10 g of the resin composition and 90 g of unsaturated polyester resin 2731-1 manufactured by Eternal Co., Ltd. as the resin (D) using a rotation and revolution mixer. After mixing, the mixture was placed in a transparent bottle, stored in an oven at 60° C., and visually checked for separation over time.
  • the total content of the matrix resin (B) and the resin (D) in the resin composition after mixing the resin composition and the resin (D) i.e., two or more polymerizable unsaturated bonds in the molecule
  • the content of the matrix resin having was 94.2% by weight.
  • phase separation occurred on the X day does not indicate that phase separation started on the X day of the start of the test, but on the X day of the start of the test. It means that phase separation was observed in at least a part of the resin composition as a result of observation. Therefore, "phase-separated on the X day” also includes an embodiment in which at least a part of the resin composition is phase-separated before the X day.
  • the storage stability when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, It has been found that when the structural unit of 2 is less than 2.00% by weight, the resin composition containing such fine polymer particles (A) has excellent storage stability. In particular, when the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 1.00% by weight. %, the storage stability of the resin composition is particularly excellent.
  • the resin composition of Comparative Example 1 had a viscosity of 6000 mPa ⁇ s or more at a shear rate (SR) of 10 s ⁇ 1 .
  • the resin compositions of Examples 1 to 5 and Comparative Examples 2 to 3 all had low viscosities at a shear rate (SR) of 10 s ⁇ 1 , well below 6000 mPa ⁇ s. rice field.
  • the handleability when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, the second structural unit is more than 0.00% by weight, the resin composition containing the fine polymer particles (A) has excellent handleability.
  • the polyfunctional monomer component contained in the surface-crosslinked polymer surprisingly affects the viscosity of the resin composition. can be further reduced, but the compatibility of the resin composition is not affected.
  • Second composition> instead of 45 parts by weight of a liquid unsaturated polyester resin (manufactured by Eternal, Eterset 2010) as the matrix resin (B) and 19 parts by weight of 2-hydroxypropyl methacrylate (HPMA) as the low-molecular compound (C), a low-molecular A composition (A-9) was obtained in the same manner as in Example 1, except that 64 parts by weight of 2-hydroxypropyl methacrylate (HPMA), which is the compound (C), was used.
  • the composition (A-9) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
  • Example 7 A composition (A-10) was obtained in the same manner as in Example 6, except that the latex (L3) was used as the latex of the fine polymer particles (A).
  • the composition (A-10) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
  • composition (A-11) was obtained in the same manner as in Example 6, except that the latex (L1) was used as the latex of the fine polymer particles (A).
  • the composition (A-11) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
  • composition (A-12) was obtained in the same manner as in Example 6, except that the latex (L5) was used as the latex of the fine polymer particles (A).
  • the composition (A-12) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
  • phase separation was already observed in the resin composition of Comparative Example 5 in observation on the 23rd day from the start of the test.
  • both the resin compositions of Examples 6 and 7 and the resin composition of Comparative Example 4 were found to undergo phase separation when observed 65 days after the start of the test.
  • the observation results on the 50th day from the start of the test are also shown in parentheses.
  • the resin composition of Example 7 was found to undergo phase separation when observed 50 days after the start of the test.
  • no phase separation was observed in the resin compositions of Example 6 and Comparative Example 4 after 50 days from the start of the test.
  • the storage stability when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, It has been found that when the structural unit of 2 is less than 2.00% by weight, the resin composition containing such fine polymer particles (A) has excellent storage stability. In particular, when the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 1.00% by weight. %, the storage stability of the resin composition is particularly excellent.
  • the composition of Comparative Example 4 had a viscosity of 1650 mPa ⁇ s at a shear rate (SR) of 10 s ⁇ 1 .
  • SR shear rate
  • all of the compositions of Examples 6 to 7 and Comparative Example 5 had Shear Rate (SR, The viscosity at a shear rate of 10 s -1 was reduced by 10% or more, and the handleability was improved.
  • the handleability when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, the second structural unit exceeds 0.00% by weight, the composition containing such fine polymer particles (A) has improved handleability.
  • the second composition containing the polymer fine particles (A) and the low-molecular-weight compound (C) also constitutes the graft portion of the polymer fine particles (A).
  • the second structural unit is more than 0.00% by weight and less than 2.00% by weight, when the total of the first structural unit and the second structural unit in the polymer is 100% by weight , the second composition containing such polymer fine particles (A) was found to be excellent in both handleability and storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides a curable resin composition which has excellent handling properties and excellent storage stability. A resin composition which contains a specific amount of polymer fine particles (A) and a specific amount of a matrix resin (B) that has two or more polymerizable unsaturated bonds in each molecule, wherein: each of the polymer fine particles (A) has an elastic body and a graft part; and the graft part is formed of a polymer that contains a specific amount of a specific first constituent unit and a specific amount of a second constituent unit that is derived from a multifunctional monomer which has two or more polymerizable unsaturated bonds in each molecule.

Description

樹脂組成物、重合体微粒子の製造方法および樹脂組成物の製造方法Resin composition, method for producing fine polymer particles, and method for producing resin composition
 本発明は、樹脂組成物、重合体微粒子の製造方法および樹脂組成物の製造方法に関する。 The present invention relates to a resin composition, a method for producing polymer fine particles, and a method for producing a resin composition.
 不飽和ポリエステル系樹脂やビニルエステル樹脂などのラジカル硬化型の硬化性樹脂は、例えば、コーティング材や、グラスファイバーのような強化材を含む成形用組成物など、様々な用途で広く用いられている。 Radically curable resins such as unsaturated polyester resins and vinyl ester resins are widely used in various applications such as coating materials and molding compositions containing reinforcing materials such as glass fibers. .
 これらの硬化性樹脂は、硬化時に大きな硬化収縮を伴い、硬化物内の内部応力により硬化物にクラックが入るという問題を有している。そこで、非常に脆い材料であるこれらの硬化性樹脂に、靱性を付与する試みが種々検討されてきた。 These curable resins have the problem that they are accompanied by large curing shrinkage during curing, and cracks occur in the cured product due to internal stress within the cured product. Therefore, various attempts have been made to impart toughness to these curable resins, which are very brittle materials.
 例えば、硬化性樹脂の靱性を改善するために、硬化性樹脂にエラストマーを添加する方法が広く用いられている。エラストマーとしては、重合体微粒子(例えば架橋重合体微粒子)が挙げられる。 For example, a method of adding an elastomer to a curable resin is widely used in order to improve the toughness of the curable resin. Elastomers include polymer microparticles (eg, crosslinked polymer microparticles).
 特許文献1には、エラストマーとして特定量のポリマー微粒子(重合体微粒子)を1次粒子の状態で硬化性樹脂に分散させ、必要により特定量のエポキシ樹脂および分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物を含有させた硬化性樹脂組成物が開示されている。そして、特許文献1の硬化性樹脂組成物は、得られる硬化物の耐熱性(Tg)、透明性、弾性率、表面タック性、耐候性(黄変)を低下させる事なく、靱性、耐クラック性を顕著に改善し、組成物粘度が低く、更に、下地への密着性を改善することができることが開示されている。 In Patent Document 1, a specific amount of polymer microparticles (polymer microparticles) as an elastomer are dispersed in a curable resin in the state of primary particles, and if necessary, a specific amount of an epoxy resin and at least one polymerizable non-polymeric polymer in the molecule. A curable resin composition containing a low molecular weight compound having a saturated bond and a molecular weight of less than 300 is disclosed. Then, the curable resin composition of Patent Document 1 has toughness and crack resistance without reducing the heat resistance (Tg), transparency, elastic modulus, surface tackiness, and weather resistance (yellowing) of the resulting cured product. It is disclosed that the adhesive properties can be significantly improved, the viscosity of the composition is low, and the adhesion to the substrate can be improved.
国際公開第2014/115778号WO2014/115778
 しかしながら、上述の従来技術は、取扱い性および貯蔵安定性の観点からは十分なものではなく、さらなる改善の余地がある。 However, the above-mentioned conventional techniques are not sufficient from the viewpoint of handleability and storage stability, and there is room for further improvement.
 本発明の一態様は、前記問題に鑑みなされたものであり、その目的は、取扱い性および貯蔵安定性に優れた樹脂組成物を提供することである。 One aspect of the present invention has been made in view of the above problems, and its object is to provide a resin composition that is excellent in handleability and storage stability.
 本発明者は、前記課題を解決するため鋭意検討した結果、重合体微粒子のグラフト部を構成する単量体中に、架橋剤として特定の多官能性単量体を特定量含有させることで、取扱い性および貯蔵安定性に優れた樹脂組成物を提供することができるという新規知見を見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that by including a specific amount of a specific polyfunctional monomer as a cross-linking agent in the monomer constituting the graft portion of the polymer fine particles, The inventors have found new knowledge that a resin composition excellent in handleability and storage stability can be provided, and have completed the present invention.
 すなわち、本発明の一実施形態に係る樹脂組成物は、重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)と、を含有し、前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記マトリクス樹脂(B)は50~99重量%である。 That is, the resin composition according to one embodiment of the present invention contains polymer fine particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule, and The coalesced fine particles (A) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body, and the elastic body is a diene-based rubber, a (meth)acrylate-based One or more selected from the group consisting of rubber and organosiloxane rubber, wherein the graft portion is derived from a first structural unit derived from a first monomer and a second monomer second structural unit, wherein the first monomer is selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers One or more types, the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first structural unit in the graft portion and the When the total amount of the second structural unit and the second structural unit is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight, and the polymer microparticles (A) and the The polymer fine particles (A) account for 1 to 50% by weight, and the matrix resin (B) accounts for 50 to 99% by weight, when the total with the matrix resin (B) is 100% by weight.
 また、本発明の一実施形態に係る組成物は、重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)と、を含有し、前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記低分子化合物(C)は50~99重量%である。 Further, the composition according to one embodiment of the present invention contains polymer fine particles (A) and a low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule. and the polymer fine particles (A) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body, and the elastic body is a diene rubber, ( One or more selected from the group consisting of meth)acrylate-based rubbers and organosiloxane-based rubbers, wherein the graft portion comprises a first structural unit derived from a first monomer and a second monomer the first monomer is an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer. is one or more selected from, the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first monomer in the graft portion When the total amount of the structural unit and the second structural unit is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight, and the polymer fine particles ( When the total amount of A) and the low molecular compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the low molecular compound (C) is 50 to 99% by weight. %.
 また、本発明の一実施形態に係る重合体微粒子の製造方法は、ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる弾性体調製工程と、前記弾性体調製工程によって調製された弾性体に、第1の単量体および第2の単量体をグラフト重合させるグラフト部調製工程と、を含み、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、前記グラフト部調製工程では、前記第1の単量体と前記第2の単量体との合計を100重量%とした場合に、前記第2の単量体を、0.00重量%を超えて2.00重量%未満使用する。 Further, in the method for producing polymer microparticles according to one embodiment of the present invention, at least one selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers and a graft portion preparation step of graft-polymerizing a first monomer and a second monomer onto the elastic body prepared by the elastic body preparation step. wherein the first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers; The monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and in the graft part preparation step, the first monomer and the second monomer The second monomer is used in an amount of more than 0.00% by weight and less than 2.00% by weight when the total of the above is 100% by weight.
 本発明の一態様によれば、取扱い性および貯蔵安定性に優れた樹脂組成物を提供することができる。 According to one aspect of the present invention, it is possible to provide a resin composition excellent in handleability and storage stability.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications are possible within the scope of the claims. Further, embodiments or examples obtained by appropriately combining technical means disclosed in different embodiments or examples are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. In addition, all the scientific literatures and patent documents described in this specification are used as references in this specification. In addition, unless otherwise specified in this specification, "A to B" representing a numerical range means "A or more (including A and greater than A) and B or less (including B and less than B)".
 〔実施形態1〕
 〔1.本発明の実施形態1の技術的思想〕
 重合体微粒子と分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂とを含有している樹脂組成物においては、樹脂組成物を使用する際の取扱い性の観点から、樹脂組成物の粘度は低いことが好ましい。また、従来の樹脂組成物は、樹脂組成物を長期保存した際に、樹脂組成物中の重合体微粒子と前記マトリクス樹脂とが相分離する場合があり、すなわち樹脂組成物の貯蔵安定性に改善の余地があった。特に、樹脂組成物中の、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂の含有量が多量である場合(例えば、樹脂組成物100重量%中、前記マトリクス樹脂が90重量%以上である場合)、樹脂組成物の長期保存による重合体微粒子と前記マトリクス樹脂との相分離が顕著であった。本発明者が検討したところ、樹脂組成物中の重合体微粒子と前記マトリクス樹脂との相分離は、樹脂組成物中の重合体微粒子の凝集が原因であると推測された。
[Embodiment 1]
[1. Technical idea of Embodiment 1 of the present invention]
In a resin composition containing polymer fine particles and a matrix resin having two or more polymerizable unsaturated bonds in the molecule, from the viewpoint of handling when using the resin composition, A low viscosity is preferred. Further, in conventional resin compositions, when the resin composition is stored for a long period of time, phase separation may occur between the polymer fine particles in the resin composition and the matrix resin, which improves the storage stability of the resin composition. There was room for In particular, when the content of the matrix resin having two or more polymerizable unsaturated bonds in the molecule is large in the resin composition (for example, the matrix resin is 90% by weight in 100% by weight of the resin composition). above), phase separation between the polymer fine particles and the matrix resin was remarkable during long-term storage of the resin composition. As a result of investigation by the present inventors, it was presumed that the phase separation between the polymer fine particles in the resin composition and the matrix resin was caused by aggregation of the polymer fine particles in the resin composition.
 そこで本発明者は、樹脂組成物の取扱い性、および貯蔵安定性の両立を達成すべく、鋭意検討を行った。その過程で、本発明者は、以下の知見を新規に見出した:
 (1)重合体微粒子のグラフト部の形成(重合)において、単量体として特定の多官能性単量体を使用することにより、樹脂組成物の粘度を低下させることができること。ここで、特定の多官能性単量体は、架橋剤として機能し得ること。
Therefore, the present inventors have made extensive studies to achieve both the handleability and the storage stability of the resin composition. In the process, the present inventor newly found the following findings:
(1) The viscosity of the resin composition can be reduced by using a specific polyfunctional monomer as a monomer in the formation (polymerization) of the graft portion of the polymer fine particles. Here, the specific polyfunctional monomer can function as a cross-linking agent.
 (2)しかし同時に、特定の多官能性単量体の使用量が多い場合、樹脂組成物中の重合体微粒子の分散状態が不安定になり、重合体微粒子同士がくっ付き易くなり、凝集し易くなること。 (2) At the same time, however, when the amount of the specific polyfunctional monomer used is large, the dispersed state of the polymer fine particles in the resin composition becomes unstable, and the polymer fine particles tend to stick to each other and aggregate. to be easier.
 かかる新規知見に基づき、本発明者は、樹脂組成物の粘度の低下と、樹脂組成物中の重合体微粒子の分散状態の維持との両立を達成すべく、さらに鋭意検討を行った。 Based on these new findings, the present inventors conducted further intensive studies in order to achieve both reduction in the viscosity of the resin composition and maintenance of the dispersed state of the polymer fine particles in the resin composition.
 その結果、本発明者は、以下の知見を新規に見出し、本発明を完成させるに至った:重合体微粒子のグラフト部の形成(重合)において、特定の多官能性単量体(架橋剤)を特定量使用することにより、樹脂組成物の粘度の低下と、樹脂組成物中の重合体微粒子の分散状態の維持とを両立させることが可能となること。 As a result, the present inventors have newly discovered the following knowledge and completed the present invention: in the formation (polymerization) of the graft portion of polymer fine particles, a specific polyfunctional monomer (crosslinking agent) By using a specific amount of, it is possible to reduce the viscosity of the resin composition and maintain the dispersion state of the polymer fine particles in the resin composition.
 〔2.樹脂組成物〕
 本発明の実施形態1に係る樹脂組成物は、重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)と、を含有している。重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含んでいる。重合体微粒子(A)の弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含んでいる。重合体微粒子(A)のグラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体である。重合体微粒子(A)のグラフト部を構成する重合体における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満である。重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量%とした場合に、重合体微粒子(A)は1~50重量%であり、マトリクス樹脂(B)は50~99重量%である。
[2. Resin composition]
The resin composition according to Embodiment 1 of the present invention contains fine polymer particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule. The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body. The elastic body of the fine polymer particles (A) contains one or more selected from the group consisting of diene rubbers, (meth)acrylate rubbers, and organosiloxane rubbers. The graft portion of the fine polymer particles (A) is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer, and The first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers, and the second monomer is , is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule. When the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 0.00%. % by weight and less than 2.00% by weight. When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight and the matrix resin (B) is 50 to 99% by weight. is.
 本発明の実施形態1に係る樹脂組成物では、重合体微粒子(A)のグラフト部を構成する重合体が、第2の単量体に由来する第2の構成単位を含むことにより、重合体微粒子(A)のグラフト部が第2の構成単位を含まない場合と比較して樹脂組成物の粘度を低下させることができる。従って、本発明の実施形態1に係る樹脂組成物は、取扱い性に優れるという利点を有している。 In the resin composition according to Embodiment 1 of the present invention, the polymer constituting the graft portion of the polymer fine particles (A) contains the second structural unit derived from the second monomer, whereby the polymer The viscosity of the resin composition can be reduced as compared with the case where the grafted portion of the fine particles (A) does not contain the second structural unit. Therefore, the resin composition according to Embodiment 1 of the present invention has the advantage of being excellent in handleability.
 また、本発明の実施形態1に係る樹脂組成物では、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位の含有量が0.00重量%を超えて2.00重量%未満であることにより、樹脂組成物中の重合体微粒子(A)の分散状態を維持できるため、重合体微粒子(A)の凝集を防ぐことができる。その結果、樹脂組成物を長期保存した際に相分離が発生し難くなる。従って、本発明の実施形態1に係る樹脂組成物は、貯蔵安定性に優れるという利点を有している。 Further, in the resin composition according to Embodiment 1 of the present invention, the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight. In this case, when the content of the second structural unit is more than 0.00% by weight and less than 2.00% by weight, the dispersed state of the polymer fine particles (A) in the resin composition can be maintained. Aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the resin composition is stored for a long period of time. Therefore, the resin composition according to Embodiment 1 of the present invention has an advantage of excellent storage stability.
 本明細書において、「重合性不飽和結合」とは、重合性を有する不飽和結合を意味する。換言すれば、重合性不飽和結合は、当該結合を起点として、重合反応が開始される結合ともいえる。本明細書において、「分子内に2個以上の重合性不飽和結合を有する多官能性単量体」は、「同一分子内にラジカル重合性反応基を2つ以上有する多官能性単量体」ともいえる。「ラジカル重合性反応基」とは、ラジカル重合性を有する反応基を意味する。換言すれば、ラジカル重合性反応基は、当該反応基をラジカルが攻撃することにより、当該反応基を起点として、ラジカル重合反応が開始される反応基、ともいえる。 As used herein, the term "polymerizable unsaturated bond" means a polymerizable unsaturated bond. In other words, the polymerizable unsaturated bond can be said to be a bond that initiates a polymerization reaction with the bond as a starting point. As used herein, "a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule" means "a polyfunctional monomer having two or more radically polymerizable reactive groups in the same molecule. ” can also be said. A "radical polymerizable reactive group" means a reactive group having radical polymerizability. In other words, the radically polymerizable reactive group can be said to be a reactive group that initiates a radical polymerization reaction with the reactive group as a starting point when a radical attacks the reactive group.
 <1-1.重合体微粒子(A)>
 重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含む。
<1-1. Polymer microparticles (A)>
The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body.
 (弾性体)
 弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種以上を含む。弾性体は、上述したゴム以外に、天然ゴムを含んでいてもよい。弾性体は、弾性部、またはゴム粒子と言い換えることもできる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。
(elastic body)
The elastic body includes one or more selected from the group consisting of diene rubber, (meth)acrylate rubber and organosiloxane rubber. The elastic body may contain natural rubber in addition to the rubbers described above. The elastic body can also be called an elastic portion or a rubber particle. (Meth)acrylate as used herein means acrylate and/or methacrylate.
 弾性体がジエン系ゴムを含む場合(場合A)について説明する。場合Aにおいて、得られる樹脂組成物は、靱性および耐衝撃性に優れる硬化物を提供することができる。靱性および/または耐衝撃性に優れる硬化物は、耐久性に優れる硬化物ともいえる。 The case where the elastic body contains diene rubber (Case A) will be described. In Case A, the resulting resin composition can provide a cured product with excellent toughness and impact resistance. A cured product having excellent toughness and/or impact resistance can also be said to be a cured product having excellent durability.
 ジエン系ゴムは、構成単位として、ジエン系単量体に由来する構成単位を含む弾性体である。前記ジエン系単量体は、共役ジエン系単量体と言い換えることもできる。場合Aにおいて、ジエン系ゴムは、構成単位100重量%中、(i)ジエン系単量体に由来する構成単位を50重量%~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%~50重量%、含むものであってもよく、(ii)ジエン系単量体に由来する構成単位を50重量%を超えて100重量%以下、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%以上50重量%未満含むものであってもよく、(iii)ジエン系単量体に由来する構成単位を60重量%~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%~40重量%含むものであってもよく、(iv)ジエン系単量体に由来する構成単位を70重量%~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%~30重量%含むものであってもよく、(v)ジエン系単量体に由来する構成単位を80重量%~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%~20重量%含むものであってもよく、(vi)ジエン系単量体に由来する構成単位を90重量%~100重量%、およびジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体に由来する構成単位を0重量%~10重量%含むものであってもよく、(vii)ジエン系単量体に由来する構成単位のみから構成されていてもよい。 A diene-based rubber is an elastic body containing structural units derived from diene-based monomers. The diene-based monomer can also be called a conjugated diene-based monomer. In Case A, the diene-based rubber contains (i) 50% to 100% by weight of structural units derived from a diene-based monomer and a diene copolymerizable with the diene-based monomer, out of 100% by weight of the structural units. may contain 0% to 50% by weight of structural units derived from vinyl monomers other than system monomers, and (ii) 50% by weight of structural units derived from diene monomers; 100% by weight or less, and 0% by weight or more and less than 50% by weight of structural units derived from vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers, (iii) 60% to 100% by weight of structural units derived from diene-based monomers, and derived from vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers (iv) 70% to 100% by weight of structural units derived from a diene-based monomer, and copolymerized with a diene-based monomer It may contain 0% to 30% by weight of structural units derived from vinyl monomers other than diene monomers, and (v) 80 structural units derived from diene monomers. % to 100% by weight, and 0% to 20% by weight of constitutional units derived from a vinyl-based monomer other than a diene-based monomer copolymerizable with a diene-based monomer. , (vi) 90% to 100% by weight of structural units derived from a diene-based monomer, and a structure derived from a vinyl-based monomer other than a diene-based monomer copolymerizable with a diene-based monomer It may contain 0% by weight to 10% by weight of units, or (vii) may be composed only of structural units derived from diene-based monomers.
 場合Aにおいて、ジエン系ゴムは、構成単位として、ジエン系単量体に由来する構成単位よりも少ない量において、(メタ)アクリレート系単量体に由来する構成単位を含んでいてもよい。 In Case A, the diene-based rubber may contain, as structural units, structural units derived from (meth)acrylate-based monomers in an amount smaller than the structural units derived from diene-based monomers.
 ジエン系単量体としては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2-クロロ-1,3-ブタジエンなどが挙げられる。これらのジエン系単量体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of diene-based monomers include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), and 2-chloro-1,3-butadiene. These diene-based monomers may be used alone or in combination of two or more.
 ジエン系単量体と共重合可能なジエン系単量体以外のビニル系単量体(以下、ビニル系単量体A、とも称する。)としては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;アクリル酸、メタクリル酸などのビニルカルボン酸類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性単量体、などが挙げられる。上述した、ビニル系単量体Aは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。上述した、ビニル系単量体Aの中でも、特に好ましくはスチレンである。なお、場合Aにおけるジエン系ゴムにおいて、ビニル系単量体Aに由来する構成単位は任意成分である。場合Aにおいて、ジエン系ゴムは、ジエン系単量体に由来する構成単位のみから構成されてもよい。 Vinyl-based monomers other than diene-based monomers copolymerizable with diene-based monomers (hereinafter also referred to as vinyl-based monomers A) include, for example, styrene, α-methylstyrene, and monochlorostyrene. Vinylarenes such as , dichlorostyrene; Vinylcarboxylic acids such as acrylic acid and methacrylic acid; Vinyl cyanides such as acrylonitrile and methacrylonitrile; Vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; , propylene, butylene, and isobutylene; and polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene. The vinyl-based monomer A described above may be used alone or in combination of two or more. Among the vinyl-based monomers A described above, styrene is particularly preferable. In addition, in the diene-based rubber in Case A, the structural unit derived from the vinyl-based monomer A is an optional component. In case A, the diene-based rubber may be composed only of structural units derived from diene-based monomers.
 場合Aにおいて、ジエン系ゴムとしては、1,3-ブタジエンに由来する構成単位からなるブタジエンゴム(ポリブタジエンゴムとも称する。)、または、1,3-ブタジエンとスチレンとの共重合体であるブタジエン-スチレンゴム(ポリスチレン-ブタジエンとも称する。)が好ましく、ブタジエンゴムがより好ましい。前記構成によると、重合体微粒子(A)がジエン系ゴムを含むことによる所望の効果がより発揮され得る。また、ブタジエン-スチレンゴムは、屈折率の調整により、得られる硬化物の透明性を高めることができる点においても、より好ましい。 In Case A, the diene-based rubber may be butadiene rubber (also referred to as polybutadiene rubber) composed of structural units derived from 1,3-butadiene, or butadiene- Styrene rubber (also called polystyrene-butadiene) is preferred, and butadiene rubber is more preferred. According to the above configuration, the polymer fine particles (A) containing the diene rubber can more effectively exhibit the desired effects. In addition, butadiene-styrene rubber is more preferable in that the transparency of the resulting cured product can be enhanced by adjusting the refractive index.
 ブタジエン-スチレンゴムは、ブタジエン-スチレンゴム100重量%中、(i)ブタジエンに由来する構成単位を50重量%を超えて100重量%以下、およびスチレンに由来する構成単位を0重量%以上50重量%未満含むものであってもよく、(ii)ブタジエンに由来する構成単位を60重量%~100重量%、およびスチレンに由来する構成単位を0重量%~40重量%含むものであってもよく、(iii)ブタジエンに由来する構成単位を70重量%~100重量%、およびスチレンに由来する構成単位を0重量%~30重量%含むものであってもよく、(iv)ブタジエンに由来する構成単位を80重量%~100重量%、およびスチレンに由来する構成単位を0重量%~20重量%含むものであってもよく、(v)ブタジエンに由来する構成単位を90重量%~100重量%、およびスチレンに由来する構成単位を0重量%~10重量%含むものであってもよい。ブタジエン-スチレンゴムは、ブタジエン-スチレンゴム100重量%中、(vi)ブタジエンに由来する構成単位を70重量%~90重量%、およびスチレンに由来する構成単位を10重量%~30重量%含むものであってもよく、(vii)ブタジエンに由来する構成単位を70重量%~85重量%、およびスチレンに由来する構成単位を15重量%~30重量%含むものであってもよく、(viii)ブタジエンに由来する構成単位を70重量%~80重量%、およびスチレンに由来する構成単位を20重量%~30重量%含むものであってもよく、(ix)ブタジエンに由来する構成単位を75重量%~80重量%、およびスチレンに由来する構成単位を20重量%~25重量%含むものであってもよい。 The butadiene-styrene rubber contains (i) more than 50% by weight and 100% by weight or less of butadiene-derived structural units and 0% by weight or more and 50% by weight of styrene-derived structural units in 100% by weight of butadiene-styrene rubber. (ii) 60% to 100% by weight of structural units derived from butadiene and 0% to 40% by weight of structural units derived from styrene. , (iii) may contain 70% to 100% by weight of structural units derived from butadiene and 0% to 30% by weight of structural units derived from styrene, and (iv) a structure derived from butadiene It may contain 80% to 100% by weight of units and 0% to 20% by weight of structural units derived from styrene, and (v) 90% to 100% by weight of structural units derived from butadiene. , and 0% to 10% by weight of structural units derived from styrene. The butadiene-styrene rubber contains (vi) 70% to 90% by weight of butadiene-derived structural units and 10% to 30% by weight of styrene-derived structural units in 100% by weight of butadiene-styrene rubber. (vii) may contain 70% to 85% by weight of structural units derived from butadiene and 15% to 30% by weight of structural units derived from styrene, and (viii) It may contain 70% to 80% by weight of structural units derived from butadiene and 20% to 30% by weight of structural units derived from styrene, and (ix) 75% by weight of structural units derived from butadiene. % to 80% by weight, and 20% to 25% by weight of structural units derived from styrene.
 弾性体が(メタ)アクリレート系ゴムを含む場合(場合B)について説明する。場合Bでは、多種の単量体の組合せにより、弾性体の幅広い重合体設計が可能となる。 A case (Case B) in which the elastic body contains (meth)acrylate rubber will be described. In case B, a wide variety of elastomeric polymer designs are possible by combining a wide variety of monomers.
 (メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系単量体に由来する構成単位を含む弾性体である。場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位100重量%中、(i)(メタ)アクリレート系単量体に由来する構成単位を50重量%~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%~50重量%、含むものであってもよく、(ii)(メタ)アクリレート系単量体に由来する構成単位を50重量%を超えて100重量%以下、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%以上50重量%未満含むものであってもよく、(iii)(メタ)アクリレート系単量体に由来する構成単位を60重量%~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%~40重量%含むものであってもよく、(iv)(メタ)アクリレート系単量体に由来する構成単位を70重量%~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%~30重量%含むものであってもよく、(v)(メタ)アクリレート系単量体に由来する構成単位を80重量%~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%~20重量%含むものであってもよく、(vi)(メタ)アクリレート系単量体に由来する構成単位を90重量%~100重量%、および(メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体に由来する構成単位を0重量%~10重量%含むものであってもよく、(vii)(メタ)アクリレート系単量体に由来する構成単位のみから構成されていてもよい。 (Meth)acrylate-based rubber is an elastic body containing, as a structural unit, a structural unit derived from a (meth)acrylate-based monomer. In case B, the (meth)acrylate rubber contains (i) 50% to 100% by weight of structural units derived from (meth)acrylate monomers in 100% by weight of structural units, and (meth)acrylate 0% to 50% by weight of a structural unit derived from a vinyl monomer other than a (meth)acrylate monomer copolymerizable with the monomer may be included, (ii) (meth ) More than 50% by weight but not more than 100% by weight of structural units derived from acrylate-based monomers, and vinyl units other than (meth)acrylate-based monomers copolymerizable with (meth)acrylate-based monomers It may contain 0% by weight or more and less than 50% by weight of structural units derived from a monomer, (iii) 60% to 100% by weight of structural units derived from a (meth)acrylate monomer, and It may contain 0% to 40% by weight of a structural unit derived from a vinyl-based monomer other than a (meth)acrylate-based monomer copolymerizable with a (meth)acrylate-based monomer, ( iv) 70% to 100% by weight of structural units derived from (meth)acrylate-based monomers, and vinyl-based monomers other than (meth)acrylate-based monomers copolymerizable with (meth)acrylate-based monomers It may contain 0% to 30% by weight of structural units derived from a monomer, and (v) 80% to 100% by weight of structural units derived from (meth)acrylate monomers, and It may contain 0% to 20% by weight of structural units derived from a vinyl-based monomer other than a (meth)acrylate-based monomer copolymerizable with a (meth)acrylate-based monomer, ( vi) 90% to 100% by weight of structural units derived from (meth)acrylate-based monomers, and vinyl-based monomers other than (meth)acrylate-based monomers copolymerizable with (meth)acrylate-based monomers It may contain 0% by weight to 10% by weight of structural units derived from monomers, or (vii) may be composed only of structural units derived from (meth)acrylate monomers.
 場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系単量体に由来する構成単位よりも少ない量において、ジエン系単量体に由来する構成単位を含んでいてもよい。 In Case B, the (meth)acrylate-based rubber may contain structural units derived from a diene-based monomer in an amount smaller than the structural units derived from the (meth)acrylate-based monomer. good.
 (メタ)アクリレート系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類;アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。これらの(メタ)アクリレート系単量体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。これらの(メタ)アクリレート系単量体の中でも、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、および2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。 Examples of (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, and dodecyl (meth)acrylate. , Alkyl (meth)acrylates such as stearyl (meth)acrylate and behenyl (meth)acrylate; Aromatic ring-containing (meth)acrylates such as phenoxyethyl (meth)acrylate and benzyl (meth)acrylate; ) acrylate, hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate; glycidyl (meth)acrylates such as glycidyl (meth)acrylate and glycidylalkyl (meth)acrylate; alkoxyalkyl (meth)acrylates; Allylalkyl (meth)acrylates such as allyl (meth)acrylate and allylalkyl (meth)acrylate; monoethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, etc. Examples include polyfunctional (meth)acrylates. These (meth)acrylate monomers may be used alone or in combination of two or more. Among these (meth)acrylate monomers, ethyl (meth)acrylate, butyl (meth)acrylate and 2-ethylhexyl (meth)acrylate are preferred, and butyl (meth)acrylate is more preferred.
 場合Bにおいて、(メタ)アクリレート系ゴムとしては、エチル(メタ)アクリレートゴム、ブチル(メタ)アクリレートゴムおよび2-エチルヘキシル(メタ)アクリレートゴムからなる群より選択される1種以上であることが好ましく、ブチル(メタ)アクリレートゴムがより好ましい。エチル(メタ)アクリレートゴムはエチル(メタ)アクリレートに由来する構成単位からなるゴムであり、ブチル(メタ)アクリレートゴムはブチル(メタ)アクリレートに由来する構成単位からなるゴムであり、2-エチルヘキシル(メタ)アクリレートゴムは2-エチルヘキシル(メタ)アクリレートに由来する構成単位からなるゴムである。当該構成によると、弾性体のガラス転移温度(Tg)が低くなるためTgが低い重合体微粒子(A)および樹脂組成物が得られる。その結果、(i)得られる樹脂組成物は、優れた靱性を有する硬化物を提供でき、かつ(ii)当該樹脂組成物の粘度をより低くすることができる。 In Case B, the (meth)acrylate rubber is preferably one or more selected from the group consisting of ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber and 2-ethylhexyl (meth)acrylate rubber. , butyl (meth)acrylate rubber is more preferred. Ethyl (meth)acrylate rubber is rubber composed of structural units derived from ethyl (meth)acrylate, butyl (meth)acrylate rubber is rubber composed of structural units derived from butyl (meth)acrylate, and 2-ethylhexyl ( A meth)acrylate rubber is a rubber composed of structural units derived from 2-ethylhexyl (meth)acrylate. According to this configuration, the glass transition temperature (Tg) of the elastic body is lowered, so that the polymer fine particles (A) and the resin composition having a low Tg can be obtained. As a result, (i) the obtained resin composition can provide a cured product having excellent toughness, and (ii) the viscosity of the resin composition can be made lower.
 (メタ)アクリレート系単量体と共重合可能な(メタ)アクリレート系単量体以外のビニル系単量体(以下、ビニル系単量体B、とも称する。)としては、前記ビニル系単量体Aにおいて列挙した単量体が挙げられる。ビニル系単量体Bは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。ビニル系単量体Bの中でも、特に好ましくはスチレンである。なお、場合Bにおける(メタ)アクリレート系ゴムにおいて、ビニル系単量体Bに由来する構成単位は任意成分である。場合Bにおいて、(メタ)アクリレート系ゴムは、(メタ)アクリレート系単量体に由来する構成単位のみから構成されてもよい。 As the vinyl-based monomer other than the (meth)acrylate-based monomer copolymerizable with the (meth)acrylate-based monomer (hereinafter also referred to as vinyl-based monomer B), the vinyl-based monomer The monomers listed in Form A are included. Only one kind of the vinyl-based monomer B may be used, or two or more kinds thereof may be used in combination. Among the vinyl-based monomers B, styrene is particularly preferred. In addition, in the (meth)acrylate rubber in Case B, the structural unit derived from the vinyl monomer B is an optional component. In Case B, the (meth)acrylate rubber may be composed only of structural units derived from (meth)acrylate monomers.
 弾性体がオルガノシロキサン系ゴムを含む場合(場合C)について説明する。場合Cにおいて、得られる樹脂組成物は、十分な耐熱性を有し、かつ低温での耐衝撃性に優れる硬化物を提供することができる。 The case where the elastic body contains organosiloxane rubber (Case C) will be described. In Case C, the resulting resin composition has sufficient heat resistance and can provide a cured product with excellent impact resistance at low temperatures.
 オルガノシロキサン系ゴムとしては、例えば、(i)ジメチルシリルオキシ、ジエチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシなどの、アルキルもしくはアリール2置換シリルオキシ単位から構成されるオルガノシロキサン系重合体、(ii)側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシなどの、アルキルもしくはアリール1置換シリルオキシ単位から構成されるオルガノシロキサン系重合体、が挙げられる。これらのオルガノシロキサン系重合体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Organosiloxane-based rubbers include, for example, (i) composed of alkyl- or aryl-disubstituted silyloxy units such as dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy. Organosiloxane polymers, (ii) organosiloxane polymers composed of alkyl- or aryl-monosubstituted silyloxy units such as organohydrogensilyloxy in which some of the alkyl side chains are substituted with hydrogen atoms. be done. These organosiloxane polymers may be used alone or in combination of two or more.
 本明細書において、ジメチルシリルオキシ単位から構成される重合体をジメチルシリルオキシゴムと称し、メチルフェニルシリルオキシ単位から構成される重合体をメチルフェニルシリルオキシゴムと称し、ジメチルシリルオキシ単位とジフェニルシリルオキシ単位とから構成される重合体をジメチルシリルオキシ-ジフェニルシリルオキシゴムと称する。場合Cにおいて、オルガノシロキサン系ゴムとしては、(i)得られる樹脂組成物が耐熱性に優れる硬化物を提供することができることから、ジメチルシリルオキシゴム、メチルフェニルシリルオキシゴムおよびジメチルシリルオキシ-ジフェニルシリルオキシゴムからなる群より選択される1種以上であることが好ましく、(ii)容易に入手できて経済的でもあることから、ジメチルシリルオキシゴムであることがより好ましい。 In this specification, a polymer composed of dimethylsilyloxy units is referred to as dimethylsilyloxy rubber, and a polymer composed of methylphenylsilyloxy units is referred to as methylphenylsilyloxy rubber. Polymers composed of oxy units are called dimethylsilyloxy-diphenylsilyloxy rubbers. In the case C, the organosiloxane rubber is (i) dimethylsilyloxy rubber, methylphenylsilyloxy rubber, and dimethylsilyloxy-diphenyl, since the resulting resin composition can provide a cured product having excellent heat resistance. It is preferably one or more selected from the group consisting of silyloxy rubbers, and (ii) more preferably dimethylsilyloxy rubber because it is readily available and economical.
 場合Cにおいて、重合体微粒子(A)は、重合体微粒子(A)に含まれる弾性体100重量%中、オルガノシロキサン系ゴムを80重量%以上含有していることが好ましく、90重量%以上含有していることがより好ましい。前記構成によると、得られる樹脂組成物は、耐熱性に優れる硬化物を提供することができる。 In case C, the fine polymer particles (A) preferably contain 80% by weight or more, more preferably 90% by weight or more, of the organosiloxane rubber in 100% by weight of the elastic material contained in the fine polymer particles (A). It is more preferable to have According to the configuration, the obtained resin composition can provide a cured product having excellent heat resistance.
 弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴム以外の弾性体をさらに含んでいてもよい。ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴム以外の弾性体としては、例えば天然ゴムが挙げられる。 The elastic body may further contain an elastic body other than diene rubber, (meth)acrylate rubber and organosiloxane rubber. Examples of elastic bodies other than diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers include natural rubbers.
 本発明の一実施形態において、弾性体は、ブタジエンゴム、ブタジエン-スチレンゴム、ブタジエン-(メタ)アクリレートゴム、エチル(メタ)アクリレートゴム、ブチル(メタ)アクリレートゴム、2-エチルヘキシル(メタ)アクリレートゴム、ジメチルシリルオキシゴム、メチルフェニルシリルオキシゴム、およびジメチルシリルオキシ-ジフェニルシリルオキシゴムからなる群より選択される1種以上であることが好ましく、ブタジエンゴム、ブタジエン-スチレンゴム、ブチル(メタ)アクリレートゴム、およびジメチルシリルオキシゴムからなる群より選択される1種以上であることがより好ましい。 In one embodiment of the present invention, the elastomer is butadiene rubber, butadiene-styrene rubber, butadiene-(meth)acrylate rubber, ethyl (meth)acrylate rubber, butyl (meth)acrylate rubber, 2-ethylhexyl (meth)acrylate rubber. , dimethylsilyloxy rubber, methylphenylsilyloxy rubber, and dimethylsilyloxy-diphenylsilyloxy rubber, preferably one or more selected from the group consisting of butadiene rubber, butadiene-styrene rubber, butyl (meth)acrylate It is more preferably one or more selected from the group consisting of rubber and dimethylsilyloxy rubber.
 (弾性体の架橋構造)
 重合体微粒子(A)の熱硬化性樹脂中での分散安定性を保持する観点から、弾性体には、架橋構造が導入されていることが好ましい。弾性体に対する架橋構造の導入方法としては、一般的に用いられる手法を採用することができ、例えば以下の方法が挙げられる。すなわち、弾性体の製造において、弾性体を構成し得る単量体に、多官能性単量体および/またはメルカプト基含有化合物などの架橋性単量体を混合し、次いで重合する方法が挙げられる。本明細書において、弾性体など重合体を製造することを、重合体を重合する、とも称する。
(Crosslinked structure of elastic body)
From the viewpoint of maintaining the dispersion stability of the polymer fine particles (A) in the thermosetting resin, it is preferable that a crosslinked structure is introduced into the elastic body. As a method for introducing a crosslinked structure into the elastic body, a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of the elastic body, a monomer capable of constituting the elastic body is mixed with a cross-linkable monomer such as a polyfunctional monomer and/or a mercapto group-containing compound, and then polymerized. . In this specification, manufacturing a polymer such as an elastomer is also referred to as polymerizing the polymer.
 また、オルガノシロキサン系ゴムに架橋構造を導入する方法としては、次のような方法も挙げられる:(A)オルガノシロキサン系ゴムを重合するときに、多官能性のアルコキシシラン化合物と他の材料とを併用する方法、(B)反応性基(例えば(i)メルカプト基および(ii)反応性を有するビニル基、など)をオルガノシロキサン系ゴムに導入し、その後、得られた反応生成物に、(i)有機過酸化物または(ii)重合性を有するビニル単量体などを添加してラジカル反応させる方法、または、(C)オルガノシロキサン系ゴムを重合するときに、多官能性単量体および/またはメルカプト基含有化合物などの架橋性単量体を他の材料と共に混合し、次いで重合を行う方法、など。 Methods for introducing a crosslinked structure into an organosiloxane rubber include the following methods: (A) when polymerizing an organosiloxane rubber, a polyfunctional alkoxysilane compound and another material are combined; (B) introducing a reactive group (e.g., (i) a mercapto group and (ii) a reactive vinyl group, etc.) into an organosiloxane-based rubber, and then to the resulting reaction product, (i) a method of radical reaction by adding an organic peroxide or (ii) a polymerizable vinyl monomer or the like, or (C) a polyfunctional monomer when polymerizing an organosiloxane rubber; and/or a method of mixing a crosslinkable monomer such as a mercapto group-containing compound with other materials, followed by polymerization, and the like.
 多官能性単量体は、分子内に2個以上の重合性不飽和結合を有する単量体である。前記重合性不飽和結合は、好ましくは炭素-炭素二重結合である。多官能性単量体としては、ブタジエンは含まれず、アリルアルキル(メタ)アクリレート類およびアリルオキシアルキル(メタ)アクリレート類のような、エチレン性不飽和二重結合を有する(メタ)アクリレートなどが例示される。(メタ)アクリル基を2つ有する単量体としては、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。前記ポリエチレングリコールジ(メタ)アクリレート類としては、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレートなどが例示される。また、3つの(メタ)アクリル基を有する単量体として、アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類、グリセロールプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどが例示される。アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどが挙げられる。さらに、4つの(メタ)アクリル基を有する単量体として、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、などが例示される。またさらに、5つの(メタ)アクリル基を有する単量体として、ジペンタエリスリトールペンタ(メタ)アクリレートなどが例示される。またさらに、6つの(メタ)アクリル基を有する単量体として、ジトリメチロールプロパンヘキサ(メタ)アクリレートなどが例示される。多官能性単量体としては、また、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなども挙げられる。 A polyfunctional monomer is a monomer having two or more polymerizable unsaturated bonds in the molecule. Said polymerizable unsaturated bond is preferably a carbon-carbon double bond. Examples of polyfunctional monomers include (meth)acrylates having an ethylenically unsaturated double bond, such as allylalkyl (meth)acrylates and allyloxyalkyl (meth)acrylates, butadiene is not included. be done. Examples of monomers having two (meth)acrylic groups include ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and cyclohexanedimethanol. Di(meth)acrylates, and polyethylene glycol di(meth)acrylates. Examples of the polyethylene glycol di(meth)acrylates include triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (600) di(meth)acrylate, and the like. are exemplified. Further, as monomers having three (meth)acrylic groups, alkoxylated trimethylolpropane tri(meth)acrylates, glycerolpropoxy tri(meth)acrylate, pentaerythritol tri(meth)acrylate, tris(2-hydroxy Ethyl)isocyanurate tri(meth)acrylate and the like are exemplified. Alkoxylated trimethylolpropane tri(meth)acrylates include trimethylolpropane tri(meth)acrylate and trimethylolpropane triethoxy tri(meth)acrylate. Furthermore, examples of monomers having four (meth)acrylic groups include pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, and the like. Furthermore, dipentaerythritol penta(meth)acrylate etc. are illustrated as a monomer which has five (meth)acrylic groups. Furthermore, examples of monomers having six (meth)acrylic groups include ditrimethylolpropane hexa(meth)acrylate. Polyfunctional monomers also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, and the like.
 上述の多官能性単量体の中でも、弾性体の重合に好ましく用いられ得る多官能性単量体としては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。これら多官能性単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Among the polyfunctional monomers described above, polyfunctional monomers that can be preferably used in the polymerization of the elastic body include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol. Di(meth)acrylates, hexanediol di(meth)acrylates, cyclohexanedimethanol di(meth)acrylates, and polyethylene glycol di(meth)acrylates. Only one type of these polyfunctional monomers may be used, or two or more types may be used in combination.
 メルカプト基含有化合物としては、アルキル基置換メルカプタン、アリル基置換メルカプタン、アリール基置換メルカプタン、ヒドロキシ基置換メルカプタン、アルコキシ基置換メルカプタン、シアノ基置換メルカプタン、アミノ基置換メルカプタン、シリル基置換メルカプタン、酸基置換メルカプタン、ハロ基置換メルカプタンおよびアシル基置換メルカプタンなどが挙げられる。アルキル基置換メルカプタンとしては、炭素数1~20のアルキル基置換メルカプタンが好ましく、炭素数1~10のアルキル基置換メルカプタンがより好ましい。アリール基置換メルカプタンとしては、フェニル基置換メルカプタンが好ましい。アルコキシ基置換メルカプタンとしては、炭素数1~20のアルコキシ基置換メルカプタンが好ましく、炭素数1~10のアルコキシ基置換メルカプタンがより好ましい。酸基置換メルカプタンとしては、好ましくは、カルボキシル基を有する炭素数1~10のアルキル基置換メルカプタン、または、カルボキシル基を有する炭素数1~12のアリール基置換メルカプタン、である。 Mercapto group-containing compounds include alkyl group-substituted mercaptans, allyl group-substituted mercaptans, aryl group-substituted mercaptans, hydroxy group-substituted mercaptans, alkoxy group-substituted mercaptans, cyano group-substituted mercaptans, amino group-substituted mercaptans, silyl group-substituted mercaptans, and acid group-substituted mercaptans. mercaptans, halo group-substituted mercaptans, acyl group-substituted mercaptans, and the like. As the alkyl-substituted mercaptan, an alkyl-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkyl-substituted mercaptan having 1 to 10 carbon atoms is more preferable. As the aryl group-substituted mercaptan, a phenyl group-substituted mercaptan is preferred. As the alkoxy-substituted mercaptan, an alkoxy-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkoxy-substituted mercaptan having 1 to 10 carbon atoms is more preferable. The acid group-substituted mercaptan is preferably an alkyl group-substituted mercaptan having a carboxyl group and having 1 to 10 carbon atoms or an aryl group-substituted mercaptan having a carboxyl group and having 1 to 12 carbon atoms.
 (弾性体のガラス転移温度)
 弾性体のガラス転移温度は、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、40℃以下がより好ましく、30℃以下がより好ましく、20℃以下がより好ましく、10℃以下がより好ましく、0℃以下がより好ましく、-20℃以下がより好ましく、-40℃以下がより好ましく、-45℃以下がより好ましく、-50℃以下がより好ましく、-55℃以下がより好ましく、-60℃以下がより好ましく、-65℃以下がより好ましく、-70℃以下がより好ましく、-75℃以下がより好ましく、-80℃以下がより好ましく、-85℃以下がより好ましく、-90℃以下がより好ましく、-95℃以下がより好ましく、-100℃以下がより好ましく、-105℃以下がより好ましく、-110℃以下がより好ましく、-115℃以下がより好ましく、-120℃以下がさらに好ましく、-125℃以下が特に好ましい。本明細書において、「ガラス転移温度」を「Tg」と称する場合もある。当該構成によると、低いTgを有する重合体微粒子(A)、および、低いTgを有する樹脂組成物を得ることができる。その結果、得られる樹脂組成物は、優れた靱性を有する硬化物を提供できる。また、当該構成によると、得られる樹脂組成物の粘度を、より低くすることができる。弾性体のTgは、重合体微粒子(A)からなる平面板を用いて、粘弾性測定を行うことによって得ることができる。具体的には、以下のようにしてTgを測定できる:(1)重合体微粒子(A)からなる平面板について、動的粘弾性測定装置(例えば、アイティー計測制御株式会社製、DVA-200)を用いて、引張条件で動的粘弾性測定を行い、tanδのグラフを得る;(2)得られたtanδのグラフについて、tanδのピーク温度をガラス転移温度とする。ここで、tanδのグラフにおいて、複数のピークが得られた場合には、最も低いピーク温度を弾性体のガラス転移温度とする。
(Glass transition temperature of elastic body)
The glass transition temperature of the elastic body is preferably 80° C. or lower, more preferably 70° C. or lower, more preferably 60° C. or lower, more preferably 50° C. or lower, more preferably 40° C. or lower, more preferably 30° C. or lower. ° C. or lower is more preferred, 10 ° C. or lower is more preferred, 0 ° C. or lower is more preferred, -20 ° C. or lower is more preferred, -40 ° C. or lower is more preferred, -45 ° C. or lower is more preferred, and -50 ° C. or lower is more preferred. preferably -55°C or lower, more preferably -60°C or lower, more preferably -65°C or lower, more preferably -70°C or lower, more preferably -75°C or lower, more preferably -80°C or lower, -85°C or lower is more preferred, -90°C or lower is more preferred, -95°C or lower is more preferred, -100°C or lower is more preferred, -105°C or lower is more preferred, -110°C or lower is more preferred, -115 °C or lower is more preferred, -120°C or lower is even more preferred, and -125°C or lower is particularly preferred. In this specification, "glass transition temperature" may be referred to as "Tg". According to this configuration, polymer fine particles (A) having a low Tg and a resin composition having a low Tg can be obtained. As a result, the obtained resin composition can provide a cured product having excellent toughness. Moreover, according to the said structure, the viscosity of the resin composition obtained can be made lower. The Tg of the elastic body can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A). Specifically, Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan δ graph; (2) Regarding the obtained tan δ graph, the tan δ peak temperature is taken as the glass transition temperature. Here, in the graph of tan δ, when a plurality of peaks are obtained, the lowest peak temperature is taken as the glass transition temperature of the elastic body.
 一方、得られる硬化物の弾性率(剛性)の低下を抑制することができる、すなわち十分な弾性率(剛性)を有する硬化物が得られることから、弾性体のTgは、0℃よりも大きいことが好ましく、20℃以上であることがより好ましく、50℃以上であることがさらに好ましく、80℃以上であることが特に好ましく、120℃以上であることが最も好ましい。 On the other hand, the elastic modulus (rigidity) of the resulting cured product can be suppressed from decreasing, that is, a cured product having a sufficient elastic modulus (rigidity) can be obtained. 20° C. or higher is more preferred, 50° C. or higher is even more preferred, 80° C. or higher is particularly preferred, and 120° C. or higher is most preferred.
 弾性体のTgは、弾性体に含まれる構成単位の組成などによって、決定され得る。換言すれば、弾性体を製造(重合)するときに使用する単量体の組成を変化させることにより、得られる弾性体のTgを調整することができる。 The Tg of the elastic body can be determined by the composition of the constituent units contained in the elastic body. In other words, the Tg of the resulting elastic body can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the elastic body.
 ここで、1種類の単量体のみを重合させてなる単独重合体としたとき、0℃よりも大きいTgを有する単独重合体を提供する単量体の群を、単量体群aとする。また、1種類の単量体のみを重合させてなる単独重合体としたとき、0℃未満のTgを有する単独重合体を提供する単量体の群を、単量体群bとする。単量体群aから選択される少なくとも1種の単量体に由来する構成単位を50~100重量%(より好ましくは、65~99重量%)、および単量体群bから選択される少なくとも1種の単量体に由来する構成単位を0~50重量%(より好ましくは、1~35重量%)含む弾性体を、弾性体Gとする。弾性体Gは、Tgが0℃よりも大きい。また、弾性体が弾性体Gを含む場合、得られる樹脂組成物は、十分な剛性を有する硬化物を提供することができる。 Here, when a homopolymer obtained by polymerizing only one type of monomer, a group of monomers that provide a homopolymer having a Tg greater than 0 ° C. is referred to as a monomer group a. . A group of monomers that provide a homopolymer having a Tg of less than 0° C. when only one type of monomer is polymerized is referred to as a monomer group b. 50 to 100% by weight (more preferably 65 to 99% by weight) of structural units derived from at least one monomer selected from monomer group a, and at least selected from monomer group b An elastic body G is defined as an elastic body containing 0 to 50% by weight (more preferably 1 to 35% by weight) of structural units derived from one type of monomer. The elastic body G has a Tg greater than 0°C. Moreover, when the elastic body contains the elastic body G, the obtained resin composition can provide a cured product having sufficient rigidity.
 弾性体のTgが0℃よりも大きい場合も、弾性体に架橋構造が導入されていることが好ましい。架橋構造の導入方法としては、前記の方法が挙げられる。 Also when the Tg of the elastic body is higher than 0°C, it is preferable that a crosslinked structure is introduced into the elastic body. Methods for introducing the crosslinked structure include the methods described above.
 前記単量体群aに含まれ得る単量体としては、以下に限るものではないが、例えば、スチレン、2-ビニルナフタレンなどの無置換ビニル芳香族化合物類;α-メチルスチレンなどのビニル置換芳香族化合物類;3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレンなどの環アルキル化ビニル芳香族化合物類;4-メトキシスチレン、4-エトキシスチレンなどの環アルコキシル化ビニル芳香族化合物類;2-クロロスチレン、3-クロロスチレンなどの環ハロゲン化ビニル芳香族化合物類;4-アセトキシスチレンなどの環エステル置換ビニル芳香族化合物類;4-ヒトロキシスチレンなどの環ヒドロキシル化ビニル芳香族化合物類;ビニルベンゾエート、ビニルシクロヘキサノエートなどのビニルエステル類;塩化ビニルなどのビニルハロゲン化物類;アセナフタレン、インデンなどの芳香族単量体類;メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレートなどのアルキルメタクリレート類;フェニルメタクリレートなどの芳香族メタクリレート;イソボルニルメタクリレート、トリメチルシリルメタクリレートなどのメタクリレート類;メタクリロニトリルなどのメタクリル酸誘導体を含むメタクリル単量体;イソボルニルアクリレート、tert-ブチルアクリレートなどのある種のアクリル酸エステル;アクリロニトリルなどのアクリル酸誘導体を含むアクリル単量体、などが挙げられる。さらに、前記単量体群aに含まれ得る単量体としては、アクリルアミド、イソプロピルアクリルアミド、N-ビニルピロリドン、イソボルニルメタクリレート、ジシクロペンタニルメタクリレート、2-メチル-2-アダマンチルメタクリレート、1-アダマンチルアクリレート及び1-アダマンチルメタクリレート、など、単独重合体としたとき120℃以上のTgを有する単独重合体を提供し得る単量体が挙げられる。これらの単量体aは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of monomers that can be included in the monomer group a include, but are not limited to, styrene, unsubstituted vinyl aromatic compounds such as 2-vinylnaphthalene; vinyl-substituted compounds such as α-methylstyrene; Aromatic compounds; ring-alkylated vinyls such as 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene and 2,4,6-trimethylstyrene Aromatic compounds; Ring alkoxylated vinyl aromatic compounds such as 4-methoxystyrene and 4-ethoxystyrene; Ring halogenated vinyl aromatic compounds such as 2-chlorostyrene and 3-chlorostyrene; 4-acetoxystyrene and the like ring-ester-substituted vinyl aromatic compounds; ring hydroxylated vinyl aromatic compounds such as 4-hydroxystyrene; vinyl esters such as vinyl benzoate and vinyl cyclohexanoate; vinyl halides such as vinyl chloride; , indene; alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and isopropyl methacrylate; aromatic methacrylates such as phenyl methacrylate; methacrylates such as isobornyl methacrylate and trimethylsilyl methacrylate; methacrylic monomers including methacrylic acid derivatives; certain acrylic acid esters such as isobornyl acrylate and tert-butyl acrylate; acrylic monomers including acrylic acid derivatives such as acrylonitrile; Further, monomers that can be included in the monomer group a include acrylamide, isopropylacrylamide, N-vinylpyrrolidone, isobornyl methacrylate, dicyclopentanyl methacrylate, 2-methyl-2-adamantyl methacrylate, 1- Monomers such as adamantyl acrylate and 1-adamantyl methacrylate that can provide a homopolymer having a Tg of 120° C. or higher when converted to a homopolymer are included. These monomers a may be used alone or in combination of two or more.
 前記単量体群bとしては、エチルアクリレート、ブチルアクリレート(別名:アクリル酸ブチル)、2-エチルヘキシルアクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートなどが挙げられる。これらの単量体群bは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。これらの単量体群bの中でも、特に好ましくは、エチルアクリレート、ブチルアクリレート、および2-エチルヘキシルアクリレートである。 Examples of the monomer group b include ethyl acrylate, butyl acrylate (also known as butyl acrylate), 2-ethylhexyl acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, 2-hydroxyethyl acrylate, and 4-hydroxybutyl acrylate. etc. Only one type of these monomer group b may be used, or two or more types may be used in combination. Among these monomer groups b, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate are particularly preferred.
 (弾性体の体積平均粒子径)
 弾性体の体積平均粒子径は、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。弾性体の体積平均粒子径が(i)0.03μm以上である場合、所望の体積平均粒子径を有する弾性体を安定的に得ることができ、(ii)50.00μm以下である場合、得られる硬化物の耐熱性および耐衝撃性が良好となる。弾性体の体積平均粒子径は、弾性体を含む水性懸濁液を試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。
(Volume average particle size of elastic body)
The volume average particle diameter of the elastic body is preferably 0.03 μm to 50.00 μm, more preferably 0.05 μm to 10.00 μm, more preferably 0.08 μm to 2.00 μm, and further preferably 0.10 μm to 1.00 μm. It is preferably 0.10 μm to 0.80 μm, and particularly preferably 0.10 μm to 0.50 μm. When the volume average particle diameter of the elastic body is (i) 0.03 μm or more, an elastic body having a desired volume average particle diameter can be stably obtained, and (ii) when it is 50.00 μm or less, it can be obtained. The heat resistance and impact resistance of the resulting cured product are improved. The volume-average particle size of the elastic body can be measured by using an aqueous suspension containing the elastic body as a sample and using a dynamic light scattering particle size distribution analyzer or the like.
 (弾性体の割合)
 重合体微粒子(A)中に占める弾性体の割合は、重合体微粒子(A)全体を100重量%として、40~97重量%が好ましく、60~95重量%がより好ましく、60~93重量%がより好ましく、70~93重量%がより好ましく、70~90重量%がより好ましく、70~87重量%がより好ましく、70~85重量%がさらに好ましい。弾性体の前記割合が、(i)40重量%以上である場合、得られる樹脂組成物は、靱性および耐衝撃性に優れる硬化物を提供することができ、(ii)97重量%以下である場合、重合体微粒子(A)は容易には凝集しないため、樹脂組成物が高粘度となることがなく、その結果、得られる樹脂組成物は取扱い性に優れたものとなり得る。
(Proportion of elastic body)
The proportion of the elastic body in the polymer microparticles (A) is preferably 40 to 97% by weight, more preferably 60 to 95% by weight, more preferably 60 to 93% by weight, based on 100% by weight of the entire polymer microparticles (A). is more preferable, 70 to 93% by weight is more preferable, 70 to 90% by weight is more preferable, 70 to 87% by weight is more preferable, and 70 to 85% by weight is even more preferable. When the proportion of the elastic body is (i) 40% by weight or more, the resulting resin composition can provide a cured product having excellent toughness and impact resistance, and (ii) is 97% by weight or less. In this case, since the polymer fine particles (A) do not easily aggregate, the resin composition does not become highly viscous, and as a result, the obtained resin composition can be excellent in handleability.
 これには、以下の理由が考えられる。まず、重合体微粒子(A)中に占める弾性体の割合に関して言えば、重合体微粒子(A)中に占める弾性体の割合が多くなり、グラフト部の割合が少なくなると、弾性体がグラフト部によって被覆されきれずに弾性体として露出し、凝集しやすくなる。これは、グラフト部の立体反発効果により、重合体微粒子(A)の凝集が防げられているためである。本凝集により、樹脂組成物の粘度は上昇する。本凝集は、重合体微粒子(A)を含む樹脂組成物を製造する際もしくは経時にて発生する。 The following reasons can be considered for this. First, with regard to the ratio of the elastic material in the fine polymer particles (A), when the ratio of the elastic material in the fine polymer particles (A) increases and the ratio of the graft portion decreases, the elastic material is absorbed by the graft portion. It is exposed as an elastic body without being fully covered, and tends to aggregate. This is because aggregation of the fine polymer particles (A) is prevented by the steric repulsion effect of the graft portion. This aggregation increases the viscosity of the resin composition. This aggregation occurs during production of the resin composition containing the polymer fine particles (A) or over time.
 次に、グラフト部の架橋により、グラフト鎖がある程度固定され、からまりが抑制されるため、粘度が減少する。ただし、グラフト鎖の固定により、立体反発効果が抑制され、経時での凝集が発生しやすくなる。 Next, the cross-linking of the graft part fixes the graft chain to some extent, suppressing entanglement and reducing the viscosity. However, the fixation of the grafted chains suppresses the steric repulsion effect, making aggregation more likely to occur over time.
 (弾性体のゲル含量)
 弾性体は、適切な溶媒に対して膨潤し得るが、実質的には溶解しないものであることが好ましい。弾性体は、使用する熱硬化性樹脂に対して、不溶であることが好ましい。
(Gel content of elastic body)
Preferably, the elastomer is swellable in a suitable solvent, but substantially insoluble. The elastic body is preferably insoluble in the thermosetting resin used.
 弾性体は、ゲル含量が60重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましく、95重量%以上であることが特に好ましい。弾性体のゲル含量が前記範囲内である場合、得られる樹脂組成物は、靱性に優れる硬化物を提供できる。 The elastic body preferably has a gel content of 60% by weight or more, more preferably 80% by weight or more, even more preferably 90% by weight or more, and particularly preferably 95% by weight or more. When the gel content of the elastic body is within the above range, the obtained resin composition can provide a cured product having excellent toughness.
 本明細書においてゲル含量の算出方法は下記の通りである。先ず、重合体微粒子(A)を含有する水性懸濁液を得、次に、当該水性懸濁液から、重合体微粒子(A)の粉粒体を得る。水性懸濁液から重合体微粒子(A)の粉粒体を得る方法としては、特に限定されないが、例えば、(i)当該水性懸濁液中の重合体微粒子(A)を凝集させ、(ii)得られる凝集物を脱水し、(iii)さらに凝集物を乾燥することにより、重合体微粒子(A)の粉粒体を得る方法が挙げられる。次いで、重合体微粒子(A)の粉粒体2.0gをメチルエチルケトン(MEK)50mLに溶解する。その後、得られたMEK溶解物を、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。具体的には、遠心分離機(日立工機(株)社製、CP60E)を用い、回転数30000rpmにて1時間、得られたMEK溶解物を遠心分離に供し、当該溶解物を、MEK可溶分とMEK不溶分とに分離する。ここで、遠心分離作業は合計3セット実施する。得られたMEK可溶分とMEK不溶分との重量を測定し、次式よりゲル含量を算出する。
ゲル含量(%)=(メチルエチルケトン不溶分の重量)/{(メチルエチルケトン不溶分の重量)+(メチルエチルケトン可溶分の重量)}×100。
In the present specification, the method for calculating the gel content is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension. The method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension is not particularly limited. For example, (i) aggregate the polymer microparticles (A) in the aqueous suspension, ) dehydrating the obtained aggregates, and (iii) further drying the aggregates to obtain powder particles of the polymer fine particles (A). Next, 2.0 g of powder particles of polymer fine particles (A) are dissolved in 50 mL of methyl ethyl ketone (MEK). After that, the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter). Specifically, using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CP60E), the obtained MEK lysate was subjected to centrifugation for 1 hour at a rotation speed of 30000 rpm, and the lysate was subjected to MEK soluble. It is separated into a soluble portion and an MEK insoluble portion. Here, a total of 3 sets of centrifugation operations are carried out. The weights of the obtained MEK soluble matter and MEK insoluble matter are measured, and the gel content is calculated from the following formula.
Gel content (%)=(weight of methyl ethyl ketone-insoluble matter)/{(weight of methyl ethyl ketone-insoluble matter)+(weight of methyl ethyl ketone-soluble matter)}×100.
 (弾性体の変形例)
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、構成単位の組成が同一である1種類の弾性体、のみからなってもよい。この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種類である。
(Modified example of elastic body)
In one embodiment of the present invention, the "elastic body" of the fine polymer particles (A) may consist of only one type of elastic body having the same composition of structural units. In this case, the "elastic body" of the fine polymer particles (A) is one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers.
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、構成単位の組成がそれぞれ異なる複数種の弾性体からなってもよい。この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される2種類以上であってもよい。また、この場合、重合体微粒子(A)の「弾性体」は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種類であってもよい。換言すれば、重合体微粒子(A)の「弾性体」は、構成単位の組成がそれぞれ異なる複数種のジエン系ゴム、(メタ)アクリレート系ゴムまたはオルガノシロキサン系ゴムであってもよい。 In one embodiment of the present invention, the "elastic body" of the fine polymer particles (A) may consist of a plurality of types of elastic bodies having different compositions of structural units. In this case, the "elastic body" of the fine polymer particles (A) may be two or more selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers. In this case, the "elastic body" of the fine polymer particles (A) may be one selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers. In other words, the "elastic body" of the fine polymer particles (A) may be a plurality of types of diene-based rubbers, (meth)acrylate-based rubbers, or organosiloxane-based rubbers each having a different composition of structural units.
 本発明の一実施形態において、重合体微粒子(A)の「弾性体」が、構成単位の組成がそれぞれ異なる複数種の弾性体からなる場合について説明する。この場合、複数種の弾性体のそれぞれを、弾性体、弾性体、・・・、および弾性体とする。ここで、nは2以上の整数である。重合体微粒子(A)の「弾性体」は、それぞれ別々に重合された弾性体、弾性体、・・・、および弾性体の複合体を含んでいてもよい。重合体微粒子(A)の「弾性体」は、弾性体、弾性体、・・・、および弾性体をそれぞれ順に重合して得られる1つの弾性体を含んでいてもよい。このように、複数の弾性体(重合体)をそれぞれ順に重合することを、多段重合とも称する。複数種の弾性体を多段重合して得られる1つの弾性体を、多段重合弾性体とも称する。多段重合弾性体の製造方法については、後に詳述する。 In one embodiment of the present invention, the case where the "elastic body" of the fine polymer particles (A) is composed of a plurality of types of elastic bodies having different compositions of structural units will be described. In this case, each of the plurality of types of elastic bodies is defined as elastic body 1 , elastic body 2 , . . . , and elastic body n . Here, n is an integer of 2 or more. The "elastic body" of the fine polymer particles (A) may include a composite of separately polymerized elastic bodies 1 , 2 , . . . , and elastic body n . The "elastic body" of the fine polymer particles (A) may include one elastic body obtained by polymerizing the elastic body 1 , the elastic body 2 , . . . and the elastic body n in order. Such polymerization of a plurality of elastic bodies (polymers) in order is also called multistage polymerization. A single elastic body obtained by multi-stage polymerization of a plurality of types of elastic bodies is also referred to as a multi-stage polymerized elastic body. A method for producing the multi-stage polymer elastic body will be described in detail later.
 弾性体、弾性体、・・・、および弾性体からなる多段重合弾性体について説明する。当該多段重合弾性体において、弾性体は、弾性体n-1の少なくとも一部を被覆し得るか、または弾性体n-1の全体を被覆し得る。当該多段重合弾性体において、弾性体の一部は弾性体n-1の内側に入り込んでいることもある。 A multistage polymerized elastic body composed of elastic body 1 , elastic body 2 , . . . , and elastic body n will be described. In the multi-stage polymer elastic body, the elastic body n may cover at least a portion of the elastic body n - 1 or may cover the entire elastic body n-1 . In the multi-stage polymerized elastic body, part of the elastic body n may be inside the elastic body n-1 .
 多段重合弾性体において、複数の弾性体のそれぞれが、層構造を形成していてもよい。例えば、多段重合弾性体が、弾性体、弾性体、および弾性体からなる場合、弾性体が最内層を形成し、弾性体の外側に弾性体の層が形成され、さらに弾性体の層の外側に弾性体の層が弾性体における最外層として形成される態様も、本発明の一態様である。このように、複数の弾性体のそれぞれが層構造を形成している多段重合弾性体は、多層弾性体ともいえる。すなわち、本発明の一実施形態において、重合体微粒子(A)の「弾性体」は、(i)複数種の弾性体の複合体、(ii)多段重合弾性体および/または(iii)多層弾性体を含んでいてもよい。 In the multi-stage polymerized elastic body, each of the plurality of elastic bodies may form a layered structure. For example, when the multi-stage polymer elastic body is composed of elastic body 1 , elastic body 2 , and elastic body 3 , elastic body 1 forms the innermost layer, elastic body 2 is formed outside elastic body 1 , and elastic body 2 is formed on the outer side of elastic body 1. A mode in which a layer of the elastic body 3 is formed as the outermost layer of the elastic body outside the layer of the elastic body 2 is also one mode of the present invention. Thus, a multi-stage polymerized elastic body in which each of a plurality of elastic bodies forms a layered structure can also be called a multi-layered elastic body. That is, in one embodiment of the present invention, the “elastic body” of the fine polymer particles (A) is (i) a composite of multiple types of elastic bodies, (ii) a multi-stage polymerized elastic body and/or (iii) a multi-layered elastic It may contain a body.
 (表面架橋重合体)
 弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびオルガノシロキサン系ゴムからなる群より選択される1種以上のゴムの他に、表面架橋重合体をさらに有していてもよい。なお、以下の説明では、弾性体に含まれる表面架橋重合体と区別する目的で、弾性体における上述したゴムを主成分として含む部分を「弾性体の弾性コア」ということがある。換言すれば、前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上の単量体を重合してなる弾性体の弾性コアと、前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合してなる表面架橋重合体とを含有することが好ましい。以下、弾性体が、弾性体の弾性コアに加えて表面架橋重合体をさらに有する場合を例に挙げて、本発明の一実施形態を説明する。この場合、(i)重合体微粒子(A)の製造において、耐ブロッキング性を改善することができるとともに、(ii)熱硬化性樹脂における重合体微粒子(A)の分散性がより良好となる。これらの理由としては、特に限定されないが、以下のように推測され得る:表面架橋重合体が弾性体の弾性コアの少なくとも一部を被覆することにより、重合体微粒子(A)の弾性体の弾性コアの露出が減り、その結果、弾性体同士が引っ付きにくくなるため、重合体微粒子(A)の分散性が向上する。
(Surface cross-linked polymer)
The elastic body may further contain a surface-crosslinked polymer in addition to one or more rubbers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers and organosiloxane-based rubbers. In the following description, for the purpose of distinguishing from the surface-crosslinked polymer contained in the elastic body, the portion of the elastic body containing the above-mentioned rubber as a main component may be referred to as the "elastic core of the elastic body". In other words, the elastic body has an elastic core formed by polymerizing at least one monomer selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber. , and a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer. is preferred. An embodiment of the present invention will be described below, taking as an example the case where the elastic body further has a surface-crosslinked polymer in addition to the elastic core of the elastic body. In this case, (i) blocking resistance can be improved in the production of the polymer fine particles (A), and (ii) dispersibility of the polymer fine particles (A) in the thermosetting resin becomes better. These reasons are not particularly limited, but can be presumed as follows: The surface cross-linked polymer covers at least a part of the elastic core of the elastic body, thereby increasing the elasticity of the elastic body of the fine polymer particles (A). The exposure of the core is reduced, and as a result, the elastic bodies are less likely to stick to each other, thereby improving the dispersibility of the fine polymer particles (A).
 弾性体が表面架橋重合体を有する場合、さらに以下の効果も有し得る:(i)本樹脂組成物の粘度を低下させる効果、(ii)弾性体全体としての架橋密度を上げる効果、および(iii)グラフト部のグラフト効率を高める効果。弾性体の弾性コアにおける架橋密度とは、弾性体の弾性コア全体における架橋構造の数の程度を意味する。 When the elastic body has a surface-crosslinked polymer, it may also have the following effects: (i) the effect of lowering the viscosity of the present resin composition, (ii) the effect of increasing the crosslink density of the elastic body as a whole, and ( iii) The effect of increasing the grafting efficiency of the grafted part. The crosslink density in the elastic core of the elastic means the degree of the number of crosslinked structures in the entire elastic core of the elastic.
 表面架橋重合体は、構成単位として、多官能性単量体に由来する構成単位を30~100重量%、およびその他のビニル系単量体に由来する構成単位を0~70重量%、合計100重量%含む重合体からなる。 The surface-crosslinked polymer contains, as structural units, 30 to 100% by weight of structural units derived from a polyfunctional monomer and 0 to 70% by weight of structural units derived from other vinyl monomers, a total of 100 % by weight of the polymer.
 表面架橋重合体の重合に用いられ得る多官能性単量体としては、上述した「弾性体の架橋構造」の項で例示した多官能性単量体が挙げられる。それら多官能性単量体の中でも、表面架橋重合体の重合に好ましく用いられ得る多官能性単量体としては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート(例えばジメタクリル酸1,3-ブチレングリコールなど)、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。これら多官能性単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Examples of polyfunctional monomers that can be used for polymerization of the surface-crosslinked polymer include the polyfunctional monomers exemplified in the above section "Crosslinked structure of elastic body". Among these polyfunctional monomers, polyfunctional monomers that can be preferably used for polymerization of the surface-crosslinked polymer include allyl methacrylate, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate (e.g. 1,3-butylene glycol dimethacrylate), butanediol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and polyethylene glycol di(meth)acrylates. Only one type of these polyfunctional monomers may be used, or two or more types may be used in combination.
 弾性体は、弾性体の弾性コアの重合とは独立して重合された表面架橋重合体を含んでいてもよく、または、弾性体の弾性コアと共に重合された表面架橋重合体を含んでいてもよい。換言すれば、重合体微粒子(A)は、弾性体の弾性コアと表面架橋重合体とを共に重合し、その後グラフト部を重合して得られる多段重合体であってもよい。また、重合体微粒子(A)は、弾性体の弾性コアと表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体であってもよい。これらいずれの態様においても、表面架橋重合体は弾性体の弾性コアの少なくとも一部を被覆し得る。 The elastomer may comprise a surface cross-linked polymer polymerized independently of the polymerisation of the elastic core of the elastomer, or it may comprise a surface cross-linked polymer polymerized with the elastic core of the elastomer. good. In other words, the fine polymer particles (A) may be a multistage polymer obtained by polymerizing the elastic core of the elastic body and the surface-crosslinked polymer together, and then polymerizing the graft portion. Further, the polymer fine particles (A) may be a multi-stage polymer obtained by multi-stage polymerization of an elastic core of an elastic body, a surface-crosslinked polymer and a graft portion in this order. In any of these embodiments, the surface cross-linked polymer may coat at least a portion of the elastic core of the elastomer.
 表面架橋重合体は、弾性体の一部とみなすことができ、弾性体の弾性コアに対して、表面架橋重合体は弾性体の表面架橋重合部ともいえる。弾性体が表面架橋重合体を含む場合、グラフト部は、(i)表面架橋重合体以外の弾性体(すなわち、弾性体の弾性コア)に対してグラフト結合されていてもよく、(ii)表面架橋重合体に対してグラフト結合されていてもよく、(iii)表面架橋重合体以外の弾性体(すなわち、弾性体の弾性コア)および表面架橋重合体の両方に対してグラフト結合されていてもよい。弾性体が表面架橋重合体を含む場合、上述した弾性体の体積平均粒子径とは、表面架橋重合体を含む弾性体の体積平均粒子径を意味する。 The surface cross-linked polymer can be regarded as a part of the elastic body, and the surface cross-linked polymer can be said to be the surface cross-linked part of the elastic body, as opposed to the elastic core of the elastic body. When the elastic body contains a surface-crosslinked polymer, the graft portion may be (i) graft-bonded to an elastic body other than the surface-crosslinked polymer (that is, the elastic core of the elastic body); It may be grafted to the crosslinked polymer, or (iii) grafted to both the elastic body other than the surface crosslinked polymer (that is, the elastic core of the elastic body) and the surface crosslinked polymer. good. When the elastic contains a surface-crosslinked polymer, the volume-average particle size of the elastic means the volume-average particle size of the elastic containing the surface-crosslinked polymer.
 (グラフト部)
 本明細書において、弾性体に対してグラフト結合された重合体をグラフト部と称する。グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなる。
(graft part)
In this specification, the polymer graft-bonded to the elastic body is referred to as a graft portion. The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer.
 (第1の構成単位)
 第1の構成単位(以下、「第1構成単位」)は、グラフト部に含まれる前記重合体を構成する構成単位の内、第1の単量体(以下、「第1単量体」)に由来する部分をいう。第1単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上である。
(First structural unit)
The first structural unit (hereinafter, “first structural unit”) is the first monomer (hereinafter, “first monomer”) among the structural units constituting the polymer contained in the graft portion. refers to the part derived from A 1st monomer is 1 or more types selected from the group which consists of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer.
 グラフト部は、第1単量体に由来する第1構成単位を有することにより、(i)重合体微粒子(A)と、マトリクス樹脂(B)との相溶性が向上する、(ii)マトリクス樹脂(B)中における重合体微粒子(A)の分散性が向上する、および(iii)樹脂組成物またはその硬化物において重合体微粒子(A)が1次粒子の状態で分散することができる、などの利点を有する。 The graft part has the first structural unit derived from the first monomer, so that (i) the compatibility between the polymer fine particles (A) and the matrix resin (B) is improved, and (ii) the matrix resin. The dispersibility of the polymer fine particles (A) in (B) is improved, and (iii) the polymer fine particles (A) can be dispersed in the state of primary particles in the resin composition or its cured product. has the advantage of
 芳香族ビニル単量体の具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、およびジビニルベンゼンなどが挙げられる。 Specific examples of aromatic vinyl monomers include styrene, α-methylstyrene, p-methylstyrene, and divinylbenzene.
 ビニルシアン単量体の具体例としては、アクリロニトリル、およびメタクリロニトリルなどが挙げられる。 Specific examples of vinyl cyan monomers include acrylonitrile and methacrylonitrile.
 (メタ)アクリレート単量体の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、およびヒドロキシブチル(メタ)アクリレートなどが挙げられる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。 Specific examples of (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hydroxyethyl (meth)acrylate, and hydroxybutyl (meth)acrylate. (Meth)acrylate as used herein means acrylate and/or methacrylate.
 上述した、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体は、1種類のみが第1単量体として用いられてもよく、2種以上が組み合わせて第1単量体として用いられてもよい。 Of the one or more monomers selected from the group consisting of the above-mentioned aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers, only one type is used as the first monomer. may be used, or two or more may be used in combination as the first monomer.
 (第2の構成単位)
 第2の構成単位(以下、「第2構成単位」)は、グラフト部に含まれる前記重合体を構成する構成単位の内、第2の単量体(以下、「第2単量体」)に由来する部分をいう。第2単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体である。
(Second structural unit)
The second structural unit (hereinafter, “second structural unit”) is the second monomer (hereinafter, “second monomer”) among the structural units constituting the polymer contained in the graft portion. refers to the part derived from The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in its molecule.
 第2単量体に由来する第2構成単位を有するグラフト部は、グラフト部の製造(重合)において第1単量体に加えて第2単量体を使用することにより、製造できる。第2単量体は、グラフト部の製造において、第1単量体の重合により得られた重合体を架橋し得る。それ故、第2単量体は「架橋剤」ともいえ、第2構成単位は「架橋剤に由来する構成単位」ともいえる。 The graft portion having the second structural unit derived from the second monomer can be produced by using the second monomer in addition to the first monomer in the production (polymerization) of the graft portion. The second monomer can crosslink the polymer obtained by polymerizing the first monomer in the production of the graft. Therefore, the second monomer can be said to be a "crosslinking agent", and the second structural unit can be said to be a "structural unit derived from the crosslinking agent".
 グラフト部は、第2単量体に由来する第2構成単位を有することにより、(i)樹脂組成物中において重合体微粒子(A)の膨潤を防止することができる、(ii)樹脂組成物の粘度が低くなるため、樹脂組成物の取扱い性が良好となる、および(iii)マトリクス樹脂(B)における重合体微粒子(A)の分散性が向上する、などの利点を有する。 The graft part has the second structural unit derived from the second monomer, so that (i) the polymer fine particles (A) can be prevented from swelling in the resin composition, (ii) the resin composition (iii) the dispersibility of the fine polymer particles (A) in the matrix resin (B) is improved.
 分子内に2個以上の重合性不飽和結合を有する多官能性単量体としては、上述した「弾性体の架橋構造」の項で例示した多官能性単量体が挙げられる。 Examples of polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule include the polyfunctional monomers exemplified in the above section "Crosslinked structure of elastic body".
 分子内に2個以上の重合性不飽和結合を有する多官能性単量体の中でも、第2単量体として、グラフト部の重合に好ましく用いられ得る多官能性単量体としては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、およびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。これら多官能性単量体は、1種類のみが第2単量体として用いられてもよく、2種以上が組み合わせて第2単量体として用いられてもよい。 Among polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule, polyfunctional monomers that can be preferably used as the second monomer for polymerization of the graft portion include allyl methacrylate. , ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and polyethylene glycol di(meth)acrylate types are mentioned. Only one type of these polyfunctional monomers may be used as the second monomer, or two or more types may be combined and used as the second monomer.
 (第1構成単位および第2構成単位の含有量)
 グラフト部は、グラフト部を構成する重合体100重量%中に、第1構成単位を、10~95重量%含むことが好ましく、30~92重量%含むことがより好ましく、50~90重量%含むことがさらに好ましく、60~87重量%含むことが特に好ましく、70~85重量%含むことが最も好ましい。
(Contents of first structural unit and second structural unit)
The graft portion preferably contains 10 to 95% by weight, more preferably 30 to 92% by weight, more preferably 50 to 90% by weight of the first structural unit in 100% by weight of the polymer constituting the graft portion. more preferably, 60 to 87% by weight is particularly preferable, and 70 to 85% by weight is most preferable.
 グラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、0.00重量%を超えて2.00重量%未満である。グラフト部を構成する重合体中の第2構成単位の含有量が前記範囲であることにより、樹脂組成物の粘度の低下と、樹脂組成物中の重合体微粒子(A)の分散状態の維持とを両立させることが可能となるという利点を有する。 The content of the second constitutional unit in the polymer constituting the graft portion is 0.00% when the total of the first constitutional unit and the second constitutional unit in the polymer constituting the graft portion is 100% by weight. 00% by weight and less than 2.00% by weight. When the content of the second structural unit in the polymer constituting the graft portion is within the above range, the viscosity of the resin composition is reduced and the state of dispersion of the polymer fine particles (A) in the resin composition is maintained. It has the advantage that it is possible to make both
 (第2構成単位の好ましい含有量)
 上述のとおり、本発明の実施形態1に係る樹脂組成物は、グラフト部を構成する重合体中の第2構成単位の含有量を、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、0.00重量%を超えて2.00重量%未満とすることによって、樹脂組成物の粘度の低下と、樹脂組成物中の重合体微粒子(A)の分散状態の維持とを両立させている。かかる第2構成単位の含有量の数値範囲の中でも、樹脂組成物の粘度を低下させる観点から、グラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、0.10重量%以上であることが好ましく、0.20重量%以上であることがより好ましく、0.30重量%以上であることがより好ましく、0.40重量%以上であることがより好ましく、0.50重量%以上であることがより好ましく、0.55重量%以上であることがさらに好ましい。
(Preferred Content of Second Structural Unit)
As described above, in the resin composition according to Embodiment 1 of the present invention, the content of the second structural unit in the polymer that constitutes the graft portion is the same as that of the first structural unit in the polymer that constitutes the graft portion. When the total of the two structural units is 100% by weight, by exceeding 0.00% by weight and less than 2.00% by weight, the viscosity of the resin composition is reduced and the polymer in the resin composition It is compatible with maintenance of the dispersed state of the fine particles (A). Among the numerical ranges of the content of the second structural unit, from the viewpoint of reducing the viscosity of the resin composition, the content of the second structural unit in the polymer constituting the graft portion is When the total amount of the first structural unit and the second structural unit is 100% by weight, it is preferably 0.10% by weight or more, more preferably 0.20% by weight or more, and 0.20% by weight or more. It is more preferably 30% by weight or more, more preferably 0.40% by weight or more, more preferably 0.50% by weight or more, and even more preferably 0.55% by weight or more.
 また、樹脂組成物中の重合体微粒子(A)の分散状態の維持の観点から、グラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、1.80重量%以下であることが好ましく、1.70重量%以下であることがより好ましく、1.60重量%以下であることがより好ましく、1.40重量%以下であることがより好ましく、1.20重量%以下であることがより好ましく、1.00重量%以下であることがさらに好ましく、0.80重量%以下であることがよりさらに好ましく、0.60重量%以下であることが特に好ましい。 In addition, from the viewpoint of maintaining the dispersed state of the polymer fine particles (A) in the resin composition, the content of the second structural unit in the polymer constituting the graft portion is When the total of one structural unit and the second structural unit is 100% by weight, it is preferably 1.80% by weight or less, more preferably 1.70% by weight or less, and 1.60% by weight. is more preferably 1.40% by weight or less, more preferably 1.20% by weight or less, even more preferably 1.00% by weight or less, and 0.80 % by weight or less is even more preferable, and 0.60% by weight or less is particularly preferable.
 (他の構成単位)
 グラフト部は、上述の第1構成単位および第2構成単位以外に、さらに、反応性基を有する単量体に由来する構成単位を含んでいてもよい。前記反応性基を有する単量体は、エポキシ基、オキセタン基、水酸基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基、およびシアン酸エステル基からなる群から選択される1種以上の反応性基を有する単量体であることが好ましく、エポキシ基、水酸基、およびカルボン酸基からなる群から選択される1種以上の反応性基を有する単量体であることがより好ましく、エポキシ基を有する単量体であることが最も好ましい。前記構成によると、樹脂組成物中で重合体微粒子(A)のグラフト部とマトリクス樹脂(B)(例えば熱硬化性樹脂)とを化学結合させることができる。これにより、樹脂組成物中またはその硬化物中で、重合体微粒子(A)を凝集させることなく、重合体微粒子(A)の良好な分散状態を維持することができる。
(Other structural units)
The graft portion may further contain a structural unit derived from a monomer having a reactive group, in addition to the above-described first structural unit and second structural unit. The monomer having a reactive group includes an epoxy group, an oxetane group, a hydroxyl group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, a benzoxazine group, and a cyanate ester group. It is preferably a monomer having one or more reactive groups selected from the group consisting of epoxy groups, hydroxyl groups, and having one or more reactive groups selected from the group consisting of carboxylic acid groups A monomer is more preferable, and a monomer having an epoxy group is most preferable. According to the above configuration, the grafted portion of the fine polymer particles (A) and the matrix resin (B) (for example, thermosetting resin) can be chemically bonded in the resin composition. Thereby, the fine polymer particles (A) can be maintained in a good dispersed state without agglomeration of the fine polymer particles (A) in the resin composition or the cured product thereof.
 エポキシ基を有する単量体の具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、およびアリルグリシジルエーテルなどのグリシジル基含有ビニル単量体が挙げられる。 Specific examples of epoxy group-containing monomers include glycidyl group-containing vinyl monomers such as glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and allyl glycidyl ether.
 水酸基を有する単量体の具体例としては、例えば、(i)2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);(ii)カプロラクトン変性ヒドロキシ(メタ)アクリレート;(iii)α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチルなどのヒドロキシ分岐アルキル(メタ)アクリレート;(iv)二価カルボン酸(フタル酸など)と二価アルコール(プロピレングリコールなど)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレート類、などが挙げられる。 Specific examples of monomers having a hydroxyl group include, for example, (i) 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and other hydroxy straight-chain alkyl (meth)acrylates; Acrylates (especially hydroxy linear C1-6 alkyl (meth)acrylates); (ii) caprolactone-modified hydroxy (meth)acrylates; (iii) α-(hydroxymethyl)methyl acrylate, α-(hydroxymethyl)ethyl acrylate hydroxy-branched alkyl (meth)acrylates such as; (iv) mono(meth)acrylates of polyester diols (particularly saturated polyester diols) obtained from dihydric carboxylic acids (such as phthalic acid) and dihydric alcohols (such as propylene glycol); hydroxyl group-containing (meth)acrylates, and the like.
 カルボン酸基を有する単量体の具体例としては、例えば、アクリル酸、メタクリル酸およびクロトン酸などのモノカルボン酸、並びに、マレイン酸、フマル酸、およびイタコン酸などのジカルボン酸などが挙げられる。カルボン酸基を有する単量体としては、前記モノカルボン酸が好適に用いられる。 Specific examples of monomers having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid. As the monomer having a carboxylic acid group, the monocarboxylic acid is preferably used.
 上述した反応性基を有する単量体は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Only one type of the above-described monomer having a reactive group may be used, or two or more types may be used in combination.
 グラフト部は、グラフト部を構成する重合体100重量%中、反応性基を有する単量体に由来する構成単位を、0.5~90重量%含むことが好ましく、1~50重量%含むことがより好ましく、2~35重量%含むことがさらに好ましく、3~20重量%含むことが特に好ましい。グラフト部が、グラフト部を構成する重合体100重量%中、反応性基を有する単量体に由来する構成単位を、(i)0.5重量%以上含む場合、得られる樹脂組成物は、十分な耐衝撃性を有する硬化物を提供することができ、(ii)90重量%以下含む場合、得られる樹脂組成物は、十分な耐衝撃性を有する硬化物を提供することができ、かつ、当該樹脂組成物の貯蔵安定性が良好となるという利点を有する。 The graft portion preferably contains 0.5 to 90% by weight, and preferably 1 to 50% by weight, of structural units derived from a monomer having a reactive group in 100% by weight of the polymer constituting the graft portion. is more preferable, more preferably 2 to 35% by weight, and particularly preferably 3 to 20% by weight. When the graft portion contains (i) 0.5% by weight or more of structural units derived from a monomer having a reactive group in 100% by weight of the polymer constituting the graft portion, the resulting resin composition is A cured product having sufficient impact resistance can be provided, and (ii) when the content is 90% by weight or less, the resulting resin composition can provide a cured product having sufficient impact resistance, and , has the advantage that the storage stability of the resin composition is improved.
 反応性基を有する単量体に由来する構成単位は、グラフト部に含まれることが好ましく、グラフト部にのみ含まれることがより好ましい。 The structural unit derived from a monomer having a reactive group is preferably contained in the graft portion, and more preferably contained only in the graft portion.
 グラフト部の重合において、上述した単量体は、「第1単量体」、「第2単量体」または「反応性基を有する単量体」として、それぞれ1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。また、グラフト部は、構成単位として、上述した単量体に由来する構成単位の他に、他の単量体に由来する構成単位を含んでいてもよい。 In the polymerization of the graft portion, only one type of each of the above-described monomers may be used as the "first monomer", the "second monomer", or the "monomer having a reactive group". , may be used in combination of two or more. In addition, the graft portion may contain, as structural units, structural units derived from other monomers in addition to the structural units derived from the monomers described above.
 (グラフト部のガラス転移温度)
 グラフト部のガラス転移温度は、190℃以下が好ましく、160℃以下がより好ましく、140℃以下がより好ましく、120℃以下がより好ましく、80℃以下が好ましく、70℃以下がより好ましく、60℃以下がより好ましく、50℃以下がより好ましく、40℃以下がより好ましく、30℃以下がより好ましく、20℃以下がより好ましく、10℃以下がより好ましく、0℃以下がより好ましく、-20℃以下がより好ましく、-40℃以下がより好ましく、-45℃以下がより好ましく、-50℃以下がより好ましく、-55℃以下がより好ましく、-60℃以下がより好ましく、-65℃以下がより好ましく、-70℃以下がより好ましく、-75℃以下がより好ましく、-80℃以下がより好ましく、-85℃以下がより好ましく、-90℃以下がより好ましく、-95℃以下がより好ましく、-100℃以下がより好ましく、-105℃以下がより好ましく、-110℃以下がより好ましく、-115℃以下がより好ましく、-120℃以下がさらに好ましく、-125℃以下が特に好ましい。
(Glass transition temperature of graft portion)
The glass transition temperature of the graft portion is preferably 190°C or lower, more preferably 160°C or lower, more preferably 140°C or lower, more preferably 120°C or lower, preferably 80°C or lower, more preferably 70°C or lower, and 60°C. The following is more preferable, 50° C. or less is more preferable, 40° C. or less is more preferable, 30° C. or less is more preferable, 20° C. or less is more preferable, 10° C. or less is more preferable, 0° C. or less is more preferable, and −20° C. The following is more preferable, -40°C or less is more preferable, -45°C or less is more preferable, -50°C or less is more preferable, -55°C or less is more preferable, -60°C or less is more preferable, -65°C or less is More preferably -70°C or less, more preferably -75°C or less, more preferably -80°C or less, more preferably -85°C or less, more preferably -90°C or less, more preferably -95°C or less , -100°C or lower is more preferred, -105°C or lower is more preferred, -110°C or lower is more preferred, -115°C or lower is more preferred, -120°C or lower is even more preferred, and -125°C or lower is particularly preferred.
 グラフト部のガラス転移温度は、0℃以上が好ましく、30℃以上がより好ましく、50℃以上がより好ましく、70℃以上がより好ましく、90℃以上がさらに好ましく、110℃以下であることが特に好ましい。 The glass transition temperature of the graft portion is preferably 0° C. or higher, more preferably 30° C. or higher, more preferably 50° C. or higher, more preferably 70° C. or higher, still more preferably 90° C. or higher, and particularly preferably 110° C. or lower. preferable.
 グラフト部のTgは、グラフト部に含まれる構成単位の組成などによって、決定され得る。換言すれば、グラフト部を製造(重合)するときに使用する単量体の組成を変化させることにより、得られるグラフト部のTgを調整することができる。 The Tg of the graft part can be determined by the composition of the constituent units contained in the graft part. In other words, the Tg of the obtained graft portion can be adjusted by changing the composition of the monomers used when manufacturing (polymerizing) the graft portion.
 グラフト部のTgは、重合体微粒子(A)からなる平面板を用いて、粘弾性測定を行うことによって得ることができる。具体的には、以下のようにしてTgを測定できる:(1)重合体微粒子(A)からなる平面板について、動的粘弾性測定装置(例えば、アイティー計測制御株式会社製、DVA-200)を用いて、引張条件で動的粘弾性測定を行い、tanδのグラフを得る;(2)得られたtanδのグラフについて、tanδのピーク温度をガラス転移温度とする。ここで、tanδのグラフにおいて、複数のピークが得られた場合には、最も高いピーク温度をグラフト部のガラス転移温度とする。 The Tg of the graft portion can be obtained by performing viscoelasticity measurement using a flat plate made of polymer fine particles (A). Specifically, Tg can be measured as follows: (1) For a flat plate made of polymer fine particles (A), a dynamic viscoelasticity measuring device (eg, DVA-200 manufactured by IT Keisoku Co., Ltd.) ) is used to perform dynamic viscoelasticity measurement under tensile conditions to obtain a tan δ graph; (2) Regarding the obtained tan δ graph, the tan δ peak temperature is taken as the glass transition temperature. Here, in the graph of tan δ, when a plurality of peaks are obtained, the highest peak temperature is taken as the glass transition temperature of the graft portion.
 (グラフト部のグラフト率)
 本発明の一実施形態において、重合体微粒子(A)は、グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体を有していてもよい。本明細書において、「グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体」を、非グラフト重合体とも称する。当該非グラフト重合体も、本発明の実施形態1に係る重合体微粒子(A)の一部を構成するものとする。前記非グラフト重合体は、グラフト部の重合において製造された重合体のうち、弾性体に対してグラフト結合していない重合体ともいえる。
(Graft ratio of graft part)
In one embodiment of the present invention, the fine polymer particles (A) may be a polymer having the same structure as the graft portion and may have a polymer that is not graft-bonded to the elastic body. In the present specification, "a polymer having the same structure as the graft portion and not graft-bonded to the elastic body" is also referred to as a non-grafted polymer. The non-grafted polymer also constitutes a part of the fine polymer particles (A) according to Embodiment 1 of the present invention. The non-graft polymer can also be said to be a polymer that is not graft-bonded to the elastic body, among the polymers produced in the polymerization of the graft portion.
 本明細書において、グラフト部の重合において製造された重合体のうち、弾性体に対してグラフト結合された重合体、すなわちグラフト部の割合を、グラフト率と称する。グラフト率は、(グラフト部の重量)/{(グラフト部の重量)+(非グラフト重合体の重量)}×100で表される値、ともいえる。 In the present specification, the ratio of the polymer graft-bonded to the elastic body, that is, the graft portion, out of the polymer produced in the polymerization of the graft portion is referred to as the graft ratio. The graft ratio can also be said to be a value represented by (weight of grafted portion)/{(weight of grafted portion)+(weight of non-grafted polymer)}×100.
 グラフト部のグラフト率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。グラフト率が70%以上である場合、樹脂組成物の粘度が高くなりすぎないという利点を有する。 The graft ratio of the graft portion is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more. When the graft ratio is 70% or more, there is an advantage that the viscosity of the resin composition does not become too high.
 本明細書において、グラフト率の算出方法は下記の通りである。先ず、重合体微粒子(A)を含有する水性懸濁液を得、次に、当該水性懸濁液から、重合体微粒子(A)の粉粒体を得る。水性懸濁液から重合体微粒子(A)の粉粒体を得る方法としては、具体的には、(i)前記水性懸濁液中の重合体微粒子(A)を凝析し、(ii)得られる凝析物を脱水し、(iii)さらに凝析物を乾燥することにより、重合体微粒子(A)の粉粒体を得る方法が挙げられる。次いで、重合体微粒子(A)の粉粒体2gをメチルエチルケトン(以下、MEKとも称する。)50mLに溶解する。その後、得られたMEK溶解物を、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。具体的には、以下(1)~(3)を行う:(1)遠心分離機(日立工機(株)社製、CP60E)を用い、回転数30000rpmにて1時間、得られたMEK溶解物を遠心分離に供し、当該溶解物を、MEK可溶分とMEK不溶分とに分離する;(2)得られたMEK可溶分とMEKとを混合し、得られたMEK混合物を上述の遠心分離機を用い、回転数30000rpmにて1時間、遠心分離に供し、当該MEK混合物をMEK可溶分とMEK不溶分とに分離する;(3)前記(2)の操作を1回繰り返す(すなわち遠心分離作業は合計3回実施する)。かかる操作により濃縮したMEK可溶分を得る。次に、濃縮したMEK可溶分20mlをメタノール200mlと混合する。塩化カルシウム0.01gを水に溶かした塩化カルシウム水溶液を得られた混合物に添加し、得られた混合物を1時間撹拌する。その後、得られた混合物をメタノール可溶分とメタノール不溶分とに分離し、メタノール不溶分の重量をフリー重合体(FP)量とする。 In this specification, the method for calculating the graft ratio is as follows. First, an aqueous suspension containing the polymer fine particles (A) is obtained, and then powder particles of the polymer fine particles (A) are obtained from the aqueous suspension. Specifically, the method for obtaining powdery particles of the polymer microparticles (A) from the aqueous suspension includes (i) coagulating the polymer microparticles (A) in the aqueous suspension, and (ii) A method of obtaining powder particles of polymer fine particles (A) by dehydrating the obtained coagulate and (iii) further drying the coagulate can be mentioned. Next, 2 g of powder particles of polymer fine particles (A) are dissolved in 50 mL of methyl ethyl ketone (hereinafter also referred to as MEK). After that, the obtained MEK melt is separated into a component soluble in MEK (MEK soluble matter) and a component insoluble in MEK (MEK insoluble matter). Specifically, the following (1) to (3) are performed: (1) Using a centrifuge (CP60E, manufactured by Hitachi Koki Co., Ltd.), the obtained MEK is dissolved at a rotation speed of 30000 rpm for 1 hour. (2) mixing the obtained MEK soluble matter and MEK, and subjecting the obtained MEK mixture to the above-mentioned Using a centrifuge, centrifugation is performed at a rotation speed of 30000 rpm for 1 hour to separate the MEK mixture into MEK soluble matter and MEK insoluble matter; (3) Repeat the operation of (2) once ( That is, the centrifugation operation is performed a total of 3 times). A concentrated MEK soluble matter is obtained by such an operation. 20 ml of the concentrated MEK solubles are then mixed with 200 ml of methanol. An aqueous calcium chloride solution of 0.01 g of calcium chloride dissolved in water is added to the resulting mixture and the resulting mixture is stirred for 1 hour. Thereafter, the resulting mixture is separated into a methanol-soluble portion and a methanol-insoluble portion, and the weight of the methanol-insoluble portion is defined as the free polymer (FP) amount.
 次式よりグラフト率を算出する。
グラフト率(%)=100-[(FP量)/{(FP量)+(MEK不溶分の重量)}]/(グラフト部の重合体の重量)×10000。
The graft ratio is calculated from the following formula.
Graft rate (%)=100−[(FP amount)/{(FP amount)+(MEK insoluble weight)}]/(weight of polymer in grafted portion)×10000.
 なお、グラフト部以外の重合体の重量は、グラフト部以外の重合体を構成する単量体の仕込み量である。グラフト部以外の重合体は、例えば弾性体である。また、重合体微粒子(A)が後述する表面架橋重合体を含む場合、グラフト部以外の重合体は、弾性体および表面架橋重合体の両方を含む。グラフト部の重合体の重量は、グラフト部の重合体を構成する単量体の仕込み量である。また、グラフト率の算出において、重合体微粒子(A)を凝析する方法は特に限定されず、溶剤を用いる方法、凝析剤を用いる方法、水性懸濁液を噴霧する方法などが用いられ得る。 The weight of the polymer other than the graft portion is the charged amount of the monomer constituting the polymer other than the graft portion. A polymer other than the graft portion is, for example, an elastic body. Moreover, when the fine polymer particles (A) contain a surface-crosslinked polymer, which will be described later, the polymer other than the graft portion contains both the elastic body and the surface-crosslinked polymer. The weight of the polymer of the graft portion is the charged amount of the monomers constituting the polymer of the graft portion. In calculating the graft ratio, the method of coagulating the polymer microparticles (A) is not particularly limited, and a method using a solvent, a method using a coagulant, a method of spraying an aqueous suspension, or the like can be used. .
 (グラフト部の変形例)
 本発明の一実施形態において、グラフト部は、同一の組成の構成単位を有する1種のグラフト部のみからなってもよい。本発明の一実施形態において、グラフト部は、それぞれ異なる組成の構成単位を有する複数種のグラフト部からなってもよい。
(Modified example of the graft part)
In one embodiment of the present invention, the graft portion may consist of only one type of graft portion having structural units of the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions each having a different composition of structural units.
 本発明の一実施形態において、グラフト部が複数種のグラフト部からなる場合について説明する。この場合、複数種のグラフト部のそれぞれを、グラフト部、グラフト部、・・・、グラフト部とする(nは2以上の整数)。グラフト部は、それぞれ別々に重合されたグラフト部、グラフト部、・・・、およびグラフト部の複合体を含んでいてもよい。グラフト部は、グラフト部、グラフト部、・・・、およびグラフト部をそれぞれ順に重合して得られる1つの重合体を含んでいてもよい。このように、複数の重合部(グラフト部)をそれぞれ順に重合することを、多段重合とも称する。複数種のグラフト部を多段重合して得られる重合体を、多段重合グラフト部とも称する。多段重合グラフト部の製造方法については、後に詳述する。 In one embodiment of the present invention, a case where the graft portion is composed of a plurality of types of graft portions will be described. In this case, each of the plurality of types of graft portions is designated as graft portion 1 , graft portion 2 , . . . , graft portion n (n is an integer of 2 or more). The graft portion may comprise a composite of graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n , each polymerized separately. The graft portion may contain one polymer obtained by sequentially polymerizing graft portion 1 1 , graft portion 2 2 , . . . , and graft portion n . Such polymerization of a plurality of polymerized portions (graft portions) in order is also referred to as multi-stage polymerization. A polymer obtained by multistage polymerization of a plurality of types of graft portions is also referred to as a multistage polymerization graft portion. A method for producing the multistage polymerized graft portion will be described in detail later.
 グラフト部が複数種のグラフト部からなる場合、これら複数種のグラフト部の全てが弾性体に対してグラフト結合されていなくてもよい。少なくとも1種のグラフト部の少なくとも一部が弾性体に対してグラフト結合されていればよく、その他の種(その他の複数種)のグラフト部は、弾性体に対してグラフト結合されているグラフト部にグラフト結合されていてもよい。また、グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない複数種の重合体(複数種の非グラフト重合体)を有していてもよい。 When the graft portion consists of multiple types of graft portions, not all of these multiple types of graft portions may be graft-bonded to the elastic body. At least a part of at least one type of graft portion may be graft-bonded to the elastic body, and other types (a plurality of other types) of graft portions are graft portions that are graft-bonded to the elastic body. may be grafted to. Further, when the graft portion is composed of a plurality of types of graft portions, a plurality of types of polymers that are polymers having the same configuration as the plurality of types of graft portions and are not graft-bonded to the elastic body graft polymer).
 グラフト部、グラフト部、・・・、およびグラフト部からなる多段重合グラフト部について説明する。当該多段重合グラフト部において、グラフト部は、グラフト部n-1の少なくとも一部を被覆し得るか、またはグラフト部n-1の全体を被覆し得る。当該多段重合グラフト部において、グラフト部の一部はグラフト部n-1の内側に入り込んでいることもある。 A multi-stage polymerized graft portion composed of graft portion 1 , graft portion 2 , . . . , and graft portion n will be described. In the multi-stage polymerized graft portion, the graft portion n may cover at least a portion of the graft portion n−1 , or may cover the entirety of the graft portion n−1 . In the multi-stage polymerized graft portion, a part of the graft portion n may be inside the graft portion n−1 .
 多段重合グラフト部において、複数のグラフト部のそれぞれが、層構造を形成していてもよい。例えば、多段重合グラフト部が、グラフト部、グラフト部、およびグラフト部からなる場合、グラフト部がグラフト部における最内層を形成し、グラフト部の外側にグラフト部の層が形成され、さらにグラフト部の層の外側にグラフト部の層が最外層として形成される態様も、本発明の一態様である。このように、複数のグラフト部のそれぞれが層構造を形成している多段重合グラフト部は、多層グラフト部ともいえる。すなわち、本発明の一実施形態において、グラフト部は、(i)複数種のグラフト部の複合体、(ii)多段重合グラフト部および/または(iii)多層グラフト部を含んでいてもよい。 In the multi-stage polymerized graft portion, each of the plurality of graft portions may form a layered structure. For example, when the multistage polymerized graft portion is composed of graft portion 1 , graft portion 2 , and graft portion 3 , graft portion 1 forms the innermost layer in the graft portion, and graft portion 2 is formed on the outer side of graft portion 1 . Further, an aspect in which the layer of the graft portion 3 is formed as the outermost layer outside the layer of the graft portion 2 is also an aspect of the present invention. Thus, a multi-stage polymerized graft portion in which each of a plurality of graft portions forms a layered structure can also be called a multi-layer graft portion. That is, in one embodiment of the present invention, the graft portion may include (i) a composite of multiple types of graft portions, (ii) a multi-stage polymerization graft portion and/or (iii) a multi-layer graft portion.
 重合体微粒子(A)の製造において弾性体とグラフト部とがこの順で重合される場合、得られる重合体微粒子(A)において、グラフト部の少なくとも一部分は、弾性体の少なくとも一部分を被覆し得る。弾性体とグラフト部とがこの順で重合されるとは、換言すれば、弾性体とグラフト部とが多段重合されるともいえる。弾性体とグラフト部とを多段重合して得られる重合体微粒子(A)は、多段重合体ともいえる。 When the elastic body and the graft portion are polymerized in this order in the production of the polymer microparticles (A), at least a portion of the graft portion may cover at least a portion of the elastic body in the resulting polymer microparticles (A). . In other words, the elastic body and the graft portion are polymerized in this order, which means that the elastic body and the graft portion are polymerized in multiple stages. The polymer microparticles (A) obtained by multi-stage polymerization of the elastic body and the graft portion can be said to be a multi-stage polymer.
 重合体微粒子(A)が多段重合体である場合、グラフト部は弾性体の少なくとも一部を被覆し得るか、または弾性体の全体を被覆し得る。重合体微粒子(A)が多段重合体である場合、グラフト部の一部は弾性体の内側に入り込んでいることもある。グラフト部の少なくとも一部分は、弾性体の少なくとも一部分を被覆していることが好ましい。換言すれば、グラフト部の少なくとも一部分は、重合体微粒子(A)の最も外側に存在することが好ましい。 When the polymer microparticles (A) are a multistage polymer, the graft part can cover at least a part of the elastic body, or can cover the entire elastic body. When the fine polymer particles (A) are a multi-stage polymer, part of the graft portion may enter the inside of the elastic body. At least a portion of the graft portion preferably covers at least a portion of the elastic body. In other words, at least part of the graft portion is preferably present on the outermost side of the fine polymer particles (A).
 重合体微粒子(A)が多段重合体である場合、弾性体およびグラフト部が、層構造を形成していてもよい。例えば、弾性体が最内層(コア層とも称する。)を形成し、弾性体の外側にグラフト部の層が最外層(シェル層とも称する。)として形成される態様も、本発明の一態様である。弾性体をコア層とし、グラフト部をシェル層とする構造はコアシェル構造ともいえる。このように、弾性体およびグラフト部が層構造(コアシェル構造)を形成している重合体微粒子(A)は、多層重合体またはコアシェル重合体ともいえる。すなわち、本発明の一実施形態において、重合体微粒子(A)は、多段重合体であってもよく、かつ/または、多層重合体もしくはコアシェル重合体であってもよい。ただし、弾性体とグラフト部とを有している限り、重合体微粒子(A)は前記構成に制限されるわけではない。 When the fine polymer particles (A) are multistage polymers, the elastic body and the graft portion may form a layered structure. For example, an embodiment in which the elastic body forms the innermost layer (also referred to as a core layer) and the layer of the graft portion is formed as the outermost layer (also referred to as a shell layer) on the outside of the elastic body is also an aspect of the present invention. be. A structure in which an elastic body is used as a core layer and a graft portion is used as a shell layer can be called a core-shell structure. Thus, the polymer fine particles (A) in which the elastic body and the graft part form a layered structure (core-shell structure) can be called a multi-layered polymer or a core-shell polymer. That is, in one embodiment of the present invention, the polymer fine particle (A) may be a multi-stage polymer and/or a multi-layer polymer or core-shell polymer. However, as long as it has an elastic body and a graft portion, the fine polymer particles (A) are not limited to the above configuration.
 重合体微粒子(A)が、弾性体の弾性コアと表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体である場合(場合D)について説明する。場合Dにおいて、表面架橋重合体は、弾性体の弾性コアの表面の一部に含侵している(内側に入り込んでいる)か、または弾性体の弾性コアの表面の全体に含侵している(内側に入り込んでいる)こともある。場合Dにおいて、グラフト部は、表面架橋重合体の一部を被覆し得るか、または表面架橋重合体の全体を被覆し得る。場合Dにおいて、グラフト部は一部が表面架橋重合体の表面に含侵しながら(内側に入り込みながら)表面架橋重合体の外側にグラフト部の層を形成していることもある。また、場合Dにおいて、グラフト部の一部は弾性体の弾性コアの表面に含侵しながら(内側に入り込みながら)弾性体の弾性コアの外側にグラフト部の層を形成しているにこともある。場合Dにおいて、弾性体の弾性コア、表面架橋重合体およびグラフト部が、層構造を有していてもよい。例えば、弾性体の弾性コアを最内層(コア層)とし、弾性体の弾性コアの外側に表面架橋重合体の層が中間層として存在し、表面架橋重合体の外側にグラフト部の層が最外層(シェル層)として存在する態様も、本発明の一態様である。 The case (Case D) where the polymer fine particles (A) is a multi-stage polymer obtained by multi-stage polymerization of the elastic core of the elastic body, the surface-crosslinked polymer, and the graft portion in this order will be described. In Case D, the surface-crosslinked polymer impregnates (incorporates) a portion of the surface of the elastic core of the elastic, or impregnates the entire surface of the elastic core of the elastic ( inside). In Case D, the graft portion may cover a portion of the surface cross-linked polymer or may cover the entire surface cross-linked polymer. In case D, the graft part may form a layer of the graft part on the outside of the surface cross-linked polymer while partially impregnating the surface of the surface cross-linked polymer (entering inside). Further, in case D, part of the graft part may impregnate the surface of the elastic core of the elastic body (entering inside) to form a layer of the graft part on the outside of the elastic core of the elastic body. . In Case D, the elastic core of the elastic body, the surface-crosslinked polymer and the graft portion may have a layered structure. For example, the elastic core of the elastic body is the innermost layer (core layer), the layer of the surface-crosslinked polymer is present as the intermediate layer outside the elastic core of the elastic body, and the layer of the graft portion is the outermost layer of the surface-crosslinked polymer. An aspect in which it exists as an outer layer (shell layer) is also an aspect of the present invention.
 (重合体微粒子(A)の体積平均粒子径(Mv))
 重合体微粒子(A)の体積平均粒子径(Mv)は、所望の粘度を有し、かつ高度に安定した樹脂組成物を得ることができることから、0.03μm~50.00μmが好ましく、0.05μm~10.00μmがより好ましく、0.08μm~2.00μmがより好ましく、0.10μm~1.00μmがさらに好ましく、0.10μm~0.80μmがよりさらに好ましく、0.10μm~0.50μmが特に好ましい。重合体微粒子(A)の体積平均粒子径(Mv)が前記範囲内である場合、マトリクス樹脂(B)(例えば、熱硬化性樹脂)における重合体微粒子(A)の分散性が良好となるという利点も有する。なお、本明細書において、「重合体微粒子(A)の体積平均粒子径(Mv)」とは、特に言及する場合を除き、重合体微粒子(A)の1次粒子の体積平均粒子径を意味する。重合体微粒子(A)の体積平均粒子径は、重合体微粒子(A)を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。
(Volume average particle diameter (Mv) of polymer microparticles (A))
The volume average particle diameter (Mv) of the fine polymer particles (A) is preferably from 0.03 μm to 50.00 μm, since a highly stable resin composition having a desired viscosity can be obtained. 05 μm to 10.00 μm is more preferable, 0.08 μm to 2.00 μm is more preferable, 0.10 μm to 1.00 μm is still more preferable, 0.10 μm to 0.80 μm is even more preferable, 0.10 μm to 0.50 μm is particularly preferred. When the volume average particle diameter (Mv) of the polymer fine particles (A) is within the above range, the polymer fine particles (A) are said to have good dispersibility in the matrix resin (B) (for example, thermosetting resin). It also has advantages. In the present specification, the "volume average particle diameter (Mv) of the polymer microparticles (A)" means the volume average particle diameter of the primary particles of the polymer microparticles (A), unless otherwise specified. do. The volume average particle size of the polymer fine particles (A) can be measured using a dynamic light scattering particle size distribution analyzer or the like using an aqueous latex containing the polymer fine particles (A) as a sample.
 <1-2.重合体微粒子(A)の製造方法>
 以下、重合体微粒子(A)の製造方法の一例を説明する。重合体微粒子(A)は、例えば、弾性体を重合した後、当該弾性体の存在下にて当該弾性体に対してグラフト部を構成する重合体をグラフト重合することによって、製造できる。このような重合体微粒子(A)の製造方法も本発明の範疇に含まれる。すなわち、本発明の一態様に係る重合体微粒子の製造方法は、重合体微粒子(A)の製造方法であり、ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる弾性体調製工程と、前記弾性体調製工程によって調製された弾性体に、第1の単量体および第2の単量体をグラフト重合させるグラフト部調製工程と、を含み、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、前記グラフト部調製工程では、前記第1の単量体と前記第2の単量体との合計を100重量%とした場合に、前記第2の単量体を、0.00重量%を超えて2.00重量%未満使用する構成である。
<1-2. Method for producing polymer microparticles (A)>
An example of the method for producing the polymer microparticles (A) will be described below. The fine polymer particles (A) can be produced, for example, by polymerizing an elastic body and then graft-polymerizing a polymer forming a graft portion to the elastic body in the presence of the elastic body. The method for producing such polymer microparticles (A) is also included in the scope of the present invention. That is, the method for producing polymer microparticles according to one aspect of the present invention is a method for producing polymer microparticles (A), in which a diene-based monomer, a (meth)acrylate-based monomer, and an organosiloxane-based monomer an elastic body preparing step of polymerizing one or more monomers selected from the group consisting of a first monomer and a second monomer to the elastic body prepared by the elastic body preparing step; and the first monomer is selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer. There are one or more types, the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and in the graft part preparation step, the first monomer When the total of the monomer and the second monomer is 100% by weight, the second monomer is used in an amount of more than 0.00% by weight and less than 2.00% by weight. .
 以下、重合体微粒子の製造方法に含まれ得る各工程について、説明する。 Each step that can be included in the method for producing polymer microparticles will be described below.
 (弾性体調製工程)
 弾性体調製工程は、ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる工程である。弾性体が、ジエン系ゴムおよび(メタ)アクリレート系ゴムからなる群より選択される少なくとも1種以上を含む場合を考える。この場合、弾性体調製工程では、ジエン系単量体および(メタ)アクリレート系単量体からなる群より選択される1種以上の単量体を重合させればよい。この場合の単量体の重合は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により行うことができ、その方法としては、例えばWO2005/028546号公報に記載の方法を用いることができる。
(Elastic body preparation step)
The elastic body preparation step is a step of polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers. Consider the case where the elastic body contains at least one selected from the group consisting of diene-based rubbers and (meth)acrylate-based rubbers. In this case, in the elastic body preparation step, one or more monomers selected from the group consisting of diene-based monomers and (meth)acrylate-based monomers may be polymerized. Polymerization of the monomers in this case can be carried out, for example, by a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization. can.
 弾性体が、オルガノシロキサン系ゴムを含む場合を考える。この場合、弾性体調製工程では、オルガノシロキサン系単量体を重合させればよい。この場合の単量体の重合は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により行うことができ、その方法としては、例えばWO2006/070664号公報に記載の方法を用いることができる。 Consider the case where the elastic body contains organosiloxane rubber. In this case, the organosiloxane-based monomer may be polymerized in the elastic body preparation step. Polymerization of the monomers in this case can be carried out, for example, by methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. can.
 重合体微粒子(A)の「弾性体」が複数種の弾性体(例えば弾性体、弾性体、・・・、弾性体)からなる場合について説明する。この場合、弾性体、弾性体、・・・、弾性体は、それぞれ別々に上述の方法により重合され、その後混合されて複合化されることにより、複数種の弾性体からなる複合体が製造されてもよい。つまり、この場合、弾性体調製工程は、弾性体の調製工程、弾性体の調製工程、・・・、弾性体の調製工程と、各調製工程によって調製した弾性体、弾性体、・・・、弾性体を混合して複合化する工程と、を含む構成であってもよい。または、弾性体調製工程は、弾性体、弾性体、・・・、弾性体を、それぞれ順に多段重合して、複数種の弾性体からなる1つの弾性体を調製する構成であってもよい。 A case where the "elastic body" of the fine polymer particles (A) consists of a plurality of types of elastic bodies (eg, elastic body 1 , elastic body 2 , . . . , elastic body n ) will be described. In this case, the elastic bodies 1 1 , 2 2 , . may be manufactured. That is, in this case, the elastic body preparation process includes a preparation process for elastic body 1 , a preparation process for elastic body 2 , . , . Alternatively, in the elastic body preparation step, elastic body 1 , elastic body 2 , . good too.
 弾性体の多段重合について、具体的に説明する。例えば、弾性体調製工程において、以下、(1)~(4)の工程を順に行うことにより、多段重合弾性体を得ることができる:(1)弾性体を重合して弾性体を得る;(2)次いで弾性体の存在下にて弾性体を重合して2段弾性体1+2を得る;(3)次いで弾性体1+2の存在下にて弾性体を重合して3段弾性体1+2+3を得る;(4)以下、同様に行った後、弾性体1+2+・・・+(n-1)の存在下にて弾性体を重合して多段重合弾性体1+2+・・・+nを得る。 A specific description will be given of the multi-stage polymerization of the elastic body. For example, in the elastic body preparation step, the following steps (1) to (4) can be performed in order to obtain a multi-stage polymerized elastic body: (1) Polymerize the elastic body 1 to obtain the elastic body 1 . (2) then elastic 2 is polymerized in the presence of elastic 1 to obtain a two-step elastic 1+2 ; (3) elastic 3 is then polymerized in the presence of elastic 1+2 to give a three-step elastic; (4) After the same procedure, the elastic body n is polymerized in the presence of the elastic body 1+ 2 +...+(n-1) to obtain the multistage polymerized elastic body 1+2+...+n . obtain.
 また、重合体微粒子(A)の「弾性体」が表面架橋重合体をさらに含む場合について説明する。この場合、弾性体調製工程は、以下の工程(a)および工程(b)を含む構成であってもよい:
 (a)ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる工程;
 (b)分子内に2個以上の重合性不飽和結合を有する多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合させる工程。
Further, a case where the "elastic body" of the fine polymer particles (A) further contains a surface-crosslinked polymer will be described. In this case, the elastic body preparation step may include the following steps (a) and (b):
(a) polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers;
(b) one or more monomers selected from the group consisting of polyfunctional monomers having two or more polymerizable unsaturated bonds in the molecule and vinyl monomers other than the polyfunctional monomers A step of polymerizing the monomer.
 工程(a)によって、弾性体の弾性コアを調製することができる。また、工程(b)によって、弾性体の表面架橋重合体を調製することができる。 An elastic core of an elastic body can be prepared by step (a). In addition, the step (b) can prepare a surface-crosslinked polymer of an elastic body.
 表面架橋重合体は、表面架橋重合体の形成に用いる単量体を、任意の重合体(例えば弾性コア)の存在下、公知のラジカル重合により重合することによって形成することができる。弾性体を水性懸濁液として得た場合には、表面架橋重合体の重合は乳化重合法により行うことが好ましい。 The surface-crosslinked polymer can be formed by polymerizing the monomers used for forming the surface-crosslinked polymer by known radical polymerization in the presence of any polymer (eg, elastic core). When the elastic body is obtained as an aqueous suspension, the polymerization of the surface-crosslinked polymer is preferably carried out by an emulsion polymerization method.
 弾性体調製工程が工程(a)および工程(b)を含む場合、前記工程(b)は前記(a)と同時に行ってもよく、または前記(a)の後に行ってもよい。換言すれば、弾性体調製工程では、(i)ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体と、多官能性単量体および当該多官能性単量体以外のビニル系単量体とを一緒に使用し、弾性コアの調製と表面架橋重合体の調製とを同時に行ってもよく、(ii)ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体の使用後に多官能性単量体および当該多官能性単量体以外のビニル系単量体を使用し、弾性コアの調製(重合)完了後に、表面架橋重合体の調製(重合)を行ってもよい。前記工程(a)と前記(b)とを同時に行う場合、弾性体の弾性コアの架橋と、弾性コアの被覆とを同時に行うことができる。 When the elastic body preparation step includes step (a) and step (b), said step (b) may be performed simultaneously with said (a), or may be performed after said (a). In other words, in the elastic body preparation step, (i) one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers; , a polyfunctional monomer and a vinyl monomer other than the polyfunctional monomer may be used together to prepare the elastic core and the surface crosslinked polymer at the same time, (ii ) After the use of one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers, polyfunctional monomers and the polyfunctional It is also possible to use a vinyl-based monomer other than the organic monomer and prepare (polymerize) the surface-crosslinked polymer after completing the preparation (polymerization) of the elastic core. When the steps (a) and (b) are performed at the same time, the cross-linking of the elastic core of the elastic body and the covering of the elastic core can be performed at the same time.
 (グラフト部調製工程)
 グラフト部調製工程は、前記弾性体調製工程によって調製された弾性体に、第1の単量体および第2の単量体をグラフト重合させる工程である。グラフト部は、例えば、グラフト部の形成に用いる単量体を、弾性体の存在下、公知のラジカル重合により重合することによって形成することができる。(i)弾性体のコアからなる弾性体、または(ii)弾性体のコアおよび表面架橋重合体を含む弾性体、を水性懸濁液として得た場合には、グラフト部の重合は乳化重合法により行うことが好ましい。グラフト部は、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。
(Graft portion preparation step)
The graft portion preparation step is a step of graft-polymerizing the first monomer and the second monomer onto the elastic body prepared in the elastic body preparation step. The graft portion can be formed, for example, by polymerizing a monomer used for forming the graft portion by known radical polymerization in the presence of an elastic body. When (i) an elastic body comprising an elastic core or (ii) an elastic body comprising an elastic core and a surface-crosslinked polymer is obtained as an aqueous suspension, the graft portion is polymerized by emulsion polymerization. It is preferable to carry out by The graft portion can be manufactured, for example, according to the method described in WO2005/028546.
 グラフト部が複数種のグラフト部(例えばグラフト部、グラフト部、・・・、グラフト部)からなる場合の、グラフト部の製造方法について説明する。この場合、グラフト部、グラフト部、・・・、グラフト部は、それぞれ別々に上述の方法により重合され、その後混合されて複合化されることにより、複数種のグラフト部からなるグラフト部(複合体)が製造されてもよい。つまり、この場合、グラフト部調製工程は、グラフト部の調製工程、グラフト部の調製工程、・・・、グラフト部の調製工程と、各調製工程によって調製したグラフト部、グラフト部、・・・、グラフト部を混合して複合化する工程と、を含む構成であってもよい。または、グラフト部調製工程は、グラフト部、グラフト部、・・・、グラフト部を、それぞれ順に多段重合して、複数種のグラフト部からなる1つのグラフト部を調製する工程であってもよい。 A method of manufacturing a graft portion when the graft portion is composed of a plurality of types of graft portions (for example, graft portion 1 1 , graft portion 2 2 , . . . , graft portion n 2 ) will be described. In this case, the graft portion 1 1 , the graft portion 2 2 , . (composite) may be produced. That is, in this case, the graft portion preparation process includes a preparation step for graft portion 1 , a preparation step for graft portion 2 , . , . Alternatively, the graft portion preparation step is a step of sequentially polymerizing the graft portion 1 , the graft portion 2 , . good too.
 グラフト部の多段重合について、具体的に説明する。例えば、グラフト部調製工程において、以下、(1)~(4)の工程を順に行うことにより、多段重合グラフト部を得ることができる:(1)グラフト部を重合してグラフト部を得る;(2)次いでグラフト部の存在下にてグラフト部を重合して2段グラフト部1+2を得る;(3)次いでグラフト部1+2の存在下にてグラフト部を重合して3段グラフト部1+2+3を得る;(4)以下、同様に行った後、グラフト部1+2+・・・+(n-1)の存在下にてグラフト部を重合して多段重合グラフト部1+2+・・・+nを得る。 The multi-stage polymerization of the graft portion will be specifically described. For example, a multistage polymerized graft portion can be obtained by sequentially performing steps (1) to (4) in the graft portion preparation step: (1) Graft portion 1 is polymerized to obtain graft portion 1 . (2) then graft portion 2 is polymerized in the presence of graft portion 1 to obtain a two-step graft portion 1+2 ; (3) graft portion 3 is then polymerized in the presence of graft portion 1 +2 to obtain a three-step graft; (4) After the same procedure, graft portion n is polymerized in the presence of graft portion 1 + 2 + . obtain.
 グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部を有するグラフト部を重合した後、前記弾性体調製工程によって調製された弾性体にそれらグラフト部をグラフト重合して、重合体微粒子(A)を製造してもよい。前記弾性体調製工程によって調製された弾性体の存在下にて、弾性体に対して、グラフト部を構成する複数種の重合体を順に多段グラフト重合して、重合体微粒子(A)を製造してもよい。 When the graft portion is composed of a plurality of types of graft portions, the graft portions having a plurality of types of graft portions are polymerized, and then the graft portions are graft-polymerized to the elastic body prepared in the elastic body preparation step to obtain fine polymer particles. (A) may be produced. In the presence of the elastic body prepared in the elastic body preparation step, a plurality of types of polymers constituting the graft portion are sequentially subjected to multistage graft polymerization to the elastic body to produce the polymer microparticles (A). may
 本発明の一実施形態において、グラフト部の製造(重合)では、第1単量体と第2単量体とを使用する。上述したように、第2単量体は、第1単量体により得られる重合体を架橋し得る。そのため、グラフト部の製造では、(i)第2単量体を第1単量体と一緒に使用し、第1単量体の重合と同時に第2単量体による架橋反応を進行させるか、または(ii)第1単量体の使用後に第2単量体を使用し、第1単量体の重合完了後に、第2に重合体による架橋反応を進行させることが好ましい。 In one embodiment of the present invention, the production (polymerization) of the graft portion uses a first monomer and a second monomer. As noted above, the second monomer can crosslink the polymer obtained from the first monomer. Therefore, in the production of the graft portion, (i) the second monomer is used together with the first monomer, and the cross-linking reaction by the second monomer proceeds simultaneously with the polymerization of the first monomer; Alternatively, (ii) it is preferable to use the second monomer after using the first monomer and allow the cross-linking reaction by the second polymer to proceed after the completion of the polymerization of the first monomer.
 重合体微粒子(A)における弾性体の重合、グラフト部の重合(グラフト重合)、および表面架橋重合体の重合は、公知の方法、例えば、乳化重合法、懸濁重合法、マイクロサスペンジョン重合法などの方法により実施することができる。これらの中でも特に、重合体微粒子(A)の製造方法としては、乳化重合法が好ましい。乳化重合法によると、(i)重合体微粒子(A)の組成設計が容易である、および(ii)重合体微粒子(A)の工業生産が容易である、という利点を有する。以下、重合体微粒子(A)に含まれ得る弾性体、グラフト部、および任意の構成である表面架橋重合体の製造方法について、説明する。 Polymerization of the elastic body, polymerization of the graft portion (graft polymerization), and polymerization of the surface-crosslinked polymer in the fine polymer particles (A) are performed by known methods such as emulsion polymerization, suspension polymerization, and microsuspension polymerization. It can be implemented by the method of Among these, the emulsion polymerization method is particularly preferable as the method for producing the polymer fine particles (A). The emulsion polymerization method has the advantages of (i) facilitating compositional design of the polymer microparticles (A) and (ii) facilitating industrial production of the polymer microparticles (A). Hereinafter, the method for producing the elastic body, the graft portion, and the surface-crosslinked polymer having any configuration that can be contained in the fine polymer particles (A) will be described.
 重合体微粒子(A)の製造方法として、乳化重合法を採用する場合、重合体微粒子(A)の製造には、乳化剤(分散剤)として、公知の乳化剤(分散剤)を用いることができる。乳化剤としては、例えば、アニオン性乳化剤、非イオン性乳化剤、ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体などが挙げられる。アニオン性乳化剤としては、硫黄系乳化剤、リン系乳化剤、ザルコシン酸系乳化剤、カルボン酸系乳化剤などが挙げられる。硫黄系乳化剤としては、ドデシルベンゼンスルホン酸ナトリウム(略称;SDBS)などが挙げられる。リン系乳化剤としては、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどが挙げられる。 When an emulsion polymerization method is adopted as the method for producing the polymer fine particles (A), a known emulsifier (dispersant) can be used as an emulsifier (dispersant) for the production of the polymer fine particles (A). Examples of emulsifiers include anionic emulsifiers, nonionic emulsifiers, polyvinyl alcohol, alkyl-substituted cellulose, polyvinylpyrrolidone, and polyacrylic acid derivatives. Examples of anionic emulsifiers include sulfur-based emulsifiers, phosphorus-based emulsifiers, sarcosic acid-based emulsifiers, and carboxylic acid-based emulsifiers. Examples of sulfur-based emulsifiers include sodium dodecylbenzenesulfonate (abbreviation: SDBS). Phosphorus-based emulsifiers include sodium polyoxyethylene lauryl ether phosphate and the like.
 重合体微粒子(A)の製造方法として、乳化重合法を採用する場合、重合体微粒子(A)の製造には、熱分解型開始剤を用いることができる。前記熱分解型開始剤としては、例えば、(i)2,2’-アゾビスイソブチロニトリル、並びに(ii)有機過酸化物および無機過酸化物などの過酸化物、などの公知の開始剤を挙げることができる。前記有機過酸化物としては、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、およびt-ヘキシルパーオキサイドなどが挙げられる。前記無機過酸化物としては、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどが挙げられる。 When an emulsion polymerization method is adopted as the method for producing the polymer fine particles (A), a thermal decomposition initiator can be used for the production of the polymer fine particles (A). The thermal decomposition initiators include, for example, (i) 2,2′-azobisisobutyronitrile, and (ii) peroxides such as organic and inorganic peroxides, and other known initiators. agents can be mentioned. Examples of the organic peroxides include t-butyl peroxyisopropyl carbonate, paramenthane hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, and t- and hexyl peroxide. Examples of the inorganic peroxides include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
 重合体微粒子(A)の製造には、レドックス型開始剤を使用することもできる。前記レドックス型開始剤は、(i)有機過酸化物および無機過酸化物などの過酸化物と、(ii)硫酸鉄(II)などの遷移金属塩や、ナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤と、を併用した開始剤である。さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などを併用してもよい。 A redox initiator can also be used for the production of polymer fine particles (A). The redox initiator includes (i) peroxides such as organic peroxides and inorganic peroxides, and (ii) transition metal salts such as iron (II) sulfate, sodium formaldehyde sulfoxylate, glucose and the like. It is an initiator used in combination with a reducing agent. Furthermore, if necessary, a chelating agent such as disodium ethylenediaminetetraacetate and, if necessary, a phosphorus-containing compound such as sodium pyrophosphate may be used in combination.
 レドックス型開始剤を用いた場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定することができるようになる。そのため、レドックス型開始剤を用いることが好ましい。レドックス型開始剤の中でも、クメンハイドロパーオキサイド、ジクミルパーオキサイド、パラメンタンハイドロパーオキサイド、およびt-ブチルハイドロパーオキサイドなどの有機過酸化物を過酸化物として使用したレドックス型開始剤が好ましい。前記熱分解型開始剤の使用量、前記レドックス型開始剤の使用量、並びに、レドックス型開始剤を用いる場合には前記還元剤、遷移金属塩およびキレート剤などの使用量は、公知の範囲で用いることができる。 When a redox initiator is used, polymerization can be carried out even at a low temperature at which the peroxide is not substantially thermally decomposed, and the polymerization temperature can be set in a wide range. Therefore, it is preferable to use a redox initiator. Among redox initiators, redox initiators using organic peroxides such as cumene hydroperoxide, dicumyl peroxide, paramenthane hydroperoxide, and t-butyl hydroperoxide as peroxides are preferred. The amount of the thermal decomposition type initiator used, the amount of the redox type initiator used, and the amount of the reducing agent, transition metal salt, chelating agent, etc. used when the redox type initiator is used are within a known range. can be used.
 弾性体、グラフト部または表面架橋重合体に架橋構造を導入する目的で、弾性体、グラフト部または表面架橋重合体の重合に多官能性単量体を使用する場合、公知の連鎖移動剤を公知の使用量の範囲で用いることができる。連鎖移動剤を使用することにより、得られる弾性体、グラフト部もしくは表面架橋重合体の分子量および/または架橋度を容易に調節することができる。 For the purpose of introducing a crosslinked structure into the elastic body, the graft part or the surface crosslinked polymer, when using a polyfunctional monomer in the polymerization of the elastic body, the graft part or the surface crosslinked polymer, a known chain transfer agent is used. can be used within the range of the amount used. By using a chain transfer agent, the molecular weight and/or the degree of cross-linking of the resulting elastomer, graft portion or surface-crosslinked polymer can be easily adjusted.
 重合体微粒子(A)の製造には、上述した成分に加えて、さらに界面活性剤を用いることができる。前記界面活性剤の種類および使用量は、公知の範囲である。 In addition to the components described above, a surfactant can be used in the production of the polymer microparticles (A). The types and amounts of the surfactants used are within known ranges.
 重合体微粒子(A)の製造において、重合における重合温度、圧力、および脱酸素などの各条件は、公知の数値範囲の条件を適宜適用することができる。 In the production of the polymer microparticles (A), conditions within known numerical ranges can be appropriately applied to conditions such as polymerization temperature, pressure, and deoxidation in polymerization.
 上述した重合体微粒子(A)の製造方法によって製造された重合体微粒子(A)も本発明の範疇に含まれる。 The polymer microparticles (A) produced by the method for producing polymer microparticles (A) described above are also included in the scope of the present invention.
 本発明の実施形態1に係る重合体微粒子(A)は、以下のような構成であってもよい:ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合してなる弾性体と、前記弾性体に、第1の単量体および第2の単量体をグラフト重合してなるグラフト部と、を有するゴム含有グラフト共重合体を含み、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満である、重合体微粒子。 The polymer microparticles (A) according to Embodiment 1 of the present invention may have the following configuration: from a diene-based monomer, a (meth)acrylate-based monomer, and an organosiloxane-based monomer an elastic body obtained by polymerizing one or more monomers selected from the group consisting of; a graft portion obtained by graft-polymerizing a first monomer and a second monomer to the elastic body; wherein the first monomer is one selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer Above, the second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule, and the first structural unit and the second The second structural unit is more than 0.00% by weight and less than 2.00% by weight, when the total amount of the second structural unit is 100% by weight.
 <1-3.マトリクス樹脂(B)>
 マトリクス樹脂(B)は、分子内に2個以上の重合性不飽和結合を有する樹脂である。分子内に2個以上の重合性不飽和結合を有する樹脂は特に制限はなく、例えばラジカル重合性反応基(例えば炭素-炭素二重結合)を有する硬化性樹脂が挙げられる。より具体的には、マトリクス樹脂(B)は、主鎖を構成する繰返し単位にエステル結合を含有する硬化性樹脂、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートなどが挙げられる。これらの硬化性樹脂は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
<1-3. Matrix resin (B)>
The matrix resin (B) is a resin having two or more polymerizable unsaturated bonds in its molecule. Resins having two or more polymerizable unsaturated bonds in the molecule are not particularly limited, and examples thereof include curable resins having radically polymerizable reactive groups (eg, carbon-carbon double bonds). More specifically, the matrix resin (B) is a curable resin containing an ester bond in the repeating unit constituting the main chain, epoxy (meth)acrylate, urethane (meth)acrylate, polyether (meth)acrylate, acrylic (meth)acrylates, and the like. These curable resins may be used alone or in combination of two or more.
 エポキシ(メタ)アクリレートは、ビスフェノールA型エポキシ樹脂のようなポリエポキシドと、(メタ)アクリル酸のような不飽和一塩基酸と、必要に応じて多塩基酸とを、触媒存在下で付加反応させて得られる付加反応物である。当該付加反応物と、必要に応じて該付加反応物にビニルモノマーを混合した混合物と、を含めて、一般にビニルエステル樹脂と呼ばれる。この製法では、原料であるポリエポキシドが必然的に少量残留することになる。該ポリエポキシドが分子内に重合性不飽和結合を有しない場合には、硬化せずに残存し、硬化物物性(耐熱性など)に悪影響を及ぼす場合がある。残存エポキシドを少なくする観点、および、経済性の観点から、マトリクス樹脂(B)の総量100重量部の内、エポキシ(メタ)アクリレートの含有量は99重量部未満であることが好ましく、95重量部未満がより好ましく、90重量部未満がより好ましく、80重量部未満であることが更に好ましく、50重量部未満であることが特に好ましく、30重量部未満であることが最も好ましい。マトリクス樹脂(B)は、エポキシ(メタ)アクリレートを含有しないことが更に好ましい。 Epoxy (meth)acrylate is obtained by addition reaction of polyepoxide such as bisphenol A epoxy resin, unsaturated monobasic acid such as (meth)acrylic acid, and optionally polybasic acid in the presence of a catalyst. It is an addition reaction product obtained by The addition reaction product and, if necessary, a mixture of the addition reaction product and a vinyl monomer are generally referred to as a vinyl ester resin. This production method inevitably leaves a small amount of the raw material polyepoxide. If the polyepoxide does not have a polymerizable unsaturated bond in its molecule, it may remain uncured and adversely affect the physical properties of the cured product (heat resistance, etc.). From the viewpoint of reducing residual epoxide and from the viewpoint of economy, the content of epoxy (meth)acrylate in 100 parts by weight of the total amount of matrix resin (B) is preferably less than 99 parts by weight, preferably 95 parts by weight. Less than 90 parts by weight is more preferred, less than 80 parts by weight is even more preferred, less than 50 parts by weight is particularly preferred, and less than 30 parts by weight is most preferred. More preferably, the matrix resin (B) does not contain epoxy (meth)acrylate.
 前記「主鎖を構成する繰返し単位にエステル結合を含有する硬化性樹脂」としては、分子内にエステル基と2個以上の重合性不飽和結合とを有する硬化性化合物であれば特に限定されるものではなく、例えば、不飽和ポリエステルやポリエステル(メタ)アクリレートが挙げられる。 The "curable resin containing an ester bond in the repeating unit constituting the main chain" is particularly limited as long as it is a curable compound having an ester group and two or more polymerizable unsaturated bonds in the molecule. Examples include unsaturated polyesters and polyester (meth)acrylates.
 マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートよりなる群から選択される1種以上の硬化性樹脂であることが好ましい。 The matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates. More than one kind of curable resin is preferred.
 これらの中でも、経済性の観点から、マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレートよりなる群から選択される1種以上であることが好ましい。また、残存するエポキシドが少ないことから、マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートよりなる群から選択される1種以上であることがより好ましい。また、耐熱性の観点から、マトリクス樹脂(B)は、不飽和ポリエステルまたはポリエステル(メタ)アクリレートであることが更に好ましく、ラジカル硬化時の硬化性の高さ、得られる硬化物の耐候性や着色、および、重合体微粒子(A)が分散しやすいなどの観点から、マトリクス樹脂(B)は、ポリエステル(メタ)アクリレートであることが特に好ましい。粘度が低く作業性に優れる観点から、マトリクス樹脂(B)は、ポリエーテル(メタ)アクリレートを含むか、ポリエーテル(メタ)アクリレートであることが好ましい。粘度が低く作業性に優れる観点から、マトリクス樹脂(B)は、アクリル化(メタ)アクリレートを含むか、アクリル化(メタ)アクリレートであることが好ましい。 Among these, the matrix resin (B) is one or more selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, and urethane (meth)acrylates from the viewpoint of economy. is preferred. Further, the matrix resin (B) is more preferably one or more selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, and urethane (meth)acrylates, since there is little residual epoxide. Further, from the viewpoint of heat resistance, the matrix resin (B) is more preferably unsaturated polyester or polyester (meth)acrylate. , and that the polymer fine particles (A) are easily dispersed, the matrix resin (B) is particularly preferably polyester (meth)acrylate. From the viewpoint of low viscosity and excellent workability, the matrix resin (B) preferably contains polyether (meth)acrylate or is polyether (meth)acrylate. From the viewpoint of low viscosity and excellent workability, the matrix resin (B) preferably contains an acrylated (meth)acrylate or is an acrylated (meth)acrylate.
 (不飽和ポリエステル)
 不飽和ポリエステルは、特に限定されるものではなく、例えば、多価アルコールと不飽和多価カルボン酸あるいはその無水物との縮合反応から得られるものが挙げられる。
(unsaturated polyester)
The unsaturated polyester is not particularly limited, and examples thereof include those obtained from a condensation reaction between a polyhydric alcohol and an unsaturated polycarboxylic acid or its anhydride.
 多価アルコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコールなどの、炭素原子が2~12個の二価アルコールが挙げられ、好ましくは炭素原子が2~6個の二価アルコールであり、より好ましくはプロピレングリコールである。これらの二価アルコールは、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Examples of polyhydric alcohols include those having 2 to 12 carbon atoms, such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, and neopentyl glycol. dihydric alcohols, preferably dihydric alcohols having 2 to 6 carbon atoms, more preferably propylene glycol. Only one type of these dihydric alcohols may be used, or two or more types may be used in combination.
 不飽和多価カルボン酸としては、例えば、炭素原子が3~12個の二価のカルボン酸が挙げられ、より好ましくは炭素原子が4~8個の二価のカルボン酸である。具体的には、フマル酸やマレイン酸などが挙げられる。これらの二価のカルボン酸は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Examples of unsaturated polycarboxylic acids include divalent carboxylic acids having 3 to 12 carbon atoms, more preferably divalent carboxylic acids having 4 to 8 carbon atoms. Specific examples include fumaric acid and maleic acid. Only one type of these divalent carboxylic acids may be used, or two or more types may be used in combination.
 また、本発明の実施形態1に係る樹脂組成物では、この不飽和多価カルボン酸あるいはその無水物とともに、飽和多価カルボン酸あるいはその無水物を併用してもよく、この際、多価カルボン酸あるいはその無水物の総量(100モル%)に対して、不飽和多価カルボン酸あるいはその無水物の量は少なくとも30モル%以上含まれていることが好ましい。飽和多価カルボン酸あるいはその無水物としては、無水フタル酸、テレフタル酸、イソフタル酸、アジピン酸、グルタル酸などが挙げられる。これらの飽和多価カルボン酸あるいはその無水物は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Further, in the resin composition according to Embodiment 1 of the present invention, a saturated polycarboxylic acid or an anhydride thereof may be used in combination with the unsaturated polycarboxylic acid or anhydride thereof. It is preferable that the amount of the unsaturated polycarboxylic acid or its anhydride is at least 30 mol % or more based on the total amount (100 mol %) of the acid or its anhydride. Examples of saturated polycarboxylic acids or anhydrides thereof include phthalic anhydride, terephthalic acid, isophthalic acid, adipic acid and glutaric acid. These saturated polycarboxylic acids or their anhydrides may be used alone or in combination of two or more.
 不飽和ポリエステルは、前記多価アルコールと不飽和多価カルボン酸あるいはその無水物などとを、例えばチタン酸テトラブチルなどの有機チタン酸塩や、ジブチル酸化スズなどの有機錫化合物などのエステル化触媒存在下、縮合反応させて得ることができる。 The unsaturated polyester is prepared by combining the polyhydric alcohol and the unsaturated polycarboxylic acid or its anhydride in the presence of an esterification catalyst such as an organic titanate such as tetrabutyl titanate or an organic tin compound such as dibutyltin oxide. It can be obtained by condensation reaction below.
 硬化性不飽和ポリエステル化合物は、例えば、Ashland社やReichhold社、AOC社などから商業的に入手することもできる。 The curable unsaturated polyester compound is also commercially available, for example, from Ashland, Reichhold, AOC, and the like.
 不飽和ポリエステルの数平均分子量は、特に限定されるものではなく、好ましくは400~10,000であり、より好ましくは450~5,000であり、特に好ましくは500~3,000である。 The number average molecular weight of the unsaturated polyester is not particularly limited, but is preferably 400-10,000, more preferably 450-5,000, and particularly preferably 500-3,000.
 (ポリエステル(メタ)アクリレート)
 ポリエステル(メタ)アクリレートは、特に限定されるものではなく、例えば、2価以上の多価カルボン酸あるいはその無水物、(メタ)アクリロイル基を有する不飽和モノカルボン酸、および2価以上の多価アルコールを必須成分としてエステル化して得られるものが挙げられる。また、ポリエステル(メタ)アクリレートは、例えば、多価カルボン酸あるいはその無水物と多価アルコールとの縮合反応によって得られるポリエステルの有する水酸基と、不飽和モノカルボン酸と、をエステル化反応させることにより得ることができる。更に、ポリエステル(メタ)アクリレートは、例えば、多価カルボン酸あるいはその無水物と多価アルコールとの縮合反応によって得られるポリエステルの有するカルボキシル基と、不飽和グリシジルエステル化合物と、をエステル化反応させることにより得ることができる。
(polyester (meth)acrylate)
Polyester (meth)acrylate is not particularly limited, for example, polyvalent carboxylic acid or anhydride thereof having a valence of 2 or more, unsaturated monocarboxylic acid having a (meth)acryloyl group, and polyvalence of 2 or more Examples include those obtained by esterifying alcohol as an essential component. Further, the polyester (meth)acrylate is obtained, for example, by subjecting the hydroxyl group of the polyester obtained by the condensation reaction of a polyhydric carboxylic acid or its anhydride and a polyhydric alcohol to an esterification reaction with an unsaturated monocarboxylic acid. Obtainable. Furthermore, the polyester (meth)acrylate is obtained, for example, by subjecting the carboxyl group of the polyester obtained by the condensation reaction of a polyvalent carboxylic acid or its anhydride and a polyhydric alcohol to an esterification reaction with an unsaturated glycidyl ester compound. can be obtained by
 多価カルボン酸あるいはその無水物としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸などの不飽和カルボン酸あるいはその無水物が挙げられる。また、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、シクロヘキサンジカルボン酸、コハク酸、マロン酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、1,12-ドデカン2酸、ダイマー酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸などの飽和カルボン酸あるいはその無水物が挙げられる。 Examples of polycarboxylic acids or anhydrides thereof include unsaturated carboxylic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, and citraconic acid, or anhydrides thereof. In addition, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, cyclohexanedicarboxylic acid, succinic acid, malonic acid, glutaric acid, adipic acid, Azelaic acid, sebacic acid, 1,12-dodecanedioic acid, dimer acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic anhydride , 4,4′-biphenyldicarboxylic acid and other saturated carboxylic acids or their anhydrides.
 これらの中でも、多価カルボン酸あるいはその無水物としては、無水マレイン酸、フマル酸、イタコン酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ無水フタル酸、アジピン酸、セバシン酸が好ましく、無水フタル酸、イソフタル酸、テレフタル酸がより好ましい。イソフタル酸は、得られるマトリクス樹脂(B)の粘度が低く、硬化物の耐水性の観点からも特に好ましい。 Among these, the polyvalent carboxylic acid or its anhydride is preferably maleic anhydride, fumaric acid, itaconic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, adipic acid or sebacic acid, and phthalic anhydride. More preferred are acids, isophthalic acid and terephthalic acid. Isophthalic acid is particularly preferred from the viewpoint of the low viscosity of the resulting matrix resin (B) and the water resistance of the cured product.
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2-メチルプロパン-1,3-ジオール、水素化ビスフェノールA、ビスフェノールAとプロピレンオキサイドやエチレンオキサイドなどのアルキレンオキサイドとの付加物、トリメチロールプロパンなどが挙げられる。 Examples of polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, neopentyl glycol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-methylpropane-1,3-diol, Examples include hydrogenated bisphenol A, adducts of bisphenol A and alkylene oxides such as propylene oxide and ethylene oxide, and trimethylolpropane.
 これらの中でも、多価アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、水素化ビスフェノールA、ビスフェノールAとプロピレンオキサイドとの付加物、が好ましく、プロピレングリコール、ネオペンチルグリコール、水素化ビスフェノールA、ビスフェノールAとプロピレンオキサイドとの付加物、がより好ましい。ネオペンチルグリコールは、得られるマトリクス樹脂(B)の粘度が低く、硬化物の耐水性や耐候性の観点からも特に好ましい。 Among these, polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and hydrogenated bisphenol. A, an adduct of bisphenol A and propylene oxide is preferred, and propylene glycol, neopentyl glycol, hydrogenated bisphenol A, and an adduct of bisphenol A and propylene oxide are more preferred. Neopentyl glycol is particularly preferable from the viewpoint of the resulting matrix resin (B) having a low viscosity and the water resistance and weather resistance of the cured product.
 縮合反応を行う際の反応方法などは、公知の方法で行うことができる。また、多価カルボン酸類と多価アルコール類との配合割合は、特に限定されるものではない。その他の触媒や消泡剤などの添加剤の有無およびその使用量も特に限定されるものではない。さらに、縮合反応を行う際の反応における反応温度および反応時間は、当該反応が完結するように適宜設定すればよい。 A known method can be used for the reaction method for the condensation reaction. Moreover, the mixing ratio of polyhydric carboxylic acids and polyhydric alcohols is not particularly limited. The presence or absence of additives such as other catalysts and antifoaming agents, and the amounts used are not particularly limited. Furthermore, the reaction temperature and reaction time in the condensation reaction may be appropriately set so that the reaction is completed.
 前記不飽和モノカルボン酸は、分子内に少なくとも1つの(メタ)アクリロイル基を有する一塩基酸である。例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、ソルビン酸、モノ-2-(メタクリロイルオキシ)エチルマレート、モノ-2-(アクリロイルオキシ)エチルマレート、モノ-2-(メタクリロイルオキシ)プロピルマレート、モノ-2-(アクリロイルオキシ)プロピルマレートなどが挙げられる。 The unsaturated monocarboxylic acid is a monobasic acid having at least one (meth)acryloyl group in the molecule. For example, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, sorbic acid, mono-2-(methacryloyloxy)ethyl maleate, mono-2-(acryloyloxy)ethyl maleate, mono-2-(methacryloyloxy)propyl maleate, mono -2-(Acryloyloxy)propyl maleate and the like.
 前記不飽和グリシジルエステル化合物は、分子内に少なくとも1つの(メタ)アクリロイル基を有するグリシジルエステル化合物である。例えば、グリシジルアクリレート、グリシジルメタクリレートなどが挙げられる。 The unsaturated glycidyl ester compound is a glycidyl ester compound having at least one (meth)acryloyl group in the molecule. Examples include glycidyl acrylate and glycidyl methacrylate.
 前記エステル化反応に際しては、重合によるゲル化を防止するために重合禁止剤や分子状酸素を添加することが好ましい。 At the time of the esterification reaction, it is preferable to add a polymerization inhibitor or molecular oxygen to prevent gelation due to polymerization.
 重合禁止剤としては、特に限定されるものではなく、従来公知の化合物を用いることができる。例えば、ハイドロキノン、メチルハイドロキノン、p-t-ブチルカテコール、2-t-ブチルハイドロキノン、トルハイドロキノン、p-ベンゾキノン、ナフトキノン、メトキシハイドロキノン、フェノチアジン、ハイドロキノンモノメチルエーテル、トリメチルハイドロキノン、メチルベンゾキノン、2,6-ジ-t-ブチル-4-(ジメチルアミノメチル)フェノール、2,5-ジ-t-ブチルハイドロキノン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、ナフテン酸銅などが挙げられる。 The polymerization inhibitor is not particularly limited, and conventionally known compounds can be used. For example, hydroquinone, methylhydroquinone, pt-butylcatechol, 2-t-butylhydroquinone, trihydroquinone, p-benzoquinone, naphthoquinone, methoxyhydroquinone, phenothiazine, hydroquinone monomethyl ether, trimethylhydroquinone, methylbenzoquinone, 2,6-dihydroquinone, -t-butyl-4-(dimethylaminomethyl)phenol, 2,5-di-t-butylhydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, copper naphthenate, etc. mentioned.
 分子状酸素としては、例えば、(i)空気、および(ii)空気と窒素などの不活性ガスとの混合ガス、を用いることができる。この場合、分子状酸素を反応系に吹き込む(いわゆる、バブリング)ようにすればよい。なお、重合によるゲル化を十分に防止するために、重合禁止剤と分子状酸素とを併用することが好ましい。 As molecular oxygen, for example, (i) air and (ii) mixed gas of air and inert gas such as nitrogen can be used. In this case, molecular oxygen may be blown into the reaction system (so-called bubbling). In order to sufficiently prevent gelation due to polymerization, it is preferable to use both a polymerization inhibitor and molecular oxygen.
 前記エステル化反応における反応温度や反応時間などの反応条件は、当該反応が完結するように適宜設定すればよく、特に限定されるものではない。また、エステル化反応を促進するために前記のエステル化触媒を用いることが好ましい。また、エステル化反応に際し、必要に応じて溶媒を用いてもよい。該溶媒としては、具体的には、トルエンなどの芳香族炭化水素などが挙げられるが、特に限定されない。溶媒の使用量や、反応後の溶媒の除去方法は、特に限定されるものではない。なお、前記エステル化反応においては水が副生するため、エステル化反応を促進させるためには、副生物である水を反応系から除去することが好ましい。除去方法は、特に限定されるものではない。 The reaction conditions such as reaction temperature and reaction time in the esterification reaction may be appropriately set so as to complete the reaction, and are not particularly limited. In addition, it is preferable to use the above esterification catalyst in order to promote the esterification reaction. Moreover, you may use a solvent as needed in the case of an esterification reaction. Specific examples of the solvent include, but are not particularly limited to, aromatic hydrocarbons such as toluene. The amount of solvent used and the method for removing the solvent after the reaction are not particularly limited. Since water is produced as a by-product in the esterification reaction, it is preferable to remove water, which is a by-product, from the reaction system in order to promote the esterification reaction. A removal method is not particularly limited.
 ポリエステル(メタ)アクリレートの数平均分子量は、特に限定されるものではなく、好ましくは400~10,000であり、より好ましくは450~5,000であり、特に好ましくは500~3,000である。 The number average molecular weight of the polyester (meth)acrylate is not particularly limited, and is preferably 400 to 10,000, more preferably 450 to 5,000, and particularly preferably 500 to 3,000. .
 (エポキシ(メタ)アクリレート)
 エポキシ(メタ)アクリレートは、特に限定されるものではなく、例えば、分子内にエポキシ基を2つ以上有する多官能エポキシ化合物と、不飽和モノカルボン酸と、必要に応じて多価カルボン酸とをエステル化触媒の存在下でエステル化反応させることによって得ることができる。
(epoxy (meth) acrylate)
Epoxy (meth)acrylate is not particularly limited, and for example, a polyfunctional epoxy compound having two or more epoxy groups in the molecule, an unsaturated monocarboxylic acid, and optionally a polyvalent carboxylic acid. It can be obtained by an esterification reaction in the presence of an esterification catalyst.
 多官能エポキシ化合物としては、例えば、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、水素化ノボラック型エポキシ化合物、および前記ビスフェノール型エポキシ化合物やノボラック型エポキシ化合物が有する水素原子の一部を、ハロゲン原子(例えば、臭素原子、塩素原子など)で置換してなるハロゲン化エポキシ化合物などが挙げられる。これらの多官能エポキシ化合物は、1種類のみを用いてもよく、また、2種以上併用してもよい。 Examples of polyfunctional epoxy compounds include bisphenol-type epoxy compounds, novolac-type epoxy compounds, hydrogenated bisphenol-type epoxy compounds, hydrogenated novolak-type epoxy compounds, and one of the hydrogen atoms of the bisphenol-type epoxy compounds and novolak-type epoxy compounds. Examples include halogenated epoxy compounds obtained by substituting a portion with a halogen atom (eg, bromine atom, chlorine atom, etc.). These polyfunctional epoxy compounds may be used alone or in combination of two or more.
 ビスフェノール型エポキシ化合物としては、例えば、エピクロルヒドリンまたはメチルエピクロルヒドリンと、ビスフェノールAまたはビスフェノールFとの反応によって得られるグリシジルエーテル型のエポキシ化合物、あるいは、ビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリンまたはメチルエピクロルヒドリンとの反応によって得られるエポキシ化合物などが挙げられる。 The bisphenol-type epoxy compound includes, for example, a glycidyl ether-type epoxy compound obtained by reacting epichlorohydrin or methyl epichlorohydrin with bisphenol A or bisphenol F, or a reaction of an alkylene oxide adduct of bisphenol A with epichlorohydrin or methyl epichlorohydrin. Epoxy compounds obtained by.
 水素化ビスフェノール型エポキシ化合物としては、例えば、エピクロルヒドリンまたはメチルエピクロルヒドリンと、水素化ビスフェノールAまたは水素化ビスフェノールFとの反応によって得られるグリシジルエーテル型のエポキシ化合物、あるいは、水素化ビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリンまたはメチルエピクロルヒドリンとの反応によって得られるエポキシ化合物などが挙げられる。 Hydrogenated bisphenol type epoxy compounds include, for example, glycidyl ether type epoxy compounds obtained by reacting epichlorohydrin or methyl epichlorohydrin with hydrogenated bisphenol A or hydrogenated bisphenol F, or alkylene oxide adducts of hydrogenated bisphenol A. and epichlorohydrin or methyl epichlorohydrin and epoxy compounds obtained by the reaction.
 ノボラック型エポキシ化合物としては、例えば、フェノールノボラックまたはクレゾールノボラックと、エピクロルヒドリンまたはメチルエピクロルヒドリンとの反応によって得られるエポキシ化合物などが挙げられる。 Examples of novolak-type epoxy compounds include epoxy compounds obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.
 水素化ノボラック型エポキシ化合物としては、例えば、水素化フェノールノボラックまたは水素化クレゾールノボラックと、エピクロルヒドリンまたはメチルエピクロルヒドリンとの反応によって得られるエポキシ化合物などが挙げられる。 Examples of hydrogenated novolak-type epoxy compounds include epoxy compounds obtained by reacting hydrogenated phenol novolak or hydrogenated cresol novolac with epichlorohydrin or methyl epichlorohydrin.
 多官能エポキシ化合物の平均エポキシ当量は、好ましくは150~900の範囲、特に好ましくは150~400の範囲である。平均エポキシ当量が900を越える多官能エポキシ化合物を用いたエポキシ(メタ)アクリレートでは反応性が低下しやすく、組成物の硬化性が低下しやすい。平均エポキシ当量が150未満の多官能エポキシ化合物を用いた場合は、組成物の物性が低下しやすい。 The average epoxy equivalent of the polyfunctional epoxy compound is preferably in the range of 150-900, particularly preferably in the range of 150-400. Epoxy (meth)acrylates using polyfunctional epoxy compounds having an average epoxy equivalent of more than 900 are likely to lower reactivity and curability of the composition. When a polyfunctional epoxy compound having an average epoxy equivalent of less than 150 is used, the physical properties of the composition tend to deteriorate.
 前記不飽和モノカルボン酸とは、分子内に少なくとも1つの(メタ)アクリロイル基を有する一塩基酸である。例えば、アクリル酸、メタクリル酸などが挙げられる。また、これらの不飽和モノカルボン酸の一部を桂皮酸、クロトン酸、ソルビン酸、および不飽和二塩基酸のハーフエステル(モノ-2-(メタクリロイルオキシ)エチルマレート、モノ-2-(アクリロイルオキシ)エチルマレート、モノ-2-(メタクリロイルオキシ)プロピルマレート、モノ-2-(アクリロイルオキシ)プロピルマレートなど)と置き換えて使用することもできる。 The unsaturated monocarboxylic acid is a monobasic acid having at least one (meth)acryloyl group in the molecule. Examples include acrylic acid and methacrylic acid. Some of these unsaturated monocarboxylic acids can also be converted to cinnamic acid, crotonic acid, sorbic acid, and half esters of unsaturated dibasic acids (mono-2-(methacryloyloxy)ethyl maleate, mono-2-(acryloyloxy) ethyl maleate, mono-2-(methacryloyloxy)propyl maleate, mono-2-(acryloyloxy)propyl maleate, etc.).
 前記多価カルボン酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、アジピン酸、アゼライン酸、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、1,6-シクロヘキサンジカルボン酸、ドデカン二酸、ダイマー酸などが挙げられる。不飽和モノカルボン酸および必要に応じて用いられる多価カルボン酸と、多官能エポキシ化合物との割合は、不飽和モノカルボン酸および多価カルボン酸が有する合計のカルボキシル基と、多官能エポキシ化合物のエポキシ基との比率が1:1.2~1.2:1の範囲とすることが好ましい。 Examples of the polyvalent carboxylic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, adipic acid, azelaic acid, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, anhydride trimellitic acid, hexahydrophthalic anhydride, 1,6-cyclohexanedicarboxylic acid, dodecanedioic acid, dimer acid and the like. The ratio of the unsaturated monocarboxylic acid and optionally used polyvalent carboxylic acid to the polyfunctional epoxy compound is the total carboxyl groups possessed by the unsaturated monocarboxylic acid and polyvalent carboxylic acid and the polyfunctional epoxy compound. It is preferable that the ratio with the epoxy group is in the range of 1:1.2 to 1.2:1.
 前記エステル化触媒としては、従来公知の化合物を使用することができるが、具体的には、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリンなどの3級アミン類;トリメチルベンジルアンモニウムクロライド、ピリジニウムクロライドなどの4級アンモニウム塩;トリフェニルホスフィン、テトラフェニルホスフォニウムクロライド、テトラフェニルホスフォニウムブロマイド、テトラフェニルホスフォニウムアイドダイドなどのホスフォニウム化合物;p-トルエンスルホン酸などのスルホン酸類;オクテン酸亜鉛などの有機金属塩などが挙げられる。 As the esterification catalyst, conventionally known compounds can be used. Specific examples include tertiary amines such as triethylamine, N,N-dimethylbenzylamine, and N,N-dimethylaniline; trimethyl benzylammonium chloride, quaternary ammonium salts such as pyridinium chloride; phosphonium compounds such as triphenylphosphine, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium idodide; sulfonic acids; and organic metal salts such as zinc octenoate.
 前記の反応を行う際の反応方法及び反応条件などは特に限定されるものではない。また、エステル化反応においては、重合によるゲル化を防止するために、重合禁止剤や分子状酸素を反応系に添加することがより好ましい。前記重合禁止剤および分子状酸素としては、前記ポリエステル(メタ)アクリレートにおいて挙げたものを同様に用いることができる。 The reaction method and reaction conditions for carrying out the above reaction are not particularly limited. Moreover, in the esterification reaction, it is more preferable to add a polymerization inhibitor or molecular oxygen to the reaction system in order to prevent gelation due to polymerization. As the polymerization inhibitor and molecular oxygen, those mentioned in the polyester (meth)acrylate can be used in the same manner.
 エポキシ(メタ)アクリレートの数平均分子量は、特に限定されるものではなく、好ましくは300~10,000であり、より好ましくは350~5,000であり、特に好ましくは400~2,500である。 The number average molecular weight of the epoxy (meth)acrylate is not particularly limited, and is preferably 300 to 10,000, more preferably 350 to 5,000, and particularly preferably 400 to 2,500. .
 (ウレタン(メタ)アクリレート)
 ウレタン(メタ)アクリレートは、特に限定されるものではなく、例えば、ポリイソシアネート化合物と、ポリオール化合物と、水酸基含有(メタ)アクリレート化合物とのウレタン化反応により得られるものが挙げられる。また、ポリオール化合物と、(メタ)アクリロイル基含有イソシアネート化合物とのウレタン化反応により得られるものや、水酸基含有(メタ)アクリレート化合物と、ポリイソシアネート化合物とのウレタン化反応により得られるものが挙げられる。
(Urethane (meth)acrylate)
Urethane (meth)acrylates are not particularly limited, and examples thereof include those obtained by a urethanization reaction of a polyisocyanate compound, a polyol compound, and a hydroxyl group-containing (meth)acrylate compound. Further, those obtained by the urethanization reaction between a polyol compound and a (meth)acryloyl group-containing isocyanate compound, and those obtained by a urethanization reaction between a hydroxyl group-containing (meth)acrylate compound and a polyisocyanate compound.
 ポリイソシアネート化合物としては、具体的には、例えば、2,4-トリレンジイソシアネートおよびその水素化物、2,4-トリレンジイソシアネートの異性体およびその水素化物、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートの3量体、イソホロンジイソシアネート、キシレンジイソシアネート、水素化キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート;あるいは、ミリオネートMR、コロネートL(日本ポリウレタン工業株式会社製)、バーノックD-750、クリスボンNX(大日本インキ化学工業株式会社製)、デスモジュールL(住友バイエル株式会社製)、タケネートD102(武田薬品工業株式会社製)などが挙げられる。 Specific examples of polyisocyanate compounds include 2,4-tolylene diisocyanate and its hydrides, 2,4-tolylene diisocyanate isomers and their hydrides, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and hexamethylene. Diisocyanate, trimer of hexamethylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate, dicyclohexylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate; or Millionate MR, Coronate L (Nippon Polyurethane Industry Co., Ltd. ), Barnock D-750, Crisbon NX (manufactured by Dainippon Ink and Chemicals, Inc.), Desmodur L (manufactured by Sumitomo Bayer Co., Ltd.), Takenate D102 (manufactured by Takeda Pharmaceutical Co., Ltd.), and the like.
 ポリオール化合物としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリブタジエンポリオール、ビスフェノールAとプロピレンオキサイドやエチレンオキサイドなどのアルキレンオキサイドとの付加物などが挙げられる。前記ポリエーテルポリオールの数平均分子量は、好ましくは300~5,000の範囲内、特に好ましくは500~3,000の範囲内のものである。具体的にはポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレングリコール、ポリオキシメチレングリコールなどが挙げられる。ポリエステルポリオールの数平均分子量は、1,000~3,000の範囲が好ましい。 Examples of polyol compounds include polyether polyols, polyester polyols, polybutadiene polyols, adducts of bisphenol A and alkylene oxides such as propylene oxide and ethylene oxide. The number average molecular weight of the polyether polyol is preferably in the range of 300-5,000, particularly preferably in the range of 500-3,000. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol, and polyoxymethylene glycol. The polyester polyol preferably has a number average molecular weight in the range of 1,000 to 3,000.
 水酸基含有(メタ)アクリレート化合物は、分子内に少なくとも1つの水酸基を有する(メタ)アクリレート化合物である。該水酸基含有(メタ)アクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。 A hydroxyl group-containing (meth)acrylate compound is a (meth)acrylate compound having at least one hydroxyl group in the molecule. Examples of the hydroxyl group-containing (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, polyethylene glycol mono(meth)acrylate, and polypropylene glycol. mono (meth) acrylate and the like.
 (メタ)アクリロイル基含有イソシアネート化合物は、分子内に少なくとも1つの(メタ)アクリロイル基とイソシアネート基とを共有するタイプの化合物である。例えば、2-(メタ)アクリロイルオキシメチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート;あるいは、水酸基含有(メタ)アクリレート化合物とポリイソシアネートとをモル比で1:1でウレタン化反応させてなる化合物などが挙げられる。 A (meth)acryloyl group-containing isocyanate compound is a type of compound that shares at least one (meth)acryloyl group and an isocyanate group in the molecule. For example, 2-(meth)acryloyloxymethyl isocyanate, 2-(meth)acryloyloxyethyl isocyanate; or a compound obtained by urethanizing a hydroxyl group-containing (meth)acrylate compound and polyisocyanate at a molar ratio of 1:1. etc.
 前記ウレタン化反応における反応方法は特に限定されるものではなく、また、反応温度や反応時間などの反応条件は反応が完結するように適宜設定すればよく、特に限定されるものではない。例えば、ポリイソシアネート化合物と、ポリオール化合物と、水酸基含有(メタ)アクリレート化合物とをウレタン化反応させる場合には、まず、ポリイソシアネート化合物が有するイソシアネート基と、ポリオール化合物が有する水酸基との比(イソシアネート基/水酸基)が3.0~2.0の範囲内となるようにして両者をウレタン化反応させて、イソシアネート基を末端に有するプレポリマーを生成し、次いで、水酸基含有(メタ)アクリレートの有する水酸基と該プレポリマーの有するイソシアネート基とがほぼ当量となるようにしてウレタン化反応させればよい。 The reaction method in the urethanization reaction is not particularly limited, and reaction conditions such as reaction temperature and reaction time may be appropriately set so as to complete the reaction, and are not particularly limited. For example, when a polyisocyanate compound, a polyol compound, and a hydroxyl group-containing (meth)acrylate compound are subjected to a urethanization reaction, first, the ratio of the isocyanate groups possessed by the polyisocyanate compound to the hydroxyl groups possessed by the polyol compound (isocyanate group / hydroxyl group) is in the range of 3.0 to 2.0 to produce a prepolymer having an isocyanate group at the end, and then the hydroxyl group of the hydroxyl group-containing (meth) acrylate. and the isocyanate groups of the prepolymer are approximately equivalent to each other, so that the urethanization reaction can be carried out.
 前記反応に際しては、ウレタン化反応を促進させるために、ウレタン化触媒を用いることが好ましい。前記ウレタン化触媒としては、例えば、トリエチルアミンなどの3級アミン類やジ-n-ブチルスズジラウレートなどの金属塩が挙げられるが、一般的なウレタン化触媒はいずれも用いることができる。また、前記ウレタン化反応に際しては、重合によるゲル化を防止するために重合禁止剤や分子状酸素を添加することが好ましい。前記重合禁止剤および分子状酸素としては、前記ポリエステル(メタ)アクリレートにおいて挙げたものを同様に用いることができる。 A urethanization catalyst is preferably used in the above reaction to promote the urethanization reaction. Examples of the urethanization catalyst include tertiary amines such as triethylamine and metal salts such as di-n-butyltin dilaurate, but any general urethanization catalyst can be used. Further, in the urethanization reaction, it is preferable to add a polymerization inhibitor or molecular oxygen to prevent gelation due to polymerization. As the polymerization inhibitor and molecular oxygen, those mentioned in the polyester (meth)acrylate can be used in the same manner.
 ウレタン(メタ)アクリレートの数平均分子量は、特に限定されるものではなく、好ましくは400~10,000であり、より好ましくは800~8,000であり、特に好ましくは1,000~5,000である。 The number average molecular weight of the urethane (meth)acrylate is not particularly limited, preferably 400 to 10,000, more preferably 800 to 8,000, particularly preferably 1,000 to 5,000. is.
 (ポリエーテル(メタ)アクリレート)
 ポリエーテル(メタ)アクリレートは、特に限定されるものではなく、例えば、ポリエーテルポリオールと(メタ)アクリル酸とのエステル化反応により得られるものが挙げられるが、これ以外の公知の技術で得られるものを任意に用いることができる。
(Polyether (meth)acrylate)
Polyether (meth)acrylate is not particularly limited, and examples thereof include those obtained by an esterification reaction of polyether polyol and (meth)acrylic acid, but can be obtained by other known techniques. Anything can be used.
 前記ポリエーテルポリオールの数平均分子量は、好ましくは100~5,000の範囲内、特に好ましくは100~3,000の範囲内のものである。具体的にはポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレングリコール、ポリオキシメチレングリコールなどが挙げられる。 The number average molecular weight of the polyether polyol is preferably within the range of 100 to 5,000, particularly preferably within the range of 100 to 3,000. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polytetramethylene glycol, and polyoxymethylene glycol.
 ポリエーテル(メタ)アクリレートの数平均分子量は、特に限定されるものではなく、好ましくは100~5000であり、より好ましくは100~3000であり、特に好ましくは100~1000である。 The number average molecular weight of the polyether (meth)acrylate is not particularly limited, but is preferably 100-5000, more preferably 100-3000, and particularly preferably 100-1000.
 (アクリル化(メタ)アクリレート)
 アクリル化(メタ)アクリレートは、特に限定されるものではなく、例えば、分子内にエポキシ基を2つ以上有するエポキシ基含有アクリル樹脂に(メタ)アクリル酸を反応させることにより得られるものが挙げられるが、これ以外の公知の技術で得られるものを任意に用いることができる。
(Acrylated (meth)acrylate)
The acrylated (meth)acrylate is not particularly limited, and includes, for example, those obtained by reacting an epoxy group-containing acrylic resin having two or more epoxy groups in the molecule with (meth)acrylic acid. However, those obtained by known techniques other than this can be arbitrarily used.
 アクリル化(メタ)アクリレートの数平均分子量は、特に限定されるものではなく、好ましくは100~5000であり、より好ましくは100~3000であり、特に好ましくは100~1000である。 The number average molecular weight of the acrylated (meth)acrylate is not particularly limited, but is preferably 100-5000, more preferably 100-3000, and particularly preferably 100-1000.
 (マトリクス樹脂(B)の物性)
 マトリクス樹脂(B)の性状は特に限定されない。マトリクス樹脂(B)は、25℃において100mPa・s~1,000,000mPa・sの粘度を有することが好ましい。マトリクス樹脂(B)の粘度は、25℃において、50,000mPa・s以下であることがより好ましく、30,000mPa・s以下であることがさらに好ましく、15,000mPa・s以下であることが特に好ましい。前記構成によると、マトリクス樹脂(B)は流動性に優れるという利点を有する。25℃において100mPa・s~1,000,000mPa・sの粘度を有するマトリクス樹脂(B)は、液体であるともいえる。
(Physical properties of matrix resin (B))
The properties of the matrix resin (B) are not particularly limited. The matrix resin (B) preferably has a viscosity of 100 mPa·s to 1,000,000 mPa·s at 25°C. The viscosity of the matrix resin (B) at 25° C. is more preferably 50,000 mPa·s or less, still more preferably 30,000 mPa·s or less, and particularly preferably 15,000 mPa·s or less. preferable. According to the above configuration, the matrix resin (B) has an advantage of excellent fluidity. The matrix resin (B) having a viscosity of 100 mPa·s to 1,000,000 mPa·s at 25° C. can also be said to be liquid.
 またマトリクス樹脂(B)の粘度は、重合体微粒子(A)中にマトリクス樹脂(B)が入り込むことにより重合体微粒子(A)同士の融着を防ぐことができることから、25℃において、100mPa・s以上であることがより好ましく、500mPa・s以上であることがさらに好ましく、1000mPa・s以上であることがよりさらに好ましく、1500mPa・s以上であることが特に好ましい。 Further, the viscosity of the matrix resin (B) is 100 mPa· at 25° C., since the matrix resin (B) enters the polymer fine particles (A) to prevent fusion between the polymer fine particles (A). s or more, more preferably 500 mPa·s or more, even more preferably 1000 mPa·s or more, and particularly preferably 1500 mPa·s or more.
 マトリクス樹脂(B)は、1,000,000mPa・sより大きい粘度を有していてもよい。マトリクス樹脂(B)は、半固体(半液体)であってもよく、固体であってもよい。マトリクス樹脂(B)が1,000,000mPa・sより大きい粘度を有する場合、得られる樹脂組成物が、べたつきが少なく取り扱いやすいという利点を有する。 The matrix resin (B) may have a viscosity of greater than 1,000,000 mPa·s. The matrix resin (B) may be semi-solid (semi-liquid) or solid. When the matrix resin (B) has a viscosity of more than 1,000,000 mPa·s, the obtained resin composition has the advantage of being less sticky and easier to handle.
 マトリクス樹脂(B)は、示差熱走査熱量測定(DSC)のサーモグラムにて25℃以下の吸熱ピークを有することが好ましく、0℃以下の吸熱ピークを有することがより好ましい。前記構成によると、マトリクス樹脂(B)は流動性に優れるという利点を有する。 The matrix resin (B) preferably has an endothermic peak at 25°C or lower, more preferably at 0°C or lower, in a differential scanning calorimetry (DSC) thermogram. According to the above configuration, the matrix resin (B) has an advantage of excellent fluidity.
 (重合体微粒子(A)とマトリクス樹脂(B)との配合比率)
 本発明の実施形態1に係る樹脂組成物において、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量%とした場合に、重合体微粒子(A)は1~50重量%であり、マトリクス樹脂(B)は50~99重量%である。
(Blending ratio of fine polymer particles (A) and matrix resin (B))
In the resin composition according to Embodiment 1 of the present invention, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) is 1 to 50% by weight. and the matrix resin (B) is 50 to 99% by weight.
 本発明の実施形態1に係る樹脂組成物において、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量%とした場合に、重合体微粒子(A)は10~50重量%であり、マトリクス樹脂(B)は50~90重量%であってもよい。樹脂組成物における重合体微粒子(A)とマトリクス樹脂(B)との配合比率が上記範囲である場合、樹脂組成物を高濃度のマスターバッチとして使用できるという利点を有する。 In the resin composition according to Embodiment 1 of the present invention, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 10 to 50% by weight. and the matrix resin (B) may be 50 to 90% by weight. When the blending ratio of the polymer fine particles (A) and the matrix resin (B) in the resin composition is within the above range, there is an advantage that the resin composition can be used as a high-concentration masterbatch.
 本発明の実施形態1に係る樹脂組成物において、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量%とした場合に、重合体微粒子(A)が5重量%~50重量%、マトリクス樹脂(B)が50重量%~95重量%であることが好ましく、重合体微粒子(A)が6重量%~50重量%、マトリクス樹脂(B)が50重量%~94重量%であることがより好ましく、重合体微粒子(A)が7重量%~50重量%、マトリクス樹脂(B)が50重量%~93重量%であることがより好ましく、重合体微粒子(A)が8重量%~50重量%、マトリクス樹脂(B)が50重量%~92重量%であることがより好ましく、重合体微粒子(A)が9重量%~50重量%、マトリクス樹脂(B)が50重量%~91重量%であることがより好ましく、重合体微粒子(A)が10重量%~50重量%、マトリクス樹脂(B)が50重量%~90重量%であることがより好ましく、重合体微粒子(A)が15重量%~50重量%、マトリクス樹脂(B)が50重量%~85重量%であることがより好ましく、重合体微粒子(A)が20重量%~50重量%、マトリクス樹脂(B)が50重量%~80重量%であることがより好ましく、重合体微粒子(A)が25重量%~50重量%、マトリクス樹脂(B)が50重量%~75重量%であることがより好ましく、重合体微粒子(A)が30重量%~50重量%、マトリクス樹脂(B)が50重量%~70重量%であることがより好ましく、重合体微粒子(A)が35重量%~50重量%、マトリクス樹脂(B)が50重量%~65重量%であることがさらに好ましい。本発明の実施形態1に係る樹脂組成物において、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量%とした場合に、重合体微粒子(A)が40重量%~50重量%、マトリクス樹脂(B)が50重量%~60重量%であってもよく、重合体微粒子(A)が45重量%~50重量%、マトリクス樹脂(B)が50重量%~55重量%であってもよい。本発明の実施形態1に係る樹脂組成物における重合体微粒子(A)とマトリクス樹脂(B)との配合比率が上記範囲である場合、樹脂組成物をより高濃度のマスターバッチとして使用できるという利点をさらに有する。 In the resin composition according to Embodiment 1 of the present invention, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 5% by weight to 50% by weight. %, the matrix resin (B) is preferably 50 wt % to 95 wt %, the fine polymer particles (A) are 6 wt % to 50 wt %, and the matrix resin (B) is 50 wt % to 94 wt %. It is more preferable that the polymer fine particles (A) are 7% by weight to 50% by weight, the matrix resin (B) is 50% by weight to 93% by weight, and the polymer fine particles (A) are 8% by weight. % to 50% by weight, the matrix resin (B) is more preferably 50% to 92% by weight, the fine polymer particles (A) are 9% to 50% by weight, and the matrix resin (B) is 50% by weight. It is more preferably 91% by weight, more preferably 10% by weight to 50% by weight of the polymer fine particles (A), and more preferably 50% by weight to 90% by weight of the matrix resin (B), and the polymer fine particles ( More preferably, A) is 15% by weight to 50% by weight, matrix resin (B) is 50% by weight to 85% by weight, polymer fine particles (A) is 20% by weight to 50% by weight, matrix resin (B ) is more preferably 50% to 80% by weight, the fine polymer particles (A) are more preferably 25% to 50% by weight, and the matrix resin (B) is more preferably 50% to 75% by weight. , More preferably, the polymer fine particles (A) are 30% by weight to 50% by weight, the matrix resin (B) is 50% by weight to 70% by weight, and the polymer fine particles (A) are 35% by weight to 50% by weight. , the matrix resin (B) is more preferably 50% by weight to 65% by weight. In the resin composition according to Embodiment 1 of the present invention, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 40% by weight to 50% by weight. %, the matrix resin (B) may be 50 wt % to 60 wt %, the fine polymer particles (A) may be 45 wt % to 50 wt %, and the matrix resin (B) may be 50 wt % to 55 wt %. There may be. When the blending ratio of the polymer fine particles (A) and the matrix resin (B) in the resin composition according to Embodiment 1 of the present invention is within the above range, the advantage is that the resin composition can be used as a masterbatch having a higher concentration. further has
 <1-4.少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)>
 本発明の実施形態1に係る樹脂組成物には、必要により、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)(以下、単に「低分子化合物(C)」と称する)を添加することができる。
<1-4. Low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond>
In the resin composition according to Embodiment 1 of the present invention, if necessary, a low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule (hereinafter simply referred to as "low-molecular-weight compound ( C)”) can be added.
 分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)は、低分子量である為に、本発明の実施形態1に係る樹脂組成物を低粘度化し、かつ取り扱い性を改善する。また、本発明の実施形態1に係る樹脂組成物の硬化に際しては、マトリクス樹脂(B)と共重合し硬化物の架橋点に組み込まれる。更に、樹脂組成物中に重合体微粒子(A)を1次粒子の状態で分散させる後述の工程においても、低分子化合物(C)はマトリクス樹脂(B)との混合物として使用可能であり、低分子化合物(C)による低粘度化効果により前記製造工程を容易にさせる効果を有する。 Since the low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule has a low molecular weight, it reduces the viscosity of the resin composition according to Embodiment 1 of the present invention, and Improve handling. Further, when the resin composition according to Embodiment 1 of the present invention is cured, it is copolymerized with the matrix resin (B) and incorporated into the cross-linking points of the cured product. Furthermore, in the later-described step of dispersing the polymer fine particles (A) in the state of primary particles in the resin composition, the low-molecular-weight compound (C) can be used as a mixture with the matrix resin (B). It has the effect of facilitating the production process due to the viscosity-lowering effect of the molecular compound (C).
 マトリクス樹脂(B)と低分子化合物(C)との混合比率(B/C)は、特に制限されないが、重量比で9/1~3/7が好ましい。B/Cのより好ましい上限は8/2、さらに好ましくは7/3である。B/Cが9/1を超えると、本発明の実施形態1に係る樹脂組成物の粘度が高く取扱い難くなる場合がある。B/Cのより好ましい下限は4/6、さらに好ましくは5/5である。B/Cが3/7未満であると、低分子化合物(C)の揮発性により、本発明の実施形態1に係る樹脂組成物の硬化物が肉痩せしたり、マトリクス樹脂(B)を後添加した際に重合体微粒子(A)が凝集して靱性改良効果が低下したりする場合がある。 The mixing ratio (B/C) of the matrix resin (B) and the low-molecular-weight compound (C) is not particularly limited, but the weight ratio is preferably 9/1 to 3/7. A more preferable upper limit of B/C is 8/2, more preferably 7/3. When B/C exceeds 9/1, the viscosity of the resin composition according to Embodiment 1 of the present invention is high, and it may become difficult to handle. A more preferred lower limit for B/C is 4/6, more preferably 5/5. If B/C is less than 3/7, the cured product of the resin composition according to Embodiment 1 of the present invention may become thin due to the volatility of the low-molecular-weight compound (C), or the matrix resin (B) may be left behind. When added, the fine polymer particles (A) may aggregate to reduce the effect of improving toughness.
 このような低分子化合物(C)としては、例えば、スチレンやメチルスチレン(ビニルトルエン)などの芳香族基含有不飽和単量体;アクリロニトリルなどのニトリル基含有不飽和単量体;(メタ)アクリロイル基含有化合物;バーサチック酸ビニル、および酢酸ビニルなどの-COOCH=CH基含有化合物;フタル酸、アジピン酸、マレイン酸、およびマロン酸などの多価カルボン酸とアリルアルコールなどの不飽和アルコールとの縮合反応物;シアヌル酸アリルエステルなどの多官能エステル単量体などが挙げられる。(メタ)アクリロイル基含有化合物とマトリクス樹脂(B)との反応速度((メタ)アクリロイル基含有化合物がマトリクス樹脂(B)と共重合し、硬化物の架橋点に組み込まれるときの反応の速度)は、マトリクス樹脂(B)同士の反応速度(マトリクス樹脂(B)同士の硬化速度)と近い。それ故、(メタ)アクリロイル基含有化合物は、低分子化合物(C)を含有する本発明の実施形態1に係る樹脂組成物を硬化させた際に、マトリクス樹脂(B)の架橋点に組み込まれ易く、すなわち硬化物の物性の点で好ましい。 Examples of such low-molecular-weight compounds (C) include aromatic group-containing unsaturated monomers such as styrene and methylstyrene (vinyltoluene); nitrile group-containing unsaturated monomers such as acrylonitrile; (meth)acryloyl -COOCH=CH 2 group-containing compounds such as vinyl versatate and vinyl acetate; polyvalent carboxylic acids such as phthalic acid, adipic acid, maleic acid, and malonic acid and unsaturated alcohols such as allyl alcohol Condensation reaction products; Polyfunctional ester monomers such as allyl cyanurate. Reaction speed between the (meth)acryloyl group-containing compound and the matrix resin (B) (reaction speed when the (meth)acryloyl group-containing compound is copolymerized with the matrix resin (B) and incorporated into the crosslink points of the cured product) is close to the reaction rate between matrix resins (B) (curing rate between matrix resins (B)). Therefore, the (meth)acryloyl group-containing compound is incorporated into the cross-linking points of the matrix resin (B) when the resin composition according to Embodiment 1 of the present invention containing the low-molecular-weight compound (C) is cured. It is easy to use, that is, it is preferable in terms of the physical properties of the cured product.
 (メタ)アクリロイル基含有化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、アリル(メタ)アクリレート、フェニル(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、α-フルオロメチルアクリレート、α-クロロメチルアクリレート、α-ベンジルメチルアクリレート、α-シアノメチルアクリレート、α-アセトキシエチルアクリレート、α-フェニルメチルアクリレート、α-メトキシメチルアクリレート、α-n-プロピルメチルアクリレート、α-フルオロエチルアクリレート、α-クロロエチルアクリレート、クロロメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、m-クロロフェニル(メタ)アクリレート、p-クロロフェニル(メタ)アクリレート、p-トリル(メタ)アクリレート、m-ニトロフェニル(メタ)アクリレート、p-ニトロフェニル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1,1,1,3,3,3-ヘキサフルオロイソプロピル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオルブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチレングリコールモノエチルエーテルアクリレート、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレート、などが挙げられる。これらの(メタ)アクリロイル基含有化合物の中でも、水酸基を有する化合物は、本発明の実施形態1に係る樹脂組成物へのイソシアネート化合物の添加により、ラジカル架橋とウレタン架橋のハイブリッド硬化による硬化物の改質が可能となる為により好ましい。上述した低分子化合物(C)は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。本発明の実施形態1に係る樹脂組成物に添加するイソシアネート化合物の例には、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)が含まれる。 Specific examples of (meth)acryloyl group-containing compounds include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, cyclohexyl (meth)acrylate, n-hexyl (meth)acrylate, ) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, allyl (meth) ) acrylate, phenyl (meth)acrylate, glycidyl (meth)acrylate, benzyl (meth)acrylate, α-fluoromethyl acrylate, α-chloromethyl acrylate, α-benzylmethyl acrylate, α-cyanomethyl acrylate, α-acetoxyethyl acrylate , α-phenylmethyl acrylate, α-methoxymethyl acrylate, α-n-propylmethyl acrylate, α-fluoroethyl acrylate, α-chloroethyl acrylate, chloromethyl (meth)acrylate, hydroxyethyl (meth)acrylate, 2-hydroxy ethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-chloroethyl (meth) acrylate , 2-cyanoethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, m-chlorophenyl (meth)acrylate, p-chlorophenyl (meth)acrylate, p-tolyl (meth)acrylate, m-nitrophenyl (meth)acrylate , p-nitrophenyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 1,1,1,3,3,3-hexafluoroisopropyl (meth)acrylate, 2,2, 3,4,4,4-hexafluorobutyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, ethylene glycol monoethyl ether acrylate, ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth) acrylate, hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane triacrylate, etc. be Among these (meth)acryloyl group-containing compounds, a compound having a hydroxyl group improves the cured product by hybrid curing of radical crosslinking and urethane crosslinking by adding an isocyanate compound to the resin composition according to Embodiment 1 of the present invention. It is preferred because it allows quality. Only one type of the low-molecular compound (C) described above may be used, or two or more types may be used in combination. Examples of isocyanate compounds added to the resin composition according to Embodiment 1 of the present invention include diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI).
 <1-5.樹脂(D)>
 本発明の実施形態1に係る樹脂組成物は、樹脂(D)をさらに含むことができる。
<1-5. Resin (D)>
The resin composition according to Embodiment 1 of the present invention may further contain a resin (D).
 樹脂(D)としては、マトリクス樹脂(B)と同じ種類(組成)の樹脂であってもよく、マトリクス樹脂(B)と異なる種類の樹脂であってもよい。樹脂組成物が樹脂(D)をさらに含み、且つ樹脂(D)がマトリクス樹脂(B)と同じ種類の樹脂である場合を考える。この場合、得られる樹脂組成物ではマトリクス樹脂(B)と樹脂(D)との区別をつけることはできないため、外見上、得られる樹脂組成物はマトリクス樹脂(B)のみを有しているように見える。樹脂組成物の製造方法において樹脂(D)が使用され、かつ樹脂(D)がマトリクス樹脂(B)と異なる種類の樹脂である場合を考える。この場合、得られる樹脂組成物ではマトリクス樹脂(B)と樹脂(D)とは識別可能である。この場合、最終的に得られる樹脂組成物は、マトリクス樹脂(B)以外の樹脂として、樹脂(D)を含み得る。 The resin (D) may be a resin of the same type (composition) as the matrix resin (B), or may be a resin of a different type from the matrix resin (B). Consider the case where the resin composition further comprises a resin (D), and the resin (D) is the same type of resin as the matrix resin (B). In this case, since the matrix resin (B) and the resin (D) cannot be distinguished from each other in the resin composition obtained, it appears that the resin composition obtained contains only the matrix resin (B). looks like Consider the case where the resin (D) is used in the method for producing the resin composition, and the resin (D) is a different type of resin from the matrix resin (B). In this case, the matrix resin (B) and the resin (D) can be distinguished from each other in the resulting resin composition. In this case, the finally obtained resin composition may contain the resin (D) as a resin other than the matrix resin (B).
 樹脂(D)は、例えば、(i)分子内に2個以上の重合性不飽和結合を有する樹脂、(ii)熱硬化性樹脂、(iii)熱可塑性樹脂、または(iv)これら(i)~(iii)の樹脂の任意の組み合わせである。 The resin (D) is, for example, (i) a resin having two or more polymerizable unsaturated bonds in the molecule, (ii) a thermosetting resin, (iii) a thermoplastic resin, or (iv) these (i) Any combination of the resins of (iii).
 分子内に2個以上の重合性不飽和結合を有する樹脂については、前記<1-3.マトリクス樹脂(B)>の項の説明を援用する。樹脂(D)として好適に使用され得る、分子内に2個以上の重合性不飽和結合を有する樹脂は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートよりなる群から選択される1種以上の硬化性樹脂である。 For resins having two or more polymerizable unsaturated bonds in the molecule, the above <1-3. Matrix Resin (B)> section is incorporated. Resins having two or more polymerizable unsaturated bonds in the molecule that can be suitably used as the resin (D) include unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, One or more curable resins selected from the group consisting of polyether (meth)acrylates and acrylated (meth)acrylates.
 樹脂(D)における熱硬化性樹脂としては、エチレン性不飽和単量体を重合させてなる重合体を含む樹脂、エポキシ樹脂、フェノール樹脂、ポリオール樹脂およびアミノ-ホルムアルデヒド樹脂などが挙げられる。 Examples of thermosetting resins in the resin (D) include resins containing polymers obtained by polymerizing ethylenically unsaturated monomers, epoxy resins, phenol resins, polyol resins and amino-formaldehyde resins.
 (樹脂(D)がエポキシ樹脂以外の樹脂である場合の含有量)
 本発明の実施形態1に係る樹脂組成物中の樹脂(D)の含有量は、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量部とした場合に、10重量部以上であることが好ましく、20重量部以上であることがより好ましく、30重量部以上であることがより好ましく、50重量部以上であることがさらに好ましく、70重量部以上であることが特に好ましい。本発明の実施形態1に係る樹脂組成物中の樹脂(D)の含有量が上記範囲である場合、樹脂(D)による所望の効果をより多く享受することができるという利点を有する。
(Content when resin (D) is a resin other than epoxy resin)
The content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is 10 parts by weight or more when the total of the fine polymer particles (A) and the matrix resin (B) is 100 parts by weight. is preferably 20 parts by weight or more, more preferably 30 parts by weight or more, even more preferably 50 parts by weight or more, and particularly preferably 70 parts by weight or more. When the content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is within the above range, there is an advantage that more of the desired effects of the resin (D) can be enjoyed.
 本発明の実施形態1に係る樹脂組成物中の樹脂(D)の含有量の上限は、特に限定されないが、本樹脂組成物の優れた取り扱い性および貯蔵安定性を保持する観点からは、重合体微粒子(A)とマトリクス樹脂(B)との合計を100重量部とした場合に、10,000重量部以下であることが好ましく、5,000重量部以下であることがより好ましく、2,000重量部以下であることがより好ましく、1,000重量部以下であることがより好ましく、750重量部以下であることがより好ましく、500重量部以下であることがより好ましく、300重量部以下であることがより好ましく、100重量部以下であることがより好ましく、90重量部以下であることがより好ましく、80重量部以下であることがさらに好ましく、70重量部以下であることが特に好ましい。 The upper limit of the content of the resin (D) in the resin composition according to Embodiment 1 of the present invention is not particularly limited. When the total amount of the combined fine particles (A) and the matrix resin (B) is 100 parts by weight, it is preferably 10,000 parts by weight or less, more preferably 5,000 parts by weight or less. It is more preferably 000 parts by weight or less, more preferably 1,000 parts by weight or less, more preferably 750 parts by weight or less, more preferably 500 parts by weight or less, and 300 parts by weight or less. is more preferably 100 parts by weight or less, more preferably 90 parts by weight or less, even more preferably 80 parts by weight or less, and particularly preferably 70 parts by weight or less .
 (樹脂(D)がエポキシ樹脂である場合)
 本発明の実施形態1に係る樹脂組成物は、マトリクス樹脂(B)以外の、公知の熱硬化性樹脂をさらに含んでいてもよいし、公知の熱可塑性樹脂をさらに含んでいてもよい。
(When the resin (D) is an epoxy resin)
The resin composition according to Embodiment 1 of the present invention may further contain a known thermosetting resin other than the matrix resin (B), or may further contain a known thermoplastic resin.
 例えば、本発明の実施形態1に係る樹脂組成物は、樹脂(D)としてエポキシ樹脂をさらに含有していてもよい。マトリクス樹脂(B)と低分子化合物(C)との総量100重量部に対して、エポキシ樹脂の含有量が0.5重量部未満であることが好ましい。エポキシ樹脂は、主成分であるマトリクス樹脂(B)の架橋に組み込まれない為、含有量が0.5重量部以上であると、硬化物の耐熱性(Tg)が低下したり、硬化物表面にべたつき(表面タック性)が発現したり、溶剤を吸収し易くなって耐薬品性が低下する場合がある。エポキシ樹脂の含有量は、マトリクス樹脂(B)と低分子化合物(C)との総量100重量部に対して、0.3重量部未満であることが好ましく、0.2重量部未満であることがより好ましく、0.1重量部未満であることが特に好ましく、エポキシ樹脂を含有しないことが最も好ましい。 For example, the resin composition according to Embodiment 1 of the present invention may further contain an epoxy resin as the resin (D). The content of the epoxy resin is preferably less than 0.5 parts by weight with respect to 100 parts by weight of the total amount of the matrix resin (B) and the low-molecular-weight compound (C). Since the epoxy resin is not incorporated into the cross-linking of the matrix resin (B), which is the main component, if the content is 0.5 parts by weight or more, the heat resistance (Tg) of the cured product may decrease, and the surface of the cured product may deteriorate. Stickiness (surface tackiness) may develop, and the solvent may be easily absorbed, resulting in a decrease in chemical resistance. The content of the epoxy resin is preferably less than 0.3 parts by weight and less than 0.2 parts by weight with respect to 100 parts by weight as the total amount of the matrix resin (B) and the low-molecular-weight compound (C). is more preferred, less than 0.1 part by weight is particularly preferred, and it is most preferred to contain no epoxy resin.
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、水添ビスフェノールA(又はF)型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、含アミノグリシジルエーテル樹脂や、これらのエポキシ樹脂に、ビスフェノールA(又はF)類、多塩基酸類などを付加反応させて得られるエポキシ化合物など、公知のエポキシ樹脂が挙げられる。 Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, hydrogenated bisphenol A (or F) type epoxy resin, glycidyl ether type epoxy resin, and aminoglycidyl ether-containing resin. Known epoxy resins such as resins and epoxy compounds obtained by subjecting these epoxy resins to addition reactions with bisphenol A (or F) compounds, polybasic acids and the like can be mentioned.
 なお、重合性不飽和結合を有していない他のエポキシ基含有化合物(低分子量のモノマーなど)についても、マトリクス樹脂(B)の架橋に組み込まれずに残留すると硬化物の物性に悪影響を及ぼす可能性があることから、組成物中の含有量は少ないことが好ましい。具体的には、マトリクス樹脂(B)と低分子化合物(C)の総量100重量部に対して、0.5重量部以下が好ましく、0.1重量部以下がより好ましい。 Other epoxy group-containing compounds (such as low-molecular-weight monomers) that do not have a polymerizable unsaturated bond may also adversely affect the physical properties of the cured product if they remain without being incorporated into the cross-linking of the matrix resin (B). It is preferable that the content in the composition is small because it has properties. Specifically, it is preferably 0.5 parts by weight or less, more preferably 0.1 parts by weight or less, relative to 100 parts by weight of the total amount of the matrix resin (B) and the low-molecular-weight compound (C).
 樹脂(D)は、エチレン性不飽和単量体を重合させてなる重合体を含む樹脂、エポキシ樹脂、フェノール樹脂、ポリオール樹脂およびアミノ-ホルムアルデヒド樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含んでいてもよい。 The resin (D) is at least one thermosetting resin selected from the group consisting of resins containing polymers obtained by polymerizing ethylenically unsaturated monomers, epoxy resins, phenol resins, polyol resins and amino-formaldehyde resins. It may contain a flexible resin.
 樹脂(D)における熱可塑性樹脂としては、例えば、構成単位として、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上の単量体に由来する1種以上の構成単位を含む重合体などが挙げられる。樹脂(D)における熱可塑性樹脂としては、アクリル系重合体、ビニル系共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリフェニレンエーテル、ポリウレタンおよびポリ酢酸ビニルなども挙げられる。樹脂(D)において、熱可塑性樹脂は1種類のみが使用されてもよく、2種以上が組み合わされて使用されてもよい。 The thermoplastic resin in the resin (D) includes, for example, one or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth)acrylate monomers as structural units. Examples thereof include polymers containing one or more structural units derived from a polymer. Examples of thermoplastic resins for resin (D) include acrylic polymers, vinyl copolymers, polycarbonates, polyamides, polyesters, polyphenylene ethers, polyurethanes and polyvinyl acetates. In the resin (D), only one type of thermoplastic resin may be used, or two or more types may be used in combination.
 <1-6.その他の成分>
 (ラジカル重合開始剤)
 本発明の実施形態1に係る樹脂組成物は、ラジカル重合開始剤をさらに含有していてもよい。ラジカル重合開始剤は、マトリクス樹脂(B)および低分子化合物(C)の硬化剤であり、この樹脂中の重合性不飽和結合(炭素-炭素二重結合など)の架橋反応の開始剤である。ラジカル重合開始剤は、必要に応じて、硬化促進剤や助触媒と共に使用される。
<1-6. Other Ingredients>
(Radical polymerization initiator)
The resin composition according to Embodiment 1 of the present invention may further contain a radical polymerization initiator. The radical polymerization initiator is a curing agent for the matrix resin (B) and the low-molecular-weight compound (C), and is an initiator for cross-linking reaction of polymerizable unsaturated bonds (carbon-carbon double bonds, etc.) in this resin. . A radical polymerization initiator is used together with a curing accelerator and a co-catalyst, if necessary.
 このようなラジカル重合開始剤としては、過酸化ベンゾイル、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酸化ラウロイル、ジ-t-ブチルパーオキサイド、t-ブチルハイドロパーオキサイド、メチルエチルケトン過酸化物、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシオクタノエートなどの有機過酸化物;アゾビスイソブチロニトリルなどのアゾ化合物が挙げられる。より効果的にマトリクス樹脂(B)を硬化させる観点から、過酸化ベンゾイル、クメンハイドロパーオキサイド、ジクミルパーオキサイド、メチルエチルケトン過酸化物よりなる群から選択される1種以上が好ましく、より好ましくはクメンハイドロパーオキサイド、メチルエチルケトン過酸化物である。上述したラジカル重合開始剤は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Such radical polymerization initiators include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, lauroyl peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, methyl ethyl ketone peroxide, t- organic peroxides such as butyl peroxybenzoate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy octanoate; and azo compounds such as azobisisobutyronitrile. From the viewpoint of curing the matrix resin (B) more effectively, one or more selected from the group consisting of benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, and methyl ethyl ketone peroxide are preferred, and cumene is more preferred. Hydroperoxide, methyl ethyl ketone peroxide. Only one type of the radical polymerization initiator described above may be used, or two or more types may be used in combination.
 ラジカル重合開始剤は、その最適使用温度によって、分類することができる。クメンハイドロパーオキサイドやジクミルパーオキサイドなどの比較的高温で作用する開始剤や、過酸化ベンゾイルやアゾビスイソブチロニトリルなどの比較的低温で作用する開始剤がある。分解温度の異なるラジカル重合開始剤を2種以上組み合わせて用いると、広い温度範囲で硬化活性を有する樹脂組成物を得ることが可能になる為好ましい。ラジカル重合開始剤を2種以上組み合わせることにより、例えば、硬化開始温度を比較的低くコントロールしつつ、硬化が進行して組成物が高温になった硬化後期でも硬化活性を有する為、硬化性樹脂の重合性不飽和結合の反応率を高くすることができ、硬化物の物性を高めることができる。 Radical polymerization initiators can be classified according to their optimum use temperature. There are relatively high temperature acting initiators such as cumene hydroperoxide and dicumyl peroxide, and relatively low temperature acting initiators such as benzoyl peroxide and azobisisobutyronitrile. It is preferable to use a combination of two or more radical polymerization initiators having different decomposition temperatures because it is possible to obtain a resin composition having curing activity in a wide temperature range. By combining two or more radical polymerization initiators, for example, while controlling the curing start temperature relatively low, curing progresses and the composition has curing activity even in the late stage of curing when the temperature reaches a high temperature. The reaction rate of the polymerizable unsaturated bonds can be increased, and the physical properties of the cured product can be enhanced.
 ラジカル重合開始剤を2種以上組み合わせる場合、特に限定されないが、具体的には、クメンハイドロパーオキサイドとメチルエチルケトン過酸化物との組合せや、t-ブチルパーオキシベンゾエートとt-ブチルパーオキシオクタノエートとの組合せ、などが挙げられる。 The combination of two or more radical polymerization initiators is not particularly limited, but specific examples include a combination of cumene hydroperoxide and methyl ethyl ketone peroxide, t-butyl peroxybenzoate and t-butyl peroxyoctanoate. A combination with, and the like.
 ラジカル重合開始剤の分解温度の指標として、10時間半減期温度が挙げられる。ラジカル重合開始剤を2種以上組み合わせる場合、用いる2種以上のラジカル重合開始剤の10時間半減期温度の差は、10℃以上が好ましく、20℃以上がより好ましく、20℃以上が特に好ましい。  The 10-hour half-life temperature is an index of the decomposition temperature of the radical polymerization initiator. When two or more radical polymerization initiators are used in combination, the difference in 10-hour half-life temperature between the two or more radical polymerization initiators used is preferably 10°C or more, more preferably 20°C or more, and particularly preferably 20°C or more.
 硬化促進剤は、ラジカル重合開始剤の分解反応(ラジカル生成反応)の触媒として作用する添加剤であり、ナフテン酸やオクテン酸の金属塩(コバルト塩、錫塩、鉛塩など)が挙げられ、靱性や外観を良好にする観点から、ナフテン酸コバルトが好ましい。硬化促進剤を添加する場合には、急激に硬化反応が起らないようにするため、硬化反応直前にマトリクス樹脂(B)100重量部に対して、0.1~1重量部を添加することが好ましい。 The curing accelerator is an additive that acts as a catalyst for the decomposition reaction (radical generation reaction) of the radical polymerization initiator, and includes metal salts of naphthenic acid and octenic acid (cobalt salts, tin salts, lead salts, etc.). Cobalt naphthenate is preferred from the viewpoint of improving toughness and appearance. When a curing accelerator is added, it should be added in an amount of 0.1 to 1 part by weight per 100 parts by weight of the matrix resin (B) immediately before the curing reaction in order to prevent the curing reaction from occurring rapidly. is preferred.
 助触媒は、ラジカル重合開始剤が低温でも分解するようにして、ラジカル発生を低温で起こさせるための添加剤であり、N,N-ジメチルアニリン、トリエチルアミン、トリエタノールアミンなどのアミン系化合物が挙げられるが、効率的な反応が可能なことからN,N-ジメチルアニリンが好ましい。助触媒を添加する場合には、本発明のマトリクス樹脂(B)100重量部に対して0.01~0.5重量部、または、ラジカル重合開始剤100重量部に対して1~15重量部の範囲で添加することが好ましい。 The co-catalyst is an additive for causing radical generation at low temperatures by decomposing the radical polymerization initiator even at low temperatures, and examples thereof include amine compounds such as N,N-dimethylaniline, triethylamine, and triethanolamine. However, N,N-dimethylaniline is preferred because efficient reaction is possible. When a co-catalyst is added, it is 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the matrix resin (B) of the present invention, or 1 to 15 parts by weight with respect to 100 parts by weight of the radical polymerization initiator. is preferably added in the range of
 本発明の実施形態1に係る樹脂組成物は、必要に応じて、例えば、顔料や染料などの着色剤、体質顔料、紫外線吸収剤、酸化防止剤、安定化剤(ゲル化防止剤)、可塑剤、レベリング剤、消泡剤、シランカップリング剤、帯電防止剤、難燃剤、滑剤、増粘剤、減粘剤、低収縮剤、繊維強化材、無機質充填剤、有機質充填剤、内部離型剤、湿潤剤、重合調整剤、熱可塑性樹脂、乾燥剤、分散剤などをさらに含んでいてもよい。 The resin composition according to Embodiment 1 of the present invention may optionally include, for example, colorants such as pigments and dyes, extender pigments, ultraviolet absorbers, antioxidants, stabilizers (anti-gelling agents), plasticizers, agent, leveling agent, antifoaming agent, silane coupling agent, antistatic agent, flame retardant, lubricant, thickener, viscosity reducer, low shrinkage agent, fiber reinforcement, inorganic filler, organic filler, internal release agent agents, wetting agents, polymerization modifiers, thermoplastic resins, drying agents, dispersing agents, and the like.
 充填剤としては、具体的には、炭酸カルシウム、酸化チタン、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ヒュームドシリカなどの乾式シリカ、湿式シリカ、結晶性シリカ、溶融シリカ、ベントナイト、モンモリロナイト、ケイ酸カルシウム、ウォラストナイト、レクトライト、カオリン、ハロイサイト、ガラスパウダー、アルミナ、クレー、タルク、ミルドファイバー、珪砂、川砂、珪藻土、雲母粉末、石膏、寒水砂、アスベスト粉、フライアッシュ、パウダードマーブル、カーボンナノチューブなどの無機質充填剤、および、ポリマービーズなどの有機質充填剤が挙げられる。上記充填剤のうち、炭酸カルシウム、水酸化アルミニウム、乾式シリカ、クレー、タルクおよびガラスパウダーからなる群より選ばれる少なくとも一種の無機充填剤が特に好ましい。充填剤は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 Specific examples of fillers include calcium carbonate, titanium oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, dry silica such as fumed silica, wet silica, crystalline silica, fused silica, bentonite, montmorillonite, silica. Calcium acid, wollastonite, rectorite, kaolin, halloysite, glass powder, alumina, clay, talc, milled fiber, silica sand, river sand, diatomaceous earth, mica powder, gypsum, cold water sand, asbestos powder, fly ash, powdered marble, Inorganic fillers such as carbon nanotubes and organic fillers such as polymer beads are included. Among the above fillers, at least one inorganic filler selected from the group consisting of calcium carbonate, aluminum hydroxide, dry silica, clay, talc and glass powder is particularly preferred. Only one filler may be used, or two or more fillers may be used in combination.
 充填剤を使用する場合には、本発明の実施形態1に係る樹脂組成物に含まれるマトリクス樹脂(B)100重量部に対して、5~400重量部が好ましく、30~300重量部がより好ましく、100~200重量部が特に好ましい。充填剤の配合量が5重量部未満の場合には、得られる硬化物の表面硬度や剛性が十分にえられない場合がある。充填剤の配合量が400重量部を超えると、樹脂組成物の粘度が高くなりすぎ成形作業時の作業性が悪くなる傾向があり、更に、成形型内での樹脂組成物の流動性が低下し、得られる成形物の機械的物性などが低下する場合がある。 When a filler is used, it is preferably 5 to 400 parts by weight, more preferably 30 to 300 parts by weight, with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to Embodiment 1 of the present invention. 100 to 200 parts by weight is particularly preferred. If the amount of the filler compounded is less than 5 parts by weight, the surface hardness and rigidity of the resulting cured product may not be sufficiently obtained. When the amount of the filler compounded exceeds 400 parts by weight, the viscosity of the resin composition tends to be too high, and workability during molding tends to deteriorate, and the fluidity of the resin composition in the mold decreases. However, the mechanical properties of the obtained molding may deteriorate.
 充填剤は、さらに、マトリクス樹脂(B)との接着性を向上させるためにカップリング処理したものであってもよい。これにより、得られる硬化物の耐衝撃性、強度、耐水性などの物性を向上させることができる。これら、カップリング処理剤としては、特に限定されるものではないが、シラン系カップリング剤、クロム系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤などが挙げられる。また、これらは1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 The filler may be subjected to a coupling treatment in order to improve adhesion with the matrix resin (B). Thereby, physical properties such as impact resistance, strength and water resistance of the obtained cured product can be improved. These coupling agents are not particularly limited, but include silane-based coupling agents, chromium-based coupling agents, titanium-based coupling agents, aluminum-based coupling agents, zirconium-based coupling agents, and the like. be done. Moreover, only one type of these may be used, or two or more types may be used in combination.
 増粘剤としては、特に限定されないが、アルカリ土類金属の酸化物および水酸化物などの無機系増粘剤が好ましい。具体的には、酸化マグネシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウムなどが挙げられる。また、膨潤性を有するポリメチルメタクリレートなどの熱可塑ポリマーを増粘剤として使用することもできる。これら増粘剤は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。 The thickener is not particularly limited, but inorganic thickeners such as oxides and hydroxides of alkaline earth metals are preferred. Specific examples include magnesium oxide, calcium oxide, magnesium hydroxide and calcium hydroxide. Thermoplastic polymers such as polymethyl methacrylate, which have swelling properties, can also be used as thickeners. Only one type of these thickeners may be used, or two or more types may be used in combination.
 増粘剤を使用する場合には、本発明の実施形態1に係る樹脂組成物に含まれるマトリクス樹脂(B)100重量部に対して、0.1~30重量部が好ましく、0.3~10重量部がより好ましく、1~3重量部が特に好ましい。増粘剤の配合量が0.1重量部未満の場合には、十分な増粘が得られない場合がある。充填剤の配合量が30重量部を超えると、樹脂組成物の粘度が高くなりすぎ成形作業時の作業性が悪くなる傾向がある。 When a thickener is used, it is preferably 0.1 to 30 parts by weight, preferably 0.3 to 10 parts by weight is more preferred, and 1 to 3 parts by weight is particularly preferred. If the amount of the thickening agent is less than 0.1 parts by weight, sufficient thickening may not be obtained. If the amount of the filler compounded exceeds 30 parts by weight, the viscosity of the resin composition tends to be too high, resulting in poor workability during molding.
 低収縮剤としては、具体的には、ポリスチレン、ポリエチレン、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリカプロラクタム、飽和ポリエステル、スチレン-アクリロニトリル共重合体、酢酸ビニル-スチレン共重合体、スチレン-ジビニルベンゼン共重合体、メタクリル酸メチル-多官能メタクリレート共重合体、ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体などのゴム状重合体などが用いられる。また、これらの熱可塑ポリマーは部分的に架橋構造を導入されたものであっても良い。これら低収縮剤は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。低収縮剤を使用する場合には、本発明の実施形態1に係る樹脂組成物に含まれるマトリクス樹脂(B)100重量部に対して、2~20重量部が好ましい。2重量部未満では低収縮効果が十分ではない場合があり、20重量部を越えると成型体の透明感などを低下させたり、高コストになったりする場合がある。 Specific examples of low shrinkage agents include polystyrene, polyethylene, polymethyl methacrylate, polyvinyl chloride, polyvinyl acetate, polycaprolactam, saturated polyester, styrene-acrylonitrile copolymer, vinyl acetate-styrene copolymer, styrene. -Divinylbenzene copolymer, methyl methacrylate-polyfunctional methacrylate copolymer, polybutadiene, polyisoprene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, and other rubber-like polymers are used. Moreover, these thermoplastic polymers may be partially introduced with a crosslinked structure. These low shrinkage agents may be used alone or in combination of two or more. When using a low shrinkage agent, it is preferably 2 to 20 parts by weight with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to the first embodiment of the present invention. If the amount is less than 2 parts by weight, the shrinkage reduction effect may not be sufficient, and if the amount exceeds 20 parts by weight, the transparency of the molded product may be lowered and the cost may be increased.
 繊維強化材としては、具体的には、例えば、ガラス繊維、炭素繊維、金属繊維、セラミックからなる繊維などの無機繊維;アラミドやポリエステルなどからなる有機繊維;天然繊維などが挙げられるが、特に限定されるものではない。また、繊維の形態は、ロービング、クロス、マット、織物、チョップドロービング、チョップドストランドなどが挙げられるが、特に限定されるものではない。これら繊維強化材は、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。繊維強化材を使用する場合には、本発明の実施形態1に係る樹脂組成物に含まれるマトリクス樹脂(B)100重量部に対して、1~400重量部が好ましい。1重量部未満では補強効果が十分ではない場合があり、400重量部を越えると硬化物の表面状態が悪くなる場合がある。 Specific examples of fiber reinforcing materials include inorganic fibers such as glass fibers, carbon fibers, metal fibers, and ceramic fibers; organic fibers such as aramid and polyester; natural fibers; not to be The form of the fiber includes roving, cloth, mat, woven fabric, chopped roving, chopped strand, etc., but is not particularly limited. Only one type of these fiber reinforcing materials may be used, or two or more types may be used in combination. When a fiber reinforcing material is used, it is preferably 1 to 400 parts by weight with respect to 100 parts by weight of the matrix resin (B) contained in the resin composition according to Embodiment 1 of the present invention. If it is less than 1 part by weight, the reinforcing effect may not be sufficient, and if it exceeds 400 parts by weight, the surface condition of the cured product may deteriorate.
 内部離型剤としては、具体的には、例えば、ステアリン酸、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アミド、トリフェニルホスフェート、アルキルホスフェート、一般に用いられるワックス類、シリコーンオイルなどが挙げられる。 Specific examples of internal release agents include stearic acid, zinc stearate, aluminum stearate, calcium stearate, barium stearate, stearamide, triphenyl phosphate, alkyl phosphate, commonly used waxes, silicone oil and the like.
 湿潤剤としては、市販されているものがそのまま使用できる。例えば、BYKケミー株式会社から市販されている「W-995」、「W-996」、「W-9010」、「W-960」、「W-965」、「W-990」などが挙げられるが、これらはその使用目的によって適宜選択して使用される。 As the wetting agent, commercially available products can be used as they are. For example, commercially available from BYK Chemie Co., Ltd. "W-995", "W-996", "W-9010", "W-960", "W-965", "W-990" and the like. However, these are appropriately selected and used depending on the purpose of use.
 重合調整剤としては、例えば、ハイドロキノン、メチルハイドロキノン、メトキシハイドロキノン、t-ブチルハイドロキノンなどの重合禁止剤が挙げられる。これら重合調製剤は、予め熱硬化性樹脂に十分溶解しておくことが好ましい。酸化防止剤としては、2,6-ジ-t-ブチルヒドロキシトルエンなどのヒンダードフェノール系のものが好んで用いられる。 Examples of polymerization modifiers include polymerization inhibitors such as hydroquinone, methylhydroquinone, methoxyhydroquinone, and t-butylhydroquinone. These polymerization modifiers are preferably sufficiently dissolved in the thermosetting resin in advance. As antioxidants, hindered phenols such as 2,6-di-t-butylhydroxytoluene are preferably used.
 着色剤は、公知の無機顔料や有機顔料、紫外線吸収剤は、ベンゾフェノンなど、チクソトロピー付与剤は、シリカなど、難燃剤は、リン酸エステル類などそれぞれ市販されているものが使用できる。 Commercially available inorganic and organic pigments can be used as colorants, UV absorbers such as benzophenone, thixotropy imparting agents such as silica, and flame retardants such as phosphate esters can be used.
 <1-7.樹脂組成物の性質>
 (粘度)
 本発明の実施形態1に係る樹脂組成物は、低粘度であるがゆえに取扱い性に優れる。例えば、本発明の実施形態1に係る樹脂組成物は、Shear Rate(SR,ずり速度)が10s-1における粘度が6000mPa・s未満であり得る。樹脂組成物の粘度の測定方法は、後述する実施例で詳述する。
<1-7. Properties of Resin Composition>
(viscosity)
The resin composition according to Embodiment 1 of the present invention is excellent in handleability due to its low viscosity. For example, the resin composition according to Embodiment 1 of the present invention may have a viscosity of less than 6000 mPa·s at a shear rate (SR) of 10 s −1 . A method for measuring the viscosity of the resin composition will be described in detail in Examples described later.
 (貯蔵安定性)
 本発明の実施形態1に係る樹脂組成物は、樹脂組成物中の重合体微粒子(A)の分散状態を維持できるため、重合体微粒子(A)の凝集を防ぐことができる。その結果、樹脂組成物を長期保存した際に相分離が発生し難くなる。従って、本発明の実施形態1に係る樹脂組成物は、貯蔵安定性に優れる。従来、特に、樹脂組成物100重量%中の分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂の含有量が多量である場合(例えば、樹脂組成物100重量%中、前記マトリクス樹脂が90重量%以上である場合)、当該樹脂組成物の長期保存により相分離がより発生し易いという問題があった。例えば、本発明の実施形態1に係る樹脂組成物は、樹脂組成物中の前記マトリクス樹脂の含有量が90重量%以上である場合であっても、長期保存した際に、60℃で少なくとも30日間、相分離を生じることなく保存することができる。樹脂組成物の貯蔵安定性の測定方法は、後述する実施例で詳述する。
(Storage stability)
Since the resin composition according to Embodiment 1 of the present invention can maintain the state of dispersion of the polymer fine particles (A) in the resin composition, aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the resin composition is stored for a long period of time. Therefore, the resin composition according to Embodiment 1 of the present invention has excellent storage stability. Conventionally, particularly when the content of a matrix resin having two or more polymerizable unsaturated bonds in the molecule in 100% by weight of the resin composition is large (for example, in 100% by weight of the resin composition, the matrix resin is 90% by weight or more), there is a problem that phase separation is more likely to occur during long-term storage of the resin composition. For example, in the resin composition according to Embodiment 1 of the present invention, even when the content of the matrix resin in the resin composition is 90% by weight or more, when stored for a long period of time, at 60 ° C. It can be stored for days without phase separation. A method for measuring the storage stability of the resin composition will be described in detail in Examples described later.
 〔実施形態2〕
 〔本発明の実施形態2の技術的思想〕
 重合体微粒子と分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物とを含有している組成物においては、組成物を使用する際の取扱い性の観点から、組成物の粘度は低いことが好ましい。また、重合体微粒子と分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物と分子内に2個以上の重合性不飽和結合を有する樹脂とを含む組成物(樹脂組成物)は、従来、樹脂組成物を長期保存した際に、樹脂組成物中の重合体微粒子と前記樹脂とが相分離する場合があり、すなわち樹脂組成物の貯蔵安定性に改善の余地があった。特に、樹脂組成物中の、分子内に2個以上の重合性不飽和結合を有する樹脂の含有量が多量である場合(例えば、樹脂組成物100重量%中、前記樹脂が90重量%以上である場合)、樹脂組成物の長期保存による重合体微粒子と前記樹脂との相分離が顕著であった。本発明者が検討したところ、樹脂組成物中の重合体微粒子と前記マトリクス樹脂との相分離は、樹脂組成物中の重合体微粒子の凝集が原因であると推測された。
[Embodiment 2]
[Technical idea of Embodiment 2 of the present invention]
In a composition containing fine polymer particles and a low-molecular-weight compound having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule, from the viewpoint of handleability when using the composition, It is preferable that the viscosity of the material is low. In addition, a composition (resin composition), conventionally, when the resin composition is stored for a long period of time, the polymer fine particles in the resin composition and the resin may undergo phase separation, that is, there is room for improvement in the storage stability of the resin composition. there were. In particular, when the resin composition contains a large amount of resin having two or more polymerizable unsaturated bonds in the molecule (for example, the resin is 90% by weight or more in 100% by weight of the resin composition. In some cases, phase separation between the polymer fine particles and the resin was remarkable due to long-term storage of the resin composition. As a result of investigation by the present inventors, it was presumed that the phase separation between the polymer fine particles in the resin composition and the matrix resin was caused by aggregation of the polymer fine particles in the resin composition.
 そこで本発明者は、重合体微粒子と前記低分子化合物とを含有している組成物の取扱い性、および重合体微粒子と前記低分子化合物と分子内に2個以上の重合性不飽和結合を有する樹脂とを含有している組成物(樹脂組成物)の貯蔵安定性の両立を達成すべく、鋭意検討を行った。その過程で、本発明者は、以下の知見を新規に見出した:
 (1)重合体微粒子のグラフト部の形成(重合)において、単量体として特定の多官能性単量体を使用することにより、当該重合体微粒子と前記低分子化合物とを含有している組成物の粘度を低下させることができること。ここで、特定の多官能性単量体は、架橋剤として機能し得ること。
Therefore, the present inventors have found that a composition containing fine polymer particles and the low-molecular-weight compound has handleability and two or more polymerizable unsaturated bonds in the molecule of the fine polymer particles and the low-molecular-weight compound. In order to achieve compatibility between storage stability of a composition containing a resin (resin composition), the inventors conducted extensive studies. In the process, the present inventor newly found the following findings:
(1) A composition containing the polymer microparticles and the low-molecular-weight compound by using a specific polyfunctional monomer as a monomer in the formation (polymerization) of the graft portion of the polymer microparticles. Being able to reduce the viscosity of things. Here, the specific polyfunctional monomer can function as a cross-linking agent.
 (2)しかし同時に、特定の多官能性単量体の使用量が多い場合、前記重合体微粒子と前記低分子化合物と分子内に2個以上の重合性不飽和結合を有する樹脂とを含有している樹脂組成物中の重合体微粒子の分散状態が不安定になり、重合体微粒子同士がくっ付き易くなり、凝集し易くなること。 (2) At the same time, however, when the amount of the specific polyfunctional monomer used is large, the polymer microparticles, the low-molecular-weight compound, and a resin having two or more polymerizable unsaturated bonds in the molecule are included. The dispersed state of the polymer fine particles in the resin composition becomes unstable, and the polymer fine particles tend to stick to each other and aggregate easily.
 かかる新規知見に基づき、本発明者は、重合体微粒子と前記低分子化合物とを含有している組成物の粘度の低下と、前記重合体微粒子と前記低分子化合物と分子内に2個以上の重合性不飽和結合を有する樹脂とを含有している組成物(樹脂組成物)中の重合体微粒子の分散状態の維持との両立を達成すべく、さらに鋭意検討を行った。 Based on such new findings, the present inventors have found that the viscosity of a composition containing fine polymer particles and the low-molecular-weight compound is reduced, and that two or more molecules are present in the molecule of the fine polymer particles and the low-molecular-weight compound. In order to achieve compatibility with maintenance of the dispersed state of polymer fine particles in a composition (resin composition) containing a resin having a polymerizable unsaturated bond, further studies were conducted.
 その結果、本発明者は、以下の知見を新規に見出し、本発明を完成させるに至った:重合体微粒子のグラフト部の形成(重合)において、特定の多官能性単量体(架橋剤)を特定量使用することにより、重合体微粒子と前記低分子化合物とを含有している組成物の粘度の低下と、前記重合体微粒子と前記低分子化合物と分子内に2個以上の重合性不飽和結合を有する樹脂とを含有している組成物(樹脂組成物)中の重合体微粒子の分散状態の維持と、を両立させることが可能となること。 As a result, the present inventors have newly discovered the following knowledge and completed the present invention: in the formation (polymerization) of the graft portion of polymer fine particles, a specific polyfunctional monomer (crosslinking agent) By using a specific amount of, the viscosity of the composition containing the polymer fine particles and the low-molecular compound is reduced, and the polymer fine particles and the low-molecular-weight compound have two or more polymerizable heteroatoms in the molecule. It is possible to achieve both maintenance of the dispersed state of the polymer fine particles in the composition (resin composition) containing the resin having a saturated bond.
 以下に、実施形態2について説明する。本発明の実施形態2に係る第2組成物は、重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)と、を含有している。重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含んでいる。重合体微粒子(A)の弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含んでいる。重合体微粒子(A)のグラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体である。重合体微粒子(A)のグラフト部を構成する重合体における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満である。重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)は1~50重量%であり、低分子化合物(C)は50~99重量%である。 The second embodiment will be described below. The second composition according to Embodiment 2 of the present invention contains polymer fine particles (A) and a low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule. is doing. The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body. The elastic body of the fine polymer particles (A) contains one or more selected from the group consisting of diene rubbers, (meth)acrylate rubbers, and organosiloxane rubbers. The graft portion of the fine polymer particles (A) is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer, and The first monomer is one or more selected from the group consisting of aromatic vinyl monomers, vinyl cyan monomers, and (meth)acrylate monomers, and the second monomer is , is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule. When the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 0.00%. % by weight and less than 2.00% by weight. When the total amount of the polymer fine particles (A) and the low molecular weight compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight and the low molecular compound (C) is 50 to 99% by weight. % by weight.
 本発明の実施形態2に係る第2組成物では、重合体微粒子(A)のグラフト部を構成する重合体が、第2の単量体に由来する第2の構成単位を含むことにより、重合体微粒子(A)のグラフト部が第2の構成単位を含まない場合と比較して第2組成物の粘度を低下させることができる。従って、本発明の実施形態2に係る第2組成物は、取扱い性に優れるという利点を有している。 In the second composition according to Embodiment 2 of the present invention, the polymer constituting the graft portion of the polymer fine particles (A) contains the second structural unit derived from the second monomer, thereby The viscosity of the second composition can be reduced as compared with the case where the graft portion of the coalesced fine particles (A) does not contain the second constitutional unit. Therefore, the second composition according to Embodiment 2 of the present invention has the advantage of being excellent in handleability.
 また、第2組成物は、樹脂(D)をさらに含んでいてもよい。本発明の実施形態2に係る第2組成物では、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位の含有量が0.00重量%を超えて2.00重量%未満であることにより、第2組成物中の重合体微粒子(A)の分散状態を維持できるため、重合体微粒子(A)の凝集を防ぐことができる。その結果、第2組成物が、樹脂(D)をさらに含む場合、第2組成物を長期保存した際に、第2組成物中の重合体微粒子(A)と樹脂(D)との相分離が発生し難くなる、という利点を有する。従って、本発明の実施形態2に係る第2組成物は、貯蔵安定性に優れるという利点を有している。 In addition, the second composition may further contain a resin (D). In the second composition according to Embodiment 2 of the present invention, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight Furthermore, since the content of the second structural unit is more than 0.00% by weight and less than 2.00% by weight, the dispersed state of the polymer fine particles (A) in the second composition can be maintained. Aggregation of the polymer fine particles (A) can be prevented. As a result, when the second composition further contains the resin (D), phase separation between the polymer fine particles (A) and the resin (D) in the second composition occurs when the second composition is stored for a long period of time. has the advantage of being less likely to occur. Therefore, the second composition according to Embodiment 2 of the present invention has the advantage of being excellent in storage stability.
 <1-8.重合体微粒子(A)および低分子化合物(C)>
 「重合体微粒子(A)」、および「少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)」については、実施形態1に係る樹脂組成物について説明したとおりであるのでここでは繰り返さない。
<1-8. Polymer Fine Particles (A) and Low Molecular Compound (C)>
"Polymer fine particles (A)" and "low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond" are as described for the resin composition according to Embodiment 1. so I won't repeat it here.
 (重合体微粒子(A)と低分子化合物(C)との配合比率)
 本発明の実施形態2に係る第2組成物において、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)は1~50重量%であり、低分子化合物(C)は50~99重量%である。
(Blending ratio of fine polymer particles (A) and low-molecular compound (C))
In the second composition according to Embodiment 2 of the present invention, when the total amount of the polymer fine particles (A) and the low-molecular compound (C) is 100% by weight, the polymer fine particles (A) is 1 to 50% by weight. %, and the low molecular weight compound (C) is 50 to 99% by weight.
 本発明の実施形態2に係る第2組成物において、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)は10~50重量%であり、低分子化合物(C)は50~90重量%であってもよい。第2組成物における重合体微粒子(A)と低分子化合物(C)との配合比率が上記範囲である場合、第2組成物を高濃度のマスターバッチとして使用できるという利点を有する。 In the second composition according to Embodiment 2 of the present invention, when the total amount of the polymer fine particles (A) and the low-molecular compound (C) is 100% by weight, the polymer fine particles (A) is 10 to 50% by weight. %, and the low molecular weight compound (C) may be 50 to 90% by weight. When the mixing ratio of the polymer fine particles (A) and the low-molecular-weight compound (C) in the second composition is within the above range, there is an advantage that the second composition can be used as a high-concentration masterbatch.
 本発明の実施形態2に係る第2組成物において、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)が5重量%~50重量%、低分子化合物(C)が50重量%~95重量%であることが好ましく、重合体微粒子(A)が6重量%~50重量%、低分子化合物(C)が50重量%~94重量%であることがより好ましく、重合体微粒子(A)が7重量%~50重量%、低分子化合物(C)が50重量%~93重量%であることがより好ましく、重合体微粒子(A)が8重量%~50重量%、低分子化合物(C)が50重量%~92重量%であることがより好ましく、重合体微粒子(A)が9重量%~50重量%、低分子化合物(C)が50重量%~91重量%であることがより好ましく、重合体微粒子(A)が10重量%~50重量%、低分子化合物(C)が50重量%~90重量%であることがより好ましく、重合体微粒子(A)が15重量%~50重量%、低分子化合物(C)が50重量%~85重量%であることがより好ましく、重合体微粒子(A)が20重量%~50重量%、低分子化合物(C)が50重量%~80重量%であることがより好ましく、重合体微粒子(A)が25重量%~50重量%、低分子化合物(C)が50重量%~75重量%であることがより好ましく、重合体微粒子(A)が30重量%~50重量%、低分子化合物(C)が50重量%~70重量%であることがより好ましく、重合体微粒子(A)が35重量%~50重量%、低分子化合物(C)が50重量%~65重量%であることがさらに好ましい。本発明の実施形態2に係る第2組成物において、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)が40重量%~50重量%、低分子化合物(C)が50重量%~60重量%であってもよく、重合体微粒子(A)が45重量%~50重量%、低分子化合物(C)が50重量%~55重量%であってもよい。本発明の実施形態2に係る第2組成物における重合体微粒子(A)と低分子化合物(C)との配合比率が上記範囲である場合、第2組成物をより高濃度のマスターバッチとして使用できるという利点をさらに有する。 In the second composition according to Embodiment 2 of the present invention, when the total amount of the polymer fine particles (A) and the low-molecular compound (C) is 100% by weight, the polymer fine particles (A) are 5% by weight to 50% by weight, preferably 50% to 95% by weight of the low molecular weight compound (C), 6% to 50% by weight of the fine polymer particles (A), and 50% to 50% by weight of the low molecular weight compound (C) It is more preferably 94% by weight, more preferably 7% to 50% by weight of the polymer fine particles (A) and 50% to 93% by weight of the low-molecular-weight compound (C), and the polymer fine particles ( More preferably, A) is 8% to 50% by weight, the low molecular weight compound (C) is 50% to 92% by weight, and the polymer fine particles (A) is 9% to 50% by weight, and the low molecular compound (C) is more preferably 50% to 91% by weight, the fine polymer particles (A) are 10% to 50% by weight, and the low molecular compound (C) is 50% to 90% by weight. More preferably, the polymer fine particles (A) are 15% by weight to 50% by weight, the low-molecular-weight compound (C) is 50% by weight to 85% by weight, and the polymer fine particles (A) are 20% by weight. It is more preferable that the content of the polymer fine particles (A) is 25% to 50% by weight and the low molecular weight compound (C) is 50% by weight. % to 75% by weight, more preferably 30% to 50% by weight of the fine polymer particles (A) and 50% to 70% by weight of the low-molecular-weight compound (C). More preferably, the fine particles (A) are 35% by weight to 50% by weight, and the low molecular weight compound (C) is 50% by weight to 65% by weight. In the second composition according to Embodiment 2 of the present invention, when the total amount of the polymer fine particles (A) and the low-molecular weight compound (C) is 100% by weight, the polymer fine particles (A) are 40% by weight to 50% by weight, the low molecular weight compound (C) may be 50% to 60% by weight, the polymer fine particle (A) is 45% to 50% by weight, and the low molecular weight compound (C) is 50% by weight to It may be 55% by weight. When the blending ratio of the polymer fine particles (A) and the low-molecular-weight compound (C) in the second composition according to Embodiment 2 of the present invention is within the above range, the second composition is used as a higher-concentration masterbatch. It has the further advantage of being able to
 <1-9.樹脂(D)>
 本発明の実施形態2に係る第2組成物は、樹脂(D)をさらに含むことができる。「樹脂(D)」については、実施形態1に係る樹脂組成物について説明したとおりであるのでここでは繰り返さない。
<1-9. Resin (D)>
The second composition according to Embodiment 2 of the present invention may further contain a resin (D). "Resin (D)" is as described for the resin composition according to Embodiment 1, and will not be repeated here.
 (樹脂(D)がエポキシ樹脂以外の樹脂である場合の含有量)
 本発明の実施形態2に係る第2組成物中の樹脂(D)の含有量は、重合体微粒子(A)と低分子化合物(C)との合計を100重量部とした場合に、10重量部以上であることが好ましく、20重量部以上であることがより好ましく、30重量部以上であることがより好ましく、50重量部以上であることがさらに好ましく、70重量部以上であることが特に好ましい。本発明の実施形態2に係る第2組成物中の樹脂(D)の含有量が上記範囲である場合、樹脂(D)による所望の効果をより多く享受することができるという利点を有する。
(Content when resin (D) is a resin other than epoxy resin)
The content of the resin (D) in the second composition according to Embodiment 2 of the present invention is 10 parts by weight when the total of the fine polymer particles (A) and the low-molecular-weight compound (C) is 100 parts by weight. parts by weight or more, more preferably 20 parts by weight or more, more preferably 30 parts by weight or more, even more preferably 50 parts by weight or more, particularly 70 parts by weight or more preferable. When the content of the resin (D) in the second composition according to Embodiment 2 of the present invention is within the above range, there is an advantage that more of the desired effects of the resin (D) can be enjoyed.
 本発明の実施形態2に係る第2組成物中の樹脂(D)の含有量の上限は、特に限定されないが、本第2組成物の優れた取り扱い性および貯蔵安定性を保持する観点からは、重合体微粒子(A)と低分子化合物(C)との合計を100重量部とした場合に、10,000重量部以下であることが好ましく、5,000重量部以下であることがより好ましく、2,000重量部以下であることがより好ましく、1,000重量部以下であることがより好ましく、750重量部以下であることがより好ましく、500重量部以下であることがより好ましく、300重量部以下であることがより好ましく、100重量部以下であることがより好ましく、90重量部以下であることがより好ましく、80重量部以下であることがさらに好ましく、70重量部以下であることが特に好ましい。 The upper limit of the content of the resin (D) in the second composition according to Embodiment 2 of the present invention is not particularly limited, but from the viewpoint of maintaining excellent handleability and storage stability of the present second composition , When the total of the fine polymer particles (A) and the low-molecular-weight compound (C) is 100 parts by weight, it is preferably 10,000 parts by weight or less, more preferably 5,000 parts by weight or less. , more preferably 2,000 parts by weight or less, more preferably 1,000 parts by weight or less, more preferably 750 parts by weight or less, more preferably 500 parts by weight or less, It is more preferably 100 parts by weight or less, more preferably 90 parts by weight or less, even more preferably 80 parts by weight or less, and 70 parts by weight or less. is particularly preferred.
 (樹脂(D)がエポキシ樹脂である場合)
 本発明の実施形態2に係る第2組成物は、公知の熱硬化性樹脂をさらに含んでいてもよいし、公知の熱可塑性樹脂をさらに含んでいてもよい。
(When the resin (D) is an epoxy resin)
The second composition according to Embodiment 2 of the present invention may further contain a known thermosetting resin, or may further contain a known thermoplastic resin.
 例えば、本発明の実施形態2に係る第2組成物は、樹脂(D)としてエポキシ樹脂をさらに含有していてもよい。低分子化合物(C)100重量部に対して、エポキシ樹脂の含有量が0.5重量部未満であることが好ましい。エポキシ樹脂は、含有量が0.5重量部以上であると、硬化物の耐熱性(Tg)が低下したり、硬化物表面にべたつき(表面タック性)が発現したり、溶剤を吸収し易くなって耐薬品性が低下する場合がある。エポキシ樹脂の含有量は、低分子化合物(C)100重量部に対して、0.3重量部未満であることが好ましく、0.2重量部未満であることがより好ましく、0.1重量部未満であることが特に好ましく、エポキシ樹脂を含有しないことが最も好ましい。 For example, the second composition according to Embodiment 2 of the present invention may further contain an epoxy resin as the resin (D). The content of the epoxy resin is preferably less than 0.5 parts by weight with respect to 100 parts by weight of the low molecular weight compound (C). When the content of the epoxy resin is 0.5 parts by weight or more, the heat resistance (Tg) of the cured product is lowered, the surface of the cured product is sticky (surface tackiness), and the solvent is easily absorbed. As a result, the chemical resistance may decrease. The content of the epoxy resin is preferably less than 0.3 parts by weight, more preferably less than 0.2 parts by weight, and 0.1 parts by weight with respect to 100 parts by weight of the low molecular weight compound (C). It is particularly preferred that the content is less than, and most preferred that it contains no epoxy resin.
 <1-10.その他の成分>
 本発明の実施形態2に係る第2組成物がさらに含有していてもその他の成分については、実施形態1に係る樹脂組成物について説明したとおりであるのでここでは繰り返さない。その他の成分の添加量は、実施形態1に係る樹脂組成物についての説明において、「マトリクス樹脂(B)」を「低分子化合物(C)」に読み替えて説明を適用するものとし、詳細な説明は省略する。
<1-10. Other Ingredients>
Even if the second composition according to Embodiment 2 of the present invention further contains other components, they are as described for the resin composition according to Embodiment 1, and will not be repeated here. Regarding the amounts of other components to be added, the description of the resin composition according to Embodiment 1 is applied by replacing the “matrix resin (B)” with the “low molecular weight compound (C)”. are omitted.
 <1-11.第2組成物の性質>
 (粘度)
 本発明の実施形態2に係る第2組成物は、低粘度であるがゆえに取扱い性に優れる。例えば、本発明の実施形態2に係る第2組成物は、Shear Rate(SR,ずり速度)が10s-1における粘度が1600mPa・s未満であり得る。
<1-11. Properties of Second Composition>
(viscosity)
The second composition according to Embodiment 2 of the present invention has excellent handleability due to its low viscosity. For example, the second composition according to Embodiment 2 of the present invention may have a viscosity of less than 1600 mPa·s at a shear rate (SR) of 10 s −1 .
 (貯蔵安定性)
 本発明の実施形態2に係る第2組成物は、組成物中の重合体微粒子(A)の分散状態を維持できるため、重合体微粒子(A)の凝集を防ぐことができる。その結果、第2組成物を長期保存した際に相分離が発生し難くなる。従って、本発明の実施形態2に係る第2組成物は、貯蔵安定性に優れる。従来、特に、組成物100重量%中の分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂の含有量が多量である場合(例えば、組成物100重量%中、前記マトリクス樹脂が90重量%以上である場合)、当該組成物の長期保存により相分離がより発生し易いという問題があった。例えば、本発明の実施形態2に係る第2組成物は、組成物中の前記マトリクス樹脂の含有量が90重量%以上である場合であっても、長期保存した際に、60℃で少なくとも30日間、相分離を生じることなく保存することができる。
(Storage stability)
Since the second composition according to Embodiment 2 of the present invention can maintain the dispersion state of the polymer fine particles (A) in the composition, aggregation of the polymer fine particles (A) can be prevented. As a result, phase separation is less likely to occur when the second composition is stored for a long period of time. Therefore, the second composition according to Embodiment 2 of the present invention has excellent storage stability. Conventionally, particularly when the content of a matrix resin having two or more polymerizable unsaturated bonds in the molecule in 100% by weight of the composition is large (for example, in 100% by weight of the composition, the matrix resin is 90 % by weight or more), there is a problem that phase separation is more likely to occur during long-term storage of the composition. For example, in the second composition according to Embodiment 2 of the present invention, even when the content of the matrix resin in the composition is 90% by weight or more, when stored for a long period of time, at 60 ° C. It can be stored for days without phase separation.
 〔3.樹脂組成物の製造方法〕
 本発明の実施形態1に係る樹脂組成物の製造方法は、上述した重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)と、を混合する混合工程を含み、前記混合工程では、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記マトリクス樹脂(B)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記マトリクス樹脂(B)とを混合する構成である。
[3. Method for producing a resin composition]
The method for producing a resin composition according to Embodiment 1 of the present invention includes polymer fine particles (A) produced by the above-described method for producing polymer fine particles, and two or more polymerizable unsaturated bonds in the molecule. and a matrix resin (B), wherein in the mixing step, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles A configuration in which the polymer fine particles (A) and the matrix resin (B) are mixed at a mixing ratio of 1 to 50% by weight of (A) and 50 to 99% by weight of the matrix resin (B). is.
 (混合工程)
 以下、本発明の実施形態1に係る樹脂組成物の製造方法における混合工程の一例を説明する。本発明の実施形態1に係る樹脂組成物は、マトリクス樹脂(B)を主成分とする硬化性樹脂組成物中に、重合体微粒子(A)が1次粒子の状態で分散した組成物である。
(Mixing process)
An example of the mixing step in the method for producing a resin composition according to Embodiment 1 of the present invention will be described below. The resin composition according to Embodiment 1 of the present invention is a composition in which polymer fine particles (A) are dispersed in the state of primary particles in a curable resin composition containing a matrix resin (B) as a main component. .
 このような、重合体微粒子(A)を1次粒子の状態で分散させた組成物を得る方法には、種々の方法が利用できるが、例えば水性ラテックスとして得られた重合体微粒子(A)をマトリクス樹脂(B)および/または低分子化合物(C)と接触させた後、水などの不要な成分を除去する方法、重合体微粒子(A)を一旦有機溶剤に抽出後にマトリクス樹脂(B)および/または低分子化合物(C)と混合してから有機溶剤を除去する方法などが挙げられるが、国際公開第2005/28546号に記載の方法を利用することが好ましい。 Various methods can be used for obtaining a composition in which the polymer fine particles (A) are dispersed in the state of primary particles. A method of removing unnecessary components such as water after bringing into contact with the matrix resin (B) and/or the low-molecular-weight compound (C), a method of extracting the polymer fine particles (A) once with an organic solvent, and then extracting the matrix resin (B) and / Or a method of removing the organic solvent after mixing with the low-molecular-weight compound (C), etc., but it is preferable to use the method described in International Publication No. 2005/28546.
 すなわち、本発明の実施形態1に係る樹脂組成物の製造方法における混合工程は、以下の第1工程~第3工程をこの順に含む構成であってもよい:前記重合体微粒子(A)を含有する水性ラテックスを、水に対し部分溶解性を示す有機溶媒と混合した後、得られた混合物を水と接触させて、前記有機溶媒を含有する前記重合体微粒子(A)の凝集体を水相中に生成させる第1工程;前記重合体微粒子(A)の前記凝集体を前記水相から分離及び回収した後、当該凝集体を前記有機溶媒と混合して、前記重合体微粒子(A)の有機溶媒分散液を得る第2工程;前記有機溶媒分散液を前記マトリクス樹脂(B)と混合した後、得られた混合物から前記有機溶媒を留去する第3工程。 That is, the mixing step in the method for producing the resin composition according to Embodiment 1 of the present invention may be configured to include the following first to third steps in this order: containing the fine polymer particles (A) After mixing the aqueous latex with an organic solvent that exhibits partial solubility in water, the resulting mixture is brought into contact with water to form aggregates of the polymer fine particles (A) containing the organic solvent in an aqueous phase. A first step of generating in the inside; after separating and recovering the aggregates of the polymer fine particles (A) from the aqueous phase, the aggregates are mixed with the organic solvent to form the polymer fine particles (A) A second step of obtaining an organic solvent dispersion; a third step of mixing the organic solvent dispersion with the matrix resin (B), and then distilling off the organic solvent from the obtained mixture.
 「水に対し部分溶解性を示す有機溶媒」は、重合体微粒子(A)の水性ラテックスを当該有機溶媒と混合する場合に、重合体微粒子(A)が実質的に凝固析出することなく混合が達成され得る少なくとも1種若しくは2種以上の有機溶媒若しくは有機溶媒混合物であれば制限無く使用できるが、20℃における水に対する溶解度が5重量%以上、40重量%以下である有機溶媒であることが好ましく、更には5重量%以上、30重量%以下であることがより好ましい。前記水に対し部分溶解性を示す有機溶媒の20℃における水に対する溶解度が40重量%以下であることにより、重合体粒子(A)の水性ラテックスが凝固することなく円滑に混合操作を行うことができる。また、前記水に対し部分溶解性を示す有機溶媒の20℃における水に対する溶解度が5重量%以上であれば、重合体粒子(A)の水性ラテックスと十分に混合することができ、円滑に混合操作を行うことができる。 The "organic solvent exhibiting partial solubility in water" means that when the aqueous latex of the polymer fine particles (A) is mixed with the organic solvent, the polymer fine particles (A) can be mixed without substantially solidifying and depositing. At least one or two or more organic solvents or organic solvent mixtures that can be achieved can be used without limitation. It is preferably 5% by weight or more and 30% by weight or less. When the solubility in water at 20° C. of the organic solvent partially soluble in water is 40% by weight or less, the aqueous latex of the polymer particles (A) is not coagulated, and the mixing operation can be performed smoothly. can. In addition, when the solubility in water at 20° C. of the organic solvent partially soluble in water is 5% by weight or more, it can be sufficiently mixed with the aqueous latex of the polymer particles (A), and can be smoothly mixed. operation can be performed.
 「水に対し部分溶解性を示す有機溶媒」の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンなどのケトン類;エタノール、(イソ)プロパノール、ブタノールなどのアルコール類;テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチルエーテルなどのエーテル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;塩化メチレン、クロロホルムなどのハロゲン化炭化水素類などから選ばれる1種以上の有機溶媒あるいはその混合物であって、20℃における水に対する溶解度が上述の範囲を満たすものが挙げられる。中でも、反応性を有する重合性有機化合物との親和性及び入手のし易さなどの点から、水に対し部分溶解性を示す有機溶媒として、メチルエチルケトンを50重量%以上含む有機溶媒がより好ましく使用され、更にはメチルエチルケトンを75重量%以上含む有機溶媒が特に好ましく使用される。 Specific examples of the "organic solvent exhibiting partial solubility in water" include esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketones such as acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone; ethanol , (iso)propanol, butanol and other alcohols; tetrahydrofuran, tetrahydropyran, dioxane, diethyl ether and other ethers; benzene, toluene, xylene and other aromatic hydrocarbons; methylene chloride, chloroform and other halogenated hydrocarbons or a mixture thereof, which satisfies the above range of solubility in water at 20°C. Among them, an organic solvent containing 50% by weight or more of methyl ethyl ketone is more preferably used as an organic solvent exhibiting partial solubility in water from the viewpoints of affinity with a reactive polymerizable organic compound and ease of availability. Furthermore, an organic solvent containing 75% by weight or more of methyl ethyl ketone is particularly preferably used.
 マトリクス樹脂(B)を主成分とする樹脂中に、重合体微粒子(A)が1次粒子の状態で分散している組成物(例えば本樹脂組成物)は、具体的には、順に、重合体微粒子(A)を含有する水性ラテックス(詳細には、乳化重合によって重合体微粒子(A)を製造した後の反応混合物)を、20℃における水に対する溶解度が5重量%以上40重量%以下の有機溶媒と混合した後、得られた混合物とさらに過剰の水とを混合して、重合体微粒子(A)を凝集させる第1工程と、凝集した重合体微粒子(A)を液相から分離・回収した後、得られた重合体微粒子(A)の凝集体を再度有機溶媒と混合して、重合体微粒子(A)の有機溶媒分散液を得る第2工程と、有機溶媒分散液をさらにマトリクス樹脂(B)および/または低分子化合物(C)と混合した後、得られた混合物から前記有機溶媒を留去する第3工程と、を含んで調製されることが好ましい。 Specifically, the composition (for example, the present resin composition) in which the polymer fine particles (A) are dispersed in the state of primary particles in a resin containing the matrix resin (B) as a main component is An aqueous latex containing the coalesced fine particles (A) (specifically, a reaction mixture after the production of the polymer fine particles (A) by emulsion polymerization) is added to an aqueous latex having a solubility in water at 20°C of 5% by weight or more and 40% by weight or less. After mixing with an organic solvent, the resulting mixture is further mixed with an excess amount of water to form a first step of aggregating the polymer fine particles (A), and separating and separating the aggregated polymer fine particles (A) from the liquid phase. After recovery, the obtained aggregates of polymer fine particles (A) are mixed again with an organic solvent to obtain an organic solvent dispersion of polymer fine particles (A) in a second step; and a third step of distilling off the organic solvent from the resulting mixture after mixing with the resin (B) and/or the low-molecular-weight compound (C).
 一次粒子が多数凝集した凝集体(例えば粉体状の重合体微粒子(A))を液状の樹脂に混合した場合、粒子の物理的な凝集力が非常に強いため、ホモジナイザーなどで強力な機械的せん断力をかけても、樹脂中で重合体微粒子(A)を凝集なく分散した状態にさせることは極めて困難である。 When a large number of aggregates of primary particles (for example, powdery polymer fine particles (A)) are mixed with a liquid resin, the physical cohesive force of the particles is very strong. Even if a shearing force is applied, it is extremely difficult to disperse the fine polymer particles (A) in the resin without aggregation.
 マトリクス樹脂(B)、または、マトリクス樹脂(B)と低分子化合物(C)との混合物が、23℃で液状であると、前記第3工程が容易となる為、好ましい。更に、マトリクス樹脂(B)のみで、23℃で液状であることがより好ましい。「23℃で液状」とは、軟化点が23℃以下であることを意味し、23℃で流動性を示すことを意味する。 It is preferable that the matrix resin (B) or the mixture of the matrix resin (B) and the low-molecular-weight compound (C) is liquid at 23°C because the third step is facilitated. Furthermore, it is more preferable that the matrix resin (B) alone is liquid at 23°C. The term "liquid at 23°C" means that the softening point is 23°C or lower and that the material exhibits fluidity at 23°C.
 上記の工程を経て得た、マトリクス樹脂(B)および/または低分子化合物(C)中に重合体微粒子(A)が1次粒子の状態で分散した組成物に、マトリクス樹脂(B)、低分子化合物(C)、及び、前記その他の配合成分を、必要により更に追加混合することにより、重合体微粒子(A)が1次粒子の状態で分散した本発明の実施形態1に係る樹脂組成物が得られる。 The matrix resin (B), the low The resin composition according to Embodiment 1 of the present invention in which the polymer fine particles (A) are dispersed in the state of primary particles by further mixing the molecular compound (C) and the other compounding ingredients, if necessary. is obtained.
 上述した樹脂組成物の製造方法によって製造された樹脂組成物も本発明の範疇に含まれる。 A resin composition produced by the method for producing a resin composition described above is also included in the scope of the present invention.
 (第2組成物の製造方法)
 本発明の実施形態2に係る第2組成物の製造方法は、実施形態1に係る樹脂組成物の製造方法の説明において、「マトリクス樹脂(B)」を「低分子化合物(C)」に読み替えて説明を適用するものとし、詳細な説明は省略する。
(Method for producing second composition)
In the method for producing the second composition according to Embodiment 2 of the present invention, in the description of the method for producing the resin composition according to Embodiment 1, "matrix resin (B)" is read as "low molecular weight compound (C)". The detailed description is omitted.
 〔4.硬化物〕
 本発明の実施形態1に係る樹脂組成物または本発明の実施形態2に係る第2組成物を硬化させて得られる硬化物、換言すれば本発明の実施形態1に係る樹脂組成物または本発明の実施形態2に係る第2組成物を硬化させてなる硬化物は、重合体微粒子(A)が1次粒子の状態で均一に分散してし得る。本発明の実施形態1に係る樹脂組成物または本発明の実施形態2に係る第2組成物を硬化させて得られる硬化物もまた、本発明の一実施形態である。
[4. Cured material]
A cured product obtained by curing the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention, in other words, the resin composition according to Embodiment 1 of the present invention or the present invention In the cured product obtained by curing the second composition according to Embodiment 2, the fine polymer particles (A) can be uniformly dispersed in the state of primary particles. A cured product obtained by curing the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention is also an embodiment of the present invention.
 〔5.用途〕
 本発明の実施形態1に係る樹脂組成物または本発明の実施形態2に係る第2組成物は、様々な用途に使用することができ、それらの用途は特に限定されない。当該樹脂組成物または第2組成物は、例えば、接着剤、コーティング材、強化繊維のバインダー、複合材料、3Dプリンターの造形材料、封止剤、電子基板、インキバインダー、木材チップバインダー、ゴムチップ用バインダー、フォームチップバインダー、鋳物用バインダー、床材用およびセラミック用の岩盤固結材、ウレタンフォームなどの用途に好ましく用いられる。ウレタンフォームとしては、自動車シート、自動車内装部品、吸音材、制振材、ショックアブソーバー(衝撃吸収材)、断熱材、工事用床材クッションなどが挙げられる。本発明の実施形態1に係る樹脂組成物または本発明の実施形態2に係る第2組成物は、上述した用途の中でも、接着剤、コーティング材、強化繊維のバインダー、複合材料、3Dプリンターの造形材料、封止剤、および電子基板として用いられることがより好ましい。
[5. Application]
The resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention can be used for various uses, and the uses are not particularly limited. The resin composition or the second composition is, for example, an adhesive, a coating material, a binder for reinforcing fibers, a composite material, a molding material for a 3D printer, a sealant, an electronic substrate, an ink binder, a wood chip binder, or a binder for rubber chips. , foam chip binders, binders for castings, bedrock consolidation materials for floor materials and ceramics, and urethane foams. Examples of urethane foam include automobile seats, automobile interior parts, sound absorbing materials, vibration damping materials, shock absorbers (shock absorbing materials), heat insulating materials, construction floor material cushions, and the like. Among the applications described above, the resin composition according to Embodiment 1 of the present invention or the second composition according to Embodiment 2 of the present invention is used as an adhesive, a coating material, a binder for reinforcing fibers, a composite material, and a molding of a 3D printer. It is more preferably used as materials, encapsulants, and electronic substrates.
 本発明の一実施形態は、以下のような構成であってもよい。 An embodiment of the present invention may have the following configuration.
 〔1〕重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)と、を含有し、
 前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、
 前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、
 前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、
 前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
 前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
 前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、
 前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記マトリクス樹脂(B)は50~99重量%である、樹脂組成物。
[1] Containing polymer fine particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule,
The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
The elastic body includes one or more selected from the group consisting of diene rubber, (meth)acrylate rubber, and organosiloxane rubber,
The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight. and
When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the matrix resin (B) is 50% by weight. A resin composition that is ~99% by weight.
 〔2〕前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は10~50重量%であり、前記マトリクス樹脂(B)は50~90重量%である、〔1〕に記載の樹脂組成物。 [2] When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 10 to 50% by weight, and the matrix resin (B ) is 50 to 90% by weight, the resin composition according to [1].
 〔3〕前記弾性体は、
   ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上の単量体を重合してなる弾性体の弾性コアと、
   前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合してなる表面架橋重合体と、
を含有している、〔1〕または〔2〕に記載の樹脂組成物。
[3] The elastic body is
an elastic core of an elastic body obtained by polymerizing one or more monomers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers, and organosiloxane-based rubbers;
a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
The resin composition according to [1] or [2], containing
 〔4〕分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)をさらに含有する、〔1〕~〔3〕のいずれか1つに記載の樹脂組成物。 [4] The resin composition according to any one of [1] to [3], further comprising a low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule. .
 〔5〕前記低分子化合物(C)が、(メタ)アクリロイル基含有化合物である、〔4〕に記載の樹脂組成物。 [5] The resin composition according to [4], wherein the low-molecular-weight compound (C) is a (meth)acryloyl group-containing compound.
 〔6〕前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて1.00重量%未満である、〔1〕~〔5〕のいずれか1つに記載の樹脂組成物。 [6] When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit exceeds 0.00% by weight and is 1.00% by weight. The resin composition according to any one of [1] to [5], which is less than % by weight.
 〔7〕前記マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートよりなる群から選択される1種以上の硬化性樹脂である、〔1〕~〔6〕のいずれか1つに記載の樹脂組成物。 [7] The matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates. The resin composition according to any one of [1] to [6], which is one or more selected curable resins.
 〔8〕樹脂(D)をさらに含む、〔1〕~〔7〕のいずれか1つに記載の樹脂組成物。 [8] The resin composition according to any one of [1] to [7], further comprising a resin (D).
 〔9〕前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は5~50重量%であり、前記マトリクス樹脂(B)は50~95重量%であり、マスターバッチ用である、〔1〕に記載の樹脂組成物。 [9] When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 5 to 50% by weight, and the matrix resin (B ) is 50 to 95% by weight, and the resin composition according to [1], which is for a masterbatch.
 〔10〕重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)と、を含有し、
 前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、
 前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、
 前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、
 前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
 前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
 前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、
 前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記低分子化合物(C)は50~99重量%である、組成物。
[10] Containing fine polymer particles (A) and a low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule,
The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
The elastic body includes one or more selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber,
The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight. and
When the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine-particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is is 50 to 99% by weight.
 〔11〕前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)は10~50重量%であり、前記低分子化合物(C)は50~90重量%である、〔10〕に記載の組成物。 [11] When the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine-particles (A) are 10 to 50% by weight, and the low-molecular-weight compound The composition according to [10], wherein (C) is 50 to 90% by weight.
 〔12〕前記弾性体は、
   ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上の単量体を重合してなる弾性体の弾性コアと、
   前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合してなる表面架橋重合体と、
を含有している、〔10〕または〔11〕に記載の組成物。
[12] The elastic body is
an elastic core of an elastic body obtained by polymerizing one or more monomers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers, and organosiloxane-based rubbers;
a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
The composition according to [10] or [11], containing
 〔13〕前記低分子化合物(C)が、(メタ)アクリロイル基含有化合物である、〔10〕~〔12〕のいずれかに記載の組成物。 [13] The composition according to any one of [10] to [12], wherein the low-molecular weight compound (C) is a (meth)acryloyl group-containing compound.
 〔14〕前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて1.00重量%未満である、〔10〕~〔13〕のいずれか1つに記載の組成物。 [14] When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit exceeds 0.00% by weight and is 1.00% by weight. % by weight, the composition according to any one of [10] to [13].
 〔15〕分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)をさらに含有する、〔10〕~〔14〕のいずれか1つに記載の組成物。 [15] The composition according to any one of [10] to [14], further containing a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule.
 〔16〕前記マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートよりなる群から選択される1種以上の硬化性樹脂である、〔10〕~〔15〕のいずれか1つに記載の組成物。 [16] The matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates, and acrylated (meth)acrylates. The composition according to any one of [10] to [15], which is one or more selected curable resins.
 〔17〕樹脂(D)をさらに含む、〔10〕~〔16〕のいずれか1つに記載の組成物。 [17] The composition according to any one of [10] to [16], further comprising a resin (D).
 〔18〕前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は5~50重量%であり、前記マトリクス樹脂(B)は50~95重量%であり、マスターバッチ用である、〔10〕に記載の組成物。 [18] When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 5 to 50% by weight, and the matrix resin (B ) is 50 to 95% by weight and is for a masterbatch, the composition according to [10].
 〔19〕ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる弾性体調製工程と、
 前記弾性体調製工程によって調製された弾性体に、第1の単量体および第2の単量体をグラフト重合させるグラフト部調製工程と、を含み、
 前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
 前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
 前記グラフト部調製工程では、前記第1の単量体と前記第2の単量体との合計を100重量%とした場合に、前記第2の単量体を、0.00重量%を超えて2.00重量%未満使用する、重合体微粒子の製造方法。
[19] an elastic body preparation step of polymerizing at least one monomer selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers;
a graft portion preparation step of graft-polymerizing the first monomer and the second monomer onto the elastic body prepared in the elastic body preparation step;
The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
In the graft portion preparation step, the second monomer exceeds 0.00% by weight when the total of the first monomer and the second monomer is 100% by weight. A method for producing polymer microparticles, using less than 2.00% by weight.
 〔20〕前記弾性体調製工程は、以下の工程(a)および工程(b)を含む、〔19〕に記載の重合体微粒子の製造方法:
 (a)ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる工程;
 (b)前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合させる工程。
[20] The method for producing polymer microparticles according to [19], wherein the elastic body preparation step includes the following steps (a) and (b):
(a) polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers;
(b) a step of polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
 〔21〕〔19〕または〔20〕に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)とを混合する混合工程を含み、
 前記混合工程では、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記マトリクス樹脂(B)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記マトリクス樹脂(B)とを混合する、樹脂組成物の製造方法。
[21] Polymer microparticles (A) produced by the method for producing polymer microparticles according to [19] or [20], and matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule including a mixing step of mixing with
In the mixing step, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the matrix resin A method for producing a resin composition, wherein the fine polymer particles (A) and the matrix resin (B) are mixed at a mixing ratio of 50 to 99% by weight of (B).
 〔22〕前記混合工程は、以下の第1工程~第3工程をこの順に含む、〔21〕に記載の樹脂組成物の製造方法:
 前記重合体微粒子(A)を含有する水性ラテックスを、水に対し部分溶解性を示す有機溶媒と混合した後、得られた混合物を水と接触させて、前記有機溶媒を含有する前記重合体微粒子(A)の凝集体を水相中に生成させる第1工程;
 前記重合体微粒子(A)の前記凝集体を前記水相から分離及び回収した後、当該凝集体を前記有機溶媒と混合して、前記重合体微粒子(A)の有機溶媒分散液を得る第2工程;
 前記有機溶媒分散液を前記マトリクス樹脂(B)と混合した後、得られた混合物から前記有機溶媒を留去する第3工程。
[22] The method for producing a resin composition according to [21], wherein the mixing step includes the following first to third steps in this order:
After mixing the aqueous latex containing the polymer fine particles (A) with an organic solvent that exhibits partial solubility in water, the resulting mixture is brought into contact with water to obtain the polymer fine particles containing the organic solvent. A first step of forming aggregates of (A) in an aqueous phase;
After separating and recovering the aggregates of the polymer fine particles (A) from the aqueous phase, the aggregates are mixed with the organic solvent to obtain an organic solvent dispersion of the polymer fine particles (A). process;
A third step of mixing the organic solvent dispersion with the matrix resin (B) and then distilling off the organic solvent from the resulting mixture.
 〔23〕〔19〕または〔20〕に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)とを混合する混合工程を含み、
 前記混合工程では、前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記低分子化合物(C)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記低分子化合物(C)とを混合する、組成物の製造方法。
[23] Polymer microparticles (A) produced by the method for producing polymer microparticles according to [19] or [20]; including a mixing step of mixing with the molecular compound (C),
In the mixing step, when the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is A method for producing a composition, wherein the fine polymer particles (A) and the low-molecular-weight compound (C) are mixed at a compounding ratio in which the molecular compound (C) is 50 to 99% by weight.
 〔24〕前記混合工程は、以下の第1工程~第3工程をこの順に含む、〔23〕に記載の組成物の製造方法:
 前記重合体微粒子(A)を含有する水性ラテックスを、水に対し部分溶解性を示す有機溶媒と混合した後、得られた混合物を水と接触させて、前記有機溶媒を含有する前記重合体微粒子(A)の凝集体を水相中に生成させる第1工程;
 前記重合体微粒子(A)の前記凝集体を前記水相から分離及び回収した後、当該凝集体を前記有機溶媒と混合して、前記重合体微粒子(A)の有機溶媒分散液を得る第2工程;
 前記有機溶媒分散液を前記低分子化合物(C)と混合した後、得られた混合物から前記有機溶媒を留去する第3工程。
[24] The method for producing a composition according to [23], wherein the mixing step includes the following first to third steps in this order:
After mixing the aqueous latex containing the polymer microparticles (A) with an organic solvent partially soluble in water, the resulting mixture is brought into contact with water to obtain the polymer microparticles containing the organic solvent. A first step of forming aggregates of (A) in an aqueous phase;
After separating and recovering the aggregates of the polymer fine particles (A) from the aqueous phase, the aggregates are mixed with the organic solvent to obtain an organic solvent dispersion of the polymer fine particles (A). process;
a third step of mixing the organic solvent dispersion with the low-molecular-weight compound (C), and then distilling off the organic solvent from the resulting mixture.
 本発明の一実施形態は、以下のように表現することもできる。 An embodiment of the present invention can also be expressed as follows.
 〔25〕重合体微粒子(A)と、
 (i)分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)、または
 (ii)分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)と、を含有し、
 前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、
 前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、
 前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、
 前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
 前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
 前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、
 (i)前記マトリクス樹脂(B)を含む場合、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記マトリクス樹脂(B)は50~99重量%であり、
 (ii)前記低分子化合物(C)を含む場合、前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記低分子化合物(C)は50~99重量%である、組成物。
[25] polymer microparticles (A);
(i) a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule, or (ii) a low molecular weight compound (C ), and
The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
The elastic body includes one or more selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber,
The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight. and
(i) When the matrix resin (B) is included, the polymer fine particle (A) is 1 to 50% by weight when the total of the polymer fine particle (A) and the matrix resin (B) is 100% by weight. % by weight, and the matrix resin (B) is 50 to 99% by weight,
(ii) when the low-molecular-weight compound (C) is contained, the polymer fine-particles (A) is 1 ~50% by weight, and the low molecular weight compound (C) is 50-99% by weight.
 〔26〕(i)〔19〕または〔20〕に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)とを混合する第1混合工程、または
 (ii)〔19〕または〔20〕に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)とを混合する第2混合工程、を含み、
 前記第1混合工程では、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記マトリクス樹脂(B)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記マトリクス樹脂(B)とを混合し、
 前記第2混合工程では、前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記低分子化合物(C)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記低分子化合物(C)とを混合する、組成物の製造方法。
なお、第1混合工程は、実施形態1に係る樹脂組成物の製造方法における混合工程と同じであり、第2混合工程は、実施形態2に係る第2組成物の製造方法における混合工程と同じである。
[26] (i) Polymer fine particles (A) produced by the method for producing polymer fine particles according to [19] or [20], and a matrix resin having two or more polymerizable unsaturated bonds in the molecule (B), or (ii) polymer fine particles (A) produced by the method for producing polymer fine particles according to [19] or [20], and at least one in the molecule a second mixing step of mixing with a low molecular weight compound (C) having a polymerizable unsaturated bond of less than 300,
In the first mixing step, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and The polymer fine particles (A) and the matrix resin (B) are mixed at a blending ratio in which the matrix resin (B) is 50 to 99% by weight,
In the second mixing step, when the total amount of the polymer fine particles (A) and the low-molecular weight compound (C) is 100% by weight, the polymer fine particles (A) is 1 to 50% by weight, A method for producing a composition, comprising mixing the polymer fine particles (A) and the low-molecular-weight compound (C) at a mixing ratio of 50 to 99% by weight of the low-molecular-weight compound (C).
The first mixing step is the same as the mixing step in the method for producing the resin composition according to Embodiment 1, and the second mixing step is the same as the mixing step in the method for producing the second composition according to Embodiment 2. is.
 以下、実施例および比較例によって本発明の一実施形態をより詳細に説明するが、本発明はこれらに限定されるものではない。本発明の一実施形態は、前記または後記の趣旨に適合し得る範囲で適宜変更して実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。 An embodiment of the present invention will be described below in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these. One embodiment of the present invention can be modified and implemented as long as it conforms to the spirit of the above and later descriptions, and all of them are included in the technical scope of the present invention.
 <1.重合体微粒子(A)を含有するラテックスの製造>
 (製造例1-1;弾性体調製工程(ポリスチレン-ブタジエンゴムを主成分とする弾性体を含む水性ラテックス(R-1)の調製))
 耐圧重合器中に、脱イオン水200重量部、リン酸三カリウム0.03重量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002重量部、硫酸第一鉄・7水和塩0.001重量部、および乳化剤としてドデシルベンゼンスルホン酸ナトリウム(SDBS)1.55重量部を投入した。次に、投入した原料を撹拌しつつ、耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、スチレン(St)23.5重量部およびブタジエン(Bd)76.5重量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、パラメンタンハイドロパーオキサイド(PHP)0.03重量部を耐圧重合器内に投入し、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.10重量部を耐圧重合器内に投入し、重合を開始した。重合開始から3時間目、5時間目および7時間目のそれぞれに、パラメンタンハイドロパーオキサイド(PHP)0.025重量部を耐圧重合器内に投入した。また、重合開始4時間目、6時間目および8時間目のそれぞれに、EDTA0.0006重量部、及び硫酸第一鉄・7水和塩0.003重量部を耐圧重合器内に投入した。重合開始から15時間目に減圧下にて脱揮して、重合に使用されずに残存した単量体を脱揮除去することにより、重合を終了した。当該重合により、ポリスチレン-ブタジエンゴムを主成分とする弾性体(弾性体のコア)を含む水性ラテックス(R-1)を得た。得られた水性ラテックスに含まれる弾性体(弾性体のコア)の体積平均粒子径は90nmであった。
<1. Production of Latex Containing Polymer Microparticles (A)>
(Production Example 1-1: Step of preparing elastic body (preparation of water-based latex (R-1) containing elastic body mainly composed of polystyrene-butadiene rubber))
200 parts by weight of deionized water, 0.03 parts by weight of tripotassium phosphate, 0.002 parts by weight of disodium ethylenediaminetetraacetate (EDTA), and 0.001 parts by weight of ferrous sulfate heptahydrate are placed in a pressure-resistant polymerization vessel. and 1.55 parts by weight of sodium dodecylbenzenesulfonate (SDBS) as an emulsifier. Next, oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the introduced raw materials. After that, 23.5 parts by weight of styrene (St) and 76.5 parts by weight of butadiene (Bd) were charged into the pressure-resistant polymerization vessel, and the temperature inside the pressure-resistant polymerization vessel was raised to 45°C. After that, 0.03 parts by weight of paramenthane hydroperoxide (PHP) was charged into the pressure-resistant polymerization vessel, and then 0.10 parts by weight of sodium formaldehyde sulfoxylate (SFS) was charged into the pressure-resistant polymerization vessel to initiate polymerization. started. 0.025 parts by weight of paramenthane hydroperoxide (PHP) was charged into the pressure-resistant polymerization vessel after 3, 5 and 7 hours from the start of the polymerization. Further, 0.0006 parts by weight of EDTA and 0.003 parts by weight of ferrous sulfate heptahydrate were charged into the pressure-resistant polymerization vessel 4 hours, 6 hours and 8 hours after the start of polymerization. After 15 hours from the initiation of the polymerization, devolatilization was performed under reduced pressure to remove residual monomers that were not used in the polymerization, thereby completing the polymerization. By the polymerization, a water-based latex (R-1) containing an elastic body (elastic body core) mainly composed of polystyrene-butadiene rubber was obtained. The volume-average particle size of the elastic body (core of the elastic body) contained in the obtained aqueous latex was 90 nm.
 (製造例2-1;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L1)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)250重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体83重量部を含む)、および、脱イオン水70重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)6.0重量部、ブチルアクリレート(BA)10重量部、4-ヒドロキシブチルアクリレート(4HBA)1.0重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L1)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L1)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-1; Graft portion preparation step (production of latex (L1) containing fine polymer particles (A))
A glass reactor was charged with 250 parts by weight of the aqueous latex (R-1) (containing 83 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 70 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then 6.0 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), and 0.035 parts by weight t-butyl hydroperoxide (BHP). The mixture of parts was added continuously over 80 minutes into a glass reactor. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L1) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L1) obtained was 30% by weight.
 L1では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、0.00重量%であった。 In L1, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 0.00% by weight when set to 100% by weight.
 (製造例2-2;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L2)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)250重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体83重量部を含む)、および、脱イオン水70重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)5.9重量部、ブチルアクリレート(BA)10重量部、4-ヒドロキシブチルアクリレート(4HBA)1.0重量部、アリルメタクリレート(AMA)0.1重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L2)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L2)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-2; Graft portion preparation step (production of latex (L2) containing fine polymer particles (A))
A glass reactor was charged with 250 parts by weight of the aqueous latex (R-1) (containing 83 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 70 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.9 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.1 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L2) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L2) obtained was 30% by weight.
 L2では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、0.59重量%であった。 In L2, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 0.59% by weight when set to 100% by weight.
 (製造例2-3;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L3)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)250重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体83重量部を含む)、および、脱イオン水70重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)5.7重量部、ブチルアクリレート(BA)10重量部、4-ヒドロキシブチルアクリレート(4HBA)1.0重量部、アリルメタクリレート(AMA)0.3重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L3)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L3)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-3; Graft portion preparation step (production of latex (L3) containing fine polymer particles (A))
A glass reactor was charged with 250 parts by weight of the aqueous latex (R-1) (containing 83 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 70 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.7 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.3 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L3) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L3) obtained was 30% by weight.
 L3では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、1.76重量%であった。 In L3, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.76% by weight when set to 100% by weight.
 (製造例2-4;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L4)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)250重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体83重量部を含む)、および、脱イオン水70重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)5.4重量部、ブチルアクリレート(BA)10重量部、4-ヒドロキシブチルアクリレート(4HBA)1.0重量部、アリルメタクリレート(AMA)0.6重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L4)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L4)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-4; Graft portion preparation step (production of latex (L4) containing fine polymer particles (A))
A glass reactor was charged with 250 parts by weight of the aqueous latex (R-1) (containing 83 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 70 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.4 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.6 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L4) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L4) obtained was 30% by weight.
 L4では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、3.53重量%であった。 In L4, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 3.53% by weight when set to 100% by weight.
 (製造例2-5;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L5)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)250重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体83重量部を含む)、および、脱イオン水70重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)5.0重量部、ブチルアクリレート(BA)10重量部、4-ヒドロキシブチルアクリレート(4HBA)1.0重量部、アリルメタクリレート(AMA)1.0重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L5)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L5)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-5; Graft portion preparation step (production of latex (L5) containing fine polymer particles (A))
A glass reactor was charged with 250 parts by weight of the aqueous latex (R-1) (containing 83 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 70 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. Then, 5.0 parts by weight methyl methacrylate (MMA), 10 parts by weight butyl acrylate (BA), 1.0 parts by weight 4-hydroxybutyl acrylate (4HBA), 1.0 parts by weight allyl methacrylate (AMA), and t- A mixture of 0.035 parts by weight of butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L5) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L5) obtained was 30% by weight.
 L5では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、5.88重量%であった。 In L5, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 5.88% by weight when set to 100% by weight.
 (製造例2-6;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L6)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)230重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体75重量部を含む)、および、脱イオン水80重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、メチルメタクリレート(MMA)8.4重量部、ブチルアクリレート(BA)14.7重量部、4-ヒドロキシブチルアクリレート(4HBA)1.5重量部、アリルメタクリレート(AMA)0.4重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L6)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L6)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-6; Graft portion preparation step (production of latex (L6) containing fine polymer particles (A))
A glass reactor was charged with 230 parts by weight of the aqueous latex (R-1) (containing 75 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 80 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. then 8.4 parts by weight methyl methacrylate (MMA), 14.7 parts by weight butyl acrylate (BA), 1.5 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.4 parts by weight allyl methacrylate (AMA), and A mixture of 0.035 parts by weight of t-butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and the stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L6) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the obtained aqueous latex (L6) was 30% by weight.
 L6では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、1.60重量%であった。 In L6, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.60% by weight when set to 100% by weight.
 (製造例2-7;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L7)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)220重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体72重量部を含む)、および、脱イオン水85重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、アリルメタクリレート(AMA)3.0重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.03重量部の混合物をガラス製反応器内に添加した。さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、表面架橋重合体の重合を完結させた。その後、メチルメタクリレート(MMA)8.4重量部、ブチルアクリレート(BA)14.7重量部、4-ヒドロキシブチルアクリレート(4HBA)1.5重量部、アリルメタクリレート(AMA)0.4重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L7)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L7)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-7; Graft portion preparation step (production of latex (L7) containing fine polymer particles (A))
A glass reactor was charged with 220 parts by weight of the aqueous latex (R-1) (containing 72 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 85 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. A mixture of 3.0 parts by weight of allyl methacrylate (AMA) and 0.03 parts by weight of t-butyl hydroperoxide (BHP) was then added into the glass reactor. Stirring of the mixture in the glass reactor was continued for an additional hour to complete the polymerization of the surface cross-linked polymer. then 8.4 parts by weight methyl methacrylate (MMA), 14.7 parts by weight butyl acrylate (BA), 1.5 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.4 parts by weight allyl methacrylate (AMA), and A mixture of 0.035 parts by weight of t-butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L7) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer microparticles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L7) obtained was 30% by weight.
 L7では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、1.60重量%であった。 In L7, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.60% by weight when set to 100% by weight.
 (製造例2-8;グラフト部調製工程(重合体微粒子(A)を含有するラテックス(L8)の製造)
 ガラス製反応器に、前記水性ラテックス(R-1)200重量部(ポリスチレン-ブタジエンゴムを主成分とする弾性体67重量部を含む)、および、脱イオン水100重量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、および単量体の添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、60℃にて投入した原料を撹拌した。次に、EDTA0.004重量部、硫酸第一鉄・7水和塩0.001重量部、およびSFS0.2重量部をガラス製反応器内に加え、10分間撹拌した。その後、アリルメタクリレート(AMA)3.0重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.03重量部の混合物をガラス製反応器内に添加した。さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、表面架橋重合体の重合を完結させた。その後、メチルメタクリレート(MMA)10.1重量部、ブチルアクリレート(BA)17.6重量部、4-ヒドロキシブチルアクリレート(4HBA)1.8重量部、アリルメタクリレート(AMA)0.5重量部、およびt-ブチルハイドロパーオキサイド(BHP)0.035重量部の混合物をガラス製反応器内に、80分間かけて連続的に添加した。その後、BHP0.013重量部をガラス製反応器内に添加し、さらに1時間、ガラス製反応器内の混合物の撹拌を続けて、グラフト部の重合を完結させた。以上の操作により、重合体微粒子(A)を含む水性ラテックス(L8)を得た。単量体成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれる重合体微粒子(A)の体積平均粒子径は100nmであった。得られた水性ラテックス(L8)100重量%における固形分濃度(重合体微粒子(A)の濃度)は30重量%であった。
(Production Example 2-8; Graft portion preparation step (production of latex (L8) containing fine polymer particles (A))
A glass reactor was charged with 200 parts by weight of the aqueous latex (R-1) (including 67 parts by weight of an elastic body mainly composed of polystyrene-butadiene rubber) and 100 parts by weight of deionized water. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the charged raw materials were stirred at 60°C. Next, 0.004 parts by weight of EDTA, 0.001 parts by weight of ferrous sulfate heptahydrate, and 0.2 parts by weight of SFS were added into the glass reactor and stirred for 10 minutes. A mixture of 3.0 parts by weight of allyl methacrylate (AMA) and 0.03 parts by weight of t-butyl hydroperoxide (BHP) was then added into the glass reactor. Stirring of the mixture in the glass reactor was continued for an additional hour to complete the polymerization of the surface cross-linked polymer. then 10.1 parts by weight methyl methacrylate (MMA), 17.6 parts by weight butyl acrylate (BA), 1.8 parts by weight 4-hydroxybutyl acrylate (4HBA), 0.5 parts by weight allyl methacrylate (AMA), and A mixture of 0.035 parts by weight of t-butyl hydroperoxide (BHP) was continuously added into the glass reactor over 80 minutes. After that, 0.013 parts by weight of BHP was added into the glass reactor, and stirring of the mixture in the glass reactor was continued for 1 hour to complete the polymerization of the grafted portion. By the above operation, an aqueous latex (L8) containing polymer fine particles (A) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle diameter of the polymer fine particles (A) contained in the obtained aqueous latex was 100 nm. The solid content concentration (concentration of fine polymer particles (A)) in 100% by weight of the aqueous latex (L8) obtained was 30% by weight.
 L8では、重合体微粒子(A)のグラフト部を構成する重合体中の第2構成単位の含有量は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合に、1.67重量%であった。 In L8, the content of the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion. It was 1.67% by weight when set to 100% by weight.
 なお、製造例2-1~2-8のグラフト部調製工程において使用した単量体のうち、メチルメタクリレート(MMA)、ブチルアクリレート(BA)および4-ヒドロキシブチルアクリレート(4HBA)は第1の単量体であり、アリルメタクリレート(AMA)は第2の単量体である。 Among the monomers used in the graft portion preparation steps of Production Examples 2-1 to 2-8, methyl methacrylate (MMA), butyl acrylate (BA) and 4-hydroxybutyl acrylate (4HBA) are the first monomers. monomer and allyl methacrylate (AMA) is the second monomer.
 表1に、重合体微粒子(A)の各構成成分の配合量をまとめた。なお、表1に記載の「第2の構成単位の含有量」は、グラフト部を構成する重合体中の第1構成単位と第2構成単位との合計を100重量%とした場合の、第2の構成単位の含有量である。 Table 1 summarizes the blending amounts of each component of the polymer microparticles (A). In addition, the "content of the second structural unit" described in Table 1 is the second structural unit when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion is 100% by weight. It is the content of the structural unit of No. 2.
 <2.樹脂組成物の製造>
 [実施例1]
 1L混合槽の混合槽内の温度を30℃とした後、水に対し部分溶解性を示す有機溶媒としてメチルエチルケトン(MEK)126重量部を混合槽に投入した。その後、混合槽内のMEKを撹拌しながら、混合槽に、重合体微粒子(A)のラテックス(L2)を143重量部投入した。投入された原料を均一に混合後、得られた混合物を撹拌しながら、水200重量部(合計452重量部)を当該混合物(混合槽)に80重量部/分の供給速度で投入した。水の供給終了後、混合物の撹拌を速やかに停止したところ、水相中に浮上性の重合体微粒子(A)の凝集体が生成された(第1工程)。かかる第1工程により、浮上性の重合体微粒子(A)の凝集体を含むスラリー液を得た。
<2. Production of Resin Composition>
[Example 1]
After the temperature inside the 1 L mixing tank was set to 30° C., 126 parts by weight of methyl ethyl ketone (MEK) as an organic solvent partially soluble in water was added to the mixing tank. After that, 143 parts by weight of the latex (L2) of the fine polymer particles (A) was added to the mixing tank while stirring the MEK in the mixing tank. After uniformly mixing the charged raw materials, 200 parts by weight of water (452 parts by weight in total) was added to the mixture (mixing vessel) at a feed rate of 80 parts by weight/minute while stirring the resulting mixture. After the supply of water was finished, the stirring of the mixture was quickly stopped, and aggregates of floating polymer fine particles (A) were formed in the water phase (first step). Through the first step, a slurry liquid containing aggregates of floating polymer fine particles (A) was obtained.
 次に、混合槽内に重合体微粒子(A)の凝集体を残し、液相350重量部を混合槽下部の払い出し口より排出した。すなわち、重合体微粒子(A)の凝集体を水相から分離及び回収した。得られた重合体微粒子(A)の凝集体(重合体微粒子(A)ドープ)にMEK150重量部を追加してこれらを混合し、重合体微粒子(A)が分散した有機溶媒分散液を得た(第2工程)。この有機溶媒分散液277重量部(重合体微粒子(A)を42.9重量部含む)にマトリクス樹脂(B)である液状不飽和ポリエステル樹脂(Eternal社製、Eterset2010)45重量部、および低分子化合物(C)であるメタクリル酸2-ヒドロキシプロピル(HPMA)19重量部を投入し、得られた混合物を混合後、当該混合物からMEKを減圧下で留去し、樹脂組成物(A-1)を得た(第3工程)。樹脂組成物(A-1)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。 Next, leaving aggregates of polymer fine particles (A) in the mixing tank, 350 parts by weight of the liquid phase was discharged from the outlet at the bottom of the mixing tank. That is, aggregates of polymer fine particles (A) were separated and recovered from the aqueous phase. 150 parts by weight of MEK was added to the resulting aggregates of the polymer fine particles (A) (polymer fine particle (A) dope) and mixed to obtain an organic solvent dispersion in which the polymer fine particles (A) were dispersed. (Second step). To 277 parts by weight of this organic solvent dispersion (including 42.9 parts by weight of polymer fine particles (A)), 45 parts by weight of a liquid unsaturated polyester resin (manufactured by Eternal, Eterset 2010) as the matrix resin (B), and a low molecular After adding 19 parts by weight of 2-hydroxypropyl methacrylate (HPMA) which is the compound (C) and mixing the resulting mixture, MEK is distilled off from the mixture under reduced pressure to obtain a resin composition (A-1). was obtained (third step). The resin composition (A-1) contains 40% by weight of the fine polymer particles (A) when the total amount of the fine polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [実施例2]
 重合体微粒子(A)のラテックスとして、ラテックス(L3)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-2)を得た。樹脂組成物(A-2)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Example 2]
A resin composition (A-2) was obtained in the same manner as in Example 1, except that the latex (L3) was used as the latex of the fine polymer particles (A). The resin composition (A-2) contains 40% by weight of the polymer particles (A) when the total of the polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [比較例1]
 重合体微粒子(A)のラテックスとして、ラテックス(L1)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-3)を得た。樹脂組成物(A-3)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Comparative Example 1]
A resin composition (A-3) was obtained in the same manner as in Example 1, except that the latex (L1) was used as the latex of the polymer fine particles (A). The resin composition (A-3) contains 40% by weight of the fine polymer particles (A) when the total amount of the fine polymer particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [比較例2]
 重合体微粒子(A)のラテックスとして、ラテックス(L4)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-4)を得た。樹脂組成物(A-4)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Comparative Example 2]
A resin composition (A-4) was obtained in the same manner as in Example 1, except that the latex (L4) was used as the latex of the fine polymer particles (A). The resin composition (A-4) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [比較例3]
 重合体微粒子(A)のラテックスとして、ラテックス(L5)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-5)を得た。樹脂組成物(A-5)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Comparative Example 3]
A resin composition (A-5) was obtained in the same manner as in Example 1, except that the latex (L5) was used as the latex of the fine polymer particles (A). The resin composition (A-5) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [実施例3]
 重合体微粒子(A)のラテックスとして、ラテックス(L6)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-6)を得た。樹脂組成物(A-6)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Example 3]
A resin composition (A-6) was obtained in the same manner as in Example 1, except that the latex (L6) was used as the latex of the fine polymer particles (A). The resin composition (A-6) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [実施例4]
 重合体微粒子(A)のラテックスとして、ラテックス(L7)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-7)を得た。樹脂組成物(A-7)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Example 4]
A resin composition (A-7) was obtained in the same manner as in Example 1, except that the latex (L7) was used as the latex of the fine polymer particles (A). The resin composition (A-7) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 [実施例5]
 重合体微粒子(A)のラテックスとして、ラテックス(L8)を用いた以外は、実施例1と同じ方法にて、樹脂組成物(A-8)を得た。樹脂組成物(A-8)は、重合体微粒子(A)とマトリクス樹脂(B)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、マトリクス樹脂(B)を42重量%、低分子化合物(C)を18重量%含んでいた。
[Example 5]
A resin composition (A-8) was obtained in the same manner as in Example 1, except that the latex (L8) was used as the latex of the fine polymer particles (A). The resin composition (A-8) contains 40% by weight of the polymer fine particles (A) when the total of the polymer fine particles (A), the matrix resin (B) and the low-molecular weight compound (C) is 100% by weight. %, 42% by weight of the matrix resin (B), and 18% by weight of the low molecular weight compound (C).
 <3.樹脂組成物の評価>
 <取扱い性の評価>
 実施例および比較例で作製した樹脂組成物の取扱い性は、25℃における樹脂組成物の粘度に基づき以下のとおり評価した。
・取扱い性に特に優れる:25℃における樹脂組成物の粘度が1000mPa・s以上、3000mPa・s未満
・取扱い性に優れる:25℃における樹脂組成物の粘度が3000mPa・s以上、6000mPa・s未満
・取扱い性に劣る:25℃における樹脂組成物の粘度が6000mPa・s以上
 実施例および比較例で作製した樹脂組成物の粘度の測定には、BROOKFIELD社製デジタル粘度計DV-II+Pro型を使用した。また、粘度領域によってスピンドルCPE-52を用い、測定温度25℃にてShear Rate(SR,ずり速度)を10s-1の条件にて、粘度を測定した。
<3. Evaluation of Resin Composition>
<Evaluation of handleability>
The handling properties of the resin compositions prepared in Examples and Comparative Examples were evaluated as follows based on the viscosity of the resin compositions at 25°C.
・ Especially excellent in handleability: the viscosity of the resin composition at 25 ° C. is 1000 mPa s or more and less than 3000 mPa s ・ Excellent handleability: the viscosity of the resin composition at 25 ° C. is 3000 mPa s or more and less than 6000 mPa s ・Poor handleability: Viscosity of resin composition at 25° C. of 6000 mPa·s or more A digital viscometer DV-II+Pro type manufactured by BROOKFIELD was used to measure the viscosity of the resin compositions prepared in Examples and Comparative Examples. In addition, the viscosity was measured at a measurement temperature of 25° C. and a shear rate (SR) of 10 s −1 using a spindle CPE-52 depending on the viscosity range.
 <貯蔵安定性の評価>
 実施例および比較例で作製した樹脂組成物の貯蔵安定性は、樹脂組成物中の重合体微粒子(A)の分散状態の維持に基づき以下のとおり評価した。
・貯蔵安定性に優れる:樹脂組成物中の重合体微粒子(A)が60℃で少なくとも30日間相分離しない。
・貯蔵安定性に劣る:樹脂組成物中の重合体微粒子(A)が60℃で30日以内に相分離する。
<Evaluation of storage stability>
The storage stability of the resin compositions prepared in Examples and Comparative Examples was evaluated as follows based on the maintenance of the dispersed state of the polymer fine particles (A) in the resin composition.
- Excellent storage stability: the polymer fine particles (A) in the resin composition do not undergo phase separation at 60°C for at least 30 days.
- Poor storage stability: the polymer fine particles (A) in the resin composition undergo phase separation at 60°C within 30 days.
 実施例および比較例で作製した樹脂組成物の貯蔵安定性は、樹脂組成物を10gと、樹脂(D)としてのEternal社製不飽和ポリエステル樹脂2731-1を90gとを自転公転ミキサーを用いて混合した後、透明の瓶に入れ、60℃のオーブンにて貯蔵し、目視にて経時で分離していないかを確認した。なお、樹脂組成物と、樹脂(D)とを混合後の樹脂組成物中のマトリクス樹脂(B)および樹脂(D)の合計含有量(すなわち、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂の含有量)は94.2重量%であった。 The storage stability of the resin compositions prepared in Examples and Comparative Examples was evaluated by mixing 10 g of the resin composition and 90 g of unsaturated polyester resin 2731-1 manufactured by Eternal Co., Ltd. as the resin (D) using a rotation and revolution mixer. After mixing, the mixture was placed in a transparent bottle, stored in an oven at 60° C., and visually checked for separation over time. The total content of the matrix resin (B) and the resin (D) in the resin composition after mixing the resin composition and the resin (D) (i.e., two or more polymerizable unsaturated bonds in the molecule The content of the matrix resin having ) was 94.2% by weight.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1中に示す相分離の結果について説明すると、「X日目に相分離した」は、試験開始X日目から相分離が開始したことを示しているのではなく、試験開始X日目に観察した結果、樹脂組成物の少なくとも一部に相分離が認められたことを意味する。このため、「X日目に相分離した」は、X日目より前に、樹脂組成物の少なくとも一部が相分離している態様も包含する。
Figure JPOXMLDOC01-appb-T000001
To explain the results of phase separation shown in Table 1, "Phase separation occurred on the X day" does not indicate that phase separation started on the X day of the start of the test, but on the X day of the start of the test. It means that phase separation was observed in at least a part of the resin composition as a result of observation. Therefore, "phase-separated on the X day" also includes an embodiment in which at least a part of the resin composition is phase-separated before the X day.
 表1に示すとおり、比較例2~3の樹脂組成物はいずれも、試験開始から23日目の観察において既に相分離が認められた。これに対して、実施例1~5の樹脂組成物および比較例1の樹脂組成物はいずれも、試験開始から65日目の観察において相分離が認められた。実施例1~5の樹脂組成物および比較例1の樹脂組成物については、試験開始から50日目の観察結果も括弧書きで併記した。実施例2~5の樹脂組成物はいずれも、試験開始から50日目の観察において相分離が認められた。これに対して、実施例1および比較例1の樹脂組成物はいずれも試験開始から50日目の観察において相分離が認められなかった。 As shown in Table 1, in all of the resin compositions of Comparative Examples 2 and 3, phase separation was already observed on the 23rd day from the start of the test. On the other hand, both the resin compositions of Examples 1 to 5 and the resin composition of Comparative Example 1 showed phase separation when observed 65 days after the start of the test. For the resin compositions of Examples 1 to 5 and the resin composition of Comparative Example 1, the observation results on the 50th day from the start of the test are also shown in parentheses. Phase separation was observed in all of the resin compositions of Examples 2 to 5 when observed 50 days after the start of the test. On the other hand, no phase separation was observed in the resin compositions of Example 1 and Comparative Example 1 after 50 days from the start of the test.
 以上のことから、貯蔵安定性に関しては、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が2.00重量%未満である場合、かかる重合体微粒子(A)を含有している樹脂組成物は、貯蔵安定性に優れることが明らかになった。特に、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が1.00重量%未満である場合は、樹脂組成物の貯蔵安定性に特に優れることが明らかになった。 From the above, regarding the storage stability, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, It has been found that when the structural unit of 2 is less than 2.00% by weight, the resin composition containing such fine polymer particles (A) has excellent storage stability. In particular, when the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 1.00% by weight. %, the storage stability of the resin composition is particularly excellent.
 また、取扱い性に関しては、比較例1の樹脂組成物は、Shear Rate(SR,ずり速度)が10s-1における粘度が6000mPa・s以上であった。これに対して、実施例1~5および比較例2~3の樹脂組成物はいずれも、Shear Rate(SR,ずり速度)が10s-1における粘度が6000mPa・sを大きく下回り、低粘度であった。 As for handleability, the resin composition of Comparative Example 1 had a viscosity of 6000 mPa·s or more at a shear rate (SR) of 10 s −1 . On the other hand, the resin compositions of Examples 1 to 5 and Comparative Examples 2 to 3 all had low viscosities at a shear rate (SR) of 10 s −1 , well below 6000 mPa·s. rice field.
 以上のことから、取扱い性に関しては、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%を超える場合、かかる重合体微粒子(A)を含有している樹脂組成物は、樹脂組成物の取扱い性に優れることが明らかになった。 From the above, regarding the handleability, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, the second structural unit is more than 0.00% by weight, the resin composition containing the fine polymer particles (A) has excellent handleability.
 実施例および比較例の結果をまとめると、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%を超えて2.00重量%未満である場合、かかる重合体微粒子(A)を含有している樹脂組成物は、取扱い性および貯蔵安定性の両方に優れることが明らかになった。特に、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%を超えて1.00重量%未満である場合は、樹脂組成物の貯蔵安定性に特に優れることが明らかになった。 To summarize the results of Examples and Comparative Examples, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, When the structural unit of 2 is more than 0.00% by weight and less than 2.00% by weight, the resin composition containing such polymer fine particles (A) is excellent in both handleability and storage stability. It became clear. In particular, when the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 0.00% by weight. % and less than 1.00% by weight, the storage stability of the resin composition is particularly excellent.
 また、実施例4および5に示すとおり、弾性体が表面架橋重合体を有する場合、表面架橋重合体に含まれている多官能性単量体成分は、驚くべきことに、樹脂組成物の粘度をさらに低下させることができるが、樹脂組成物の相溶性には影響しないことが明らかになった。 Moreover, as shown in Examples 4 and 5, when the elastic body has a surface-crosslinked polymer, the polyfunctional monomer component contained in the surface-crosslinked polymer surprisingly affects the viscosity of the resin composition. can be further reduced, but the compatibility of the resin composition is not affected.
 <4.第2組成物の製造>
 [実施例6]
 マトリクス樹脂(B)である液状不飽和ポリエステル樹脂(Eternal社製、Eterset2010)45重量部、および低分子化合物(C)であるメタクリル酸2-ヒドロキシプロピル(HPMA)19重量部の代わりとして、低分子化合物(C)であるメタクリル酸2-ヒドロキシプロピル(HPMA)64重量部を使用した以外は、実施例1と同じ方法にて、組成物(A-9)を得た。組成物(A-9)は、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、低分子化合物(C)を60重量%含んでいた。
<4. Production of second composition>
[Example 6]
Instead of 45 parts by weight of a liquid unsaturated polyester resin (manufactured by Eternal, Eterset 2010) as the matrix resin (B) and 19 parts by weight of 2-hydroxypropyl methacrylate (HPMA) as the low-molecular compound (C), a low-molecular A composition (A-9) was obtained in the same manner as in Example 1, except that 64 parts by weight of 2-hydroxypropyl methacrylate (HPMA), which is the compound (C), was used. The composition (A-9) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
 [実施例7]
 重合体微粒子(A)のラテックスとして、ラテックス(L3)を用いた以外は、実施例6と同じ方法にて、組成物(A-10)を得た。組成物(A-10)は、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、低分子化合物(C)を60重量%含んでいた。
[Example 7]
A composition (A-10) was obtained in the same manner as in Example 6, except that the latex (L3) was used as the latex of the fine polymer particles (A). The composition (A-10) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
 [比較例4]
 重合体微粒子(A)のラテックスとして、ラテックス(L1)を用いた以外は、実施例6と同じ方法にて、組成物(A-11)を得た。組成物(A-11)は、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、低分子化合物(C)を60重量%含んでいた。
[Comparative Example 4]
A composition (A-11) was obtained in the same manner as in Example 6, except that the latex (L1) was used as the latex of the fine polymer particles (A). The composition (A-11) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
 [比較例5]
 重合体微粒子(A)のラテックスとして、ラテックス(L5)を用いた以外は、実施例6と同じ方法にて、組成物(A-12)を得た。組成物(A-12)は、重合体微粒子(A)と低分子化合物(C)との合計を100重量%とした場合に、重合体微粒子(A)を40重量%、低分子化合物(C)を60重量%含んでいた。
[Comparative Example 5]
A composition (A-12) was obtained in the same manner as in Example 6, except that the latex (L5) was used as the latex of the fine polymer particles (A). The composition (A-12) contains 40% by weight of the polymer microparticles (A) and the low-molecular-weight compound (C ) in an amount of 60% by weight.
 <5.第2組成物の評価>
 <取扱い性の評価>
 実施例6~7および比較例4~5の組成物の粘度は、実施例1~5および比較例1~3の樹脂組成物と同じ方法によって測定した。実施例6~7および比較例4~5で作製した組成物の取扱い性は、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%である比較例4の組成物の25℃における粘度を基準として以下のとおり評価した。
・取扱い性がより向上した:比較例4の組成物の25℃における粘度に対して、粘度が30%以上低下
・取扱い性が向上した:比較例4の組成物の25℃における粘度に対して、粘度が10%以上低下
・取扱い性が低下した:比較例4の組成物の25℃における粘度に対して、粘度が増加。
<5. Evaluation of Second Composition>
<Evaluation of handleability>
The viscosities of the compositions of Examples 6-7 and Comparative Examples 4-5 were measured by the same method as for the resin compositions of Examples 1-5 and Comparative Examples 1-3. The handleability of the compositions prepared in Examples 6 and 7 and Comparative Examples 4 and 5 was determined by the sum of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A). was 100% by weight, the viscosity at 25° C. of the composition of Comparative Example 4 containing 0.00% by weight of the second structural unit was evaluated as follows.
・Handleability was further improved: Viscosity decreased by 30% or more relative to the viscosity at 25 ° C. of the composition of Comparative Example 4 ・Handleability was improved: Relative to the viscosity at 25 ° C. of the composition of Comparative Example 4 , Viscosity decreased by 10% or more ・Handleability decreased: Viscosity increased compared to the viscosity of the composition of Comparative Example 4 at 25°C.
 <貯蔵安定性の評価>
 実施例1~5および比較例1~3の樹脂組成物と同じ方法にて、実施例6~7および比較例4~5の組成物(樹脂組成物)の貯蔵安定性を評価した。
<Evaluation of storage stability>
The storage stability of the compositions (resin compositions) of Examples 6-7 and Comparative Examples 4-5 was evaluated in the same manner as the resin compositions of Examples 1-5 and Comparative Examples 1-3.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、比較例5の樹脂組成物は、試験開始から23日目の観察において既に相分離が認められた。これに対して、実施例6~7の樹脂組成物および比較例4の樹脂組成物はいずれも、試験開始から65日目の観察において相分離が認められた。実施例6~7の樹脂組成物および比較例4の樹脂組成物については、試験開始から50日目の観察結果も括弧書きで併記した。実施例7の樹脂組成物は、試験開始から50日目の観察において相分離が認められた。これに対して、実施例6および比較例4の樹脂組成物はいずれも試験開始から50日目の観察において相分離が認められなかった。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, phase separation was already observed in the resin composition of Comparative Example 5 in observation on the 23rd day from the start of the test. On the other hand, both the resin compositions of Examples 6 and 7 and the resin composition of Comparative Example 4 were found to undergo phase separation when observed 65 days after the start of the test. For the resin compositions of Examples 6 and 7 and the resin composition of Comparative Example 4, the observation results on the 50th day from the start of the test are also shown in parentheses. The resin composition of Example 7 was found to undergo phase separation when observed 50 days after the start of the test. On the other hand, no phase separation was observed in the resin compositions of Example 6 and Comparative Example 4 after 50 days from the start of the test.
 以上のことから、貯蔵安定性に関しては、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が2.00重量%未満である場合、かかる重合体微粒子(A)を含有している樹脂組成物は、貯蔵安定性に優れることが明らかになった。特に、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が1.00重量%未満である場合は、樹脂組成物の貯蔵安定性に特に優れることが明らかになった。 From the above, regarding the storage stability, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, It has been found that when the structural unit of 2 is less than 2.00% by weight, the resin composition containing such fine polymer particles (A) has excellent storage stability. In particular, when the total amount of the first structural unit and the second structural unit in the polymer constituting the graft portion of the fine polymer particles (A) is 100% by weight, the second structural unit is 1.00% by weight. %, the storage stability of the resin composition is particularly excellent.
 また、取扱い性に関しては、比較例4の組成物は、Shear Rate(SR,ずり速度)が10s-1における粘度が1650mPa・sであった。これに対して、実施例6~7および比較例5の組成物はいずれも、表2中に比較例4の組成物の粘度に対する粘度低下率を括弧書きで併記したとおり、Shear Rate(SR,ずり速度)が10s-1における粘度が10%以上低下しており、取扱い性が向上していた。 As for handleability, the composition of Comparative Example 4 had a viscosity of 1650 mPa·s at a shear rate (SR) of 10 s −1 . On the other hand, all of the compositions of Examples 6 to 7 and Comparative Example 5 had Shear Rate (SR, The viscosity at a shear rate of 10 s -1 was reduced by 10% or more, and the handleability was improved.
 以上のことから、取扱い性に関しては、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%を超える場合、かかる重合体微粒子(A)を含有している組成物は、組成物の取扱い性が向上することが明らかになった。 From the above, regarding the handleability, when the total of the first structural unit and the second structural unit in the polymer constituting the graft portion of the polymer fine particle (A) is 100% by weight, the second structural unit exceeds 0.00% by weight, the composition containing such fine polymer particles (A) has improved handleability.
 実施例6~7および比較例4~5の結果から、重合体微粒子(A)と低分子化合物(C)とを含有する第2組成物についても、重合体微粒子(A)のグラフト部を構成する重合体における第1の構成単位と第2の構成単位との合計を100重量%とした場合に、第2の構成単位が0.00重量%を超えて2.00重量%未満である場合、かかる重合体微粒子(A)を含有している第2組成物は、取扱い性および貯蔵安定性の両方に優れることが明らかになった。 From the results of Examples 6 and 7 and Comparative Examples 4 and 5, the second composition containing the polymer fine particles (A) and the low-molecular-weight compound (C) also constitutes the graft portion of the polymer fine particles (A). When the second structural unit is more than 0.00% by weight and less than 2.00% by weight, when the total of the first structural unit and the second structural unit in the polymer is 100% by weight , the second composition containing such polymer fine particles (A) was found to be excellent in both handleability and storage stability.

Claims (15)

  1.  重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)と、を含有し、
     前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、
     前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、
     前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、
     前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
     前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
     前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、
     前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記マトリクス樹脂(B)は50~99重量%である、樹脂組成物。
    containing polymer fine particles (A) and a matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule,
    The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
    The elastic body includes one or more selected from the group consisting of diene-based rubber, (meth)acrylate-based rubber, and organosiloxane-based rubber,
    The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
    The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
    The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
    When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight. and
    When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the matrix resin (B) is 50% by weight. A resin composition that is ~99% by weight.
  2.  前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は10~50重量%であり、前記マトリクス樹脂(B)は50~90重量%である、請求項1に記載の樹脂組成物。 When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 10 to 50% by weight, and the matrix resin (B) is 50% by weight. The resin composition of claim 1, which is ∼90% by weight.
  3.  前記弾性体は、
       ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上の単量体を重合してなる弾性体の弾性コアと、
       前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合してなる表面架橋重合体と、
    を含有している、請求項1または2に記載の樹脂組成物。
    The elastic body is
    an elastic core of an elastic body obtained by polymerizing one or more monomers selected from the group consisting of diene-based rubbers, (meth)acrylate-based rubbers, and organosiloxane-based rubbers;
    a surface-crosslinked polymer obtained by polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
    The resin composition according to claim 1 or 2, containing
  4.  分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)をさらに含有する、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising a low molecular weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule.
  5.  前記低分子化合物(C)が、(メタ)アクリロイル基含有化合物である、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the low-molecular-weight compound (C) is a (meth)acryloyl group-containing compound.
  6.  前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて1.00重量%未満である、請求項1~5のいずれか1項に記載の樹脂組成物。 When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 1.00% by weight. The resin composition according to any one of claims 1 to 5.
  7.  前記マトリクス樹脂(B)は、不飽和ポリエステル、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレートよりなる群から選択される1種以上の硬化性樹脂である、請求項1~6のいずれか1項に記載の樹脂組成物。 The matrix resin (B) is selected from the group consisting of unsaturated polyesters, polyester (meth)acrylates, epoxy (meth)acrylates, urethane (meth)acrylates, polyether (meth)acrylates and acrylated (meth)acrylates. The resin composition according to any one of claims 1 to 6, which is one or more curable resins.
  8.  樹脂(D)をさらに含む、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising a resin (D).
  9.  前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)は5~50重量%であり、前記マトリクス樹脂(B)は50~95重量%であり、
     マスターバッチ用である、
    請求項1に記載の樹脂組成物。
    When the total of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 5 to 50% by weight, and the matrix resin (B) is 50% by weight. ~95% by weight,
    for masterbatches,
    The resin composition according to claim 1.
  10.  重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)と、を含有し、
     前記重合体微粒子(A)は、弾性体と、当該弾性体に対してグラフト結合されたグラフト部と、を有するゴム含有グラフト共重合体を含み、
     前記弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴム、およびオルガノシロキサン系ゴムからなる群より選択される1種以上を含み、
     前記グラフト部は、第1の単量体に由来する第1の構成単位と、第2の単量体に由来する第2の構成単位とを含む重合体からなり、
     前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
     前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
     前記グラフト部における前記第1の構成単位と前記第2の構成単位との合計を100重量%とした場合に、前記第2の構成単位が0.00重量%を超えて2.00重量%未満であり、
     前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)は1~50重量%であり、前記低分子化合物(C)は50~99重量%である、組成物。
    Containing polymer fine particles (A) and a low-molecular-weight compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule,
    The fine polymer particles (A) contain a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body,
    The elastic body includes one or more selected from the group consisting of diene rubber, (meth)acrylate rubber, and organosiloxane rubber,
    The graft portion is made of a polymer containing a first structural unit derived from a first monomer and a second structural unit derived from a second monomer,
    The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
    The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
    When the total of the first structural unit and the second structural unit in the graft portion is 100% by weight, the second structural unit is more than 0.00% by weight and less than 2.00% by weight. and
    When the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine-particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is is 50 to 99% by weight.
  11.  ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる弾性体調製工程と、
     前記弾性体調製工程によって調製された弾性体に、第1の単量体および第2の単量体をグラフト重合させるグラフト部調製工程と、を含み、
     前記第1の単量体は、芳香族ビニル単量体、ビニルシアン単量体、および(メタ)アクリレート単量体からなる群より選択される1種以上であり、
     前記第2の単量体は、分子内に2個以上の重合性不飽和結合を有する多官能性単量体であり、
     前記グラフト部調製工程では、前記第1の単量体と前記第2の単量体との合計を100重量%とした場合に、前記第2の単量体を、0.00重量%を超えて2.00重量%未満使用する、重合体微粒子の製造方法。
    an elastic body preparation step of polymerizing at least one monomer selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers;
    a graft portion preparation step of graft-polymerizing the first monomer and the second monomer onto the elastic body prepared in the elastic body preparation step;
    The first monomer is one or more selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylate monomer,
    The second monomer is a polyfunctional monomer having two or more polymerizable unsaturated bonds in the molecule,
    In the graft portion preparation step, the second monomer exceeds 0.00% by weight when the total of the first monomer and the second monomer is 100% by weight. A method for producing polymer microparticles, using less than 2.00% by weight.
  12.  前記弾性体調製工程は、以下の工程(a)および工程(b)を含む、請求項11に記載の重合体微粒子の製造方法:
     (a)ジエン系単量体、(メタ)アクリレート系単量体、およびオルガノシロキサン系単量体からなる群より選択される1種以上の単量体を重合させる工程;
     (b)前記多官能性単量体および当該多官能性単量体以外のビニル系単量体からなる群より選択される1種以上の単量体を重合させる工程。
    12. The method for producing polymer microparticles according to claim 11, wherein the elastic body preparation step includes the following steps (a) and (b):
    (a) polymerizing one or more monomers selected from the group consisting of diene-based monomers, (meth)acrylate-based monomers, and organosiloxane-based monomers;
    (b) a step of polymerizing one or more monomers selected from the group consisting of the polyfunctional monomer and vinyl-based monomers other than the polyfunctional monomer;
  13.  請求項11または12に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に2個以上の重合性不飽和結合を有するマトリクス樹脂(B)とを混合する混合工程を含み、
     前記混合工程では、前記重合体微粒子(A)と前記マトリクス樹脂(B)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記マトリクス樹脂(B)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記マトリクス樹脂(B)とを混合する、樹脂組成物の製造方法。
    Mixing of polymer fine particles (A) produced by the method for producing polymer fine particles according to claim 11 or 12 and matrix resin (B) having two or more polymerizable unsaturated bonds in the molecule. including the process,
    In the mixing step, when the total amount of the polymer fine particles (A) and the matrix resin (B) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the matrix resin A method for producing a resin composition, wherein the fine polymer particles (A) and the matrix resin (B) are mixed at a mixing ratio of 50 to 99% by weight of (B).
  14.  前記混合工程は、以下の第1工程~第3工程をこの順に含む、請求項13に記載の樹脂組成物の製造方法:
     前記重合体微粒子(A)を含有する水性ラテックスを、水に対し部分溶解性を示す有機溶媒と混合した後、得られた混合物を水と接触させて、前記有機溶媒を含有する前記重合体微粒子(A)の凝集体を水相中に生成させる第1工程;
     前記重合体微粒子(A)の前記凝集体を前記水相から分離及び回収した後、当該凝集体を前記有機溶媒と混合して、前記重合体微粒子(A)の有機溶媒分散液を得る第2工程;
     前記有機溶媒分散液を前記マトリクス樹脂(B)と混合した後、得られた混合物から前記有機溶媒を留去する第3工程。
    The method for producing a resin composition according to claim 13, wherein the mixing step includes the following first to third steps in this order:
    After mixing the aqueous latex containing the polymer fine particles (A) with an organic solvent that exhibits partial solubility in water, the resulting mixture is brought into contact with water to obtain the polymer fine particles containing the organic solvent. A first step of forming aggregates of (A) in an aqueous phase;
    After separating and recovering the aggregates of the polymer fine particles (A) from the aqueous phase, the aggregates are mixed with the organic solvent to obtain an organic solvent dispersion of the polymer fine particles (A). process;
    A third step of mixing the organic solvent dispersion with the matrix resin (B) and then distilling off the organic solvent from the resulting mixture.
  15.  請求項11または12に記載の重合体微粒子の製造方法によって製造された重合体微粒子(A)と、分子内に少なくとも1個の重合性不飽和結合を有する分子量300未満の低分子化合物(C)とを混合する混合工程を含み、
     前記混合工程では、前記重合体微粒子(A)と前記低分子化合物(C)との合計を100重量%とした場合に、前記重合体微粒子(A)が1~50重量%であり、前記低分子化合物(C)が50~99重量%となる配合比率にて、前記重合体微粒子(A)と前記低分子化合物(C)とを混合する、組成物の製造方法。
    Polymer fine particles (A) produced by the method for producing polymer fine particles according to claim 11 or 12, and a low-molecular compound (C) having a molecular weight of less than 300 and having at least one polymerizable unsaturated bond in the molecule including a mixing step of mixing with
    In the mixing step, when the total amount of the polymer fine particles (A) and the low-molecular-weight compound (C) is 100% by weight, the polymer fine particles (A) are 1 to 50% by weight, and the low-molecular-weight compound (C) is A method for producing a composition, wherein the fine polymer particles (A) and the low-molecular-weight compound (C) are mixed at a compounding ratio in which the molecular compound (C) is 50 to 99% by weight.
PCT/JP2022/008754 2021-03-05 2022-03-02 Resin composition, method for producing polymer fine particles, and method for producing resin composition WO2022186248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503889A JPWO2022186248A1 (en) 2021-03-05 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035769 2021-03-05
JP2021035769 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022186248A1 true WO2022186248A1 (en) 2022-09-09

Family

ID=83154445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008754 WO2022186248A1 (en) 2021-03-05 2022-03-02 Resin composition, method for producing polymer fine particles, and method for producing resin composition

Country Status (2)

Country Link
JP (1) JPWO2022186248A1 (en)
WO (1) WO2022186248A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184255A (en) * 1992-12-22 1994-07-05 Asahi Chem Ind Co Ltd Curable resin composition, composite material and laminate using the same
JPH0733836A (en) * 1993-07-22 1995-02-03 Mitsubishi Rayon Co Ltd Production of graft copolymer and thermoplastic resin composition
JP2002003819A (en) * 2000-06-21 2002-01-09 Nof Corp Thermosetting resin composition for vibration damping and cured product thereof
WO2008020614A1 (en) * 2006-08-18 2008-02-21 Kaneka Corporation Method for producing branched vinyl polymer having functional group
JP2010106204A (en) * 2008-10-31 2010-05-13 Kureha Corp Graft copolymer particle and method of manufacturing the same, and antistatic resin composition using the same
JP2016164283A (en) * 2012-10-31 2016-09-08 三菱レイヨン株式会社 Powder, resin composition and molded body
JP2018090692A (en) * 2016-12-02 2018-06-14 三菱ケミカル株式会社 Rubber-containing graft polymer, thermoplastic resin composition and molding
WO2019131374A1 (en) * 2017-12-25 2019-07-04 三菱ケミカル株式会社 Rubber-containing graft polymer, resin composition containing rubber-containing graft polymer, and molded article of same
JP2019131744A (en) * 2018-02-01 2019-08-08 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded article thereof
WO2020138263A1 (en) * 2018-12-27 2020-07-02 株式会社カネカ Resin composition and use for same
WO2020196922A1 (en) * 2019-03-28 2020-10-01 株式会社カネカ Particulate matter and use of same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184255A (en) * 1992-12-22 1994-07-05 Asahi Chem Ind Co Ltd Curable resin composition, composite material and laminate using the same
JPH0733836A (en) * 1993-07-22 1995-02-03 Mitsubishi Rayon Co Ltd Production of graft copolymer and thermoplastic resin composition
JP2002003819A (en) * 2000-06-21 2002-01-09 Nof Corp Thermosetting resin composition for vibration damping and cured product thereof
WO2008020614A1 (en) * 2006-08-18 2008-02-21 Kaneka Corporation Method for producing branched vinyl polymer having functional group
JP2010106204A (en) * 2008-10-31 2010-05-13 Kureha Corp Graft copolymer particle and method of manufacturing the same, and antistatic resin composition using the same
JP2016164283A (en) * 2012-10-31 2016-09-08 三菱レイヨン株式会社 Powder, resin composition and molded body
JP2018090692A (en) * 2016-12-02 2018-06-14 三菱ケミカル株式会社 Rubber-containing graft polymer, thermoplastic resin composition and molding
WO2019131374A1 (en) * 2017-12-25 2019-07-04 三菱ケミカル株式会社 Rubber-containing graft polymer, resin composition containing rubber-containing graft polymer, and molded article of same
JP2019131744A (en) * 2018-02-01 2019-08-08 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded article thereof
WO2020138263A1 (en) * 2018-12-27 2020-07-02 株式会社カネカ Resin composition and use for same
WO2020196922A1 (en) * 2019-03-28 2020-10-01 株式会社カネカ Particulate matter and use of same

Also Published As

Publication number Publication date
JPWO2022186248A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2014115778A1 (en) Curable resin composition containing polymer microparticles
JP2018090651A (en) Curable epoxy resin composition excellent in storage stability
CN110945074B (en) Epoxy resin composition
JP7391043B2 (en) Resin composition and its use
US20240026092A1 (en) Method for producing purified polymer fine particles and method for producing resin composition
JP2019172895A (en) Epoxy resin composition for paint
US9127159B2 (en) Unsaturated ester resin composition, unsaturated ester-cured product, and manufacturing method therefor
CN108699329B (en) Polyol composition and thermosetting resin
WO2022186248A1 (en) Resin composition, method for producing polymer fine particles, and method for producing resin composition
JP7654552B2 (en) Adhesive and method for producing adhesive
WO2020196920A1 (en) Method for producing resin composition, and resin composition
JP7442992B2 (en) Laminate and method for manufacturing the laminate
JP7451498B2 (en) Method for producing resin composition and resin composition
JP7461931B2 (en) Powders and granular materials and their uses
WO2020218552A1 (en) Structure production method
JP7277241B2 (en) Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained by using the adhesion method
JP7377793B2 (en) Powder with improved dispersibility in thermosetting matrix resin
WO2023032605A1 (en) Composition and method for producing composition
JP2023074375A (en) Composition
US20230331982A1 (en) Resin composition
JP2020164561A (en) Method for producing granule and granule
CN116783226A (en) Resin composition
JP2022135756A (en) Method for producing resin composition
WO2022071406A1 (en) Latex and resin composition, and methods for producing same
JP5605827B2 (en) Unsaturated ester-based resin composition, unsaturated ester-based cured product, and production methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503889

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763302

Country of ref document: EP

Kind code of ref document: A1