WO2020218552A1 - Structure production method - Google Patents
Structure production method Download PDFInfo
- Publication number
- WO2020218552A1 WO2020218552A1 PCT/JP2020/017791 JP2020017791W WO2020218552A1 WO 2020218552 A1 WO2020218552 A1 WO 2020218552A1 JP 2020017791 W JP2020017791 W JP 2020017791W WO 2020218552 A1 WO2020218552 A1 WO 2020218552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- resin composition
- curable resin
- parts
- elastic body
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/08—Macromolecular additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/06—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
Definitions
- the present invention relates to a method for manufacturing a structure.
- the cured epoxy resin is excellent in many respects such as dimensional stability, mechanical strength, electrical insulation properties, heat resistance, water resistance, and chemical resistance.
- the cured product of the epoxy resin has low fracture toughness and may exhibit a very brittle property, and such a property is often a problem in a wide range of applications. Various techniques have been disclosed for this problem.
- Patent Document 1 and Patent Document 2 disclose a technique for dispersing polymer fine particles in a curable resin composition containing a curable resin such as an epoxy resin as a main component.
- the curable resin composition containing an epoxy resin may be used as an adhesive (for example, a structural adhesive) (Patent Documents 1 and 3).
- One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a structure having excellent workability.
- the present inventor has cured the epoxy resin (A), the polymer fine particles (B) containing a hydroxy group in the graft portion, and the fumed silica (C) in specific amounts.
- the above problems can be solved by using the sex resin composition, and have completed the present invention.
- the curable resin composition is applied to the first adherend, and the second adherend is bonded to the first adherend.
- the curable resin composition comprises an epoxy resin (a bonding step, a cleaning step of cleaning the bonded body obtained in the bonding step, and a curing step of curing the curable resin composition.
- a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group with respect to 100 parts by mass of the epoxy resin (A). It contains 1 part to 100 parts by mass of the polymer fine particles (B) and 1 part to 30 parts by mass of the fumed silica (C).
- Patent Document 1 In order to reduce scattering and deformation of the uncured curable resin composition due to water pressure, studies have been conventionally made to improve the shear rate dependence of the viscosity of the curable resin composition (for example, Patent Document 1).
- the present inventor examined the viscosity of the curable resin composition and inferred as follows. That is, the phenomenon that the curable resin composition is deformed by the shower water pressure is the deformation of the curable resin composition in a stationary state, and it is considered that the viscosity of the curable resin composition in the low shear rate range is important. Then, the viscosity of the curable resin composition in the high shear rate range at the time of application is lowered, and the viscosity of the curable resin composition in the low shear rate range is increased, that is, the viscosity of the curable resin composition is sheared.
- the present inventor has independently found that by increasing the speed dependence, (a) suppression of scattering and deformation of the curable resin composition in the washing shower step and (b) coating workability can be achieved at the same time.
- An object according to an embodiment of the present invention is to provide a curable resin composition having a high viscosity dependence on the shear rate, thereby providing a method for producing a structure having excellent workability using the curable resin composition. That is.
- the present inventor has made it an issue to improve the temperature dependence of the viscosity of the curable resin composition.
- the resin composition in which the particle components such as the polymer fine particles (B) according to the embodiment of the present invention are dispersed in the liquid matrix resin such as the epoxy resin (A) is formed between the particle components (hereinafter, also between the particles).
- structural viscosity associated with a weak interaction referred to as
- the present inventor has set an original problem of obtaining a resin composition having a large structural viscosity in a low shear rate range, and conducted a diligent study. It was. In the process, the present inventor has independently found that the structural viscosity of the resin composition increases in the low shear rate range by enhancing the interaction between the polymer fine particles (B).
- the present inventor found that in a curable resin composition containing an epoxy resin, the shear rate dependence of the viscosity of the curable resin composition was (i) polymer fine particles and fumed. It was independently found that it changes depending on the combined use with silica and the structure of (ii) polymer fine particles. Based on this new finding, the present inventor has diligently studied polymer fine particles and fumed silica, and as a result, completed the present invention.
- Yield Stress also referred to as yield stress
- the more the curable resin composition can be suppressed from scattering and deformation in the washing shower step for example, Patent Document 3.
- the curable resin composition is (1) applied to one of the adherends after being heated (also referred to as heating coating), and then (2) one of them. Before or at the same time that the adherend and the other adherend are bonded together at room temperature, they can be thinly stretched from the thickness at the time of application.
- the present inventor has independently found that the following problems (i) and (ii) occur when the viscosity of the curable resin composition is highly temperature-dependent: (i) curable resin composition. If the viscosity of the material during warm coating is set low, the viscosity of the curable resin composition during warm coating may be too low and the applied curable resin composition may drip; and (ii) curability.
- the viscosity of the resin composition during warm coating is set high, the viscosity of the curable resin composition after coating is significantly increased due to the decrease in temperature in a room temperature environment. It may be difficult to stretch an object thinly.
- the present inventor has improved workability in the production of structures using the curable resin composition by reducing the temperature dependence of the viscosity of the curable resin composition. I found it uniquely to get.
- a preferred embodiment of the present invention provides a curable resin composition having a high Yield Stress and / or a small temperature dependence of viscosity in addition to a high viscosity shear rate dependence. With the goal.
- a curable resin composition is applied to a first adherend, and the second adherend is bonded to the first adherend. It includes a step, a cleaning step of cleaning the bonded body obtained in the bonding step, and a curing step of curing the curable resin composition.
- the curable resin composition comprises 1 part by mass to 100 parts by mass of polymer fine particles (B) and 1 part by mass of fumed silica (C) with respect to 100 parts by mass of the epoxy resin (A) and the epoxy resin (A). Contains to 30 parts by mass.
- the polymer fine particles (B) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group.
- “Method for manufacturing a structure according to an embodiment of the present invention” "Epoxy resin (A)”, “Polymer fine particles (B)” and “Fumed silica (C)” are described below as “Method for manufacturing the present invention", respectively. , "(A) component", “(B) component” and “(C) component”.
- the curable resin composition used in this production method has a high viscosity dependence on the shear rate. That is, the curable resin composition used in this production method has a lower viscosity in the high shear rate range and a higher viscosity in the low shear rate range than the conventional curable resin composition. Therefore, it can be said that the curable resin composition used in this production method has excellent shower resistance. Further, the curable resin composition used in the present production method may have an advantage that the temperature dependence of the viscosity is small.
- the curable resin composition used in this production method has a higher viscosity at the time of coating (which can be said to be the viscosity at the time of heating and the viscosity at the high temperature) as compared with the conventional curable resin composition, and In some cases, the viscosity when working in a room temperature environment (which can be said to be the viscosity at low temperature) is low. Since this production method uses a curable resin composition having the above-mentioned advantages, it has an advantage of excellent workability.
- the curable resin composition according to the embodiment of the present invention comprises 1 part by mass to 100 parts by mass of the polymer fine particles (B) with respect to 100 parts by mass of the epoxy resin (A) and the epoxy resin (A). It contains 1 part by mass to 30 parts by mass of fumed silica (C).
- the polymer fine particles (B) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group.
- the "curable resin composition according to one embodiment of the present invention” may be hereinafter referred to as "the present curable resin composition".
- the viscosity is highly dependent on the shear rate. Therefore, by using the present curable resin composition, it is possible to provide a method for producing a structure having excellent workability.
- the shear rate dependence of the viscosity is evaluated by the ratio of the viscosity when the shear rate is 5s -1 to the viscosity when the shear rate is 50s -1 .
- a high shear rate dependence of the viscosity the viscosity / shear rate 50s -1 at a ratio (shear rate 5s -1 and the viscosity at a viscosity and shear rate 50s -1 at a shear rate of 5s -1 It means that the viscosity at the time of) is large.
- the method for measuring the viscosity will be described in detail in Examples.
- the reason why the viscosity of this curable resin composition is highly dependent on the shear rate is not clear, but it is estimated as follows.
- the polymer fine particles (B) according to the embodiment of the present invention have a hydroxy group at the graft portion.
- the present curable resin composition contains fumed silica (C).
- Humed silica (C) has a hydroxy group derived from a silanol group or the like on its surface.
- the present curable resin composition has the above-mentioned structure, it may have an advantage that the temperature dependence of the viscosity is small.
- a curable resin composition having a small temperature dependence of viscosity it is possible to provide a method for producing a structure having more excellent workability.
- Epoxy resin (A) epoxy resin (A)
- the present curable resin composition contains an epoxy resin (A) as a main component.
- epoxy resin (A) various hard epoxy resins can be used except for the rubber-modified epoxy resin and the urethane-modified epoxy resin described later.
- examples of the epoxy resin (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and novolac type epoxy resin.
- Bisphenol A propylene oxide adduct glycidyl ether type epoxy resin Bisphenol A propylene oxide adduct glycidyl ether type epoxy resin, hydrogenated bisphenol A (or F) type epoxy resin, fluorinated epoxy resin, flame-retardant epoxy resin such as tetrabromo bisphenol A glycidyl ether, p-oxybenzo Glycidyl acid ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, various alicyclic epoxy resins, N, N-diglycidyl aniline, N, N-diglycidyl-o-toluidine, triglycidyl isocia Nurate, divinylbenzene dioxide, resorcinol diglycidyl ether, polyalkylene glycol diglycidyl ether, glycol diglycidyl ether, diglycidyl ester of aliphatic polybasic acid,
- the "hard epoxy resin” is intended to be an epoxy resin having a specific glass transition temperature (Tg), and examples thereof include an epoxy resin having a Tg of 50 ° C. or higher.
- polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether. More specific examples of the glycol diglycidyl ether include neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether and the like. Be done.
- the aliphatic polybasic acid diglycidyl ester include dimer acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, and maleic acid diglycidyl ester.
- the glycidyl ether of the divalent or higher polyvalent aliphatic alcohol includes trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, castor oil-modified polyglycidyl ether, propoxylated glycerin triglycidyl ether, and sorbitol. Examples include polyglycidyl ether.
- Examples of the epoxy compound obtained by adding a polybasic acid or the like to an epoxy resin include a dimer of a tall oil fatty acid (dimeric acid) and a bisphenol A type epoxy as described in WO2010-098950. Examples include an addition reaction product with a resin. One type of these epoxy resins may be used alone, or two or more types may be used in combination.
- the polyalkylene glycol diglycidyl ether, the glycol diglycidyl ether, the diglycidyl ester of the aliphatic polybasic acid, and the glycidyl ether of the divalent or higher polyvalent aliphatic alcohol are epoxy resins having a relatively low viscosity. ..
- polyalkylene glycol diglycidyl ether, glycol diglycidyl ether, diglycidyl ester of aliphatic polybasic acid, and glycidyl ether of dihydric or higher polyhydric alcohol are referred to as low viscosity epoxy resins.
- the low-viscosity epoxy resin When the low-viscosity epoxy resin is used in combination with an epoxy resin other than the low-viscosity epoxy resin such as the bisphenol A type epoxy resin and the bisphenol F type epoxy resin, the low-viscosity epoxy resin can function as a reactive diluent. As a result, the low-viscosity epoxy resin can improve the balance between the viscosity of the curable resin composition and the physical properties of the adhesive layer obtained from the curable resin composition.
- the curable resin composition may contain an epoxy resin (for example, a low-viscosity epoxy resin) that can function as a reactive diluent.
- the content of the epoxy resin that functions as the reactive diluent is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, or 2% by mass, based on 100% by mass of the epoxy resin (A). % To 5% by mass is more preferable.
- the chelate-modified epoxy resin is a reaction product of an epoxy resin and a compound (chelate ligand) containing a chelate functional group.
- a chelate-modified epoxy resin is added to the curable resin composition and used as an adhesive, the adhesiveness to the surface of a metal substrate contaminated with an oily substance can be improved.
- the chelate functional group is a functional group of a compound having a plurality of coordination positions capable of coordinating to a metal ion in the molecule, and is, for example, a phosphorus-containing acid group (for example, -PO (OH) 2 ) or a carboxylic acid group (-).
- chelating ligand examples include ethylenediamine, bipyridine, ethylenediaminetetraacetic acid, phenanthroline, porphyrin, crown ether, and the like.
- chelate-modified epoxy resins include ADEKA ADEKA Resin EP-49-10N.
- the amount of the chelate-modified epoxy resin used in the component (A) is preferably 0.1 to 10% by mass, and more preferably 0.5 to 3% by mass.
- the "usage amount” of a certain component can be said to be the “addition amount” of the component, and can also be said to be the “content” of the component in the curable resin composition.
- epoxy resins those having at least two epoxy groups in one molecule have high reactivity in curing of the obtained curable resin composition, and the obtained cured product easily forms a three-dimensional network. It is preferable from the point of view.
- the bisphenol A type epoxy resin and the bisphenol F type epoxy resin can (a) obtain a cured product having high elasticity and excellent heat resistance and adhesiveness, and (b) be relatively inexpensive. Therefore, bisphenol A type epoxy resin is particularly preferable.
- an epoxy resin having an epoxy equivalent of less than 220 is preferable because it has a small temperature dependence of viscosity and a high elastic modulus and heat resistance of the obtained cured product.
- an epoxy resin having an epoxy equivalent of 90 or more and less than 210 is more preferable, and an epoxy resin having an epoxy equivalent of 150 or more and less than 200 is further preferable.
- the epoxy resin (A) is preferably a bisphenol A type epoxy resin and / or a bisphenol F type epoxy resin having an epoxy equivalent of less than 220. Since the bisphenol A type epoxy resin and the bisphenol F type epoxy resin are liquid at room temperature, according to the above configuration, the temperature dependence of the viscosity of the obtained curable resin composition is small, and the handleability is good.
- a bisphenol A type epoxy resin and a bisphenol F type epoxy resin having an epoxy equivalent of 220 or more and less than 5000 are added to 100% by mass of the component (A) in a range of preferably 40% by mass or less, more preferably 20% by mass or less. Is preferable. According to the above configuration, the obtained adhesive layer has an advantage of being excellent in impact resistance.
- the curable resin composition according to one embodiment of the present invention can provide an adhesive layer having excellent toughness and impact peeling adhesiveness due to the toughness improving effect of the component (B).
- the component (B) is 1 mass by mass with respect to 100 parts by mass of the component (A). 3 parts to 100 parts by mass is preferable, 3 parts by mass to 70 parts by mass is more preferable, 5 parts by mass to 50 parts by mass is further preferable, and 10 parts by mass to 40 parts by mass is particularly preferable.
- the volume average particle diameter (Mv) of the polymer fine particles (B) is not particularly limited, but in consideration of industrial productivity, 10 nm to 2000 nm is preferable, 10 nm to 1000 nm is preferable, 30 nm to 600 nm is more preferable, and 50 nm to 400 nm is preferable. More preferably, 100 nm to 200 nm is particularly preferable. According to the above configuration, there is also an advantage that a highly stable curable resin composition having a desired viscosity can be obtained.
- the "volume average particle size (Mv) of the polymer fine particles (B)" is intended to be the volume average particle size of the primary particles of the polymer fine particles (B) unless otherwise specified.
- the volume average particle size (Mv) of the polymer fine particles (B) is a dynamic light scattering type particle size distribution measuring device (for example, Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.)) using an aqueous latex containing the polymer fine particles (B) as a sample. Can be measured using.
- the method for measuring the body volume average particle diameter of the polymer fine particles (B) will be described in detail in the following Examples.
- the volume average particle diameter of the polymer fine particles (B) is determined by cutting the adhesive layer of the structure, imaging the cut surface of the adhesive layer using an electron microscope, or the like, and then using the obtained imaging data (imaging image). It can also be measured.
- the component (B) has a half-price width of 0.5 times or more and 1 times or less of the volume average particle size in the number distribution of the volume average particle size. Is preferable because the obtained curable resin composition has a low viscosity and is easy to handle.
- the component (B) particularly contains 10 to 90% by mass of polymer fine particles having a volume average particle diameter of 10 nm or more and less than 150 nm, and 90 to 10% by mass of polymer fine particles (B) having a volume average particle diameter of 150 nm or more and 2000 nm or less. Is preferable.
- the component (B) is preferably dispersed in the state of primary particles in the curable resin composition or the adhesive layer.
- the polymer fine particles (B) are dispersed in the curable resin composition or the adhesive layer in the form of primary particles means that in the curable resin composition or the adhesive layer, This means that the polymer fine particles (B) are dispersed substantially independently (without contact).
- the dispersed state of the polymer fine particles (B) in the curable resin composition or the adhesive layer is, for example, the volume average particle diameter (Mv) / number average particle diameter (Mn) of the polymer fine particles (B) (hereinafter, “Mv / Mn”. It may be confirmed by measuring).
- the Mv / Mn of the polymer fine particles (B) is the volume average particle diameter (Mv) of the polymer fine particles (B) using a dynamic light scattering type particle size distribution measuring device (for example, Microtrac UPA (manufactured by Nikkiso Co., Ltd.)). ) And the number average particle size (Mn) are measured respectively, and Mv can be obtained by dividing by Mn.
- Mv / Mn of the polymer fine particles (B) in the curable resin composition for example, a part of the curable resin composition is dissolved in a solvent such as methyl ethyl ketone, and the obtained mixture (dissolved product) is subjected to dynamic light.
- the Mv / Mn of the polymer fine particles (B) in the adhesive layer is obtained, for example, after cutting the adhesive layer of the structure and imaging the cut surface of the adhesive layer using an electron microscope or the like. ) Can be used for measurement.
- the value of the volume average particle diameter (Mv) / number average particle diameter (Mn) of the polymer fine particles (B) is not particularly limited, but is preferably 3 or less, more preferably 2.5 or less, and further 2 or less. It is preferable, and 1.5 or less is particularly preferable.
- the volume average particle size (Mv) / number average particle size (Mn) of the polymer fine particles (B) is 3 or less, the polymer fine particles (B) are good in the curable resin composition or the adhesive layer, that is, the primary particles. It is considered that they are dispersed in the state of.
- the curable resin composition in which the Mv / Mn of the polymer fine particles (B) is 3 or less, that is, the curable resin composition in which the polymer fine particles (B) have good dispersibility has physical properties such as impact resistance and adhesiveness.
- An excellent adhesive layer can be provided.
- the adhesive layer in which the Mv / Mn of the polymer fine particles (B) is 3 or less, that is, the adhesive layer in which the polymer fine particles (B) have good dispersibility is excellent in physical properties such as impact resistance and adhesiveness.
- the polymer fine particles (B) are stably dispersed over a long period of time under normal conditions without agglomeration, separation, or precipitation in the continuous layer.
- stable dispersion of the polymer fine particles (B).
- the continuous layer include a curable composition and an adhesive layer. It is preferable that the distribution of the polymer fine particles (B) in the continuous layer does not change substantially. Further, even when the continuous layer (for example, a curable resin composition) is heated within a non-hazardous range to reduce the viscosity of the continuous layer and stirred, the polymer fine particles (B) in the continuous layer are “stable". It is preferable that the "dispersion" is maintained.
- one type may be used alone, or two or more types may be used in combination.
- the elastic body preferably contains at least one selected from the group consisting of natural rubber, diene rubber, (meth) acrylate rubber and polysiloxane rubber elastic, and preferably diene rubber and (meth) acrylate rubber. It is more preferable to contain at least one selected from the group consisting of polysiloxane rubber-based elastic bodies.
- the elastic body can also be rephrased as rubber particles.
- the term (meth) acrylate means acrylate and / or methacrylate.
- the polysiloxane rubber-based elastic body may also be referred to as an organosiloxane-based rubber.
- Curability obtained because (a) the effect of improving toughness and impact resistance peeling adhesiveness in the obtained adhesive layer is high, and (b) the affinity with the matrix resin (for example, epoxy resin (A)) is low.
- the elastic body preferably contains a diene rubber, and more preferably a diene rubber, because the resin composition is unlikely to increase in viscosity with time due to swelling of the elastic body.
- the obtained curable resin composition can also provide an adhesive layer having excellent toughness and impact resistance.
- the diene-based rubber is an elastic body containing a structural unit derived from a diene-based monomer as a structural unit.
- the diene-based monomer can also be rephrased as a conjugated diene-based monomer.
- the diene-based rubber is derived from 50 to 100% by mass of the constituent unit derived from the diene-based monomer in 100% by mass of the constituent unit, and a vinyl-based monomer other than the diene-based monomer copolymerizable with the diene-based monomer. It may contain 0 to 50% by mass of the constituent units to be formed.
- the diene-based rubber may contain a structural unit derived from the (meth) acrylate-based monomer as a structural unit in a smaller amount than the structural unit derived from the diene-based monomer.
- diene-based monomer examples include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2-chloro-1,3-butadiene and the like. Only one type of these diene-based monomers may be used, or two or more types may be used in combination.
- vinyl-based monomers other than the diene-based monomer copolymerizable with the diene-based monomer include (i) styrene, ⁇ -methylstyrene, monochlorostyrene, and dichlorostyrene.
- Vinyl monomers (ii) Vinyl carboxylic acids such as acrylic acid and methacrylic acid; (iii) Vinyl cyanes such as acrylonitrile and methacrylate; (iv) Vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; (V) Vinyl acetate; Alkens such as ethylene, propylene, butylene, and isobutylene; (vi) Polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene, and the like.
- the vinyl-based monomer A described above only one type may be used, or two or more types may be used in combination.
- styrene is particularly preferable.
- the elastic body is preferably butadiene rubber and / or butadiene-styrene rubber, and more preferably butadiene rubber.
- the butadiene rubber is a rubber composed of a structural unit derived from 1,3-butadiene, and is also called a polybutadiene rubber.
- the butadiene-styrene rubber is a copolymer of 1,3-butadiene and styrene, and is also referred to as polystyrene-butadiene.
- the resin composition has an advantage that the viscosity increase with time due to the swelling of the elastic body is less likely to occur. Further, butadiene-styrene rubber is more preferable in that the transparency of the obtained adhesive layer can be enhanced by adjusting the refractive index.
- the elastic body preferably contains (meth) acrylate-based rubber, and more preferably (meth) acrylate-based rubber.
- case B a case where the elastic body contains (meth) acrylate-based rubber
- the (meth) acrylate-based rubber is an elastic body containing a structural unit derived from a (meth) acrylate-based monomer as a structural unit.
- the (meth) acrylate-based rubber is copolymerizable with 50 to 100% by mass of the constituent unit derived from the (meth) acrylate-based monomer and the (meth) acrylate-based monomer in 100% by mass of the constituent unit (meth).
- Meta) It may contain 0 to 50% by mass of a structural unit derived from a vinyl-based monomer other than the acrylate-based monomer.
- the (meth) acrylate-based rubber may contain a structural unit derived from the diene-based monomer in an amount smaller than that of the structural unit derived from the (meth) acrylate-based monomer.
- Examples of the (meth) acrylate-based monomer include (i) methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, and dodecyl (meth).
- Alkyl (meth) acrylates such as acrylates, stearyl (meth) acrylates and behenyl (meth) acrylates; aromatic ring-containing (meth) acrylates such as (ii) phenoxyethyl (meth) acrylates and benzyl (meth) acrylates; (iii) ) Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; glycidyl (meth) acrylate such as (iv) glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate.
- One of these (meth) acrylate-based monomers may be used alone, or two or more thereof may be used in combination.
- ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are particularly preferable.
- vinyl-based monomer other than the (meth) acrylate-based monomer copolymerizable with the (meth) acrylate-based monomer (hereinafter, also referred to as a vinyl-based monomer other than the (meth) acrylate-based monomer), in the vinyl-based monomer A.
- the listed monomers can be mentioned.
- the vinyl-based monomer other than the (meth) acrylate-based monomer one type may be used alone, or two or more types may be used in combination.
- styrene is particularly preferable.
- the elastic body When trying to improve the impact resistance of the adhesive layer at a low temperature without lowering the heat resistance of the obtained adhesive layer, the elastic body preferably contains a polysiloxane rubber-based elastic body, and the polysiloxane rubber-based elastic body is preferable. It is more preferable to be a body.
- the elastic body includes a polysiloxane rubber-based elastic body (Case C) will be described.
- the polysiloxane rubber-based elastic body is composed of alkyl or aryl disubstituted silyloxy units such as (a) dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy.
- the obtained curable resin composition can provide an adhesive layer having excellent heat resistance, so that dimethylsilyloxy units, methylphenylsilyloxy units, and / or dimethyl A polymer composed of silyloxy-diphenylsilyloxy units is preferable, and (b) a polymer composed of dimethylsilyloxy units is most preferable because it is easily available and economical.
- the polymer fine particles (B) preferably contain 80% by mass or more of the polysiloxane rubber-based elastic body, and 90% by mass or more of the elastic body contained in the polymer fine particles (B). It is more preferable to do so. According to the above configuration, the obtained curable resin composition can provide an adhesive layer having excellent heat resistance.
- the elastic body may further contain an elastic body other than the diene rubber, the (meth) acrylate rubber and the polysiloxane rubber elastic body.
- Examples of the elastic body other than the diene-based rubber, the (meth) acrylate-based rubber, and the polysiloxane rubber-based elastic body include natural rubber.
- a crosslinked structure is introduced into the elastic body.
- a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of an elastic body, a method of mixing a polyfunctional monomer and / or a crosslinkable monomer such as a mercapto group-containing compound with a monomer that can form an elastic body and then polymerizing the material can be mentioned. In the present specification, producing a polymer such as an elastic body is also referred to as polymerizing a polymer.
- a method for introducing a crosslinked structure into a polysiloxane rubber-based elastic body the following methods can also be mentioned: (a) When polymerizing a polysiloxane rubber-based elastic body, a polyfunctional alkoxysilane compound is used. A method of partially using it together with other materials, (b) introducing a reactive group such as a vinyl-reactive group or a mercapto group into a polysiloxane rubber-based elastic body, and then adding a vinyl-polymerizable monomer or an organic peroxide.
- a reactive group such as a vinyl-reactive group or a mercapto group
- a crosslinkable monomer such as a polyfunctional monomer and / or a mercapto group-containing compound is mixed with other materials and then polymerized. How to do, etc.
- the polyfunctional monomer has two or more radically polymerizable reactive groups in the same molecule.
- the radically polymerizable reactive group is preferably a carbon-carbon double bond.
- the polyfunctional monomer include allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate, and ethylenically unsaturated double bonds such as allyloxyalkyl (meth) acrylates.
- (Meta) acrylate having the above is exemplified.
- Examples of the monomer having two (meth) acrylic groups include ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and cyclohexanedimethanol di (meth).
- Examples thereof include meta) acrylates and polyethylene glycol di (meth) acrylates.
- Examples of the polyethylene glycol di (meth) acrylates include triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol (600) di (meth) acrylate.
- alkoxylated trimethylolpropane tri (meth) acrylates examples include isocyanurate tri (meth) acrylate.
- alkoxylated trimethylolpropane tri (meth) acrylate examples include trimethylolpropane tri (meth) acrylate and trimethylolpropane triethoxytri (meth) acrylate.
- examples of the monomer having four (meth) acrylic groups include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate. Further, as a monomer having five (meth) acrylic groups, dipentaerythritol penta (meth) acrylate and the like are exemplified. Further, as a monomer having six (meth) acrylic groups, ditrimethylolpropane hexa (meth) acrylate and the like are exemplified.
- examples of the polyfunctional monomer also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene and the like. Among these, allyl methacrylate, triallyl isocyanurate, butanediol di (meth) acrylate, and divinylbenzene are particularly preferable as the polyfunctional monomer.
- Examples of the mercapto group-containing compound include alkyl group-substituted mercaptan, allyl group-substituted mercaptan, aryl group-substituted mercaptan, hydroxy group-substituted mercaptan, alkoxy group-substituted mercaptan, cyano group-substituted mercaptan, amino group-substituted mercaptan, silyl group-substituted mercaptan, and acid group-substituted mercaptan.
- Examples thereof include mercaptans, halo group-substituted mercaptans and acyl group-substituted mercaptans.
- alkyl group-substituted mercaptan an alkyl group-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkyl group-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
- As the aryl group-substituted mercaptan a phenyl group-substituted mercaptan is preferable.
- alkoxy group-substituted mercaptan an alkoxy group-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkoxy group-substituted mercaptan having 1 to 10 carbon atoms is more preferable.
- the acid group-substituted mercaptan is preferably an alkyl group-substituted mercaptan having a carboxyl group and having 1 to 10 carbon atoms, or an aryl group-substituted mercaptan having a carboxyl group and having 1 to 12 carbon atoms.
- the elastic body of the polymer fine particles (B) preferably has rubber properties in order to increase the toughness of the obtained adhesive layer.
- the elastic material is preferably one that can swell in a suitable solvent but is substantially insoluble.
- the elastic body is preferably insoluble in the epoxy resin (A) used.
- the gel content of the elastic body is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, because the obtained adhesive layer has excellent toughness. It is particularly preferable that it is 95% by mass or more.
- the method for calculating the gel content is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex.
- the method for obtaining the powder of the polymer fine particles (B) from the aqueous latex is not particularly limited, but for example, (i) the polymer fine particles (B) in the aqueous latex are aggregated, and (ii) the obtained aggregate is dehydrated. Then, (iii) further, a method of obtaining the powder of the polymer fine particles (B) by drying the agglomerates can be mentioned.
- the polymer fine particle (B) powder is immersed in 100 g of toluene.
- the resulting mixture is then allowed to stand at 23 ° C. for 24 hours.
- the obtained mixture is separated into a toluene-soluble component (toluene-soluble component) and a toluene-insoluble component (toluene-insoluble component).
- the mass of the obtained toluene-soluble component and the toluene-insoluble component is measured, and the gel content is calculated from the following formula.
- the glass transition temperature of the elastic body (hereinafter, may be simply referred to as “Tg”) is preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and more preferably ⁇ 20 ° C. or lower in order to increase the toughness of the obtained adhesive layer. It is more preferably 40 ° C. or lower, and particularly preferably ⁇ 60 ° C. or lower.
- the Tg of the elastic body is preferably larger than 0 ° C, more preferably 20 ° C or higher, and more preferably 50 ° C or higher. It is more preferably 80 ° C. or higher, and most preferably 120 ° C. or higher.
- the Tg of the elastic body can be determined by the composition of the structural unit contained in the elastic body and the like. In other words, the Tg of the obtained elastic body can be adjusted by changing the composition of the monomer used when producing (polymerizing) the elastic body.
- a group of monomers that provide a homopolymer having a Tg larger than 0 ° C. is referred to as a monomer group a.
- a group of monomers that provide a homopolymer having a Tg of less than 0 ° C. is referred to as a monomer group b.
- the constituent units derived from at least one monomer selected from the monomer group a are derived from 50 to 100% by mass (more preferably 65 to 99% by mass), and from at least one monomer selected from the monomer group b. Examples thereof include a polymer composed of 0 to 50% by mass (more preferably 1 to 35% by mass) of the constituent units.
- the elastic body has a crosslinked structure.
- Examples of the method for introducing the crosslinked structure include the above methods.
- the monomers that can be contained in the monomer group a are not limited to the following, but for example, (i) unsubstituted vinyl aromatic compounds such as styrene and 2-vinylnaphthalene; (ii) ⁇ -methylstyrene and the like. Vinyl-substituted aromatic compounds; (iii) 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2,4,6-trimethylstyrene, etc.
- aromatic methacrylates such as (xii) phenyl methacrylate; methacrylates such as (xiii) isobornyl methacrylate and trimethylsilyl methacrylate; methacrylic monomers containing methacrylic acid derivatives such as (xiv) methacrylonitrile; (xv) isobornyl
- Certain acrylic acid esters such as acrylate, tert-butyl acrylate; acrylic monomers containing acrylic acid derivatives such as (xvi) acrylonitrile, and the like.
- the monomers that can be contained in the monomer group a acrylamide, isopropylacrylamide, N-vinylpyrrolidone, isobornyl methacrylate, dicyclopentanyl methacrylate, 2-methyl-2-adamantyl methacrylate, 1-adamantyl acrylate and 1
- monomers such as adamantyl methacrylate, which can provide a homopolymer having a Tg of 120 ° C. or higher when made into a homopolymer.
- examples of the monomers that can be contained in the monomer group a include various compounds described in paragraph [0084] of the specification of WO2014-196607. As the monomer to be selected from these monomer group a, only one type may be used, or two or more types may be used in combination.
- Examples of the monomer group b include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, 2-hydroxyethyl acrylate, and 4-hydroxybutyl acrylate.
- the monomer to be selected from these monomer group b only one kind may be used, or two or more kinds may be used in combination.
- ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate are particularly preferable.
- the volume average particle size of the elastic body is preferably 0.03 to 2.00 ⁇ m, more preferably 0.05 to 1.00 ⁇ m, further preferably 0.10 to 0.80 ⁇ m, and particularly 0.10 to 0.50 ⁇ m. preferable.
- the volume average particle size of the elastic body is (a) 0.03 ⁇ m or more, an elastic body having a desired volume average particle size can be stably obtained, and (b) when it is 2.00 ⁇ m or less, it is obtained.
- the heat resistance and impact resistance of the adhesive layer to be formed are improved.
- the volume average particle size of the elastic body can be measured by using an aqueous latex containing the elastic body as a sample and using a dynamic light scattering type particle size distribution measuring device or the like.
- the method for measuring the volume average particle size of the elastic body will be described in detail in the following examples.
- the ratio of the elastic body in the polymer fine particles (B) is preferably 40 to 97% by mass, more preferably 60 to 95% by mass, and further 70 to 93% by mass, assuming that the entire polymer fine particles (B) are 100% by mass. It is preferable, and 80 to 90% by mass is particularly preferable.
- the ratio of the elastic body is (a) 40% by mass or more, there is no possibility that the toughness improving effect of the adhesive layer of the obtained curable resin composition is lowered, and (b) 97% by mass or less. Since the polymer fine particles (B) do not easily aggregate, the curable resin composition does not have a high viscosity, and as a result, the obtained curable resin composition can be easy to handle.
- the elastic body is one selected from the group consisting of a diene-based rubber, a (meth) acrylate-based rubber, and a polysiloxane rubber-based elastic body, and has a structural unit having the same composition. It may consist of only one type of elastic body. In one embodiment of the present invention, the elastic body may consist of a plurality of types of elastic bodies, each having a structural unit having a different composition.
- each of the plurality of types of elastic bodies is referred to as elastic body 1 , elastic body 2 , ..., And elastic body n .
- n is an integer of 2 or more.
- the elastic body may contain a mixture obtained by mixing the elastic body 1 , the elastic body 2 , ..., And the elastic body n , which are separately polymerized.
- the elastic body may contain a polymer obtained by sequentially polymerizing the elastic body 1 , the elastic body 2 , ..., And the elastic body n , respectively.
- Such polymerization of a plurality of polymers (elastic bodies) in order is also referred to as multistage polymerization.
- a polymer obtained by multi-stage polymerization of a plurality of types of elastic bodies is also referred to as a multi-stage polymerization elastic body.
- the method for producing the multi-stage polymerized elastic body will be described in detail later.
- a multi-stage polymerized elastic body composed of elastic body 1 , elastic body 2 , ..., And elastic body n will be described.
- the elastic body n may or may cover at least a portion of the elastic body n-1, or the whole of the elastic body n-1 coating.
- some of the elastic body n has entered the inside of the elastic body n-1.
- each of the plurality of elastic bodies may have a layered structure.
- the elastic body 1 is the innermost layer
- the layer of the elastic body 2 exists outside the elastic body 1
- the elastic body is further formed.
- An embodiment in which the layer of the elastic body 3 exists as the outermost layer in the elastic body outside the layer 2 is also an aspect of the present invention.
- a multi-stage polymerized elastic body in which each of the plurality of elastic bodies has a layered structure can be said to be a multi-layer elastic body. That is, in one embodiment of the present invention, the elastic body may include a mixture of a plurality of types of elastic bodies, a multi-stage polymerized elastic body and / or a multilayer elastic body.
- a polymer graft-bonded to an elastic body is referred to as a graft portion.
- the graft portion can play various roles.
- the "various roles" include, for example, improving the compatibility between the components (a) and (B) and the component (A), and (b) dispersibility of the polymer fine particles (B) in the epoxy resin (A). It is improved, and (c) it is possible to disperse the polymer fine particles (B) in the state of primary particles in the present curable resin composition or its adhesive layer.
- the graft portion of the component (B) contains a hydroxy group.
- the obtained curable resin composition has a high viscosity dependence on the shear rate, and as a result, it is possible to provide a method for producing a structure having excellent workability.
- the obtained curable resin composition has a higher viscosity dependence on the shear rate. As a result, it is possible to provide a method for manufacturing a structure having better workability. Since the graft portion of the component (B) contains a hydroxy group, the obtained curable resin composition also has an advantage that it can provide an adhesive layer having excellent impact-resistant peeling adhesiveness.
- the content of the hydroxy group contained in the graft portion of the component (B) is not particularly limited.
- the content of the hydroxy group in the graft portion of the component (B) is preferably 0.01 mmol / g or more, more preferably 0.1 mmol / g or more, based on the total mass of the graft portion. It is more preferably 2 mmol / g or more, and particularly preferably 0.4 mmol / g or more.
- the graft portion of the component (B) is preferably 5.0 mmol / g or less, more preferably 4.0 mmol / g or less, and 2.5 mmol / g or less, based on the total mass of the graft portion. It is more preferable, and it is particularly preferable that it is 1.5 mmol / g or less.
- the graft portion of the component (B) preferably contains a structural unit derived from a hydroxy group-containing monomer as a structural unit.
- the monomer having a hydroxy group examples include (i) hydroxy linear alkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. (In particular, hydroxy linear C1-6 alkyl (meth) acrylate); (ii) caprolactone-modified hydroxy (meth) acrylate; (iii) methyl ⁇ - (hydroxymethyl) acrylate, ⁇ - (hydroxymethyl) ethyl acrylate, etc.
- the graft portion preferably contains 0.2% by mass to 70.0% by mass, and 2.0% by mass to 50.0% by mass, of a structural unit derived from the hydroxy group-containing monomer in 100% by mass of the graft portion. More preferably, it is more preferably 4.0% by mass to 40.0% by mass, and particularly preferably 10.0% by mass to 30.0% by mass.
- the viscosity dependence of the viscosity in the obtained curable resin composition becomes high, and the obtained curing
- the impact-resistant peeling adhesiveness of the adhesive layer provided by the sex resin composition is good, and (b) the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance.
- the constituent unit derived from the hydroxy group-containing monomer is contained in an amount of 70.0% by mass or less in 100% by mass of the graft portion, the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance.
- the structural unit derived from the hydroxy group or the hydroxy group-containing monomer is preferably contained in the graft portion, and more preferably contained only in the graft portion.
- the hydroxy group can be said to be a reactive group described later, and the hydroxy group-containing monomer can be said to be a reactive group-containing monomer described later.
- the graft portion is a group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and a (meth) acrylate monomer as a constituent unit. It is preferably a polymer containing a structural unit derived from one or more selected monomers, and more preferably a polymer containing a structural unit derived from a (meth) acrylate monomer.
- aromatic vinyl monomer examples include vinylbenzenes such as styrene, ⁇ -methylstyrene, p-methylstyrene and divinylbenzene.
- the content of the cyano group with respect to the total mass of the graft portion of the component (B) is not particularly limited, but the temperature dependence of the viscosity of the obtained curable resin composition and the impact strength of the adhesive layer obtained by curing are good. Therefore, 0.5 mmol / g to 15.0 mmol / g is preferable, 1.0 mmol / g to 13.0 mmol / g is more preferable, and 1.5 mmol / g to 11.0 mmol / g is more preferable.
- .0 mmol / g to 11.0 mmol / g is more preferable, 2.0 mmol / g to 10.0 mmol / g is more preferable, 2.5 mmol / g to 9.0 mmol / g is more preferable, and 3.0 mol / g to 3.0 mol / g. 9.0 mol / g is more preferred, 5.0 mmol / g to 10.0 mmol / g is even more preferred, 5.5 mmol / g to 9.5 mmol / g is even more preferred, 7.0 mmol / g to 9.0 mmol / g. g is particularly preferable.
- the content of the cyano group with respect to the total mass of the graft portion of the component (B) is (a) 0.5 mmol / g or more, there is an advantage that the temperature dependence of the viscosity of the obtained curable resin composition becomes small.
- (b) is 15.0 mmol / g or less, there is no possibility that the amount of the cyano group-containing monomer remaining in the polymer fine particles (B) will increase, and as a result, there is an advantage that the safety is high.
- vinyl cyanide monomer examples include acrylonitrile and methacrylonitrile.
- the (meth) acrylate monomer examples include (a) methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid alkyl ester such as butyl (meth) acrylate; and (b) hydroxyethyl (meth).
- examples thereof include (meth) acrylic acid hydroxyalkyl esters such as acrylates and hydroxybutyl (meth) acrylates.
- one or more kinds of monomers selected from the group consisting of aromatic vinyl monomer, vinyl cyan monomer and (meth) acrylate monomer only one kind may be used, or two or more kinds may be used in combination. May be good.
- the graft portion includes a structural unit derived from an aromatic vinyl monomer, a structural unit derived from a vinyl cyan monomer, and a structural unit derived from a (meth) acrylate monomer, in a total of 100% by mass of all the structural units. It is preferably contained in an amount of 10 to 95% by mass, more preferably 30 to 92% by mass, further preferably 50 to 90% by mass, particularly preferably 60 to 87% by mass, and 70 to 85% by mass. Is the most preferable.
- the graft portion preferably contains a structural unit derived from a reactive group-containing monomer as a structural unit.
- the reactive group-containing monomer is selected from the group consisting of an epoxy group, an oxetane group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, a benzoxazine group and a cyanate ester group. It is preferably a monomer containing one or more reactive groups, and more preferably a monomer containing one or more reactive groups selected from the group consisting of an epoxy group and a carboxylic acid group, and epoxy. More preferably, it is a monomer containing a group.
- the graft portion of the polymer fine particles (B) and the epoxy resin (A) can be chemically bonded in the curable resin composition and the adhesive layer.
- the polymer fine particles (B) can be maintained in a good dispersed state without agglutinating the polymer fine particles (B).
- the graft portion is preferably a polymer having an epoxy group.
- the graft portion is preferably a polymer having an epoxy group.
- the content of the epoxy group with respect to the total mass of the graft portion is preferably 0.1 mmol / g to 5.0 mmol / g, more preferably 0.2 to 5.0 mmol / g, and more preferably 0.3 to 5.0 mmol / g.
- 0.4 to 5.0 mmol / g is more preferable, 0.4 to 3.5 mmol / g is further preferable, 0.4 to 3.0 mmol / g is further preferable, and 0.4 to 2.5 mmol / g is more preferable.
- g is particularly preferable.
- the content of the epoxy group with respect to the total mass of the graft portion may be 0.2 mmol / g to 3.5 mmol / g, or may be 0.3 mmol / g to 3.0 mmol / g. According to this configuration, the resulting curable resin composition has the advantages of excellent viscosity temperature dependence and storage stability.
- the monomer having an epoxy group examples include glycidyl group-containing vinyl monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether and allyl glycidyl ether.
- the monomer having a carboxylic acid group examples include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid.
- the monocarboxylic acid is preferably used as the monomer having a carboxylic acid group.
- the graft portion preferably contains 0.5 to 90% by mass of a structural unit derived from the reactive group-containing monomer, more preferably 1 to 50% by mass, and 2 to 35% by mass in 100% by mass of the graft portion. % Is more preferable, and 3 to 20% by mass is particularly preferable.
- the graft portion contains (a) 0.5% by mass or more of the structural unit derived from the reactive group-containing monomer in 100% by mass of the graft portion, the obtained curable resin composition has sufficient resistance.
- An adhesive layer having impact resistance can be provided, and (b) when 90% by mass or less is contained, the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance.
- it has an advantage that the storage stability of the curable resin composition is improved.
- the structural unit derived from the reactive group-containing monomer is preferably contained in the graft portion, and more preferably contained only in the graft portion.
- the graft portion may contain a structural unit derived from a polyfunctional monomer as a structural unit.
- the curable resin composition can prevent the polymer fine particles (B) from swelling in the curable resin composition. Since the viscosity is low, the curable resin composition tends to be easy to handle, and (c) the dispersibility of the polymer fine particles (B) in the epoxy resin (A) is improved.
- the obtained curable resin composition has an advantage that it can provide an adhesive layer excellent in toughness improving effect and impact peeling adhesiveness improving effect.
- polyfunctional monomer examples include the same monomer as the above-mentioned polyfunctional monomer.
- the polyfunctional monomers that can be preferably used for the polymerization of the graft portion include allyl methacrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, and hexanediol di (meth) acrylate.
- the graft portion may contain 0% by mass to 20% by mass of a structural unit derived from a polyfunctional monomer in 100% by mass of the graft portion, preferably 1% by mass to 20% by mass, and 5% by mass. It is more preferable to contain ⁇ 15% by mass.
- the graft portion has a structural unit of 0% by mass to 50% by mass (more preferably 1% by mass to 50% by mass) derived from an aromatic vinyl monomer (particularly styrene) in 100% by mass of all the structural units as a structural unit. , More preferably 2% by mass to 48% by mass), a structural unit derived from a vinyl cyan monomer (particularly acrylonitrile) 0% by mass to 50% by mass (more preferably 0% by mass to 30% by mass, still more preferably 10% by mass).
- one type of the above-mentioned monomer may be used alone, or two or more types may be used in combination.
- the graft portion may include a structural unit derived from another monomer in addition to the structural unit derived from the above-mentioned monomer as a structural unit.
- the polymer fine particles (B) may have a polymer having the same structure as the graft portion and which is not graft-bonded to an elastic body.
- a polymer having the same structure as the graft portion and not graft-bonded to an elastic body is also referred to as a non-grafted polymer.
- the non-grafted polymer also constitutes a part of the polymer fine particles (B) according to the embodiment of the present invention. It can be said that the non-grafted polymer is one of the polymers produced in the polymerization of the graft portion that is not graft-bonded to the elastic body.
- the ratio of the polymer graft-bonded to the elastic body, that is, the graft portion, among the polymers produced in the polymerization of the graft portion is referred to as the graft ratio.
- the graft ratio can be said to be a value represented by (mass of graft portion) / ⁇ (mass of graft portion) + (mass of non-grafted polymer) ⁇ ⁇ 100.
- the graft ratio of the graft portion is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
- the graft ratio is 70% or more, there is an advantage that the viscosity of the curable resin composition does not become too high.
- the method of calculating the graft ratio is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex. As a method for obtaining the powder of the polymer fine particles (B) from the aqueous latex, the method described in the section (Gel content of elastic body) can be used. Next, 2 g of the polymer fine particle (B) powder is immersed in 100 g of methyl ethyl ketone (hereinafter, may be referred to as MEK). The resulting mixture is then allowed to stand at 23 ° C. for 24 hours.
- MEK methyl ethyl ketone
- the obtained mixture is separated, and then the obtained mixture is separated into a MEK-soluble component (MEK-soluble component) and a MEK-insoluble component (MEK-insoluble component). Further, the MEK-soluble component is mixed with methanol to separate the methanol-insoluble component from the MEK-soluble component. Then, the mass of the obtained MEK insoluble matter and the methanol insoluble matter is measured, and the graft ratio is calculated by obtaining the ratio of the MEK insoluble matter to the total amount of the MEK insoluble matter and the methanol insoluble matter. Specifically, the graft ratio is calculated by the following formula.
- the graft portion may consist of only one type of graft portion having a structural unit having the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions, each having a structural unit having a different composition.
- each of the plurality of types of graft portions is referred to as a graft portion 1 , a graft portion 2 , ..., A graft portion n (n is an integer of 2 or more).
- the graft portion may contain a mixture obtained by mixing the graft portion 1 , the graft portion 2 , ..., And the graft portion n, which are polymerized separately, respectively.
- the graft portion may contain a polymer obtained by multi-stage polymerization of the graft portion 1 , the graft portion 2 , ..., And the graft portion n .
- a polymer obtained by multi-stage polymerization of a plurality of types of graft portions is also referred to as a multi-stage polymerization graft portion. The method for producing the multi-stage polymerization graft portion will be described in detail later.
- the graft portion is composed of a plurality of types of graft portions, all of the plurality of types of graft portions do not have to be graft-bonded to the elastic body. At least a part of the graft portion of at least one kind may be graft-bonded to the elastic body, and the graft portion of the other species (several other kinds) is the graft portion graft-bonded to the elastic body. It may be graft-bonded to.
- the graft portion is composed of a plurality of types of graft portions, a plurality of types of polymers (non-graft polymers) that have the same configuration as the plurality of types of graft portions and are not graft-bonded to an elastic body. ) May have.
- a multi-stage polymerization graft portion including the graft portion 1 , the graft portion 2 , ..., And the graft portion n will be described.
- the graft section n may either be coated onto at least a portion of the graft portion n-1, or may cover the entire graft portion n-1.
- a portion of the graft portion n sometimes has entered the inside of the graft portion n-1.
- each of the plurality of graft portions may have a layered structure.
- the graft portion 1 is the innermost layer in the graft portion, and the layer of the graft portion 2 exists outside the graft portion 1 .
- the layer of the graft portion 3 exists as the outermost layer outside the layer of the graft portion 2 is also an aspect of the present invention.
- the multistage polymerization graft portion in which each of the plurality of graft portions has a layered structure can be said to be a multilayer graft portion. That is, in one embodiment of the present invention, the graft portion may include a mixture of a plurality of types of graft portions, a multi-stage polymerization graft portion and / or a multilayer graft portion.
- the elastic body and the graft portion are polymerized in this order in the production of the polymer fine particles (B), at least a part of the graft portion can cover at least a part of the elastic body in the obtained polymer fine particles (B).
- the fact that the elastic body and the graft portion are polymerized in this order can be said to mean that the elastic body and the graft portion are polymerized in multiple stages.
- the polymer fine particles (B) obtained by multi-stage polymerization of the elastic body and the graft portion can be said to be a multi-stage polymer.
- the graft portion can cover at least a part of the elastic body or can cover the entire elastic body.
- a part of the graft portion may enter the inside of the elastic body.
- the elastic body and the graft portion may have a layered structure.
- the elastic body is the innermost layer (also referred to as a core layer) and the layer of the graft portion is present as the outermost layer (also referred to as a shell layer) outside the elastic body is also one aspect of the present invention.
- a structure in which the elastic body is the core layer and the graft portion is the shell layer can be said to be a core-shell structure.
- the polymer fine particles (B) in which the elastic body and the graft portion have a layered structure can be said to be a multilayer polymer or a core-shell polymer.
- the polymer fine particles (B) may be a multi-stage polymer and / or a multilayer polymer or a core-shell polymer.
- the polymer fine particles (B) are not limited to the above configuration.
- At least a part of the graft portion covers at least a part of the elastic body. In other words, it is preferable that at least a part of the graft portion is present on the outermost side of the polymer fine particles (B).
- the polymer fine particles (B) preferably have a surface crosslinked polymer in addition to the elastic body and the graft portion graft-bonded to the elastic body.
- the blocking resistance can be improved, and (b) the dispersibility of the polymer fine particles (B) in the epoxy resin (A) becomes better. ..
- the reasons for these are not particularly limited, but can be presumed as follows: By coating at least a part of the elastic body with the surface crosslinked polymer, the exposure of the elastic body portion of the polymer fine particles (B) is reduced. As a result, the elastic bodies are less likely to stick to each other, so that the dispersibility of the polymer fine particles (B) is improved.
- the polymer fine particles (B) When the polymer fine particles (B) have a surface crosslinked polymer, they may also have the following effects: (a) an effect of lowering the viscosity of the present curable resin composition, and (b) an effect of increasing the crosslink density in the elastic body. , And (c) the effect of increasing the graft efficiency (graft ratio) of the graft portion.
- the crosslink density in an elastic body means the degree of the number of crosslinked structures in the entire elastic body.
- the polymer fine particles (B) do not contain a surface crosslinked polymer because the obtained adhesive layer is excellent in toughness and impact resistance peeling adhesiveness.
- the surface crosslinked polymer is a polymer containing 30 to 100% by mass of a structural unit derived from a polyfunctional monomer and 0 to 70% by mass of a structural unit derived from other vinyl-based monomers, for a total of 100% by mass. Consists of.
- polyfunctional monomer examples include the same monomers as the above-mentioned polyfunctional monomer.
- the polyfunctional monomers that can be preferably used for the polymerization of surface crosslinked polymers include allyl methacrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, and hexanediol di (meth).
- the polymer fine particles (B) may contain a surface crosslinked polymer polymerized independently of the polymerization of the rubber-containing graft copolymer, or the surface crosslinked polymer polymerized together with the rubber-containing graft copolymer. May include.
- the polymer fine particles (B) may be a multi-stage polymer obtained by multi-stage polymerization of an elastic body, a surface crosslinked polymer, and a graft portion in this order.
- the surface crosslinked polymer may cover at least a portion of the elastic body.
- the surface crosslinked polymer can also be regarded as a part of the elastic body.
- the graft portion may be graft-bonded to an elastic material other than (a) the surface crosslinked polymer, and may be graft-bonded to (b) the surface crosslinked polymer. It may be graft-bonded, or may be graft-bonded to both an elastic body other than the (c) surface-crosslinked polymer and a surface-crosslinked polymer.
- the volume average particle size of the elastic body described above is intended to be the volume average particle size of the elastic body containing the surface crosslinked polymer.
- case D in which the polymer fine particles (B) are multi-stage polymers obtained by multi-stage polymerization of an elastic body, a surface crosslinked polymer, and a graft portion in this order will be described.
- the surface crosslinked polymer can cover part of the elastic body or the entire elastic body.
- a part of the surface crosslinked polymer may have entered the inside of the elastic body.
- the graft portion can cover a part of the surface crosslinked polymer or can cover the whole surface crosslinked polymer.
- a part of the graft portion may enter the inside of the surface crosslinked polymer.
- the elastic body, the surface crosslinked polymer and the graft portion may have a layered structure.
- the elastic body is the innermost layer (core layer)
- the surface crosslinked polymer layer is present as an intermediate layer on the outside of the elastic body
- the grafted layer is the outermost layer (shell layer) on the outside of the surface crosslinked polymer.
- the existing aspect is also one aspect of the present invention.
- the polymer fine particles (B) can be produced by polymerizing an elastic body and then graft-polymerizing a polymer constituting a graft portion with respect to the elastic body in the presence of the elastic body.
- the polymer constituting the graft portion is also referred to as a graft polymer.
- the polymer fine particles (B) can be produced by a known method, for example, a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization.
- a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization.
- the polymerization of the elastic body in the polymer fine particles (B), the polymerization of the graft portion (graft polymerization), and the polymerization of the surface crosslinked polymer are known methods such as emulsion polymerization, suspension polymerization, microsuspension polymerization and the like. It can be manufactured by the method of.
- the composition design of the polymer fine particles (B) is easy, the industrial production is easy, and the aqueous latex of the polymer fine particles (B) that can be suitably used for producing the present curable resin composition is easy.
- a method for producing the polymer fine particles (B) emulsion polymerization is preferable.
- a method for producing an elastic body, a graft portion, and a surface crosslinked polymer having an arbitrary configuration, which can be contained in the polymer fine particles (B), will be described.
- the elastic body contains at least one selected from the group consisting of a diene rubber and a (meth) acrylate rubber.
- the elastic body can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like, and as the production method, for example, the method described in WO2005 / 028546 can be used. ..
- the elastic body contains a polysiloxane rubber-based elastic body.
- the elastic body can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like, and as the production method, for example, the method described in WO2006 / 070664 can be used. ..
- a method for manufacturing an elastic body will be described when the elastic body is composed of a plurality of types of elastic bodies (for example, elastic body 1 , elastic body 2 , ..., Elastic body n ).
- the elastic body 1 , the elastic body 2 , ..., The elastic body n are separately polymerized by the above-mentioned method and then mixed to produce an elastic body having a plurality of types of elastic bodies. May be good.
- the elastic body 1 , the elastic body 2 , ..., And the elastic body n may be polymerized in multiple stages in this order to produce an elastic body having a plurality of types of elastic bodies.
- the multi-stage polymerization of an elastic body will be specifically described. For example, (1) as an elastic body 1 by polymerizing the elastic member 1; (2) then obtain an elastic body 2 polymerized by a two-stage elastic member 1 + 2 in the presence of the elastic member 1; (3) then elastically body 1 + obtain 2 in the presence of the elastic body 3 polymerized to a three-stage elastic member 1 + 2 + 3; (4) below, after the same manner, in the presence of + elastic body 1 + 2 + ⁇ ⁇ ⁇ (n-1) The elastic body n is polymerized to obtain a multi-stage polymerized elastic body 1 + 2 + ... + N.
- the graft portion can be formed, for example, by polymerizing the monomer used for forming the graft portion by a known radical polymerization.
- a polymer fine particle precursor containing an elastic body and a surface crosslinked polymer is obtained as an aqueous latex
- the polymerization of the graft portion is preferably carried out by an emulsion polymerization method.
- the graft portion can be manufactured, for example, according to the method described in WO2005 / 028546.
- a graft portion having a hydroxy group By using a hydroxy group-containing monomer in the production (polymerization) of the graft portion, a graft portion having a hydroxy group can be obtained.
- a method for manufacturing the graft portion will be described when the graft portion is composed of a plurality of types of graft portions (for example, the graft portion 1 , the graft portion 2 , ..., The graft portion n ).
- the graft portion 1 , the graft portion 2 , ..., And the graft portion n are separately polymerized by the above-mentioned method and then mixed to produce a graft portion having a plurality of types of graft portions. May be good.
- the graft portion 1 , the graft portion 2 , ..., And the graft portion n may be polymerized in multiple stages in this order to produce a graft portion having a plurality of types of graft portions.
- the multi-stage polymerization of the graft portion will be specifically described. For example, (1) obtaining a graft portion 1 by polymerizing a graft portion 1; (2) then obtain grafts 2 polymerized by two-stage graft section 1 + 2 in the presence of the graft portion 1; (3) then grafted part 1 + 2 of obtaining by polymerizing a graft portion 3 3-stage graft section 1 + 2 + 3 in the presence; (4) below, after the same manner, in the presence of the graft section 1 + 2 + ⁇ ⁇ ⁇ + (n-1)
- the graft portion n is polymerized to obtain a multi-stage polymerization graft portion 1 + 2 + ... + N.
- the polymer fine particles (B) may be produced by polymerizing the graft portions having the plurality of types of graft portions and then graft-polymerizing the graft portions onto an elastic body.
- a plurality of types of polymers constituting a plurality of types of graft portions may be sequentially graft-polymerized with respect to the elastic body to produce polymer fine particles (B).
- the surface crosslinked polymer can be formed by polymerizing a monomer used for forming the surface crosslinked polymer by a known radical polymerization.
- the surface crosslinked polymer is preferably polymerized by an emulsion polymerization method.
- the surface crosslinked polymer is a method of polymerizing after adding a monomer used for forming the surface crosslinked polymer to an aqueous latex containing a polymerized elastic material at a time or by continuously adding a fixed amount at a time. May be obtained.
- Such polymerization can be said to be the polymerization of the surface crosslinked polymer performed in one step.
- the polymerization of the surface crosslinked polymer may be carried out in two or more stages. That is, it is also possible to adopt a method in which the polymerization is carried out after adding the aqueous latex containing the polymerized elastic body to the reactor in which the monomer used for forming the surface crosslinked polymer is charged in advance.
- emulsifier When the emulsion polymerization method is adopted as the method for producing the polymer fine particles (B), a known emulsifier can be used for the production of the polymer fine particles (B).
- emulsifiers that can be used in emulsion polymerization include various emulsifiers described in paragraph [0073] of the specification of WO2016-163491. One type of these emulsifiers may be used alone, or two or more types may be used in combination. The emulsifier can also be said to be a dispersant.
- emulsifier dispersant
- the higher the water solubility of the emulsifier the more preferable it is.
- the emulsifier has a high water solubility, the emulsifier can be easily removed by washing with water, and the adverse effect of the emulsifier (residual emulsifier) on the finally obtained adhesive layer can be easily prevented.
- a pyrolysis type initiator can be used for the production of the polymer fine particles (B).
- the pyrolysis-type initiator include known initiators such as 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, and ammonium persulfate.
- a redox-type initiator can also be used in the production of the polymer fine particles (B).
- the redox-type initiators include (a) peroxides such as organic peroxides and inorganic peroxides, (b) reducing agents such as sodium formaldehyde sulfoxylate and glucose as required, and optionally. It is an initiator in which a transition metal salt such as iron (II) sulfate, a chelating agent such as disodium ethylenediamine tetraacetate as required, and a phosphorus-containing compound such as sodium pyrophosphate as necessary are used in combination.
- a transition metal salt such as iron (II) sulfate
- a chelating agent such as disodium ethylenediamine tetraacetate
- a phosphorus-containing compound such as sodium pyrophosphate as necessary are used in combination.
- Examples of the organic peroxide include t-butyl peroxyisopropyl carbonate, paramentan hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide and t-hexyl. Examples include peroxide.
- Examples of the inorganic peroxide include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
- a redox-type initiator When a redox-type initiator is used, the polymerization can be carried out even at a low temperature at which the peroxide is substantially not thermally decomposed, and the polymerization temperature can be set in a wide range. Therefore, it is preferable to use a redox-type initiator.
- the redox-type initiators it is preferable to use organic peroxides such as cumenhydroperoxide, dicumyl peroxide, paramentan hydroperoxide and t-butyl hydroperoxide as the redox-type initiator.
- the amount of the initiator used, and the amount of the reducing agent, transition metal salt, chelating agent, and the like used when using the redox-type initiator can be used within a known range.
- a polyfunctional monomer for the polymerization of an elastic body, a graft part or a surface crosslinked polymer for the purpose of introducing a crosslinked structure into an elastic body, a graft part or a surface crosslinked polymer
- a known chain transfer agent is used. It can be used in a range of quantities.
- a chain transfer agent By using a chain transfer agent, the molecular weight and / or degree of cross-linking of the obtained elastic body, graft portion or surface cross-linked polymer can be easily adjusted.
- a surfactant can be further used in the production of the polymer fine particles (B).
- the types and amounts of the surfactants used are in the known range.
- conditions such as polymerization temperature, pressure and deoxidation in the polymerization can be applied within a known range.
- Fumed silica is also called dry silica.
- the fumed silica includes hydrophilic fumed silica having no surface treatment and hydrophobic fumed silica produced by chemically treating the silanol group portion of the hydrophilic fumed silica with silane and / or siloxane. Can be mentioned.
- hydrophilic fumed silica is preferable because (a) excellent workability, and (b) excellent dispersibility in the components (A), and the obtained curable resin composition is obtained.
- Hydrophobic fumed silica is preferable because it has excellent storage stability.
- Fumed silica (C) is produced by (a) Aerosil method produced by decomposition of silicon halide, and (b) Arc that heats and reduces silica sand and then oxidizes it with air to obtain silicic acid. Laws, etc. can be mentioned, but there are no particular restrictions. As a method for producing fumed silica (C), the Aerosil method is preferable from the viewpoint of availability.
- Examples of the surface treatment agent for hydrophobic fumed silica include a silane coupling agent, octamethyltetracyclosiloxane, and polydimethylsiloxane.
- Examples of the silane coupling agent include dimethyldichlorosilane, (meth) acrylicsilane, hexamethyldisilazane, octylsilane, hexadecylsilane, aminosilane, and methacrylsilane.
- Hydrophobic fumed silica surface-treated with polydimethylsiloxane is preferable because it is excellent in dispersion stability in the component (A) and storage stability of the obtained curable composition.
- the content of the component (C) with respect to 100 parts by mass of the component (A) is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 7 parts by mass. More than 10 parts by mass is more preferable.
- the content of the component (C) with respect to 100 parts by mass of the component (A) may be 12 parts by mass or more, 15 parts by mass or more, 17 parts by mass or more, or 20 parts by mass. It may be the above.
- the content of the component (C) with respect to 100 parts by mass of the component (A) is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and 13 parts by mass. It is more preferably parts or less, and particularly preferably 10 parts by mass or less.
- the content of the component (C) with respect to 100 parts by mass of the component (A) may be 8 parts by mass or less, or 5 parts by mass or less. The smaller the content of the component (C) with respect to 100 parts by mass of the component (A), the more the obtained curable resin composition has an advantage of being excellent in storage stability.
- the present curable resin composition may or may not contain blocked urethane (D).
- blocked urethane (D) is also referred to as “component (D)”.
- the present inventor has compared the case where the present curable resin composition containing the above-mentioned components (A), (B) and (C) further contains the component (D) with the case where the component (D) is not contained. Therefore, it has been independently found that the viscosity dependence of the viscosity of the curable resin composition is low.
- the larger the content of the component (D) in the curable resin composition the lower the dependence of the viscosity of the curable resin composition on the shear rate.
- the blocked urethane (D) may contain a large amount of urethane bond, urea bond and / or ether bond, for example, in the main clavicle. These urethane bonds, urea bonds and ether bonds can be hydrogen bonded to hydroxy groups.
- the curable resin composition containing the component (A), the component (B) and the component (C) further contains the component (D)
- the formation of hydrogen bonds between the polymer fine particles (B) is caused by the component (D). It is presumed to be inhibited by the hydroxy group inside. This weakens the interaction between the polymer microparticles (B).
- the curable resin composition containing the component (A), the component (B) and the component (C) further contains the component (D)
- the curable resin is compared with the case where the component (D) is not contained. It is presumed that the shear rate dependence of the viscosity of the composition becomes low.
- the curable resin composition does not substantially contain blocked urethane (D).
- substantially free of blocked urethane (D) means that the curable resin composition does not contain blocked urethane (D) at all, or (A). ) It is intended to contain less than 1 part by mass of blocked urethane (D) with respect to 100 parts by mass of the component.
- the blocked urethane (D) has the effect of improving the toughness of the cured product (adhesive layer) of the curable resin composition. Therefore, in order to obtain an adhesive layer having excellent toughness and extensibility, the curable resin composition preferably contains blocked urethane (D).
- the inorganic filler (E) described later is contained in an amount of 5 parts by mass to 200 parts by mass with respect to 100 parts by mass of the component (A). Moreover, by setting the value (X) represented by the formula (1) to 25 or more, the shear rate dependence of the viscosity of the curable resin composition due to the interaction between the component (D) and the hydroxy group Can be suppressed.
- the ratio (W1 / W2) of the mass (W1) of the polymer fine particles (B) to the mass (W2) of the blocked urethane (D) is not particularly limited.
- the ratio (W1 / W2) of the mass (W1) of the polymer fine particles (B) to the mass (W2) of the blocked urethane (D) is preferably 0.1 to 10.0, preferably 0.2 to 7.0. More preferably, 1.5 to 7.0 is more preferable, 1.8 to 5.0 is further preferable, 2.0 to 4.0 is further preferable, and 2.5 to 3.5 is particularly preferable.
- the W1 / W2 may be 0.2 to 5.0, 0.3 to 4.0, 0.4 to 3.0, 0.5 to 2 It may be 0.0.
- Blocked urethane (D) is an elastomer type, and all or part of the terminal isocyanate groups of a compound containing a urethane group and / or a urea group and having an isocyanate group at the terminal has an active hydrogen group. It is a compound capped with various blocking agents. In particular, a compound in which all of the terminal isocyanate groups are capped with a blocking agent is preferable.
- Such a compound (ie, blocked urethane (D)) can be obtained, for example, by the following method: (i) An excess polyisocyanate compound is added to an organic polymer having an active hydrogen-containing group at the terminal.
- the reaction is carried out to obtain a polymer (urethane prepolymer) having a urethane group and / or a urea group in the main chain skeleton and an isocyanate group at the terminal; (ii) after the above (i) or the above (i). At the same time, it is obtained by allowing a blocking agent having an active hydrogen group to act on all or a part of the isocyanate groups of the urethane prepolymer, and capping all or a part of the isocyanate groups with the blocking agent.
- a blocking agent having an active hydrogen group to act on all or a part of the isocyanate groups of the urethane prepolymer, and capping all or a part of the isocyanate groups with the blocking agent.
- a R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms.
- A represents the average number of capped isocyanate groups per molecule, and 1 .1 or more is preferable, 1.5 to 8 is more preferable, 1.7 to 6 is further preferable, and 2 to 4 is particularly preferable.
- X is a residue obtained by removing the active hydrogen atom from the blocking agent.
- A is a residue obtained by removing the terminal isocyanate group from the isocyanate-terminated prepolymer (for example, a urethane prepolymer having an isocyanate group at the terminal).
- the isocyanate group capped with the blocking agent is regenerated by heating, and the regenerated isocyanate group reacts with an active hydrogen-containing compound or the like in the composition to improve the toughness of the obtained cured product.
- the mass% of isocyanate groups regenerated by heating with respect to 100% by mass of blocked urethane (D) is defined as latent NCO%. It is considered that the reaction between the urethane prepolymer and the blocking agent proceeds almost quantitatively. Therefore, when a blocking agent having an equivalent amount or more of active hydrogen groups is reacted with the isocyanate group of the urethane prepolymer, the latent NCO% can be calculated by NCO titrating the urethane prepolymer before capping with the blocking agent. .. Further, when a blocking agent having an active hydrogen group less than the equivalent amount is reacted with the isocyanate group of the urethane prepolymer, the latent NCO% can be calculated by the amount of the reacted blocking
- the latent NCO% of the component (D) is not particularly limited, but is 0.1% from the viewpoint of the temperature dependence of the viscosity of the obtained curable resin composition and the toughness of the cured product. ⁇ 10.0% is preferable, 0.1% to 5.0% is more preferable, 0.1% to 4.0% is more preferable, and 0.1% to 3.5% is more preferable.
- the latent NCO% of the blocked urethane (D) is more preferably 0.1% to 2.9%.
- the latent NCO% of the component (D) is 0.1 to 2.9%, a curable resin composition having a small temperature dependence of viscosity can be obtained.
- the latent NCO% of the component (D) is (a) 0.1% or more, there is no possibility that the toughness of the cured product obtained by curing the curable resin composition is deteriorated, and (b) 2.9. When it is less than%, the temperature dependence of the viscosity of the obtained curable resin composition tends to be small.
- the latent NCO% of the component (D) is 0.3% to 2.8% from the viewpoint of the temperature dependence of the viscosity of the obtained curable resin composition and the toughness of the cured product. Is even more preferable, 0.5% to 2.7% is even more preferable, 1.0% to 2.5% is even more preferable, and 1.5% to 2.3% is particularly preferable.
- the latent NCO% of the component (D) may be 0.5% to 5.0%, 1.0% to 4.0%, and 1. It may be 5% to 3.5%.
- the latent NCO% can also be expressed using the unit "mmol / g".
- the unit “mmol / g” means the molar amount (mmol) of isocyanate groups regenerated by heating with respect to 1 g of blocked urethane (D).
- “%” and “mmol / g” are interchangeable.
- the number average molecular weight of the blocked urethane (D) is a polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC), preferably 2000 to 40,000, more preferably 3000 to 30000, and particularly 4000 to 20000. preferable.
- the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) of blocked urethane (D) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
- the weight average molecular weight of blocked urethane (D) can be measured by the GPC method.
- the main chain skeleton constituting the organic polymer having an active hydrogen-containing group at the terminal includes a polyether polymer, a polyacrylic polymer, a polyester polymer, a polydiene polymer, and a saturated hydrocarbon polymer (polyolefin). ), Polythioether-based polymers and the like.
- active hydrogen-containing group examples include a hydroxyl group, an amino group, an imino group and a thiol group.
- a hydroxyl group, an amino group and an imino group are preferable from the viewpoint of availability, and a hydroxyl group is more preferable from the viewpoint of ease of handling (viscosity) of the obtained blocked urethane.
- organic polymer having an active hydrogen-containing group at the terminal examples include a polyether polymer having a hydroxyl group at the terminal (polyether polyol) and a polyether polymer having an amino group and / or an imino group at the terminal (polyether amine). ), Polyacrylic polyol, polyester polyol, diene-based polymer having a hydroxyl group at the terminal (polydiene polyol), saturated hydrocarbon-based polymer having a hydroxyl group at the terminal (polyolefin polyol), polythiol compound, polyamine compound and the like.
- the polyether polyol, the polyether amine, and the polyacrylic polyol have excellent compatibility with the component (A), the glass transition temperature of the organic polymer is relatively low, and the obtained adhesive layer is at a low temperature. It is preferable because it has excellent impact resistance.
- the polyether polyol and the polyether amine are more preferable because the viscosity of the obtained organic polymer is low and the workability is good, and the polyether polyol is particularly preferable.
- the organic polymer having an active hydrogen-containing group at the terminal which is used when preparing the urethane prepolymer which is a precursor of blocked urethane (D)
- one type may be used alone or two or more types may be used in combination. You may.
- the number average molecular weight of the organic polymer having an active hydrogen-containing group at the terminal is preferably 800 to 7000, more preferably 1500 to 5000, and particularly preferably 2000 to 4000, in terms of polystyrene-equivalent molecular weight measured by GPC.
- the polyether polymer is a polymer having 40% by mass or more of repeating units represented by the following general formula (2) in 100% by mass of the organic polymer: -R 1 -O- ⁇ ⁇ ⁇ General formula (2) (In the general formula (2), R 1 is a linear or branched alkylene group having 1 to 14 carbon atoms.)
- R 1 in the general formula (2) is preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
- Specific examples of the repeating unit represented by the general formula (2) include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH (CH 3 ) O-, and -CH 2 CH (C 2 H 5). ) O-, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like.
- the main chain skeleton of the polyether polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.
- the obtained cured product has a T-shaped peeling adhesive strength. It is preferable because it is excellent in. Further, polytetramethylene glycol (PTMG) obtained by ring-opening polymerization of tetrahydrofuran is preferable because the obtained cured product has excellent dynamic splitting resistance.
- PTMG polytetramethylene glycol
- the polyether polymer preferably contains 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more of the repeating unit of the general formula (2) in 100% by mass of the organic polymer. Is even more preferable.
- the blocked urethane (D) is preferably a compound in which a urethane prepolymer containing a polyalkylene glycol structure is capped with a blocking agent, and a compound in which a urethane prepolymer containing a polypropylene glycol structure is capped with a blocking agent. It is more preferable because the temperature-sensitive characteristics of the viscosity of the obtained curable resin composition are small.
- the polyether polyol is a polyether polymer having a hydroxyl group at the terminal.
- the polyether amine is a polyether polymer having an amino group or an imino group at the terminal.
- polyacrylic polyol examples include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule.
- a polyacrylic polyol obtained by copolymerizing a hydroxyl group-containing (meth) acrylic acid alkyl ester monomer such as 2-hydroxyethyl methacrylate is particularly preferable.
- the polyester polyol includes at least one selected from the group consisting of (i) polybasic acids such as maleic acid, fumaric acid, adipic acid, and phthalic acid, and acid anhydrides thereof, and (ii) ethylene glycol and propylene.
- polyhydric alcohols such as glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol and the like.
- a polymer obtained by polycondensation in a temperature range of 150 to 270 ° C. can be mentioned.
- (a) ring-opening polymers such as ⁇ -caprolactone and valerolactone
- active hydrogen compounds having two or more active hydrogens such as polycarbonate diol and castor oil can also be mentioned.
- Polydiene polyol examples include polybutadiene polyol, polyisoprene polyol, and polychloroprene polyol. In particular, polybutadiene polyol is preferable.
- Polyolefin polyol examples include polyisobutylene polyol and hydrogenated polybutadiene polyol.
- polyisocyanate compound Specific examples of the polyisocyanate compound include (a) aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; (b) isophorone diisocyanate, hexamethylene diisocyanate, hydrided toluene diisocyanate, and hydrogen. Examples thereof include aliphatic polyisocyanates such as diphenylmethane diisocyanate. Among these, aliphatic polyisocyanates are preferable from the viewpoint of heat resistance, and isophorone diisocyanates and hexamethylene diisocyanates are more preferable from the viewpoint of availability.
- aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
- the blocking agent is, for example, a primary amine blocking agent, a secondary amine blocking agent, an oxime blocking agent, a lactam blocking agent, an active methylene blocking agent, an alcohol blocking agent, a mercaptan blocking agent, an amide.
- a primary amine blocking agent for example, a primary amine blocking agent, a secondary amine blocking agent, an oxime blocking agent, a lactam blocking agent, an active methylene blocking agent, an alcohol blocking agent, a mercaptan blocking agent, an amide.
- system-based blocking agents imide-based blocking agents, heterocyclic aromatic compound-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents, and phenol-based blocking agents.
- oxime-based blocking agents lactam-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are preferable, and hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are more preferable.
- Phenolic blocking agents are more preferred.
- Primary amine-based blocking agent examples include various compounds described in paragraph [0998] of the specification of WO2016-163491.
- the hydroxyfunctional (meth) acrylate-based blocking agent is a (meth) acrylate having one or more hydroxyl groups.
- Specific examples of the hydroxyfunctional (meth) acrylate-based blocking agent include various compounds described in paragraph [0099] of the specification of WO2016-163491.
- the phenolic blocking agent contains at least one phenolic hydroxyl group.
- the "phenolic hydroxyl group” means a hydroxyl group directly bonded to a carbon atom of an aromatic ring.
- the phenolic compound may have two or more phenolic hydroxyl groups.
- the phenolic compound preferably contains only one phenolic hydroxyl group.
- the phenolic compound may contain other substituents.
- substituents include (a) alkyl groups such as linear, branched or cycloalkyl; (b) aromatic groups (eg, phenyl groups, alkyl-substituted phenyl groups, alkenyl-substituted phenyl groups, etc.); c) Aryl-substituted alkyl groups; (d) phenol-substituted alkyl groups, (e) alkenyl groups, and (f) allyl groups.
- a substituent that does not react with the isocyanate group under the conditions of the capping reaction is preferable, and an alkenyl group and an allyl group are more preferable.
- Specific examples of the phenolic blocking agent include various compounds described in paragraph [0100] of the specification of WO2016-163491.
- the blocking agent is bonded to the end of the polymer chain of the urethane prepolymer in such a manner that the end to which the blocking agent is bonded no longer has a reactive group. It can also be said that the polymer terminal obtained by binding the blocking agent to the end of the polymer chain of the urethane prepolymer preferably has no reactive group.
- the blocking agent may be used alone or in combination of two or more.
- the blocked urethane (D) may contain a residue of a cross-linking agent, a residue of a chain extender, or both.
- the molecular weight of the cross-linking agent is preferably 750 or less, more preferably 50 to 500.
- the cross-linking agent is a polyol or polyamine compound having at least 3 hydroxyl groups, amino groups and / or imino groups per molecule.
- the cross-linking agent is useful for imparting branching to the blocked urethane (D) and increasing the functional value of the blocked urethane (D) (ie, the number of capped isocyanate groups per molecule).
- the molecular weight of the chain extender is preferably 750 or less, more preferably 50 to 500.
- the chain extender is a polyol or polyamine compound having two hydroxyl groups, amino groups and / or imino groups per molecule. Chain extenders are useful for increasing the molecular weight of blocked urethane (D) without increasing the functional value.
- cross-linking agent and chain extender include various compounds described in paragraph [0106] of the specification of WO2016-163491.
- the present curable resin composition contains blocked urethane (D)
- the present curable resin composition further contains 1 part by mass to 100 parts by mass of the component (D) with respect to 100 parts by mass of the component (A). It is preferably contained in an amount of 2 to 50 parts by mass, more preferably 3 to 40 parts by mass, and particularly preferably 5 to 30 parts by mass.
- the content of the component (D) is 1 part by mass or more of (a) with respect to 100 parts by mass of the component (A)
- the toughness of the obtained adhesive layer is good, and (b) 100 parts by mass or less. ,
- the heat resistance and elastic modulus (rigidity) of the obtained adhesive layer are improved.
- one type may be used alone, or two or more types may be used in combination.
- the present curable resin composition may contain an inorganic filler (E).
- an inorganic filler (E) In the present specification, the above-mentioned fumed silica (C) is not included in the inorganic filler (E).
- the "inorganic filler (E)” may be hereinafter referred to as "component (E)”.
- the curable resin composition contains blocked urethane (D)
- the curable resin composition further contains an inorganic filler (E). Since the present curable resin composition contains the inorganic filler (E) in addition to the blocked urethane (D), the viscosity of the curable resin composition depends on the shear rate due to the inclusion of the component (D). The decline can be compensated for.
- Examples of the inorganic filler (E) include silicic acid, silicate, reinforcing filler, calcium carbonate, magnesium carbonate, titanium oxide, ferric oxide, fine aluminum powder, zinc oxide, and active zinc oxide.
- silicic acid and silicate examples include wet silica, aluminum silicate, magnesium silicate, calcium silicate, wollastonite, talc, and the like.
- Examples of calcium carbonate include heavy calcium carbonate and colloidal calcium carbonate.
- the inorganic filler (E) preferably contains calcium carbonate.
- the inorganic filler (E) is preferably surface-treated with a surface treatment agent.
- the surface treatment improves the dispersibility of the inorganic filler (E) in the curable resin composition, and as a result, various physical properties of the obtained adhesive layer are improved.
- Examples of the surface treatment agent for the inorganic filler (E) include fatty acids and silane coupling agents.
- the amount of the inorganic filler (E) used is preferably 1 to 200 parts by mass, more preferably 5 to 200 parts by mass, more preferably 1 to 100 parts by mass, and 2 to 2 to 100 parts by mass with respect to 100 parts by mass of the component (A). 70 parts by mass is more preferable, 5 to 40 parts by mass is further preferable, and 7 to 20 parts by mass is particularly preferable.
- One type of the inorganic filler (E) may be used alone, or two or more types may be used in combination.
- the calcium oxide removes water from the curable resin composition by reacting with water in the curable resin composition, and the presence of water is present. It can solve various physical problems caused by. Calcium oxide functions as, for example, an anti-bubble agent due to water removal, and can suppress a decrease in the adhesive strength of the obtained adhesive layer.
- Calcium oxide can be surface-treated with a surface treatment agent.
- the surface treatment improves the dispersibility of calcium oxide in the curable resin composition.
- the surface-treated calcium oxide can significantly improve the T-shaped peeling adhesiveness and the impact-resistant peeling adhesiveness of the obtained adhesive layer.
- the surface treatment agent that can be used for the surface treatment of calcium oxide is not particularly limited, but fatty acids are preferable.
- the content of calcium oxide in the curable resin composition is 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). Is preferable, 0.2 to 5 parts by mass is more preferable, 0.5 to 3 parts by mass is further preferable, and 1 to 2 parts by mass is particularly preferable.
- the content of calcium oxide is (a) 0.1 parts by mass or more with respect to 100 parts by mass of the component (A), the water removing effect is sufficient, and (b) when it is 10 parts by mass or less, it is obtained. There is no risk of the strength of the adhesive layer being reduced.
- One type of calcium oxide may be used alone, or two or more types may be used in combination.
- the curable resin composition can use a dehydrating agent other than calcium oxide.
- a dehydrating agent other than calcium oxide include various compounds described in paragraph [0155] of the specification of WO2014-196607.
- the curable resin composition satisfying the above formula (1) has an advantage that the viscosity depends on the shear rate.
- the equation (1) will be specifically described. According to the present inventor, the contribution of fumed silica (C) to the improvement of the shear rate dependence of the viscosity of the curable resin composition is significantly larger than that of the polymer fine particles (B) and the inorganic filler (E). I found that on my own.
- the coefficient "+10" of the fumed silica (C) represents the magnitude of the contribution of such fumed silica (C).
- the volume% of each component can be determined as follows: (1) The content of each component (compound) in the curable resin composition is divided by the specific gravity of each compound to obtain curability. The volume of each component in the resin composition is determined; (2) Next, the volume of each component obtained in (1) is divided by the total value of the volumes of all the components contained in the curable resin composition. Multiply the obtained value by 100.
- the value (X) includes a numerical value after the decimal point, it is preferable that the integer value obtained by rounding off the first value after the decimal point is 25 or more.
- the value (X) represented by the formula (1) is more preferably 26 or more, more preferably 27 or more, more preferably 30 or more, and 35.
- the above is more preferable, and 40 or more is particularly preferable.
- the curable resin composition further comprises 1 part by mass to 100 parts by mass of blocked urethane (D) and 5 parts by mass to 200 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A). It is preferable that the value (X) represented by the above formula (1) is 25 or more. According to this structure, the obtained curable resin composition has an advantage that the viscosity has a higher shear rate dependence and can provide an adhesive layer having excellent toughness and extensibility.
- epoxy resin curing agent (F) epoxy resin curing agent (F)
- the epoxy resin curing agent (F) can be used if necessary.
- the “epoxy resin curing agent (F)” may be hereinafter referred to as “component (F)”.
- the type and amount of the component (F) should be selected so that the curable resin composition cures rapidly when the curable resin composition is heated to a temperature of 80 ° C. or higher, preferably 140 ° C. or higher. preferable.
- the component (F) and (G) described later so that the curable resin composition cures very slowly even if it cures at room temperature (about 22 ° C.) and at a temperature of at least 50 ° C. It is preferable to select the type and amount of ingredients.
- a component that exhibits activity by heating (sometimes referred to as a latent epoxy curing agent) can be used.
- a latent epoxy curing agent a nitrogen (N) -containing curing agent such as a specific amine-based curing agent (including an imine-based curing agent) can be used.
- N nitrogen
- the component (F) include boron trifluoride / amine complex, boron trifluoride / amine complex, dicyandiamide, melamine, diallyl melamine, guanamine (eg, acetguanamine and benzoguanamine), aminotriazole (eg, 3-amino-).
- hydrazide eg, adipic acid dihydrazide, stearate dihydrazide, isophthalic acid dihydrazide, semicarbazide
- aromatic polyamines eg, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, etc.
- dicyandiamide, isophthalic acid dihydrazide, adipic acid dihydrazide, and 4,4'-diaminodiphenylsulfone are more preferably used, and dicyandiamide is particularly preferable, because they are excellent in adhesiveness.
- the latent epoxy curing agent is preferable because it enables the use of the present curable resin composition as a one-component curable resin composition.
- amine-based curing agents including imine-based curing agents
- mercaptan-based curing agents sometimes referred to as room temperature curable curing agents
- F It can be selected as a component.
- Examples of the component (F) that exhibits activity at a relatively low temperature of about room temperature include amines such as polyamide amines, amine-terminated polyethers, amine-terminated rubbers, modified aliphatic polyamines, modified alicyclic polyamines, and polyamides. Examples include system curing agents and various compounds described in paragraph [0113] of the specification of WO2016-163491.
- Amine-terminated polyethers containing a polyether main chain and having an average of 1 to 4 (preferably 1.5 to 3) amino groups and / or imino groups per molecule are also relatively at room temperature. It can be used as the component (F) that exhibits activity at low temperatures.
- Examples of commercially available amine-terminated polyethers include Huntsman's Jeffamine D-230, Jeffamine D-400, Jeffamine D-2000, Jeffamine D-4000, and Jeffamine T-5000.
- amine-terminated rubbers containing a conjugated diene polymer backbone and having an average of 1 to 4 (more preferably 1.5 to 3) amino and / or imino groups per molecule are also at room temperature. It can be used as the component (F) that exhibits activity at a relatively low temperature.
- the main chain of rubber that is, the conjugated diene polymer main chain is preferably a homopolymer or copolymer of polybutadiene, more preferably a polybutadiene / acrylonitrile copolymer, and the content of acrylonitrile monomer is 5 to 40% by mass (more preferably 10 to 35).
- Polybutadiene / acrylonitrile copolymers of% by weight, more preferably 15 to 30% by weight) are particularly preferred.
- Examples of commercially available amine-terminated rubber include Hyper 1300X16 ATBN manufactured by CVC.
- polyamide amines, amine-terminated polyethers, and amine-terminated rubbers are more preferable, and polyamide amines, amine-terminated polyethers, and amine-terminated rubbers. Is particularly preferable in combination with.
- acid anhydrides and phenols can also be used as the latent epoxy curing agent.
- Acid anhydrides and phenols require higher temperatures than amine-based curing agents, but have a long pot life, and the resulting adhesive layer has a balance of physical properties such as electrical properties, chemical properties, and mechanical properties. Becomes good.
- acid anhydrides include various compounds described in paragraph [0117] of the specification of WO2016-163491.
- component (F) one type may be used alone, or two or more types may be used in combination.
- the component (F) can be used in an amount sufficient to cure the curable resin composition. Typically, a sufficient amount of component (F) can be used to consume at least 80% of the epoxide groups present in the curable resin composition. Large excesses of component (F) that exceed the amount required to consume the epoxide group are usually not needed.
- the present curable resin composition preferably further contains 1 to 80 parts by mass of the epoxy curing agent (F) with respect to 100 parts by mass of the epoxy resin (A), and preferably contains 2 to 40 parts by mass. It is more preferable to contain 3 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass.
- the content of the component (F) is 1 part by mass or more of (a) with respect to 100 parts by mass of the component (A)
- the curability of the present curable resin composition becomes good, and (b) 80 parts by mass.
- the curable resin composition has an advantage that the storage stability is good and it is easy to handle.
- a curing accelerator (G) can be used if necessary.
- the "curing accelerator (G)” may be hereinafter referred to as "(G) component”.
- the component (G) is a catalyst for accelerating the reaction between the epoxy group and the epoxide-reactive group contained in the curing agent and other components of the curable resin composition.
- component (G) examples include (a) p-chlorophenyl-N, N-dimethylurea (trade name: Mouron), 3-phenyl-1,1-dimethylurea (trade name: Fenuron), 3,4-.
- the tertiary amines and imidazoles can be used in combination with the amine-based curing agent of the component (F) (for example, the component (F) that exhibits activity at a relatively low temperature of about room temperature) to increase the curing rate and the adhesive layer obtained. Physical properties and heat resistance can be improved.
- component (G) one type may be used alone, or two or more types may be used in combination.
- the present curable resin composition preferably further contains 0.1 to 10.0 parts by mass of the curing accelerator (G) with respect to 100 parts by mass of the epoxy resin (A), and 0.2 to 5. It is more preferably 0 parts by mass, further preferably 0.5 to 3.0 parts by mass, and particularly preferably 0.8 to 2.0 parts by mass.
- the content of the component (G) is 0.1 part by mass or more of (a) with respect to 100 parts by mass of the component (A)
- the curability of the present curable resin composition becomes good
- (b) 10 When the amount is 0.0 parts by mass or less, the curable resin composition has an advantage that the storage stability is good and it is easy to handle.
- compositions can be used, if necessary.
- Other ingredients include radical curable resins, monoepoxides, photopolymerization initiators, organic fillers, pigments, flame retardants, dispersants, defoaming agents, plasticizers, solvents, tackifiers, leveling agents, and thixo.
- Sex-imparting agents antioxidants, light stabilizers, UV absorbers, silane coupling agents, titanate-based coupling agents, aluminate-based coupling agents, mold release agents, antistatic agents, lubricants, low shrinkage agents, azotype chemistry
- examples thereof include a specific foaming agent and a swelling agent such as a thermostable microballoon, a fiber pulp such as an aramid-based pulp, and a thermoplastic resin.
- radical curable resin, monoepoxide and photopolymerization initiator include, for example, paragraphs [0143] to [0144], [0146] and [0148] of the specification of WO2016-163491, respectively. Included are various compounds described in. Specific examples of pigments, flame retardants, dispersants, defoamers, plasticizers, solvents, tackifiers, leveling agents, thixophilic agents, antioxidants, light stabilizers, UV absorbers and silane coupling agents. , For example, in the specification of WO2014-196607, [0124], [0126] to [0127], [0129] to [0130], [0132], [0134], [0136], [0139, respectively. ], [0141], [0143], [0147], [0149], [0151] and [0153].
- the present curable resin composition may contain a rubber-modified epoxy resin and / or a urethane-modified epoxy resin as other compounding components.
- the curable resin composition contains a rubber-modified epoxy resin and / or a urethane-modified epoxy resin
- the curable resin composition has performances such as toughness, impact resistance, shear adhesiveness and peeling adhesiveness. An even better adhesive layer can be provided.
- the rubber-modified epoxy resin and / or the urethane-modified epoxy resin can also be said to be a reinforcing agent.
- the strengthening agent may be used alone or in combination of two or more.
- the rubber-modified epoxy resin for example, the resin described in paragraphs [0124] to [0132] of the specification of WO2016-163491 can be used.
- urethane-modified epoxy resin for example, the resin described in paragraphs [0133] to [0135] of the specification of WO2016-163491 can be used.
- the viscosity of the present curable resin composition is highly dependent on the shear rate.
- the shear rate dependence of the viscosity of the present curable resin composition can be evaluated by the ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 .
- the "ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 " is sometimes referred to as a "shear velocity-dependent viscosity ratio (5s -1 / 50s -1 )". .. The larger the value of the shear rate-dependent viscosity ratio (5s -1 / 50s -1 ) of the curable resin composition, the higher the shear rate dependence of the viscosity of the curable resin composition.
- the shear rate-dependent viscosity ratio (5s -1 / 50s -1 ) of the present curable resin composition is preferably larger than 1.7, more preferably 1.8 or more, more preferably 1.9 or more, and 2 9.0 or more is more preferable, 3.0 or more is more preferable, 4.0 or more is more preferable, 5.0 or more is further preferable, and 6.0 or more is particularly preferable.
- the temperature dependence of the viscosity of the present curable resin composition is small.
- the temperature dependence of the viscosity of the curable resin composition can be evaluated by the ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C.
- the "ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C.” is sometimes referred to as the "temperature-dependent viscosity ratio (60 ° C./25 ° C.)".
- the larger the value of the temperature-dependent viscosity ratio (60 ° C./25 ° C.) of the curable resin composition in other words, the closer it is to 1, the smaller the temperature dependence of the viscosity of the curable resin composition.
- the temperature-dependent viscosity ratio (60 ° C./25 ° C.) of the present curable resin composition is preferably 0.03 or more, more preferably 0.05 or more, further preferably 0.07 or more, and particularly 0.10 or more. preferable.
- the shower resistance of the present curable resin composition can also be evaluated by Yield Stress.
- the Yield Stress of the present curable resin composition is preferably high. The higher the Yield Stress of the curable resin composition, the better the shower resistance of the curable resin composition. Therefore, the higher the Yield Stress of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. A specific method for measuring Yield Stress of the curable resin composition will be described in detail in the following Examples.
- the Yield Stress of the present curable resin composition is preferably 3 or more, more preferably 5 or more, more preferably 10 or more, more preferably 30 or more, further preferably 50 or more, and particularly preferably 100 or more.
- the present curable resin composition contains a composition containing polymer fine particles (B) in a curable resin containing the component (A) as a main component, and preferably the polymer fine particles (B) are contained in the component (A). Contains a composition dispersed in the form of primary particles.
- the "composition in which the polymer fine particles (B) are dispersed in the component (A) in the form of primary particles” may be hereinafter referred to as "polymer fine particle composition”.
- Various methods can be used for obtaining the polymer fine particle composition.
- the method include (a) a method of contacting the polymer fine particles (B) obtained in an aqueous latex state with the component (A) and then removing unnecessary components such as water from the mixture, and (b).
- Examples thereof include a method in which the polymer fine particles (B) are once extracted into an organic solvent, the extracted polymer fine particles (B) are mixed with the component (A), and then the organic solvent is removed from the mixture.
- the method it is preferable to use the method described in WO2005 / 028546.
- Specific methods for producing the polymer fine particle composition include, in order, (1) an aqueous latex containing the polymer fine particles (B) (specifically, a reaction mixture after producing the polymer fine particles (B) by emulsification polymerization).
- the polymer fine particles (B) are mixed with the organic solvent again to obtain an organic solvent solution in which the polymer fine particles (B) are dispersed. Examples thereof include a second step and a third step of (3) further mixing the obtained organic solvent solution with the component (A) and then distilling off the organic solvent from the mixture.
- the polymer fine particle composition is preferably prepared by this method.
- the component (A) is preferably liquid at 23 ° C. because the third step is facilitated.
- “Component (A) is liquid at 23 ° C.” means that the softening point of component (A) is 23 ° C. or lower, and component (A) exhibits fluidity at 23 ° C. Intended to be.
- the polymer fine particles (B) are contained in the component (A).
- the present curable resin composition dispersed in the state of primary particles can be obtained.
- the component (A) may be further added and mixed with the polymer fine particle composition if necessary.
- each component of the component (D), the component (E), and the other compounding components may be further added and mixed with the polymer fine particle composition, if necessary. ..
- the polymer fine particles (B) are coagulated by a method such as salting out using an aqueous latex containing the polymer fine particles (B), and then the obtained coagulated product is dried to obtain powdery polymer fine particles (B). ) Can be obtained.
- the polymer fine particle composition is obtained by redispersing the powdery polymer fine particles (B) in the component (A) using a disperser having a high mechanical shearing force such as three paint rolls, a roll mill, and a kneader. It is also possible to manufacture.
- the component (B) can be efficiently dispersed in the component (A).
- the temperature at the time of dispersion is preferably 50 to 200 ° C., more preferably 70 to 170 ° C., further preferably 80 to 150 ° C., and particularly preferably 90 to 120 ° C.
- the temperature at the time of dispersion is (a) 50 ° C. or higher, the component (B) can be sufficiently dispersed, and when (b) 200 ° C. or lower, the components (A) and (B) are sufficiently dispersed. There is no risk of thermal deterioration.
- the curable resin composition can be used as a one-component curable resin composition.
- a one-component curable resin composition containing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention.
- the one-component curable resin composition can be (i) pre-blended with all the ingredients and then sealed and stored without curing, and (ii) after applying the curable resin composition, heating and heating. / Or means a curable resin composition that is cured by light irradiation.
- the curable resin composition can also be used as a two-component or multi-component curable resin composition. That is, a solution A containing the component (A) and the component (B) as the main components (i) and further containing the component (C) as needed is prepared, and the components (ii), (D) and / Alternatively, a solution B containing the component (E) and, if necessary, the component (B) and / or the component (C) is prepared separately from the solution A, and (iii) the solution A and the solution B are prepared. It can also be used by mixing with the liquid before use. At least one type of liquid A and liquid B may be prepared, and a plurality of types of either one or both liquids may be prepared.
- the component (B) and the component (C) may be contained in at least one of the liquid A and the liquid B, respectively.
- the component (B) and the component (C) may be contained, for example, only in the solution A or only in the solution B, or may be contained in both the solution A and the solution B, respectively.
- This curable composition is particularly beneficial when used as a one-component curable resin composition because it has excellent storage stability. Since the present curable resin composition is excellent in handleability, it is preferably a one-component curable resin composition.
- This curable resin composition is useful as an adhesive.
- This curable resin composition is excellent in adhesive performance and flexibility not only at low temperature (about ⁇ 20 ° C.) to room temperature (for example, 15 ° C. to 30 ° C.) but also at high temperature (about 80 ° C.). Therefore, the present curable resin composition can be more preferably used as a structural adhesive.
- An adhesive containing the above-mentioned curable resin composition or a structural adhesive can also be said to be an embodiment of the present invention.
- Various structures can be manufactured by using the method for manufacturing a structure according to an embodiment of the present invention.
- various adherends can be adhered using the method for producing a structure according to an embodiment of the present invention.
- the "adhesive body” may also be referred to as a "board” or “adhesive board”.
- adherend examples include wood, metal, plastic, and glass. More specifically, (i) steel materials such as cold-rolled steel and hot-dip zinc-plated steel, (ii) aluminum materials such as aluminum and coated aluminum, and (iii) composites such as general-purpose plastics, engineering plastics, CFRP and GFRP. Examples thereof include various plastic substrates such as materials.
- This curable resin composition has excellent adhesiveness. Therefore, the curable resin composition according to the embodiment of the present invention is sandwiched and bonded between a plurality of members including an aluminum base material, and then the curable resin composition is cured. A laminate formed by joining members is preferable because it exhibits high adhesive strength.
- this curable resin composition has excellent toughness, it is suitable for joining different adherends having different linear expansion coefficients.
- the first adherend and the second adherend are different types of adherends having different coefficients of linear expansion.
- the curable resin composition can also be used for joining aerospace components, especially exterior metal components.
- This curable resin composition is used, for example, as an adhesive for structural members of automobiles and vehicles (Shinkansen, trains, etc.), civil engineering, construction, building materials, woodworking, electricity, wind power generation, electronics, aircraft, space industry, etc. be able to.
- This adhesive is particularly useful as a structural adhesive for vehicles. Examples of automobile-related applications include adhesion of interior materials such as ceilings, doors, and seats, and adhesion of exterior materials such as automobile lighting fixtures such as lamps and side moldings.
- Adhesive layer When the adherends are adhered to each other using the present curable resin composition, an adhesive layer obtained by curing the curable resin composition is formed between the adherends.
- the adhesive layer can be said to be a cured product obtained by curing the curable resin composition.
- An adhesive layer or a cured product obtained by curing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention.
- the adhesive layer obtained by curing the present curable resin composition has (a) a beautiful surface, (b) high rigidity and high elastic modulus, and (c) toughness and adhesiveness (particularly impact-resistant peeling adhesion). It is excellent in sex).
- the polymer fine particles (B) are uniformly dispersed in the component (A) in the form of primary particles. Therefore, by curing the curable resin composition, an adhesive layer in which the polymer fine particles (B) are uniformly dispersed can be easily obtained. Further, in the present curable resin composition, the polymer fine particles (B) are difficult to swell, and the viscosity of the curable resin composition is low. Therefore, the adhesive layer can be obtained with good workability. In other words, by using the present curable resin composition, the adherend can be adhered with good workability, that is, a method for producing a structure with good workability can be provided.
- the above-mentioned “difficulty in washing off the curable resin composition in the washing shower process” (hereinafter referred to as “difficulty in washing off”). It is effective to increase the viscosity of the curable resin composition in order to improve the above.
- This curable resin composition has an excellent “difficulty in being washed off” because the viscosity is highly dependent on the shear rate and tends to have a high viscosity. Therefore, the present curable resin composition can be suitably used as a structural adhesive.
- the viscosity of the curable resin composition can be adjusted to a coatable viscosity by heating the curable resin composition.
- this curable resin composition is a polymer having a crystal melting point near the coating temperature of the curable resin composition, as described in WO2005-118734, in order to improve "difficulty in being washed off". It is preferable that the compound is further contained.
- a curable resin composition further containing a polymer compound having a crystal melting point near the coating temperature of the curable resin composition is easy to coat because (a) the viscosity is low at the coating temperature, and (b) the temperature in the washing shower step. At (for example, a temperature lower than the coating temperature), the viscosity becomes high and the "difficulty of being washed off" is improved. In general, the coating temperature is higher than the flush shower temperature.
- the polymer compound having a crystal melting point near the coating temperature of the curable resin composition include various polyester resins such as crystalline or semi-crystalline polyester polyols.
- the curable resin composition is referred to as a two-component curable resin composition.
- a curing agent capable of curing at room temperature room temperature curing curing agent
- a potential such as dicyandiamide which exhibits activity at a high temperature.
- the bonding step is a step of applying the curable resin composition to the first adherend and then laminating the second adherend to the first adherend.
- the first adherend of the first adherend is sandwiched between the first adherend and the second adherend so that the curable resin composition applied to the first adherend is sandwiched between the first adherend and the second adherend. And stick together.
- the curable resin composition sandwiched between the first adherend and the second adherend may protrude from the first adherend and / or the second adherend. ..
- the curable resin composition may be applied to the second adherend, if necessary, in addition to the application to the first adherend.
- This curable resin composition can be applied by any method.
- the curable resin composition can also be extruded onto a substrate in the form of beads, monofilaments or swirls using a coating robot, and can be applied by mechanical application methods such as caulking guns and other manual applications. A coating means can also be used.
- the composition can also be applied to the substrate using a jet spray method or a streaming method.
- the viscosity of the curable resin composition is not particularly limited.
- the viscosity of the curable resin composition is preferably about 150 to 600 Pa ⁇ s at 45 ° C. in the (a) extruded bead method, and about 100 Pa ⁇ s at 45 ° C. in the (b) swirl coating method.
- the temperature of the curable resin composition applied to the first adherend in the bonding step is also referred to as "first temperature”.
- the "temperature of the curable resin composition applied to the first adherend” is intended to be “the temperature of the curable resin composition when applied to the first adherend".
- the curable resin composition may be heated to a first temperature and applied to the first adherend.
- the first temperature may be room temperature.
- the first temperature is preferably higher than room temperature.
- room temperature is usually 5 ° C to 45 ° C, preferably 10 ° C to 40 ° C, more preferably 15 ° C to 34 ° C, and most preferably 20 ° C to 30 ° C. Is.
- the first temperature (the temperature of the curable resin composition when applied to the first adherend) is preferably, for example, 35 ° C to 80 ° C, preferably 40 ° C to 70 ° C. Is more preferable, and 45 ° C. to 60 ° C. is particularly preferable.
- the first temperature is (a) 35 ° C. or higher, the viscosity of the composition is low, which has the advantage of facilitating the coating operation.
- (b) 80 ° C. or lower the epoxy resin (A) ) Will not start to react and the viscosity will increase, which has the advantage of facilitating the coating operation.
- the thickness of the curable resin composition applied to the first adherend is also referred to as "first thickness".
- first thickness In the bonding step, it can be said that the curable resin composition is applied to the first adherend with the first thickness.
- the first thickness is, for example, preferably 0.5 mm to 10 mm, more preferably 1 mm to 7 mm, further preferably 1.5 mm to 5 mm, and particularly preferably 2 mm to 4 mm.
- the curable resin composition applied to the first adherend at the first thickness is before the first adherend and the second adherend are bonded together, or the first When the adherend of No. 1 and the second adherend are bonded together, they may be thinner than the first thickness and may be stretched.
- the thickness of the curable resin composition after being stretched is also referred to as a "second thickness".
- the second thickness is not particularly limited as long as it is thinner than the first thickness.
- the second thickness is, for example, preferably 0.001 mm to 5 mm, more preferably 0.01 mm to 1 mm, and particularly preferably 0.1 mm to 0.3 mm.
- the specific method for stretching the curable resin composition applied to the first thickness to the second thickness is not particularly limited.
- the method for example, (i) a curable resin composition coated with the first thickness is applied with a spatula or the like before the first adherend and the second adherend are bonded together.
- the environmental temperature (room temperature) when performing the bonding process is also referred to as the "second temperature”.
- the second temperature is preferably lower than the first temperature.
- the second temperature may be room temperature.
- the second temperature is, for example, preferably 0 ° C. to 34 ° C., more preferably 5 ° C. to 30 ° C., and particularly preferably 10 ° C. to 25 ° C.
- the second temperature is (a) 0 ° C. or higher, the viscosity of the curable resin composition is lowered, so that there is an advantage that the work of stretching to the second thickness becomes easy, and (b) 34 ° C. or lower. If this is the case, there is no risk that the storage stability of the curable resin composition will deteriorate when it is stored for a long period of time.
- the bonding step may further include a step of stretching the curable resin composition applied with the first thickness to the second thickness in an environment of the second temperature.
- the cleaning solution is not particularly limited.
- an aqueous solution containing water, an acid or an alkali can be preferably exemplified.
- the temperature of the cleaning liquid is not particularly limited.
- the temperature of the cleaning liquid may be 20 ° C to 80 ° C, more preferably 30 ° C to 70 ° C, and may be 40 ° C to 60 ° C.
- the higher the temperature of the cleaning liquid the higher the cleaning effect (a) can be obtained, and (b) the risk of scattering and deformation of the applied curable resin composition increases. Therefore, the temperature of the cleaning liquid can be appropriately determined in consideration of the balance between the cleaning effect and the scattering and deformation of the curable resin composition.
- the present curable resin composition has the advantages that the temperature dependence of the viscosity is small and the viscosity is high even at a high temperature. Therefore, in this production method, a cleaning liquid having a higher temperature can be used as compared with the case where a conventional curable resin composition is used.
- the cleaning method of the bonded body is not particularly limited, and examples thereof include a method of immersing the bonded body in the cleaning liquid and a method of spraying (showing) the cleaning liquid on the bonded body.
- the pressure of the cleaning liquid when spraying the cleaning liquid onto the bonded body is not particularly limited.
- the pressure (water pressure) of the cleaning liquid may be 0.1 MPa to 1.0 MPa, 0.1 MPa to 0.5 MPa, or 0.2 MPa to 0.4 MPa.
- the higher the pressure of the cleaning liquid the higher the cleaning effect (a) can be obtained, and (b) the risk of scattering and deformation of the applied curable resin composition increases. Therefore, the pressure of the cleaning liquid can be appropriately determined in consideration of the balance between the cleaning effect and the scattering and deformation of the curable resin composition.
- the present curable resin composition has the advantages that the viscosity has a high shear rate dependence and the Yield Stress value is high. Therefore, in the present production method, the cleaning liquid can be sprayed onto the adherend under higher pressure conditions as compared with the case where the conventional curable resin composition is used.
- the object to be washed that is, to be washed off is not particularly limited.
- the object to be washed off in the washing step include rust preventive oil previously applied to the raw material of the adherend.
- the curing step is a step of curing the curable resin composition sandwiched between the two bonded bodies. By the curing step, it is possible to obtain a structure in which the two adherends are bonded by the curable resin composition.
- the curing temperature of the present curable resin composition is not particularly limited.
- the curing temperature of the present curable resin composition is preferably 50 ° C. to 250 ° C., more preferably 80 ° C. to 220 ° C., and even more preferably 100 ° C. to 200 ° C. It is particularly preferably 130 ° C. to 180 ° C.
- the "curing temperature” can also be said to be the temperature exhibited by the heated curable resin composition in the curing step.
- the present manufacturing method may further include a paint application step of applying the paint to the laminated body.
- the coating step can be carried out at any stage.
- the coating step is preferably carried out after the cleaning step and before the curing step.
- the coating step is carried out after the cleaning step, it has the advantage of good coatability.
- the coating liquid contains a curable resin and the coating step is performed before the curing step, the coating material can be cured at the same time as the curing of the curable resin composition.
- the paint is not particularly limited, but examples thereof include the following: rust preventives, pigments, matting agents, gloss-imparting agents and antireflection agents.
- the method for producing a structure according to an embodiment of the present invention can be used for producing various structures. It can be said that the structure obtained by the method for producing a structure according to an embodiment of the present invention contains at least two adherends and the present curable resin composition. The structure obtained by the method for producing a structure according to an embodiment of the present invention exhibits high adhesive strength.
- the structures obtained by the method for manufacturing a structure according to an embodiment of the present invention include, for example, automobiles and vehicles (bullet trains, trains, etc.), aircraft, spacecraft, space stations, buildings, buildings, and wind farms. And so on.
- One embodiment of the present invention may have the following configuration.
- the curable resin composition comprises a cleaning step of cleaning the bonded body and a curing step of curing the curable resin composition, and the curable resin composition includes an epoxy resin (A) and 100 mass of the epoxy resin (A). 1 part to 100 parts by mass of the polymer fine particles (B) containing a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group. , And a method for producing a structure containing 1 part to 30 parts by mass of fumed silica (C).
- the curable resin composition further comprises 1 part by mass to 100 parts by mass of the blocked urethane (D) and 5 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A).
- the method for producing a structure according to [1], which contains ⁇ 200 parts by mass and has a value (X) of 25 or more represented by the following formula (1): Value (X) ⁇ 0.5 (V1) + 10 (V2) + (V3) ⁇ ⁇ 100 ... Equation (1)
- the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition
- the V2 is the fumed silica (C) in the curable resin composition.
- the volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition).
- the curable resin composition further contains 0.1 to 10 parts by mass of the curing accelerator (G) with respect to 100 parts by mass of the epoxy resin (A) [1] to [5].
- the graft portion is a polymer containing a structural unit derived from one or more monomers selected from the group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and a (meth) acrylate monomer as a structural unit.
- the method for producing a structure according to any one of [1] to [7].
- the temperature of the curable resin composition applied to the first adherend is 35 ° C to 80 ° C, any one of [1] to [10].
- the polymerization was completed by devolatile under reduced pressure to remove the residual monomer that was not used in the polymerization.
- each of PHP, EDTA and FE was added into the pressure resistant polymerizer in any amount and at any time.
- a latex (R-1) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained.
- the volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.10 ⁇ m.
- Production Example 1-2 Preparation of Polybutadiene Rubber Latex (R-2)
- the polybutadiene rubber latex (R-1) obtained in Production Example 1-1 was removed by 7 parts by mass in terms of solid content.
- 200 parts by mass of ionized water, 0.03 parts by mass of tripotassium phosphate, 0.002 parts by mass of EDTA, and 0.001 part by mass of FE were added.
- oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the charged raw materials.
- a latex (R-2) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained.
- the volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.20 ⁇ m.
- a monomer for forming a graft portion (hereinafter, also referred to as a graft monomer) (6 parts by mass of methyl methacrylate (MMA), 2 parts by mass of glycidyl methacrylate (GMA) and 2 parts by mass of 4-hydroxybutyl acrylate (4HBA)). And 0.08 parts by mass of cumene hydroperoxide (CHP) were continuously added into a glass reactor over 120 minutes.
- MMA methyl methacrylate
- GMA glycidyl methacrylate
- HBA 4-hydroxybutyl acrylate
- CHP cumene hydroperoxide
- aqueous latex (L-1) containing the polymer fine particles (B) was obtained.
- the polymerization conversion rate of the monomer component was 99% or more.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.4 mmol / g.
- Production Example 2-2 Preparation of Polymer Fine Latex (L-2)
- ⁇ MMA 8 parts by mass, GMA 2 parts by mass and 4HBA 2 parts by mass> are replaced with ⁇ MMA 8 parts by mass and GMA 2 parts by mass.
- > was used to obtain an aqueous latex (L-2) containing polymer fine particles by the same method as in Production Example 2-1.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0 mmol / g.
- the glass reactor contains 262 parts by mass of the polybutadiene rubber latex (R-2) prepared in Production Example 1-2 (87 parts by mass of polybutadiene rubber particles). ) And 57 parts by mass of deionized water were added.
- the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the raw material charged at 60 ° C. was stirred while performing the nitrogen substitution. Next, 0.004 parts by mass of EDTA, 0.001 parts by mass of FE, and 0.13 parts by mass of SFS were added into the glass reactor.
- a mixture of the graft monomer (3 parts by mass of MMA, 7 parts by mass of butyl acrylate (BA), 2 parts by mass of GMA and 1 part by mass of hydroxyethyl methacrylate (HEMA)) and 0.04 part by mass of cumenehydroperoxide (CHP) was added. It was continuously added to a glass reactor over 120 minutes. After completion of the addition, 0.04 parts by mass of CHP was added into the glass reactor, and the mixture in the glass reactor was continuously stirred for 2 hours to complete the polymerization. By the above operation, an aqueous latex (L-3) containing the polymer fine particles (B) was obtained. The polymerization conversion rate of the monomer component was 99% or more.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.59 mmol / g.
- Production Example 2-4 Preparation of Polymer Fine Particle Latex (L-4)
- 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers.
- BA 7 parts by mass, GMA 2 parts by mass and 4HBA 1 part by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-4) containing polymer fine particles (B).
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
- Production Example 2-5 Preparation of Polymer Fine Particle Latex (L-5)
- 10 parts by mass of MMA instead of ⁇ 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers.
- GMA 2 parts by mass and 4HBA 1 part by mass> were used to obtain an aqueous latex (L-5) containing the polymer fine particles (B) by the same method as in Production Example 2-3.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
- Production Example 2-6 Preparation of Polymer Fine Particle Latex (L-6)
- 7 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers.
- BA3 part by mass, GMA2 part by mass and 4HBA1 part by mass> were obtained, and an aqueous latex (L-6) containing polymer fine particles (B) was obtained by the same method as in Production Example 2-3.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
- Production Example 2-7 Preparation of Polymer Fine Particle Latex (L-7)
- 9 parts by mass of MMA instead of ⁇ 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers.
- GMA 2 parts by mass and 4HBA 2 parts by mass> were used to obtain an aqueous latex (L-7) containing the polymer fine particles (B) by the same method as in Production Example 2-3.
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
- Production Example 2-8 Preparation of Polymer Fine Particle Latex (L-8)
- 6 parts by mass of MMA instead of ⁇ 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers.
- BA3 parts by mass, GMA2 parts by mass and 4HBA2 parts by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-8) containing polymer fine particles (B).
- the volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 ⁇ m.
- the content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
- Production Example 3-2 Preparation of dispersion (M-2) In Production Example 3-1 as an aqueous latex containing polymer fine particles, 132 g of (L-2) (equivalent to 40 g of polymer fine particles) instead of 132 g of (L-1).
- a dispersion (M-2) in which polymer fine particles were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that the above was used.
- Production Example 3-3 Preparation of Dispersion (M-3) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-3) (polymer fine particles) was used instead of 132 g of (L-1).
- a dispersion (M-3) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Production Example 3-4 Preparation of Dispersion (M-4) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-4) (polymer fine particles) was used instead of 132 g of (L-1).
- a dispersion (M-4) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Production Example 3-5 Preparation of dispersion (M-5) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-5) (polymer fine particles) was used instead of 132 g of (L-1).
- a dispersion (M-5) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Production Example 3-6 Preparation of Dispersion (M-6) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-6) (polymer fine particles) was used instead of 132 g of (L-1).
- a dispersion (M-6) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Production Example 3-7 Preparation of dispersion (M-7) In Production Example 3-1 as the aqueous latex containing the polymer fine particles (B), 132 g (L-7) (polymer fine particles) instead of 132 g of (L-1).
- a dispersion (M-7) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Production Example 3-8 Preparation of Dispersion (M-8) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-8) (polymer fine particles) was used instead of 132 g of (L-1).
- a dispersion (M-8) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
- Examples 1 to 36 Comparative Examples 1 to 12
- Each component was weighed according to the formulations (blending) shown in Tables 1 to 9 and mixed sufficiently to obtain a curable resin composition.
- Tables 1 to 9 show the viscosities of the obtained curable resin composition and the test results of Yield Stress.
- the value X in the curable resin composition was calculated from the amount of each component added in the table and the value of the specific gravity of each component described later.
- the amount (parts by mass) of the component (A) contained in the curable resin compositions of Tables 1 to 9 is the amount described in the columns of the components (a) and (A), that is, added as an epoxy resin (A). )
- the curable resin compositions of Examples 1 to 36 containing the components (A), (B) and (C) according to the embodiment of the present invention have shear rates.
- the dependent viscosity ratios (5s -1 / 50s -1 ) were all above good levels. Therefore, it can be seen that the present curable resin composition is excellent in workability because the viscosity has a large dependence on the shear rate.
- the curable resin compositions of Examples 2 to 6, Examples 8 to 10 and Examples 12 to 35 containing the blocked urethane (D) depend on the shear rate of viscosity, particularly when the above formula (1) is satisfied. It can be seen that the property is large and the workability is excellent.
- the curable resin compositions of Examples 12 to 18, Examples 22 to 25 and Examples 29 to 30 have a high temperature-dependent viscosity ratio (60 ° C./25 ° C.) and workability. It turns out that it is excellent.
- a structure was produced using each of the curable resin compositions of Examples 1 to 36 and Comparative Examples 1 to 12. That is, (1) each of the curable resin compositions of Examples 1 to 36 and Comparative Examples 1 to 12 is applied to an aluminum base material (first adherend), and another aluminum base material (second adherend) is applied. The body) is bonded to an aluminum base material coated with each curable resin composition to carry out a bonding step, and then (2) the bonded body obtained in the bonding step is washed. The washing step was carried out, and (3) the curing step was carried out by curing the curable resin composition.
- the structure was manufactured by such a method.
- the production of the structure using the curable resin compositions of Examples 1 to 36 containing the components (A), (B) and (C) according to the embodiment of the present invention is workable.
- the curable resin compositions of Examples 1 to 36 containing the components (A), (B) and (C) according to the embodiment of the present invention is workable.
- the curable resin compositions of Examples 2 to 5, 8, 9, 31 and 32 were used. Workability was better than in the production of the structures used.
- Production of structures using the curable resin compositions of Examples 15, 16, 19-21, 23, 25-28 and 30 is the curability of Examples 12-14, 17, 18, 22, 24 and 29. The workability was better than that of the production of the structure using the resin composition.
- the curable resin composition has a small dependence on the shear rate of viscosity, and the method for producing a structure using the curable resin composition is excellent in workability. Therefore, the method for manufacturing a structure according to an embodiment of the present invention can be suitably used for bonding an iron plate, CFRP, an aluminum plate and concrete.
- One embodiment of the present invention can be suitably used in the fields of vehicles, aircraft, space, machinery, electricity, construction and civil engineering.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The objective of the invention is to provide a production method for a structure having excellent workability. The structure production method comprises: an adhesion step of coating a curable resin composition onto a first adherend and adhering a second adherend onto the first adherend; a washing step of washing the adhered body, and a curing step of curing the curable resin composition, wherein the curable resin composition contains an epoxy resin (A), a specific polymer microparticle (B), and a fumed silica (C), respectively in specific amounts.
Description
本発明は、構造物の製造方法に関する。
The present invention relates to a method for manufacturing a structure.
エポキシ樹脂の硬化物は、寸法安定性、機械的強度、電気的絶縁特性、耐熱性、耐水性、耐薬品性などの多くの点で優れている。しかしながら、エポキシ樹脂の硬化物は破壊靭性が小さく、非常に脆性的な性質を示すことがあり、広い範囲の用途においてこのような性質が問題となることが多い。この問題に対して、種々の技術が開示されている。
The cured epoxy resin is excellent in many respects such as dimensional stability, mechanical strength, electrical insulation properties, heat resistance, water resistance, and chemical resistance. However, the cured product of the epoxy resin has low fracture toughness and may exhibit a very brittle property, and such a property is often a problem in a wide range of applications. Various techniques have been disclosed for this problem.
特許文献1および特許文献2には、エポキシ樹脂などの硬化性樹脂を主成分とする硬化性樹脂組成物に、ポリマー微粒子を分散させる技術が開示されている。
Patent Document 1 and Patent Document 2 disclose a technique for dispersing polymer fine particles in a curable resin composition containing a curable resin such as an epoxy resin as a main component.
エポキシ樹脂を含む硬化性樹脂組成物は、接着剤(例えば構造接着剤)として利用される場合もある(特許文献1および3)。
The curable resin composition containing an epoxy resin may be used as an adhesive (for example, a structural adhesive) (Patent Documents 1 and 3).
しかしながら、上述のような従来技術に開示されている硬化性樹脂組成物を用いる構造物の製造は、作業性の観点からは、さらなる改善の余地があった。
However, there is room for further improvement in the production of the structure using the curable resin composition disclosed in the prior art as described above from the viewpoint of workability.
本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、作業性に優れる構造物の製造方法を提供することである。
One embodiment of the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a structure having excellent workability.
本発明者は、このような問題を解決するために鋭意検討した結果、エポキシ樹脂(A)、グラフト部にヒドロキシ基を含むポリマー微粒子(B)およびヒュームドシリカ(C)を各々特定量含む硬化性樹脂組成物を使用することにより、前記課題を解決することを見出し、本発明を完成させた。
As a result of diligent studies to solve such a problem, the present inventor has cured the epoxy resin (A), the polymer fine particles (B) containing a hydroxy group in the graft portion, and the fumed silica (C) in specific amounts. We have found that the above problems can be solved by using the sex resin composition, and have completed the present invention.
すなわち本発明の一実施形態に係る構造物の製造方法は、硬化性樹脂組成物を第一の被着体に塗布し、第二の被着体を前記第一の被着体と貼り合わせる貼り合わせ工程と、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する洗浄工程と、前記硬化性樹脂組成物を硬化させる硬化工程と、を備え、前記硬化性樹脂組成物は、エポキシ樹脂(A)、並びに、当該エポキシ樹脂(A)100質量部に対して、弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含むポリマー微粒子(B)1質量部~100質量部、およびヒュームドシリカ(C)1質量部~30質量部を含有する。
That is, in the method for producing a structure according to an embodiment of the present invention, the curable resin composition is applied to the first adherend, and the second adherend is bonded to the first adherend. The curable resin composition comprises an epoxy resin (a bonding step, a cleaning step of cleaning the bonded body obtained in the bonding step, and a curing step of curing the curable resin composition. A rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group with respect to 100 parts by mass of the epoxy resin (A). It contains 1 part to 100 parts by mass of the polymer fine particles (B) and 1 part to 30 parts by mass of the fumed silica (C).
本発明の一実施形態によれば、作業性に優れる構造物の製造方法を提供できるという効果を奏する。
According to one embodiment of the present invention, it is possible to provide a method for manufacturing a structure having excellent workability.
本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims. The technical scope of the present invention also includes embodiments or examples obtained by appropriately combining the technical means disclosed in the different embodiments or examples. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more (including A and larger than A) and B or less (including B and smaller than B)".
〔1.本発明の一実施形態の技術的思想〕
硬化性樹脂組成物を、車両などの製造において構造接着剤として使用する場合について説明する。車両などの製造ラインにおいて、硬化性樹脂組成物(接着剤)の被接着対象物への塗布工程と、硬化性樹脂組成物の硬化工程との間に、洗浄工程(例えば水洗シャワー工程)が存在する場合がある。従来の硬化性樹脂組成物では、洗浄工程中に、シャワー水圧により、(a)未硬化状態の硬化性樹脂組成物の一部が溶解したり、(b)未硬化状態の硬化性樹脂組成物の一部が飛散したりして洗い落されたり、または(c)未硬化状態の硬化性樹脂組成物が変形したりするなどの問題がある。 [1. Technical Thought of One Embodiment of the Invention]
A case where the curable resin composition is used as a structural adhesive in the manufacture of vehicles and the like will be described. In a production line such as a vehicle, there is a cleaning step (for example, a washing shower step) between the step of applying the curable resin composition (adhesive) to the object to be adhered and the step of curing the curable resin composition. May be done. In the conventional curable resin composition, (a) a part of the uncured curable resin composition is dissolved or (b) the uncured curable resin composition is dissolved by the shower water pressure during the cleaning step. There are problems such as a part of the resin being scattered and washed away, or (c) the uncured curable resin composition being deformed.
硬化性樹脂組成物を、車両などの製造において構造接着剤として使用する場合について説明する。車両などの製造ラインにおいて、硬化性樹脂組成物(接着剤)の被接着対象物への塗布工程と、硬化性樹脂組成物の硬化工程との間に、洗浄工程(例えば水洗シャワー工程)が存在する場合がある。従来の硬化性樹脂組成物では、洗浄工程中に、シャワー水圧により、(a)未硬化状態の硬化性樹脂組成物の一部が溶解したり、(b)未硬化状態の硬化性樹脂組成物の一部が飛散したりして洗い落されたり、または(c)未硬化状態の硬化性樹脂組成物が変形したりするなどの問題がある。 [1. Technical Thought of One Embodiment of the Invention]
A case where the curable resin composition is used as a structural adhesive in the manufacture of vehicles and the like will be described. In a production line such as a vehicle, there is a cleaning step (for example, a washing shower step) between the step of applying the curable resin composition (adhesive) to the object to be adhered and the step of curing the curable resin composition. May be done. In the conventional curable resin composition, (a) a part of the uncured curable resin composition is dissolved or (b) the uncured curable resin composition is dissolved by the shower water pressure during the cleaning step. There are problems such as a part of the resin being scattered and washed away, or (c) the uncured curable resin composition being deformed.
水圧による未硬化状態の硬化性樹脂組成物の飛散および変形を少なくするために、従来、硬化性樹脂組成物の粘度のせん断速度依存性を改良する検討がなされている(例えば特許文献1)。
In order to reduce scattering and deformation of the uncured curable resin composition due to water pressure, studies have been conventionally made to improve the shear rate dependence of the viscosity of the curable resin composition (for example, Patent Document 1).
本発明者は硬化性樹脂組成物の粘度について検討し、以下のように推察した。すなわち、シャワー水圧により硬化性樹脂組成物が変形する現象は、静止状態の硬化性樹脂組成物の変形であり、低せん断速度域での硬化性樹脂組成物の粘度が重要であると考えた。そして、塗布時の高せん断速度域での硬化性樹脂組成物の粘度を低くし、低せん断速度域での硬化性樹脂組成物の粘度を高くする、つまり、硬化性樹脂組成物の粘度のせん断速度依存性を高くすることにより、(a)水洗シャワー工程における硬化性樹脂組成物の飛散および変形抑制と(b)塗布作業性とを両立できるということを、本発明者は独自に見出した。
The present inventor examined the viscosity of the curable resin composition and inferred as follows. That is, the phenomenon that the curable resin composition is deformed by the shower water pressure is the deformation of the curable resin composition in a stationary state, and it is considered that the viscosity of the curable resin composition in the low shear rate range is important. Then, the viscosity of the curable resin composition in the high shear rate range at the time of application is lowered, and the viscosity of the curable resin composition in the low shear rate range is increased, that is, the viscosity of the curable resin composition is sheared. The present inventor has independently found that by increasing the speed dependence, (a) suppression of scattering and deformation of the curable resin composition in the washing shower step and (b) coating workability can be achieved at the same time.
本発明の一実施形態に係る目的は、粘度のせん断速度依存性の高い硬化性樹脂組成物を提供することを通して、硬化性樹脂組成物を用いる作業性に優れた構造物の製造方法を提供することである。
An object according to an embodiment of the present invention is to provide a curable resin composition having a high viscosity dependence on the shear rate, thereby providing a method for producing a structure having excellent workability using the curable resin composition. That is.
そこで、本発明者は、硬化性樹脂組成物の粘度の温度依存性を改善することを課題とした。本発明の一実施形態に係るポリマー微粒子(B)の様な粒子成分が、エポキシ樹脂(A)の様な液状のマトリックス樹脂中に分散した樹脂組成物は、粒子成分間(以下、粒子間とも称する。)の弱い相互作用に伴う構造粘性が発現し易いことが知られている。本発明者は、樹脂組成物の粘度のせん断速度依存性を改善するために、低せん断速度域において、構造粘性の大きい樹脂組成物を得る、との独自の課題を設定し、鋭意検討を行った。その過程で、本発明者は、ポリマー微粒子(B)間の相互作用を高めることにより、低せん断速度域において、樹脂組成物の構造粘性が大きくなる、との知見を独自に見出した。
Therefore, the present inventor has made it an issue to improve the temperature dependence of the viscosity of the curable resin composition. The resin composition in which the particle components such as the polymer fine particles (B) according to the embodiment of the present invention are dispersed in the liquid matrix resin such as the epoxy resin (A) is formed between the particle components (hereinafter, also between the particles). It is known that structural viscosity associated with a weak interaction (referred to as) is likely to occur. In order to improve the shear rate dependence of the viscosity of the resin composition, the present inventor has set an original problem of obtaining a resin composition having a large structural viscosity in a low shear rate range, and conducted a diligent study. It was. In the process, the present inventor has independently found that the structural viscosity of the resin composition increases in the low shear rate range by enhancing the interaction between the polymer fine particles (B).
かかる新規知見に基づき、さらに鋭意検討したところ、本発明者は、エポキシ樹脂を含む硬化性樹脂組成物において、硬化性樹脂組成物の粘度のせん断速度依存性が、(i)ポリマー微粒子とヒュームドシリカとの併用、および(ii)ポリマー微粒子の構造に応じて変化することを独自に見出した。かかる新規知見に基づき、本発明者は、ポリマー微粒子およびヒュームドシリカについて鋭意検討し、その結果、本発明を完成させた。
As a result of further diligent studies based on such new findings, the present inventor found that in a curable resin composition containing an epoxy resin, the shear rate dependence of the viscosity of the curable resin composition was (i) polymer fine particles and fumed. It was independently found that it changes depending on the combined use with silica and the structure of (ii) polymer fine particles. Based on this new finding, the present inventor has diligently studied polymer fine particles and fumed silica, and as a result, completed the present invention.
Yield Stress(降伏応力とも称される)と称される測定値が大きいほど、水洗シャワー工程における硬化性樹脂組成物の飛散および変形を抑制できるということが知られている(例えば特許文献3)。
It is known that the larger the measured value called Yield Stress (also referred to as yield stress), the more the curable resin composition can be suppressed from scattering and deformation in the washing shower step (for example, Patent Document 3).
また、構造物の製造において、硬化性樹脂組成物は、(1)加温された後に一方の被着体に塗布され(加温塗布、とも称される。)、その後、(2)一方の被着体ともう一方の被着体とが室温下にて貼り合わされる前または同時に、塗布時の厚さから薄く引き伸ばされ得る。ここで、本発明者は、硬化性樹脂組成物の粘度の温度依存性が大きい場合、以下(i)および(ii)の課題が発生することを独自に見出した:(i)硬化性樹脂組成物の加温塗布時の粘度を低く設定した場合、硬化性樹脂組成物の加温塗布時の粘度が低すぎて塗布した硬化性樹脂組成物が垂れる場合があること;および(ii)硬化性樹脂組成物の加温塗布時の粘度を高く設定した場合、塗布後の硬化性樹脂組成物の、室温環境下における温度の低下に起因する、著しく上昇した粘度のため、塗布した硬化性樹脂組成物を薄く引き延ばすことが困難な場合があること。かかる課題に基づき鋭意検討した結果、本発明者は、硬化性樹脂組成物の粘度の温度依存性を小さくすることにより、硬化性樹脂組成物を用いた構造物の製造において、作業性が改善され得ることを独自に見出した。
Further, in the production of a structure, the curable resin composition is (1) applied to one of the adherends after being heated (also referred to as heating coating), and then (2) one of them. Before or at the same time that the adherend and the other adherend are bonded together at room temperature, they can be thinly stretched from the thickness at the time of application. Here, the present inventor has independently found that the following problems (i) and (ii) occur when the viscosity of the curable resin composition is highly temperature-dependent: (i) curable resin composition. If the viscosity of the material during warm coating is set low, the viscosity of the curable resin composition during warm coating may be too low and the applied curable resin composition may drip; and (ii) curability. When the viscosity of the resin composition during warm coating is set high, the viscosity of the curable resin composition after coating is significantly increased due to the decrease in temperature in a room temperature environment. It may be difficult to stretch an object thinly. As a result of diligent studies based on these problems, the present inventor has improved workability in the production of structures using the curable resin composition by reducing the temperature dependence of the viscosity of the curable resin composition. I found it uniquely to get.
従って、本発明の好ましい一実施形態は、粘度の高いせん断速度依存性に加えて、さらに、高いYield Stressを有し、かつ/または粘度の温度依存性の小さい硬化性樹脂組成物を提供することを目的とする。
Therefore, a preferred embodiment of the present invention provides a curable resin composition having a high Yield Stress and / or a small temperature dependence of viscosity in addition to a high viscosity shear rate dependence. With the goal.
〔2.構造物の製造方法〕
本発明の一実施形態に係る構造物の製造方法は、硬化性樹脂組成物を第一の被着体に塗布し、第二の被着体を前記第一の被着体と貼り合わせる貼り合わせ工程と、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する洗浄工程と、前記硬化性樹脂組成物を硬化させる硬化工程と、を備える。前記硬化性樹脂組成物は、エポキシ樹脂(A)、並びに、当該エポキシ樹脂(A)100質量部に対して、ポリマー微粒子(B)1質量部~100質量部、およびヒュームドシリカ(C)1質量部~30質量部を含有する。前記ポリマー微粒子(B)は、弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含む。「本発明の一実施形態に係る構造物の製造方法」、「エポキシ樹脂(A)」、「ポリマー微粒子(B)」および「ヒュームドシリカ(C)」を、以下、それぞれ、「本製造方法」、「(A)成分」、「(B)成分」および「(C)成分」と称する場合もある。 [2. Structure manufacturing method]
In the method for producing a structure according to an embodiment of the present invention, a curable resin composition is applied to a first adherend, and the second adherend is bonded to the first adherend. It includes a step, a cleaning step of cleaning the bonded body obtained in the bonding step, and a curing step of curing the curable resin composition. The curable resin composition comprises 1 part by mass to 100 parts by mass of polymer fine particles (B) and 1 part by mass of fumed silica (C) with respect to 100 parts by mass of the epoxy resin (A) and the epoxy resin (A). Contains to 30 parts by mass. The polymer fine particles (B) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group. "Method for manufacturing a structure according to an embodiment of the present invention", "Epoxy resin (A)", "Polymer fine particles (B)" and "Fumed silica (C)" are described below as "Method for manufacturing the present invention", respectively. , "(A) component", "(B) component" and "(C) component".
本発明の一実施形態に係る構造物の製造方法は、硬化性樹脂組成物を第一の被着体に塗布し、第二の被着体を前記第一の被着体と貼り合わせる貼り合わせ工程と、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する洗浄工程と、前記硬化性樹脂組成物を硬化させる硬化工程と、を備える。前記硬化性樹脂組成物は、エポキシ樹脂(A)、並びに、当該エポキシ樹脂(A)100質量部に対して、ポリマー微粒子(B)1質量部~100質量部、およびヒュームドシリカ(C)1質量部~30質量部を含有する。前記ポリマー微粒子(B)は、弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含む。「本発明の一実施形態に係る構造物の製造方法」、「エポキシ樹脂(A)」、「ポリマー微粒子(B)」および「ヒュームドシリカ(C)」を、以下、それぞれ、「本製造方法」、「(A)成分」、「(B)成分」および「(C)成分」と称する場合もある。 [2. Structure manufacturing method]
In the method for producing a structure according to an embodiment of the present invention, a curable resin composition is applied to a first adherend, and the second adherend is bonded to the first adherend. It includes a step, a cleaning step of cleaning the bonded body obtained in the bonding step, and a curing step of curing the curable resin composition. The curable resin composition comprises 1 part by mass to 100 parts by mass of polymer fine particles (B) and 1 part by mass of fumed silica (C) with respect to 100 parts by mass of the epoxy resin (A) and the epoxy resin (A). Contains to 30 parts by mass. The polymer fine particles (B) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group. "Method for manufacturing a structure according to an embodiment of the present invention", "Epoxy resin (A)", "Polymer fine particles (B)" and "Fumed silica (C)" are described below as "Method for manufacturing the present invention", respectively. , "(A) component", "(B) component" and "(C) component".
本製造方法で用いる硬化性樹脂組成物は、粘度のせん断速度依存性が高いものである。すなわち、本製造方法で用いる硬化性樹脂組成物は、従来の硬化性樹脂組成物と比較して、高せん断速度域において粘度が低く、低せん断速度域において粘度が高いものである。それ故、本製造方法で用いる硬化性樹脂組成物は、耐シャワー性に優れるものといえる。また、本製造方法で用いる硬化性樹脂組成物は、粘度の温度依存性が小さいという利点を有する場合もある。すなわち、本製造方法で用いる硬化性樹脂組成物は、従来の硬化性樹脂組成物と比較して、塗布時の粘度(加温時の粘度、および高温時の粘度ともいえる)が高く、かつ、室温環境下で作業するときの粘度(低温時の粘度ともいえる)が低い場合もある。本製造方法は、上述したような利点を有する硬化性樹脂組成物を用いるため、作業性に優れるという利点を有する。
The curable resin composition used in this production method has a high viscosity dependence on the shear rate. That is, the curable resin composition used in this production method has a lower viscosity in the high shear rate range and a higher viscosity in the low shear rate range than the conventional curable resin composition. Therefore, it can be said that the curable resin composition used in this production method has excellent shower resistance. Further, the curable resin composition used in the present production method may have an advantage that the temperature dependence of the viscosity is small. That is, the curable resin composition used in this production method has a higher viscosity at the time of coating (which can be said to be the viscosity at the time of heating and the viscosity at the high temperature) as compared with the conventional curable resin composition, and In some cases, the viscosity when working in a room temperature environment (which can be said to be the viscosity at low temperature) is low. Since this production method uses a curable resin composition having the above-mentioned advantages, it has an advantage of excellent workability.
(2-1.硬化性樹脂組成物)
以下、本製造方法で使用する硬化性樹脂組成物について詳述する。 (2-1. Curable resin composition)
Hereinafter, the curable resin composition used in this production method will be described in detail.
以下、本製造方法で使用する硬化性樹脂組成物について詳述する。 (2-1. Curable resin composition)
Hereinafter, the curable resin composition used in this production method will be described in detail.
本発明の一実施形態に係る硬化性樹脂組成物は、エポキシ樹脂(A)、並びに、当該エポキシ樹脂(A)100質量部に対して、ポリマー微粒子(B)1質量部~100質量部、およびヒュームドシリカ(C)1質量部~30質量部を含有する。前記ポリマー微粒子(B)は、弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含む。「本発明の一実施形態に係る硬化性樹脂組成物」を、以下、「本硬化性樹脂組成物」と称する場合もある。
The curable resin composition according to the embodiment of the present invention comprises 1 part by mass to 100 parts by mass of the polymer fine particles (B) with respect to 100 parts by mass of the epoxy resin (A) and the epoxy resin (A). It contains 1 part by mass to 30 parts by mass of fumed silica (C). The polymer fine particles (B) include a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group. The "curable resin composition according to one embodiment of the present invention" may be hereinafter referred to as "the present curable resin composition".
本硬化性樹脂組成物は、前記構成を有するため、粘度のせん断速度依存性が高いものである。それ故に、本硬化性樹脂組成物を用いることにより、作業性に優れる、構造物の製造方法を提供できる。本明細書において、粘度のせん断速度依存性は、せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比により評価している。粘度のせん断速度依存性が高いということは、せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比(せん断速度5s-1のときの粘度/せん断速度50s-1のときの粘度)が大きいことを意味する。粘度の測定方法は、実施例にて詳述する。
Since the present curable resin composition has the above-mentioned structure, the viscosity is highly dependent on the shear rate. Therefore, by using the present curable resin composition, it is possible to provide a method for producing a structure having excellent workability. In the present specification, the shear rate dependence of the viscosity is evaluated by the ratio of the viscosity when the shear rate is 5s -1 to the viscosity when the shear rate is 50s -1 . A high shear rate dependence of the viscosity, the viscosity / shear rate 50s -1 at a ratio (shear rate 5s -1 and the viscosity at a viscosity and shear rate 50s -1 at a shear rate of 5s -1 It means that the viscosity at the time of) is large. The method for measuring the viscosity will be described in detail in Examples.
本硬化性樹脂組成物の粘度のせん断速度依存性が高い理由は明確ではないが、以下の様に推定している。本発明の一実施形態に係るポリマー微粒子(B)は、グラフト部にヒドロキシ基を有している。また、本硬化性樹脂組成物は、ヒュームドシリカ(C)を含んでいる。ヒュームドシリカ(C)は表面にシラノール基等に由来するヒドロキシ基を有している。その結果、ヒドロキシ基同士の水素結合に起因して、ポリマー微粒子(B)間、ポリマー微粒子(B)とヒュームドシリカ(C)との間、および/または、ヒュームドシリカ(C)間の相互作用が高くなると推定される。粒子間の相互作用を高めると、低せん断速度域において粒子どうしが引き離され難くなり、その結果、低せん断速度域において構造粘性が高く維持され、粘度のせん断速度依存性が高くなると推定される。
The reason why the viscosity of this curable resin composition is highly dependent on the shear rate is not clear, but it is estimated as follows. The polymer fine particles (B) according to the embodiment of the present invention have a hydroxy group at the graft portion. In addition, the present curable resin composition contains fumed silica (C). Humed silica (C) has a hydroxy group derived from a silanol group or the like on its surface. As a result, due to the hydrogen bonds between the hydroxy groups, between the polymer fine particles (B), between the polymer fine particles (B) and the fumed silica (C), and / or between the fumed silica (C). It is estimated that the action will be higher. It is presumed that when the interaction between the particles is enhanced, the particles are less likely to be separated from each other in the low shear rate region, and as a result, the structural viscosity is maintained high in the low shear rate region and the shear rate dependence of the viscosity becomes high.
本硬化性樹脂組成物は、前記構成を有するため、粘度の温度依存性が小さいという利点を有する場合もある。粘度の温度依存性が小さい硬化性樹脂組成物を用いることにより、より作業性に優れる、構造物の製造方法を提供できる。
Since the present curable resin composition has the above-mentioned structure, it may have an advantage that the temperature dependence of the viscosity is small. By using a curable resin composition having a small temperature dependence of viscosity, it is possible to provide a method for producing a structure having more excellent workability.
本硬化性樹脂組成物の粘度の温度依存性が小さい理由は明確ではないが、以下の様に推定している。すなわち、粒子間の相互作用を高めると、高温においても粒子どうしが引き離され難くなり、その結果、高温でも構造粘性が維持され、粘度の温度依存性が小さくなると推定される。
The reason why the temperature dependence of the viscosity of this curable resin composition is small is not clear, but it is estimated as follows. That is, it is presumed that if the interaction between the particles is enhanced, the particles are less likely to be separated from each other even at a high temperature, and as a result, the structural viscosity is maintained even at a high temperature and the temperature dependence of the viscosity is reduced.
(エポキシ樹脂(A))
本硬化性樹脂組成物は、主成分として、エポキシ樹脂(A)を含む。 (Epoxy resin (A))
The present curable resin composition contains an epoxy resin (A) as a main component.
本硬化性樹脂組成物は、主成分として、エポキシ樹脂(A)を含む。 (Epoxy resin (A))
The present curable resin composition contains an epoxy resin (A) as a main component.
エポキシ樹脂(A)としては、後述のゴム変性エポキシ樹脂とウレタン変性エポキシ樹脂とを除く、各種の硬質のエポキシ樹脂を使用することができる。エポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水添ビスフェノールA(又はF)型エポキシ樹脂、フッ素化エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、p-オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m-アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、各種脂環式エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ジビニルベンゼンジオキシド、レゾルシノールジグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリコールジグリシジルエーテル、脂肪族多塩基酸のジグリシジルエステル、グリセリンのような二価以上の多価脂肪族アルコールのグリシジルエーテル、キレート変性エポキシ樹脂、ヒダントイン型エポキシ樹脂、石油樹脂などのような不飽和重合体のエポキシ化物、含アミノグリシジルエーテル樹脂、およびこれら上述のエポキシ樹脂にビスフェノールA(又はF)類または多塩基酸類等を付加反応させて得られるエポキシ化合物、などが例示される。エポキシ樹脂(A)としては、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。
As the epoxy resin (A), various hard epoxy resins can be used except for the rubber-modified epoxy resin and the urethane-modified epoxy resin described later. Examples of the epoxy resin (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, and novolac type epoxy resin. , Bisphenol A propylene oxide adduct glycidyl ether type epoxy resin, hydrogenated bisphenol A (or F) type epoxy resin, fluorinated epoxy resin, flame-retardant epoxy resin such as tetrabromo bisphenol A glycidyl ether, p-oxybenzo Glycidyl acid ether ester type epoxy resin, m-aminophenol type epoxy resin, diaminodiphenylmethane type epoxy resin, various alicyclic epoxy resins, N, N-diglycidyl aniline, N, N-diglycidyl-o-toluidine, triglycidyl isocia Nurate, divinylbenzene dioxide, resorcinol diglycidyl ether, polyalkylene glycol diglycidyl ether, glycol diglycidyl ether, diglycidyl ester of aliphatic polybasic acid, glycidyl ether of divalent or higher polyvalent aliphatic alcohol such as glycerin , Chelate-modified epoxy resin, hidden-in type epoxy resin, epoxidized products of unsaturated polymers such as petroleum resin, aminoglycidyl ether resin containing aminoglycidyl, and bisphenol A (or F) or polybasic acids and the like in these above-mentioned epoxy resins. Epoxy compounds obtained by the addition reaction of the above are exemplified. The epoxy resin (A) is not limited to these, and a generally used epoxy resin can be used.
前記「硬質のエポキシ樹脂」とは、特定のガラス転移温度(Tg)を有するエポキシ樹脂を意図しており、例えば、50℃以上のTgを有するエポキシ樹脂が挙げられる。
The "hard epoxy resin" is intended to be an epoxy resin having a specific glass transition temperature (Tg), and examples thereof include an epoxy resin having a Tg of 50 ° C. or higher.
前記ポリアルキレングリコールジグリシジルエーテルとしては、より具体的には、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどが挙げられる。前記グリコールジグリシジルエーテルとしては、より具体的には、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテルなどが挙げられる。前記脂肪族多塩基酸のジグリシジルエステルとしては、より具体的には、ダイマー酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、マレイン酸ジグリシジルエステルなどが挙げられる。前記二価以上の多価脂肪族アルコールのグリシジルエーテルとしては、より具体的には、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ひまし油変性ポリグリシジルエーテル、プロポキシ化グリセリントリグリシジルエーテル、ソルビトールポリグリシジルエーテルなどが挙げられる。エポキシ樹脂に多塩基酸類等を付加反応させて得られるエポキシ化合物としては、例えば、WO2010-098950号公報に記載されているような、トール油脂肪酸の二量体(ダイマー酸)とビスフェノールA型エポキシ樹脂との付加反応物が挙げられる。これらエポキシ樹脂は1種類を単独で用いても良く2種以上を併用しても良い。
More specific examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether. More specific examples of the glycol diglycidyl ether include neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether and the like. Be done. More specific examples of the aliphatic polybasic acid diglycidyl ester include dimer acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, and maleic acid diglycidyl ester. More specifically, the glycidyl ether of the divalent or higher polyvalent aliphatic alcohol includes trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, castor oil-modified polyglycidyl ether, propoxylated glycerin triglycidyl ether, and sorbitol. Examples include polyglycidyl ether. Examples of the epoxy compound obtained by adding a polybasic acid or the like to an epoxy resin include a dimer of a tall oil fatty acid (dimeric acid) and a bisphenol A type epoxy as described in WO2010-098950. Examples include an addition reaction product with a resin. One type of these epoxy resins may be used alone, or two or more types may be used in combination.
前記ポリアルキレングリコールジグリシジルエーテル、前記グリコールジグリシジルエーテル、前記脂肪族多塩基酸のジグリシジルエステルおよび前記二価以上の多価脂肪族アルコールのグリシジルエーテルは、比較的低い粘度を有するエポキシ樹脂である。本明細書において、ポリアルキレングリコールジグリシジルエーテル、グリコールジグリシジルエーテル、脂肪族多塩基酸のジグリシジルエステル、および二価以上の多価脂肪族アルコールのグリシジルエーテルを、低粘度エポキシ樹脂と称する。低粘度エポキシ樹脂を、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂などの低粘度エポキシ樹脂以外のエポキシ樹脂と併用する場合、低粘度エポキシ樹脂は、反応性希釈剤として機能し得る。その結果、低粘度エポキシ樹脂は、硬化性樹脂組成物の粘度と当該硬化性樹脂組成物から得られる接着層の物性とのバランスを改良する事ができる。本硬化性樹脂組成物は、反応性希釈剤として機能し得るエポキシ樹脂(例えば、低粘度エポキシ樹脂)を含んでいてもよい。これら反応性希釈剤として機能するエポキシ樹脂の含有量は、エポキシ樹脂(A)100質量%中、0.5質量%~20質量%が好ましく、1質量%~10質量%がより好ましく、2質量%~5質量%が更に好ましい。
The polyalkylene glycol diglycidyl ether, the glycol diglycidyl ether, the diglycidyl ester of the aliphatic polybasic acid, and the glycidyl ether of the divalent or higher polyvalent aliphatic alcohol are epoxy resins having a relatively low viscosity. .. In the present specification, polyalkylene glycol diglycidyl ether, glycol diglycidyl ether, diglycidyl ester of aliphatic polybasic acid, and glycidyl ether of dihydric or higher polyhydric alcohol are referred to as low viscosity epoxy resins. When the low-viscosity epoxy resin is used in combination with an epoxy resin other than the low-viscosity epoxy resin such as the bisphenol A type epoxy resin and the bisphenol F type epoxy resin, the low-viscosity epoxy resin can function as a reactive diluent. As a result, the low-viscosity epoxy resin can improve the balance between the viscosity of the curable resin composition and the physical properties of the adhesive layer obtained from the curable resin composition. The curable resin composition may contain an epoxy resin (for example, a low-viscosity epoxy resin) that can function as a reactive diluent. The content of the epoxy resin that functions as the reactive diluent is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 10% by mass, or 2% by mass, based on 100% by mass of the epoxy resin (A). % To 5% by mass is more preferable.
前記キレート変性エポキシ樹脂は、エポキシ樹脂とキレート官能基を含有する化合物(キレート配位子)との反応生成物である。本硬化性樹脂組成物にキレート変性エポキシ樹脂を添加して接着剤として用いる場合、油状物質で汚染された金属基材表面への接着性を改善できる。キレート官能基は、金属イオンへ配位可能な配位座を分子内に複数有する化合物の官能基であり、例えば、リン含有酸基(例えば、-PO(OH)2)、カルボン酸基(-CO2H)、硫黄含有酸基(例えば、-SO3H)、アミノ基及び水酸基(特に、芳香環において互いに隣接した水酸基)などが挙げられる。キレート配位子としては、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸、フェナントロリン、ポルフィリン、クラウンエーテル、などが挙げられる。市販されているキレート変性エポキシ樹脂としては、ADEKA製アデカレジンEP-49-10Nなどが挙げられる。
The chelate-modified epoxy resin is a reaction product of an epoxy resin and a compound (chelate ligand) containing a chelate functional group. When a chelate-modified epoxy resin is added to the curable resin composition and used as an adhesive, the adhesiveness to the surface of a metal substrate contaminated with an oily substance can be improved. The chelate functional group is a functional group of a compound having a plurality of coordination positions capable of coordinating to a metal ion in the molecule, and is, for example, a phosphorus-containing acid group (for example, -PO (OH) 2 ) or a carboxylic acid group (-). CO 2 H), sulfur-containing acid groups (eg, -SO 3 H), amino groups and hydroxyl groups (particularly, hydroxyl groups adjacent to each other in the aromatic ring) and the like. Examples of the chelating ligand include ethylenediamine, bipyridine, ethylenediaminetetraacetic acid, phenanthroline, porphyrin, crown ether, and the like. Examples of commercially available chelate-modified epoxy resins include ADEKA ADEKA Resin EP-49-10N.
(A)成分中のキレート変性エポキシ樹脂の使用量は、好ましくは0.1~10質量%、より好ましくは0.5~3質量%である。
The amount of the chelate-modified epoxy resin used in the component (A) is preferably 0.1 to 10% by mass, and more preferably 0.5 to 3% by mass.
本明細書において、ある成分の「使用量」は、当該成分の「添加量」ともいえ、また硬化性樹脂組成物における当該成分の「含有量」ともいえる。
In the present specification, the "usage amount" of a certain component can be said to be the "addition amount" of the component, and can also be said to be the "content" of the component in the curable resin composition.
これらのエポキシ樹脂の中でもエポキシ基を一分子中に少なくとも2個有するものが、得られる硬化性樹脂組成物の硬化における反応性が高くなり、得られる硬化物が3次元的網目を作りやすいなどの点から好ましい。
Among these epoxy resins, those having at least two epoxy groups in one molecule have high reactivity in curing of the obtained curable resin composition, and the obtained cured product easily forms a three-dimensional network. It is preferable from the point of view.
上述したエポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂は、(a)弾性率が高く、かつ耐熱性および接着性に優れる硬化物が得られ、また(b)比較的安価である為好ましく、ビスフェノールA型エポキシ樹脂が特に好ましい。
Among the above-mentioned epoxy resins, the bisphenol A type epoxy resin and the bisphenol F type epoxy resin can (a) obtain a cured product having high elasticity and excellent heat resistance and adhesiveness, and (b) be relatively inexpensive. Therefore, bisphenol A type epoxy resin is particularly preferable.
また、上述した各種のエポキシ樹脂の中でも、エポキシ当量が220未満のエポキシ樹脂は、粘度の温度依存性が小さく、かつ得られる硬化物の弾性率および耐熱性が高い為に好ましい。上述したエポキシ樹脂の中でも、エポキシ当量が90以上210未満のエポキシ樹脂がより好ましく、150以上200未満のエポキシ樹脂が更に好ましい。
Further, among the various epoxy resins described above, an epoxy resin having an epoxy equivalent of less than 220 is preferable because it has a small temperature dependence of viscosity and a high elastic modulus and heat resistance of the obtained cured product. Among the above-mentioned epoxy resins, an epoxy resin having an epoxy equivalent of 90 or more and less than 210 is more preferable, and an epoxy resin having an epoxy equivalent of 150 or more and less than 200 is further preferable.
エポキシ樹脂(A)は、エポキシ当量が220未満のビスフェノールA型エポキシ樹脂および/またはビスフェノールF型エポキシ樹脂であることが好ましい。ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂は、常温で液体であるため、前記構成によると、得られる硬化性樹脂組成物の粘度の温度依存性が小さくなり、取扱い性が良好となる。
The epoxy resin (A) is preferably a bisphenol A type epoxy resin and / or a bisphenol F type epoxy resin having an epoxy equivalent of less than 220. Since the bisphenol A type epoxy resin and the bisphenol F type epoxy resin are liquid at room temperature, according to the above configuration, the temperature dependence of the viscosity of the obtained curable resin composition is small, and the handleability is good.
エポキシ当量が220以上5000未満のビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂を、(A)成分100質量%中に、好ましくは40質量%以下、より好ましくは20質量%以下の範囲で添加することが好ましい。前記構成によると、得られる接着層が耐衝撃性に優れるという利点を有する。
A bisphenol A type epoxy resin and a bisphenol F type epoxy resin having an epoxy equivalent of 220 or more and less than 5000 are added to 100% by mass of the component (A) in a range of preferably 40% by mass or less, more preferably 20% by mass or less. Is preferable. According to the above configuration, the obtained adhesive layer has an advantage of being excellent in impact resistance.
(ポリマー微粒子(B))
本発明の一実施形態に係る硬化性樹脂組成物は、(B)成分の靱性改良効果により、靱性および衝撃剥離接着性に優れる接着層を提供できる。 (Polymer fine particles (B))
The curable resin composition according to one embodiment of the present invention can provide an adhesive layer having excellent toughness and impact peeling adhesiveness due to the toughness improving effect of the component (B).
本発明の一実施形態に係る硬化性樹脂組成物は、(B)成分の靱性改良効果により、靱性および衝撃剥離接着性に優れる接着層を提供できる。 (Polymer fine particles (B))
The curable resin composition according to one embodiment of the present invention can provide an adhesive layer having excellent toughness and impact peeling adhesiveness due to the toughness improving effect of the component (B).
得られる硬化性樹脂組成物の粘度のせん断速度依存性および取扱いやすさ、並びに得られる接着層の靭性改良効果のバランスから、(A)成分100質量部に対して、(B)成分は1質量部~100質量部が好ましく、3質量部~70質量部がより好ましく、5質量部~50質量部が更に好ましく、10質量部~40質量部が特に好ましい。
From the balance between the shear rate dependence of the viscosity of the obtained curable resin composition and the ease of handling, and the effect of improving the toughness of the obtained adhesive layer, the component (B) is 1 mass by mass with respect to 100 parts by mass of the component (A). 3 parts to 100 parts by mass is preferable, 3 parts by mass to 70 parts by mass is more preferable, 5 parts by mass to 50 parts by mass is further preferable, and 10 parts by mass to 40 parts by mass is particularly preferable.
ポリマー微粒子(B)の体積平均粒子径(Mv)は特に限定されないが、工業的生産性を考慮すると、10nm~2000nmが好ましく、10nm~1000nmが好ましく、30nm~600nmがより好ましく、50nm~400nmが更に好ましく、100nm~200nmが特に好ましい。前記構成によると、所望の粘度を有し、かつ高度に安定した硬化性樹脂組成物を得ることができるという利点も有する。なお、本明細書において、「ポリマー微粒子(B)の体積平均粒子径(Mv)」とは、特に言及する場合を除き、ポリマー微粒子(B)の1次粒子の体積平均粒子径を意図する。ポリマー微粒子(B)の体積平均粒子径(Mv)は、ポリマー微粒子(B)を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置(例えばマイクロトラックUPA150(日機装株式会社製))を用いて測定することができる。ポリマー微粒子(B)の体体積平均粒子径の測定方法については、下記実施例にて詳述する。また、ポリマー微粒子(B)の体積平均粒子径は、構造物の接着層を切断し、電子顕微鏡などを用いて接着層の切断面を撮像した後、得られた撮像データ(撮像画像)を用いて測定することもできる。
The volume average particle diameter (Mv) of the polymer fine particles (B) is not particularly limited, but in consideration of industrial productivity, 10 nm to 2000 nm is preferable, 10 nm to 1000 nm is preferable, 30 nm to 600 nm is more preferable, and 50 nm to 400 nm is preferable. More preferably, 100 nm to 200 nm is particularly preferable. According to the above configuration, there is also an advantage that a highly stable curable resin composition having a desired viscosity can be obtained. In the present specification, the "volume average particle size (Mv) of the polymer fine particles (B)" is intended to be the volume average particle size of the primary particles of the polymer fine particles (B) unless otherwise specified. The volume average particle size (Mv) of the polymer fine particles (B) is a dynamic light scattering type particle size distribution measuring device (for example, Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.)) using an aqueous latex containing the polymer fine particles (B) as a sample. Can be measured using. The method for measuring the body volume average particle diameter of the polymer fine particles (B) will be described in detail in the following Examples. The volume average particle diameter of the polymer fine particles (B) is determined by cutting the adhesive layer of the structure, imaging the cut surface of the adhesive layer using an electron microscope, or the like, and then using the obtained imaging data (imaging image). It can also be measured.
(B)成分は、本発明の一実施形態に係る硬化性樹脂組成物中において、その体積平均粒子径の個数分布において、前記体積平均粒子径の0.5倍以上、1倍以下の半値幅を有することが、得られる硬化性樹脂組成物が低粘度で取扱い易い為に好ましい。
In the curable resin composition according to the embodiment of the present invention, the component (B) has a half-price width of 0.5 times or more and 1 times or less of the volume average particle size in the number distribution of the volume average particle size. Is preferable because the obtained curable resin composition has a low viscosity and is easy to handle.
上述の特定の粒子径分布を容易に実現できることから、(B)成分の体積平均粒子径の個数分布において、極大値が2個以上存在することが好ましい。製造時の手間が少なく、かつコストが小さいことから、(B)成分の体積平均粒子径の個数分布において、極大値が2~3個存在することがより好ましく、極大値が2個存在することが更に好ましい。(B)成分は、特に、体積平均粒子径が10nm以上150nm未満のポリマー微粒子10~90質量%と、体積平均粒子径が150nm以上2000nm以下のポリマー微粒子(B)90~10質量%とを含むことが好ましい。
Since the above-mentioned specific particle size distribution can be easily realized, it is preferable that two or more maximum values exist in the number distribution of the volume average particle size of the component (B). It is more preferable that there are two or three maximum values in the number distribution of the volume average particle diameter of the component (B), and two maximum values are present, because the labor during manufacturing is small and the cost is low. Is more preferable. The component (B) particularly contains 10 to 90% by mass of polymer fine particles having a volume average particle diameter of 10 nm or more and less than 150 nm, and 90 to 10% by mass of polymer fine particles (B) having a volume average particle diameter of 150 nm or more and 2000 nm or less. Is preferable.
(B)成分は硬化性樹脂組成物または接着層中で1次粒子の状態で分散していることが好ましい。本発明の一実施形態における、「ポリマー微粒子(B)が硬化性樹脂組成物または接着層中で1次粒子の状態で分散している」とは、硬化性樹脂組成物または接着層中で、ポリマー微粒子(B)同士が実質的に独立して(接触することなく)分散していることを意味する。硬化性樹脂組成物または接着層中のポリマー微粒子(B)の分散状態は、例えば、ポリマー微粒子(B)の体積平均粒子径(Mv)/個数平均粒子径(Mn)(以下、「Mv/Mn」と称する場合もある。)を測定することにより確認できる。
The component (B) is preferably dispersed in the state of primary particles in the curable resin composition or the adhesive layer. In one embodiment of the present invention, "the polymer fine particles (B) are dispersed in the curable resin composition or the adhesive layer in the form of primary particles" means that in the curable resin composition or the adhesive layer, This means that the polymer fine particles (B) are dispersed substantially independently (without contact). The dispersed state of the polymer fine particles (B) in the curable resin composition or the adhesive layer is, for example, the volume average particle diameter (Mv) / number average particle diameter (Mn) of the polymer fine particles (B) (hereinafter, “Mv / Mn”. It may be confirmed by measuring).
ポリマー微粒子(B)のMv/Mnは、動的光散乱式の粒子径分布測定装置(例えば、マイクロトラックUPA(日機装株式会社製))を用いてポリマー微粒子(B)の体積平均粒子径(Mv)および個数平均粒子径(Mn)をそれぞれ測定し、MvをMnで除することによって求めることができる。硬化性樹脂組成物における、ポリマー微粒子(B)のMv/Mnは、例えば、硬化性樹脂組成物の一部をメチルエチルケトンのような溶剤に溶解し、得られた混合物(溶解物)を動的光散乱式の粒子径分布測定装置などに供することにより測定できる。接着層中のポリマー微粒子(B)のMv/Mnは、例えば、構造物の接着層を切断し、電子顕微鏡などを用いて接着層の切断面を撮像した後、得られた撮像データ(撮像画像)を用いて測定することができる。
The Mv / Mn of the polymer fine particles (B) is the volume average particle diameter (Mv) of the polymer fine particles (B) using a dynamic light scattering type particle size distribution measuring device (for example, Microtrac UPA (manufactured by Nikkiso Co., Ltd.)). ) And the number average particle size (Mn) are measured respectively, and Mv can be obtained by dividing by Mn. For the Mv / Mn of the polymer fine particles (B) in the curable resin composition, for example, a part of the curable resin composition is dissolved in a solvent such as methyl ethyl ketone, and the obtained mixture (dissolved product) is subjected to dynamic light. It can be measured by using it in a scattering type particle size distribution measuring device or the like. The Mv / Mn of the polymer fine particles (B) in the adhesive layer is obtained, for example, after cutting the adhesive layer of the structure and imaging the cut surface of the adhesive layer using an electron microscope or the like. ) Can be used for measurement.
ポリマー微粒子(B)の体積平均粒子径(Mv)/個数平均粒子径(Mn)の値は、特に制限されないが、3以下であることが好ましく、2.5以下がより好ましく、2以下が更に好ましく、1.5以下が特に好ましい。ポリマー微粒子(B)の体積平均粒子径(Mv)/個数平均粒子径(Mn)が3以下である場合、硬化性樹脂組成物または接着層中でポリマー微粒子(B)が良好に、すなわち一次粒子の状態で分散していると考えられる。ポリマー微粒子(B)のMv/Mnが3以下である硬化性樹脂組成物、すなわちポリマー微粒子(B)の分散性が良好である硬化性樹脂組成物は、耐衝撃性および接着性などの物性に優れる接着層を提供できる。ポリマー微粒子(B)のMv/Mnが3以下である接着層、すなわちポリマー微粒子(B)の分散性が良好である接着層は、耐衝撃性および接着性などの物性に優れる。
The value of the volume average particle diameter (Mv) / number average particle diameter (Mn) of the polymer fine particles (B) is not particularly limited, but is preferably 3 or less, more preferably 2.5 or less, and further 2 or less. It is preferable, and 1.5 or less is particularly preferable. When the volume average particle size (Mv) / number average particle size (Mn) of the polymer fine particles (B) is 3 or less, the polymer fine particles (B) are good in the curable resin composition or the adhesive layer, that is, the primary particles. It is considered that they are dispersed in the state of. The curable resin composition in which the Mv / Mn of the polymer fine particles (B) is 3 or less, that is, the curable resin composition in which the polymer fine particles (B) have good dispersibility, has physical properties such as impact resistance and adhesiveness. An excellent adhesive layer can be provided. The adhesive layer in which the Mv / Mn of the polymer fine particles (B) is 3 or less, that is, the adhesive layer in which the polymer fine particles (B) have good dispersibility is excellent in physical properties such as impact resistance and adhesiveness.
また、ポリマー微粒子(B)が、連続層中で凝集したり、分離したり、沈殿したりすることなく、定常的に通常の条件下にて、長期間に渡って、分散している状態を、ポリマー微粒子(B)の「安定な分散」と称する場合もある。前記「連続層」としては、例えば、硬化性組成物および接着層などが挙げられる。ポリマー微粒子(B)の連続層中での分布は、実質的に変化しないことが好ましい。また、当該連続層(例えば硬化性樹脂組成物)を危険がない範囲で加熱することで連続層の粘度を下げて攪拌した場合であっても、連続層中のポリマー微粒子(B)の「安定な分散」が保持されることが好ましい。
Further, the polymer fine particles (B) are stably dispersed over a long period of time under normal conditions without agglomeration, separation, or precipitation in the continuous layer. , Also referred to as "stable dispersion" of the polymer fine particles (B). Examples of the "continuous layer" include a curable composition and an adhesive layer. It is preferable that the distribution of the polymer fine particles (B) in the continuous layer does not change substantially. Further, even when the continuous layer (for example, a curable resin composition) is heated within a non-hazardous range to reduce the viscosity of the continuous layer and stirred, the polymer fine particles (B) in the continuous layer are "stable". It is preferable that the "dispersion" is maintained.
(B)成分は1種類を単独で用いても良く2種以上を組み合わせて用いてもよい。
As the component (B), one type may be used alone, or two or more types may be used in combination.
(弾性体)
弾性体は、天然ゴム、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種以上を含むことが好ましく、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種以上を含むことがより好ましい。弾性体は、ゴム粒子と言い換えることもできる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。ポリシロキサンゴム系弾性体は、オルガノシロキサン系ゴムと称される場合もある。 (Elastic body)
The elastic body preferably contains at least one selected from the group consisting of natural rubber, diene rubber, (meth) acrylate rubber and polysiloxane rubber elastic, and preferably diene rubber and (meth) acrylate rubber. It is more preferable to contain at least one selected from the group consisting of polysiloxane rubber-based elastic bodies. The elastic body can also be rephrased as rubber particles. As used herein, the term (meth) acrylate means acrylate and / or methacrylate. The polysiloxane rubber-based elastic body may also be referred to as an organosiloxane-based rubber.
弾性体は、天然ゴム、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種以上を含むことが好ましく、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種以上を含むことがより好ましい。弾性体は、ゴム粒子と言い換えることもできる。本明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。ポリシロキサンゴム系弾性体は、オルガノシロキサン系ゴムと称される場合もある。 (Elastic body)
The elastic body preferably contains at least one selected from the group consisting of natural rubber, diene rubber, (meth) acrylate rubber and polysiloxane rubber elastic, and preferably diene rubber and (meth) acrylate rubber. It is more preferable to contain at least one selected from the group consisting of polysiloxane rubber-based elastic bodies. The elastic body can also be rephrased as rubber particles. As used herein, the term (meth) acrylate means acrylate and / or methacrylate. The polysiloxane rubber-based elastic body may also be referred to as an organosiloxane-based rubber.
(a)得られる接着層における靱性改良効果および耐衝撃剥離接着性改良効果が高い点、並びに(b)マトリックス樹脂(例えばエポキシ樹脂(A))との親和性が低い為に、得られる硬化性樹脂組成物において弾性体の膨潤による経時による粘度上昇が起こり難い点から、弾性体はジエン系ゴムを含むことが好ましく、ジエン系ゴムであることがより好ましい。弾性体がジエン系ゴムを含む場合、得られる硬化性樹脂組成物は、靱性および耐衝撃性に優れる接着層を提供することもできる。
Curability obtained because (a) the effect of improving toughness and impact resistance peeling adhesiveness in the obtained adhesive layer is high, and (b) the affinity with the matrix resin (for example, epoxy resin (A)) is low. The elastic body preferably contains a diene rubber, and more preferably a diene rubber, because the resin composition is unlikely to increase in viscosity with time due to swelling of the elastic body. When the elastic body contains a diene-based rubber, the obtained curable resin composition can also provide an adhesive layer having excellent toughness and impact resistance.
以下、弾性体がジエン系ゴムを含む場合(場合A)について説明する。前記ジエン系ゴムは、構成単位として、ジエン系モノマーに由来する構成単位を含む弾性体である。前記ジエン系モノマーは、共役ジエン系モノマーと言い換えることもできる。場合Aにおいて、ジエン系ゴムは、構成単位100質量%中、ジエン系モノマーに由来する構成単位を50~100質量%、およびジエン系モノマーと共重合可能なジエン系モノマー以外のビニル系モノマーに由来する構成単位を0~50質量%、含むものであってもよい。場合Aにおいて、ジエン系ゴムは、構成単位として、ジエン系モノマーに由来する構成単位よりも少ない量において、(メタ)アクリレート系モノマーに由来する構成単位を含んでいてもよい。
Hereinafter, the case where the elastic body contains diene-based rubber (case A) will be described. The diene-based rubber is an elastic body containing a structural unit derived from a diene-based monomer as a structural unit. The diene-based monomer can also be rephrased as a conjugated diene-based monomer. In Case A, the diene-based rubber is derived from 50 to 100% by mass of the constituent unit derived from the diene-based monomer in 100% by mass of the constituent unit, and a vinyl-based monomer other than the diene-based monomer copolymerizable with the diene-based monomer. It may contain 0 to 50% by mass of the constituent units to be formed. In Case A, the diene-based rubber may contain a structural unit derived from the (meth) acrylate-based monomer as a structural unit in a smaller amount than the structural unit derived from the diene-based monomer.
ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2-クロロ-1,3-ブタジエンなどが挙げられる。これらのジエン系モノマーは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the diene-based monomer include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2-chloro-1,3-butadiene and the like. Only one type of these diene-based monomers may be used, or two or more types may be used in combination.
ジエン系モノマーと共重合可能なジエン系モノマー以外のビニル系モノマー(以下、ビニル系モノマーA、とも称する。)としては、例えば、(i)スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;(ii)アクリル酸、メタクリル酸などのビニルカルボン酸類;(iii)アクリロニトリル、メタクリロニトリルなどのビニルシアン類;(iv)塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;(v)酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;(vi)ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性モノマー、などが挙げられる。上述した、ビニル系モノマーAは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。上述した、ビニル系モノマーAの中でも、特に好ましくはスチレンである。
Examples of vinyl-based monomers other than the diene-based monomer copolymerizable with the diene-based monomer (hereinafter, also referred to as vinyl-based monomer A) include (i) styrene, α-methylstyrene, monochlorostyrene, and dichlorostyrene. Vinyl monomers; (ii) Vinyl carboxylic acids such as acrylic acid and methacrylic acid; (iii) Vinyl cyanes such as acrylonitrile and methacrylate; (iv) Vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; (V) Vinyl acetate; Alkens such as ethylene, propylene, butylene, and isobutylene; (vi) Polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, and divinylbenzene, and the like. As the vinyl-based monomer A described above, only one type may be used, or two or more types may be used in combination. Among the vinyl-based monomers A described above, styrene is particularly preferable.
弾性体は、ブタジエンゴム、および/または、ブタジエン-スチレンゴムであることが好ましく、ブタジエンゴムであることがより好ましい。前記ブタジエンゴムは、1,3-ブタジエンに由来する構成単位からなるゴムであり、ポリブタジエンゴムとも称される。前記ブタジエン-スチレンゴムは、1,3-ブタジエンとスチレンとの共重合体であり、ポリスチレン-ブタジエンとも称される。前記構成によると、(a)得られる接着層における靱性改良効果がより高いという利点、および(b)マトリックス樹脂(例えばエポキシ樹脂(A))との親和性がより低い為に、得られる硬化性樹脂組成物において弾性体の膨潤による経時による粘度上昇がより起こり難いという利点を有する。また、ブタジエン-スチレンゴムは、屈折率の調整により、得られる接着層の透明性を高めることができる点においても、より好ましい。
The elastic body is preferably butadiene rubber and / or butadiene-styrene rubber, and more preferably butadiene rubber. The butadiene rubber is a rubber composed of a structural unit derived from 1,3-butadiene, and is also called a polybutadiene rubber. The butadiene-styrene rubber is a copolymer of 1,3-butadiene and styrene, and is also referred to as polystyrene-butadiene. According to the above configuration, (a) the advantage of having a higher toughness improving effect in the obtained adhesive layer, and (b) the curability obtained due to the lower affinity with the matrix resin (for example, epoxy resin (A)). The resin composition has an advantage that the viscosity increase with time due to the swelling of the elastic body is less likely to occur. Further, butadiene-styrene rubber is more preferable in that the transparency of the obtained adhesive layer can be enhanced by adjusting the refractive index.
多種のモノマーの組合せにより、幅広い重合体設計が可能なことから、弾性体は(メタ)アクリレート系ゴムを含むことが好ましく、(メタ)アクリレート系ゴムであることがより好ましい。以下、弾性体が(メタ)アクリレート系ゴムを含む場合(場合B)について説明する。
Since a wide range of polymer designs can be performed by combining various monomers, the elastic body preferably contains (meth) acrylate-based rubber, and more preferably (meth) acrylate-based rubber. Hereinafter, a case where the elastic body contains (meth) acrylate-based rubber (case B) will be described.
前記(メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系モノマーに由来する構成単位を含む弾性体である。場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位100質量%中、(メタ)アクリレート系モノマーに由来する構成単位を50~100質量%、および(メタ)アクリレート系モノマーと共重合可能な(メタ)アクリレート系モノマー以外のビニル系モノマーに由来する構成単位を0~50質量%、含むものであってもよい。場合Bにおいて、(メタ)アクリレート系ゴムは、構成単位として、(メタ)アクリレート系モノマーに由来する構成単位よりも少ない量において、ジエン系モノマーに由来する構成単位を含んでいてもよい。
The (meth) acrylate-based rubber is an elastic body containing a structural unit derived from a (meth) acrylate-based monomer as a structural unit. In Case B, the (meth) acrylate-based rubber is copolymerizable with 50 to 100% by mass of the constituent unit derived from the (meth) acrylate-based monomer and the (meth) acrylate-based monomer in 100% by mass of the constituent unit (meth). Meta) It may contain 0 to 50% by mass of a structural unit derived from a vinyl-based monomer other than the acrylate-based monomer. In Case B, the (meth) acrylate-based rubber may contain a structural unit derived from the diene-based monomer in an amount smaller than that of the structural unit derived from the (meth) acrylate-based monomer.
(メタ)アクリレート系モノマーとしては、例えば、(i)メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;(ii)フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート類;(iii)2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;(iv)グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;(v)アルコキシアルキル(メタ)アクリレート類;(vi)アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;(vii)モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。これらの(メタ)アクリレート系モノマーは、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの(メタ)アクリレート系モノマーの中でも、特に好ましくは、エチル(メタ)アクリレート、ブチル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレートである。
Examples of the (meth) acrylate-based monomer include (i) methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, and dodecyl (meth). Alkyl (meth) acrylates such as acrylates, stearyl (meth) acrylates and behenyl (meth) acrylates; aromatic ring-containing (meth) acrylates such as (ii) phenoxyethyl (meth) acrylates and benzyl (meth) acrylates; (iii) ) Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; glycidyl (meth) acrylate such as (iv) glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate. Classes; (v) alkoxyalkyl (meth) acrylates; (vi) allylalkyl (meth) acrylates such as allyl (meth) acrylates and allylalkyl (meth) acrylates; (vi) monoethylene glycol di (meth) acrylates, Examples thereof include polyfunctional (meth) acrylates such as triethylene glycol di (meth) acrylate and tetraethylene glycol di (meth) acrylate. One of these (meth) acrylate-based monomers may be used alone, or two or more thereof may be used in combination. Among these (meth) acrylate-based monomers, ethyl (meth) acrylate, butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are particularly preferable.
(メタ)アクリレート系モノマーと共重合可能な(メタ)アクリレート系モノマー以外のビニル系モノマー(以下、(メタ)アクリレート系モノマー以外のビニル系モノマー、とも称する。)としては、前記ビニル系モノマーAにおいて列挙したモノマーが挙げられる。(メタ)アクリレート系モノマー以外のビニル系モノマーは、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。(メタ)アクリレート系モノマー以外のビニル系モノマーの中でも、特に好ましくはスチレンである。
As a vinyl-based monomer other than the (meth) acrylate-based monomer copolymerizable with the (meth) acrylate-based monomer (hereinafter, also referred to as a vinyl-based monomer other than the (meth) acrylate-based monomer), in the vinyl-based monomer A. The listed monomers can be mentioned. As the vinyl-based monomer other than the (meth) acrylate-based monomer, one type may be used alone, or two or more types may be used in combination. Among vinyl-based monomers other than the (meth) acrylate-based monomer, styrene is particularly preferable.
得られる接着層の耐熱性を低下させることなく、低温における接着層の耐衝撃性を向上しようとする場合には、弾性体はポリシロキサンゴム系弾性体を含むことが好ましく、ポリシロキサンゴム系弾性体であることがより好ましい。以下、弾性体がポリシロキサンゴム系弾性体を含む場合(場合C)について説明する。
When trying to improve the impact resistance of the adhesive layer at a low temperature without lowering the heat resistance of the obtained adhesive layer, the elastic body preferably contains a polysiloxane rubber-based elastic body, and the polysiloxane rubber-based elastic body is preferable. It is more preferable to be a body. Hereinafter, a case where the elastic body includes a polysiloxane rubber-based elastic body (Case C) will be described.
ポリシロキサンゴム系弾性体としては、例えば、(a)ジメチルシリルオキシ、ジエチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシなどの、アルキルもしくはアリール2置換シリルオキシ単位から構成されるポリシロキサン系重合体、および(b)側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシなどの、アルキルもしくはアリール1置換シリルオキシ単位から構成されるポリシロキサン系重合体、が挙げられる。これらのポリシロキサン系重合体は、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。これらのポリシロキサン系重合体の中でも、(a)得られる硬化性樹脂組成物が耐熱性に優れる接着層を提供することができることから、ジメチルシリルオキシ単位、メチルフェニルシリルオキシ単位、および/またはジメチルシリルオキシ-ジフェニルシリルオキシ単位から構成される重合体が好ましく、(b)容易に入手できて経済的でもあることから、ジメチルシリルオキシ単位から構成される重合体が最も好ましい。
The polysiloxane rubber-based elastic body is composed of alkyl or aryl disubstituted silyloxy units such as (a) dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy. Polysiloxane-based polymer to be prepared, and (b) polysiloxane-based polymer composed of alkyl or aryl1-substituted silyloxy units such as organohydrogensilyloxy in which a part of alkyl in the side chain is substituted with a hydrogen atom. , Can be mentioned. Only one kind of these polysiloxane-based polymers may be used, or two or more kinds thereof may be used in combination. Among these polysiloxane-based polymers, (a) the obtained curable resin composition can provide an adhesive layer having excellent heat resistance, so that dimethylsilyloxy units, methylphenylsilyloxy units, and / or dimethyl A polymer composed of silyloxy-diphenylsilyloxy units is preferable, and (b) a polymer composed of dimethylsilyloxy units is most preferable because it is easily available and economical.
場合Cにおいて、ポリマー微粒子(B)は、ポリマー微粒子(B)に含まれる弾性体100質量%中、ポリシロキサンゴム系弾性体を80質量%以上含有していることが好ましく、90質量%以上含有していることがより好ましい。前記構成によると、得られる硬化性樹脂組成物は、耐熱性に優れる接着層を提供することができる。
In Case C, the polymer fine particles (B) preferably contain 80% by mass or more of the polysiloxane rubber-based elastic body, and 90% by mass or more of the elastic body contained in the polymer fine particles (B). It is more preferable to do so. According to the above configuration, the obtained curable resin composition can provide an adhesive layer having excellent heat resistance.
弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体以外の弾性体をさらに含んでいてもよい。ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体以外の弾性体としては、例えば天然ゴムが挙げられる。
The elastic body may further contain an elastic body other than the diene rubber, the (meth) acrylate rubber and the polysiloxane rubber elastic body. Examples of the elastic body other than the diene-based rubber, the (meth) acrylate-based rubber, and the polysiloxane rubber-based elastic body include natural rubber.
(弾性体の架橋構造)
ポリマー微粒子(B)の硬化性樹脂組成物中での分散安定性を保持できることから、弾性体には、架橋構造が導入されていることが好ましい。弾性体に対する架橋構造の導入方法としては、一般的に用いられる手法を採用することができ、例えば以下の方法が挙げられる。すなわち、弾性体の製造において、弾性体を構成し得るモノマーに、多官能性モノマーおよび/またはメルカプト基含有化合物などの架橋性モノマーを混合し、次いで重合する方法が挙げられる。本明細書において、弾性体など重合体を製造することを、重合体を重合する、とも称する。 (Cross-linked structure of elastic body)
Since the dispersion stability of the polymer fine particles (B) in the curable resin composition can be maintained, it is preferable that a crosslinked structure is introduced into the elastic body. As a method for introducing the crosslinked structure into the elastic body, a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of an elastic body, a method of mixing a polyfunctional monomer and / or a crosslinkable monomer such as a mercapto group-containing compound with a monomer that can form an elastic body and then polymerizing the material can be mentioned. In the present specification, producing a polymer such as an elastic body is also referred to as polymerizing a polymer.
ポリマー微粒子(B)の硬化性樹脂組成物中での分散安定性を保持できることから、弾性体には、架橋構造が導入されていることが好ましい。弾性体に対する架橋構造の導入方法としては、一般的に用いられる手法を採用することができ、例えば以下の方法が挙げられる。すなわち、弾性体の製造において、弾性体を構成し得るモノマーに、多官能性モノマーおよび/またはメルカプト基含有化合物などの架橋性モノマーを混合し、次いで重合する方法が挙げられる。本明細書において、弾性体など重合体を製造することを、重合体を重合する、とも称する。 (Cross-linked structure of elastic body)
Since the dispersion stability of the polymer fine particles (B) in the curable resin composition can be maintained, it is preferable that a crosslinked structure is introduced into the elastic body. As a method for introducing the crosslinked structure into the elastic body, a generally used method can be adopted, and examples thereof include the following methods. That is, in the production of an elastic body, a method of mixing a polyfunctional monomer and / or a crosslinkable monomer such as a mercapto group-containing compound with a monomer that can form an elastic body and then polymerizing the material can be mentioned. In the present specification, producing a polymer such as an elastic body is also referred to as polymerizing a polymer.
また、ポリシロキサンゴム系弾性体に架橋構造を導入する方法としては、次のような方法も挙げられる:(a)ポリシロキサンゴム系弾性体を重合するときに、多官能性のアルコキシシラン化合物を他の材料と共に一部併用する方法、(b)ビニル反応性基、メルカプト基などの反応性基をポリシロキサンゴム系弾性体に導入し、その後ビニル重合性のモノマーまたは有機過酸化物などを添加してラジカル反応させる方法、または、(c)ポリシロキサンゴム系弾性体を重合するときに、多官能性モノマーおよび/またはメルカプト基含有化合物などの架橋性モノマーを他の材料と共に混合し、次いで重合を行う方法、など。
In addition, as a method for introducing a crosslinked structure into a polysiloxane rubber-based elastic body, the following methods can also be mentioned: (a) When polymerizing a polysiloxane rubber-based elastic body, a polyfunctional alkoxysilane compound is used. A method of partially using it together with other materials, (b) introducing a reactive group such as a vinyl-reactive group or a mercapto group into a polysiloxane rubber-based elastic body, and then adding a vinyl-polymerizable monomer or an organic peroxide. In the method of causing a radical reaction, or (c) when polymerizing a polysiloxane rubber-based elastic body, a crosslinkable monomer such as a polyfunctional monomer and / or a mercapto group-containing compound is mixed with other materials and then polymerized. How to do, etc.
多官能性モノマーは、同一分子内にラジカル重合性反応基を2つ以上有するモノマーともいえる。前記ラジカル重合性反応基は、好ましくは炭素-炭素二重結合である。多官能性モノマーとしては、アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート類、および、アリルオキシアルキル(メタ)アクリレート類などのようなエチレン性不飽和二重結合を有する(メタ)アクリレートなどが例示される。(メタ)アクリル基を2つ有するモノマーとしては、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレートおよびポリエチレングリコールジ(メタ)アクリレート類が挙げられる。前記ポリエチレングリコールジ(メタ)アクリレート類としては、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール(600)ジ(メタ)アクリレートなどが例示される。また、3つの(メタ)アクリル基を有するモノマーとして、アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類、グリセロールプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどが例示される。アルコキシレーテッドトリメチロールプロパントリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレートなどが挙げられる。さらに、4つの(メタ)アクリル基を有するモノマーとして、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、などが例示される。またさらに、5つの(メタ)アクリル基を有するモノマーとして、ジペンタエリスリトールペンタ(メタ)アクリレートなどが例示される。またさらに、6つの(メタ)アクリル基を有するモノマーとして、ジトリメチロールプロパンヘキサ(メタ)アクリレートなどが例示される。多官能性モノマーとしては、また、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等も挙げられる。これらの中でも、多官能性モノマーとして特に好ましくは、アリルメタアクリレート、トリアリルイソシアヌレート、ブタンジオールジ(メタ)アクリレート、およびジビニルベンゼンである。
It can be said that the polyfunctional monomer has two or more radically polymerizable reactive groups in the same molecule. The radically polymerizable reactive group is preferably a carbon-carbon double bond. Examples of the polyfunctional monomer include allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate, and ethylenically unsaturated double bonds such as allyloxyalkyl (meth) acrylates. (Meta) acrylate having the above is exemplified. Examples of the monomer having two (meth) acrylic groups include ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, and cyclohexanedimethanol di (meth). Examples thereof include meta) acrylates and polyethylene glycol di (meth) acrylates. Examples of the polyethylene glycol di (meth) acrylates include triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol (600) di (meth) acrylate. Is exemplified. Further, as a monomer having three (meth) acrylic groups, alkoxylated trimethylolpropane tri (meth) acrylates, glycerol propoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, and tris (2-hydroxyethyl). Examples thereof include isocyanurate tri (meth) acrylate. Examples of the alkoxylated trimethylolpropane tri (meth) acrylate include trimethylolpropane tri (meth) acrylate and trimethylolpropane triethoxytri (meth) acrylate. Further, examples of the monomer having four (meth) acrylic groups include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate. Further, as a monomer having five (meth) acrylic groups, dipentaerythritol penta (meth) acrylate and the like are exemplified. Further, as a monomer having six (meth) acrylic groups, ditrimethylolpropane hexa (meth) acrylate and the like are exemplified. Examples of the polyfunctional monomer also include diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene and the like. Among these, allyl methacrylate, triallyl isocyanurate, butanediol di (meth) acrylate, and divinylbenzene are particularly preferable as the polyfunctional monomer.
メルカプト基含有化合物としては、アルキル基置換メルカプタン、アリル基置換メルカプタン、アリール基置換メルカプタン、ヒドロキシ基置換メルカプタン、アルコキシ基置換メルカプタン、シアノ基置換メルカプタン、アミノ基置換メルカプタン、シリル基置換メルカプタン、酸基置換メルカプタン、ハロ基置換メルカプタンおよびアシル基置換メルカプタンなどが挙げられる。アルキル基置換メルカプタンとしては、炭素数1~20のアルキル基置換メルカプタンが好ましく、炭素数1~10のアルキル基置換メルカプタンがより好ましい。アリール基置換メルカプタンとしては、フェニル基置換メルカプタンが好ましい。アルコキシ基置換メルカプタンとしては、炭素数1~20のアルコキシ基置換メルカプタンが好ましく、炭素数1~10のアルコキシ基置換メルカプタンがより好ましい。酸基置換メルカプタンとしては、好ましくは、カルボキシル基を有する炭素数1~10のアルキル基置換メルカプタン、または、カルボキシル基を有する炭素数1~12のアリール基置換メルカプタン、である。
Examples of the mercapto group-containing compound include alkyl group-substituted mercaptan, allyl group-substituted mercaptan, aryl group-substituted mercaptan, hydroxy group-substituted mercaptan, alkoxy group-substituted mercaptan, cyano group-substituted mercaptan, amino group-substituted mercaptan, silyl group-substituted mercaptan, and acid group-substituted mercaptan. Examples thereof include mercaptans, halo group-substituted mercaptans and acyl group-substituted mercaptans. As the alkyl group-substituted mercaptan, an alkyl group-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkyl group-substituted mercaptan having 1 to 10 carbon atoms is more preferable. As the aryl group-substituted mercaptan, a phenyl group-substituted mercaptan is preferable. As the alkoxy group-substituted mercaptan, an alkoxy group-substituted mercaptan having 1 to 20 carbon atoms is preferable, and an alkoxy group-substituted mercaptan having 1 to 10 carbon atoms is more preferable. The acid group-substituted mercaptan is preferably an alkyl group-substituted mercaptan having a carboxyl group and having 1 to 10 carbon atoms, or an aryl group-substituted mercaptan having a carboxyl group and having 1 to 12 carbon atoms.
(弾性体のゲル含量)
ポリマー微粒子(B)の弾性体は、得られる接着層の靱性を高める為に、ゴムとしての性質を有することが好ましい。弾性体は、適切な溶媒に対して膨潤し得るが、実質的には溶解しないものであることが好ましい。弾性体は、使用するエポキシ樹脂(A)に対して、不溶であることが好ましい。 (Gel content of elastic body)
The elastic body of the polymer fine particles (B) preferably has rubber properties in order to increase the toughness of the obtained adhesive layer. The elastic material is preferably one that can swell in a suitable solvent but is substantially insoluble. The elastic body is preferably insoluble in the epoxy resin (A) used.
ポリマー微粒子(B)の弾性体は、得られる接着層の靱性を高める為に、ゴムとしての性質を有することが好ましい。弾性体は、適切な溶媒に対して膨潤し得るが、実質的には溶解しないものであることが好ましい。弾性体は、使用するエポキシ樹脂(A)に対して、不溶であることが好ましい。 (Gel content of elastic body)
The elastic body of the polymer fine particles (B) preferably has rubber properties in order to increase the toughness of the obtained adhesive layer. The elastic material is preferably one that can swell in a suitable solvent but is substantially insoluble. The elastic body is preferably insoluble in the epoxy resin (A) used.
弾性体のゲル含量は、得られる接着層が靭性に優れることから、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
The gel content of the elastic body is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, because the obtained adhesive layer has excellent toughness. It is particularly preferable that it is 95% by mass or more.
本明細書においてゲル含量の算出方法は下記の通りである。先ず、ポリマー微粒子(B)を含有する水性ラテックスを得、次に、当該水性ラテックスから、ポリマー微粒子(B)の粉体を得る。水性ラテックスからポリマー微粒子(B)の粉体を得る方法としては、特に限定されないが、例えば、(i)当該水性ラテックス中のポリマー微粒子(B)を凝集させ、(ii)得られる凝集物を脱水し、(iii)さらに凝集物を乾燥することにより、ポリマー微粒子(B)の粉体を得る方法が挙げられる。次いで、ポリマー微粒子(B)の粉体0.5gをトルエン100gに浸漬する。次に、得られた混合物を、23℃で24時間静置する。その後、得られた混合物を、トルエンに可溶な成分(トルエン可溶分)とトルエンに不溶な成分(トルエン不溶分)とに分離する。得られたトルエン可溶分とトルエン不溶分との質量を測定し、次式よりゲル含量を算出する。
ゲル含量(%)=(トルエン不溶分の質量)/{(トルエン不溶分の質量)+(トルエン可溶分の質量)}×100
(弾性体のガラス転移温度)
弾性体のガラス転移温度(以下、単に「Tg」と称する場合がある)は、得られる接着層の靱性を高めるために、0℃以下であることが好ましく、-20℃以下がより好ましく、-40℃以下が更に好ましく、-60℃以下であることが特に好ましい。 In the present specification, the method for calculating the gel content is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex. The method for obtaining the powder of the polymer fine particles (B) from the aqueous latex is not particularly limited, but for example, (i) the polymer fine particles (B) in the aqueous latex are aggregated, and (ii) the obtained aggregate is dehydrated. Then, (iii) further, a method of obtaining the powder of the polymer fine particles (B) by drying the agglomerates can be mentioned. Next, 0.5 g of the polymer fine particle (B) powder is immersed in 100 g of toluene. The resulting mixture is then allowed to stand at 23 ° C. for 24 hours. Then, the obtained mixture is separated into a toluene-soluble component (toluene-soluble component) and a toluene-insoluble component (toluene-insoluble component). The mass of the obtained toluene-soluble component and the toluene-insoluble component is measured, and the gel content is calculated from the following formula.
Gel content (%) = (mass of toluene insoluble) / {(mass of toluene insoluble) + (mass of toluene soluble)} x 100
(Glass transition temperature of elastic body)
The glass transition temperature of the elastic body (hereinafter, may be simply referred to as “Tg”) is preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and more preferably −20 ° C. or lower in order to increase the toughness of the obtained adhesive layer. It is more preferably 40 ° C. or lower, and particularly preferably −60 ° C. or lower.
ゲル含量(%)=(トルエン不溶分の質量)/{(トルエン不溶分の質量)+(トルエン可溶分の質量)}×100
(弾性体のガラス転移温度)
弾性体のガラス転移温度(以下、単に「Tg」と称する場合がある)は、得られる接着層の靱性を高めるために、0℃以下であることが好ましく、-20℃以下がより好ましく、-40℃以下が更に好ましく、-60℃以下であることが特に好ましい。 In the present specification, the method for calculating the gel content is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex. The method for obtaining the powder of the polymer fine particles (B) from the aqueous latex is not particularly limited, but for example, (i) the polymer fine particles (B) in the aqueous latex are aggregated, and (ii) the obtained aggregate is dehydrated. Then, (iii) further, a method of obtaining the powder of the polymer fine particles (B) by drying the agglomerates can be mentioned. Next, 0.5 g of the polymer fine particle (B) powder is immersed in 100 g of toluene. The resulting mixture is then allowed to stand at 23 ° C. for 24 hours. Then, the obtained mixture is separated into a toluene-soluble component (toluene-soluble component) and a toluene-insoluble component (toluene-insoluble component). The mass of the obtained toluene-soluble component and the toluene-insoluble component is measured, and the gel content is calculated from the following formula.
Gel content (%) = (mass of toluene insoluble) / {(mass of toluene insoluble) + (mass of toluene soluble)} x 100
(Glass transition temperature of elastic body)
The glass transition temperature of the elastic body (hereinafter, may be simply referred to as “Tg”) is preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and more preferably −20 ° C. or lower in order to increase the toughness of the obtained adhesive layer. It is more preferably 40 ° C. or lower, and particularly preferably −60 ° C. or lower.
一方、得られる接着層の弾性率(剛性)の低下を抑制したい場合には、弾性体のTgは、0℃よりも大きいことが好ましく、20℃以上であることがより好ましく、50℃以上であることがさらに好ましく、80℃以上であることが特に好ましく、120℃以上であることが最も好ましい。
On the other hand, when it is desired to suppress a decrease in the elastic modulus (rigidity) of the obtained adhesive layer, the Tg of the elastic body is preferably larger than 0 ° C, more preferably 20 ° C or higher, and more preferably 50 ° C or higher. It is more preferably 80 ° C. or higher, and most preferably 120 ° C. or higher.
弾性体のTgは、弾性体に含まれる構成単位の組成などによって、決定され得る。換言すれば、弾性体を製造(重合)するときに使用するモノマーの組成を変化させることにより、得られる弾性体のTgを調整することができる。
The Tg of the elastic body can be determined by the composition of the structural unit contained in the elastic body and the like. In other words, the Tg of the obtained elastic body can be adjusted by changing the composition of the monomer used when producing (polymerizing) the elastic body.
ここで、1種類のモノマーのみを重合させてなる単独重合体としたとき、0℃よりも大きいTgを有する単独重合体を提供するモノマーの群を、モノマー群aとする。また、1種類のモノマーのみを重合させてなる単独重合体としたとき、0℃未満のTgを有する単独重合体を提供するモノマーの群を、モノマー群bとする。Tgが0℃よりも大きく、得られる接着層の剛性低下を抑制し得る弾性体を形成し得るポリマーとしては、
モノマー群aから選択される少なくとも1種のモノマーに由来する構成単位を50~100質量%(より好ましくは、65~99質量%)、およびモノマー群bから選択される少なくとも1種のモノマーに由来する構成単位を0~50質量%(より好ましくは、1~35質量%)含んで構成されるポリマーが挙げられる。 Here, when a homopolymer obtained by polymerizing only one type of monomer is obtained, a group of monomers that provide a homopolymer having a Tg larger than 0 ° C. is referred to as a monomer group a. Further, when a homopolymer formed by polymerizing only one type of monomer, a group of monomers that provide a homopolymer having a Tg of less than 0 ° C. is referred to as a monomer group b. As a polymer capable of forming an elastic body having a Tg larger than 0 ° C. and capable of suppressing a decrease in rigidity of the obtained adhesive layer,
The constituent units derived from at least one monomer selected from the monomer group a are derived from 50 to 100% by mass (more preferably 65 to 99% by mass), and from at least one monomer selected from the monomer group b. Examples thereof include a polymer composed of 0 to 50% by mass (more preferably 1 to 35% by mass) of the constituent units.
モノマー群aから選択される少なくとも1種のモノマーに由来する構成単位を50~100質量%(より好ましくは、65~99質量%)、およびモノマー群bから選択される少なくとも1種のモノマーに由来する構成単位を0~50質量%(より好ましくは、1~35質量%)含んで構成されるポリマーが挙げられる。 Here, when a homopolymer obtained by polymerizing only one type of monomer is obtained, a group of monomers that provide a homopolymer having a Tg larger than 0 ° C. is referred to as a monomer group a. Further, when a homopolymer formed by polymerizing only one type of monomer, a group of monomers that provide a homopolymer having a Tg of less than 0 ° C. is referred to as a monomer group b. As a polymer capable of forming an elastic body having a Tg larger than 0 ° C. and capable of suppressing a decrease in rigidity of the obtained adhesive layer,
The constituent units derived from at least one monomer selected from the monomer group a are derived from 50 to 100% by mass (more preferably 65 to 99% by mass), and from at least one monomer selected from the monomer group b. Examples thereof include a polymer composed of 0 to 50% by mass (more preferably 1 to 35% by mass) of the constituent units.
弾性体のTgが0℃よりも大きい場合も、弾性体には架橋構造が導入されていることが好ましい。架橋構造の導入方法としては、前記の方法が挙げられる。
Even when the Tg of the elastic body is larger than 0 ° C., it is preferable that the elastic body has a crosslinked structure. Examples of the method for introducing the crosslinked structure include the above methods.
前記モノマー群aに含まれ得るモノマーとしては、以下に限るものではないが、例えば、(i)スチレン、2-ビニルナフタレンなどの無置換ビニル芳香族化合物類;(ii)α―メチルスチレンなどのビニル置換芳香族化合物類;(iii)3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6―トリメチルスチレンなどの環アルキル化ビニル芳香族化合物類;(iv)4-メトキシスチレン、4-エトキシスチレンなどの環アルコキシル化ビニル芳香族化合物類;(v)2-クロロスチレン、3―クロロスチレンなどの環ハロゲン化ビニル芳香族化合物類;(vi)4-アセトキシスチレンなどの環エステル置換ビニル芳香族化合物類;(vii)4-ヒトロキシスチレンなどの環ヒドロキシル化ビニル芳香族化合物類;(viii)ビニルベンゾエート、ビニルシクロヘキサノエートなどのビニルエステル類;(ix)塩化ビニルなどのビニルハロゲン化物類;(x)アセナフタレン、インデンなどの芳香族モノマー類;(xi)メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレートなどのアルキルメタクリレート類;(xii)フェニルメタクリレートなどの芳香族メタクリレート;(xiii)イソボルニルメタクリレート、トリメチルシリルメタクリレートなどのメタクリレート類;(xiv)メタクリロニトリルなどのメタクリル酸誘導体を含むメタクリルモノマー;(xv)イソボルニルアクリレート、tert-ブチルアクリレートなどのある種のアクリル酸エステル;(xvi)アクリロニトリルなどのアクリル酸誘導体を含むアクリルモノマー、などが挙げられる。さらに、前記モノマー群aに含まれ得るモノマーとしては、アクリルアミド、イソプロピルアクリルアミド、N-ビニルピロリドン、イソボルニルメタクリレート、ジシクロペンタニルメタクリレート、2-メチル-2-アダマンチルメタクリレート、1-アダマンチルアクリレート及び1-アダマンチルメタクリレート、など、単独重合体としたとき120℃以上のTgを有する単独重合体を提供し得るモノマーが挙げられる。また、モノマー群aに含まれ得るモノマーとしては、例えば、WO2014-196607号公報の明細書の、[0084]段落に記載の各種の化合物が挙げられる。これらのモノマー群aから選択させるモノマーは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。
The monomers that can be contained in the monomer group a are not limited to the following, but for example, (i) unsubstituted vinyl aromatic compounds such as styrene and 2-vinylnaphthalene; (ii) α-methylstyrene and the like. Vinyl-substituted aromatic compounds; (iii) 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2,4,6-trimethylstyrene, etc. Ring-alkylated vinyl aromatic compounds of (iv) Ring-alkenylated vinyl aromatic compounds such as 4-methoxystyrene and 4-ethoxystyrene; (v) Ring halogenation of 2-chlorostyrene and 3-chlorostyrene Vinyl aromatic compounds; ring ester-substituted vinyl aromatic compounds such as (vi) 4-acetoxystyrene; ring hydroxylated vinyl aromatic compounds such as (vii) 4-humanloxystyrene; (viii) vinyl benzoate, vinyl Vinyl esters such as cyclohexanoate; (ix) Vinyl halides such as vinyl chloride; (x) Aromatic monomers such as acenaphthalene and inden; (xi) Alkyl methacrylates such as methyl methacrylate, ethyl methacrylate and isopropyl methacrylate. Classes; aromatic methacrylates such as (xii) phenyl methacrylate; methacrylates such as (xiii) isobornyl methacrylate and trimethylsilyl methacrylate; methacrylic monomers containing methacrylic acid derivatives such as (xiv) methacrylonitrile; (xv) isobornyl Certain acrylic acid esters such as acrylate, tert-butyl acrylate; acrylic monomers containing acrylic acid derivatives such as (xvi) acrylonitrile, and the like. Further, as the monomers that can be contained in the monomer group a, acrylamide, isopropylacrylamide, N-vinylpyrrolidone, isobornyl methacrylate, dicyclopentanyl methacrylate, 2-methyl-2-adamantyl methacrylate, 1-adamantyl acrylate and 1 Examples thereof include monomers such as adamantyl methacrylate, which can provide a homopolymer having a Tg of 120 ° C. or higher when made into a homopolymer. In addition, examples of the monomers that can be contained in the monomer group a include various compounds described in paragraph [0084] of the specification of WO2014-196607. As the monomer to be selected from these monomer group a, only one type may be used, or two or more types may be used in combination.
前記モノマー群bとしては、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートなどが挙げられる。これらのモノマー群bから選択させるモノマーは、1種類のみを用いてもよく、2種以上を組み合わせて用いてもよい。モノマー群bの中でも、特に好ましくは、エチルアクリレート、ブチルアクリレートおよび2-エチルヘキシルアクリレートである。
Examples of the monomer group b include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, 2-hydroxyethyl acrylate, and 4-hydroxybutyl acrylate. As the monomer to be selected from these monomer group b, only one kind may be used, or two or more kinds may be used in combination. Among the monomer group b, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate are particularly preferable.
(弾性体の体積平均粒子径)
弾性体の体積平均粒子径は、0.03~2.00μmが好ましく、0.05~1.00μmがより好ましく、0.10~0.80μmがさらに好ましく、0.10~0.50μmが特に好ましい。弾性体の体積平均粒子径が(a)0.03μm以上である場合、所望の体積平均粒子径を有する弾性体を安定的に得ることができ、(b)2.00μm以下である場合、得られる接着層の耐熱性および耐衝撃性が良好となる。弾性体の体積平均粒子径は、弾性体を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。弾性体の体積平均粒子径の測定方法については、下記実施例にて詳述する。 (Volume average particle size of elastic body)
The volume average particle size of the elastic body is preferably 0.03 to 2.00 μm, more preferably 0.05 to 1.00 μm, further preferably 0.10 to 0.80 μm, and particularly 0.10 to 0.50 μm. preferable. When the volume average particle size of the elastic body is (a) 0.03 μm or more, an elastic body having a desired volume average particle size can be stably obtained, and (b) when it is 2.00 μm or less, it is obtained. The heat resistance and impact resistance of the adhesive layer to be formed are improved. The volume average particle size of the elastic body can be measured by using an aqueous latex containing the elastic body as a sample and using a dynamic light scattering type particle size distribution measuring device or the like. The method for measuring the volume average particle size of the elastic body will be described in detail in the following examples.
弾性体の体積平均粒子径は、0.03~2.00μmが好ましく、0.05~1.00μmがより好ましく、0.10~0.80μmがさらに好ましく、0.10~0.50μmが特に好ましい。弾性体の体積平均粒子径が(a)0.03μm以上である場合、所望の体積平均粒子径を有する弾性体を安定的に得ることができ、(b)2.00μm以下である場合、得られる接着層の耐熱性および耐衝撃性が良好となる。弾性体の体積平均粒子径は、弾性体を含む水性ラテックスを試料として、動的光散乱式粒子径分布測定装置などを用いて、測定することができる。弾性体の体積平均粒子径の測定方法については、下記実施例にて詳述する。 (Volume average particle size of elastic body)
The volume average particle size of the elastic body is preferably 0.03 to 2.00 μm, more preferably 0.05 to 1.00 μm, further preferably 0.10 to 0.80 μm, and particularly 0.10 to 0.50 μm. preferable. When the volume average particle size of the elastic body is (a) 0.03 μm or more, an elastic body having a desired volume average particle size can be stably obtained, and (b) when it is 2.00 μm or less, it is obtained. The heat resistance and impact resistance of the adhesive layer to be formed are improved. The volume average particle size of the elastic body can be measured by using an aqueous latex containing the elastic body as a sample and using a dynamic light scattering type particle size distribution measuring device or the like. The method for measuring the volume average particle size of the elastic body will be described in detail in the following examples.
(弾性体の割合(比率))
ポリマー微粒子(B)中に占める弾性体の割合は、ポリマー微粒子(B)全体を100質量%として、40~97質量%が好ましく、60~95質量%がより好ましく、70~93質量%がさらに好ましく、80~90質量%が特に好ましい。弾性体の前記割合が、(a)40質量%以上である場合、得られる硬化性樹脂組成物の接着層の靱性改良効果が低下する虞がなく、(b)97質量%以下である場合、ポリマー微粒子(B)は凝集しにくいため、硬化性樹脂組成物が高粘度となることがなく、その結果、得られる硬化性樹脂組成物は取り扱い易いものとなり得る。 (Ratio of elastic body (ratio))
The ratio of the elastic body in the polymer fine particles (B) is preferably 40 to 97% by mass, more preferably 60 to 95% by mass, and further 70 to 93% by mass, assuming that the entire polymer fine particles (B) are 100% by mass. It is preferable, and 80 to 90% by mass is particularly preferable. When the ratio of the elastic body is (a) 40% by mass or more, there is no possibility that the toughness improving effect of the adhesive layer of the obtained curable resin composition is lowered, and (b) 97% by mass or less. Since the polymer fine particles (B) do not easily aggregate, the curable resin composition does not have a high viscosity, and as a result, the obtained curable resin composition can be easy to handle.
ポリマー微粒子(B)中に占める弾性体の割合は、ポリマー微粒子(B)全体を100質量%として、40~97質量%が好ましく、60~95質量%がより好ましく、70~93質量%がさらに好ましく、80~90質量%が特に好ましい。弾性体の前記割合が、(a)40質量%以上である場合、得られる硬化性樹脂組成物の接着層の靱性改良効果が低下する虞がなく、(b)97質量%以下である場合、ポリマー微粒子(B)は凝集しにくいため、硬化性樹脂組成物が高粘度となることがなく、その結果、得られる硬化性樹脂組成物は取り扱い易いものとなり得る。 (Ratio of elastic body (ratio))
The ratio of the elastic body in the polymer fine particles (B) is preferably 40 to 97% by mass, more preferably 60 to 95% by mass, and further 70 to 93% by mass, assuming that the entire polymer fine particles (B) are 100% by mass. It is preferable, and 80 to 90% by mass is particularly preferable. When the ratio of the elastic body is (a) 40% by mass or more, there is no possibility that the toughness improving effect of the adhesive layer of the obtained curable resin composition is lowered, and (b) 97% by mass or less. Since the polymer fine particles (B) do not easily aggregate, the curable resin composition does not have a high viscosity, and as a result, the obtained curable resin composition can be easy to handle.
(弾性体の変形例)
本発明の一実施形態において、弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種類であり、かつ同一の組成の構成単位を有する1種の弾性体のみからなってもよい。本発明の一実施形態において、弾性体は、それぞれ異なる組成の構成単位を有する複数種の弾性体からなってもよい。 (Modification example of elastic body)
In one embodiment of the present invention, the elastic body is one selected from the group consisting of a diene-based rubber, a (meth) acrylate-based rubber, and a polysiloxane rubber-based elastic body, and has a structural unit having the same composition. It may consist of only one type of elastic body. In one embodiment of the present invention, the elastic body may consist of a plurality of types of elastic bodies, each having a structural unit having a different composition.
本発明の一実施形態において、弾性体は、ジエン系ゴム、(メタ)アクリレート系ゴムおよびポリシロキサンゴム系弾性体からなる群より選択される1種類であり、かつ同一の組成の構成単位を有する1種の弾性体のみからなってもよい。本発明の一実施形態において、弾性体は、それぞれ異なる組成の構成単位を有する複数種の弾性体からなってもよい。 (Modification example of elastic body)
In one embodiment of the present invention, the elastic body is one selected from the group consisting of a diene-based rubber, a (meth) acrylate-based rubber, and a polysiloxane rubber-based elastic body, and has a structural unit having the same composition. It may consist of only one type of elastic body. In one embodiment of the present invention, the elastic body may consist of a plurality of types of elastic bodies, each having a structural unit having a different composition.
本発明の一実施形態において、弾性体が複数種の弾性体からなる場合について説明する。この場合、複数種の弾性体のそれぞれを、弾性体1、弾性体2、・・・、および弾性体nとする。ここで、nは2以上の整数である。弾性体は、それぞれ別々に重合された弾性体1、弾性体2、・・・、および弾性体nを混合して得られる混合物を含んでいてもよい。弾性体は、弾性体1、弾性体2、・・・、および弾性体nをそれぞれ順に重合して得られる重合体を含んでいてもよい。このように、複数の重合体(弾性体)をそれぞれ順に重合することを、多段重合とも称する。複数種の弾性体を多段重合して得られる重合体を、多段重合弾性体とも称する。多段重合弾性体の製造方法については、後に詳述する。
In one embodiment of the present invention, a case where the elastic body is composed of a plurality of types of elastic bodies will be described. In this case, each of the plurality of types of elastic bodies is referred to as elastic body 1 , elastic body 2 , ..., And elastic body n . Here, n is an integer of 2 or more. The elastic body may contain a mixture obtained by mixing the elastic body 1 , the elastic body 2 , ..., And the elastic body n , which are separately polymerized. The elastic body may contain a polymer obtained by sequentially polymerizing the elastic body 1 , the elastic body 2 , ..., And the elastic body n , respectively. Such polymerization of a plurality of polymers (elastic bodies) in order is also referred to as multistage polymerization. A polymer obtained by multi-stage polymerization of a plurality of types of elastic bodies is also referred to as a multi-stage polymerization elastic body. The method for producing the multi-stage polymerized elastic body will be described in detail later.
弾性体1、弾性体2、・・・、および弾性体nからなる多段重合弾性体について説明する。当該多段重合弾性体において、弾性体nは、弾性体n-1の少なくとも一部を被覆し得るか、または弾性体n-1の全体を被覆し得る。当該多段重合弾性体において、弾性体nの一部は弾性体n-1の内側に入り込んでいることもある。
A multi-stage polymerized elastic body composed of elastic body 1 , elastic body 2 , ..., And elastic body n will be described. In the multi-stage polymer elastic body, the elastic body n may or may cover at least a portion of the elastic body n-1, or the whole of the elastic body n-1 coating. In the multi-stage polymer elastic body, sometimes some of the elastic body n has entered the inside of the elastic body n-1.
多段重合弾性体において、複数の弾性体のそれぞれが、層構造を有していてもよい。例えば、多段重合弾性体が、弾性体1、弾性体2、および弾性体3からなる場合、弾性体1を最内層とし、弾性体1の外側に弾性体2の層が存在し、さらに弾性体2の層の外側に弾性体3の層が弾性体における最外層として存在する態様も、本発明の一態様である。このように、複数の弾性体のそれぞれが層構造を有する多段重合弾性体は、多層弾性体ともいえる。すなわち、本発明の一実施形態において、弾性体は、複数種の弾性体の混合物、多段重合弾性体および/または多層弾性体を含んでいてもよい。
In the multi-stage polymerized elastic body, each of the plurality of elastic bodies may have a layered structure. For example, when the multi-stage polymerized elastic body is composed of the elastic body 1 , the elastic body 2 , and the elastic body 3 , the elastic body 1 is the innermost layer, the layer of the elastic body 2 exists outside the elastic body 1 , and the elastic body is further formed. An embodiment in which the layer of the elastic body 3 exists as the outermost layer in the elastic body outside the layer 2 is also an aspect of the present invention. As described above, a multi-stage polymerized elastic body in which each of the plurality of elastic bodies has a layered structure can be said to be a multi-layer elastic body. That is, in one embodiment of the present invention, the elastic body may include a mixture of a plurality of types of elastic bodies, a multi-stage polymerized elastic body and / or a multilayer elastic body.
(グラフト部)
本明細書において、弾性体に対してグラフト結合された重合体をグラフト部と称する。グラフト部は、種々の役割を担い得る。「種々の役割」とは、例えば、(a)(B)成分と(A)成分との相溶性を向上させること、(b)エポキシ樹脂(A)中におけるポリマー微粒子(B)の分散性を向上させること、および(c)本硬化性樹脂組成物またはその接着層中においてポリマー微粒子(B)が一次粒子の状態で分散することを可能にすること、などである。 (Graft part)
In the present specification, a polymer graft-bonded to an elastic body is referred to as a graft portion. The graft portion can play various roles. The "various roles" include, for example, improving the compatibility between the components (a) and (B) and the component (A), and (b) dispersibility of the polymer fine particles (B) in the epoxy resin (A). It is improved, and (c) it is possible to disperse the polymer fine particles (B) in the state of primary particles in the present curable resin composition or its adhesive layer.
本明細書において、弾性体に対してグラフト結合された重合体をグラフト部と称する。グラフト部は、種々の役割を担い得る。「種々の役割」とは、例えば、(a)(B)成分と(A)成分との相溶性を向上させること、(b)エポキシ樹脂(A)中におけるポリマー微粒子(B)の分散性を向上させること、および(c)本硬化性樹脂組成物またはその接着層中においてポリマー微粒子(B)が一次粒子の状態で分散することを可能にすること、などである。 (Graft part)
In the present specification, a polymer graft-bonded to an elastic body is referred to as a graft portion. The graft portion can play various roles. The "various roles" include, for example, improving the compatibility between the components (a) and (B) and the component (A), and (b) dispersibility of the polymer fine particles (B) in the epoxy resin (A). It is improved, and (c) it is possible to disperse the polymer fine particles (B) in the state of primary particles in the present curable resin composition or its adhesive layer.
(B)成分のグラフト部は、ヒドロキシ基を含む。当該構成により、得られる硬化性樹脂組成物は、粘度のせん断速度依存性が高くなり、その結果、作業性に優れる構造物の製造方法を提供できる。さらに、グラフト部にヒドロキシ基を含む(B)成分と後述のヒュームドシリカ(C)とを組み合わせて含むことにより、得られる硬化性樹脂組成物は、粘度のせん断速度依存性がより高くなり、その結果、作業性により優れる構造物の製造方法を提供できる。(B)成分のグラフト部がヒドロキシ基を含むことにより、得られる硬化性樹脂組成物は、耐衝撃剥離接着性に優れる接着層を提供できる、という利点も有する。
The graft portion of the component (B) contains a hydroxy group. With this configuration, the obtained curable resin composition has a high viscosity dependence on the shear rate, and as a result, it is possible to provide a method for producing a structure having excellent workability. Further, by including the component (B) containing a hydroxy group in the graft portion in combination with the fumed silica (C) described later, the obtained curable resin composition has a higher viscosity dependence on the shear rate. As a result, it is possible to provide a method for manufacturing a structure having better workability. Since the graft portion of the component (B) contains a hydroxy group, the obtained curable resin composition also has an advantage that it can provide an adhesive layer having excellent impact-resistant peeling adhesiveness.
(B)成分のグラフト部に含まれるヒドロキシ基の含有量は特に限定されない。(B)成分のグラフト部のヒドロキシ基の含有量は、グラフト部の総質量に対して0.01mmol/g以上であることが好ましく、0.1mmol/g以上であることがより好ましく、0.2mmol/g以上であることがさらに好ましく、0.4mmol/g以上であることが特に好ましい。(B)成分のグラフト部に含まれるヒドロキシ基の含有量が多いほど、得られる硬化性樹脂組成物における粘度のせん断速度依存性は高くなり、得られる硬化性樹脂組成物が提供する接着層における耐衝撃剥離接着性は良好となる。(B)成分のグラフト部は、グラフト部の総質量に対して5.0mmol/g以下であることが好ましく、4.0mmol/g以下であることがより好ましく、2.5mmol/g以下であることがさらに好ましく、1.5mmol/g以下であることが特に好ましい。(B)成分のグラフト部に含まれるヒドロキシ基の含有量が少ないほど、得られる硬化性樹脂組成物の貯蔵時の粘度変化は小さくなり、当該硬化性樹脂組成物の取り扱い性が容易となる。
The content of the hydroxy group contained in the graft portion of the component (B) is not particularly limited. The content of the hydroxy group in the graft portion of the component (B) is preferably 0.01 mmol / g or more, more preferably 0.1 mmol / g or more, based on the total mass of the graft portion. It is more preferably 2 mmol / g or more, and particularly preferably 0.4 mmol / g or more. The greater the content of the hydroxy group contained in the graft portion of the component (B), the higher the dependence of the viscosity of the obtained curable resin composition on the shear rate, and in the adhesive layer provided by the obtained curable resin composition. Impact resistance Peeling Adhesiveness is good. The graft portion of the component (B) is preferably 5.0 mmol / g or less, more preferably 4.0 mmol / g or less, and 2.5 mmol / g or less, based on the total mass of the graft portion. It is more preferable, and it is particularly preferable that it is 1.5 mmol / g or less. The smaller the content of the hydroxy group contained in the graft portion of the component (B), the smaller the change in viscosity of the obtained curable resin composition during storage, and the easier the handleability of the curable resin composition becomes.
(B)成分のグラフト部は、構造単位として、ヒドロキシ基含有モノマーに由来する構成単位を含むことが好ましい、ともいえる。
It can be said that the graft portion of the component (B) preferably contains a structural unit derived from a hydroxy group-containing monomer as a structural unit.
ヒドロキシ基を有するモノマーの具体例としては、例えば、(i)2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);(ii)カプロラクトン変性ヒドロキシ(メタ)アクリレート;(iii)α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチルなどのヒドロキシ分岐アルキル(メタ)アクリレート;(iv)二価カルボン酸(フタル酸など)と二価アルコール(プロピレングリコールなど)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレート類、などが挙げられる。
Specific examples of the monomer having a hydroxy group include (i) hydroxy linear alkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. (In particular, hydroxy linear C1-6 alkyl (meth) acrylate); (ii) caprolactone-modified hydroxy (meth) acrylate; (iii) methyl α- (hydroxymethyl) acrylate, α- (hydroxymethyl) ethyl acrylate, etc. Hydroxy branched alkyl (meth) acrylate; (iv) mono (meth) acrylate of polyester diol (particularly saturated polyester diol) obtained from divalent carboxylic acid (such as phthalic acid) and dihydric alcohol (such as propylene glycol). Examples thereof include hydroxyl group-containing (meth) acrylates.
グラフト部は、グラフト部100質量%中、ヒドロキシ基含有モノマーに由来する構成単位を、0.2質量%~70.0質量%含むことが好ましく、2.0質量%~50.0質量%含むことがより好ましく、4.0質量%~40.0質量%含むことがさらに好ましく、10.0質量%~30.0質量%含むことが特に好ましい。グラフト部100質量%中、ヒドロキシ基含有モノマーに由来する構成単位を0.2質量%以上含む場合、(a)得られる硬化性樹脂組成物における粘度のせん断速度依存性は高くなり、得られる硬化性樹脂組成物が提供する接着層における耐衝撃剥離接着性は良好となり、かつ(b)得られる硬化性樹脂組成物は、十分な耐衝撃性を有する接着層を提供することができる。グラフト部100質量%中、ヒドロキシ基含有モノマーに由来する構成単位を70.0質量%以下含む場合、得られる硬化性樹脂組成物は、十分な耐衝撃性を有する接着層を提供することができ、かつ、当該硬化性樹脂組成物の貯蔵安定性が良好となるという利点を有する。
The graft portion preferably contains 0.2% by mass to 70.0% by mass, and 2.0% by mass to 50.0% by mass, of a structural unit derived from the hydroxy group-containing monomer in 100% by mass of the graft portion. More preferably, it is more preferably 4.0% by mass to 40.0% by mass, and particularly preferably 10.0% by mass to 30.0% by mass. When 0.2% by mass or more of the structural unit derived from the hydroxy group-containing monomer is contained in 100% by mass of the graft portion, (a) the viscosity dependence of the viscosity in the obtained curable resin composition becomes high, and the obtained curing The impact-resistant peeling adhesiveness of the adhesive layer provided by the sex resin composition is good, and (b) the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance. When the constituent unit derived from the hydroxy group-containing monomer is contained in an amount of 70.0% by mass or less in 100% by mass of the graft portion, the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance. Moreover, it has an advantage that the storage stability of the curable resin composition is improved.
ヒドロキシ基またはヒドロキシ基含有モノマーに由来する構成単位は、グラフト部に含まれることが好ましく、グラフト部にのみ含まれることがより好ましい。
The structural unit derived from the hydroxy group or the hydroxy group-containing monomer is preferably contained in the graft portion, and more preferably contained only in the graft portion.
ヒドロキシ基は、後述する反応性基ともいえ、ヒドロキシ基含有モノマーは、後述する反応性基含有モノマーともいえる。
The hydroxy group can be said to be a reactive group described later, and the hydroxy group-containing monomer can be said to be a reactive group-containing monomer described later.
(B)成分の硬化性樹脂組成物中での相溶性および分散性が良好となることから、グラフト部は、構成単位として、芳香族ビニルモノマー、ビニルシアンモノマーおよび(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマーに由来する構成単位を含む重合体であることが好ましく、(メタ)アクリレートモノマーに由来する構成単位を含む重合体であることがより好ましい。
Since the compatibility and dispersibility of the component (B) in the curable resin composition are good, the graft portion is a group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and a (meth) acrylate monomer as a constituent unit. It is preferably a polymer containing a structural unit derived from one or more selected monomers, and more preferably a polymer containing a structural unit derived from a (meth) acrylate monomer.
芳香族ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、p-メチルスチレンおよびジビニルベンゼンなどのビニルベンゼン類が挙げられる。
Specific examples of the aromatic vinyl monomer include vinylbenzenes such as styrene, α-methylstyrene, p-methylstyrene and divinylbenzene.
(B)成分のグラフト部の総質量に対するシアノ基の含有量は、特に限定は無いが、得られる硬化性樹脂組成物の粘度の温度依存性および硬化して得られる接着層の衝撃強度が良好となることから、0.5mmol/g~15.0mmol/gが好ましく、1.0mmol/g~13.0mmol/gがより好ましく、1.5mmol/g~11.0mmol/gがより好ましく、2.0mmol/g~11.0mmol/gがより好ましく、2.0mmol/g~10.0mmol/gがより好ましく、2.5mmol/g~9.0mmol/gがより好ましく、3.0mol/g~9.0mol/gがより好ましく、5.0mmol/g~10.0mmol/gがさらに好ましく、5.5mmol/g~9.5mmol/gがよりさらに好ましく、7.0mmol/g~9.0mmol/gが特に好ましい。(B)成分のグラフト部の総質量に対するシアノ基の含有量が、(a)0.5mmol/g以上である場合、得られる硬化性樹脂組成物の粘度の温度依存性が小さくなるという利点を有し、(b)15.0mmol/g以下である場合、ポリマー微粒子(B)中に残存するシアノ基含有モノマーの量が増加する虞がなく、その結果、安全性が高いという利点を有する。
The content of the cyano group with respect to the total mass of the graft portion of the component (B) is not particularly limited, but the temperature dependence of the viscosity of the obtained curable resin composition and the impact strength of the adhesive layer obtained by curing are good. Therefore, 0.5 mmol / g to 15.0 mmol / g is preferable, 1.0 mmol / g to 13.0 mmol / g is more preferable, and 1.5 mmol / g to 11.0 mmol / g is more preferable. .0 mmol / g to 11.0 mmol / g is more preferable, 2.0 mmol / g to 10.0 mmol / g is more preferable, 2.5 mmol / g to 9.0 mmol / g is more preferable, and 3.0 mol / g to 3.0 mol / g. 9.0 mol / g is more preferred, 5.0 mmol / g to 10.0 mmol / g is even more preferred, 5.5 mmol / g to 9.5 mmol / g is even more preferred, 7.0 mmol / g to 9.0 mmol / g. g is particularly preferable. When the content of the cyano group with respect to the total mass of the graft portion of the component (B) is (a) 0.5 mmol / g or more, there is an advantage that the temperature dependence of the viscosity of the obtained curable resin composition becomes small. When (b) is 15.0 mmol / g or less, there is no possibility that the amount of the cyano group-containing monomer remaining in the polymer fine particles (B) will increase, and as a result, there is an advantage that the safety is high.
ビニルシアンモノマーの具体例としては、アクリロニトリルおよびメタクリロニトリルなどが挙げられる。
Specific examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile.
(メタ)アクリレートモノマーの具体例としては、(a)メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステル;および(b)ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなどの(メタ)アクリル酸ヒドロキシアルキルエステル、などが挙げられる。
Specific examples of the (meth) acrylate monomer include (a) methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid alkyl ester such as butyl (meth) acrylate; and (b) hydroxyethyl (meth). Examples thereof include (meth) acrylic acid hydroxyalkyl esters such as acrylates and hydroxybutyl (meth) acrylates.
上述した、芳香族ビニルモノマー、ビニルシアンモノマーおよび(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマーは、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
As the above-mentioned one or more kinds of monomers selected from the group consisting of aromatic vinyl monomer, vinyl cyan monomer and (meth) acrylate monomer, only one kind may be used, or two or more kinds may be used in combination. May be good.
グラフト部は、構成単位として、芳香族ビニルモノマーに由来する構成単位、ビニルシアンモノマーに由来する構成単位および(メタ)アクリレートモノマーに由来する構成単位を合計で、全構成単位100質量%中に、10~95質量%含むことが好ましく、30~92質量%含むことがより好ましく、50~90質量%含むことがさらに好ましく、60~87質量%含むことが特に好ましく、70~85質量%含むことが最も好ましい。
As the constituent unit, the graft portion includes a structural unit derived from an aromatic vinyl monomer, a structural unit derived from a vinyl cyan monomer, and a structural unit derived from a (meth) acrylate monomer, in a total of 100% by mass of all the structural units. It is preferably contained in an amount of 10 to 95% by mass, more preferably 30 to 92% by mass, further preferably 50 to 90% by mass, particularly preferably 60 to 87% by mass, and 70 to 85% by mass. Is the most preferable.
グラフト部は、構成単位として、反応性基含有モノマーに由来する構成単位を含むことが好ましい。前記反応性基含有モノマーは、エポキシ基、オキセタン基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基およびシアン酸エステル基からなる群から選択される1種以上の反応性基を含有するモノマーであることが好ましく、エポキシ基およびカルボン酸基からなる群から選択される1種以上の反応性基を含有するモノマーであることがより好ましく、エポキシ基を含有するモノマーであることがさらに好ましい。前記構成によると、硬化性樹脂組成物および接着層中でポリマー微粒子(B)のグラフト部とエポキシ樹脂(A)とを化学結合させることができる。これにより、硬化性樹脂組成物および接着層中で、ポリマー微粒子(B)を凝集させることなく、ポリマー微粒子(B)の良好な分散状態を維持することができる。すなわち、グラフト部は、エポキシ基を有する重合体であることが好ましい。
The graft portion preferably contains a structural unit derived from a reactive group-containing monomer as a structural unit. The reactive group-containing monomer is selected from the group consisting of an epoxy group, an oxetane group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, a benzoxazine group and a cyanate ester group. It is preferably a monomer containing one or more reactive groups, and more preferably a monomer containing one or more reactive groups selected from the group consisting of an epoxy group and a carboxylic acid group, and epoxy. More preferably, it is a monomer containing a group. According to the above configuration, the graft portion of the polymer fine particles (B) and the epoxy resin (A) can be chemically bonded in the curable resin composition and the adhesive layer. Thereby, in the curable resin composition and the adhesive layer, the polymer fine particles (B) can be maintained in a good dispersed state without agglutinating the polymer fine particles (B). That is, the graft portion is preferably a polymer having an epoxy group.
グラフト部は、エポキシ基を有する重合体であることが好ましい。グラフト部の総質量に対するエポキシ基の含有量は0.1mmol/g~5.0mmol/gが好ましく、0.2~5.0mmol/gがより好ましく、0.3~5.0mmol/gがより好ましく、0.4~5.0mmol/gがより好ましく、0.4~3.5mmol/gがさらに好ましく、0.4~3.0mmol/gがよりさらに好ましく、0.4~2.5mmol/gが特に好ましい。グラフト部の総質量に対するエポキシ基の含有量は、0.2mmol/g~3.5mmol/gであってもよく、0.3mmol/g~3.0mmol/gであってもよい。当該構成によると、得られる硬化性樹脂組成物は、粘度の温度依存性および貯蔵安定性に優れるという利点を有する。
The graft portion is preferably a polymer having an epoxy group. The content of the epoxy group with respect to the total mass of the graft portion is preferably 0.1 mmol / g to 5.0 mmol / g, more preferably 0.2 to 5.0 mmol / g, and more preferably 0.3 to 5.0 mmol / g. Preferably, 0.4 to 5.0 mmol / g is more preferable, 0.4 to 3.5 mmol / g is further preferable, 0.4 to 3.0 mmol / g is further preferable, and 0.4 to 2.5 mmol / g is more preferable. g is particularly preferable. The content of the epoxy group with respect to the total mass of the graft portion may be 0.2 mmol / g to 3.5 mmol / g, or may be 0.3 mmol / g to 3.0 mmol / g. According to this configuration, the resulting curable resin composition has the advantages of excellent viscosity temperature dependence and storage stability.
エポキシ基を有するモノマーの具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルおよびアリルグリシジルエーテルなどのグリシジル基含有ビニルモノマーが挙げられる。
Specific examples of the monomer having an epoxy group include glycidyl group-containing vinyl monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether and allyl glycidyl ether.
カルボン酸基を有するモノマーの具体例としては、例えば、アクリル酸、メタクリル酸およびクロトン酸などのモノカルボン酸、並びに、マレイン酸、フマル酸およびイタコン酸などのジカルボン酸などが挙げられる。カルボン酸基を有するモノマーとしては、前記モノカルボン酸が好適に用いられる。
Specific examples of the monomer having a carboxylic acid group include monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid. As the monomer having a carboxylic acid group, the monocarboxylic acid is preferably used.
上述した反応性基含有モノマーは、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
As the above-mentioned reactive group-containing monomer, only one type may be used, or two or more types may be used in combination.
グラフト部は、グラフト部100質量%中、反応性基含有モノマーに由来する構成単位を、0.5~90質量%含むことが好ましく、1~50質量%含むことがより好ましく、2~35質量%含むことがさらに好ましく、3~20質量%含むことが特に好ましい。グラフト部が、グラフト部100質量%中、反応性基含有モノマーに由来する構成単位を、(a)0.5質量%以上含まれている場合、得られる硬化性樹脂組成物は、十分な耐衝撃性を有する接着層を提供することができ、(b)90質量%以下含まれている場合、得られる硬化性樹脂組成物は、十分な耐衝撃性を有する接着層を提供することができ、かつ、当該硬化性樹脂組成物の貯蔵安定性が良好となるという利点を有する。
The graft portion preferably contains 0.5 to 90% by mass of a structural unit derived from the reactive group-containing monomer, more preferably 1 to 50% by mass, and 2 to 35% by mass in 100% by mass of the graft portion. % Is more preferable, and 3 to 20% by mass is particularly preferable. When the graft portion contains (a) 0.5% by mass or more of the structural unit derived from the reactive group-containing monomer in 100% by mass of the graft portion, the obtained curable resin composition has sufficient resistance. An adhesive layer having impact resistance can be provided, and (b) when 90% by mass or less is contained, the obtained curable resin composition can provide an adhesive layer having sufficient impact resistance. Moreover, it has an advantage that the storage stability of the curable resin composition is improved.
反応性基含有モノマーに由来する構成単位は、グラフト部に含まれることが好ましく、グラフト部にのみ含まれることがより好ましい。
The structural unit derived from the reactive group-containing monomer is preferably contained in the graft portion, and more preferably contained only in the graft portion.
グラフト部は、構成単位として、多官能性モノマーに由来する構成単位を含んでいてもよい。グラフト部が、多官能性モノマーに由来する構成単位を含む場合、(a)硬化性樹脂組成物中においてポリマー微粒子(B)の膨潤を防止することができる、(b)硬化性樹脂組成物の粘度が低くなるため、硬化性樹脂組成物の取扱い性が良好となる傾向がある、および(c)エポキシ樹脂(A)におけるポリマー微粒子(B)の分散性が向上する、などの利点を有する。
The graft portion may contain a structural unit derived from a polyfunctional monomer as a structural unit. When the graft portion contains a structural unit derived from a polyfunctional monomer, (a) the curable resin composition can prevent the polymer fine particles (B) from swelling in the curable resin composition. Since the viscosity is low, the curable resin composition tends to be easy to handle, and (c) the dispersibility of the polymer fine particles (B) in the epoxy resin (A) is improved.
グラフト部が多官能性モノマーに由来する構成単位を含まない場合、得られる硬化性樹脂組成物は、靱性改良効果および耐衝撃剥離接着性改良効果に優れる接着層を提供できるという利点を有する。
When the graft portion does not contain a structural unit derived from a polyfunctional monomer, the obtained curable resin composition has an advantage that it can provide an adhesive layer excellent in toughness improving effect and impact peeling adhesiveness improving effect.
グラフト部の重合に用いられ得る多官能性モノマーとしては、上述の多官能性モノマーと同じモノマーが挙げられる。それら多官能性モノマーの中でも、グラフト部の重合に好ましく用いられ得る多官能性モノマーとしては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリアリルイソシアヌレートおよびポリエチレングリコールジ(メタ)アクリレート類が挙げられ、アリルメタクリレートおよびトリアリルイソシアヌレートがより好ましい。これら多官能性モノマーは、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
Examples of the polyfunctional monomer that can be used for the polymerization of the graft portion include the same monomer as the above-mentioned polyfunctional monomer. Among these polyfunctional monomers, the polyfunctional monomers that can be preferably used for the polymerization of the graft portion include allyl methacrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, and hexanediol di (meth) acrylate. , Cyclohexanedimethanol di (meth) acrylate, triallyl isocyanurate and polyethylene glycol di (meth) acrylate, with allyl methacrylate and triallyl isocyanurate being more preferred. Only one kind of these polyfunctional monomers may be used, or two or more kinds thereof may be used in combination.
グラフト部は、グラフト部100質量%中、多官能性モノマーに由来する構成単位を、0質量%~20質量%含んでいてもよく、1質量%~20質量%含むことが好ましく、5質量%~15質量%含むことがより好ましい。
The graft portion may contain 0% by mass to 20% by mass of a structural unit derived from a polyfunctional monomer in 100% by mass of the graft portion, preferably 1% by mass to 20% by mass, and 5% by mass. It is more preferable to contain ~ 15% by mass.
グラフト部は、構成単位として全構成単位100質量%中に、好ましくは、芳香族ビニルモノマー(特にスチレン)に由来する構成単位0質量%~50質量%(より好ましくは1質量%~50質量%、さらに好ましくは2質量%~48質量%)、ビニルシアンモノマー(特にアクリロニトリル)に由来する構成単位0質量%~50質量%(より好ましくは0質量%~30質量%、さらに好ましくは10質量%~25質量%)、(メタ)アクリレートモノマー(特にメチルメタクリレート)に由来する構成単位0質量%~90質量%(より好ましくは5質量%~85質量%、さらに好ましくは20質量%~80質量%)、およびエポキシ基を有するモノマー(特にグリシジルメタクリレート)に由来する構成単位5質量%~90質量%(より好ましくは10質量%~50質量%、さらに好ましくは15質量%~30質量%)を、合計100質量%含む。当該構成によると、粘度の温度依存性が小さい硬化性樹脂組成物が得られる。
The graft portion has a structural unit of 0% by mass to 50% by mass (more preferably 1% by mass to 50% by mass) derived from an aromatic vinyl monomer (particularly styrene) in 100% by mass of all the structural units as a structural unit. , More preferably 2% by mass to 48% by mass), a structural unit derived from a vinyl cyan monomer (particularly acrylonitrile) 0% by mass to 50% by mass (more preferably 0% by mass to 30% by mass, still more preferably 10% by mass). ~ 25% by mass), structural unit derived from (meth) acrylate monomer (particularly methyl methacrylate) 0% by mass to 90% by mass (more preferably 5% by mass to 85% by mass, still more preferably 20% by mass to 80% by mass). ), And 5% by mass to 90% by mass (more preferably 10% by mass to 50% by mass, still more preferably 15% by mass to 30% by mass) of structural units derived from a monomer having an epoxy group (particularly glycidyl methacrylate). Contains 100% by mass in total. According to this structure, a curable resin composition having a small temperature dependence of viscosity can be obtained.
グラフト部の重合において、上述したモノマーは、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the polymerization of the graft portion, one type of the above-mentioned monomer may be used alone, or two or more types may be used in combination.
グラフト部は、構成単位として、上述したモノマーに由来する構成単位の他に、他のモノマーに由来する構成単位を含んでいてもよい。
The graft portion may include a structural unit derived from another monomer in addition to the structural unit derived from the above-mentioned monomer as a structural unit.
(グラフト部のグラフト率)
本発明の一実施形態において、ポリマー微粒子(B)は、グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体を有していてもよい。本明細書において、グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体を、非グラフト重合体とも称する。当該非グラフト重合体も、本発明の一実施形態に係るポリマー微粒子(B)の一部を構成するものとする。前記非グラフト重合体は、グラフト部の重合において製造された重合体のうち、弾性体に対してグラフト結合していないものともいえる。 (Graft rate of graft part)
In one embodiment of the present invention, the polymer fine particles (B) may have a polymer having the same structure as the graft portion and which is not graft-bonded to an elastic body. In the present specification, a polymer having the same structure as the graft portion and not graft-bonded to an elastic body is also referred to as a non-grafted polymer. The non-grafted polymer also constitutes a part of the polymer fine particles (B) according to the embodiment of the present invention. It can be said that the non-grafted polymer is one of the polymers produced in the polymerization of the graft portion that is not graft-bonded to the elastic body.
本発明の一実施形態において、ポリマー微粒子(B)は、グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体を有していてもよい。本明細書において、グラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない重合体を、非グラフト重合体とも称する。当該非グラフト重合体も、本発明の一実施形態に係るポリマー微粒子(B)の一部を構成するものとする。前記非グラフト重合体は、グラフト部の重合において製造された重合体のうち、弾性体に対してグラフト結合していないものともいえる。 (Graft rate of graft part)
In one embodiment of the present invention, the polymer fine particles (B) may have a polymer having the same structure as the graft portion and which is not graft-bonded to an elastic body. In the present specification, a polymer having the same structure as the graft portion and not graft-bonded to an elastic body is also referred to as a non-grafted polymer. The non-grafted polymer also constitutes a part of the polymer fine particles (B) according to the embodiment of the present invention. It can be said that the non-grafted polymer is one of the polymers produced in the polymerization of the graft portion that is not graft-bonded to the elastic body.
本明細書において、グラフト部の重合において製造された重合体のうち、弾性体に対してグラフト結合された重合体、すなわちグラフト部の割合を、グラフト率と称する。グラフト率は、(グラフト部の質量)/{(グラフト部の質量)+(非グラフト重合体の質量)}×100で表される値、ともいえる。
In the present specification, the ratio of the polymer graft-bonded to the elastic body, that is, the graft portion, among the polymers produced in the polymerization of the graft portion is referred to as the graft ratio. The graft ratio can be said to be a value represented by (mass of graft portion) / {(mass of graft portion) + (mass of non-grafted polymer)} × 100.
グラフト部のグラフト率は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。グラフト率が70%以上である場合、硬化性樹脂組成物の粘度が高くなりすぎないという利点を有する。
The graft ratio of the graft portion is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. When the graft ratio is 70% or more, there is an advantage that the viscosity of the curable resin composition does not become too high.
本明細書において、グラフト率の算出方法は下記の通りである。先ず、ポリマー微粒子(B)を含有する水性ラテックスを得、次に、当該水性ラテックスから、ポリマー微粒子(B)の粉体を得る。水性ラテックスからポリマー微粒子(B)の粉体を得る方法は、(弾性体のゲル含量)の項にて説明した方法を用いることができる。次いで、ポリマー微粒子(B)の粉体2gをメチルエチルケトン(以下、MEKと称する場合もある。)100gに浸漬する。次に、得られた混合物を、23℃で24時間静置する。その後、得られた混合物を、その後、得られた混合物を、MEKに可溶な成分(MEK可溶分)とMEKに不溶な成分(MEK不溶分)とに分離する。さらに、MEK可溶分をメタノールと混合するなどして、MEK可溶分からメタノール不溶分を分離する。そして、得られたMEK不溶分とメタノール不溶分との質量を測定し、MEK不溶分とメタノール不溶分との合計量に対するMEK不溶分の比率を求めることによってグラフト率を算出する。具体的には次式によりグラフト率を算出する。
グラフト率(%)=(MEK不溶分の質量)/{(MEK不溶分の質量)+(メタノール不溶分の質量)}×100
(グラフト部の変形例)
本発明の一実施形態において、グラフト部は、同一の組成の構成単位を有する1種のグラフト部のみからなってもよい。本発明の一実施形態において、グラフト部は、それぞれ異なる組成の構成単位を有する複数種のグラフト部からなってもよい。 In the present specification, the method of calculating the graft ratio is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex. As a method for obtaining the powder of the polymer fine particles (B) from the aqueous latex, the method described in the section (Gel content of elastic body) can be used. Next, 2 g of the polymer fine particle (B) powder is immersed in 100 g of methyl ethyl ketone (hereinafter, may be referred to as MEK). The resulting mixture is then allowed to stand at 23 ° C. for 24 hours. Then, the obtained mixture is separated, and then the obtained mixture is separated into a MEK-soluble component (MEK-soluble component) and a MEK-insoluble component (MEK-insoluble component). Further, the MEK-soluble component is mixed with methanol to separate the methanol-insoluble component from the MEK-soluble component. Then, the mass of the obtained MEK insoluble matter and the methanol insoluble matter is measured, and the graft ratio is calculated by obtaining the ratio of the MEK insoluble matter to the total amount of the MEK insoluble matter and the methanol insoluble matter. Specifically, the graft ratio is calculated by the following formula.
Graft ratio (%) = (mass of MEK insoluble matter) / {(mass of MEK insoluble matter) + (mass of methanol insoluble matter)} x 100
(Modification example of graft part)
In one embodiment of the present invention, the graft portion may consist of only one type of graft portion having a structural unit having the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions, each having a structural unit having a different composition.
グラフト率(%)=(MEK不溶分の質量)/{(MEK不溶分の質量)+(メタノール不溶分の質量)}×100
(グラフト部の変形例)
本発明の一実施形態において、グラフト部は、同一の組成の構成単位を有する1種のグラフト部のみからなってもよい。本発明の一実施形態において、グラフト部は、それぞれ異なる組成の構成単位を有する複数種のグラフト部からなってもよい。 In the present specification, the method of calculating the graft ratio is as follows. First, an aqueous latex containing the polymer fine particles (B) is obtained, and then a powder of the polymer fine particles (B) is obtained from the aqueous latex. As a method for obtaining the powder of the polymer fine particles (B) from the aqueous latex, the method described in the section (Gel content of elastic body) can be used. Next, 2 g of the polymer fine particle (B) powder is immersed in 100 g of methyl ethyl ketone (hereinafter, may be referred to as MEK). The resulting mixture is then allowed to stand at 23 ° C. for 24 hours. Then, the obtained mixture is separated, and then the obtained mixture is separated into a MEK-soluble component (MEK-soluble component) and a MEK-insoluble component (MEK-insoluble component). Further, the MEK-soluble component is mixed with methanol to separate the methanol-insoluble component from the MEK-soluble component. Then, the mass of the obtained MEK insoluble matter and the methanol insoluble matter is measured, and the graft ratio is calculated by obtaining the ratio of the MEK insoluble matter to the total amount of the MEK insoluble matter and the methanol insoluble matter. Specifically, the graft ratio is calculated by the following formula.
Graft ratio (%) = (mass of MEK insoluble matter) / {(mass of MEK insoluble matter) + (mass of methanol insoluble matter)} x 100
(Modification example of graft part)
In one embodiment of the present invention, the graft portion may consist of only one type of graft portion having a structural unit having the same composition. In one embodiment of the present invention, the graft portion may consist of a plurality of types of graft portions, each having a structural unit having a different composition.
本発明の一実施形態において、グラフト部が複数種のグラフト部からなる場合について説明する。この場合、複数種のグラフト部のそれぞれを、グラフト部1、グラフト部2、・・・、グラフト部nとする(nは2以上の整数)。グラフト部は、それぞれ別々に重合されたグラフト部1、グラフト部2、・・・、およびグラフト部nを混合して得られる混合物を含んでいてもよい。グラフト部は、グラフト部1、グラフト部2、・・・、およびグラフト部nを多段重合して得られる重合体を含んでいてもよい。複数種のグラフト部を多段重合して得られる重合体を、多段重合グラフト部とも称する。多段重合グラフト部の製造方法については、後に詳述する。
In one embodiment of the present invention, a case where the graft portion is composed of a plurality of types of graft portions will be described. In this case, each of the plurality of types of graft portions is referred to as a graft portion 1 , a graft portion 2 , ..., A graft portion n (n is an integer of 2 or more). The graft portion may contain a mixture obtained by mixing the graft portion 1 , the graft portion 2 , ..., And the graft portion n, which are polymerized separately, respectively. The graft portion may contain a polymer obtained by multi-stage polymerization of the graft portion 1 , the graft portion 2 , ..., And the graft portion n . A polymer obtained by multi-stage polymerization of a plurality of types of graft portions is also referred to as a multi-stage polymerization graft portion. The method for producing the multi-stage polymerization graft portion will be described in detail later.
グラフト部が複数種のグラフト部からなる場合、これら複数種のグラフト部の全てが弾性体に対してグラフト結合されていなくてもよい。少なくとも1種のグラフト部の少なくとも一部が弾性体に対してグラフト結合されていればよく、その他の種(その他の複数種)のグラフト部は、弾性体に対してグラフト結合されているグラフト部にグラフト結合されていてもよい。また、グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部と同じ構成を有する重合体であり、かつ弾性体に対してグラフト結合されていない複数種の重合体(非グラフト重合体)を有していてもよい。
When the graft portion is composed of a plurality of types of graft portions, all of the plurality of types of graft portions do not have to be graft-bonded to the elastic body. At least a part of the graft portion of at least one kind may be graft-bonded to the elastic body, and the graft portion of the other species (several other kinds) is the graft portion graft-bonded to the elastic body. It may be graft-bonded to. When the graft portion is composed of a plurality of types of graft portions, a plurality of types of polymers (non-graft polymers) that have the same configuration as the plurality of types of graft portions and are not graft-bonded to an elastic body. ) May have.
グラフト部1、グラフト部2、・・・、およびグラフト部nからなる多段重合グラフト部について説明する。当該多段重合グラフト部において、グラフト部nは、グラフト部n-1の少なくとも一部を被覆し得るか、またはグラフト部n-1の全体を被覆し得る。当該多段重合グラフト部において、グラフト部nの一部はグラフト部n-1の内側に入り込んでいることもある。
A multi-stage polymerization graft portion including the graft portion 1 , the graft portion 2 , ..., And the graft portion n will be described. In the multi-stage polymerization grafts, the graft section n may either be coated onto at least a portion of the graft portion n-1, or may cover the entire graft portion n-1. In the multi-stage polymerization grafting unit, a portion of the graft portion n sometimes has entered the inside of the graft portion n-1.
多段重合グラフト部において、複数のグラフト部のそれぞれが、層構造を有していてもよい。例えば、多段重合グラフト部が、グラフト部1、グラフト部2、およびグラフト部3からなる場合、グラフト部1をグラフト部における最内層とし、グラフト部1の外側にグラフト部2の層が存在し、さらにグラフト部2の層の外側にグラフト部3の層が最外層として存在する態様も、本発明の一態様である。このように、複数のグラフト部のそれぞれが層構造を有する多段重合グラフト部は、多層グラフト部ともいえる。すなわち、本発明の一実施形態において、グラフト部は、複数種のグラフト部の混合物、多段重合グラフト部および/または多層グラフト部を含んでいてもよい。
In the multi-stage polymerization graft portion, each of the plurality of graft portions may have a layered structure. For example, when the multi-stage polymerization graft portion is composed of the graft portion 1 , the graft portion 2 , and the graft portion 3 , the graft portion 1 is the innermost layer in the graft portion, and the layer of the graft portion 2 exists outside the graft portion 1 . Further, an embodiment in which the layer of the graft portion 3 exists as the outermost layer outside the layer of the graft portion 2 is also an aspect of the present invention. As described above, the multistage polymerization graft portion in which each of the plurality of graft portions has a layered structure can be said to be a multilayer graft portion. That is, in one embodiment of the present invention, the graft portion may include a mixture of a plurality of types of graft portions, a multi-stage polymerization graft portion and / or a multilayer graft portion.
ポリマー微粒子(B)の製造において弾性体とグラフト部とがこの順で重合される場合、得られるポリマー微粒子(B)において、グラフト部の少なくとも一部分は、弾性体の少なくとも一部分を被覆し得る。弾性体とグラフト部とがこの順で重合されるとは、換言すれば、弾性体とグラフト部とが多段重合されるともいえる。弾性体とグラフト部とを多段重合して得られるポリマー微粒子(B)は、多段重合体ともいえる。
When the elastic body and the graft portion are polymerized in this order in the production of the polymer fine particles (B), at least a part of the graft portion can cover at least a part of the elastic body in the obtained polymer fine particles (B). The fact that the elastic body and the graft portion are polymerized in this order can be said to mean that the elastic body and the graft portion are polymerized in multiple stages. The polymer fine particles (B) obtained by multi-stage polymerization of the elastic body and the graft portion can be said to be a multi-stage polymer.
ポリマー微粒子(B)が多段重合体である場合、グラフト部は弾性体の少なくとも一部を被覆し得るか、または弾性体の全体を被覆し得る。ポリマー微粒子(B)が多段重合体である場合、グラフト部の一部は弾性体の内側に入り込んでいることもある。
When the polymer fine particles (B) are multi-stage polymers, the graft portion can cover at least a part of the elastic body or can cover the entire elastic body. When the polymer fine particles (B) are multi-stage polymers, a part of the graft portion may enter the inside of the elastic body.
ポリマー微粒子(B)が多段重合体である場合、弾性体およびグラフト部が、層構造を有していてもよい。例えば、弾性体を最内層(コア層とも称する。)とし、弾性体の外側にグラフト部の層が最外層(シェル層とも称する。)として存在する態様も、本発明の一態様である。弾性体をコア層とし、グラフト部をシェル層とする構造はコアシェル構造ともいえる。このように、弾性体およびグラフト部が層構造(コアシェル構造)を有するポリマー微粒子(B)は、多層重合体またはコアシェル重合体ともいえる。すなわち、本発明の一実施形態において、ポリマー微粒子(B)は、多段重合体であってもよく、かつ/または、多層重合体もしくはコアシェル重合体であってもよい。ただし、グラフト部が弾性体に対してグラフト結合している限り、ポリマー微粒子(B)は前記構成に制限されるわけではない。
When the polymer fine particles (B) are multi-stage polymers, the elastic body and the graft portion may have a layered structure. For example, an embodiment in which the elastic body is the innermost layer (also referred to as a core layer) and the layer of the graft portion is present as the outermost layer (also referred to as a shell layer) outside the elastic body is also one aspect of the present invention. A structure in which the elastic body is the core layer and the graft portion is the shell layer can be said to be a core-shell structure. As described above, the polymer fine particles (B) in which the elastic body and the graft portion have a layered structure (core-shell structure) can be said to be a multilayer polymer or a core-shell polymer. That is, in one embodiment of the present invention, the polymer fine particles (B) may be a multi-stage polymer and / or a multilayer polymer or a core-shell polymer. However, as long as the graft portion is graft-bonded to the elastic body, the polymer fine particles (B) are not limited to the above configuration.
グラフト部の少なくとも一部分は、弾性体の少なくとも一部分を被覆していることが好ましい。換言すれば、グラフト部の少なくとも一部分は、ポリマー微粒子(B)の最も外側に存在することが好ましい。
It is preferable that at least a part of the graft portion covers at least a part of the elastic body. In other words, it is preferable that at least a part of the graft portion is present on the outermost side of the polymer fine particles (B).
(表面架橋重合体)
ポリマー微粒子(B)は、弾性体、および当該弾性体に対してグラフト結合されたグラフト部以外に、表面架橋重合体を有することが好ましい。前記構成によると、(a)ポリマー微粒子(B)の製造において、耐ブロッキング性を改善することができるとともに、(b)エポキシ樹脂(A)におけるポリマー微粒子(B)の分散性がより良好となる。これらの理由としては、特に限定されないが、以下のように推測され得る:表面架橋重合体が弾性体の少なくとも一部を被覆することにより、ポリマー微粒子(B)の弾性体部分の露出が減り、その結果、弾性体同士が引っ付きにくくなるため、ポリマー微粒子(B)の分散性が向上する。 (Surface crosslinked polymer)
The polymer fine particles (B) preferably have a surface crosslinked polymer in addition to the elastic body and the graft portion graft-bonded to the elastic body. According to the above configuration, in the production of (a) the polymer fine particles (B), the blocking resistance can be improved, and (b) the dispersibility of the polymer fine particles (B) in the epoxy resin (A) becomes better. .. The reasons for these are not particularly limited, but can be presumed as follows: By coating at least a part of the elastic body with the surface crosslinked polymer, the exposure of the elastic body portion of the polymer fine particles (B) is reduced. As a result, the elastic bodies are less likely to stick to each other, so that the dispersibility of the polymer fine particles (B) is improved.
ポリマー微粒子(B)は、弾性体、および当該弾性体に対してグラフト結合されたグラフト部以外に、表面架橋重合体を有することが好ましい。前記構成によると、(a)ポリマー微粒子(B)の製造において、耐ブロッキング性を改善することができるとともに、(b)エポキシ樹脂(A)におけるポリマー微粒子(B)の分散性がより良好となる。これらの理由としては、特に限定されないが、以下のように推測され得る:表面架橋重合体が弾性体の少なくとも一部を被覆することにより、ポリマー微粒子(B)の弾性体部分の露出が減り、その結果、弾性体同士が引っ付きにくくなるため、ポリマー微粒子(B)の分散性が向上する。 (Surface crosslinked polymer)
The polymer fine particles (B) preferably have a surface crosslinked polymer in addition to the elastic body and the graft portion graft-bonded to the elastic body. According to the above configuration, in the production of (a) the polymer fine particles (B), the blocking resistance can be improved, and (b) the dispersibility of the polymer fine particles (B) in the epoxy resin (A) becomes better. .. The reasons for these are not particularly limited, but can be presumed as follows: By coating at least a part of the elastic body with the surface crosslinked polymer, the exposure of the elastic body portion of the polymer fine particles (B) is reduced. As a result, the elastic bodies are less likely to stick to each other, so that the dispersibility of the polymer fine particles (B) is improved.
ポリマー微粒子(B)が表面架橋重合体を有する場合、さらに以下の効果も有し得る:(a)本硬化性樹脂組成物の粘度を低下させる効果、(b)弾性体における架橋密度を上げる効果、および(c)グラフト部のグラフト効率(グラフト率)を高める効果。弾性体における架橋密度とは、弾性体全体における架橋構造の数の程度を意味する。
When the polymer fine particles (B) have a surface crosslinked polymer, they may also have the following effects: (a) an effect of lowering the viscosity of the present curable resin composition, and (b) an effect of increasing the crosslink density in the elastic body. , And (c) the effect of increasing the graft efficiency (graft ratio) of the graft portion. The crosslink density in an elastic body means the degree of the number of crosslinked structures in the entire elastic body.
得られる接着層が靱性および耐衝撃剥離接着性に優れることから、ポリマー微粒子(B)は、表面架橋重合体を含有しないことが好ましい。
It is preferable that the polymer fine particles (B) do not contain a surface crosslinked polymer because the obtained adhesive layer is excellent in toughness and impact resistance peeling adhesiveness.
表面架橋重合体は、構成単位として、多官能性モノマーに由来する構成単位を30~100質量%、およびその他のビニル系モノマーに由来する構成単位を0~70質量%、合計100質量%含むポリマーからなる。
The surface crosslinked polymer is a polymer containing 30 to 100% by mass of a structural unit derived from a polyfunctional monomer and 0 to 70% by mass of a structural unit derived from other vinyl-based monomers, for a total of 100% by mass. Consists of.
表面架橋重合体の重合に用いられ得る多官能性モノマーとしては、上述の多官能性モノマーと同じモノマーが挙げられる。それら多官能性モノマーの中でも、表面架橋重合体の重合に好ましく用いられ得る多官能性モノマーとしては、アリルメタクリレート、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリアリルイソシアヌレートおよびポリエチレングリコールジ(メタ)アクリレート類が挙げられ、アリルメタクリレートおよびトリアリルイソシアヌレートがより好ましい。これら多官能性モノマーは、1種類のみが用いられてもよく、2種以上が組み合わせて用いられてもよい。
Examples of the polyfunctional monomer that can be used for the polymerization of the surface crosslinked polymer include the same monomers as the above-mentioned polyfunctional monomer. Among these polyfunctional monomers, the polyfunctional monomers that can be preferably used for the polymerization of surface crosslinked polymers include allyl methacrylate, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, and hexanediol di (meth). ) Acrylate, cyclohexanedimethanol di (meth) acrylate, triallyl isocyanurate and polyethylene glycol di (meth) acrylate are mentioned, with allyl methacrylate and triallyl isocyanurate being more preferred. Only one kind of these polyfunctional monomers may be used, or two or more kinds thereof may be used in combination.
ポリマー微粒子(B)は、ゴム含有グラフト共重合体の重合とは独立して重合された表面架橋重合体を含んでいてもよく、または、ゴム含有グラフト共重合体と共に重合された表面架橋重合体を含んでいてもよい。ポリマー微粒子(B)は、弾性体と表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体であってもよい。これらいずれの態様においても、表面架橋重合体は弾性体の少なくとも一部を被覆し得る。
The polymer fine particles (B) may contain a surface crosslinked polymer polymerized independently of the polymerization of the rubber-containing graft copolymer, or the surface crosslinked polymer polymerized together with the rubber-containing graft copolymer. May include. The polymer fine particles (B) may be a multi-stage polymer obtained by multi-stage polymerization of an elastic body, a surface crosslinked polymer, and a graft portion in this order. In any of these embodiments, the surface crosslinked polymer may cover at least a portion of the elastic body.
表面架橋重合体は、弾性体の一部とみなすこともできる。ポリマー微粒子(B)が表面架橋重合体を含む場合、グラフト部は、(a)表面架橋重合体以外の弾性体に対してグラフト結合されていてもよく、(b)表面架橋重合体に対してグラフト結合されていてもよく、(c)表面架橋重合体以外の弾性体および表面架橋重合体の両方に対してグラフト結合されていてもよい。ポリマー微粒子(B)が表面架橋重合体を含む場合、上述した弾性体の体積平均粒子径とは、表面架橋重合体を含む弾性体の体積平均粒子径を意図する。
The surface crosslinked polymer can also be regarded as a part of the elastic body. When the polymer fine particles (B) contain a surface crosslinked polymer, the graft portion may be graft-bonded to an elastic material other than (a) the surface crosslinked polymer, and may be graft-bonded to (b) the surface crosslinked polymer. It may be graft-bonded, or may be graft-bonded to both an elastic body other than the (c) surface-crosslinked polymer and a surface-crosslinked polymer. When the polymer fine particles (B) contain a surface crosslinked polymer, the volume average particle size of the elastic body described above is intended to be the volume average particle size of the elastic body containing the surface crosslinked polymer.
ポリマー微粒子(B)が、弾性体と表面架橋重合体とグラフト部とをこの順に多段重合して得られる多段重合体である場合(場合D)について説明する。場合Dにおいて、表面架橋重合体は、弾性体の一部を被覆し得るか、または弾性体の全体を被覆し得る。場合Dにおいて、表面架橋重合体の一部は弾性体の内側に入り込んでいることもある。場合Dにおいて、グラフト部は、表面架橋重合体の一部を被覆し得るか、または表面架橋重合体の全体を被覆し得る。場合Dにおいて、グラフト部の一部は表面架橋重合体の内側に入り込んでいることもある。場合Dにおいて、弾性体、表面架橋重合体およびグラフト部が、層構造を有していてもよい。例えば、弾性体を最内層(コア層)とし、弾性体の外側に表面架橋重合体の層が中間層として存在し、表面架橋重合体の外側にグラフト部の層が最外層(シェル層)として存在する態様も、本発明の一態様である。
A case (case D) in which the polymer fine particles (B) are multi-stage polymers obtained by multi-stage polymerization of an elastic body, a surface crosslinked polymer, and a graft portion in this order will be described. In Case D, the surface crosslinked polymer can cover part of the elastic body or the entire elastic body. In case D, a part of the surface crosslinked polymer may have entered the inside of the elastic body. In case D, the graft portion can cover a part of the surface crosslinked polymer or can cover the whole surface crosslinked polymer. In case D, a part of the graft portion may enter the inside of the surface crosslinked polymer. In Case D, the elastic body, the surface crosslinked polymer and the graft portion may have a layered structure. For example, the elastic body is the innermost layer (core layer), the surface crosslinked polymer layer is present as an intermediate layer on the outside of the elastic body, and the grafted layer is the outermost layer (shell layer) on the outside of the surface crosslinked polymer. The existing aspect is also one aspect of the present invention.
(ポリマー微粒子(B)の製造方法)
ポリマー微粒子(B)は、弾性体を重合した後、弾性体の存在下にて弾性体に対してグラフト部を構成する重合体をグラフト重合することによって、製造できる。グラフト部を構成する重合体を、グラフト重合体とも称する。 (Method for producing polymer fine particles (B))
The polymer fine particles (B) can be produced by polymerizing an elastic body and then graft-polymerizing a polymer constituting a graft portion with respect to the elastic body in the presence of the elastic body. The polymer constituting the graft portion is also referred to as a graft polymer.
ポリマー微粒子(B)は、弾性体を重合した後、弾性体の存在下にて弾性体に対してグラフト部を構成する重合体をグラフト重合することによって、製造できる。グラフト部を構成する重合体を、グラフト重合体とも称する。 (Method for producing polymer fine particles (B))
The polymer fine particles (B) can be produced by polymerizing an elastic body and then graft-polymerizing a polymer constituting a graft portion with respect to the elastic body in the presence of the elastic body. The polymer constituting the graft portion is also referred to as a graft polymer.
ポリマー微粒子(B)は、公知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができる。具体的には、ポリマー微粒子(B)における弾性体の重合、グラフト部の重合(グラフト重合)、表面架橋重合体の重合は、公知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができる。これらの中でも特に、ポリマー微粒子(B)の組成設計が容易である、工業生産が容易である、および本硬化性樹脂組成物の製造に好適に用いられ得るポリマー微粒子(B)の水性ラテックスが容易に得られることから、ポリマー微粒子(B)の製造方法としては、乳化重合が好ましい。以下、ポリマー微粒子(B)に含まれ得る弾性体、グラフト部、および任意の構成である表面架橋重合体の製造方法について、説明する。
The polymer fine particles (B) can be produced by a known method, for example, a method such as emulsion polymerization, suspension polymerization, or microsuspension polymerization. Specifically, the polymerization of the elastic body in the polymer fine particles (B), the polymerization of the graft portion (graft polymerization), and the polymerization of the surface crosslinked polymer are known methods such as emulsion polymerization, suspension polymerization, microsuspension polymerization and the like. It can be manufactured by the method of. Among these, in particular, the composition design of the polymer fine particles (B) is easy, the industrial production is easy, and the aqueous latex of the polymer fine particles (B) that can be suitably used for producing the present curable resin composition is easy. As a method for producing the polymer fine particles (B), emulsion polymerization is preferable. Hereinafter, a method for producing an elastic body, a graft portion, and a surface crosslinked polymer having an arbitrary configuration, which can be contained in the polymer fine particles (B), will be described.
(弾性体の製造方法)
弾性体が、ジエン系ゴムおよび(メタ)アクリレート系ゴムからなる群より選択される少なくとも1種以上を含む場合を考える。この場合、弾性体は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができ、その製造方法としては、例えばWO2005/028546号公報に記載の方法を用いることができる。 (Manufacturing method of elastic body)
Consider the case where the elastic body contains at least one selected from the group consisting of a diene rubber and a (meth) acrylate rubber. In this case, the elastic body can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like, and as the production method, for example, the method described in WO2005 / 028546 can be used. ..
弾性体が、ジエン系ゴムおよび(メタ)アクリレート系ゴムからなる群より選択される少なくとも1種以上を含む場合を考える。この場合、弾性体は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができ、その製造方法としては、例えばWO2005/028546号公報に記載の方法を用いることができる。 (Manufacturing method of elastic body)
Consider the case where the elastic body contains at least one selected from the group consisting of a diene rubber and a (meth) acrylate rubber. In this case, the elastic body can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like, and as the production method, for example, the method described in WO2005 / 028546 can be used. ..
弾性体が、ポリシロキサンゴム系弾性体を含む場合を考える。この場合、弾性体は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などの方法により製造することができ、その製造方法としては、例えばWO2006/070664号公報に記載の方法を用いることができる。
Consider the case where the elastic body contains a polysiloxane rubber-based elastic body. In this case, the elastic body can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like, and as the production method, for example, the method described in WO2006 / 070664 can be used. ..
弾性体が複数種の弾性体(例えば弾性体1、弾性体2、・・・、弾性体n)からなる場合の、弾性体の製造方法について説明する。この場合、弾性体1、弾性体2、・・・、弾性体nは、それぞれ別々に上述の方法により重合され、その後混合されることにより、複数種の弾性体を有する弾性体が製造されてもよい。または、弾性体1、弾性体2、・・・、弾性体nは、それぞれ順に多段重合され、複数種の弾性体を有する弾性体が製造されてもよい。
A method for manufacturing an elastic body will be described when the elastic body is composed of a plurality of types of elastic bodies (for example, elastic body 1 , elastic body 2 , ..., Elastic body n ). In this case, the elastic body 1 , the elastic body 2 , ..., The elastic body n are separately polymerized by the above-mentioned method and then mixed to produce an elastic body having a plurality of types of elastic bodies. May be good. Alternatively, the elastic body 1 , the elastic body 2 , ..., And the elastic body n may be polymerized in multiple stages in this order to produce an elastic body having a plurality of types of elastic bodies.
弾性体の多段重合について、具体的に説明する。例えば、(1)弾性体1を重合して弾性体1を得る;(2)次いで弾性体1の存在下にて弾性体2を重合して2段弾性体1+2を得る;(3)次いで弾性体1+2の存在下にて弾性体3を重合して3段弾性体1+2+3を得る;(4)以下、同様に行った後、弾性体1+2+・・・+(n-1)の存在下にて弾性体nを重合して多段重合弾性体1+2+・・・+nを得る。
The multi-stage polymerization of an elastic body will be specifically described. For example, (1) as an elastic body 1 by polymerizing the elastic member 1; (2) then obtain an elastic body 2 polymerized by a two-stage elastic member 1 + 2 in the presence of the elastic member 1; (3) then elastically body 1 + obtain 2 in the presence of the elastic body 3 polymerized to a three-stage elastic member 1 + 2 + 3; (4) below, after the same manner, in the presence of + elastic body 1 + 2 + · · · (n-1) The elastic body n is polymerized to obtain a multi-stage polymerized elastic body 1 + 2 + ... + N.
(グラフト部の製造方法)
グラフト部は、例えば、グラフト部の形成に用いるモノマーを、公知のラジカル重合により重合することによって形成することができる。(a)弾性体、または(b)弾性体および表面架橋重合体を含むポリマー微粒子前駆体、を水性ラテックスとして得た場合には、グラフト部の重合は乳化重合法により行うことが好ましい。グラフト部は、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。 (Manufacturing method of graft part)
The graft portion can be formed, for example, by polymerizing the monomer used for forming the graft portion by a known radical polymerization. When (a) an elastic body or (b) a polymer fine particle precursor containing an elastic body and a surface crosslinked polymer is obtained as an aqueous latex, the polymerization of the graft portion is preferably carried out by an emulsion polymerization method. The graft portion can be manufactured, for example, according to the method described in WO2005 / 028546.
グラフト部は、例えば、グラフト部の形成に用いるモノマーを、公知のラジカル重合により重合することによって形成することができる。(a)弾性体、または(b)弾性体および表面架橋重合体を含むポリマー微粒子前駆体、を水性ラテックスとして得た場合には、グラフト部の重合は乳化重合法により行うことが好ましい。グラフト部は、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。 (Manufacturing method of graft part)
The graft portion can be formed, for example, by polymerizing the monomer used for forming the graft portion by a known radical polymerization. When (a) an elastic body or (b) a polymer fine particle precursor containing an elastic body and a surface crosslinked polymer is obtained as an aqueous latex, the polymerization of the graft portion is preferably carried out by an emulsion polymerization method. The graft portion can be manufactured, for example, according to the method described in WO2005 / 028546.
グラフト部の製造(重合)において、ヒドロキシ基含有モノマーを使用することにより、ヒドロキシ基を有するグラフト部を得ることができる。
By using a hydroxy group-containing monomer in the production (polymerization) of the graft portion, a graft portion having a hydroxy group can be obtained.
グラフト部が複数種のグラフト部(例えばグラフト部1、グラフト部2、・・・、グラフト部n)からなる場合の、グラフト部の製造方法について説明する。この場合、グラフト部1、グラフト部2、・・・、グラフト部nは、それぞれ別々に上述の方法により重合され、その後混合されることにより、複数種のグラフト部を有するグラフト部が製造されてもよい。または、グラフト部1、グラフト部2、・・・、グラフト部nは、それぞれ順に多段重合され、複数種のグラフト部を有するグラフト部が製造されてもよい。
A method for manufacturing the graft portion will be described when the graft portion is composed of a plurality of types of graft portions (for example, the graft portion 1 , the graft portion 2 , ..., The graft portion n ). In this case, the graft portion 1 , the graft portion 2 , ..., And the graft portion n are separately polymerized by the above-mentioned method and then mixed to produce a graft portion having a plurality of types of graft portions. May be good. Alternatively, the graft portion 1 , the graft portion 2 , ..., And the graft portion n may be polymerized in multiple stages in this order to produce a graft portion having a plurality of types of graft portions.
グラフト部の多段重合について、具体的に説明する。例えば、(1)グラフト部1を重合してグラフト部1を得る;(2)次いでグラフト部1の存在下にてグラフト部2を重合して2段グラフト部1+2を得る;(3)次いでグラフト部1+2の存在下にてグラフト部3を重合して3段グラフト部1+2+3を得る;(4)以下、同様に行った後、グラフト部1+2+・・・+(n-1)の存在下にてグラフト部nを重合して多段重合グラフト部1+2+・・・+nを得る。
The multi-stage polymerization of the graft portion will be specifically described. For example, (1) obtaining a graft portion 1 by polymerizing a graft portion 1; (2) then obtain grafts 2 polymerized by two-stage graft section 1 + 2 in the presence of the graft portion 1; (3) then grafted part 1 + 2 of obtaining by polymerizing a graft portion 3 3-stage graft section 1 + 2 + 3 in the presence; (4) below, after the same manner, in the presence of the graft section 1 + 2 + · · · + (n-1) The graft portion n is polymerized to obtain a multi-stage polymerization graft portion 1 + 2 + ... + N.
グラフト部が複数種のグラフト部からなる場合、複数種のグラフト部を有するグラフト部を重合した後、弾性体にそれらグラフト部をグラフト重合して、ポリマー微粒子(B)を製造してもよい。弾性体の存在下にて、弾性体に対して複数種のグラフト部構成する複数種の重合体を順に多段グラフト重合して、ポリマー微粒子(B)を製造してもよい。
When the graft portion is composed of a plurality of types of graft portions, the polymer fine particles (B) may be produced by polymerizing the graft portions having the plurality of types of graft portions and then graft-polymerizing the graft portions onto an elastic body. In the presence of an elastic body, a plurality of types of polymers constituting a plurality of types of graft portions may be sequentially graft-polymerized with respect to the elastic body to produce polymer fine particles (B).
(表面架橋重合体の製造方法)
表面架橋重合体は、表面架橋重合体の形成に用いるモノマーを公知のラジカル重合により重合することによって形成することができる。弾性体を水性ラテックスとして得た場合には、表面架橋重合体の重合は乳化重合法により行うことが好ましい。 (Method for producing surface crosslinked polymer)
The surface crosslinked polymer can be formed by polymerizing a monomer used for forming the surface crosslinked polymer by a known radical polymerization. When the elastic body is obtained as an aqueous latex, the surface crosslinked polymer is preferably polymerized by an emulsion polymerization method.
表面架橋重合体は、表面架橋重合体の形成に用いるモノマーを公知のラジカル重合により重合することによって形成することができる。弾性体を水性ラテックスとして得た場合には、表面架橋重合体の重合は乳化重合法により行うことが好ましい。 (Method for producing surface crosslinked polymer)
The surface crosslinked polymer can be formed by polymerizing a monomer used for forming the surface crosslinked polymer by a known radical polymerization. When the elastic body is obtained as an aqueous latex, the surface crosslinked polymer is preferably polymerized by an emulsion polymerization method.
表面架橋重合体は、重合された弾性体を含む水性ラテックスに、表面架橋重合体の形成に用いるモノマーを一度に添加するか、または一定量ずつ連続で添加して追加した後、重合する方法で得られてもよい。このような重合は、1段で行われる表面架橋重合体の重合ともいえる。表面架橋重合体の重合は、2段以上で行ってもよい。すなわち、あらかじめ表面架橋重合体の形成に用いるモノマーが仕込まれた反応器に重合された弾性体を含む水性ラテックスを加えてから重合を実施する方法などを採用することもできる。
The surface crosslinked polymer is a method of polymerizing after adding a monomer used for forming the surface crosslinked polymer to an aqueous latex containing a polymerized elastic material at a time or by continuously adding a fixed amount at a time. May be obtained. Such polymerization can be said to be the polymerization of the surface crosslinked polymer performed in one step. The polymerization of the surface crosslinked polymer may be carried out in two or more stages. That is, it is also possible to adopt a method in which the polymerization is carried out after adding the aqueous latex containing the polymerized elastic body to the reactor in which the monomer used for forming the surface crosslinked polymer is charged in advance.
(乳化剤)
ポリマー微粒子(B)の製造方法として、乳化重合法を採用する場合、ポリマー微粒子(B)の製造には、公知の乳化剤を用いることができる。乳化重合において用いることができる乳化剤としては、例えば、WO2016-163491号公報の明細書の、[0073]段落に記載の各種の乳化剤が挙げられる。これらの乳化剤は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。乳化剤は、分散剤ともいえる。 (emulsifier)
When the emulsion polymerization method is adopted as the method for producing the polymer fine particles (B), a known emulsifier can be used for the production of the polymer fine particles (B). Examples of emulsifiers that can be used in emulsion polymerization include various emulsifiers described in paragraph [0073] of the specification of WO2016-163491. One type of these emulsifiers may be used alone, or two or more types may be used in combination. The emulsifier can also be said to be a dispersant.
ポリマー微粒子(B)の製造方法として、乳化重合法を採用する場合、ポリマー微粒子(B)の製造には、公知の乳化剤を用いることができる。乳化重合において用いることができる乳化剤としては、例えば、WO2016-163491号公報の明細書の、[0073]段落に記載の各種の乳化剤が挙げられる。これらの乳化剤は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。乳化剤は、分散剤ともいえる。 (emulsifier)
When the emulsion polymerization method is adopted as the method for producing the polymer fine particles (B), a known emulsifier can be used for the production of the polymer fine particles (B). Examples of emulsifiers that can be used in emulsion polymerization include various emulsifiers described in paragraph [0073] of the specification of WO2016-163491. One type of these emulsifiers may be used alone, or two or more types may be used in combination. The emulsifier can also be said to be a dispersant.
ポリマー微粒子(B)の水性ラテックス中の分散安定性に支障を来さない限り、乳化剤(分散剤)の使用量は少なくすることが好ましい。また、乳化剤は、その水溶性が高いほど好ましい。乳化剤の水溶性が高い場合、乳化剤の水洗除去が容易になり、最終的に得られる接着層に対する乳化剤(残存乳化剤)の悪影響を容易に防止できる。
It is preferable to use a small amount of emulsifier (dispersant) as long as the dispersion stability of the polymer fine particles (B) in the aqueous latex is not hindered. Moreover, the higher the water solubility of the emulsifier, the more preferable it is. When the emulsifier has a high water solubility, the emulsifier can be easily removed by washing with water, and the adverse effect of the emulsifier (residual emulsifier) on the finally obtained adhesive layer can be easily prevented.
(開始剤)
ポリマー微粒子(B)の製造方法として、乳化重合法を採用する場合、ポリマー微粒子(B)の製造には、熱分解型開始剤を用いることができる。前記熱分解型開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウムおよび過硫酸アンモニウムなどの公知の開始剤を挙げることができる。 (Initiator)
When the emulsion polymerization method is adopted as the method for producing the polymer fine particles (B), a pyrolysis type initiator can be used for the production of the polymer fine particles (B). Examples of the pyrolysis-type initiator include known initiators such as 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, and ammonium persulfate.
ポリマー微粒子(B)の製造方法として、乳化重合法を採用する場合、ポリマー微粒子(B)の製造には、熱分解型開始剤を用いることができる。前記熱分解型開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウムおよび過硫酸アンモニウムなどの公知の開始剤を挙げることができる。 (Initiator)
When the emulsion polymerization method is adopted as the method for producing the polymer fine particles (B), a pyrolysis type initiator can be used for the production of the polymer fine particles (B). Examples of the pyrolysis-type initiator include known initiators such as 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, and ammonium persulfate.
ポリマー微粒子(B)の製造には、レドックス型開始剤を使用することもできる。前記レドックス型開始剤は、(a)有機過酸化物および無機過酸化物などの過酸化物と、(b)必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などと、を併用した開始剤である。前記有機過酸化物としては、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイドおよびt-ヘキシルパーオキサイドなどが挙げられる。前記無機過酸化物としては、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどが挙げられる。
A redox-type initiator can also be used in the production of the polymer fine particles (B). The redox-type initiators include (a) peroxides such as organic peroxides and inorganic peroxides, (b) reducing agents such as sodium formaldehyde sulfoxylate and glucose as required, and optionally. It is an initiator in which a transition metal salt such as iron (II) sulfate, a chelating agent such as disodium ethylenediamine tetraacetate as required, and a phosphorus-containing compound such as sodium pyrophosphate as necessary are used in combination. Examples of the organic peroxide include t-butyl peroxyisopropyl carbonate, paramentan hydroperoxide, cumene hydroperoxide, dicumyl peroxide, t-butyl hydroperoxide, di-t-butyl peroxide and t-hexyl. Examples include peroxide. Examples of the inorganic peroxide include hydrogen peroxide, potassium persulfate, and ammonium persulfate.
レドックス型開始剤を用いる場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定できるようになる。そのため、レドックス型開始剤を用いることが好ましい。レドックス型開始剤の中でも、クメンハイドロパーオキサイド、ジクミルパーオキサイド、パラメンタンハイドロパーオキサイドおよびt-ブチルハイドロパーオキサイドなどの有機過酸化物をレドックス型開始剤として用いることが好ましい。前記開始剤の使用量、並びに、レドックス型開始剤を用いる場合には前記還元剤、遷移金属塩およびキレート剤などの使用量は、公知の範囲で用いることができる。
When a redox-type initiator is used, the polymerization can be carried out even at a low temperature at which the peroxide is substantially not thermally decomposed, and the polymerization temperature can be set in a wide range. Therefore, it is preferable to use a redox-type initiator. Among the redox-type initiators, it is preferable to use organic peroxides such as cumenhydroperoxide, dicumyl peroxide, paramentan hydroperoxide and t-butyl hydroperoxide as the redox-type initiator. The amount of the initiator used, and the amount of the reducing agent, transition metal salt, chelating agent, and the like used when using the redox-type initiator can be used within a known range.
弾性体、グラフト部または表面架橋重合体に架橋構造を導入する目的で、弾性体、グラフト部または表面架橋重合体の重合に多官能性モノマーを使用する場合、公知の連鎖移動剤を公知の使用量の範囲で用いることができる。連鎖移動剤を使用することにより、得られる弾性体、グラフト部もしくは表面架橋重合体の分子量および/または架橋度を容易に調節することができる。
When a polyfunctional monomer is used for the polymerization of an elastic body, a graft part or a surface crosslinked polymer for the purpose of introducing a crosslinked structure into an elastic body, a graft part or a surface crosslinked polymer, a known chain transfer agent is used. It can be used in a range of quantities. By using a chain transfer agent, the molecular weight and / or degree of cross-linking of the obtained elastic body, graft portion or surface cross-linked polymer can be easily adjusted.
ポリマー微粒子(B)の製造には、上述した成分に加えて、さらに界面活性剤を用いることができる。前記界面活性剤の種類および使用量は、公知の範囲である。
In addition to the above-mentioned components, a surfactant can be further used in the production of the polymer fine particles (B). The types and amounts of the surfactants used are in the known range.
ポリマー微粒子(B)の製造において、重合における重合温度、圧力および脱酸素などの条件は、公知の範囲のものが適用することができる。
In the production of the polymer fine particles (B), conditions such as polymerization temperature, pressure and deoxidation in the polymerization can be applied within a known range.
(ヒュームドシリカ(C))
本硬化性樹脂組成物は、ヒュームドシリカ(C)を含むことにより、粘度のせん断速度依存性が高くなり、その結果、作業性に優れる構造物の製造方法を提供できる。さらに、ヒュームドシリカ(C)と前述の(B)成分とを組み合わせて含むことにより、得られる硬化性樹脂組成物は、粘度のせん断速度依存性がより高くなり、その結果、作業性により優れる構造物の製造方法を提供できる。 (Humeed silica (C))
Since the present curable resin composition contains fumed silica (C), the viscosity depends on the shear rate, and as a result, a method for producing a structure having excellent workability can be provided. Further, by containing the fumed silica (C) in combination with the above-mentioned component (B), the obtained curable resin composition has a higher viscosity dependence on the shear rate, and as a result, is more excellent in workability. A method for manufacturing a structure can be provided.
本硬化性樹脂組成物は、ヒュームドシリカ(C)を含むことにより、粘度のせん断速度依存性が高くなり、その結果、作業性に優れる構造物の製造方法を提供できる。さらに、ヒュームドシリカ(C)と前述の(B)成分とを組み合わせて含むことにより、得られる硬化性樹脂組成物は、粘度のせん断速度依存性がより高くなり、その結果、作業性により優れる構造物の製造方法を提供できる。 (Humeed silica (C))
Since the present curable resin composition contains fumed silica (C), the viscosity depends on the shear rate, and as a result, a method for producing a structure having excellent workability can be provided. Further, by containing the fumed silica (C) in combination with the above-mentioned component (B), the obtained curable resin composition has a higher viscosity dependence on the shear rate, and as a result, is more excellent in workability. A method for manufacturing a structure can be provided.
ヒュームドシリカは、乾式シリカとも称される。ヒュームドシリカとしては、表面無処理の親水性ヒュームドシリカと、親水性ヒュームドシリカのシラノール基部分にシランおよび/またはシロキサンで化学的に処理することによって製造された疎水性ヒュームドシリカとが挙げられる。ヒュームドシリカ(C)としては、(a)作業性に優れることから、親水性ヒュームドシリカが好ましく、(b)(A)成分への分散性に優れ、かつ得られる硬化性樹脂組成物が貯蔵安定性に優れることから、疎水性ヒュームドシリカが好ましい。
Fumed silica is also called dry silica. The fumed silica includes hydrophilic fumed silica having no surface treatment and hydrophobic fumed silica produced by chemically treating the silanol group portion of the hydrophilic fumed silica with silane and / or siloxane. Can be mentioned. As the fumed silica (C), hydrophilic fumed silica is preferable because (a) excellent workability, and (b) excellent dispersibility in the components (A), and the obtained curable resin composition is obtained. Hydrophobic fumed silica is preferable because it has excellent storage stability.
ヒュームドシリカ(C)の製造方法としては、(a)ハロゲン化ケイ素の分解により製造するアエロジル法、および(b)ケイ砂を加熱して還元した後、空気により酸化してケイ酸を得るアーク法、等が挙げられるが、特に限定はない。ヒュームドシリカ(C)の製造方法としては、入手性の点からアエロジル法が好ましい。
Fumed silica (C) is produced by (a) Aerosil method produced by decomposition of silicon halide, and (b) Arc that heats and reduces silica sand and then oxidizes it with air to obtain silicic acid. Laws, etc. can be mentioned, but there are no particular restrictions. As a method for producing fumed silica (C), the Aerosil method is preferable from the viewpoint of availability.
疎水性ヒュームドシリカの表面処理剤としては、シランカップリング剤、オクタメチルテトラシクロシロキサン、ポリジメチルシロキサンなどが挙げられる。前記シランカップリング剤としては、ジメチルジクロロシラン、(メタ)アクリルシラン、ヘキサメチルジシラザン、オクチルシラン、ヘキサデシルシラン、アミノシラン、メタクリルシランなどが挙げられる。(A)成分への分散安定性、および得られる硬化性組成物の貯蔵安定性に優れることから、ポリジメチルシロキサンで表面処理された疎水性ヒュームドシリカが好ましい。
Examples of the surface treatment agent for hydrophobic fumed silica include a silane coupling agent, octamethyltetracyclosiloxane, and polydimethylsiloxane. Examples of the silane coupling agent include dimethyldichlorosilane, (meth) acrylicsilane, hexamethyldisilazane, octylsilane, hexadecylsilane, aminosilane, and methacrylsilane. Hydrophobic fumed silica surface-treated with polydimethylsiloxane is preferable because it is excellent in dispersion stability in the component (A) and storage stability of the obtained curable composition.
本硬化性樹脂組成物において、(A)成分100質量部に対する(C)成分の含有量は、2質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がより好ましく、7質量部以上がさらに好ましく、10質量部以上が特に好ましい。(A)成分100質量部に対する(C)成分の含有量は、12質量部以上であってもよく、15質量部以上であってもよく、17質量部以上であってもよく、20質量部以上であってもよい。(A)成分100質量部に対する(C)成分の含有量が多いほど、得られる硬化性樹脂組成物における粘度のせん断速度依存性は高くなり、当該硬化性樹脂組成物を用いる構造物の製造方法は作業性に優れる。本硬化性樹脂組成物において、(A)成分100質量部に対する(C)成分の含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下がより好ましく、13質量部以下がさらに好ましく、10質量部以下が特に好ましい。(A)成分100質量部に対する(C)成分の含有量は、8質量部以下であってもよく、5質量部以下であってもよい。(A)成分100質量部に対する(C)成分の含有量が少ないほど、得られる硬化性樹脂組成物は貯蔵安定性に優れるという利点を有する。
In the present curable resin composition, the content of the component (C) with respect to 100 parts by mass of the component (A) is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and 7 parts by mass. More than 10 parts by mass is more preferable. The content of the component (C) with respect to 100 parts by mass of the component (A) may be 12 parts by mass or more, 15 parts by mass or more, 17 parts by mass or more, or 20 parts by mass. It may be the above. The greater the content of the component (C) with respect to 100 parts by mass of the component (A), the higher the dependence of the viscosity of the obtained curable resin composition on the shear rate, and a method for producing a structure using the curable resin composition. Has excellent workability. In the present curable resin composition, the content of the component (C) with respect to 100 parts by mass of the component (A) is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and 13 parts by mass. It is more preferably parts or less, and particularly preferably 10 parts by mass or less. The content of the component (C) with respect to 100 parts by mass of the component (A) may be 8 parts by mass or less, or 5 parts by mass or less. The smaller the content of the component (C) with respect to 100 parts by mass of the component (A), the more the obtained curable resin composition has an advantage of being excellent in storage stability.
(ブロックドウレタン(D))
本硬化性樹脂組成物は、ブロックドウレタン(D)を含んでもよく、含まなくてもよい。本明細書において、「ブロックドウレタン(D)」を「(D)成分」とも称する。 (Blocked urethane (D))
The present curable resin composition may or may not contain blocked urethane (D). In the present specification, "blocked urethane (D)" is also referred to as "component (D)".
本硬化性樹脂組成物は、ブロックドウレタン(D)を含んでもよく、含まなくてもよい。本明細書において、「ブロックドウレタン(D)」を「(D)成分」とも称する。 (Blocked urethane (D))
The present curable resin composition may or may not contain blocked urethane (D). In the present specification, "blocked urethane (D)" is also referred to as "component (D)".
まず、ブロックドウレタン(D)を含まない場合について説明する。本発明者は、上述した(A)成分、(B)成分および(C)成分を含む本硬化性樹脂組成物が、さらに(D)成分を含む場合、(D)成分を含まない場合と比較して、当該硬化性樹脂組成物の粘度のせん断速度依存性が低くなることを、独自に見出した。本硬化性樹脂組成物において、当該硬化性樹脂組成物中の(D)成分の含有量が多いほど、当該硬化性樹脂組成物の粘度のせん断速度依存性が低下し得る。
First, the case where the blocked urethane (D) is not included will be described. The present inventor has compared the case where the present curable resin composition containing the above-mentioned components (A), (B) and (C) further contains the component (D) with the case where the component (D) is not contained. Therefore, it has been independently found that the viscosity dependence of the viscosity of the curable resin composition is low. In the present curable resin composition, the larger the content of the component (D) in the curable resin composition, the lower the dependence of the viscosity of the curable resin composition on the shear rate.
本硬化性樹脂組成物において、(D)成分の含有による当該硬化性樹脂組成物の粘度のせん断速度依存性の低下の理由は明確ではないが、以下の様に推定している。
In this curable resin composition, the reason for the decrease in the shear rate dependence of the viscosity of the curable resin composition due to the inclusion of the component (D) is not clear, but it is estimated as follows.
上述したように、ポリマー微粒子(B)間におけるポリマー微粒子(B)のグラフト部に含まれるヒドロキシ基同士の水素結合の形成により、ポリマー微粒子(B)間の相互作用が高まり、その結果、硬化性樹脂組成物の粘度のせん断速度依存性が高くなると考えられる。ここで、ブロックドウレタン(D)は、例えば主鎖骨格中に、ウレタン結合、ウレア結合および/またはエーテル結合を多く含み得る。これらウレタン結合、ウレア結合およびエーテル結合は、ヒドロキシ基と水素結合し得る。そのため、(A)成分、(B)成分および(C)成分を含む硬化性樹脂組成物がさらに(D)成分を含む場合、ポリマー微粒子(B)間の水素結合の形成が、(D)成分中のヒドロキシ基に阻害されると推定される。これにより、ポリマー微粒子(B)間の相互作用が弱まる。その結果、(A)成分、(B)成分および(C)成分を含む硬化性樹脂組成物がさらに(D)成分を含む場合、(D)成分を含まない場合と比較して、硬化性樹脂組成物の粘度のせん断速度依存性が低くなると推定される。
As described above, the formation of hydrogen bonds between the hydroxy groups contained in the graft portion of the polymer fine particles (B) between the polymer fine particles (B) enhances the interaction between the polymer fine particles (B), resulting in curability. It is considered that the viscosity of the resin composition depends on the shear rate. Here, the blocked urethane (D) may contain a large amount of urethane bond, urea bond and / or ether bond, for example, in the main clavicle. These urethane bonds, urea bonds and ether bonds can be hydrogen bonded to hydroxy groups. Therefore, when the curable resin composition containing the component (A), the component (B) and the component (C) further contains the component (D), the formation of hydrogen bonds between the polymer fine particles (B) is caused by the component (D). It is presumed to be inhibited by the hydroxy group inside. This weakens the interaction between the polymer microparticles (B). As a result, when the curable resin composition containing the component (A), the component (B) and the component (C) further contains the component (D), the curable resin is compared with the case where the component (D) is not contained. It is presumed that the shear rate dependence of the viscosity of the composition becomes low.
以上のことから、粘度のせん断速度依存性の高い硬化性樹脂組成物を得るためには、硬化性樹脂組成物は、ブロックドウレタン(D)を実質的に含有しないことが好ましい。本明細書において、硬化性樹脂組成物が「ブロックドウレタン(D)を実質的に含まない」とは、硬化性樹脂組成物がブロックドウレタン(D)を全く含まないか、または、(A)成分100質量部に対してブロックドウレタン(D)を1質量部未満含むことを意図する。
From the above, in order to obtain a curable resin composition having a high viscosity dependence on the shear rate, it is preferable that the curable resin composition does not substantially contain blocked urethane (D). In the present specification, "substantially free of blocked urethane (D)" means that the curable resin composition does not contain blocked urethane (D) at all, or (A). ) It is intended to contain less than 1 part by mass of blocked urethane (D) with respect to 100 parts by mass of the component.
次に、ブロックドウレタン(D)を含む態様について説明する。ブロックドウレタン(D)は、硬化性樹脂組成物の硬化物(接着層)の靱性を向上させる効果を有する。それ故に、靱性および伸び物性に優れる接着層を得るためには、硬化性樹脂組成物は、ブロックドウレタン(D)を含むことが好ましい。
Next, an embodiment including blocked urethane (D) will be described. The blocked urethane (D) has the effect of improving the toughness of the cured product (adhesive layer) of the curable resin composition. Therefore, in order to obtain an adhesive layer having excellent toughness and extensibility, the curable resin composition preferably contains blocked urethane (D).
本硬化性樹脂組成物がブロックドウレタン(D)を含む場合であっても、後述する無機充填材(E)を成分(A)100質量部に対して5質量部~200質量部含有し、かつ、前記式(1)で表される値(X)を25以上とすることにより、(D)成分とヒドロキシ基との相互作用に起因する当該硬化性樹脂組成物の粘度のせん断速度依存性の低下を抑えることができる。
Even when the present curable resin composition contains blocked urethane (D), the inorganic filler (E) described later is contained in an amount of 5 parts by mass to 200 parts by mass with respect to 100 parts by mass of the component (A). Moreover, by setting the value (X) represented by the formula (1) to 25 or more, the shear rate dependence of the viscosity of the curable resin composition due to the interaction between the component (D) and the hydroxy group Can be suppressed.
以下、本硬化性樹脂組成物がブロックドウレタン(D)を含む場合について、ブロックドウレタン(D)の態様などを説明する。
Hereinafter, the mode of the blocked urethane (D) and the like will be described with respect to the case where the present curable resin composition contains the blocked urethane (D).
ポリマー微粒子(B)の質量(W1)とブロックドウレタン(D)の質量(W2)との比(W1/W2)は、特に限定されない。ポリマー微粒子(B)の質量(W1)とブロックドウレタン(D)の質量(W2)との比(W1/W2)は、0.1~10.0が好ましく、0.2~7.0がより好ましく、1.5~7.0がより好ましく、1.8~5.0がさらに好ましく、2.0~4.0がよりさらに好ましく、2.5~3.5が特に好ましい。前記W1/W2は、0.2~5.0であってもよく、0.3~4.0であってもよく、0.4~3.0であってもよく、0.5~2.0であってもよい。前記W1/W2が、前記範囲内である場合、得られる硬化性樹脂組成物の粘度の温度依存性をより小さくできる、という利点を有する。また、W1/W2が、1.5以上である場合、硬化性樹脂組成物を硬化して得られる硬化物の低温での耐衝撃剥離接着性が低下しないという利点を有する。
The ratio (W1 / W2) of the mass (W1) of the polymer fine particles (B) to the mass (W2) of the blocked urethane (D) is not particularly limited. The ratio (W1 / W2) of the mass (W1) of the polymer fine particles (B) to the mass (W2) of the blocked urethane (D) is preferably 0.1 to 10.0, preferably 0.2 to 7.0. More preferably, 1.5 to 7.0 is more preferable, 1.8 to 5.0 is further preferable, 2.0 to 4.0 is further preferable, and 2.5 to 3.5 is particularly preferable. The W1 / W2 may be 0.2 to 5.0, 0.3 to 4.0, 0.4 to 3.0, 0.5 to 2 It may be 0.0. When the W1 / W2 is within the above range, there is an advantage that the temperature dependence of the viscosity of the obtained curable resin composition can be made smaller. Further, when W1 / W2 is 1.5 or more, there is an advantage that the impact resistance peeling adhesiveness of the cured product obtained by curing the curable resin composition at a low temperature does not decrease.
ブロックドウレタン(D)は、エラストマー型であって、ウレタン基および/または尿素基を含有し、かつ、末端にイソシアネート基を有する化合物の当該末端イソシアネート基の全部または一部が活性水素基を有する種々のブロック剤でキャップされた化合物である。特に、当該末端イソシアネート基の全部がブロック剤でキャップされた化合物が好ましい。この様な化合物(すなわちブロックドウレタン(D))は、例えば、次のような方法で得ることができる:(i)末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、主鎖骨格中にウレタン基および/または尿素基を有し末端にイソシアネート基を有する重合体(ウレタンプレポリマー)とする;(ii)前記(i)の後、あるいは前記(i)と同時に、ウレタンプレポリマーの該イソシアネート基の全部または一部に、活性水素基を有するブロック剤を作用させ、該イソシアネート基の全部または一部をブロック剤でキャップすることにより得られる。
Blocked urethane (D) is an elastomer type, and all or part of the terminal isocyanate groups of a compound containing a urethane group and / or a urea group and having an isocyanate group at the terminal has an active hydrogen group. It is a compound capped with various blocking agents. In particular, a compound in which all of the terminal isocyanate groups are capped with a blocking agent is preferable. Such a compound (ie, blocked urethane (D)) can be obtained, for example, by the following method: (i) An excess polyisocyanate compound is added to an organic polymer having an active hydrogen-containing group at the terminal. The reaction is carried out to obtain a polymer (urethane prepolymer) having a urethane group and / or a urea group in the main chain skeleton and an isocyanate group at the terminal; (ii) after the above (i) or the above (i). At the same time, it is obtained by allowing a blocking agent having an active hydrogen group to act on all or a part of the isocyanate groups of the urethane prepolymer, and capping all or a part of the isocyanate groups with the blocking agent.
前記ブロックドウレタン(D)は、例えば、下記一般式(1)で表される:
A-(NR2-C(=O)-X)a ・・・一般式(1);
(一般式(1)中、a個のR2は、それぞれ独立に、炭素原子数1~20の炭化水素基である。aはキャップされたイソシアネート基の1分子当たりの平均数を表し、1.1個以上が好ましく、1.5~8個がより好ましく、1.7~6個が更に好ましく、2~4個が特に好ましい。Xは、前記ブロック剤から活性水素原子を除いた残基である。Aは、イソシアネート末端化プレポリマー(例えば、末端にイソシアネート基を有するウレタンプレポリマー)から末端イソシアネート基を除いた残基である。)。 The blocked urethane (D) is represented by, for example, the following general formula (1):
A- (NR 2- C (= O) -X) a ... General formula (1);
(In the general formula (1), a R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms. A represents the average number of capped isocyanate groups per molecule, and 1 .1 or more is preferable, 1.5 to 8 is more preferable, 1.7 to 6 is further preferable, and 2 to 4 is particularly preferable. X is a residue obtained by removing the active hydrogen atom from the blocking agent. A is a residue obtained by removing the terminal isocyanate group from the isocyanate-terminated prepolymer (for example, a urethane prepolymer having an isocyanate group at the terminal).
A-(NR2-C(=O)-X)a ・・・一般式(1);
(一般式(1)中、a個のR2は、それぞれ独立に、炭素原子数1~20の炭化水素基である。aはキャップされたイソシアネート基の1分子当たりの平均数を表し、1.1個以上が好ましく、1.5~8個がより好ましく、1.7~6個が更に好ましく、2~4個が特に好ましい。Xは、前記ブロック剤から活性水素原子を除いた残基である。Aは、イソシアネート末端化プレポリマー(例えば、末端にイソシアネート基を有するウレタンプレポリマー)から末端イソシアネート基を除いた残基である。)。 The blocked urethane (D) is represented by, for example, the following general formula (1):
A- (NR 2- C (= O) -X) a ... General formula (1);
(In the general formula (1), a R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms. A represents the average number of capped isocyanate groups per molecule, and 1 .1 or more is preferable, 1.5 to 8 is more preferable, 1.7 to 6 is further preferable, and 2 to 4 is particularly preferable. X is a residue obtained by removing the active hydrogen atom from the blocking agent. A is a residue obtained by removing the terminal isocyanate group from the isocyanate-terminated prepolymer (for example, a urethane prepolymer having an isocyanate group at the terminal).
前記ブロック剤でキャップされたイソシアネート基は、加熱によりイソシアネート基が再生し、再生したイソシアネート基が組成物中の活性水素含有化合物等と反応して、得られる硬化物の靭性を改良する。ブロックドウレタン(D)100質量%に対する、加熱により再生するイソシアネート基の質量%を潜在NCO%と定義する。なお、ウレタンプレポリマーとブロック剤との反応はほぼ定量的に進行すると考えられる。そのため、ウレタンプレポリマーのイソシアネート基に対して当量以上の活性水素基を有するブロック剤を反応させた場合、潜在NCO%は、ブロック剤でキャップする前のウレタンプレポリマーをNCO滴定することで計算できる。また、ウレタンプレポリマーのイソシアネート基に対して当量未満の活性水素基を有するブロック剤を反応させた場合、潜在NCO%は、反応させたブロック剤量で計算できる。
The isocyanate group capped with the blocking agent is regenerated by heating, and the regenerated isocyanate group reacts with an active hydrogen-containing compound or the like in the composition to improve the toughness of the obtained cured product. The mass% of isocyanate groups regenerated by heating with respect to 100% by mass of blocked urethane (D) is defined as latent NCO%. It is considered that the reaction between the urethane prepolymer and the blocking agent proceeds almost quantitatively. Therefore, when a blocking agent having an equivalent amount or more of active hydrogen groups is reacted with the isocyanate group of the urethane prepolymer, the latent NCO% can be calculated by NCO titrating the urethane prepolymer before capping with the blocking agent. .. Further, when a blocking agent having an active hydrogen group less than the equivalent amount is reacted with the isocyanate group of the urethane prepolymer, the latent NCO% can be calculated by the amount of the reacted blocking agent.
本発明の一実施形態において、(D)成分の潜在NCO%は、特に限定は無いが、得られる硬化性樹脂組成物の粘度の温度依存性と硬化物の靭性の観点から、0.1%~10.0%が好ましく、0.1%~5.0%がより好ましく、0.1%~4.0%がより好ましく、0.1%~3.5%がより好ましい。
In one embodiment of the present invention, the latent NCO% of the component (D) is not particularly limited, but is 0.1% from the viewpoint of the temperature dependence of the viscosity of the obtained curable resin composition and the toughness of the cured product. ~ 10.0% is preferable, 0.1% to 5.0% is more preferable, 0.1% to 4.0% is more preferable, and 0.1% to 3.5% is more preferable.
本発明の一実施形態において、ブロックドウレタン(D)は、潜在NCO%が0.1%~2.9%であることがさらに好ましい。(D)成分の潜在NCO%が、0.1~2.9%である場合、粘度の温度依存性が小さい硬化性樹脂組成物が得られる。(D)成分の潜在NCO%が、(a)0.1%以上である場合、硬化性樹脂組成物を硬化して得られる硬化物の靱性が悪化する虞がなく、(b)2.9%以下である場合、得られる硬化性樹脂組成物の粘度の温度依存性が小さくなる傾向がある。
In one embodiment of the present invention, the latent NCO% of the blocked urethane (D) is more preferably 0.1% to 2.9%. When the latent NCO% of the component (D) is 0.1 to 2.9%, a curable resin composition having a small temperature dependence of viscosity can be obtained. When the latent NCO% of the component (D) is (a) 0.1% or more, there is no possibility that the toughness of the cured product obtained by curing the curable resin composition is deteriorated, and (b) 2.9. When it is less than%, the temperature dependence of the viscosity of the obtained curable resin composition tends to be small.
本発明の一実施形態において、(D)成分の潜在NCO%は、得られる硬化性樹脂組成物の粘度の温度依存性と硬化物の靭性との観点から、0.3%~2.8%がよりさらに好ましく、0.5%~2.7%がよりさらに好ましく、1.0%~2.5%がよりさらに好ましく、1.5%~2.3%が特に好ましい。
In one embodiment of the present invention, the latent NCO% of the component (D) is 0.3% to 2.8% from the viewpoint of the temperature dependence of the viscosity of the obtained curable resin composition and the toughness of the cured product. Is even more preferable, 0.5% to 2.7% is even more preferable, 1.0% to 2.5% is even more preferable, and 1.5% to 2.3% is particularly preferable.
本発明の一実施形態において、(D)成分の潜在NCO%は、0.5%~5.0%であってもよく、1.0%~4.0%であってもよく、1.5%~3.5%であってもよい。
In one embodiment of the present invention, the latent NCO% of the component (D) may be 0.5% to 5.0%, 1.0% to 4.0%, and 1. It may be 5% to 3.5%.
潜在NCO%は、単位「mmol/g」を用いて表すこともできる。潜在NCOについて、単位「mmol/g」は、ブロックドウレタン(D)1gに対する、加熱により再生するイソシアネート基のモル量(mmol)を意味する。潜在NCOについて、「%」と「mmol/g」とは相互置換可能である。
The latent NCO% can also be expressed using the unit "mmol / g". For latent NCO, the unit "mmol / g" means the molar amount (mmol) of isocyanate groups regenerated by heating with respect to 1 g of blocked urethane (D). For latent NCO, "%" and "mmol / g" are interchangeable.
ブロックドウレタン(D)の数平均分子量は、ゲル浸透クロマトグラフィー(Gel permeation chromatography;GPC)で測定したポリスチレン換算分子量にて、2000~40000が好ましく、3000~30000がより好ましく、4000~20000が特に好ましい。ブロックドウレタン(D)の分子量分布(重量平均分子量と数平均分子量との比)は、1~4が好ましく、1.2~3がより好ましく、1.5~2.5が特に好ましい。
The number average molecular weight of the blocked urethane (D) is a polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC), preferably 2000 to 40,000, more preferably 3000 to 30000, and particularly 4000 to 20000. preferable. The molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) of blocked urethane (D) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
ブロックドウレタン(D)の重量平均分子量は、GPCの方法で測定できる。
The weight average molecular weight of blocked urethane (D) can be measured by the GPC method.
ブロックドウレタン(D)の製造に用いられる、「末端に活性水素含有基を有する有機重合体」、「ポリイソシアネート化合物」および「活性水素基を有するブロック剤」について、説明する。
The "organic polymer having an active hydrogen-containing group at the terminal", the "polyisocyanate compound" and the "blocking agent having an active hydrogen group" used in the production of blocked urethane (D) will be described.
(末端に活性水素含有基を有する有機重合体)
末端に活性水素含有基を有する有機重合体を構成する主鎖骨格としては、ポリエーテル系重合体、ポリアクリル系重合体、ポリエステル系重合体、ポリジエン系重合体、飽和炭化水素系重合体(ポリオレフィン)、ポリチオエーテル系重合体などが挙げられる。 (Organic polymer having an active hydrogen-containing group at the end)
The main chain skeleton constituting the organic polymer having an active hydrogen-containing group at the terminal includes a polyether polymer, a polyacrylic polymer, a polyester polymer, a polydiene polymer, and a saturated hydrocarbon polymer (polyolefin). ), Polythioether-based polymers and the like.
末端に活性水素含有基を有する有機重合体を構成する主鎖骨格としては、ポリエーテル系重合体、ポリアクリル系重合体、ポリエステル系重合体、ポリジエン系重合体、飽和炭化水素系重合体(ポリオレフィン)、ポリチオエーテル系重合体などが挙げられる。 (Organic polymer having an active hydrogen-containing group at the end)
The main chain skeleton constituting the organic polymer having an active hydrogen-containing group at the terminal includes a polyether polymer, a polyacrylic polymer, a polyester polymer, a polydiene polymer, and a saturated hydrocarbon polymer (polyolefin). ), Polythioether-based polymers and the like.
(活性水素含有基)
末端に活性水素含有基を有する有機重合体を構成する活性水素含有基としては、水酸基、アミノ基、イミノ基およびチオール基が挙げられる。これらの中でも、入手性の点から、水酸基、アミノ基およびイミノ基が好ましく、さらに得られるブロックドウレタンの取扱い易さ(粘度)の点から、水酸基がより好ましい。 (Active hydrogen-containing group)
Examples of the active hydrogen-containing group constituting the organic polymer having an active hydrogen-containing group at the terminal include a hydroxyl group, an amino group, an imino group and a thiol group. Among these, a hydroxyl group, an amino group and an imino group are preferable from the viewpoint of availability, and a hydroxyl group is more preferable from the viewpoint of ease of handling (viscosity) of the obtained blocked urethane.
末端に活性水素含有基を有する有機重合体を構成する活性水素含有基としては、水酸基、アミノ基、イミノ基およびチオール基が挙げられる。これらの中でも、入手性の点から、水酸基、アミノ基およびイミノ基が好ましく、さらに得られるブロックドウレタンの取扱い易さ(粘度)の点から、水酸基がより好ましい。 (Active hydrogen-containing group)
Examples of the active hydrogen-containing group constituting the organic polymer having an active hydrogen-containing group at the terminal include a hydroxyl group, an amino group, an imino group and a thiol group. Among these, a hydroxyl group, an amino group and an imino group are preferable from the viewpoint of availability, and a hydroxyl group is more preferable from the viewpoint of ease of handling (viscosity) of the obtained blocked urethane.
末端に活性水素含有基を有する有機重合体としては、末端に水酸基を有するポリエーテル系重合体(ポリエーテルポリオール)、末端にアミノ基および/またはイミノ基を有するポリエーテル系重合体(ポリエーテルアミン)、ポリアクリルポリオール、ポリエステルポリオール、末端に水酸基を有するジエン系重合体(ポリジエンポリオール)、末端に水酸基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物などが挙げられる。これらの中でも、ポリエーテルポリオール、ポリエーテルアミン、および、ポリアクリルポリオールは、(A)成分との相溶性に優れ、有機重合体のガラス転移温度が比較的低く、得られる接着層が低温での耐衝撃性に優れることから好ましい。特に、ポリエーテルポリオールおよびポリエーテルアミンは、得られる有機重合体の粘度が低く作業性が良好である為により好ましく、ポリエーテルポリオールは特に好ましい。
Examples of the organic polymer having an active hydrogen-containing group at the terminal include a polyether polymer having a hydroxyl group at the terminal (polyether polyol) and a polyether polymer having an amino group and / or an imino group at the terminal (polyether amine). ), Polyacrylic polyol, polyester polyol, diene-based polymer having a hydroxyl group at the terminal (polydiene polyol), saturated hydrocarbon-based polymer having a hydroxyl group at the terminal (polyolefin polyol), polythiol compound, polyamine compound and the like. Among these, the polyether polyol, the polyether amine, and the polyacrylic polyol have excellent compatibility with the component (A), the glass transition temperature of the organic polymer is relatively low, and the obtained adhesive layer is at a low temperature. It is preferable because it has excellent impact resistance. In particular, the polyether polyol and the polyether amine are more preferable because the viscosity of the obtained organic polymer is low and the workability is good, and the polyether polyol is particularly preferable.
ブロックドウレタン(D)の前駆体である前記ウレタンプレポリマーを調製するときに使用する、末端に活性水素含有基を有する有機重合体は、1種類を単独で用いても良く2種以上を併用しても良い。
As the organic polymer having an active hydrogen-containing group at the terminal, which is used when preparing the urethane prepolymer which is a precursor of blocked urethane (D), one type may be used alone or two or more types may be used in combination. You may.
末端に活性水素含有基を有する有機重合体の数平均分子量は、GPCで測定したポリスチレン換算分子量にて、800~7000が好ましく、1500~5000がより好ましく、2000~4000が特に好ましい。
The number average molecular weight of the organic polymer having an active hydrogen-containing group at the terminal is preferably 800 to 7000, more preferably 1500 to 5000, and particularly preferably 2000 to 4000, in terms of polystyrene-equivalent molecular weight measured by GPC.
(ポリエーテル系重合体)
前記ポリエーテル系重合体は、有機重合体100質量%中、下記一般式(2)で示される繰り返し単位を40質量%以上有する重合体である:
-R1-O- ・・・一般式(2)
(一般式(2)中、R1は、炭素原子数1から14の直鎖状もしくは分岐状アルキレン基である。)。 (Polyester polymer)
The polyether polymer is a polymer having 40% by mass or more of repeating units represented by the following general formula (2) in 100% by mass of the organic polymer:
-R 1 -O- ・ ・ ・ General formula (2)
(In the general formula (2), R 1 is a linear or branched alkylene group having 1 to 14 carbon atoms.)
前記ポリエーテル系重合体は、有機重合体100質量%中、下記一般式(2)で示される繰り返し単位を40質量%以上有する重合体である:
-R1-O- ・・・一般式(2)
(一般式(2)中、R1は、炭素原子数1から14の直鎖状もしくは分岐状アルキレン基である。)。 (Polyester polymer)
The polyether polymer is a polymer having 40% by mass or more of repeating units represented by the following general formula (2) in 100% by mass of the organic polymer:
-R 1 -O- ・ ・ ・ General formula (2)
(In the general formula (2), R 1 is a linear or branched alkylene group having 1 to 14 carbon atoms.)
一般式(2)におけるR1は、炭素原子数1から14の直鎖状もしくは分岐状アルキレン基が好ましく、炭素原子数2から4の直鎖状もしくは分岐状アルキレン基がより好ましい。一般式(2)で示される繰り返し単位の具体例としては、-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(C2H5)O-、-CH2C(CH3)2O-、-CH2CH2CH2CH2O-等が挙げられる。ポリエーテル系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特に、有機重合体100質量%中、プロピレンオキシドの繰り返し単位を50質量%以上有するポリプロピレングリコールを主成分とする重合体から成るポリエーテル系重合体は、得られる硬化物がT字剥離接着強さに優れるため好ましい。また、テトラヒドロフランを開環重合して得られるポリテトラメチレングリコール(PTMG)は、得られる硬化物が動的割裂抵抗力に優れるため、好ましい。
R 1 in the general formula (2) is preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably a linear or branched alkylene group having 2 to 4 carbon atoms. Specific examples of the repeating unit represented by the general formula (2) include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH (CH 3 ) O-, and -CH 2 CH (C 2 H 5). ) O-, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like. The main chain skeleton of the polyether polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units. In particular, in a polyether polymer composed of a polymer containing polypropylene glycol as a main component, which has 50% by mass or more of repeating units of propylene oxide in 100% by mass of the organic polymer, the obtained cured product has a T-shaped peeling adhesive strength. It is preferable because it is excellent in. Further, polytetramethylene glycol (PTMG) obtained by ring-opening polymerization of tetrahydrofuran is preferable because the obtained cured product has excellent dynamic splitting resistance.
ポリエーテル系重合体は、有機重合体100質量%中、一般式(2)の繰り返し単位を、50質量%以上含むことが好ましく、60質量%以上含むことがより好ましく、70質量%以上含むことがさらに好ましい。
The polyether polymer preferably contains 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more of the repeating unit of the general formula (2) in 100% by mass of the organic polymer. Is even more preferable.
ブロックドウレタン(D)は、ポリアルキレングリコール構造を含むウレタンプレポリマーをブロック剤でキャップした化合物であることが好ましく、ポリプロピレングリコール構造を含むウレタンプレポリマーをブロック剤でキャップした化合物であることが、得られる硬化性樹脂組成物の粘度の感温特性が小さいことから、より好ましい。
The blocked urethane (D) is preferably a compound in which a urethane prepolymer containing a polyalkylene glycol structure is capped with a blocking agent, and a compound in which a urethane prepolymer containing a polypropylene glycol structure is capped with a blocking agent. It is more preferable because the temperature-sensitive characteristics of the viscosity of the obtained curable resin composition are small.
「粘度の感温特性が小さい」ということは、「粘度の温度依存性が小さい」ことを意味する。
"Small temperature sensitive characteristics of viscosity" means "small temperature dependence of viscosity".
(ポリエーテルポリオールおよびポリエーテルアミン)
前記ポリエーテルポリオールは、末端に水酸基を有するポリエーテル系重合体である。前記ポリエーテルアミンは、末端にアミノ基またはイミノ基を有するポリエーテル系重合体である。 (Polyether polyol and polyether amine)
The polyether polyol is a polyether polymer having a hydroxyl group at the terminal. The polyether amine is a polyether polymer having an amino group or an imino group at the terminal.
前記ポリエーテルポリオールは、末端に水酸基を有するポリエーテル系重合体である。前記ポリエーテルアミンは、末端にアミノ基またはイミノ基を有するポリエーテル系重合体である。 (Polyether polyol and polyether amine)
The polyether polyol is a polyether polymer having a hydroxyl group at the terminal. The polyether amine is a polyether polymer having an amino group or an imino group at the terminal.
(ポリアクリルポリオール)
前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内に水酸基を有するポリオールを挙げることができる。ポリアクリルポリオールとしては、特に、2-ヒドロキシエチルメタクリレート等の水酸基含有(メタ)アクリル酸アルキルエステルモノマーを共重合して得られるポリアクリルポリオールが好ましい。 (Polyacrylic polyol)
Examples of the polyacrylic polyol include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule. As the polyacrylic polyol, a polyacrylic polyol obtained by copolymerizing a hydroxyl group-containing (meth) acrylic acid alkyl ester monomer such as 2-hydroxyethyl methacrylate is particularly preferable.
前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内に水酸基を有するポリオールを挙げることができる。ポリアクリルポリオールとしては、特に、2-ヒドロキシエチルメタクリレート等の水酸基含有(メタ)アクリル酸アルキルエステルモノマーを共重合して得られるポリアクリルポリオールが好ましい。 (Polyacrylic polyol)
Examples of the polyacrylic polyol include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule. As the polyacrylic polyol, a polyacrylic polyol obtained by copolymerizing a hydroxyl group-containing (meth) acrylic acid alkyl ester monomer such as 2-hydroxyethyl methacrylate is particularly preferable.
前記ポリエステルポリオールとしては、(i)マレイン酸、フマル酸、アジピン酸、フタル酸等の多塩基酸およびそれらの酸無水物からなる群より選択される1種以上と、(ii)エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール等の多価アルコールからなる群より選択される1種以上とを、エステル化触媒の存在下、150~270℃の温度範囲で重縮合させて得られる重合体が挙げられる。また、(a)ε-カプロラクトン、バレロラクトン等の開環重合物、並びに(b)ポリカーボネートジオールおよびヒマシ油等の活性水素を2個以上有する活性水素化合物等も挙げられる。
The polyester polyol includes at least one selected from the group consisting of (i) polybasic acids such as maleic acid, fumaric acid, adipic acid, and phthalic acid, and acid anhydrides thereof, and (ii) ethylene glycol and propylene. In the presence of an esterification catalyst, one or more selected from the group consisting of polyhydric alcohols such as glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol and the like. , A polymer obtained by polycondensation in a temperature range of 150 to 270 ° C. can be mentioned. Further, (a) ring-opening polymers such as ε-caprolactone and valerolactone, and (b) active hydrogen compounds having two or more active hydrogens such as polycarbonate diol and castor oil can also be mentioned.
(ポリジエンポリオール)
前記ポリジエンポリオールとしては、ポリブタジエンポリオール、ポリイソプレンポリオール、ポリクロロプレンポリオールなどを挙げることができる。特に、ポリブタジエンポリオールが好ましい。 (Polydiene polyol)
Examples of the polydiene polyol include polybutadiene polyol, polyisoprene polyol, and polychloroprene polyol. In particular, polybutadiene polyol is preferable.
前記ポリジエンポリオールとしては、ポリブタジエンポリオール、ポリイソプレンポリオール、ポリクロロプレンポリオールなどを挙げることができる。特に、ポリブタジエンポリオールが好ましい。 (Polydiene polyol)
Examples of the polydiene polyol include polybutadiene polyol, polyisoprene polyol, and polychloroprene polyol. In particular, polybutadiene polyol is preferable.
(ポリオレフィンポリオール)
前記ポリオレフィンポリオールとしては、ポリイソブチレンポリオール、水添ポリブタジエンポリオールなどを挙げることができる。 (Polyolefin polyol)
Examples of the polyolefin polyol include polyisobutylene polyol and hydrogenated polybutadiene polyol.
前記ポリオレフィンポリオールとしては、ポリイソブチレンポリオール、水添ポリブタジエンポリオールなどを挙げることができる。 (Polyolefin polyol)
Examples of the polyolefin polyol include polyisobutylene polyol and hydrogenated polybutadiene polyol.
(ポリイソシアネート化合物)
前記ポリイソシアネート化合物の具体例としては、(a)トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;(b)イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、水素化トルエンジイソシアネート、水素化ジフェニルメタンジイソシアネート等の脂肪族系ポリイソシアネート、などを挙げることができる。これらの中でも、耐熱性の点から、脂肪族系ポリイソシアネートが好ましく、更に入手性の点から、イソフォロンジイソシアネートおよびヘキサメチレンジイソシアネートがより好ましい。 (Polyisocyanate compound)
Specific examples of the polyisocyanate compound include (a) aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; (b) isophorone diisocyanate, hexamethylene diisocyanate, hydrided toluene diisocyanate, and hydrogen. Examples thereof include aliphatic polyisocyanates such as diphenylmethane diisocyanate. Among these, aliphatic polyisocyanates are preferable from the viewpoint of heat resistance, and isophorone diisocyanates and hexamethylene diisocyanates are more preferable from the viewpoint of availability.
前記ポリイソシアネート化合物の具体例としては、(a)トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;(b)イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、水素化トルエンジイソシアネート、水素化ジフェニルメタンジイソシアネート等の脂肪族系ポリイソシアネート、などを挙げることができる。これらの中でも、耐熱性の点から、脂肪族系ポリイソシアネートが好ましく、更に入手性の点から、イソフォロンジイソシアネートおよびヘキサメチレンジイソシアネートがより好ましい。 (Polyisocyanate compound)
Specific examples of the polyisocyanate compound include (a) aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; (b) isophorone diisocyanate, hexamethylene diisocyanate, hydrided toluene diisocyanate, and hydrogen. Examples thereof include aliphatic polyisocyanates such as diphenylmethane diisocyanate. Among these, aliphatic polyisocyanates are preferable from the viewpoint of heat resistance, and isophorone diisocyanates and hexamethylene diisocyanates are more preferable from the viewpoint of availability.
(活性水素基を有するブロック剤)
前記ブロック剤は、例えば、第一級アミン系ブロック剤、第二級アミン系ブロック剤、オキシム系ブロック剤、ラクタム系ブロック剤、活性メチレン系ブロック剤、アルコール系ブロック剤、メルカプタン系ブロック剤、アミド系ブロック剤、イミド系ブロック剤、複素環式芳香族化合物系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤が挙げられる。これらの中でも、オキシム系ブロック剤、ラクタム系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤が好ましく、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤がより好ましく、フェノール系ブロック剤が更に好ましい。 (Blocking agent having an active hydrogen group)
The blocking agent is, for example, a primary amine blocking agent, a secondary amine blocking agent, an oxime blocking agent, a lactam blocking agent, an active methylene blocking agent, an alcohol blocking agent, a mercaptan blocking agent, an amide. Examples thereof include system-based blocking agents, imide-based blocking agents, heterocyclic aromatic compound-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents, and phenol-based blocking agents. Among these, oxime-based blocking agents, lactam-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are preferable, and hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are more preferable. , Phenolic blocking agents are more preferred.
前記ブロック剤は、例えば、第一級アミン系ブロック剤、第二級アミン系ブロック剤、オキシム系ブロック剤、ラクタム系ブロック剤、活性メチレン系ブロック剤、アルコール系ブロック剤、メルカプタン系ブロック剤、アミド系ブロック剤、イミド系ブロック剤、複素環式芳香族化合物系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤が挙げられる。これらの中でも、オキシム系ブロック剤、ラクタム系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤が好ましく、ヒドロキシ官能性(メタ)アクリレート系ブロック剤およびフェノール系ブロック剤がより好ましく、フェノール系ブロック剤が更に好ましい。 (Blocking agent having an active hydrogen group)
The blocking agent is, for example, a primary amine blocking agent, a secondary amine blocking agent, an oxime blocking agent, a lactam blocking agent, an active methylene blocking agent, an alcohol blocking agent, a mercaptan blocking agent, an amide. Examples thereof include system-based blocking agents, imide-based blocking agents, heterocyclic aromatic compound-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents, and phenol-based blocking agents. Among these, oxime-based blocking agents, lactam-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are preferable, and hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are more preferable. , Phenolic blocking agents are more preferred.
(第一級アミン系ブロック剤)
前記第一級アミン系ブロック剤としては、例えば、WO2016-163491号公報の明細書の、[0098]段落に記載の各種の化合物が挙げられる。 (Primary amine-based blocking agent)
Examples of the primary amine-based blocking agent include various compounds described in paragraph [0998] of the specification of WO2016-163491.
前記第一級アミン系ブロック剤としては、例えば、WO2016-163491号公報の明細書の、[0098]段落に記載の各種の化合物が挙げられる。 (Primary amine-based blocking agent)
Examples of the primary amine-based blocking agent include various compounds described in paragraph [0998] of the specification of WO2016-163491.
(ヒドロキシ官能性(メタ)アクリレート系ブロック剤)
前記ヒドロキシ官能性(メタ)アクリレート系ブロック剤は、1個以上の水酸基を有する(メタ)アクリレートである。ヒドロキシ官能性(メタ)アクリレート系ブロック剤の具体例としては、例えば、WO2016-163491号公報の明細書の、[0099]段落に記載の各種の化合物が挙げられる。 (Hydroxyfunctional (meth) acrylate-based blocking agent)
The hydroxyfunctional (meth) acrylate-based blocking agent is a (meth) acrylate having one or more hydroxyl groups. Specific examples of the hydroxyfunctional (meth) acrylate-based blocking agent include various compounds described in paragraph [0099] of the specification of WO2016-163491.
前記ヒドロキシ官能性(メタ)アクリレート系ブロック剤は、1個以上の水酸基を有する(メタ)アクリレートである。ヒドロキシ官能性(メタ)アクリレート系ブロック剤の具体例としては、例えば、WO2016-163491号公報の明細書の、[0099]段落に記載の各種の化合物が挙げられる。 (Hydroxyfunctional (meth) acrylate-based blocking agent)
The hydroxyfunctional (meth) acrylate-based blocking agent is a (meth) acrylate having one or more hydroxyl groups. Specific examples of the hydroxyfunctional (meth) acrylate-based blocking agent include various compounds described in paragraph [0099] of the specification of WO2016-163491.
(フェノール系ブロック剤)
前記フェノール系ブロック剤は、少なくとも1個のフェノール性ヒドロキシル基を含有する。「フェノール性ヒドロキシル基」とは、芳香環の炭素原子に直接結合したヒドロキシル基、を意味する。フェノール性化合物は2個以上のフェノール性ヒドロキシル基を有していてもよい。フェノール性化合物は、好ましくはフェノール性ヒドロキシル基を一つだけ含有する。フェノール性化合物は、他の置換基を含有していてもよい。他の置換基としては、(a)直鎖状、分岐鎖状またはシクロアルキル等のアルキル基;(b)芳香族基(例えば、フェニル基、アルキル置換フェニル基、アルケニル置換フェニル基等);(c)アリール置換アルキル基;(d)フェノール置換アルキル基、(e)アルケニル基、(f)アリル基が挙げられる。他の置換基としては、好ましくはキャッピング反応の条件下でイソシアネート基と反応しない置換基が好ましく、アルケニル基およびアリル基がより好ましい。フェノール系ブロック剤の具体例としては、例えば、WO2016-163491号公報の明細書の、[0100]段落に記載の各種の化合物が挙げられる。 (Phenol blocking agent)
The phenolic blocking agent contains at least one phenolic hydroxyl group. The "phenolic hydroxyl group" means a hydroxyl group directly bonded to a carbon atom of an aromatic ring. The phenolic compound may have two or more phenolic hydroxyl groups. The phenolic compound preferably contains only one phenolic hydroxyl group. The phenolic compound may contain other substituents. Other substituents include (a) alkyl groups such as linear, branched or cycloalkyl; (b) aromatic groups (eg, phenyl groups, alkyl-substituted phenyl groups, alkenyl-substituted phenyl groups, etc.); c) Aryl-substituted alkyl groups; (d) phenol-substituted alkyl groups, (e) alkenyl groups, and (f) allyl groups. As the other substituent, a substituent that does not react with the isocyanate group under the conditions of the capping reaction is preferable, and an alkenyl group and an allyl group are more preferable. Specific examples of the phenolic blocking agent include various compounds described in paragraph [0100] of the specification of WO2016-163491.
前記フェノール系ブロック剤は、少なくとも1個のフェノール性ヒドロキシル基を含有する。「フェノール性ヒドロキシル基」とは、芳香環の炭素原子に直接結合したヒドロキシル基、を意味する。フェノール性化合物は2個以上のフェノール性ヒドロキシル基を有していてもよい。フェノール性化合物は、好ましくはフェノール性ヒドロキシル基を一つだけ含有する。フェノール性化合物は、他の置換基を含有していてもよい。他の置換基としては、(a)直鎖状、分岐鎖状またはシクロアルキル等のアルキル基;(b)芳香族基(例えば、フェニル基、アルキル置換フェニル基、アルケニル置換フェニル基等);(c)アリール置換アルキル基;(d)フェノール置換アルキル基、(e)アルケニル基、(f)アリル基が挙げられる。他の置換基としては、好ましくはキャッピング反応の条件下でイソシアネート基と反応しない置換基が好ましく、アルケニル基およびアリル基がより好ましい。フェノール系ブロック剤の具体例としては、例えば、WO2016-163491号公報の明細書の、[0100]段落に記載の各種の化合物が挙げられる。 (Phenol blocking agent)
The phenolic blocking agent contains at least one phenolic hydroxyl group. The "phenolic hydroxyl group" means a hydroxyl group directly bonded to a carbon atom of an aromatic ring. The phenolic compound may have two or more phenolic hydroxyl groups. The phenolic compound preferably contains only one phenolic hydroxyl group. The phenolic compound may contain other substituents. Other substituents include (a) alkyl groups such as linear, branched or cycloalkyl; (b) aromatic groups (eg, phenyl groups, alkyl-substituted phenyl groups, alkenyl-substituted phenyl groups, etc.); c) Aryl-substituted alkyl groups; (d) phenol-substituted alkyl groups, (e) alkenyl groups, and (f) allyl groups. As the other substituent, a substituent that does not react with the isocyanate group under the conditions of the capping reaction is preferable, and an alkenyl group and an allyl group are more preferable. Specific examples of the phenolic blocking agent include various compounds described in paragraph [0100] of the specification of WO2016-163491.
前記ブロック剤は、当該ブロック剤が結合する末端がもはや反応性基を有しないような態様で、ウレタンプレポリマーのポリマー鎖の末端に結合していることが好ましい。前記ブロック剤がウレタンプレポリマーのポリマー鎖の末端に結合して得られたポリマー末端は、反応性基を有しないことが好ましい、ともいえる。
It is preferable that the blocking agent is bonded to the end of the polymer chain of the urethane prepolymer in such a manner that the end to which the blocking agent is bonded no longer has a reactive group. It can also be said that the polymer terminal obtained by binding the blocking agent to the end of the polymer chain of the urethane prepolymer preferably has no reactive group.
前記ブロック剤は、1種類を単独で用いても良く2種以上を併用しても良い。
The blocking agent may be used alone or in combination of two or more.
ブロックドウレタン(D)は、架橋剤の残基、鎖延長剤の残基、または、その両方を含有していてもよい。
The blocked urethane (D) may contain a residue of a cross-linking agent, a residue of a chain extender, or both.
(架橋剤)
前記架橋剤の分子量は750以下が好ましく、より好ましくは50~500である。前記架橋剤は、1分子当たり少なくとも3個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。架橋剤はブロックドウレタン(D)に分岐を付与し、ブロックドウレタン(D)の官能価(即ち、キャップされたイソシアネート基の1分子当たりの数)を増加させるのに有用である。 (Crosslinking agent)
The molecular weight of the cross-linking agent is preferably 750 or less, more preferably 50 to 500. The cross-linking agent is a polyol or polyamine compound having at least 3 hydroxyl groups, amino groups and / or imino groups per molecule. The cross-linking agent is useful for imparting branching to the blocked urethane (D) and increasing the functional value of the blocked urethane (D) (ie, the number of capped isocyanate groups per molecule).
前記架橋剤の分子量は750以下が好ましく、より好ましくは50~500である。前記架橋剤は、1分子当たり少なくとも3個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。架橋剤はブロックドウレタン(D)に分岐を付与し、ブロックドウレタン(D)の官能価(即ち、キャップされたイソシアネート基の1分子当たりの数)を増加させるのに有用である。 (Crosslinking agent)
The molecular weight of the cross-linking agent is preferably 750 or less, more preferably 50 to 500. The cross-linking agent is a polyol or polyamine compound having at least 3 hydroxyl groups, amino groups and / or imino groups per molecule. The cross-linking agent is useful for imparting branching to the blocked urethane (D) and increasing the functional value of the blocked urethane (D) (ie, the number of capped isocyanate groups per molecule).
(鎖延長剤)
前記鎖延長剤の分子量は750以下が好ましく、より好ましくは50~500である。前記鎖延長剤は、1分子当たり2個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。鎖延長剤は、官能価を増加させずにブロックドウレタン(D)の分子量を上げるのに有用である。 (Chain extender)
The molecular weight of the chain extender is preferably 750 or less, more preferably 50 to 500. The chain extender is a polyol or polyamine compound having two hydroxyl groups, amino groups and / or imino groups per molecule. Chain extenders are useful for increasing the molecular weight of blocked urethane (D) without increasing the functional value.
前記鎖延長剤の分子量は750以下が好ましく、より好ましくは50~500である。前記鎖延長剤は、1分子当たり2個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。鎖延長剤は、官能価を増加させずにブロックドウレタン(D)の分子量を上げるのに有用である。 (Chain extender)
The molecular weight of the chain extender is preferably 750 or less, more preferably 50 to 500. The chain extender is a polyol or polyamine compound having two hydroxyl groups, amino groups and / or imino groups per molecule. Chain extenders are useful for increasing the molecular weight of blocked urethane (D) without increasing the functional value.
前記架橋剤および鎖延長剤の具体例としては、例えば、WO2016-163491号公報の明細書の、[0106]段落に記載の各種の化合物が挙げられる。
Specific examples of the cross-linking agent and chain extender include various compounds described in paragraph [0106] of the specification of WO2016-163491.
(ブロックドウレタン(D)の含有量)
本硬化性樹脂組成物がブロックドウレタン(D)を含む場合、本硬化性樹脂組成物は、(A)成分100質量部に対して、更に、(D)成分1質量部~100質量部含むことが好ましく、2~50質量部含むことが好ましく、3~40質量部含むことがより好ましく、5~30質量部含むことが特に好ましい。(D)成分の含有量が(A)成分100質量部に対して、(a)1質量部以上である場合、得られる接着層の靭性が良好となり、(b)100質量部以下である場合、得られる接着層の耐熱性および弾性率(剛性)が良好となる。 (Content of blocked urethane (D))
When the present curable resin composition contains blocked urethane (D), the present curable resin composition further contains 1 part by mass to 100 parts by mass of the component (D) with respect to 100 parts by mass of the component (A). It is preferably contained in an amount of 2 to 50 parts by mass, more preferably 3 to 40 parts by mass, and particularly preferably 5 to 30 parts by mass. When the content of the component (D) is 1 part by mass or more of (a) with respect to 100 parts by mass of the component (A), the toughness of the obtained adhesive layer is good, and (b) 100 parts by mass or less. , The heat resistance and elastic modulus (rigidity) of the obtained adhesive layer are improved.
本硬化性樹脂組成物がブロックドウレタン(D)を含む場合、本硬化性樹脂組成物は、(A)成分100質量部に対して、更に、(D)成分1質量部~100質量部含むことが好ましく、2~50質量部含むことが好ましく、3~40質量部含むことがより好ましく、5~30質量部含むことが特に好ましい。(D)成分の含有量が(A)成分100質量部に対して、(a)1質量部以上である場合、得られる接着層の靭性が良好となり、(b)100質量部以下である場合、得られる接着層の耐熱性および弾性率(剛性)が良好となる。 (Content of blocked urethane (D))
When the present curable resin composition contains blocked urethane (D), the present curable resin composition further contains 1 part by mass to 100 parts by mass of the component (D) with respect to 100 parts by mass of the component (A). It is preferably contained in an amount of 2 to 50 parts by mass, more preferably 3 to 40 parts by mass, and particularly preferably 5 to 30 parts by mass. When the content of the component (D) is 1 part by mass or more of (a) with respect to 100 parts by mass of the component (A), the toughness of the obtained adhesive layer is good, and (b) 100 parts by mass or less. , The heat resistance and elastic modulus (rigidity) of the obtained adhesive layer are improved.
(D)成分は1種類を単独で用いても良く2種以上を組み合わせて用いても良い。
As the component (D), one type may be used alone, or two or more types may be used in combination.
(無機充填材(E))
本硬化性樹脂組成物は、無機充填材(E)を含んでいてもよい。本明細書において、上述したヒュームドシリカ(C)は、無機充填材(E)には含めないものとする。「無機充填材(E)」を、以下、「(E)成分」と称する場合もある。 (Inorganic filler (E))
The present curable resin composition may contain an inorganic filler (E). In the present specification, the above-mentioned fumed silica (C) is not included in the inorganic filler (E). The "inorganic filler (E)" may be hereinafter referred to as "component (E)".
本硬化性樹脂組成物は、無機充填材(E)を含んでいてもよい。本明細書において、上述したヒュームドシリカ(C)は、無機充填材(E)には含めないものとする。「無機充填材(E)」を、以下、「(E)成分」と称する場合もある。 (Inorganic filler (E))
The present curable resin composition may contain an inorganic filler (E). In the present specification, the above-mentioned fumed silica (C) is not included in the inorganic filler (E). The "inorganic filler (E)" may be hereinafter referred to as "component (E)".
本硬化性樹脂組成物がブロックドウレタン(D)を含む場合には、当該硬化性樹脂組成物は、無機充填材(E)をさらに含むことが好ましい。本硬化性樹脂組成物がブロックドウレタン(D)に加えて無機充填材(E)を含むことにより、(D)成分の含有に起因する当該硬化性樹脂組成物の粘度のせん断速度依存性の低下を補うことができる。
When the present curable resin composition contains blocked urethane (D), it is preferable that the curable resin composition further contains an inorganic filler (E). Since the present curable resin composition contains the inorganic filler (E) in addition to the blocked urethane (D), the viscosity of the curable resin composition depends on the shear rate due to the inclusion of the component (D). The decline can be compensated for.
無機充填材(E)としては、ケイ酸、ケイ酸塩、補強性充填材、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華などが挙げられる。
Examples of the inorganic filler (E) include silicic acid, silicate, reinforcing filler, calcium carbonate, magnesium carbonate, titanium oxide, ferric oxide, fine aluminum powder, zinc oxide, and active zinc oxide.
ケイ酸およびケイ酸塩としては、湿式シリカ、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、ウォラストナイト、タルク、などが挙げられる。
Examples of silicic acid and silicate include wet silica, aluminum silicate, magnesium silicate, calcium silicate, wollastonite, talc, and the like.
炭酸カルシウムとしては、重質炭酸カルシウムおよび膠質炭酸カルシウムなどが挙げられる。
Examples of calcium carbonate include heavy calcium carbonate and colloidal calcium carbonate.
経済性の観点から、無機充填材(E)は、炭酸カルシウムを含有することが好ましい。
From the viewpoint of economy, the inorganic filler (E) preferably contains calcium carbonate.
無機充填材(E)は、表面処理剤により表面処理されていることが好ましい。表面処理により無機充填材(E)の硬化性樹脂組成物への分散性が向上し、その結果、得られる接着層の各種物性が向上する。
The inorganic filler (E) is preferably surface-treated with a surface treatment agent. The surface treatment improves the dispersibility of the inorganic filler (E) in the curable resin composition, and as a result, various physical properties of the obtained adhesive layer are improved.
無機充填剤(E)の表面処理剤としては、例えば、脂肪酸およびシランカップリング剤などが挙げられる。
Examples of the surface treatment agent for the inorganic filler (E) include fatty acids and silane coupling agents.
無機充填材(E)の使用量は、(A)成分100質量部に対して、1~200質量部が好ましく、5~200質量部がより好ましく、1~100質量部がより好ましく、2~70質量部がより好ましく、5~40質量部が更に好ましく、7~20質量部が特に好ましい。
The amount of the inorganic filler (E) used is preferably 1 to 200 parts by mass, more preferably 5 to 200 parts by mass, more preferably 1 to 100 parts by mass, and 2 to 2 to 100 parts by mass with respect to 100 parts by mass of the component (A). 70 parts by mass is more preferable, 5 to 40 parts by mass is further preferable, and 7 to 20 parts by mass is particularly preferable.
無機充填材(E)は1種類を単独で用いても良く2種以上を組み合わせて用いても良い。
One type of the inorganic filler (E) may be used alone, or two or more types may be used in combination.
(酸化カルシウム)
硬化性樹脂組成物が無機充填材(E)として酸化カルシウムを含む場合、当該酸化カルシウムは、硬化性樹脂組成物中の水分との反応により硬化性樹脂組成物から水分を除去し、水分の存在により引き起こされる種々の物性上の問題を解決できる。酸化カルシウムは、例えば、水分除去による気泡防止剤として機能し、得られる接着層の接着強度の低下を抑制できる。 (Calcium oxide)
When the curable resin composition contains calcium oxide as the inorganic filler (E), the calcium oxide removes water from the curable resin composition by reacting with water in the curable resin composition, and the presence of water is present. It can solve various physical problems caused by. Calcium oxide functions as, for example, an anti-bubble agent due to water removal, and can suppress a decrease in the adhesive strength of the obtained adhesive layer.
硬化性樹脂組成物が無機充填材(E)として酸化カルシウムを含む場合、当該酸化カルシウムは、硬化性樹脂組成物中の水分との反応により硬化性樹脂組成物から水分を除去し、水分の存在により引き起こされる種々の物性上の問題を解決できる。酸化カルシウムは、例えば、水分除去による気泡防止剤として機能し、得られる接着層の接着強度の低下を抑制できる。 (Calcium oxide)
When the curable resin composition contains calcium oxide as the inorganic filler (E), the calcium oxide removes water from the curable resin composition by reacting with water in the curable resin composition, and the presence of water is present. It can solve various physical problems caused by. Calcium oxide functions as, for example, an anti-bubble agent due to water removal, and can suppress a decrease in the adhesive strength of the obtained adhesive layer.
酸化カルシウムは、表面処理剤により表面処理されることが可能である。表面処理により酸化カルシウムの硬化性樹脂組成物への分散性が向上する。その結果、表面処理された酸化カルシウムを使用する場合、表面処理を施していない酸化カルシウムを使用する場合と比較して、得られる接着層の接着強度などの物性が向上する。表面処理された酸化カルシウムは、特に、得られる接着層のT字剥離接着性、耐衝撃剥離接着性を顕著に改善し得る。酸化カルシウムの表面処理にもちられ得る表面処理剤は、特に制限はないが、脂肪酸が好ましい。
Calcium oxide can be surface-treated with a surface treatment agent. The surface treatment improves the dispersibility of calcium oxide in the curable resin composition. As a result, when the surface-treated calcium oxide is used, the physical properties such as the adhesive strength of the obtained adhesive layer are improved as compared with the case where the surface-treated calcium oxide is used. The surface-treated calcium oxide can significantly improve the T-shaped peeling adhesiveness and the impact-resistant peeling adhesiveness of the obtained adhesive layer. The surface treatment agent that can be used for the surface treatment of calcium oxide is not particularly limited, but fatty acids are preferable.
硬化性樹脂組成物が無機充填材(E)として酸化カルシウムを含む場合、硬化性樹脂組成物における酸化カルシウムの含有量は、(A)成分100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましく、0.5~3質量部が更に好ましく、1~2質量部が特に好ましい。酸化カルシウムの含有量が、(A)成分100質量部に対して、(a)0.1質量部以上である場合、水分除去効果が十分となり、(b)10質量部以下である場合、得られる接着層の強度が低くなる虞がない。
When the curable resin composition contains calcium oxide as the inorganic filler (E), the content of calcium oxide in the curable resin composition is 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). Is preferable, 0.2 to 5 parts by mass is more preferable, 0.5 to 3 parts by mass is further preferable, and 1 to 2 parts by mass is particularly preferable. When the content of calcium oxide is (a) 0.1 parts by mass or more with respect to 100 parts by mass of the component (A), the water removing effect is sufficient, and (b) when it is 10 parts by mass or less, it is obtained. There is no risk of the strength of the adhesive layer being reduced.
酸化カルシウムは1種類を単独で用いても良く2種以上を組み合わせて用いても良い。
One type of calcium oxide may be used alone, or two or more types may be used in combination.
本硬化性樹脂組成物は、酸化カルシウム以外の脱水剤を使用することができる。酸化カルシウム以外の脱水剤としては、例えば、WO2014-196607号公報の明細書の、[0155]段落に記載の各種の化合物が挙げられる。
The curable resin composition can use a dehydrating agent other than calcium oxide. Examples of the dehydrating agent other than calcium oxide include various compounds described in paragraph [0155] of the specification of WO2014-196607.
本硬化性樹脂組成物は、以下の式(1)で表される値(X)が25以上であることが好ましい:
値(X)={0.5(V1)+10(V2)+(V3)}×100・・・式(1)
(前記式(1)において、前記V1は前記硬化性樹脂組成物中の前記ポリマー微粒子(B)の体積%を示し、前記V2は前記硬化性樹脂組成物中の前記ヒュームドシリカ(C)の体積%を示し、前記V3は前記硬化性樹脂組成物中の前記無機充填材(E)の体積%を示す)。 The curable resin composition preferably has a value (X) represented by the following formula (1) of 25 or more:
Value (X) = {0.5 (V1) + 10 (V2) + (V3)} × 100 ... Equation (1)
(In the formula (1), the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition, and the V2 is the fumed silica (C) in the curable resin composition. The volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition).
値(X)={0.5(V1)+10(V2)+(V3)}×100・・・式(1)
(前記式(1)において、前記V1は前記硬化性樹脂組成物中の前記ポリマー微粒子(B)の体積%を示し、前記V2は前記硬化性樹脂組成物中の前記ヒュームドシリカ(C)の体積%を示し、前記V3は前記硬化性樹脂組成物中の前記無機充填材(E)の体積%を示す)。 The curable resin composition preferably has a value (X) represented by the following formula (1) of 25 or more:
Value (X) = {0.5 (V1) + 10 (V2) + (V3)} × 100 ... Equation (1)
(In the formula (1), the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition, and the V2 is the fumed silica (C) in the curable resin composition. The volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition).
前記式(1)を満たす硬化性樹脂組成物は、粘度のせん断速度依存性がより高いという利点を有する。前記式(1)について、具体的に説明する。本発明者は、硬化性樹脂組成物の粘度のせん断速度依存性の向上に対する、ヒュームドシリカ(C)の寄与度は、ポリマー微粒子(B)および無機充填材(E)と比較して著しく大きいことを、独自に見出した。ヒュームドシリカ(C)の係数「+10」は、そのようなヒュームドシリカ(C)の寄与度の大きさを表している。
The curable resin composition satisfying the above formula (1) has an advantage that the viscosity depends on the shear rate. The equation (1) will be specifically described. According to the present inventor, the contribution of fumed silica (C) to the improvement of the shear rate dependence of the viscosity of the curable resin composition is significantly larger than that of the polymer fine particles (B) and the inorganic filler (E). I found that on my own. The coefficient "+10" of the fumed silica (C) represents the magnitude of the contribution of such fumed silica (C).
なお、各成分の体積%は、以下のようにして求めることができる:(1)硬化性樹脂組成物における、各成分(化合物)の含有量を、それぞれの化合物の比重で除し、硬化性樹脂組成物における各成分の体積を求める;(2)次に、硬化性樹脂組成物に含まれる全ての成分の体積の合計値で、(1)で得られた各成分の体積を除し、得られた値に100を乗ずる。また、値(X)が小数点以下の数値を含む場合、小数点以下第一の値を四捨五入して得られた整数値が25以上であることが好ましい。
The volume% of each component can be determined as follows: (1) The content of each component (compound) in the curable resin composition is divided by the specific gravity of each compound to obtain curability. The volume of each component in the resin composition is determined; (2) Next, the volume of each component obtained in (1) is divided by the total value of the volumes of all the components contained in the curable resin composition. Multiply the obtained value by 100. When the value (X) includes a numerical value after the decimal point, it is preferable that the integer value obtained by rounding off the first value after the decimal point is 25 or more.
本硬化性樹脂組成物は、前記式(1)で表される値(X)が26以上であることがより好ましく、27以上であることがより好ましく、30以上であることがより好ましく、35以上であることがさらに好ましく、40以上であることが特に好ましい。
In the present curable resin composition, the value (X) represented by the formula (1) is more preferably 26 or more, more preferably 27 or more, more preferably 30 or more, and 35. The above is more preferable, and 40 or more is particularly preferable.
本硬化性樹脂組成物は、エポキシ樹脂(A)100質量部に対して、更に、ブロックドウレタン(D)1質量部~100質量部、および無機充填材(E)5質量部~200質量部を含有し、前記式(1)で表される値(X)が25以上であることが好ましい。当該構成によると、得られる硬化性樹脂組成物は、粘度のせん断速度依存性がより高く、かつ、靱性および伸び物性に優れる接着層を提供できる、という利点を有する。
The curable resin composition further comprises 1 part by mass to 100 parts by mass of blocked urethane (D) and 5 parts by mass to 200 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A). It is preferable that the value (X) represented by the above formula (1) is 25 or more. According to this structure, the obtained curable resin composition has an advantage that the viscosity has a higher shear rate dependence and can provide an adhesive layer having excellent toughness and extensibility.
(エポキシ樹脂硬化剤(F))
本発明の一実施形態では、必要に応じてエポキシ樹脂硬化剤(F)を使用することができる。「エポキシ樹脂硬化剤(F)」を、以下、「(F)成分」と称する場合もある。 (Epoxy resin curing agent (F))
In one embodiment of the present invention, the epoxy resin curing agent (F) can be used if necessary. The "epoxy resin curing agent (F)" may be hereinafter referred to as "component (F)".
本発明の一実施形態では、必要に応じてエポキシ樹脂硬化剤(F)を使用することができる。「エポキシ樹脂硬化剤(F)」を、以下、「(F)成分」と称する場合もある。 (Epoxy resin curing agent (F))
In one embodiment of the present invention, the epoxy resin curing agent (F) can be used if necessary. The "epoxy resin curing agent (F)" may be hereinafter referred to as "component (F)".
本硬化性樹脂組成物を仮に一成分型組成物(例えば、一液型硬化性樹脂組成物など)として使用する場合について説明する。この場合、80℃以上、好ましくは140℃以上の温度まで硬化性樹脂組成物を加熱したとき硬化性樹脂組成物が急速に硬化するように、(F)成分の種類および量を選択するのが好ましい。逆に、硬化性樹脂組成物が室温(約22℃)および少なくとも50℃までの温度では硬化性樹脂組成物が硬化するとしても非常にゆっくりとなるよう、(F)成分および後述の(G)成分の種類および量を選択するのが好ましい。
A case where the present curable resin composition is temporarily used as a one-component composition (for example, a one-component curable resin composition) will be described. In this case, the type and amount of the component (F) should be selected so that the curable resin composition cures rapidly when the curable resin composition is heated to a temperature of 80 ° C. or higher, preferably 140 ° C. or higher. preferable. On the contrary, the component (F) and (G) described later so that the curable resin composition cures very slowly even if it cures at room temperature (about 22 ° C.) and at a temperature of at least 50 ° C. It is preferable to select the type and amount of ingredients.
(F)成分としては、加熱により活性を示す成分(潜在性エポキシ硬化剤と称する場合もある)が使用できる。このような潜在性エポキシ硬化剤としては、特定のアミン系硬化剤(イミン系硬化剤を含む)などの窒素(N)含有硬化剤が使用できる。(F)成分としては、例えば、三塩化ホウ素/アミン錯体、三フッ化ホウ素/アミン錯体、ジシアンジアミド、メラミン、ジアリルメラミン、グアナミン(例えば、アセトグアナミンおよびベンゾグアナミン)、アミノトリアゾール(例えば、3-アミノ-1,2,4-トリアゾール)、ヒドラジド(例えば、アジピン酸ジヒドラジド、ステアリン酸ジヒドラジド、イソフタル酸ジヒドラジド、セミカルバジド)、シアノアセトアミド、並びに芳香族ポリアミン(例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなど)が挙げられる。(F)成分としては、接着性に優れることから、ジシアンジアミド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、4,4’-ジアミノジフェニルスルホンを用いることがより好ましく、ジシアンジアミドを用いることが特に好ましい。
As the component (F), a component that exhibits activity by heating (sometimes referred to as a latent epoxy curing agent) can be used. As such a latent epoxy curing agent, a nitrogen (N) -containing curing agent such as a specific amine-based curing agent (including an imine-based curing agent) can be used. Examples of the component (F) include boron trifluoride / amine complex, boron trifluoride / amine complex, dicyandiamide, melamine, diallyl melamine, guanamine (eg, acetguanamine and benzoguanamine), aminotriazole (eg, 3-amino-). 1,2,4-Triazole), hydrazide (eg, adipic acid dihydrazide, stearate dihydrazide, isophthalic acid dihydrazide, semicarbazide), cyanoacetamide, and aromatic polyamines (eg, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, etc.) Can be mentioned. As the component (F), dicyandiamide, isophthalic acid dihydrazide, adipic acid dihydrazide, and 4,4'-diaminodiphenylsulfone are more preferably used, and dicyandiamide is particularly preferable, because they are excellent in adhesiveness.
前記(F)成分の中でも、潜在性エポキシ硬化剤は、本硬化性樹脂組成物の一液型硬化性樹脂組成物としての使用を可能にするため好ましい。
Among the components (F) above, the latent epoxy curing agent is preferable because it enables the use of the present curable resin composition as a one-component curable resin composition.
次に、本硬化性樹脂組成物を二成分型または多成分型組成物として使用する場合について説明する。この場合、上記以外のアミン系硬化剤(イミン系硬化剤を含む)および/またはメルカプタン系硬化剤(室温硬化性硬化剤と称する場合もある)を、室温程度の比較的低温で活性を示す(F)成分として選択することができる。
Next, a case where the present curable resin composition is used as a two-component type or multi-component type composition will be described. In this case, amine-based curing agents (including imine-based curing agents) and / or mercaptan-based curing agents (sometimes referred to as room temperature curable curing agents) other than the above are active at a relatively low temperature of about room temperature (they are active at a relatively low temperature of about room temperature). F) It can be selected as a component.
このような室温程度の比較的低温で活性を示す(F)成分としては、例えば、ポリアミドアミン類、アミン末端ポリエーテル、アミン末端ゴム、変性脂肪族ポリアミン、変性脂環式ポリアミンおよびポリアミドなどのアミン系硬化剤、並びに、WO2016-163491号公報の明細書の[0113]段落に記載の各種の化合物が挙げられる。
Examples of the component (F) that exhibits activity at a relatively low temperature of about room temperature include amines such as polyamide amines, amine-terminated polyethers, amine-terminated rubbers, modified aliphatic polyamines, modified alicyclic polyamines, and polyamides. Examples include system curing agents and various compounds described in paragraph [0113] of the specification of WO2016-163491.
ポリエーテル主鎖を含み、1分子あたり平均して、1~4個(好ましくは1.5~3個)のアミノ基および/またはイミノ基を有するアミン末端ポリエーテルもまた、室温程度の比較的低温で活性を示す(F)成分として使用できる。市販されているアミン末端ポリエーテルとしては、Huntsman社製のJeffamine D-230、Jeffamine D-400、Jeffamine D-2000、Jeffamine D-4000、Jeffamine T-5000、などが挙げられる。
Amine-terminated polyethers containing a polyether main chain and having an average of 1 to 4 (preferably 1.5 to 3) amino groups and / or imino groups per molecule are also relatively at room temperature. It can be used as the component (F) that exhibits activity at low temperatures. Examples of commercially available amine-terminated polyethers include Huntsman's Jeffamine D-230, Jeffamine D-400, Jeffamine D-2000, Jeffamine D-4000, and Jeffamine T-5000.
更に、共役ジエン系ポリマー主鎖を含み、1分子あたり平均して、1~4個(より好ましくは1.5~3個)のアミノ基および/またはイミノ基を有するアミン末端ゴムもまた、室温程度の比較的低温で活性を示す(F)成分として使用できる。ここで、ゴムの主鎖、すなわち共役ジエン系ポリマー主鎖はポリブタジエンのホモポリマーまたはコポリマーが好ましく、ポリブタジエン/アクリロニトリルコポリマーがより好ましく、アクリロニトリルモノマー含量が、5~40質量%(より好ましくは10~35質量%、更に好ましくは15~30質量%)であるポリブタジエン/アクリロニトリルコポリマーが特に好ましい。市販されているアミン末端ゴムとしては、CVC社製のHypro 1300X16 ATBNなどが挙げられる。
In addition, amine-terminated rubbers containing a conjugated diene polymer backbone and having an average of 1 to 4 (more preferably 1.5 to 3) amino and / or imino groups per molecule are also at room temperature. It can be used as the component (F) that exhibits activity at a relatively low temperature. Here, the main chain of rubber, that is, the conjugated diene polymer main chain is preferably a homopolymer or copolymer of polybutadiene, more preferably a polybutadiene / acrylonitrile copolymer, and the content of acrylonitrile monomer is 5 to 40% by mass (more preferably 10 to 35). Polybutadiene / acrylonitrile copolymers of% by weight, more preferably 15 to 30% by weight) are particularly preferred. Examples of commercially available amine-terminated rubber include Hyper 1300X16 ATBN manufactured by CVC.
室温程度の比較的低温で活性を示す上記アミン系硬化剤の中では、ポリアミドアミン類、アミン末端ポリエーテル、および、アミン末端ゴムがより好ましく、ポリアミドアミン類とアミン末端ポリエーテルとアミン末端ゴムとを併用することが特に好ましい。
Among the amine-based curing agents that show activity at a relatively low temperature of about room temperature, polyamide amines, amine-terminated polyethers, and amine-terminated rubbers are more preferable, and polyamide amines, amine-terminated polyethers, and amine-terminated rubbers. Is particularly preferable in combination with.
また、(F)成分のうち、潜在性エポキシ硬化剤としては、酸無水物類およびフェノール類なども使用できる。酸無水物類およびフェノール類などは、アミン系硬化剤と比較して高温を必要とするが、ポットライフが長く、得られる接着層は電気的特性、化学的特性、機械的特性などの物性バランスが良好となる。酸無水物類としては、例えば、WO2016-163491号公報の明細書の、[0117]段落に記載の各種の化合物が挙げられる。
Further, among the components (F), acid anhydrides and phenols can also be used as the latent epoxy curing agent. Acid anhydrides and phenols require higher temperatures than amine-based curing agents, but have a long pot life, and the resulting adhesive layer has a balance of physical properties such as electrical properties, chemical properties, and mechanical properties. Becomes good. Examples of acid anhydrides include various compounds described in paragraph [0117] of the specification of WO2016-163491.
(F)成分は、1種類を単独で用いてもよく2種以上を組み合わせて用いてもよい。
As the component (F), one type may be used alone, or two or more types may be used in combination.
(F)成分は、硬化性樹脂組成物を硬化させるのに十分な量で使用され得る。典型的には、硬化性樹脂組成物中に存在するエポキシド基の少なくとも80%を消費するのに十分な量の(F)成分が使用され得る。エポキシド基の消費に必要な量を超える大過剰量の(F)成分は、通常必要ない。
The component (F) can be used in an amount sufficient to cure the curable resin composition. Typically, a sufficient amount of component (F) can be used to consume at least 80% of the epoxide groups present in the curable resin composition. Large excesses of component (F) that exceed the amount required to consume the epoxide group are usually not needed.
本硬化性樹脂組成物は、エポキシ樹脂(A)100質量部に対して、更に、エポキシ硬化剤(F)1~80質量部を含有することが好ましく、2~40質量部を含有することがより好ましく、3~30質量部を含有することが更に好ましく、5~20質量部を含有することが特に好ましい。(F)成分の含有量が、(A)成分100質量部に対して、(a)1質量部以上である場合、本硬化性樹脂組成物の硬化性が良好となり、(b)80質量部以下である場合、本硬化性樹脂組成物の貯蔵安定性が良好となり、取り扱い易いという利点を有する。
The present curable resin composition preferably further contains 1 to 80 parts by mass of the epoxy curing agent (F) with respect to 100 parts by mass of the epoxy resin (A), and preferably contains 2 to 40 parts by mass. It is more preferable to contain 3 to 30 parts by mass, and particularly preferably 5 to 20 parts by mass. When the content of the component (F) is 1 part by mass or more of (a) with respect to 100 parts by mass of the component (A), the curability of the present curable resin composition becomes good, and (b) 80 parts by mass. When the following, the curable resin composition has an advantage that the storage stability is good and it is easy to handle.
(硬化促進剤(G))
本発明の一実施形態では、必要に応じて硬化促進剤(G)を使用することができる。「硬化促進剤(G)」を、以下、「(G)成分」と称する場合もある。 (Curing accelerator (G))
In one embodiment of the present invention, a curing accelerator (G) can be used if necessary. The "curing accelerator (G)" may be hereinafter referred to as "(G) component".
本発明の一実施形態では、必要に応じて硬化促進剤(G)を使用することができる。「硬化促進剤(G)」を、以下、「(G)成分」と称する場合もある。 (Curing accelerator (G))
In one embodiment of the present invention, a curing accelerator (G) can be used if necessary. The "curing accelerator (G)" may be hereinafter referred to as "(G) component".
(G)成分は、エポキシ基と、硬化剤および硬化性樹脂組成物の他の成分に含まれるエポキシド反応性基と、の反応を促進するための触媒である。
The component (G) is a catalyst for accelerating the reaction between the epoxy group and the epoxide-reactive group contained in the curing agent and other components of the curable resin composition.
(G)成分としては、例えば、(a)p-クロロフェニル-N,N-ジメチル尿素(商品名:Monuron)、3-フェニル-1,1-ジメチル尿素(商品名:Fenuron)、3,4-ジクロロフェニル-N,N-ジメチル尿素(商品名:Diuron)、N-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素(商品名:Chlortoluron)、1,1-ジメチルフェニルウレア(商品名:Dyhard)などの尿素類;(b)ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、2-(ジメチルアミノメチル)フェノール、ポリ(p-ビニルフェノール)マトリックスに組み込まれた2,4,6-トリス(ジメチルアミノメチル)フェノール、トリエチレンジアミン、N,N-ジメチルピペリジンなどの三級アミン類;(c)C1-C12アルキレンイミダゾール、N-アリールイミダゾール、2-メチルイミダゾール、2-エチル-2-メチルイミダゾール、N-ブチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウム・トリメリテート、エポキシ樹脂とイミダゾールとの付加生成物、などのイミダゾール類;(d)6-カプロラクタム、などが挙げられる。触媒は封入されていてもよく、あるいは、温度を上げた場合にのみ活性となる潜在的な触媒であってもよい。
Examples of the component (G) include (a) p-chlorophenyl-N, N-dimethylurea (trade name: Mouron), 3-phenyl-1,1-dimethylurea (trade name: Fenuron), 3,4-. Dichlorophenyl-N, N-dimethylurea (trade name: Diuron), N- (3-chloro-4-methylphenyl) -N', N'-dimethylurea (trade name: Chlortroluron), 1,1-dimethylphenylurea Ureas such as (trade name: Dyhard); (b) in benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 2- (dimethylaminomethyl) phenol, poly (p-vinylphenol) matrix Incorporated tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol, triethylenediamine, N, N-dimethylpiperidine; (c) C1-C12 alkyleneimidazole, N-arylimidazole, 2-methyl Imidazoles such as imidazole, 2-ethyl-2-methylimidazole, N-butyl imidazole, 1-cyanoethyl-2-undecyl imidazolium trimellitate, addition product of epoxy resin and imidazole; (d) 6-caprolactam , And so on. The catalyst may be encapsulated or may be a potential catalyst that becomes active only when the temperature is raised.
なお、三級アミン類およびイミダゾール類は、(F)成分(例えば室温程度の比較的低温で活性を示す(F)成分)のアミン系硬化剤と併用することにより、硬化速度並びに得られる接着層の物性および耐熱性などを向上させることができる。
The tertiary amines and imidazoles can be used in combination with the amine-based curing agent of the component (F) (for example, the component (F) that exhibits activity at a relatively low temperature of about room temperature) to increase the curing rate and the adhesive layer obtained. Physical properties and heat resistance can be improved.
(G)成分は、1種類を単独で用いてもよく2種以上を組み合わせて用いてもよい。
As the component (G), one type may be used alone, or two or more types may be used in combination.
本硬化性樹脂組成物は、エポキシ樹脂(A)100質量部に対して、更に、硬化促進剤(G)0.1~10.0質量部を含有することが好ましく、0.2~5.0質量部を含有することがより好ましく、0.5~3.0質量部を含有することがさらに好ましく、0.8~2.0質量部を含有することが特に好ましい。(G)成分の含有量が、(A)成分100質量部に対して、(a)0.1質量部以上である場合、本硬化性樹脂組成物の硬化性が良好となり、(b)10.0質量部以下である場合、本硬化性樹脂組成物の貯蔵安定性が良好となり、取り扱い易いという利点を有する。
The present curable resin composition preferably further contains 0.1 to 10.0 parts by mass of the curing accelerator (G) with respect to 100 parts by mass of the epoxy resin (A), and 0.2 to 5. It is more preferably 0 parts by mass, further preferably 0.5 to 3.0 parts by mass, and particularly preferably 0.8 to 2.0 parts by mass. When the content of the component (G) is 0.1 part by mass or more of (a) with respect to 100 parts by mass of the component (A), the curability of the present curable resin composition becomes good, and (b) 10 When the amount is 0.0 parts by mass or less, the curable resin composition has an advantage that the storage stability is good and it is easy to handle.
(その他の配合成分)
本発明の一実施形態では、必要に応じて、その他の配合成分を使用することができる。その他の配合成分としては、ラジカル硬化性樹脂、モノエポキシド、光重合開始剤、有機質充填材、顔料、難燃剤、分散剤、消泡剤、可塑剤、溶剤、粘着性付与剤、レベリング剤、チクソ性付与剤、酸化防止剤、光安定剤、紫外線吸収剤、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、離型剤、帯電防止剤、滑剤、低収縮剤、アゾタイプ化学的発泡剤および熱膨張性マイクロバルーンなどの膨張剤、アラミド系パルプなどの繊維パルプ、並びに、熱可塑性樹脂、などが挙げられる。 (Other ingredients)
In one embodiment of the present invention, other compounding ingredients can be used, if necessary. Other ingredients include radical curable resins, monoepoxides, photopolymerization initiators, organic fillers, pigments, flame retardants, dispersants, defoaming agents, plasticizers, solvents, tackifiers, leveling agents, and thixo. Sex-imparting agents, antioxidants, light stabilizers, UV absorbers, silane coupling agents, titanate-based coupling agents, aluminate-based coupling agents, mold release agents, antistatic agents, lubricants, low shrinkage agents, azotype chemistry Examples thereof include a specific foaming agent and a swelling agent such as a thermostable microballoon, a fiber pulp such as an aramid-based pulp, and a thermoplastic resin.
本発明の一実施形態では、必要に応じて、その他の配合成分を使用することができる。その他の配合成分としては、ラジカル硬化性樹脂、モノエポキシド、光重合開始剤、有機質充填材、顔料、難燃剤、分散剤、消泡剤、可塑剤、溶剤、粘着性付与剤、レベリング剤、チクソ性付与剤、酸化防止剤、光安定剤、紫外線吸収剤、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、離型剤、帯電防止剤、滑剤、低収縮剤、アゾタイプ化学的発泡剤および熱膨張性マイクロバルーンなどの膨張剤、アラミド系パルプなどの繊維パルプ、並びに、熱可塑性樹脂、などが挙げられる。 (Other ingredients)
In one embodiment of the present invention, other compounding ingredients can be used, if necessary. Other ingredients include radical curable resins, monoepoxides, photopolymerization initiators, organic fillers, pigments, flame retardants, dispersants, defoaming agents, plasticizers, solvents, tackifiers, leveling agents, and thixo. Sex-imparting agents, antioxidants, light stabilizers, UV absorbers, silane coupling agents, titanate-based coupling agents, aluminate-based coupling agents, mold release agents, antistatic agents, lubricants, low shrinkage agents, azotype chemistry Examples thereof include a specific foaming agent and a swelling agent such as a thermostable microballoon, a fiber pulp such as an aramid-based pulp, and a thermoplastic resin.
ラジカル硬化性樹脂、モノエポキシドおよび光重合開始剤の具体例としては、例えば、WO2016-163491号公報の明細書の、それぞれ、[0143]~[0144]、[0146]および[0148]の各段落に記載の各種の化合物が挙げられる。顔料、難燃剤、分散剤、消泡剤、可塑剤、溶剤、粘着性付与剤、レベリング剤、チクソ性付与剤、酸化防止剤、光安定剤、紫外線吸収剤およびシランカップリング剤の具体例としては、例えば、WO2014-196607号公報の明細書の、それぞれ、[0124]、[0126]~[0127]、[0129]~[0130]、[0132]、[0134]、[0136]、[0139]、[0141]、[0143]、[0147]、[0149]、[0151]および[0153]の各段落に記載の各種の化合物が挙げられる。
Specific examples of the radical curable resin, monoepoxide and photopolymerization initiator include, for example, paragraphs [0143] to [0144], [0146] and [0148] of the specification of WO2016-163491, respectively. Included are various compounds described in. Specific examples of pigments, flame retardants, dispersants, defoamers, plasticizers, solvents, tackifiers, leveling agents, thixophilic agents, antioxidants, light stabilizers, UV absorbers and silane coupling agents. , For example, in the specification of WO2014-196607, [0124], [0126] to [0127], [0129] to [0130], [0132], [0134], [0136], [0139, respectively. ], [0141], [0143], [0147], [0149], [0151] and [0153].
本硬化性樹脂組成物は、その他の配合成分として、ゴム変性エポキシ樹脂、および/または、ウレタン変性エポキシ樹脂を含んでいてもよい。本硬化性樹脂組成物が、ゴム変性エポキシ樹脂、および/または、ウレタン変性エポキシ樹脂を含む場合、当該硬化性樹脂組成物は、靭性、耐衝撃性、せん断接着性および剥離接着性などの性能にさらに優れる接着層を提供できる。ゴム変性エポキシ樹脂、および/または、ウレタン変性エポキシ樹脂は、強化剤ともいえる。
The present curable resin composition may contain a rubber-modified epoxy resin and / or a urethane-modified epoxy resin as other compounding components. When the present curable resin composition contains a rubber-modified epoxy resin and / or a urethane-modified epoxy resin, the curable resin composition has performances such as toughness, impact resistance, shear adhesiveness and peeling adhesiveness. An even better adhesive layer can be provided. The rubber-modified epoxy resin and / or the urethane-modified epoxy resin can also be said to be a reinforcing agent.
前記強化剤は、1種類を単独で用いても良く2種以上を併用しても良い。
The strengthening agent may be used alone or in combination of two or more.
ゴム変性エポキシ樹脂としては、例えば、WO2016-163491号公報の明細書の、[0124]~[0132]段落に記載の樹脂を使用することができる。
As the rubber-modified epoxy resin, for example, the resin described in paragraphs [0124] to [0132] of the specification of WO2016-163491 can be used.
ウレタン変性エポキシ樹脂としては、例えば、WO2016-163491号公報の明細書の、[0133]~[0135]段落に記載の樹脂を使用することができる。
As the urethane-modified epoxy resin, for example, the resin described in paragraphs [0133] to [0135] of the specification of WO2016-163491 can be used.
(粘度のせん断速度依存性)
本硬化性樹脂組成物の粘度のせん断速度依存性は高いことが好ましい。硬化性樹脂組成物の粘度のせん断速度依存性が高いほど、当該硬化性樹脂組成物は耐シャワー性に優れる。それ故に、硬化性樹脂組成物の粘度のせん断速度依存性が高いほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。本硬化性樹脂組成物の粘度のせん断速度依存性は、せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比によって評価され得る。「せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比」は、「せん断速度依存的粘度比(5s-1/50s-1)」と称される場合もある。硬化性樹脂組成物のせん断速度依存的粘度比(5s-1/50s-1)の値が大きいほど、硬化性樹脂組成物の粘度のせん断速度依存性が高いことを意味する。 (Viscosity shear rate dependence)
It is preferable that the viscosity of the present curable resin composition is highly dependent on the shear rate. The higher the shear rate dependence of the viscosity of the curable resin composition, the more excellent the shower resistance of the curable resin composition. Therefore, the higher the shear rate dependence of the viscosity of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. The shear rate dependence of the viscosity of the present curable resin composition can be evaluated by the ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 . The "ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 " is sometimes referred to as a "shear velocity-dependent viscosity ratio (5s -1 / 50s -1 )". .. The larger the value of the shear rate-dependent viscosity ratio (5s -1 / 50s -1 ) of the curable resin composition, the higher the shear rate dependence of the viscosity of the curable resin composition.
本硬化性樹脂組成物の粘度のせん断速度依存性は高いことが好ましい。硬化性樹脂組成物の粘度のせん断速度依存性が高いほど、当該硬化性樹脂組成物は耐シャワー性に優れる。それ故に、硬化性樹脂組成物の粘度のせん断速度依存性が高いほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。本硬化性樹脂組成物の粘度のせん断速度依存性は、せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比によって評価され得る。「せん断速度5s-1のときの粘度とせん断速度50s-1のときの粘度との比」は、「せん断速度依存的粘度比(5s-1/50s-1)」と称される場合もある。硬化性樹脂組成物のせん断速度依存的粘度比(5s-1/50s-1)の値が大きいほど、硬化性樹脂組成物の粘度のせん断速度依存性が高いことを意味する。 (Viscosity shear rate dependence)
It is preferable that the viscosity of the present curable resin composition is highly dependent on the shear rate. The higher the shear rate dependence of the viscosity of the curable resin composition, the more excellent the shower resistance of the curable resin composition. Therefore, the higher the shear rate dependence of the viscosity of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. The shear rate dependence of the viscosity of the present curable resin composition can be evaluated by the ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 . The "ratio of the viscosity at a shear rate of 5s -1 to the viscosity at a shear rate of 50s -1 " is sometimes referred to as a "shear velocity-dependent viscosity ratio (5s -1 / 50s -1 )". .. The larger the value of the shear rate-dependent viscosity ratio (5s -1 / 50s -1 ) of the curable resin composition, the higher the shear rate dependence of the viscosity of the curable resin composition.
本硬化性樹脂組成物のせん断速度依存的粘度比(5s-1/50s-1)は、1.7より大きいことが好ましく、1.8以上がより好ましく、1.9以上がより好ましく、2.0以上がより好ましく、3.0以上がより好ましく、4.0以上がより好ましく、5.0以上がさらに好ましく、6.0以上が特に好ましい。
The shear rate-dependent viscosity ratio (5s -1 / 50s -1 ) of the present curable resin composition is preferably larger than 1.7, more preferably 1.8 or more, more preferably 1.9 or more, and 2 9.0 or more is more preferable, 3.0 or more is more preferable, 4.0 or more is more preferable, 5.0 or more is further preferable, and 6.0 or more is particularly preferable.
(粘度の温度依存性)
本硬化性樹脂組成物の粘度の温度依存性は小さいことが好ましい。硬化性樹脂組成物の粘度の温度依存性が小さいほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。本硬化性樹脂組成物の粘度の温度依存性は、60℃における粘度と25℃における粘度との比によって評価され得る。「60℃における粘度と25℃における粘度との比」は、「温度依存的粘度比(60℃/25℃)」と称される場合もある。硬化性樹脂組成物の温度依存的粘度比(60℃/25℃)の値が大きいほど、換言すると1に近づくほど、硬化性樹脂組成物の粘度の温度依存性が小さいことを示す。 (Temperature dependence of viscosity)
It is preferable that the temperature dependence of the viscosity of the present curable resin composition is small. The smaller the temperature dependence of the viscosity of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. The temperature dependence of the viscosity of the curable resin composition can be evaluated by the ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C. The "ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C." is sometimes referred to as the "temperature-dependent viscosity ratio (60 ° C./25 ° C.)". The larger the value of the temperature-dependent viscosity ratio (60 ° C./25 ° C.) of the curable resin composition, in other words, the closer it is to 1, the smaller the temperature dependence of the viscosity of the curable resin composition.
本硬化性樹脂組成物の粘度の温度依存性は小さいことが好ましい。硬化性樹脂組成物の粘度の温度依存性が小さいほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。本硬化性樹脂組成物の粘度の温度依存性は、60℃における粘度と25℃における粘度との比によって評価され得る。「60℃における粘度と25℃における粘度との比」は、「温度依存的粘度比(60℃/25℃)」と称される場合もある。硬化性樹脂組成物の温度依存的粘度比(60℃/25℃)の値が大きいほど、換言すると1に近づくほど、硬化性樹脂組成物の粘度の温度依存性が小さいことを示す。 (Temperature dependence of viscosity)
It is preferable that the temperature dependence of the viscosity of the present curable resin composition is small. The smaller the temperature dependence of the viscosity of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. The temperature dependence of the viscosity of the curable resin composition can be evaluated by the ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C. The "ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C." is sometimes referred to as the "temperature-dependent viscosity ratio (60 ° C./25 ° C.)". The larger the value of the temperature-dependent viscosity ratio (60 ° C./25 ° C.) of the curable resin composition, in other words, the closer it is to 1, the smaller the temperature dependence of the viscosity of the curable resin composition.
本硬化性樹脂組成物の温度依存的粘度比(60℃/25℃)は、0.03以上が好ましく、0.05以上がより好ましく、0.07以上がさらに好ましく、0.10以上が特に好ましい。
The temperature-dependent viscosity ratio (60 ° C./25 ° C.) of the present curable resin composition is preferably 0.03 or more, more preferably 0.05 or more, further preferably 0.07 or more, and particularly 0.10 or more. preferable.
硬化性樹脂組成物の粘度の具体的な測定方法は、下記実施例にて詳述する。
The specific method for measuring the viscosity of the curable resin composition will be described in detail in the following examples.
(Yield Stress)
本硬化性樹脂組成物の耐シャワー性は、Yield Stressによっても評価され得る。本硬化性樹脂組成物のYield Stressは高いことが好ましい。硬化性樹脂組成物のYield Stressが高いほど、当該硬化性樹脂組成物は耐シャワー性に優れる。それ故に、硬化性樹脂組成物のYield Stressが高いほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。硬化性樹脂組成物のYield Stressの具体的な測定方法は、下記実施例にて詳述する。 (Yield Stress)
The shower resistance of the present curable resin composition can also be evaluated by Yield Stress. The Yield Stress of the present curable resin composition is preferably high. The higher the Yield Stress of the curable resin composition, the better the shower resistance of the curable resin composition. Therefore, the higher the Yield Stress of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. A specific method for measuring Yield Stress of the curable resin composition will be described in detail in the following Examples.
本硬化性樹脂組成物の耐シャワー性は、Yield Stressによっても評価され得る。本硬化性樹脂組成物のYield Stressは高いことが好ましい。硬化性樹脂組成物のYield Stressが高いほど、当該硬化性樹脂組成物は耐シャワー性に優れる。それ故に、硬化性樹脂組成物のYield Stressが高いほど、当該硬化性樹脂組成物を使用する構造物の製造方法は、作業性に優れる。硬化性樹脂組成物のYield Stressの具体的な測定方法は、下記実施例にて詳述する。 (Yield Stress)
The shower resistance of the present curable resin composition can also be evaluated by Yield Stress. The Yield Stress of the present curable resin composition is preferably high. The higher the Yield Stress of the curable resin composition, the better the shower resistance of the curable resin composition. Therefore, the higher the Yield Stress of the curable resin composition, the more excellent the workability of the method for producing a structure using the curable resin composition. A specific method for measuring Yield Stress of the curable resin composition will be described in detail in the following Examples.
本硬化性樹脂組成物のYield Stressは、3以上が好ましく、5以上がより好ましく、10以上がより好ましく、30以上がより好ましく、50以上がさらに好ましく、100以上が特に好ましい。
The Yield Stress of the present curable resin composition is preferably 3 or more, more preferably 5 or more, more preferably 10 or more, more preferably 30 or more, further preferably 50 or more, and particularly preferably 100 or more.
(硬化性樹脂組成物の製造方法)
本硬化性樹脂組成物は、(A)成分を主成分とする硬化性樹脂中に、ポリマー微粒子(B)を含有する組成物を含み、好ましくは、ポリマー微粒子(B)が(A)成分中に1次粒子の状態で分散した組成物を含む。「ポリマー微粒子(B)が(A)成分中に1次粒子の状態で分散した組成物」を、以下、「ポリマー微粒子組成物」と称する場合もある。 (Manufacturing method of curable resin composition)
The present curable resin composition contains a composition containing polymer fine particles (B) in a curable resin containing the component (A) as a main component, and preferably the polymer fine particles (B) are contained in the component (A). Contains a composition dispersed in the form of primary particles. The "composition in which the polymer fine particles (B) are dispersed in the component (A) in the form of primary particles" may be hereinafter referred to as "polymer fine particle composition".
本硬化性樹脂組成物は、(A)成分を主成分とする硬化性樹脂中に、ポリマー微粒子(B)を含有する組成物を含み、好ましくは、ポリマー微粒子(B)が(A)成分中に1次粒子の状態で分散した組成物を含む。「ポリマー微粒子(B)が(A)成分中に1次粒子の状態で分散した組成物」を、以下、「ポリマー微粒子組成物」と称する場合もある。 (Manufacturing method of curable resin composition)
The present curable resin composition contains a composition containing polymer fine particles (B) in a curable resin containing the component (A) as a main component, and preferably the polymer fine particles (B) are contained in the component (A). Contains a composition dispersed in the form of primary particles. The "composition in which the polymer fine particles (B) are dispersed in the component (A) in the form of primary particles" may be hereinafter referred to as "polymer fine particle composition".
ポリマー微粒子組成物を得る方法は、種々の方法が利用できる。当該方法としては、例えば、(a)水性ラテックス状態で得られたポリマー微粒子(B)を(A)成分と接触させた後、混合物から水などの不要な成分を除去する方法、および(b)ポリマー微粒子(B)を一旦有機溶剤に抽出後に、抽出されたポリマー微粒子(B)を(A)成分と混合してから、混合物から有機溶剤を除去する方法、などが挙げられる。当該方法としては、WO2005/028546号公報に記載の方法を利用することが好ましい。
Various methods can be used for obtaining the polymer fine particle composition. Examples of the method include (a) a method of contacting the polymer fine particles (B) obtained in an aqueous latex state with the component (A) and then removing unnecessary components such as water from the mixture, and (b). Examples thereof include a method in which the polymer fine particles (B) are once extracted into an organic solvent, the extracted polymer fine particles (B) are mixed with the component (A), and then the organic solvent is removed from the mixture. As the method, it is preferable to use the method described in WO2005 / 028546.
ポリマー微粒子組成物の具体的な製造方法としては、順に、(1)ポリマー微粒子(B)を含有する水性ラテックス(詳細には、乳化重合によってポリマー微粒子(B)を製造した後の反応混合物)を、20℃における水に対する溶解度が5質量%以上40質量%以下の有機溶媒と混合した後、得られる混合物をさらに過剰の水と混合して、ポリマー微粒子(B)を凝集させる第1工程と、(2)凝集させたポリマー微粒子(B)を液相から分離および回収した後、ポリマー微粒子(B)を再度有機溶媒と混合して、ポリマー微粒子(B)が分散している有機溶媒溶液を得る第2工程と、(3)得られる有機溶媒溶液をさらに(A)成分と混合した後、混合物から前記有機溶媒を留去する第3工程と、を含む方法が挙げられる。ポリマー微粒子組成物は、当該方法によって調製されることが好ましい。
Specific methods for producing the polymer fine particle composition include, in order, (1) an aqueous latex containing the polymer fine particles (B) (specifically, a reaction mixture after producing the polymer fine particles (B) by emulsification polymerization). The first step of mixing with an organic solvent having a solubility in water at 20 ° C. of 5% by mass or more and 40% by mass or less, and then mixing the obtained mixture with excess water to agglomerate the polymer fine particles (B). (2) After separating and recovering the agglomerated polymer fine particles (B) from the liquid phase, the polymer fine particles (B) are mixed with the organic solvent again to obtain an organic solvent solution in which the polymer fine particles (B) are dispersed. Examples thereof include a second step and a third step of (3) further mixing the obtained organic solvent solution with the component (A) and then distilling off the organic solvent from the mixture. The polymer fine particle composition is preferably prepared by this method.
前記第3工程が容易となる為、(A)成分は、23℃で液状であることが、好ましい。「(A)成分は、23℃で液状である」とは、(A)成分の軟化点が23℃以下であることを意味し、(A)成分が23℃で流動性を示すものであることを意図する。
The component (A) is preferably liquid at 23 ° C. because the third step is facilitated. "Component (A) is liquid at 23 ° C." means that the softening point of component (A) is 23 ° C. or lower, and component (A) exhibits fluidity at 23 ° C. Intended to be.
上記の工程(第1工程~第3工程)を経て得られた、ポリマー微粒子組成物に、更に(C)成分を添加し、混合する事により、ポリマー微粒子(B)が(A)成分中に1次粒子の状態で分散している本硬化性樹脂組成物が得られる。本硬化性樹脂組成物の製造において、ポリマー微粒子組成物に、(A)成分を必要により更に添加し、混合してもよい。また、本硬化性樹脂組成物の製造において、ポリマー微粒子組成物に、(D)成分、(E)成分、および、前記その他配合成分の各成分を、必要により更に添加し、混合してもよい。
By further adding the component (C) to the polymer fine particle composition obtained through the above steps (first step to third step) and mixing the polymer fine particles (B), the polymer fine particles (B) are contained in the component (A). The present curable resin composition dispersed in the state of primary particles can be obtained. In the production of the present curable resin composition, the component (A) may be further added and mixed with the polymer fine particle composition if necessary. Further, in the production of the present curable resin composition, each component of the component (D), the component (E), and the other compounding components may be further added and mixed with the polymer fine particle composition, if necessary. ..
一方、ポリマー微粒子(B)を含む水性ラテックスを用いて、塩析などの方法によりポリマー微粒子(B)を凝固させた後に、得られる凝固物を乾燥させることにより、粉体状のポリマー微粒子(B)を得ることができる。当該粉体状のポリマー微粒子(B)を、3本ペイントロール、ロールミル、ニーダーなどの高い機械的せん断力を有する分散機を用いて(A)成分中に再分散させることにより、ポリマー微粒子組成物を製造することも可能である。このとき、(A)成分および(B)成分の混合物に対して、高温で機械的せん断力を与えることにより、効率良く、(A)成分中に(B)成分を分散させることができる。分散させるときの温度(せん断力を与えるときの温度)は、50~200℃が好ましく、70~170℃がより好ましく、80~150℃が更に好ましく、90~120℃が特に好ましい。分散させるときの温度が、(a)50℃以上である場合、十分に(B)成分が分散することができ、(b)200℃以下である場合、(A)成分および(B)成分が熱劣化する虞がない。
On the other hand, the polymer fine particles (B) are coagulated by a method such as salting out using an aqueous latex containing the polymer fine particles (B), and then the obtained coagulated product is dried to obtain powdery polymer fine particles (B). ) Can be obtained. The polymer fine particle composition is obtained by redispersing the powdery polymer fine particles (B) in the component (A) using a disperser having a high mechanical shearing force such as three paint rolls, a roll mill, and a kneader. It is also possible to manufacture. At this time, by applying a mechanical shearing force to the mixture of the component (A) and the component (B) at a high temperature, the component (B) can be efficiently dispersed in the component (A). The temperature at the time of dispersion (the temperature at which a shearing force is applied) is preferably 50 to 200 ° C., more preferably 70 to 170 ° C., further preferably 80 to 150 ° C., and particularly preferably 90 to 120 ° C. When the temperature at the time of dispersion is (a) 50 ° C. or higher, the component (B) can be sufficiently dispersed, and when (b) 200 ° C. or lower, the components (A) and (B) are sufficiently dispersed. There is no risk of thermal deterioration.
(硬化性樹脂組成物の用途)
硬化性樹脂組成物は、一液型硬化性樹脂組成物として使用することができる。上述した硬化性樹脂組成物を含む一液型硬化性樹脂組成物もまた、本発明の一実施形態といえる。一液型硬化性樹脂組成物とは、(i)すべての配合成分を予め配合した後、硬化させることなく密封保存することができ、かつ(ii)硬化性樹脂組成物を塗布後、加熱および/または光照射により硬化する硬化性樹脂組成物を意味する。 (Use of curable resin composition)
The curable resin composition can be used as a one-component curable resin composition. A one-component curable resin composition containing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention. The one-component curable resin composition can be (i) pre-blended with all the ingredients and then sealed and stored without curing, and (ii) after applying the curable resin composition, heating and heating. / Or means a curable resin composition that is cured by light irradiation.
硬化性樹脂組成物は、一液型硬化性樹脂組成物として使用することができる。上述した硬化性樹脂組成物を含む一液型硬化性樹脂組成物もまた、本発明の一実施形態といえる。一液型硬化性樹脂組成物とは、(i)すべての配合成分を予め配合した後、硬化させることなく密封保存することができ、かつ(ii)硬化性樹脂組成物を塗布後、加熱および/または光照射により硬化する硬化性樹脂組成物を意味する。 (Use of curable resin composition)
The curable resin composition can be used as a one-component curable resin composition. A one-component curable resin composition containing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention. The one-component curable resin composition can be (i) pre-blended with all the ingredients and then sealed and stored without curing, and (ii) after applying the curable resin composition, heating and heating. / Or means a curable resin composition that is cured by light irradiation.
また、本硬化性樹脂組成物は、二液型または多液型の硬化性樹脂組成物として使用することもできる。すなわち、(i)主成分として(A)成分、および(B)成分を含有し、さらに必要に応じて(C)成分を含有するA液を調製し、かつ(ii)(D)成分および/または(E)成分を含有し、さらに必要に応じて(B)成分および/または(C)成分を含有するB液を、A液と別途調製しておき、(iii)当該A液と当該B液とを使用前に混合して、使用することもできる。A液とB液とは、少なくとも1種ずつ調製されればよく、いずれか一方または両方の液が複数種調製されてもよい。また、(B)成分および(C)成分は、それぞれA液またはB液のどちらか少なくとも一方に含まれていればよい。(B)成分および(C)成分は、それぞれ、例えば、A液にのみまたはB液にのみ含まれていてもよく、A液およびB液の両方に含まれていてもよい。
The curable resin composition can also be used as a two-component or multi-component curable resin composition. That is, a solution A containing the component (A) and the component (B) as the main components (i) and further containing the component (C) as needed is prepared, and the components (ii), (D) and / Alternatively, a solution B containing the component (E) and, if necessary, the component (B) and / or the component (C) is prepared separately from the solution A, and (iii) the solution A and the solution B are prepared. It can also be used by mixing with the liquid before use. At least one type of liquid A and liquid B may be prepared, and a plurality of types of either one or both liquids may be prepared. Further, the component (B) and the component (C) may be contained in at least one of the liquid A and the liquid B, respectively. The component (B) and the component (C) may be contained, for example, only in the solution A or only in the solution B, or may be contained in both the solution A and the solution B, respectively.
本硬化性組成物は、貯蔵安定性に優れる為に、一液型硬化性樹脂組成物として使用した場合に、特に有益である。本硬化性樹脂組成物は、取扱い性に優れることから、一液型硬化性樹脂組成物であることが好ましい。
This curable composition is particularly beneficial when used as a one-component curable resin composition because it has excellent storage stability. Since the present curable resin composition is excellent in handleability, it is preferably a one-component curable resin composition.
本硬化性樹脂組成物は、接着剤として有用である。本硬化性樹脂組成物は低温(-20℃程度)から常温(例えば15℃~30℃)のみならず、高温(80℃程度)においても接着性能および柔軟性に優れる。よって、本硬化性樹脂組成物は構造接着剤としてより好適に用いることができる。上述した硬化性樹脂組成物を含む接着剤、または構造接着剤もまた、本発明の一実施形態といえる。
This curable resin composition is useful as an adhesive. This curable resin composition is excellent in adhesive performance and flexibility not only at low temperature (about −20 ° C.) to room temperature (for example, 15 ° C. to 30 ° C.) but also at high temperature (about 80 ° C.). Therefore, the present curable resin composition can be more preferably used as a structural adhesive. An adhesive containing the above-mentioned curable resin composition or a structural adhesive can also be said to be an embodiment of the present invention.
(被着体)
本発明の一実施形態に係る構造物の製造方法を使用して、様々な構造物を製造することができる。換言すれば、本発明の一実施形態に係る構造物の製造方法を使用して、様々な被着体を接着することができる。「被着体」は、「基板」または「接着基板」と称される場合もある。 (Subject)
Various structures can be manufactured by using the method for manufacturing a structure according to an embodiment of the present invention. In other words, various adherends can be adhered using the method for producing a structure according to an embodiment of the present invention. The "adhesive body" may also be referred to as a "board" or "adhesive board".
本発明の一実施形態に係る構造物の製造方法を使用して、様々な構造物を製造することができる。換言すれば、本発明の一実施形態に係る構造物の製造方法を使用して、様々な被着体を接着することができる。「被着体」は、「基板」または「接着基板」と称される場合もある。 (Subject)
Various structures can be manufactured by using the method for manufacturing a structure according to an embodiment of the present invention. In other words, various adherends can be adhered using the method for producing a structure according to an embodiment of the present invention. The "adhesive body" may also be referred to as a "board" or "adhesive board".
被着体としては、例えば、木材、金属、プラスチック、ガラスなどを挙げることができる。より具体的には、(i)冷間圧延鋼および溶融亜鉛メッキ鋼などの鋼材、(ii)アルミニウムおよび被覆アルミニウムなどのアルミニウム材、並びに(iii)汎用プラスチック、エンジニアリングプラスチック、CFRPおよびGFRP等の複合材料等の各種のプラスチック系基板、などが挙げられる。
Examples of the adherend include wood, metal, plastic, and glass. More specifically, (i) steel materials such as cold-rolled steel and hot-dip zinc-plated steel, (ii) aluminum materials such as aluminum and coated aluminum, and (iii) composites such as general-purpose plastics, engineering plastics, CFRP and GFRP. Examples thereof include various plastic substrates such as materials.
本硬化性樹脂組成物は、接着性に優れる。その為、アルミニウム基材を含む複数の部材の間に、本発明の一実施形態に係る硬化性樹脂組成物を挟んで張り合わせた後に、前記硬化性樹脂組成物を硬化することにより得られる、前記部材を接合させてなる積層体は、高い接着強度を示す為に好ましい。
This curable resin composition has excellent adhesiveness. Therefore, the curable resin composition according to the embodiment of the present invention is sandwiched and bonded between a plurality of members including an aluminum base material, and then the curable resin composition is cured. A laminate formed by joining members is preferable because it exhibits high adhesive strength.
本硬化性樹脂組成物は、靭性に優れる為に、線膨張係数の異なる異種被着体間の接合に適している。換言すれば、第一の被着体と第二の被着体とは、線膨張係数が異る、異種の被着体であることが好ましい。
Since this curable resin composition has excellent toughness, it is suitable for joining different adherends having different linear expansion coefficients. In other words, it is preferable that the first adherend and the second adherend are different types of adherends having different coefficients of linear expansion.
また、本硬化性樹脂組成物は、航空宇宙用の構成材、特に、外装金属構成材の接合にも使用できる。
The curable resin composition can also be used for joining aerospace components, especially exterior metal components.
本硬化性樹脂組成物は、例えば、自動車および車両(新幹線、電車など)、土木、建築、建材、木工、電気、風力発電、エレクトロニクス、航空機、宇宙産業分野などの構造部材の接着剤として使用することができる。本接着剤は、特に、車両用構造接着剤として有用である。自動車関連の用途としては、天井、ドア、シートなどの内装材の接着、および、ランプなどの自動車照明灯具、サイドモールなどの外装材の接着などを挙げることができる。
This curable resin composition is used, for example, as an adhesive for structural members of automobiles and vehicles (Shinkansen, trains, etc.), civil engineering, construction, building materials, woodworking, electricity, wind power generation, electronics, aircraft, space industry, etc. be able to. This adhesive is particularly useful as a structural adhesive for vehicles. Examples of automobile-related applications include adhesion of interior materials such as ceilings, doors, and seats, and adhesion of exterior materials such as automobile lighting fixtures such as lamps and side moldings.
(接着層)
本硬化性樹脂組成物を用いて、被着体同士を接着する場合、当該被着体の間には、硬化性樹脂組成物を硬化して得られる接着層が形成される。接着層は、硬化性樹脂組成物を硬化して得られる硬化物ともいえる。上述した硬化性樹脂組成物を硬化してなる接着層または硬化物もまた、本発明の一実施形態といえる。 (Adhesive layer)
When the adherends are adhered to each other using the present curable resin composition, an adhesive layer obtained by curing the curable resin composition is formed between the adherends. The adhesive layer can be said to be a cured product obtained by curing the curable resin composition. An adhesive layer or a cured product obtained by curing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention.
本硬化性樹脂組成物を用いて、被着体同士を接着する場合、当該被着体の間には、硬化性樹脂組成物を硬化して得られる接着層が形成される。接着層は、硬化性樹脂組成物を硬化して得られる硬化物ともいえる。上述した硬化性樹脂組成物を硬化してなる接着層または硬化物もまた、本発明の一実施形態といえる。 (Adhesive layer)
When the adherends are adhered to each other using the present curable resin composition, an adhesive layer obtained by curing the curable resin composition is formed between the adherends. The adhesive layer can be said to be a cured product obtained by curing the curable resin composition. An adhesive layer or a cured product obtained by curing the above-mentioned curable resin composition can also be said to be an embodiment of the present invention.
本硬化性樹脂組成物を硬化してなる接着層は、(a)表面美麗であり、(b)高剛性および高弾性率を有し、かつ(c)靱性および接着性(特に耐衝撃剥離接着性)に優れるものである。
The adhesive layer obtained by curing the present curable resin composition has (a) a beautiful surface, (b) high rigidity and high elastic modulus, and (c) toughness and adhesiveness (particularly impact-resistant peeling adhesion). It is excellent in sex).
本硬化性樹脂組成物では、ポリマー微粒子(B)が(A)成分中に一次粒子の状態で均一に分散している。そのため、当該硬化性樹脂組成物を硬化することによって、ポリマー微粒子(B)が均一に分散した接着層を容易に得ることができる。また、本硬化性樹脂組成物では、ポリマー微粒子(B)が膨潤し難く、硬化性樹脂組成物の粘性が低い。そのため、接着層を作業性よく得ることができる。換言すれば、本硬化性樹脂組成物を用いることにより、作業性良く被着体を接着させることができ、すなわち作業性の良い構造物の製造方法を提供できる。
In this curable resin composition, the polymer fine particles (B) are uniformly dispersed in the component (A) in the form of primary particles. Therefore, by curing the curable resin composition, an adhesive layer in which the polymer fine particles (B) are uniformly dispersed can be easily obtained. Further, in the present curable resin composition, the polymer fine particles (B) are difficult to swell, and the viscosity of the curable resin composition is low. Therefore, the adhesive layer can be obtained with good workability. In other words, by using the present curable resin composition, the adherend can be adhered with good workability, that is, a method for producing a structure with good workability can be provided.
硬化性樹脂組成物を車両用接着剤として使用する場合、上述したような「水洗シャワー工程での硬化性樹脂組成物の洗い落されにくさ」(以下、「洗い落とされにくさ」と称する)を向上させるには、硬化性樹脂組成物の粘度を高くすることが有効である。本硬化性樹脂組成物は、粘度のせん断速度依存性が高く高粘度になり易い為、優れた「洗い落とされにくさ」を有する。故に、本硬化性樹脂組成物は、構造用接着剤として好適に利用できる。硬化性樹脂組成物が高粘度である場合、硬化性樹脂組成物を加温することにより、硬化性樹脂組成物の粘度を塗布可能な粘度に調整可能である。
When the curable resin composition is used as an adhesive for vehicles, the above-mentioned "difficulty in washing off the curable resin composition in the washing shower process" (hereinafter referred to as "difficulty in washing off"). It is effective to increase the viscosity of the curable resin composition in order to improve the above. This curable resin composition has an excellent "difficulty in being washed off" because the viscosity is highly dependent on the shear rate and tends to have a high viscosity. Therefore, the present curable resin composition can be suitably used as a structural adhesive. When the curable resin composition has a high viscosity, the viscosity of the curable resin composition can be adjusted to a coatable viscosity by heating the curable resin composition.
また、本硬化性樹脂組成物は、「洗い落とされにくさ」を向上させる為に、WO2005-118734号公報に記載のように、硬化性樹脂組成物の塗布温度付近に結晶融点を有する高分子化合物を、さらに含むことが好ましい。硬化性樹脂組成物の塗布温度付近に結晶融点を有する高分子化合物をさらに含む硬化性樹脂組成物は、(a)塗布温度では粘度は低いため塗布し易く、(b)水洗シャワー工程での温度(例えば塗布温度よりも低い温度)では高粘度となって「洗い落とされにくさ」が向上する。なお一般的に、塗布温度は水洗シャワー温度よりも高い温度である。硬化性樹脂組成物の塗布温度付近に結晶融点を有する前記高分子化合物としては、結晶性または半結晶性ポリエステルポリオールなどの各種のポリエステル樹脂が挙げられる。
Further, this curable resin composition is a polymer having a crystal melting point near the coating temperature of the curable resin composition, as described in WO2005-118734, in order to improve "difficulty in being washed off". It is preferable that the compound is further contained. A curable resin composition further containing a polymer compound having a crystal melting point near the coating temperature of the curable resin composition is easy to coat because (a) the viscosity is low at the coating temperature, and (b) the temperature in the washing shower step. At (for example, a temperature lower than the coating temperature), the viscosity becomes high and the "difficulty of being washed off" is improved. In general, the coating temperature is higher than the flush shower temperature. Examples of the polymer compound having a crystal melting point near the coating temperature of the curable resin composition include various polyester resins such as crystalline or semi-crystalline polyester polyols.
更に、「洗い落とされにくさ」を向上させる別の方法としては、WO2006-093949号公報に記載のように以下の方法が挙げられる:硬化性樹脂組成物を二液型硬化性樹脂組成物とした上で、用いる硬化剤として、アミノ基またはイミノ基を有するアミン系硬化剤などの室温硬化し得る硬化剤(室温硬化性硬化剤)を少量使用し、さらに高温時に活性を示すジシアンジアミドなどの潜在性硬化剤を室温硬化性硬化剤と併用する方法である。この方法では、硬化温度の大きく異なる2種類以上の硬化剤を併用することにより、硬化性樹脂組成物の塗布直後から部分硬化が進行し、水洗シャワー工程の時点では高粘度となるため、硬化性樹脂組成物の「洗い落とされにくさ」が向上する。
Further, as another method for improving "difficulty in being washed off", the following methods can be mentioned as described in WO2006-093949: The curable resin composition is referred to as a two-component curable resin composition. Then, as the curing agent to be used, a small amount of a curing agent capable of curing at room temperature (room temperature curing curing agent) such as an amine-based curing agent having an amino group or an imino group is used, and there is a potential such as dicyandiamide which exhibits activity at a high temperature. This is a method in which a sex curing agent is used in combination with a room temperature curing curing agent. In this method, by using two or more kinds of curing agents having significantly different curing temperatures, partial curing proceeds immediately after application of the curable resin composition, and the viscosity becomes high at the time of the washing shower step, so that the curing property is curable. The "difficulty of being washed off" of the resin composition is improved.
(2-7.構造物の製造方法)
以下、本発明の一実施形態に係る構造物の製造方法に含まれる工程の具体的な態様について説明する。 (2-7. Manufacturing method of structure)
Hereinafter, specific aspects of the steps included in the method for manufacturing a structure according to an embodiment of the present invention will be described.
以下、本発明の一実施形態に係る構造物の製造方法に含まれる工程の具体的な態様について説明する。 (2-7. Manufacturing method of structure)
Hereinafter, specific aspects of the steps included in the method for manufacturing a structure according to an embodiment of the present invention will be described.
<貼り合わせ工程>
貼り合わせ工程は、硬化性樹脂組成物を第一の被着体に塗布した後、第二の被着体を前記第一の被着体と、貼り合わせる工程である。このとき、第一の被着体に塗布した硬化性樹脂組成物を、第一の被着体と第二の被着体とで挟むように、第一の被着体第一の被着体とを貼り合せる。また、このとき、第一の被着体と第二の被着体とで挟まれた硬化性樹脂組成物は、第一の被着体および/または第二の被着体からはみ出してもよい。また、硬化性樹脂組成物は、第一の被着体への塗布に加えて、必要に応じて、第二の被着体に塗布されてもよい。 <Lasting process>
The bonding step is a step of applying the curable resin composition to the first adherend and then laminating the second adherend to the first adherend. At this time, the first adherend of the first adherend is sandwiched between the first adherend and the second adherend so that the curable resin composition applied to the first adherend is sandwiched between the first adherend and the second adherend. And stick together. Further, at this time, the curable resin composition sandwiched between the first adherend and the second adherend may protrude from the first adherend and / or the second adherend. .. Further, the curable resin composition may be applied to the second adherend, if necessary, in addition to the application to the first adherend.
貼り合わせ工程は、硬化性樹脂組成物を第一の被着体に塗布した後、第二の被着体を前記第一の被着体と、貼り合わせる工程である。このとき、第一の被着体に塗布した硬化性樹脂組成物を、第一の被着体と第二の被着体とで挟むように、第一の被着体第一の被着体とを貼り合せる。また、このとき、第一の被着体と第二の被着体とで挟まれた硬化性樹脂組成物は、第一の被着体および/または第二の被着体からはみ出してもよい。また、硬化性樹脂組成物は、第一の被着体への塗布に加えて、必要に応じて、第二の被着体に塗布されてもよい。 <Lasting process>
The bonding step is a step of applying the curable resin composition to the first adherend and then laminating the second adherend to the first adherend. At this time, the first adherend of the first adherend is sandwiched between the first adherend and the second adherend so that the curable resin composition applied to the first adherend is sandwiched between the first adherend and the second adherend. And stick together. Further, at this time, the curable resin composition sandwiched between the first adherend and the second adherend may protrude from the first adherend and / or the second adherend. .. Further, the curable resin composition may be applied to the second adherend, if necessary, in addition to the application to the first adherend.
本硬化性樹脂組成物は、任意の方法によって塗布可能である。
This curable resin composition can be applied by any method.
本硬化性樹脂組成物は、塗布ロボットを使用してビード状、モノフィラメント状またはスワール(swirl)状に基板上へ押出して塗布することもでき、コーキングガン等の機械的な塗布方法および他の手動塗布手段を用いることもできる。また、ジェットスプレー法またはストリーミング法を用いて組成物を基板へ塗布することもできる。
The curable resin composition can also be extruded onto a substrate in the form of beads, monofilaments or swirls using a coating robot, and can be applied by mechanical application methods such as caulking guns and other manual applications. A coating means can also be used. The composition can also be applied to the substrate using a jet spray method or a streaming method.
なお、硬化性樹脂組成物の粘度は、特に限定は無い。硬化性樹脂組成物の粘度は、(a)押出しビード法では、45℃で150~600Pa・s程度が好ましく、(b)渦巻き(swirl)塗布法では、45℃で100Pa・s程度が好ましく、(c)高速度流動装置を用いた高体積塗布法では、45℃で20~400Pa・s程度が好ましい。
The viscosity of the curable resin composition is not particularly limited. The viscosity of the curable resin composition is preferably about 150 to 600 Pa · s at 45 ° C. in the (a) extruded bead method, and about 100 Pa · s at 45 ° C. in the (b) swirl coating method. (C) In the high volume coating method using a high speed flow device, about 20 to 400 Pa · s at 45 ° C. is preferable.
貼り合わせ工程において、第一の被着体に塗布される硬化性樹脂組成物の温度を、「第一の温度」とも称する。「第一の被着体に塗布される硬化性樹脂組成物の温度」は、「第一の被着体に塗布されるときの硬化性樹脂組成物の温度」を意図する。貼り合わせ工程では、硬化性樹脂組成物を第一の温度に加温して第一の被着体に塗布してもよい。
The temperature of the curable resin composition applied to the first adherend in the bonding step is also referred to as "first temperature". The "temperature of the curable resin composition applied to the first adherend" is intended to be "the temperature of the curable resin composition when applied to the first adherend". In the bonding step, the curable resin composition may be heated to a first temperature and applied to the first adherend.
第一の温度は、室温であってもよい。第一の温度は、室温よりも高いことが好ましい。本明細書において、「室温」とは、通常、5℃~45℃であり、好ましくは10℃~40℃であり、より好ましくは15℃~34℃であり、最も好ましくは20℃~30℃である。
The first temperature may be room temperature. The first temperature is preferably higher than room temperature. In the present specification, "room temperature" is usually 5 ° C to 45 ° C, preferably 10 ° C to 40 ° C, more preferably 15 ° C to 34 ° C, and most preferably 20 ° C to 30 ° C. Is.
貼り合わせ工程において、第一の温度(第一の被着体に塗布されるときの硬化性樹脂組成物の温度)は、例えば、35℃~80℃であることが好ましく、40℃~70℃であることがより好ましく、45℃~60℃であることが特に好ましい。第一の温度が、(a)35℃以上である場合、組成物の粘度が低くなるため、塗布作業が容易となる利点を有し、(b)80℃以下である場合、エポキシ樹脂(A)の一部が反応し始めて粘度が高くなる虞が無く、塗布作業が容易となる利点を有する。
In the bonding step, the first temperature (the temperature of the curable resin composition when applied to the first adherend) is preferably, for example, 35 ° C to 80 ° C, preferably 40 ° C to 70 ° C. Is more preferable, and 45 ° C. to 60 ° C. is particularly preferable. When the first temperature is (a) 35 ° C. or higher, the viscosity of the composition is low, which has the advantage of facilitating the coating operation. When (b) 80 ° C. or lower, the epoxy resin (A) ) Will not start to react and the viscosity will increase, which has the advantage of facilitating the coating operation.
第一の被着体に塗布された硬化性樹脂組成物の厚さを、「第一の厚さ」とも称する。貼り合わせ工程では、硬化性樹脂組成物を第一の被着体に第一の厚さで塗布するともいえる。
The thickness of the curable resin composition applied to the first adherend is also referred to as "first thickness". In the bonding step, it can be said that the curable resin composition is applied to the first adherend with the first thickness.
第一の厚さは、例えば、0.5mm~10mmが好ましく、1mm~7mmがより好ましく、1.5mm~5mmがさらに好ましく、2mm~4mmが特に好ましい。
The first thickness is, for example, preferably 0.5 mm to 10 mm, more preferably 1 mm to 7 mm, further preferably 1.5 mm to 5 mm, and particularly preferably 2 mm to 4 mm.
貼り合わせ工程において、第一の被着体に第一の厚さで塗布された硬化性樹脂組成物は、第一の被着体と第二の被着体とを貼り合せる前、または第一の被着体と第二の被着体とを貼り合せるとき、第一の厚さよりも薄く、引き伸ばされてもよい。引き伸ばされた後の硬化性樹脂組成物の厚さを、「第二の厚さ」とも称する。
In the bonding step, the curable resin composition applied to the first adherend at the first thickness is before the first adherend and the second adherend are bonded together, or the first When the adherend of No. 1 and the second adherend are bonded together, they may be thinner than the first thickness and may be stretched. The thickness of the curable resin composition after being stretched is also referred to as a "second thickness".
第二の厚さは、第一の厚さより薄い限り、特に限定されない。第二の厚さは、例えば、0.001mm~5mmが好ましく、0.01mm~1mmがより好ましく、0.1mm~0.3mmが特に好ましい。
The second thickness is not particularly limited as long as it is thinner than the first thickness. The second thickness is, for example, preferably 0.001 mm to 5 mm, more preferably 0.01 mm to 1 mm, and particularly preferably 0.1 mm to 0.3 mm.
貼り合わせ工程において、第一の厚さで塗布された硬化性樹脂組成物を第二の厚さまで引き伸ばす具体的な方法は、特に限定されない。当該方法としては、例えば、(i)第一の被着体と第二の被着体とを貼り合せる前に、第一の厚さで塗布された硬化性樹脂組成物をヘラ等を用いて、第二の厚さまで引き伸ばす方法、および(ii)硬化性樹脂組成物が塗布された第一の被着体に第二の被着体を貼り合わせるとき、硬化性樹脂組成物を間に挟んだ状態でこれら2つの被着体を近づけることにより、第一の厚さで塗布された硬化性樹脂組成物を第二の厚さまで2つの被着体により押し広げて引き伸ばす方法、等が挙げられる。
In the bonding step, the specific method for stretching the curable resin composition applied to the first thickness to the second thickness is not particularly limited. As the method, for example, (i) a curable resin composition coated with the first thickness is applied with a spatula or the like before the first adherend and the second adherend are bonded together. , A method of stretching to a second thickness, and (ii) when the second adherend is attached to the first adherend coated with the curable resin composition, the curable resin composition is sandwiched between them. Examples thereof include a method in which the curable resin composition applied to the first thickness is spread and stretched by the two adherends to the second thickness by bringing these two adherends close to each other in the state.
貼り合わせ工程を行うときの環境温度(室温)を、「第二の温度」とも称する。
The environmental temperature (room temperature) when performing the bonding process is also referred to as the "second temperature".
第二の温度は、第一の温度より低いことが好ましい。第二の温度は、室温であってもよい。
The second temperature is preferably lower than the first temperature. The second temperature may be room temperature.
第二の温度は、例えば、0℃~34℃であることが好ましく、5℃~30℃であることがより好ましく、10℃~25℃であることが特に好ましい。第二の温度が、(a)0℃以上である場合、硬化性樹脂組成物の粘度が低くなるため、第二の厚さまで引き伸ばす作業が容易となる利点を有し、(b)34℃以下である場合、硬化性樹脂組成物を長期保管した場合の貯蔵安定性が悪くなる虞が無い。
The second temperature is, for example, preferably 0 ° C. to 34 ° C., more preferably 5 ° C. to 30 ° C., and particularly preferably 10 ° C. to 25 ° C. When the second temperature is (a) 0 ° C. or higher, the viscosity of the curable resin composition is lowered, so that there is an advantage that the work of stretching to the second thickness becomes easy, and (b) 34 ° C. or lower. If this is the case, there is no risk that the storage stability of the curable resin composition will deteriorate when it is stored for a long period of time.
貼り合わせ工程は、第一の厚さで塗布された硬化性樹脂組成物を第二の温度の環境下にて第二の厚さまで引き伸ばす工程を、さらに有していてもよい。
The bonding step may further include a step of stretching the curable resin composition applied with the first thickness to the second thickness in an environment of the second temperature.
<洗浄工程>
洗浄工程では、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する。 <Washing process>
In the washing step, the bonded body obtained in the bonding step is washed.
洗浄工程では、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する。 <Washing process>
In the washing step, the bonded body obtained in the bonding step is washed.
洗浄液としては特に限定されない。洗浄液としては、水、酸またはアルカリを含む水溶液などが好ましく例示できる。
The cleaning solution is not particularly limited. As the cleaning liquid, an aqueous solution containing water, an acid or an alkali can be preferably exemplified.
洗浄液の温度としては特に限定されない。洗浄液の温度としては、20℃~80℃であってもよく、30℃~70℃がより好ましく、40℃~60℃であってもよい。洗浄液の温度が高温であるほど、(a)高い洗浄効果を得ることができ、(b)塗布された硬化性樹脂組成物の飛散および変形の虞が増加する。従って、洗浄効果と硬化性樹脂組成物の飛散および変形とのバランスを考慮して、洗浄液の温度を適宜決定することができる。本硬化性樹脂組成物は、粘度の温度依存性が小さく、かつ、高温下においても粘度が高いという利点を有する。そのため、本製造方法では、従来の硬化性樹脂組成物を使用する場合と比較して、より高温の洗浄液を使用することができる。
The temperature of the cleaning liquid is not particularly limited. The temperature of the cleaning liquid may be 20 ° C to 80 ° C, more preferably 30 ° C to 70 ° C, and may be 40 ° C to 60 ° C. The higher the temperature of the cleaning liquid, the higher the cleaning effect (a) can be obtained, and (b) the risk of scattering and deformation of the applied curable resin composition increases. Therefore, the temperature of the cleaning liquid can be appropriately determined in consideration of the balance between the cleaning effect and the scattering and deformation of the curable resin composition. The present curable resin composition has the advantages that the temperature dependence of the viscosity is small and the viscosity is high even at a high temperature. Therefore, in this production method, a cleaning liquid having a higher temperature can be used as compared with the case where a conventional curable resin composition is used.
貼り合わせ体の洗浄方法は、特に限定されず、洗浄液に貼り合わせ体を浸漬する方法、および洗浄液を貼り合わせ体に貼り合せ体に噴霧する(シャワーする)方法などが挙げられる。
The cleaning method of the bonded body is not particularly limited, and examples thereof include a method of immersing the bonded body in the cleaning liquid and a method of spraying (showing) the cleaning liquid on the bonded body.
洗浄液を貼り合わせ体に噴霧するときの洗浄液の圧力としては特に限定されない。洗浄液の圧力(水圧)としては、0.1MPa~1.0MPaであってもよく、0.1MPa~0.5MPaであってもよく、0.2MPa~0.4MPaであってもよい。洗浄液の圧力が高圧であるほど、(a)高い洗浄効果を得ることができ、(b)塗布された硬化性樹脂組成物の飛散および変形の虞が増加する。従って、洗浄効果と硬化性樹脂組成物の飛散および変形とのバランスを考慮して、洗浄液の圧力を適宜決定することができる。本硬化性樹脂組成物は、粘度のせん断速度依存性が高く、かつ、Yield Stressの値が高いという利点を有する。そのため、本製造方法では、従来の硬化性樹脂組成物を使用する場合と比較して、洗浄液をより高圧な条件にて被着体に噴霧して使用することができる。
The pressure of the cleaning liquid when spraying the cleaning liquid onto the bonded body is not particularly limited. The pressure (water pressure) of the cleaning liquid may be 0.1 MPa to 1.0 MPa, 0.1 MPa to 0.5 MPa, or 0.2 MPa to 0.4 MPa. The higher the pressure of the cleaning liquid, the higher the cleaning effect (a) can be obtained, and (b) the risk of scattering and deformation of the applied curable resin composition increases. Therefore, the pressure of the cleaning liquid can be appropriately determined in consideration of the balance between the cleaning effect and the scattering and deformation of the curable resin composition. The present curable resin composition has the advantages that the viscosity has a high shear rate dependence and the Yield Stress value is high. Therefore, in the present production method, the cleaning liquid can be sprayed onto the adherend under higher pressure conditions as compared with the case where the conventional curable resin composition is used.
洗浄工程において、洗浄される、すなわち洗い落とされる対象は特に限定されない。洗浄工程において、洗い落とされる対象としては、例えば被着体の原料に予め塗布された防錆油などが挙げられる。
In the washing process, the object to be washed, that is, to be washed off is not particularly limited. Examples of the object to be washed off in the washing step include rust preventive oil previously applied to the raw material of the adherend.
<硬化工程>
硬化工程は、貼り合せた2つの前記被着体に挟まれた前記硬化性樹脂組成物を硬化させる工程である。硬化工程によって、2つの被着体が硬化性樹脂組成物により接着された構造物を得ることができる。 <Curing process>
The curing step is a step of curing the curable resin composition sandwiched between the two bonded bodies. By the curing step, it is possible to obtain a structure in which the two adherends are bonded by the curable resin composition.
硬化工程は、貼り合せた2つの前記被着体に挟まれた前記硬化性樹脂組成物を硬化させる工程である。硬化工程によって、2つの被着体が硬化性樹脂組成物により接着された構造物を得ることができる。 <Curing process>
The curing step is a step of curing the curable resin composition sandwiched between the two bonded bodies. By the curing step, it is possible to obtain a structure in which the two adherends are bonded by the curable resin composition.
<硬化温度>
硬化工程において、本硬化性樹脂組成物の硬化温度は、特に限定はない。硬化工程において、本硬化性樹脂組成物の硬化温度は、50℃~250℃であることが好ましく、80℃~220℃であることがより好ましく、100℃~200℃であることが更に好ましく、130℃~180℃であることが特に好ましい。「硬化温度」とは、硬化工程において、加熱された硬化性樹脂組成物が呈する温度、ともいえる。 <Curing temperature>
In the curing step, the curing temperature of the present curable resin composition is not particularly limited. In the curing step, the curing temperature of the present curable resin composition is preferably 50 ° C. to 250 ° C., more preferably 80 ° C. to 220 ° C., and even more preferably 100 ° C. to 200 ° C. It is particularly preferably 130 ° C. to 180 ° C. The "curing temperature" can also be said to be the temperature exhibited by the heated curable resin composition in the curing step.
硬化工程において、本硬化性樹脂組成物の硬化温度は、特に限定はない。硬化工程において、本硬化性樹脂組成物の硬化温度は、50℃~250℃であることが好ましく、80℃~220℃であることがより好ましく、100℃~200℃であることが更に好ましく、130℃~180℃であることが特に好ましい。「硬化温度」とは、硬化工程において、加熱された硬化性樹脂組成物が呈する温度、ともいえる。 <Curing temperature>
In the curing step, the curing temperature of the present curable resin composition is not particularly limited. In the curing step, the curing temperature of the present curable resin composition is preferably 50 ° C. to 250 ° C., more preferably 80 ° C. to 220 ° C., and even more preferably 100 ° C. to 200 ° C. It is particularly preferably 130 ° C. to 180 ° C. The "curing temperature" can also be said to be the temperature exhibited by the heated curable resin composition in the curing step.
<塗料塗布工程>
本製造方法は、貼り合わせ体に塗料を塗布する塗料塗布工程を、さらに有していてもよい。塗布工程は、任意の段階で実施することができる。塗布工程は、好ましくは、洗浄工程の後であり、かつ、硬化工程の前に実施されることが好ましい。塗布工程が、洗浄工程の後に実施される場合、塗布性が良好となる利点を有する。塗布液が硬化性樹脂を含み、かつ、塗布工程が硬化工程の前に実施される場合、硬化性樹脂組成物の硬化と同時に、塗料を硬化させることができる。 <Paint application process>
The present manufacturing method may further include a paint application step of applying the paint to the laminated body. The coating step can be carried out at any stage. The coating step is preferably carried out after the cleaning step and before the curing step. When the coating step is carried out after the cleaning step, it has the advantage of good coatability. When the coating liquid contains a curable resin and the coating step is performed before the curing step, the coating material can be cured at the same time as the curing of the curable resin composition.
本製造方法は、貼り合わせ体に塗料を塗布する塗料塗布工程を、さらに有していてもよい。塗布工程は、任意の段階で実施することができる。塗布工程は、好ましくは、洗浄工程の後であり、かつ、硬化工程の前に実施されることが好ましい。塗布工程が、洗浄工程の後に実施される場合、塗布性が良好となる利点を有する。塗布液が硬化性樹脂を含み、かつ、塗布工程が硬化工程の前に実施される場合、硬化性樹脂組成物の硬化と同時に、塗料を硬化させることができる。 <Paint application process>
The present manufacturing method may further include a paint application step of applying the paint to the laminated body. The coating step can be carried out at any stage. The coating step is preferably carried out after the cleaning step and before the curing step. When the coating step is carried out after the cleaning step, it has the advantage of good coatability. When the coating liquid contains a curable resin and the coating step is performed before the curing step, the coating material can be cured at the same time as the curing of the curable resin composition.
塗料としては特に限定されないが、例えば以下のようなものが挙げられる:錆び防止剤、顔料、つや消し剤、光沢付与剤および反射防止剤など。
The paint is not particularly limited, but examples thereof include the following: rust preventives, pigments, matting agents, gloss-imparting agents and antireflection agents.
(構造物)
本発明の一実施形態に係る構造物の製造方法は、様々な構造物の製造に用いることができる。本発明の一実施形態に係る構造物の製造方法によって得られる構造物は、少なくとも2つの被着体と本硬化性樹脂組成物とを含むものである、ともいえる。本発明の一実施形態に係る構造物の製造方法によって得られる構造物は、高い接着強度を示す。 (Structure)
The method for producing a structure according to an embodiment of the present invention can be used for producing various structures. It can be said that the structure obtained by the method for producing a structure according to an embodiment of the present invention contains at least two adherends and the present curable resin composition. The structure obtained by the method for producing a structure according to an embodiment of the present invention exhibits high adhesive strength.
本発明の一実施形態に係る構造物の製造方法は、様々な構造物の製造に用いることができる。本発明の一実施形態に係る構造物の製造方法によって得られる構造物は、少なくとも2つの被着体と本硬化性樹脂組成物とを含むものである、ともいえる。本発明の一実施形態に係る構造物の製造方法によって得られる構造物は、高い接着強度を示す。 (Structure)
The method for producing a structure according to an embodiment of the present invention can be used for producing various structures. It can be said that the structure obtained by the method for producing a structure according to an embodiment of the present invention contains at least two adherends and the present curable resin composition. The structure obtained by the method for producing a structure according to an embodiment of the present invention exhibits high adhesive strength.
本発明の一実施形態に係る構造物の製造方法によって得られる構造物としては、例えば、自動車および車両(新幹線、電車など)、航空機、宇宙船、宇宙ステーション、建造物、建築物、風力発電所などを挙げることができる。
The structures obtained by the method for manufacturing a structure according to an embodiment of the present invention include, for example, automobiles and vehicles (bullet trains, trains, etc.), aircraft, spacecraft, space stations, buildings, buildings, and wind farms. And so on.
本発明の一実施形態は、以下の様な構成であってもよい。
One embodiment of the present invention may have the following configuration.
〔1〕硬化性樹脂組成物を第一の被着体に塗布し、第二の被着体を前記第一の被着体と貼り合わせる貼り合わせ工程と、前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する洗浄工程と、前記硬化性樹脂組成物を硬化させる硬化工程と、を備え、前記硬化性樹脂組成物は、エポキシ樹脂(A)、並びに、当該エポキシ樹脂(A)100質量部に対して、弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含むポリマー微粒子(B)1質量部~100質量部、およびヒュームドシリカ(C)1質量部~30質量部を含有する、構造物の製造方法。
[1] Obtained in a bonding step of applying the curable resin composition to the first adherend and bonding the second adherend to the first adherend, and the bonding step. The curable resin composition comprises a cleaning step of cleaning the bonded body and a curing step of curing the curable resin composition, and the curable resin composition includes an epoxy resin (A) and 100 mass of the epoxy resin (A). 1 part to 100 parts by mass of the polymer fine particles (B) containing a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group. , And a method for producing a structure containing 1 part to 30 parts by mass of fumed silica (C).
〔2〕前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、ブロックドウレタン(D)を実質的に含有しないものである、〔1〕に記載の構造物の製造方法。
[2] The production of the structure according to [1], wherein the curable resin composition substantially does not contain blocked urethane (D) with respect to 100 parts by mass of the epoxy resin (A). Method.
〔3〕前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、ブロックドウレタン(D)1質量部~100質量部、および無機充填材(E)5質量部~200質量部を含有し、以下の式(1)で表される値(X)が25以上である、〔1〕に記載の構造物の製造方法:
値(X)={0.5(V1)+10(V2)+(V3)}×100・・・式(1)
(前記式(1)において、前記V1は前記硬化性樹脂組成物中の前記ポリマー微粒子(B)の体積%を示し、前記V2は前記硬化性樹脂組成物中の前記ヒュームドシリカ(C)の体積%を示し、前記V3は前記硬化性樹脂組成物中の前記無機充填材(E)の体積%を示す)。 [3] The curable resin composition further comprises 1 part by mass to 100 parts by mass of the blocked urethane (D) and 5 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A). The method for producing a structure according to [1], which contains ~ 200 parts by mass and has a value (X) of 25 or more represented by the following formula (1):
Value (X) = {0.5 (V1) + 10 (V2) + (V3)} × 100 ... Equation (1)
(In the formula (1), the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition, and the V2 is the fumed silica (C) in the curable resin composition. The volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition).
値(X)={0.5(V1)+10(V2)+(V3)}×100・・・式(1)
(前記式(1)において、前記V1は前記硬化性樹脂組成物中の前記ポリマー微粒子(B)の体積%を示し、前記V2は前記硬化性樹脂組成物中の前記ヒュームドシリカ(C)の体積%を示し、前記V3は前記硬化性樹脂組成物中の前記無機充填材(E)の体積%を示す)。 [3] The curable resin composition further comprises 1 part by mass to 100 parts by mass of the blocked urethane (D) and 5 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A). The method for producing a structure according to [1], which contains ~ 200 parts by mass and has a value (X) of 25 or more represented by the following formula (1):
Value (X) = {0.5 (V1) + 10 (V2) + (V3)} × 100 ... Equation (1)
(In the formula (1), the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition, and the V2 is the fumed silica (C) in the curable resin composition. The volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition).
〔4〕前記無機充填材(E)は、炭酸カルシウムを含有する、〔3〕に記載の構造物の製造方法。
[4] The method for producing a structure according to [3], wherein the inorganic filler (E) contains calcium carbonate.
〔5〕前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、エポキシ硬化剤(F)1~80質量部を含有する、〔1〕~〔4〕の何れか1つに記載の構造物の製造方法。
[5] Any of [1] to [4], wherein the curable resin composition further contains 1 to 80 parts by mass of the epoxy curing agent (F) with respect to 100 parts by mass of the epoxy resin (A). The method for manufacturing a structure according to one.
〔6〕前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、硬化促進剤(G)0.1~10質量部を含有する、〔1〕~〔5〕の何れか1つに記載の構造物の製造方法。
[6] The curable resin composition further contains 0.1 to 10 parts by mass of the curing accelerator (G) with respect to 100 parts by mass of the epoxy resin (A) [1] to [5]. The method for manufacturing a structure according to any one of the above.
〔7〕前記弾性体は、ブタジエンゴム、および/または、ブタジエン-スチレンゴムである、〔1〕~〔6〕の何れか1つに記載の構造物の製造方法。
[7] The method for producing a structure according to any one of [1] to [6], wherein the elastic body is butadiene rubber and / or butadiene-styrene rubber.
〔8〕前記グラフト部は、構成単位として、芳香族ビニルモノマー、ビニルシアンモノマーおよび(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマーに由来する構成単位を含む重合体である、〔1〕~〔7〕の何れか1つに記載の構造物の製造方法。
[8] The graft portion is a polymer containing a structural unit derived from one or more monomers selected from the group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and a (meth) acrylate monomer as a structural unit. The method for producing a structure according to any one of [1] to [7].
〔9〕前記グラフト部は、エポキシ基を有する重合体である、〔1〕~〔8〕の何れか1つに記載の構造物の製造方法。
[9] The method for producing a structure according to any one of [1] to [8], wherein the graft portion is a polymer having an epoxy group.
〔10〕前記ブロックドウレタン(D)は、ポリアルキレングリコール構造を含むウレタンプレポリマーをブロック剤でキャップした化合物である、〔1〕~〔9〕の何れか1つに記載の構造物の製造方法。
[10] The production of the structure according to any one of [1] to [9], wherein the blocked urethane (D) is a compound in which a urethane prepolymer containing a polyalkylene glycol structure is capped with a blocking agent. Method.
〔11〕前記貼り合わせ工程において、前記第一の被着体に塗布される前記硬化性樹脂組成物の温度は、35℃~80℃である、〔1〕~〔10〕の何れか1つに記載の構造物の製造方法。
[11] In the bonding step, the temperature of the curable resin composition applied to the first adherend is 35 ° C to 80 ° C, any one of [1] to [10]. The method for manufacturing a structure according to.
〔12〕前記硬化工程において、前記硬化性樹脂組成物の硬化温度は、50℃~250℃である〔1〕~〔11〕の何れか1つに記載の構造物の製造方法。
[12] The method for producing a structure according to any one of [1] to [11], wherein in the curing step, the curing temperature of the curable resin composition is 50 ° C to 250 ° C.
以下、実施例および比較例によって本発明の一実施形態をより詳細に説明するが、本発明はこれらに限定されるものではない。本発明の一実施形態は、前記および後記の趣旨に適合し得る範囲で、下記実施例を適宜変更して実施することが可能である。下記実施例を適宜変更して実施される実施形態は、いずれも本発明の技術的範囲に包含される。なお下記実施例、比較例および表において、「部」および「%」とあるのは、それぞれ、質量部および質量%を意味する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. One embodiment of the present invention can be carried out by appropriately modifying the following examples to the extent that it can be adapted to the above-mentioned and the purposes described below. The embodiments in which the following examples are appropriately modified are included in the technical scope of the present invention. In the following Examples, Comparative Examples and Tables, "parts" and "%" mean parts by mass and% by mass, respectively.
(評価方法)
先ず、実施例および比較例によって製造された硬化性樹脂組成物の評価方法について、以下に説明する。 (Evaluation methods)
First, the evaluation method of the curable resin composition produced by Examples and Comparative Examples will be described below.
先ず、実施例および比較例によって製造された硬化性樹脂組成物の評価方法について、以下に説明する。 (Evaluation methods)
First, the evaluation method of the curable resin composition produced by Examples and Comparative Examples will be described below.
[1]体積平均粒子径の測定
水性ラテックスに分散しているポリマー微粒子(B)の体積平均粒子径(Mv)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定した。脱イオン水で水性ラテックスを希釈したものを測定試料として用いた。測定は、水の屈折率、およびそれぞれの製造例で得られたポリマー微粒子(B)の屈折率を入力し、計測時間600秒、Signal Levelが0.6~0.8の範囲内になるように試料濃度を調整して行った。 [1] Measurement of Volume Average Particle Diameter The volume average particle diameter (Mv) of the polymer fine particles (B) dispersed in the aqueous latex was measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.). A water-based latex diluted with deionized water was used as a measurement sample. For the measurement, input the refractive index of water and the refractive index of the polymer fine particles (B) obtained in each production example so that the measurement time is 600 seconds and the Signal Level is in the range of 0.6 to 0.8. The sample concentration was adjusted.
水性ラテックスに分散しているポリマー微粒子(B)の体積平均粒子径(Mv)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定した。脱イオン水で水性ラテックスを希釈したものを測定試料として用いた。測定は、水の屈折率、およびそれぞれの製造例で得られたポリマー微粒子(B)の屈折率を入力し、計測時間600秒、Signal Levelが0.6~0.8の範囲内になるように試料濃度を調整して行った。 [1] Measurement of Volume Average Particle Diameter The volume average particle diameter (Mv) of the polymer fine particles (B) dispersed in the aqueous latex was measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.). A water-based latex diluted with deionized water was used as a measurement sample. For the measurement, input the refractive index of water and the refractive index of the polymer fine particles (B) obtained in each production example so that the measurement time is 600 seconds and the Signal Level is in the range of 0.6 to 0.8. The sample concentration was adjusted.
[2]粘度の測定
レオメーターを使用し、実施例および比較例で得られた各硬化性樹脂組成物の50℃での粘度を、せん断速度5s-1と50s-1とで測定した。本明細書では、5s-1の粘度と50s-1の粘度との比の値(粘度比(5s-1/50s-1))が、1.9以上である場合○(良好)とし、1.9未満である場合×(不良)と評価した。試験結果を表1~9に示す。 [2] Measurement of Viscosity Using a rheometer, the viscosities of the curable resin compositions obtained in Examples and Comparative Examples at 50 ° C. were measured at shear rates of 5s -1 and 50s -1 . In the present specification, when the value of the ratio of the viscosity of 5s -1 to the viscosity of 50s -1 (viscosity ratio (5s -1 / 50s -1 )) is 1.9 or more, it is regarded as ◯ (good) and 1 When it was less than 0.9, it was evaluated as × (defective). The test results are shown in Tables 1-9.
レオメーターを使用し、実施例および比較例で得られた各硬化性樹脂組成物の50℃での粘度を、せん断速度5s-1と50s-1とで測定した。本明細書では、5s-1の粘度と50s-1の粘度との比の値(粘度比(5s-1/50s-1))が、1.9以上である場合○(良好)とし、1.9未満である場合×(不良)と評価した。試験結果を表1~9に示す。 [2] Measurement of Viscosity Using a rheometer, the viscosities of the curable resin compositions obtained in Examples and Comparative Examples at 50 ° C. were measured at shear rates of 5s -1 and 50s -1 . In the present specification, when the value of the ratio of the viscosity of 5s -1 to the viscosity of 50s -1 (viscosity ratio (5s -1 / 50s -1 )) is 1.9 or more, it is regarded as ◯ (good) and 1 When it was less than 0.9, it was evaluated as × (defective). The test results are shown in Tables 1-9.
また、レオメーターを使用し、実施例および比較例で得られた各硬化性樹脂組成物のせん断速度5s-1での粘度を、60℃と25℃とで測定した。60℃の粘度と25℃の粘度の比の値は、大きいほど(1に近づくほど)粘度の温度依存性が小さく、作業性に優れる。試験結果を表5~8に示す。
Further, using a rheometer, the viscosities of the curable resin compositions obtained in Examples and Comparative Examples at a shear rate of 5s- 1 were measured at 60 ° C. and 25 ° C. The larger the value of the ratio of the viscosity at 60 ° C. to the viscosity at 25 ° C. (closer to 1), the smaller the temperature dependence of the viscosity, and the better the workability. The test results are shown in Tables 5-8.
[3]Yield Stressの測定
レオメーターを使用し、実施例および比較例で得られた各硬化性樹脂組成物の50℃での降伏応力(Yield Stress)を測定した。試験結果を表5~8に示す。 [3] Measurement of Yield Stress Using a rheometer, the yield stress (Yield Stress) of each curable resin composition obtained in Examples and Comparative Examples at 50 ° C. was measured. The test results are shown in Tables 5-8.
レオメーターを使用し、実施例および比較例で得られた各硬化性樹脂組成物の50℃での降伏応力(Yield Stress)を測定した。試験結果を表5~8に示す。 [3] Measurement of Yield Stress Using a rheometer, the yield stress (Yield Stress) of each curable resin composition obtained in Examples and Comparative Examples at 50 ° C. was measured. The test results are shown in Tables 5-8.
1.弾性体の形成
製造例1-1;ポリブタジエンゴムラテックス(R-1)の調製
容積100Lの耐圧重合機中に、脱イオン水200質量部、リン酸三カリウム0.03質量部、リン酸二水素カリウム0.25質量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002質量部、硫酸第一鉄・7水和塩(FE)0.001質量部および乳化剤としてドデシルベンゼンスルホン酸ナトリウム(SDS)1.5質量部を投入した。次に、投入した原料を撹拌しつつ耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、ブタジエン(BD)100質量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、パラメンタンハイドロパーオキサイド(PHP)0.015質量部を耐圧重合器内に投入し、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.04質量部を耐圧重合器内に投入し、重合を開始した。重合開始から10時間目に、減圧下にて脱揮して、重合に使用されずに残存したモノマーを脱揮除去することにより、重合を終了した。重合中、PHP、EDTAおよびFEのそれぞれを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体(ポリブタジエンゴム粒子)を含むラテックス(R-1)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.10μmであった。 1. 1. Formation of elastic body Production Example 1-1; Preparation of polybutadiene rubber latex (R-1) In a pressure-resistant polymerizer having a volume of 100 L, 200 parts by mass of deionized water, 0.03 parts by mass of tripotassium phosphate, and dihydrogen phosphate. 0.25 parts by mass of potassium, 0.002 parts by mass of disodium ethylenediaminetetraacetate (EDTA), 0.001 parts by mass of ferrous sulfate heptahydrate (FE) and sodium dodecylbenzene sulfonate (SDS) 1 as an emulsifier .5 parts by mass was charged. Next, oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the charged raw materials. Then, 100 parts by mass of butadiene (BD) was put into the pressure-resistant polymerizer, and the temperature inside the pressure-resistant polymerizer was raised to 45 ° C. After that, 0.015 parts by mass of paramentan hydroperoxide (PHP) was charged into the pressure-resistant polymerizer, and then 0.04 parts by mass of sodium formaldehyde sulfoxylate (SFS) was charged into the pressure-resistant polymerizer to carry out the polymerization. It started. Ten hours after the start of the polymerization, the polymerization was completed by devolatile under reduced pressure to remove the residual monomer that was not used in the polymerization. During the polymerization, each of PHP, EDTA and FE was added into the pressure resistant polymerizer in any amount and at any time. By the polymerization, a latex (R-1) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained. The volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.10 μm.
製造例1-1;ポリブタジエンゴムラテックス(R-1)の調製
容積100Lの耐圧重合機中に、脱イオン水200質量部、リン酸三カリウム0.03質量部、リン酸二水素カリウム0.25質量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002質量部、硫酸第一鉄・7水和塩(FE)0.001質量部および乳化剤としてドデシルベンゼンスルホン酸ナトリウム(SDS)1.5質量部を投入した。次に、投入した原料を撹拌しつつ耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、ブタジエン(BD)100質量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、パラメンタンハイドロパーオキサイド(PHP)0.015質量部を耐圧重合器内に投入し、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.04質量部を耐圧重合器内に投入し、重合を開始した。重合開始から10時間目に、減圧下にて脱揮して、重合に使用されずに残存したモノマーを脱揮除去することにより、重合を終了した。重合中、PHP、EDTAおよびFEのそれぞれを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体(ポリブタジエンゴム粒子)を含むラテックス(R-1)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.10μmであった。 1. 1. Formation of elastic body Production Example 1-1; Preparation of polybutadiene rubber latex (R-1) In a pressure-resistant polymerizer having a volume of 100 L, 200 parts by mass of deionized water, 0.03 parts by mass of tripotassium phosphate, and dihydrogen phosphate. 0.25 parts by mass of potassium, 0.002 parts by mass of disodium ethylenediaminetetraacetate (EDTA), 0.001 parts by mass of ferrous sulfate heptahydrate (FE) and sodium dodecylbenzene sulfonate (SDS) 1 as an emulsifier .5 parts by mass was charged. Next, oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the charged raw materials. Then, 100 parts by mass of butadiene (BD) was put into the pressure-resistant polymerizer, and the temperature inside the pressure-resistant polymerizer was raised to 45 ° C. After that, 0.015 parts by mass of paramentan hydroperoxide (PHP) was charged into the pressure-resistant polymerizer, and then 0.04 parts by mass of sodium formaldehyde sulfoxylate (SFS) was charged into the pressure-resistant polymerizer to carry out the polymerization. It started. Ten hours after the start of the polymerization, the polymerization was completed by devolatile under reduced pressure to remove the residual monomer that was not used in the polymerization. During the polymerization, each of PHP, EDTA and FE was added into the pressure resistant polymerizer in any amount and at any time. By the polymerization, a latex (R-1) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained. The volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.10 μm.
製造例1-2;ポリブタジエンゴムラテックス(R-2)の調製
容積100Lの耐圧重合機中に、製造例1-1で得たポリブタジエンゴムラテックス(R-1)を固形分で7質量部、脱イオン水200質量部、リン酸三カリウム0.03質量部、EDTA0.002質量部、およびFE0.001質量部を投入した。次に、投入した原料を撹拌しつつ、耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、BD93質量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、PHP0.02質量部を耐圧重合器内に投入し、続いてSFS0.10質量部を耐圧重合器内に投入し、重合を開始した。重合開始から30時間目に、減圧下にて脱揮して、重合に使用されずに残存したモノマーを脱揮除去することにより、重合を終了した。重合中、PHP、EDTAおよびFEのそれぞれを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体(ポリブタジエンゴム粒子)を含むラテックス(R-2)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.20μmであった。 Production Example 1-2; Preparation of Polybutadiene Rubber Latex (R-2) In a pressure-resistant polymerization machine having a volume of 100 L, the polybutadiene rubber latex (R-1) obtained in Production Example 1-1 was removed by 7 parts by mass in terms of solid content. 200 parts by mass of ionized water, 0.03 parts by mass of tripotassium phosphate, 0.002 parts by mass of EDTA, and 0.001 part by mass of FE were added. Next, oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the charged raw materials. Then, 93 parts by mass of BD was put into the pressure-resistant polymerizer, and the temperature inside the pressure-resistant polymerizer was raised to 45 ° C. Then, 0.02 part by mass of PHP was put into the pressure-resistant polymerizer, and then 0.10 part by mass of SFS was put into the pressure-resistant polymerizer to start polymerization. Thirty hours after the start of the polymerization, the polymerization was completed by devolatile under reduced pressure to remove the residual monomer that was not used in the polymerization. During the polymerization, each of PHP, EDTA and FE was added into the pressure resistant polymerizer in any amount and at any time. By the polymerization, a latex (R-2) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained. The volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.20 μm.
容積100Lの耐圧重合機中に、製造例1-1で得たポリブタジエンゴムラテックス(R-1)を固形分で7質量部、脱イオン水200質量部、リン酸三カリウム0.03質量部、EDTA0.002質量部、およびFE0.001質量部を投入した。次に、投入した原料を撹拌しつつ、耐圧重合器内部の気体を窒素置換することにより、耐圧重合器内部から酸素を十分に除いた。その後、BD93質量部を耐圧重合器内に投入し、耐圧重合器内の温度を45℃に昇温した。その後、PHP0.02質量部を耐圧重合器内に投入し、続いてSFS0.10質量部を耐圧重合器内に投入し、重合を開始した。重合開始から30時間目に、減圧下にて脱揮して、重合に使用されずに残存したモノマーを脱揮除去することにより、重合を終了した。重合中、PHP、EDTAおよびFEのそれぞれを、任意の量および任意の時宜で耐圧重合器内に添加した。当該重合により、ポリブタジエンゴムを主成分とする弾性体(ポリブタジエンゴム粒子)を含むラテックス(R-2)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.20μmであった。 Production Example 1-2; Preparation of Polybutadiene Rubber Latex (R-2) In a pressure-resistant polymerization machine having a volume of 100 L, the polybutadiene rubber latex (R-1) obtained in Production Example 1-1 was removed by 7 parts by mass in terms of solid content. 200 parts by mass of ionized water, 0.03 parts by mass of tripotassium phosphate, 0.002 parts by mass of EDTA, and 0.001 part by mass of FE were added. Next, oxygen was sufficiently removed from the inside of the pressure-resistant polymerizer by replacing the gas inside the pressure-resistant polymerizer with nitrogen while stirring the charged raw materials. Then, 93 parts by mass of BD was put into the pressure-resistant polymerizer, and the temperature inside the pressure-resistant polymerizer was raised to 45 ° C. Then, 0.02 part by mass of PHP was put into the pressure-resistant polymerizer, and then 0.10 part by mass of SFS was put into the pressure-resistant polymerizer to start polymerization. Thirty hours after the start of the polymerization, the polymerization was completed by devolatile under reduced pressure to remove the residual monomer that was not used in the polymerization. During the polymerization, each of PHP, EDTA and FE was added into the pressure resistant polymerizer in any amount and at any time. By the polymerization, a latex (R-2) containing an elastic body (polybutadiene rubber particles) containing polybutadiene rubber as a main component was obtained. The volume average particle diameter of the polybutadiene rubber particles contained in the obtained latex was 0.20 μm.
2.ポリマー微粒子の調製(グラフト部の形成)
製造例2-1;ポリマー微粒子ラテックス(L-1)の調製
ガラス製反応器に、製造例1-2で調製したポリブタジエンゴムラテックス(R-2)271質量部(ポリブタジエンゴム粒子90質量部を含む)、および、脱イオン水51質量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、およびモノマーの添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、当該窒素置換を行いながら60℃にて投入した原料を撹拌した。次に、EDTA0.004質量部、FE0.001質量部、およびSFS0.2質量部をガラス製反応器内に加えた。その後、グラフト部を形成するためのモノマー(以下、グラフトモノマーとも称する。)(メチルメタクリレート(MMA)6質量部、グリシジルメタクリレート(GMA)2質量部および4-ヒドロキシブチルアクリレート(4HBA)2質量部)と、クメンヒドロパーオキサイド(CHP)0.08質量部との混合物をガラス製反応器内に、120分間かけて連続的に添加した。添加終了後、CHP0.04質量部をガラス製反応器内に添加し、さらに2時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、ポリマー微粒子(B)を含む水性ラテックス(L-1)を得た。モノマー成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.4mmol/gであった。 2. Preparation of polymer fine particles (formation of graft part)
Production Example 2-1; Preparation of Polymer Fine Particle Latex (L-1) A glass reactor contains 271 parts by mass of the polybutadiene rubber latex (R-2) prepared in Production Example 1-2 (90 parts by mass of polybutadiene rubber particles). ) And 51 parts by mass of deionized water were added. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the raw material charged at 60 ° C. was stirred while performing the nitrogen substitution. Next, 0.004 parts by mass of EDTA, 0.001 parts by mass of FE, and 0.2 parts by mass of SFS were added into the glass reactor. Then, a monomer for forming a graft portion (hereinafter, also referred to as a graft monomer) (6 parts by mass of methyl methacrylate (MMA), 2 parts by mass of glycidyl methacrylate (GMA) and 2 parts by mass of 4-hydroxybutyl acrylate (4HBA)). And 0.08 parts by mass of cumene hydroperoxide (CHP) were continuously added into a glass reactor over 120 minutes. After completion of the addition, 0.04 parts by mass of CHP was added into the glass reactor, and the mixture in the glass reactor was continuously stirred for 2 hours to complete the polymerization. By the above operation, an aqueous latex (L-1) containing the polymer fine particles (B) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.4 mmol / g.
製造例2-1;ポリマー微粒子ラテックス(L-1)の調製
ガラス製反応器に、製造例1-2で調製したポリブタジエンゴムラテックス(R-2)271質量部(ポリブタジエンゴム粒子90質量部を含む)、および、脱イオン水51質量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、およびモノマーの添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、当該窒素置換を行いながら60℃にて投入した原料を撹拌した。次に、EDTA0.004質量部、FE0.001質量部、およびSFS0.2質量部をガラス製反応器内に加えた。その後、グラフト部を形成するためのモノマー(以下、グラフトモノマーとも称する。)(メチルメタクリレート(MMA)6質量部、グリシジルメタクリレート(GMA)2質量部および4-ヒドロキシブチルアクリレート(4HBA)2質量部)と、クメンヒドロパーオキサイド(CHP)0.08質量部との混合物をガラス製反応器内に、120分間かけて連続的に添加した。添加終了後、CHP0.04質量部をガラス製反応器内に添加し、さらに2時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、ポリマー微粒子(B)を含む水性ラテックス(L-1)を得た。モノマー成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.4mmol/gであった。 2. Preparation of polymer fine particles (formation of graft part)
Production Example 2-1; Preparation of Polymer Fine Particle Latex (L-1) A glass reactor contains 271 parts by mass of the polybutadiene rubber latex (R-2) prepared in Production Example 1-2 (90 parts by mass of polybutadiene rubber particles). ) And 51 parts by mass of deionized water were added. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the raw material charged at 60 ° C. was stirred while performing the nitrogen substitution. Next, 0.004 parts by mass of EDTA, 0.001 parts by mass of FE, and 0.2 parts by mass of SFS were added into the glass reactor. Then, a monomer for forming a graft portion (hereinafter, also referred to as a graft monomer) (6 parts by mass of methyl methacrylate (MMA), 2 parts by mass of glycidyl methacrylate (GMA) and 2 parts by mass of 4-hydroxybutyl acrylate (4HBA)). And 0.08 parts by mass of cumene hydroperoxide (CHP) were continuously added into a glass reactor over 120 minutes. After completion of the addition, 0.04 parts by mass of CHP was added into the glass reactor, and the mixture in the glass reactor was continuously stirred for 2 hours to complete the polymerization. By the above operation, an aqueous latex (L-1) containing the polymer fine particles (B) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.4 mmol / g.
製造例2-2;ポリマー微粒子ラテックス(L-2)の調製
製造例2-1において、グラフトモノマーとして<MMA6質量部、GMA2質量部および4HBA2質量部>の代わりに<MMA8質量部およびGMA2質量部>を用いたこと以外は製造例2-1と同じ方法にて、ポリマー微粒子を含む水性ラテックス(L-2)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0mmol/gであった。 Production Example 2-2; Preparation of Polymer Fine Latex (L-2) In Production Example 2-1 as graft monomers, <MMA 8 parts by mass, GMA 2 parts by mass and 4HBA 2 parts by mass> are replaced with <MMA 8 parts by mass and GMA 2 parts by mass. > Was used to obtain an aqueous latex (L-2) containing polymer fine particles by the same method as in Production Example 2-1. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0 mmol / g.
製造例2-1において、グラフトモノマーとして<MMA6質量部、GMA2質量部および4HBA2質量部>の代わりに<MMA8質量部およびGMA2質量部>を用いたこと以外は製造例2-1と同じ方法にて、ポリマー微粒子を含む水性ラテックス(L-2)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0mmol/gであった。 Production Example 2-2; Preparation of Polymer Fine Latex (L-2) In Production Example 2-1 as graft monomers, <MMA 8 parts by mass, GMA 2 parts by mass and 4HBA 2 parts by mass> are replaced with <MMA 8 parts by mass and GMA 2 parts by mass. > Was used to obtain an aqueous latex (L-2) containing polymer fine particles by the same method as in Production Example 2-1. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0 mmol / g.
製造例2-3;ポリマー微粒子ラテックス(L-3)の調製
ガラス製反応器に、製造例1-2で調製したポリブタジエンゴムラテックス(R-2)262質量部(ポリブタジエンゴム粒子87質量部を含む)、および、脱イオン水57質量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、およびモノマーの添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、当該窒素置換を行いながら60℃にて投入した原料を撹拌した。次に、EDTA0.004質量部、FE0.001質量部、およびSFS0.13質量部をガラス製反応器内に加えた。その後、グラフトモノマー(MMA3質量部、ブチルアクリレート(BA)7質量部、GMA2質量部およびヒドロキシエチルメタクリレート(HEMA)1質量部)と、クメンヒドロパーオキサイド(CHP)0.04質量部との混合物をガラス製反応器内に、120分間かけて連続的に添加した。添加終了後、CHP0.04質量部をガラス製反応器内に添加し、さらに2時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、ポリマー微粒子(B)を含む水性ラテックス(L-3)を得た。モノマー成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.59mmol/gであった。 Production Example 2-3; Preparation of Polymer Fine Particle Latex (L-3) The glass reactor contains 262 parts by mass of the polybutadiene rubber latex (R-2) prepared in Production Example 1-2 (87 parts by mass of polybutadiene rubber particles). ) And 57 parts by mass of deionized water were added. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the raw material charged at 60 ° C. was stirred while performing the nitrogen substitution. Next, 0.004 parts by mass of EDTA, 0.001 parts by mass of FE, and 0.13 parts by mass of SFS were added into the glass reactor. Then, a mixture of the graft monomer (3 parts by mass of MMA, 7 parts by mass of butyl acrylate (BA), 2 parts by mass of GMA and 1 part by mass of hydroxyethyl methacrylate (HEMA)) and 0.04 part by mass of cumenehydroperoxide (CHP) was added. It was continuously added to a glass reactor over 120 minutes. After completion of the addition, 0.04 parts by mass of CHP was added into the glass reactor, and the mixture in the glass reactor was continuously stirred for 2 hours to complete the polymerization. By the above operation, an aqueous latex (L-3) containing the polymer fine particles (B) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.59 mmol / g.
ガラス製反応器に、製造例1-2で調製したポリブタジエンゴムラテックス(R-2)262質量部(ポリブタジエンゴム粒子87質量部を含む)、および、脱イオン水57質量部を投入した。ここで、前記ガラス製反応器は、温度計、撹拌機、還流冷却器、窒素流入口、およびモノマーの添加装置を有していた。ガラス製反応器中の気体を窒素で置換し、当該窒素置換を行いながら60℃にて投入した原料を撹拌した。次に、EDTA0.004質量部、FE0.001質量部、およびSFS0.13質量部をガラス製反応器内に加えた。その後、グラフトモノマー(MMA3質量部、ブチルアクリレート(BA)7質量部、GMA2質量部およびヒドロキシエチルメタクリレート(HEMA)1質量部)と、クメンヒドロパーオキサイド(CHP)0.04質量部との混合物をガラス製反応器内に、120分間かけて連続的に添加した。添加終了後、CHP0.04質量部をガラス製反応器内に添加し、さらに2時間、ガラス製反応器内の混合物の撹拌を続けて重合を完結させた。以上の操作により、ポリマー微粒子(B)を含む水性ラテックス(L-3)を得た。モノマー成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.59mmol/gであった。 Production Example 2-3; Preparation of Polymer Fine Particle Latex (L-3) The glass reactor contains 262 parts by mass of the polybutadiene rubber latex (R-2) prepared in Production Example 1-2 (87 parts by mass of polybutadiene rubber particles). ) And 57 parts by mass of deionized water were added. Here, the glass reactor had a thermometer, a stirrer, a reflux condenser, a nitrogen inlet, and a monomer addition device. The gas in the glass reactor was replaced with nitrogen, and the raw material charged at 60 ° C. was stirred while performing the nitrogen substitution. Next, 0.004 parts by mass of EDTA, 0.001 parts by mass of FE, and 0.13 parts by mass of SFS were added into the glass reactor. Then, a mixture of the graft monomer (3 parts by mass of MMA, 7 parts by mass of butyl acrylate (BA), 2 parts by mass of GMA and 1 part by mass of hydroxyethyl methacrylate (HEMA)) and 0.04 part by mass of cumenehydroperoxide (CHP) was added. It was continuously added to a glass reactor over 120 minutes. After completion of the addition, 0.04 parts by mass of CHP was added into the glass reactor, and the mixture in the glass reactor was continuously stirred for 2 hours to complete the polymerization. By the above operation, an aqueous latex (L-3) containing the polymer fine particles (B) was obtained. The polymerization conversion rate of the monomer component was 99% or more. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.59 mmol / g.
製造例2-4;ポリマー微粒子ラテックス(L-4)の調製
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA3質量部、BA7質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-4)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-4; Preparation of Polymer Fine Particle Latex (L-4) In Production Example 2-3, 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers. , BA 7 parts by mass, GMA 2 parts by mass and 4HBA 1 part by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-4) containing polymer fine particles (B). The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA3質量部、BA7質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-4)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-4; Preparation of Polymer Fine Particle Latex (L-4) In Production Example 2-3, 3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers. , BA 7 parts by mass, GMA 2 parts by mass and 4HBA 1 part by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-4) containing polymer fine particles (B). The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-5;ポリマー微粒子ラテックス(L-5)の調製
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA10質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-5)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-5; Preparation of Polymer Fine Particle Latex (L-5) In Production Example 2-3, 10 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , GMA 2 parts by mass and 4HBA 1 part by mass> were used to obtain an aqueous latex (L-5) containing the polymer fine particles (B) by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA10質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-5)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-5; Preparation of Polymer Fine Particle Latex (L-5) In Production Example 2-3, 10 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , GMA 2 parts by mass and 4HBA 1 part by mass> were used to obtain an aqueous latex (L-5) containing the polymer fine particles (B) by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-6;ポリマー微粒子ラテックス(L-6)の調製
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA7質量部、BA3質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-6)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-6; Preparation of Polymer Fine Particle Latex (L-6) In Production Example 2-3, 7 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers. , BA3 part by mass, GMA2 part by mass and 4HBA1 part by mass> were obtained, and an aqueous latex (L-6) containing polymer fine particles (B) was obtained by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA7質量部、BA3質量部、GMA2質量部および4HBA1質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-6)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、0.53mmol/gであった。 Production Example 2-6; Preparation of Polymer Fine Particle Latex (L-6) In Production Example 2-3, 7 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA are used as graft monomers. , BA3 part by mass, GMA2 part by mass and 4HBA1 part by mass> were obtained, and an aqueous latex (L-6) containing polymer fine particles (B) was obtained by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 0.53 mmol / g.
製造例2-7;ポリマー微粒子ラテックス(L-7)の調製
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA9質量部、GMA2質量部および4HBA2質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-7)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.1mmol/gであった。 Production Example 2-7; Preparation of Polymer Fine Particle Latex (L-7) In Production Example 2-3, 9 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , GMA 2 parts by mass and 4HBA 2 parts by mass> were used to obtain an aqueous latex (L-7) containing the polymer fine particles (B) by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA9質量部、GMA2質量部および4HBA2質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-7)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.1mmol/gであった。 Production Example 2-7; Preparation of Polymer Fine Particle Latex (L-7) In Production Example 2-3, 9 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , GMA 2 parts by mass and 4HBA 2 parts by mass> were used to obtain an aqueous latex (L-7) containing the polymer fine particles (B) by the same method as in Production Example 2-3. The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
製造例2-8;ポリマー微粒子ラテックス(L-8)の調製
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA6質量部、BA3質量部、GMA2質量部および4HBA2質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-8)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.1mmol/gであった。 Production Example 2-8; Preparation of Polymer Fine Particle Latex (L-8) In Production Example 2-3, 6 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , BA3 parts by mass, GMA2 parts by mass and 4HBA2 parts by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-8) containing polymer fine particles (B). The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
製造例2-3において、グラフトモノマーとして<MMA3質量部、BA7質量部、GMA2質量部およびHEMA1質量部>の代わりに<MMA6質量部、BA3質量部、GMA2質量部および4HBA2質量部>を用いたこと以外は製造例2-3と同じ方法にて、ポリマー微粒子(B)を含む水性ラテックス(L-8)を得た。得られた水性ラテックスに含まれるポリマー微粒子の体積平均粒子径は0.21μmであった。得られたポリマー微粒子における、グラフト部の総質量に対するヒドロキシ基の含有量は、1.1mmol/gであった。 Production Example 2-8; Preparation of Polymer Fine Particle Latex (L-8) In Production Example 2-3, 6 parts by mass of MMA instead of <3 parts by mass of MMA, 7 parts by mass of BA, 2 parts by mass of GMA and 1 part by mass of HEMA> as graft monomers. , BA3 parts by mass, GMA2 parts by mass and 4HBA2 parts by mass> were obtained in the same manner as in Production Example 2-3 to obtain an aqueous latex (L-8) containing polymer fine particles (B). The volume average particle size of the polymer fine particles contained in the obtained aqueous latex was 0.21 μm. The content of the hydroxy group with respect to the total mass of the graft portion in the obtained polymer fine particles was 1.1 mmol / g.
3.硬化性樹脂中にポリマー微粒子(B)またはポリマー微粒子が分散した分散物(M)の調製
製造例3-1;分散物(M-1)の調製
25℃の1L混合槽にメチルエチルケトン(MEK)132gを導入した。次に、MEKを撹拌しながら、前記製造例2-1で得られたポリマー微粒子(B)を含む水性ラテックス(L-1)132g(ポリマー微粒子(B)40g相当)を混合槽内に投入した。混合槽内の原料を均一に混合後、混合槽内の原料を攪拌しながら、水200gを80g/分の供給速度で混合槽内に投入した。水の供給終了後、速やかに前記攪拌を停止し、ポリマー微粒子(B)を含む凝集体および少量の有機溶媒を含む水相からなるスラリー液を得た。前記凝集体は、浮上性であった。次に、一部の水相を含む凝集体を混合槽内に残すように、水相360gを混合槽下部の払い出し口より排出した。得られた凝集体にMEK90gを追加して、これらを均一に混合し、MEK中にポリマー微粒子(B)が均一に分散している分散体を得た。得られた分散体に、(A)成分であるエポキシ樹脂(A-1)60gを添加し、これらを均一に混合した。エポキシ樹脂(A-1)については、下記に詳述する。得られた混合物から、回転式の蒸発装置を用いて、MEKを除去した。このようにして、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-1)を得た。分散物(M-1)100重量%中、エポキシ樹脂(A)は60重量%であり、ポリマー微粒子(B)は40重量%であった。 3. 3. Preparation of polymer fine particles (B) or dispersion (M) in which polymer fine particles are dispersed in a curable resin Production Example 3-1; Preparation of dispersion (M-1) 132 g of methyl ethyl ketone (MEK) in a 1 L mixing tank at 25 ° C. Was introduced. Next, while stirring MEK, 132 g of the aqueous latex (L-1) containing the polymer fine particles (B) obtained in Production Example 2-1 (corresponding to 40 g of the polymer fine particles (B)) was put into the mixing tank. .. After the raw materials in the mixing tank were uniformly mixed, 200 g of water was added into the mixing tank at a supply rate of 80 g / min while stirring the raw materials in the mixing tank. After the water supply was completed, the stirring was immediately stopped to obtain a slurry liquid consisting of an aggregate containing the polymer fine particles (B) and an aqueous phase containing a small amount of an organic solvent. The aggregate was buoyant. Next, 360 g of the aqueous phase was discharged from the discharge port at the bottom of the mixing tank so that the agglomerates containing a part of the aqueous phase remained in the mixing tank. 90 g of MEK was added to the obtained aggregate and these were uniformly mixed to obtain a dispersion in which the polymer fine particles (B) were uniformly dispersed in the MEK. To the obtained dispersion, 60 g of the epoxy resin (A-1) as the component (A) was added, and these were uniformly mixed. The epoxy resin (A-1) will be described in detail below. MEK was removed from the resulting mixture using a rotary evaporator. In this way, a dispersion (M-1) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained. The epoxy resin (A) was 60% by weight and the polymer fine particles (B) were 40% by weight in 100% by weight of the dispersion (M-1).
製造例3-1;分散物(M-1)の調製
25℃の1L混合槽にメチルエチルケトン(MEK)132gを導入した。次に、MEKを撹拌しながら、前記製造例2-1で得られたポリマー微粒子(B)を含む水性ラテックス(L-1)132g(ポリマー微粒子(B)40g相当)を混合槽内に投入した。混合槽内の原料を均一に混合後、混合槽内の原料を攪拌しながら、水200gを80g/分の供給速度で混合槽内に投入した。水の供給終了後、速やかに前記攪拌を停止し、ポリマー微粒子(B)を含む凝集体および少量の有機溶媒を含む水相からなるスラリー液を得た。前記凝集体は、浮上性であった。次に、一部の水相を含む凝集体を混合槽内に残すように、水相360gを混合槽下部の払い出し口より排出した。得られた凝集体にMEK90gを追加して、これらを均一に混合し、MEK中にポリマー微粒子(B)が均一に分散している分散体を得た。得られた分散体に、(A)成分であるエポキシ樹脂(A-1)60gを添加し、これらを均一に混合した。エポキシ樹脂(A-1)については、下記に詳述する。得られた混合物から、回転式の蒸発装置を用いて、MEKを除去した。このようにして、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-1)を得た。分散物(M-1)100重量%中、エポキシ樹脂(A)は60重量%であり、ポリマー微粒子(B)は40重量%であった。 3. 3. Preparation of polymer fine particles (B) or dispersion (M) in which polymer fine particles are dispersed in a curable resin Production Example 3-1; Preparation of dispersion (M-1) 132 g of methyl ethyl ketone (MEK) in a 1 L mixing tank at 25 ° C. Was introduced. Next, while stirring MEK, 132 g of the aqueous latex (L-1) containing the polymer fine particles (B) obtained in Production Example 2-1 (corresponding to 40 g of the polymer fine particles (B)) was put into the mixing tank. .. After the raw materials in the mixing tank were uniformly mixed, 200 g of water was added into the mixing tank at a supply rate of 80 g / min while stirring the raw materials in the mixing tank. After the water supply was completed, the stirring was immediately stopped to obtain a slurry liquid consisting of an aggregate containing the polymer fine particles (B) and an aqueous phase containing a small amount of an organic solvent. The aggregate was buoyant. Next, 360 g of the aqueous phase was discharged from the discharge port at the bottom of the mixing tank so that the agglomerates containing a part of the aqueous phase remained in the mixing tank. 90 g of MEK was added to the obtained aggregate and these were uniformly mixed to obtain a dispersion in which the polymer fine particles (B) were uniformly dispersed in the MEK. To the obtained dispersion, 60 g of the epoxy resin (A-1) as the component (A) was added, and these were uniformly mixed. The epoxy resin (A-1) will be described in detail below. MEK was removed from the resulting mixture using a rotary evaporator. In this way, a dispersion (M-1) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained. The epoxy resin (A) was 60% by weight and the polymer fine particles (B) were 40% by weight in 100% by weight of the dispersion (M-1).
製造例3-2;分散物(M-2)の調製
製造例3-1において、ポリマー微粒子を含む水性ラテックスとして(L-1)132gの代わりに(L-2)132g(ポリマー微粒子40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子が分散している分散物(M-2)を得た。 Production Example 3-2; Preparation of dispersion (M-2) In Production Example 3-1 as an aqueous latex containing polymer fine particles, 132 g of (L-2) (equivalent to 40 g of polymer fine particles) instead of 132 g of (L-1). A dispersion (M-2) in which polymer fine particles were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that the above was used.
製造例3-1において、ポリマー微粒子を含む水性ラテックスとして(L-1)132gの代わりに(L-2)132g(ポリマー微粒子40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子が分散している分散物(M-2)を得た。 Production Example 3-2; Preparation of dispersion (M-2) In Production Example 3-1 as an aqueous latex containing polymer fine particles, 132 g of (L-2) (equivalent to 40 g of polymer fine particles) instead of 132 g of (L-1). A dispersion (M-2) in which polymer fine particles were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that the above was used.
製造例3-3;分散物(M-3)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-3)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-3)を得た。 Production Example 3-3; Preparation of Dispersion (M-3) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-3) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-3) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-3)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-3)を得た。 Production Example 3-3; Preparation of Dispersion (M-3) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-3) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-3) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-4;分散物(M-4)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-4)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-4)を得た。 Production Example 3-4; Preparation of Dispersion (M-4) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-4) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-4) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-4)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-4)を得た。 Production Example 3-4; Preparation of Dispersion (M-4) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-4) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-4) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-5;分散物(M-5)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-5)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-5)を得た。 Production Example 3-5; Preparation of dispersion (M-5) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-5) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-5) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-5)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-5)を得た。 Production Example 3-5; Preparation of dispersion (M-5) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-5) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-5) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-6;分散物(M-6)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-6)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-6)を得た。 Production Example 3-6; Preparation of Dispersion (M-6) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-6) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-6) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-6)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-6)を得た。 Production Example 3-6; Preparation of Dispersion (M-6) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-6) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-6) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-7;分散物(M-7)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-7)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-7)を得た。 Production Example 3-7; Preparation of dispersion (M-7) In Production Example 3-1 as the aqueous latex containing the polymer fine particles (B), 132 g (L-7) (polymer fine particles) instead of 132 g of (L-1). A dispersion (M-7) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-7)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-7)を得た。 Production Example 3-7; Preparation of dispersion (M-7) In Production Example 3-1 as the aqueous latex containing the polymer fine particles (B), 132 g (L-7) (polymer fine particles) instead of 132 g of (L-1). A dispersion (M-7) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-8;分散物(M-8)の調製
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-8)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-8)を得た。 Production Example 3-8; Preparation of Dispersion (M-8) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-8) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-8) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
製造例3-1において、ポリマー微粒子(B)を含む水性ラテックスとして(L-1)132gの代わりに(L-8)132g(ポリマー微粒子(B)40g相当)を用いたこと以外は製造例3-1と同じ方法にて、エポキシ樹脂(A)にポリマー微粒子(B)が分散している分散物(M-8)を得た。 Production Example 3-8; Preparation of Dispersion (M-8) In Production Example 3-1 as an aqueous latex containing polymer fine particles (B), 132 g of (L-8) (polymer fine particles) was used instead of 132 g of (L-1). A dispersion (M-8) in which the polymer fine particles (B) were dispersed in the epoxy resin (A) was obtained by the same method as in Production Example 3-1 except that (B) equivalent to 40 g) was used.
(実施例1~36、比較例1~12)
表1~9に示す処方(配合)にしたがって、各成分をそれぞれ計量し、十分に混合して硬化性樹脂組成物を得た。得られた硬化性樹脂組成物の粘度およびYield Stressの試験結果を表1~9に示す。なお、硬化性樹脂組成物中の、値Xは、各成分の表中の添加量と、後述の各成分の比重の値から、計算した。 (Examples 1 to 36, Comparative Examples 1 to 12)
Each component was weighed according to the formulations (blending) shown in Tables 1 to 9 and mixed sufficiently to obtain a curable resin composition. Tables 1 to 9 show the viscosities of the obtained curable resin composition and the test results of Yield Stress. The value X in the curable resin composition was calculated from the amount of each component added in the table and the value of the specific gravity of each component described later.
表1~9に示す処方(配合)にしたがって、各成分をそれぞれ計量し、十分に混合して硬化性樹脂組成物を得た。得られた硬化性樹脂組成物の粘度およびYield Stressの試験結果を表1~9に示す。なお、硬化性樹脂組成物中の、値Xは、各成分の表中の添加量と、後述の各成分の比重の値から、計算した。 (Examples 1 to 36, Comparative Examples 1 to 12)
Each component was weighed according to the formulations (blending) shown in Tables 1 to 9 and mixed sufficiently to obtain a curable resin composition. Tables 1 to 9 show the viscosities of the obtained curable resin composition and the test results of Yield Stress. The value X in the curable resin composition was calculated from the amount of each component added in the table and the value of the specific gravity of each component described later.
なお、表1~9中の各種配合剤は、以下に示すものを使用した。
<エポキシ樹脂(A)>
A-1:JER828(三菱化学製、常温で液状のビスフェノールA型エポキシ樹脂、エポキシ当量:184~194)[比重:1.16]
<エポキシ樹脂(A)(A-1)中にポリマー微粒子[比重:0.91]が分散した分散物(M)>M-1~M-8:前記製造例3-1~8で得られた分散物
<ヒュームドシリカ(C)>
CAB-O-SIL TS-720(CABOT製、ポリジメチルシロキサンで表面処理されたヒュームドシリカ)[比重:2.2]
<ブロックドウレタン(D)>[比重:1.04]
C-1:QR-9466(ADEKA製、ブロックドウレタン、潜在NCO%:3.0%、GPCによるポリスチレン換算数平均分子量:7900)
C-2:タケネートB-7055(三井化学製、ブロックドウレタン、潜在NCO%:2.0%、GPCによるポリスチレン換算数平均分子量:12300)
C-3:タケネートB-7005(三井化学製、ブロックドウレタン、潜在NCO%:2.7%、GPCによるポリスチレン換算数平均分子量:7600)
C-4:タケネートB-7030(三井化学製、ブロックドウレタン、潜在NCO%:3.4%、GPCによるポリスチレン換算数平均分子量:6100)
<無機充填材(E)>
≪重質炭酸カルシウム≫
ホワイトンSB(白石カルシウム製、表面無処理の重質炭酸カルシウム、平均粒子径:1.8μm)[比重:2.7]
ライトンA(白石カルシウム製、脂肪酸で表面処理された重質炭酸カルシウム、平均粒子径:1.8μm)[比重:2.7]
≪酸化カルシウム≫
CML#31(近江化学工業製、脂肪酸で表面処理された酸化カルシウム)[比重:3.34]
<エポキシ樹脂硬化剤(F)>[比重:1.40]
Dyhard 100S(AlzChem製、ジシアンジアミド)
<硬化促進剤(G)>[比重:1.12]
Dyhard UR300(AlzChem製、1,1-ジメチル-3-フェニルウレア)
<その他の成分>
≪カーボンブラック≫
MONARCH 280(Cabot製)[比重:1.8]
≪ゴム変性エポキシ樹脂≫
Hypox RA1340(CVC Thermoset Specialties製)[比重:1.08]
The various compounding agents shown in Tables 1 to 9 were used.
<Epoxy resin (A)>
A-1: JER828 (manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin liquid at room temperature, epoxy equivalent: 184 to 194) [specific gravity: 1.16]
<Dispersion (M) in which polymer fine particles [specific gravity: 0.91] are dispersed in epoxy resins (A) and (A-1)> M-1 to M-8: Obtained in Production Examples 3-1 to 8 Dispersion <Fumed silica (C)>
CAB-O-SIL TS-720 (manufactured by CABOT, fumed silica surface-treated with polydimethylsiloxane) [specific gravity: 2.2]
<Blocked urethane (D)> [Specific gravity: 1.04]
C-1: QR-9466 (made by ADEKA, blocked urethane, latent NCO%: 3.0%, polystyrene-equivalent number average molecular weight by GPC: 7900)
C-2: Takenate B-7055 (Mitsui Chemicals, blocked urethane, latent NCO%: 2.0%, polystyrene-equivalent number average molecular weight by GPC: 12300)
C-3: Takenate B-7005 (Mitsui Chemicals, blocked urethane, latent NCO%: 2.7%, polystyrene-equivalent number average molecular weight by GPC: 7600)
C-4: Takenate B-7030 (Mitsui Chemicals, blocked urethane, latent NCO%: 3.4%, polystyrene-equivalent number average molecular weight by GPC: 6100)
<Inorganic filler (E)>
≪Heavy calcium carbonate≫
Shiraishi SB (made of Shiraishi calcium, surface-untreated heavy calcium carbonate, average particle size: 1.8 μm) [specific gravity: 2.7]
Ryton A (made of Shiraishi calcium, heavy calcium carbonate surface-treated with fatty acids, average particle size: 1.8 μm) [specific gravity: 2.7]
≪Calcium oxide≫
CML # 31 (manufactured by Omi Chemical Industry, calcium oxide surface-treated with fatty acids) [Specific gravity: 3.34]
<Epoxy resin curing agent (F)> [Specific gravity: 1.40]
Dyhard 100S (manufactured by AlzChem, dicyandiamide)
<Curing accelerator (G)> [Specific gravity: 1.12]
Dyhard UR300 (manufactured by AlzChem, 1,1-dimethyl-3-phenylurea)
<Other ingredients>
≪Carbon black≫
MONARCH 280 (manufactured by Cabot) [Specific gravity: 1.8]
≪Rubber-modified epoxy resin≫
Hyperx RA1340 (manufactured by CVC Thermoset Specialties) [Specific gravity: 1.08]
<エポキシ樹脂(A)>
A-1:JER828(三菱化学製、常温で液状のビスフェノールA型エポキシ樹脂、エポキシ当量:184~194)[比重:1.16]
<エポキシ樹脂(A)(A-1)中にポリマー微粒子[比重:0.91]が分散した分散物(M)>M-1~M-8:前記製造例3-1~8で得られた分散物
<ヒュームドシリカ(C)>
CAB-O-SIL TS-720(CABOT製、ポリジメチルシロキサンで表面処理されたヒュームドシリカ)[比重:2.2]
<ブロックドウレタン(D)>[比重:1.04]
C-1:QR-9466(ADEKA製、ブロックドウレタン、潜在NCO%:3.0%、GPCによるポリスチレン換算数平均分子量:7900)
C-2:タケネートB-7055(三井化学製、ブロックドウレタン、潜在NCO%:2.0%、GPCによるポリスチレン換算数平均分子量:12300)
C-3:タケネートB-7005(三井化学製、ブロックドウレタン、潜在NCO%:2.7%、GPCによるポリスチレン換算数平均分子量:7600)
C-4:タケネートB-7030(三井化学製、ブロックドウレタン、潜在NCO%:3.4%、GPCによるポリスチレン換算数平均分子量:6100)
<無機充填材(E)>
≪重質炭酸カルシウム≫
ホワイトンSB(白石カルシウム製、表面無処理の重質炭酸カルシウム、平均粒子径:1.8μm)[比重:2.7]
ライトンA(白石カルシウム製、脂肪酸で表面処理された重質炭酸カルシウム、平均粒子径:1.8μm)[比重:2.7]
≪酸化カルシウム≫
CML#31(近江化学工業製、脂肪酸で表面処理された酸化カルシウム)[比重:3.34]
<エポキシ樹脂硬化剤(F)>[比重:1.40]
Dyhard 100S(AlzChem製、ジシアンジアミド)
<硬化促進剤(G)>[比重:1.12]
Dyhard UR300(AlzChem製、1,1-ジメチル-3-フェニルウレア)
<その他の成分>
≪カーボンブラック≫
MONARCH 280(Cabot製)[比重:1.8]
≪ゴム変性エポキシ樹脂≫
Hypox RA1340(CVC Thermoset Specialties製)[比重:1.08]
<Epoxy resin (A)>
A-1: JER828 (manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin liquid at room temperature, epoxy equivalent: 184 to 194) [specific gravity: 1.16]
<Dispersion (M) in which polymer fine particles [specific gravity: 0.91] are dispersed in epoxy resins (A) and (A-1)> M-1 to M-8: Obtained in Production Examples 3-1 to 8 Dispersion <Fumed silica (C)>
CAB-O-SIL TS-720 (manufactured by CABOT, fumed silica surface-treated with polydimethylsiloxane) [specific gravity: 2.2]
<Blocked urethane (D)> [Specific gravity: 1.04]
C-1: QR-9466 (made by ADEKA, blocked urethane, latent NCO%: 3.0%, polystyrene-equivalent number average molecular weight by GPC: 7900)
C-2: Takenate B-7055 (Mitsui Chemicals, blocked urethane, latent NCO%: 2.0%, polystyrene-equivalent number average molecular weight by GPC: 12300)
C-3: Takenate B-7005 (Mitsui Chemicals, blocked urethane, latent NCO%: 2.7%, polystyrene-equivalent number average molecular weight by GPC: 7600)
C-4: Takenate B-7030 (Mitsui Chemicals, blocked urethane, latent NCO%: 3.4%, polystyrene-equivalent number average molecular weight by GPC: 6100)
<Inorganic filler (E)>
≪Heavy calcium carbonate≫
Shiraishi SB (made of Shiraishi calcium, surface-untreated heavy calcium carbonate, average particle size: 1.8 μm) [specific gravity: 2.7]
Ryton A (made of Shiraishi calcium, heavy calcium carbonate surface-treated with fatty acids, average particle size: 1.8 μm) [specific gravity: 2.7]
≪Calcium oxide≫
CML # 31 (manufactured by Omi Chemical Industry, calcium oxide surface-treated with fatty acids) [Specific gravity: 3.34]
<Epoxy resin curing agent (F)> [Specific gravity: 1.40]
Dyhard 100S (manufactured by AlzChem, dicyandiamide)
<Curing accelerator (G)> [Specific gravity: 1.12]
Dyhard UR300 (manufactured by AlzChem, 1,1-dimethyl-3-phenylurea)
<Other ingredients>
≪Carbon black≫
MONARCH 280 (manufactured by Cabot) [Specific gravity: 1.8]
≪Rubber-modified epoxy resin≫
Hyperx RA1340 (manufactured by CVC Thermoset Specialties) [Specific gravity: 1.08]
表1、2および5~9から、本発明の一実施形態に係る(A)成分、(B)成分および(C)成分を含有する実施例1~36の硬化性樹脂組成物は、せん断速度依存的粘度比(5s-1/50s-1)が、いずれも、良好の水準以上であった。それ故に、本硬化性樹脂組成物は粘度のせん断速度依存性が大きいことから作業性に優れることが判る。
From Tables 1, 2 and 5 to 9, the curable resin compositions of Examples 1 to 36 containing the components (A), (B) and (C) according to the embodiment of the present invention have shear rates. The dependent viscosity ratios (5s -1 / 50s -1 ) were all above good levels. Therefore, it can be seen that the present curable resin composition is excellent in workability because the viscosity has a large dependence on the shear rate.
ブロックドウレタン(D)を含有しない実施例1、実施例7、実施例11および実施例36の硬化性樹脂組成物は、粘度のせん断速度依存性が大きく作業性に優れることが判る。
It can be seen that the curable resin compositions of Example 1, Example 7, Example 11 and Example 36 which do not contain blocked urethane (D) have a large viscosity dependence on the shear rate and are excellent in workability.
ブロックドウレタン(D)を含有する実施例2~6、実施例8~10および実施例12~35の硬化性樹脂組成物は、特に、前記式(1)を満たす場合、粘度のせん断速度依存性が大きく作業性に優れることが分かる。
The curable resin compositions of Examples 2 to 6, Examples 8 to 10 and Examples 12 to 35 containing the blocked urethane (D) depend on the shear rate of viscosity, particularly when the above formula (1) is satisfied. It can be seen that the property is large and the workability is excellent.
実施例31~36から、ブロックドウレタン(D)の含有量が少ないほど、粘度のせん断速度依存性が大きく作業性に優れることが分かる。
From Examples 31 to 36, it can be seen that the smaller the content of blocked urethane (D), the greater the dependence of viscosity on the shear rate and the better the workability.
また、表5~8から、実施例12~18、実施例22~25および実施例29~30の硬化性樹脂組成物は、温度依存的粘度比(60℃/25℃)が高く、作業性に優れることが判る。
Further, from Tables 5 to 8, the curable resin compositions of Examples 12 to 18, Examples 22 to 25 and Examples 29 to 30 have a high temperature-dependent viscosity ratio (60 ° C./25 ° C.) and workability. It turns out that it is excellent.
また、表5~8から、実施例12~18、実施例22~25および実施例29~30の硬化性樹脂組成物は、Yield Stressが高く、耐シャワー性に優れることが判る。
Further, from Tables 5 to 8, it can be seen that the curable resin compositions of Examples 12 to 18, Examples 22 to 25 and Examples 29 to 30 have high Yield Stress and excellent shower resistance.
実施例1~36および比較例1~12の各硬化性樹脂組成物を用いて、構造物を製造した。すなわち、(1)実施例1~36および比較例1~12の各硬化性樹脂組成物をアルミ基材(第一の被着体)に塗布し、別のアルミ基材(第二の被着体)を、各硬化性樹脂組成物を塗布したアルミ基材と貼り合わせることにより、貼り合わせ工程を実施した後、(2)貼り合わせ工程にて得られた貼り合わせ体を洗浄することにより、洗浄工程を実施し、さらに(3)硬化性樹脂組成物を硬化させることにより、硬化工程を実施した。かかる方法により、構造物を製造した。その結果、本発明の一実施形態に係る(A)成分、(B)成分および(C)成分を含有する実施例1~36の硬化性樹脂組成物を用いた構造物の製造は、作業性が良好であった。実施例1、6、7、10、11および33~36の硬化性樹脂組成物を用いた構造物の製造は、実施例2~5、8、9、31および32の硬化性樹脂組成物を用いた構造物の製造と比較して、作業性がより良好であった。実施例15、16、19~21、23、25~28および30の硬化性樹脂組成物を用いた構造物の製造は、実施例12~14、17、18、22、24および29の硬化性樹脂組成物を用いた構造物の製造と比較して、作業性がより良好であった。
A structure was produced using each of the curable resin compositions of Examples 1 to 36 and Comparative Examples 1 to 12. That is, (1) each of the curable resin compositions of Examples 1 to 36 and Comparative Examples 1 to 12 is applied to an aluminum base material (first adherend), and another aluminum base material (second adherend) is applied. The body) is bonded to an aluminum base material coated with each curable resin composition to carry out a bonding step, and then (2) the bonded body obtained in the bonding step is washed. The washing step was carried out, and (3) the curing step was carried out by curing the curable resin composition. The structure was manufactured by such a method. As a result, the production of the structure using the curable resin compositions of Examples 1 to 36 containing the components (A), (B) and (C) according to the embodiment of the present invention is workable. Was good. For the production of the structure using the curable resin compositions of Examples 1, 6, 7, 10, 11 and 33 to 36, the curable resin compositions of Examples 2 to 5, 8, 9, 31 and 32 were used. Workability was better than in the production of the structures used. Production of structures using the curable resin compositions of Examples 15, 16, 19-21, 23, 25-28 and 30 is the curability of Examples 12-14, 17, 18, 22, 24 and 29. The workability was better than that of the production of the structure using the resin composition.
本発明の一実施形態によれば、硬化性樹脂組成物は、粘度のせん断速度依存性が小さく、当該硬化性樹脂組成物を用いる構造物の製造方法は作業性に優れる。そのため、本発明の一実施形態に係る構造物の製造方法は、鉄板、CFRP、アルミ板およびコンクリートの接着のために好適に利用できる。本発明の一実施形態は、車両、航空機、宇宙、機械、電気、建築および土木の分野にて好適に利用できる。
According to one embodiment of the present invention, the curable resin composition has a small dependence on the shear rate of viscosity, and the method for producing a structure using the curable resin composition is excellent in workability. Therefore, the method for manufacturing a structure according to an embodiment of the present invention can be suitably used for bonding an iron plate, CFRP, an aluminum plate and concrete. One embodiment of the present invention can be suitably used in the fields of vehicles, aircraft, space, machinery, electricity, construction and civil engineering.
Claims (12)
- 硬化性樹脂組成物を第一の被着体に塗布し、第二の被着体を前記第一の被着体と貼り合わせる貼り合わせ工程と、
前記貼り合わせ工程にて得られた貼り合わせ体を洗浄する洗浄工程と、
前記硬化性樹脂組成物を硬化させる硬化工程と、を備え、
前記硬化性樹脂組成物は、
エポキシ樹脂(A)、並びに、
当該エポキシ樹脂(A)100質量部に対して、
弾性体と、当該弾性体に対してグラフト結合され、かつヒドロキシ基を含むグラフト部と、を有するゴム含有グラフト共重合体を含むポリマー微粒子(B)1質量部~100質量部、および
ヒュームドシリカ(C)1質量部~30質量部を含有する、構造物の製造方法。 A bonding step of applying the curable resin composition to the first adherend and laminating the second adherend to the first adherend.
A cleaning step of cleaning the bonded body obtained in the bonding step, and
A curing step of curing the curable resin composition is provided.
The curable resin composition is
Epoxy resin (A), and
With respect to 100 parts by mass of the epoxy resin (A)
Polymer fine particles (B) containing 1 part by mass to 100 parts by mass of a rubber-containing graft copolymer having an elastic body and a graft portion graft-bonded to the elastic body and containing a hydroxy group, and fumed silica. (C) A method for producing a structure, which comprises 1 part by mass to 30 parts by mass. - 前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、ブロックドウレタン(D)を実質的に含有しないものである、請求項1に記載の構造物の製造方法。 The method for producing a structure according to claim 1, wherein the curable resin composition does not substantially contain blocked urethane (D) with respect to 100 parts by mass of the epoxy resin (A).
- 前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、ブロックドウレタン(D)1質量部~100質量部、および無機充填材(E)5質量部~200質量部を含有し、以下の式(1)で表される値(X)が25以上である、請求項1に記載の構造物の製造方法:
値(X)={0.5(V1)+10(V2)+(V3)}×100・・・式(1)
(前記式(1)において、前記V1は前記硬化性樹脂組成物中の前記ポリマー微粒子(B)の体積%を示し、前記V2は前記硬化性樹脂組成物中の前記ヒュームドシリカ(C)の体積%を示し、前記V3は前記硬化性樹脂組成物中の前記無機充填材(E)の体積%を示す)。 The curable resin composition further comprises 1 part by mass to 100 parts by mass of blocked urethane (D) and 5 parts by mass to 200 parts by mass of the inorganic filler (E) with respect to 100 parts by mass of the epoxy resin (A). The method for producing a structure according to claim 1, wherein the value (X) represented by the following formula (1) is 25 or more.
Value (X) = {0.5 (V1) + 10 (V2) + (V3)} × 100 ... Equation (1)
(In the formula (1), the V1 represents the volume% of the polymer fine particles (B) in the curable resin composition, and the V2 is the fumed silica (C) in the curable resin composition. The volume% is shown, and V3 shows the volume% of the inorganic filler (E) in the curable resin composition). - 前記無機充填材(E)は、炭酸カルシウムを含有する、請求項3に記載の構造物の製造方法。 The method for producing a structure according to claim 3, wherein the inorganic filler (E) contains calcium carbonate.
- 前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、エポキシ硬化剤(F)1~80質量部を含有する、請求項1~4の何れか1項に記載の構造物の製造方法。 The curable resin composition according to any one of claims 1 to 4, further containing 1 to 80 parts by mass of the epoxy curing agent (F) with respect to 100 parts by mass of the epoxy resin (A). Structure manufacturing method.
- 前記硬化性樹脂組成物は、前記エポキシ樹脂(A)100質量部に対して、更に、硬化促進剤(G)0.1~10質量部を含有する、請求項1~5の何れか1項に記載の構造物の製造方法。 Any one of claims 1 to 5, wherein the curable resin composition further contains 0.1 to 10 parts by mass of the curing accelerator (G) with respect to 100 parts by mass of the epoxy resin (A). The method for manufacturing a structure according to.
- 前記弾性体は、ブタジエンゴム、および/または、ブタジエン-スチレンゴムである、請求項1~6の何れか1項に記載の構造物の製造方法。 The method for producing a structure according to any one of claims 1 to 6, wherein the elastic body is butadiene rubber and / or butadiene-styrene rubber.
- 前記グラフト部は、構成単位として、芳香族ビニルモノマー、ビニルシアンモノマーおよび(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマーに由来する構成単位を含む重合体である、請求項1~7の何れか1項に記載の構造物の製造方法。 The graft portion is a polymer containing a structural unit derived from one or more monomers selected from the group consisting of an aromatic vinyl monomer, a vinyl cyan monomer and a (meth) acrylate monomer as a structural unit. The method for producing a structure according to any one of 7 to 7.
- 前記グラフト部は、エポキシ基を有する重合体である、請求項1~8の何れか1項に記載の構造物の製造方法。 The method for producing a structure according to any one of claims 1 to 8, wherein the graft portion is a polymer having an epoxy group.
- 前記ブロックドウレタン(D)は、ポリアルキレングリコール構造を含むウレタンプレポリマーをブロック剤でキャップした化合物である、請求項1~9の何れか1項に記載の構造物の製造方法。 The method for producing a structure according to any one of claims 1 to 9, wherein the blocked urethane (D) is a compound in which a urethane prepolymer containing a polyalkylene glycol structure is capped with a blocking agent.
- 前記貼り合わせ工程において、前記第一の被着体に塗布される前記硬化性樹脂組成物の温度は、35℃~80℃である、請求項1~10の何れか1項に記載の構造物の製造方法。 The structure according to any one of claims 1 to 10, wherein the temperature of the curable resin composition applied to the first adherend in the bonding step is 35 ° C to 80 ° C. Manufacturing method.
- 前記硬化工程において、前記硬化性樹脂組成物の硬化温度は、50℃~250℃である請求項1~11の何れか1項に記載の構造物の製造方法。 The method for producing a structure according to any one of claims 1 to 11, wherein in the curing step, the curing temperature of the curable resin composition is 50 ° C to 250 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021516284A JPWO2020218552A1 (en) | 2019-04-26 | 2020-04-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-086512 | 2019-04-26 | ||
JP2019086512 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218552A1 true WO2020218552A1 (en) | 2020-10-29 |
Family
ID=72942146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017791 WO2020218552A1 (en) | 2019-04-26 | 2020-04-24 | Structure production method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020218552A1 (en) |
WO (1) | WO2020218552A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195462A1 (en) * | 2022-04-08 | 2023-10-12 | 株式会社Adeka | Curable resin composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05503550A (en) * | 1990-11-13 | 1993-06-10 | ザ・ダウ・ケミカル・カンパニー | Acrylic modified epoxy resin adhesive composition with improved rheological control |
WO2015053289A1 (en) * | 2013-10-11 | 2015-04-16 | 株式会社カネカ | Core-shell polymer-containing epoxy resin composition, cured product of same and method for producing same |
WO2016163491A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社カネカ | Polymer fine particle-containing curable resin composition having improved bonding strength against impact peeling |
WO2017099196A1 (en) * | 2015-12-11 | 2017-06-15 | 株式会社カネカ | Polymer fine particle-containing polyurethane curable composition having excellent mechanical strength |
JP2017132953A (en) * | 2016-01-29 | 2017-08-03 | アイシン化工株式会社 | Structural adhesive composition |
-
2020
- 2020-04-24 JP JP2021516284A patent/JPWO2020218552A1/ja active Pending
- 2020-04-24 WO PCT/JP2020/017791 patent/WO2020218552A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05503550A (en) * | 1990-11-13 | 1993-06-10 | ザ・ダウ・ケミカル・カンパニー | Acrylic modified epoxy resin adhesive composition with improved rheological control |
WO2015053289A1 (en) * | 2013-10-11 | 2015-04-16 | 株式会社カネカ | Core-shell polymer-containing epoxy resin composition, cured product of same and method for producing same |
WO2016163491A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社カネカ | Polymer fine particle-containing curable resin composition having improved bonding strength against impact peeling |
WO2017099196A1 (en) * | 2015-12-11 | 2017-06-15 | 株式会社カネカ | Polymer fine particle-containing polyurethane curable composition having excellent mechanical strength |
JP2017132953A (en) * | 2016-01-29 | 2017-08-03 | アイシン化工株式会社 | Structural adhesive composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195462A1 (en) * | 2022-04-08 | 2023-10-12 | 株式会社Adeka | Curable resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020218552A1 (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3281965B1 (en) | Polymer fine particle-containing curable resin composition having improved bonding strength against impact peeling | |
JP6767758B2 (en) | Polymer fine particle-containing curable resin composition with improved storage stability and adhesiveness | |
JP6694425B2 (en) | Curable epoxy resin composition having excellent thixotropy | |
WO2016159224A1 (en) | Curable epoxy resin composition exhibiting excellent storage stability | |
WO2015064561A1 (en) | Curable resin composition containing polymer fine particles and having improved storage stability | |
JP7187347B2 (en) | Curable epoxy resin composition and laminate using the same | |
US11781047B2 (en) | Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method | |
JP7403463B2 (en) | Curable epoxy resin composition and laminate using the same | |
JP7290446B2 (en) | Curable resin composition and use thereof | |
JP7547031B2 (en) | Epoxy resin composition and adhesive | |
JP6722477B2 (en) | Curable resin composition containing fine polymer particles having improved peel adhesion and impact peel resistance | |
JP6523611B2 (en) | Laminate in which dissimilar members are joined by a curable resin composition, and structural panel for vehicle | |
JP7531354B2 (en) | Epoxy resin composition and adhesive | |
WO2020218552A1 (en) | Structure production method | |
JP7442992B2 (en) | Laminate and method for manufacturing the laminate | |
JP7654552B2 (en) | Adhesive and method for producing adhesive | |
JP7277241B2 (en) | Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained by using the adhesion method | |
WO2023054479A1 (en) | Curable resin composition and use therefor | |
JP2024143797A (en) | Curable resin composition and use thereof | |
WO2022186248A1 (en) | Resin composition, method for producing polymer fine particles, and method for producing resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20796354 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516284 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20796354 Country of ref document: EP Kind code of ref document: A1 |