[go: up one dir, main page]

WO2022162924A1 - センサ回路および電子機器 - Google Patents

センサ回路および電子機器 Download PDF

Info

Publication number
WO2022162924A1
WO2022162924A1 PCT/JP2021/003441 JP2021003441W WO2022162924A1 WO 2022162924 A1 WO2022162924 A1 WO 2022162924A1 JP 2021003441 W JP2021003441 W JP 2021003441W WO 2022162924 A1 WO2022162924 A1 WO 2022162924A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
circuit
detection resistor
wiring
pair
Prior art date
Application number
PCT/JP2021/003441
Other languages
English (en)
French (fr)
Inventor
玲仁 小林
健二 廣瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/003441 priority Critical patent/WO2022162924A1/ja
Priority to CN202180090700.2A priority patent/CN116710788A/zh
Priority to DE112021006202.6T priority patent/DE112021006202B4/de
Priority to JP2022574647A priority patent/JP7224568B2/ja
Publication of WO2022162924A1 publication Critical patent/WO2022162924A1/ja
Priority to US18/197,285 priority patent/US20230288468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0053Noise discrimination; Analog sampling; Measuring transients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from AC input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to sensor circuits and electronic devices.
  • CMRR common mode rejection ratio
  • a common mode choke coil (hereinafter referred to as CMC) is connected to a pair of contact terminals of the differential probe.
  • the CMC has a high impedance with respect to common mode noise, thereby reducing common mode noise flowing into the differential probe.
  • the differential probe described in Patent Document 1 is a sensor circuit with a CMC, and the CMC inevitably has parasitic capacitance across its coil windings. Since the parasitic capacitance generated in the CMC reduces the impedance of the CMC against high frequency common mode noise, there is a problem that the common mode noise lowers the measurement accuracy in the high frequency region.
  • the present disclosure is intended to solve the above problems, and includes a sensor circuit capable of removing errors due to noise components from current or voltage measurements in wiring that connects a drive circuit and a load circuit provided in an electronic device.
  • An object of the present invention is to obtain an electronic device that
  • a sensor circuit is a sensor circuit that measures current or voltage in wiring of an electronic device having a circuit unit in which a drive circuit and a load circuit are connected by wiring, and a detection resistor connected to the wiring and , a first terminal pair constituted by terminal wirings respectively connected to both terminals of the detection resistor, and a second terminal pair constituted by terminal wirings shorted to each other at one terminal of the detection resistor. and a sensing unit that measures current or voltage from which noise components have been removed using the detection signal input through the first terminal pair and the detection signal input through the second terminal pair.
  • the common mode noise component is superimposed on the detection signal input through the first terminal pair. Since the second terminal pair is shorted together at one terminal of the detection resistor, the detection signal input through the second terminal pair contains only the error common mode noise component. As a result, the sensor circuit according to the present disclosure subtracts the noise component input through the second terminal pair from the detection signal input through the first terminal pair, thereby separating the drive circuit and the load circuit included in the electronic device. Errors due to noise components can be removed from current or voltage measurements in the connecting wiring.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device according to Embodiment 1;
  • FIG. FIG. 11 is a block diagram showing the configuration of a modification of the sensor circuit;
  • 4 is a block diagram showing a configuration example of a sensing unit;
  • FIG. FIG. 4 is an explanatory diagram showing an overview of noise correction performed by a sensing unit;
  • FIG. 11 is a block diagram showing a configuration of a modification of the sensing section;
  • 2 is a block diagram showing a configuration example of an electronic device according to a second embodiment;
  • FIG. FIG. 11 is a block diagram showing the configuration of a modification of the sensor circuit;
  • FIG. 10 is a block diagram showing a configuration of Modification (1) of the electronic device according to Embodiment 2;
  • FIG. 12 is a block diagram showing a configuration of a modified example (2) of the electronic device according to the second embodiment;
  • FIG. 1 is a block diagram showing a configuration example of an electronic device 1 according to Embodiment 1.
  • an electronic device 1 includes a circuit section 2 , a sensor circuit 3 and a control section 4 .
  • the circuit section 2 includes a drive circuit 21 and a load circuit 22 , and the drive circuit 21 and the load circuit 22 are electrically connected by wiring 23 .
  • the drive circuit 21 is a circuit that drives the load circuit 22 and applies a voltage VS to the wiring 23 .
  • the load circuit 22 is a circuit having impedance ZL and is driven by the drive circuit 21 .
  • Circuit portion 2 is coupled to ground potential reference GND by parasitic capacitance CP.
  • a loop path including a parasitic capacitance C P is formed in the circuit portion 2 , and common mode noise of voltage V C exists in this loop path.
  • the sensor circuit 3 is a circuit that measures the current or voltage that the drive circuit 21 supplies to the load circuit 22 through the wiring 23 . That is, the sensor circuit 3 measures current or voltage on the wiring 23 .
  • the sensor circuit 3 includes a first detection resistor RS_1 and a second detection resistor RS_2 which are detection resistors connected to the wiring 23, a first terminal pair 31, and a second terminal pair 32. , and a sensing unit 33 .
  • the first detection resistor R S_ 1 and the second detection resistor R S_ 2 constitute a series resistor circuit connected in two series in the wiring 23 .
  • the first detection resistor R_S_1 and the second detection resistor R_S_2 are resistance elements having the same resistance value R_S .
  • the first terminal pair 31 is composed of terminal wires connected to both terminals 34 and 35 of the detection resistor.
  • the first terminal pair 31 is connected in series with a terminal wiring connected to a terminal 34 of the first detection resistor RS_1 of the series resistance circuit, which is opposite to the second detection resistor RS_2 . and a terminal wiring connected to the terminal 35 on the opposite side of the first detection resistor RS_1 in the second detection resistor RS_2 of the resistance circuit.
  • the second terminal pair 32 consists of two terminal wires shorted together at one terminal 36 of the detection resistor.
  • two terminal wires forming the second terminal pair 32 are connected to each other at a terminal 36 to which the first detection resistor RS_1 and the second detection resistor RS_2 in the series resistor circuit are connected. being shorted.
  • the sensing unit 33 uses the detection signal input through the first terminal pair 31 and the detection signal input through the second terminal pair 32 to measure the current or voltage from which the noise component in the wiring 23 is removed. Current or voltage measurement data measured by the sensing unit 33 is output to the control unit 4 .
  • the electronic device 1 includes components other than the components illustrated in FIG. 1 .
  • the control unit 4 controls the operation of the components based on the current or voltage measured from the circuit unit 2 by the sensor circuit 3 .
  • FIG. 2 is a block diagram showing the configuration of a sensor circuit 3A, which is a modified example of the sensor circuit 3.
  • the detection resistors included in the sensor circuit 3A include a first detection resistor RS_1 and a second detection resistor RS_2 connected in series with the wiring 23 between the wiring 23 and the wiring 23A. connected series resistor circuit.
  • the wiring 23A is one of the wirings connecting the drive circuit 21 and the load circuit 22, which is connected to the ground potential reference GND by the parasitic capacitance CP.
  • the first terminal pair 31 is formed by terminal wires respectively connected to both terminals 37 and 38 of the series resistance circuit, as shown in FIG. is composed of two terminal wires short-circuited at a terminal 39 to which the first detection resistor RS_1 and the second detection resistor RS_2 in the series resistor circuit are connected.
  • FIG. 3 is a block diagram showing a configuration example of the sensing section 33.
  • the sensing section 33 includes a signal measurement circuit 331, a noise measurement circuit 332 and a noise correction circuit 333.
  • Signal measurement circuit 331 and noise measurement circuit 332 have the same circuit configuration.
  • the signal measurement circuit 331 includes an amplifier circuit 3311 and amplifies a current or voltage detection signal containing a noise component input through the first terminal pair 31 .
  • the amplifier circuit 3311 amplifies the detection signal input through the first terminal pair 31 and outputs the amplified signal (voltage V OUT1 ) to the noise correction circuit 333 .
  • the noise measurement circuit 332 includes an amplifier circuit 3321 and amplifies the detection signal that is input through the second terminal pair 32 and contains only noise components.
  • the amplifier circuit 3321 amplifies the detection signal input through the second terminal pair 32 and outputs the amplified signal (voltage V OUT2 ) to the noise correction circuit 333 .
  • the amplifier circuit 3311 and the amplifier circuit 3321 are configured by, for example, an inverting amplifier circuit or a non-inverting amplifier circuit using operational amplifiers.
  • the noise correction circuit 333 includes an analog subtraction circuit 3331 and subtracts the value of the detection signal amplified by the noise measurement circuit 332 from the value of the detection signal amplified by the signal measurement circuit 331 .
  • the analog subtraction circuit 3331 subtracts the voltage V OUT2 input from the noise measurement circuit 332 from the voltage V OUT1 input from the signal measurement circuit 331, thereby outputting an analog signal of voltage V OUT1 ⁇ V OUT2 to the control unit 4. output to
  • the analog subtraction circuit 3331 is configured by, for example, a subtraction circuit using an operational amplifier.
  • the first terminal pair 31 and the second terminal pair 32 have the same wiring length of the terminal wiring.
  • the first terminal pair 31 includes a terminal wiring (1) connecting the terminal 34 and the positive terminal (+) of the amplifier circuit 3311, and a terminal wiring (1) connecting the terminal 35 and the negative terminal (-) of the amplifier circuit 3311.
  • the terminal wirings (1) to (4) are , have the same wiring length.
  • FIG. 4 is an explanatory diagram showing an outline of noise correction performed by the sensing unit 33.
  • the positive terminal (+) of first terminal pair 31 is connected to terminal 34 of wire 23, and the negative terminal (-) of first terminal pair 31 is connected to terminal 35 of wire 23. It is connected.
  • the potential VP of the terminal 34 with respect to the reference GND which is the ground potential, is expressed by the following equation (1).
  • VS is the voltage applied to the wiring 23 by the driving circuit 21
  • VC is the voltage of common mode noise.
  • VP VS + VC (1)
  • VN K ⁇ VS + VC
  • the output voltage V OUT1 of the signal amplified by the amplifier circuit 3311 has the differential gain A D , the common-mode gain A C , the differential mode voltage V DIFF , the common mode voltage V COM and the variable K when the reference potential is the ground potential. is represented by the following formula (6).
  • the measurement accuracy of the voltage V OUT1 across both terminals of the detection resistor deteriorates when the common mode voltage V COM is amplified according to the common-mode gain AC due to the relationship of the following equation (6).
  • the analog subtraction circuit 3331 subtracts the output voltage V OUT2 represented by the above equation (9) from the output voltage V OUT1 represented by the above equation (6), thereby obtaining the output voltage represented by the following equation (9).
  • a signal of V OUT3 is output to the control unit 4 .
  • the output voltage V OUT3 of the sensing section 33 is a common mode voltage V
  • the component of COM is removed, and the accuracy of sensing is improved.
  • FIG. 5 is a block diagram showing the configuration of a sensing section 33A, which is a modified example of the sensing section 33. As shown in FIG. In FIG. 5, the same components as in FIG. 3 are given the same reference numerals.
  • the sensing section 33A includes a signal measurement circuit 331, a noise measurement circuit 332 and a noise correction circuit 333A.
  • the signal measurement circuit 331 and the noise measurement circuit 332 have the same circuit configuration.
  • the noise correction circuit 333A includes an AD converter 3332, an AD converter 3333 and a subtractor 3334.
  • the AD converter 3332 converts the detection signal amplified by the signal measurement circuit 331 into a digital signal and outputs the digital signal to the subtractor 3334 .
  • the AD converter 3333 converts the detection signal amplified by the noise measurement circuit 332 into a digital signal and outputs the digital signal to the subtractor 3334 .
  • Subtractor 3334 subtracts the digital signal representing voltage V OUT2 from the digital signal representing voltage V OUT1 to output a digital signal representing voltage V OUT1 ⁇ V OUT2 to control unit 4 .
  • the digital signal converted by the AD converter 3332 and the digital signal converted by the AD converter 3333 may be filtered before being output to the subtractor 3334 .
  • filtering processing is performed to remove noise components other than differential components and common mode noise components from digital signals.
  • a subtractor 3334 subtracts the filtered digital signal.
  • the detection resistors are not limited to those composed of two resistors, the first detection resistor RS_1 and the second detection resistor RS_2 .
  • a resistance circuit in which three or more resistance elements are combined may be used.
  • the sensor circuit 3 or 3A may include a detection resistor, a first terminal pair, and a second terminal pair for each of the plurality of circuit units 2. good. In this case, the sensor circuit 3 or 3A can simultaneously measure a plurality of circuit units 2 .
  • the sensing unit 33 or 33A may be a discrete component independent of the control unit 4, or the sensing unit 33 or 33A and the control unit 4 may be integrated into one integrated circuit (IC).
  • IC integrated circuit
  • the sensor circuit 3 or 3A measures the current or voltage in the high speed signal wiring.
  • the control unit 4 uses the current or voltage signal measured by the sensor circuit 3 or 3A to perform signal analysis in the high-speed signal wiring.
  • the sensor circuit 3 or 3A is configured by the detection resistor connected to the wiring 23 and the terminal wires connected to both terminals of the detection resistor.
  • a sensing unit 33 is provided to measure current or voltage from which noise components have been removed using the input detection signal.
  • a common mode noise component is superimposed on the detection signal input through the first terminal pair 31 in addition to the differential component, which is the true value of the current or voltage in the wiring.
  • the detection signal input through the second terminal pair 32 contains only common mode noise components.
  • the sensor circuit 3 or 3A subtracts the noise component input through the second terminal pair 32 from the detection signal input through the first terminal pair 31, thereby obtaining Errors due to noise components can be removed.
  • the sensing unit 33 or 33A includes a signal measuring circuit 331 that amplifies a detection signal input through the first terminal pair 31 and a signal input through the second terminal pair 32.
  • the measurement circuit 331 and the noise measurement circuit 332 have the same circuit configuration. With this configuration, the sensor circuit 3 can appropriately subtract the noise component input through the second terminal pair 32 from the detection signal input through the first terminal pair 31 .
  • the detection resistor is a series resistor circuit composed of a first detection resistor RS_1 and a second detection resistor RS_2 connected in series in the wiring 23. be.
  • a first terminal pair 31 is formed by terminal wires connected to both terminals 34 and 35 of the series resistor circuit, respectively.
  • the second terminal pair 32 is composed of terminal wiring shorted to each other at a terminal 36 to which the first detection resistor RS_1 and the second detection resistor RS_2 in the series resistance circuit are connected.
  • the detection resistor is composed of a first detection resistor RS_1 and a second detection resistor RS_2 connected in series between the wiring 23 and the wiring 23A.
  • the first terminal pair 31 is constituted by terminal wires connected to respective terminals 37 and 38 of the series resistance circuit.
  • the second terminal pair 32 is composed of terminal wiring shorted to each other at a terminal 39 which is a connection point between the first detection resistor RS_1 and the second detection resistor RS_2 in the series resistance circuit.
  • the first detection resistor R_S_1 and the second detection resistor R_S_2 have the same resistance value. Thereby, the sensor circuit 3 can appropriately subtract the noise component input through the second terminal pair 32 from the detection signal input through the first terminal pair 31 .
  • the first detection resistor R S_1 and the second detection resistor R S_2 have the same terminal wiring length. Thereby, the sensor circuit 3 can appropriately subtract the noise component input through the second terminal pair 32 from the detection signal input through the first terminal pair 31 .
  • FIG. 6 is a block diagram showing a configuration example of an electronic device 1A according to the second embodiment.
  • an electronic device 1A includes a circuit section 2A, a sensor circuit 3 and a control section 4A.
  • the circuit unit 2A includes a three-phase inverter circuit 21A as a drive circuit and a three-phase motor 22A as a load circuit. properly connected.
  • a DC voltage is applied to the inverter circuit 21A by a DC power supply 21B.
  • the DC input positive terminal of the inverter circuit 21A is connected to the positive terminal (+) of the DC power supply 21B, and the DC input negative terminal of the inverter circuit is connected to the negative terminal (-) of the DC power supply 21B.
  • the wiring 23U, the wiring 23V, and the wiring 23W are output wirings for outputting current from the inverter circuit 21A to the motor 22A.
  • the wiring 23U, the wiring 23V, and the wiring 23W may be wiring patterns formed on a printed circuit board, or may be conductor cables.
  • the inverter circuit 21A includes an upper arm switching element that constitutes an upper arm and a lower arm switching element that constitutes a lower arm for each of the U-phase, V-phase, and W-phase.
  • the DC input positive terminal in the inverter circuit 21A described above is the input terminal on the upper arm side, and the DC input negative terminal is the input terminal on the lower arm side.
  • the upper arm switching element and lower arm switching element of each phase are connected in series.
  • a wiring 23U, a wiring 23V, and a wiring 23W, which are output wirings for each phase, are connected to the connection points.
  • the inverter circuit 21A switches the upper arm switching element and the lower arm switching element to supply current to the three-phase motor 22A through the wiring 23U, the wiring 23V, and the wiring 23W to drive the three-phase motor 22A.
  • the sensor circuit 3 measures the current value supplied from the three-phase inverter circuit 21A to the three-phase motor 22A.
  • a signal indicating the current value of each phase measured by the sensor circuit 3 is output to the control section 4A.
  • the control unit 4A feedback-controls the driving of the three-phase motor 22A.
  • the control unit 4A controls the driving of the three-phase motor 22A by controlling the switching of the upper arm switching element and the lower arm switching element based on the current value of each phase measured by the sensor circuit 3A.
  • the control unit 4A performs switching control using, for example, PWM (Pulse Width Modulation) control.
  • the sensor circuit 3 includes a detection resistor, a first terminal pair and a second terminal pair for each phase, and further includes a sensing section 33B. That is, the sensor circuit 3 includes a first detection resistor R S_1_U and a second detection resistor R S_2_U connected to the wiring 23U, a first terminal pair 31U, and a second terminal pair 32U. A first detection resistor RS_1_V and a second detection resistor RS_2_V connected to the wiring 23V, a first terminal pair 31V and a second terminal pair 32V, and connected to the wiring 23W. 1 detection resistor RS_1_W and a second detection resistor RS_2_W , a first terminal pair 31W, and a second terminal pair 32W.
  • the first detection resistor R S_1_U and the second detection resistor R S_2_U constitute a series resistor circuit connected in two series to the wiring 23U.
  • the first detection resistor R_S_1_V and the second detection resistor R_S_2_V form a series resistor circuit connected in two series to the wiring 23V.
  • the first detection resistor RS_1_W and the second detection resistor RS_2_W form a series resistor circuit connected in two series to the wiring 23W.
  • the first terminal pair 31U includes a terminal wire connected to a terminal 34U of the first detection resistor RS_1_U of the series resistance circuit opposite to the second detection resistor RS_2_U , and a terminal wire connected to the terminal 34U of the series resistance circuit. terminal wiring connected to the terminal 35U on the opposite side to the first detection resistor RS_1_U in the detection resistor RS_2_U .
  • the second terminal pair 32U is composed of two terminal wirings connected and short-circuited at a terminal 36U to which the first detection resistor RS_1_U and the second detection resistor RS_2_U are connected.
  • the first terminal pair 31V includes a terminal wire connected to a terminal 34V of the first detection resistor RS_1_V of the series resistance circuit opposite to the second detection resistor RS_2_V , and a terminal wire connected to the terminal 34V of the series resistance circuit. and a terminal wiring connected to the terminal 35V on the opposite side to the first detection resistor RS_1_V in the detection resistor RS_2_V .
  • the second terminal pair 32V is composed of two terminal wirings connected and short-circuited at a terminal 36V to which the first detection resistor RS_1_V and the second detection resistor RS_2_V are connected.
  • the first terminal pair 31W includes terminal wiring connected to the terminal 34W of the first detection resistor RS_1_W of the series resistor circuit opposite to the second detection resistor RS_2_W , and a terminal wiring connected to the terminal 35W on the opposite side to the first detection resistor RS_1_W in the detection resistor RS_2_W .
  • the second terminal pair 32W is composed of two terminal wirings that are short-circuited by being connected to each other at a terminal 36W to which the first detection resistor RS_1_W and the second detection resistor RS_2_W are connected.
  • the sensing section 33B includes, for example, a signal measurement circuit 331, a noise measurement circuit 332, and a noise correction circuit 333, like the sensing section shown in the first embodiment.
  • the signal measurement circuit 331 and the noise measurement circuit 332 have the same circuit configuration.
  • the signal measurement circuit 331 also includes an amplifier circuit 3311, which amplifies current detection signals including noise components that are input through the first terminal pairs 31U, 31V, and 31W.
  • the amplifier circuit 3311 amplifies the detection signals input through the first terminal pairs 31 U, 31 V and 31 W, and outputs the amplified signals of each phase to the noise correction circuit 333 .
  • the noise measurement circuit 332 includes an amplifier circuit 3321 and amplifies detection signals containing only noise components that are input through the second terminal pairs 32U, 32V and 32W.
  • the amplifier circuit 3321 amplifies the detection signals input through the first terminal pairs 31U, 31V and 31W and outputs the amplified signals of each phase to the noise correction circuit 333 .
  • the amplifier circuit 3311 and the amplifier circuit 3321 are configured by, for example, an inverting amplifier circuit or a non-inverting amplifier circuit using operational amplifiers.
  • the noise correction circuit 333 includes an analog subtraction circuit 3331 that subtracts the value of each phase detection signal amplified by the noise measurement circuit 332 from the value of each phase detection signal amplified by the signal measurement circuit 331 . .
  • An analog signal indicating the current value of each phase subtracted by the analog subtraction circuit 3331 is output to the control section 4A.
  • a common mode noise component that is amplified by the common-mode gain is removed from the signal indicating the current of each phase that is output from the sensing unit 33B to the control unit 4A.
  • the sensor circuit 3 has improved current sensing accuracy in the wiring 23U, the wiring 23V, and the wiring 23W.
  • the sensing section 33B may include a noise correction circuit 333A.
  • the AD converter 3332 included in the noise correction circuit 333A converts the detection signal of each phase amplified by the signal measurement circuit 331 into a digital signal, and outputs the digital signal to the subtractor 3334 for each phase.
  • the AD converter 3333 converts the detection signal of each phase amplified by the noise measurement circuit 332 into a digital signal, and outputs the digital signal to the subtractor 3334 for each phase.
  • the subtractor 3334 subtracts the digital signal of each phase amplified by the noise measurement circuit 332 from the digital signal of each phase amplified by the signal measurement circuit 331, and outputs the digital signal of the subtraction result to the control unit 4A. Output.
  • the digital signal of each phase converted by the AD converter 3332 and the digital signal of each phase converted by the AD converter 3333 may be filtered before being output to the subtractor 3334 .
  • filtering processing is performed to remove noise components other than differential components and common mode noise components from digital signals of each phase.
  • the subtractor 3334 subtracts the digital signal of each phase after filtering.
  • the first terminal pair 31U and the second terminal pair 32U have the same terminal wire length.
  • the first terminal pair 31V and the second terminal pair 32V have the same terminal wire length.
  • the first terminal pair 31W and the second terminal pair 32W have the same terminal wire length.
  • the first terminal pair 31U includes a terminal wire (1) that connects the terminal 34U and the positive terminal (+) of the amplifier circuit 3311, and a terminal that connects the terminal 35U and the negative terminal (-) of the amplifier circuit 3311.
  • the terminal wirings (1) to (4) are , have the same wiring length.
  • the wiring lengths of the terminal wirings forming the first terminal pair and the second terminal pair are the same between the same phase and the different phases.
  • FIG. 7 is a block diagram showing the configuration of a sensor circuit 3A, which is a modified example of the sensor circuit 3, exemplifying a detection resistor in the U phase.
  • the detection resistors included in the sensor circuit 3A include a first detection resistor RS_1_U and a second detection resistor RS_2_U connected in series between the wiring 23U and the wiring 23A. It may be a series resistor circuit.
  • the detection resistor is a series resistance circuit in which a first detection resistor RS_1_V and a second detection resistor RS_2_V are connected in series between the wiring 23V and the wiring 23A.
  • a series resistor circuit is formed in which a first detection resistor RS_1_W and a second detection resistor RS_2_W are connected in series between the wiring 23W and the wiring 23A.
  • the wiring 23A is connected to the negative terminal (-) of the DC power supply 21B.
  • the first terminal pair 31U is composed of terminal wires connected to both terminals 37U and 38U of the series resistance circuit.
  • the second terminal pair 32U is composed of two terminal wires short-circuited at a terminal 39U to which the first detection resistor RS_1_U and the second detection resistor RS_2_U in the series resistance circuit are connected. The same applies to the first terminal pair 31V, the second terminal pair 32V, the first terminal pair 31W and the second terminal pair 32W.
  • the first terminal pair 31V is composed of terminal wires connected to both terminals 37V and 38V of the series resistance circuit.
  • the second terminal pair 32V is composed of two terminal wirings short-circuited at a terminal 39V to which the first detection resistor RS_1_V and the second detection resistor RS_2_V in the series resistance circuit are connected.
  • the first terminal pair 31W is composed of terminal wires connected to both terminals 37W and 38W of the series resistance circuit.
  • the second terminal pair 32W is composed of two terminal wires short-circuited at a terminal 39W to which the first detection resistor RS_1_W and the second detection resistor RS_2_W in the series resistance circuit are connected.
  • FIG. 8 is a block diagram showing the configuration of the modified example (1) of the electronic device 1A.
  • the detection resistor is connected to the wiring 24 connecting between the upper arm switching element for each phase and the positive terminal (+) of the DC power supply.
  • a series resistor circuit in which a detection resistor and a second detection resistor are connected in series may be used.
  • the first terminal pair 31U includes a terminal wire connected to a terminal 40U of the first detection resistor RS_1_U of the series resistance circuit opposite to the second detection resistor RS_2_U , and a terminal wire connected to the terminal 40U of the series resistance circuit. terminal wiring connected to the terminal 41U on the opposite side to the first detection resistor RS_1_U in the detection resistor RS_2_U .
  • the second terminal pair 32U is composed of two terminal wirings connected and short-circuited at a terminal 42U to which the first detection resistor RS_1_U and the second detection resistor RS_2_U are connected.
  • the first terminal pair 31V includes terminal wiring connected to the terminal 40V on the opposite side of the first detection resistor RS_1_V of the series resistor circuit to the second detection resistor RS_2_V , and the terminal wiring of the series resistor circuit. and a terminal wiring connected to the terminal 41V on the opposite side of the first detection resistor RS_1_V in the second detection resistor RS_2_V .
  • the second terminal pair 32V is composed of two terminal wirings connected and short-circuited at a terminal 42V to which the first detection resistor RS_1_V and the second detection resistor RS_2_V are connected.
  • the first terminal pair 31W includes a terminal wire connected to a terminal 40W of the first detection resistor RS_1_W of the series resistor circuit opposite to the second detection resistor RS_2_W , and a terminal wire connected to the terminal 40W of the series resistor circuit. terminal wiring connected to the terminal 41W on the opposite side to the first detection resistor RS_1_W in the detection resistor RS_2_W .
  • the second terminal pair 32W is composed of two terminal wirings that are short-circuited and connected to each other at the terminal 42W to which the first detection resistor RS_1_W and the second detection resistor RS_2_W are connected.
  • Sensing unit 33B detects only noise components input through second terminal pairs 32U, 32V and 32W from current value detection signals including noise components input through first terminal pairs 31U, 31V and 31W. By subtracting the signals, the noise component (common mode noise component) in the wiring 24 of each phase is removed, and the current value in the wiring 24 of each phase from which the noise component has been removed is measured.
  • the electronic device 1A includes a detection resistor, a first terminal pair and a second terminal pair respectively connected to the wirings 23U, 23V and 23W shown in FIG. and a sensing resistor, the first terminal pair and the second terminal pair respectively connected to the .
  • the electronic device 1A does not include the detection resistor, the first terminal pair, and the second terminal pair shown in FIG. Only the first terminal pair and the second terminal pair may be provided.
  • the sensor circuit 3 or 3A subtracts the noise component input through the second terminal pair from the detection signal input through the first terminal pair. Thereby, the sensor circuit 3 or 3A can remove the error due to the noise component from the current or voltage measurement value in the wiring included in the electronic device 1A.
  • FIG. 9 is a block diagram showing the configuration of the modified example (2) of the electronic device 1A.
  • the detection resistor is connected to the wiring 25 connecting between the lower arm switching element for each phase and the negative terminal (-) of the DC power supply.
  • a series resistor circuit in which a detection resistor and a second detection resistor are connected in series may be used.
  • the first terminal pair 31U includes a terminal wire connected to a terminal 43U of the first detection resistor RS_1_U of the series resistance circuit opposite to the second detection resistor RS_2_U , and a terminal wiring connected to the terminal 43U of the first detection resistor RS_1_U of the series resistance circuit. terminal wiring connected to the terminal 44U on the opposite side to the first detection resistor RS_1_U in the detection resistor RS_2_U .
  • the second terminal pair 32U is composed of two terminal wirings connected and short-circuited at a terminal 45U to which the first detection resistor RS_1_U and the second detection resistor RS_2_U are connected.
  • the first terminal pair 31V includes terminal wiring connected to the terminal 43V on the opposite side of the first detection resistor RS_1_V of the series resistor circuit to the second detection resistor RS_2_V , and the terminal wiring of the series resistor circuit. and a terminal wiring connected to the terminal 44V on the opposite side of the first detection resistor RS_1_V in the second detection resistor RS_2_V .
  • the second terminal pair 32V is composed of two terminal wirings connected and short-circuited at a terminal 45V to which the first detection resistor RS_1_V and the second detection resistor RS_2_V are connected.
  • the first terminal pair 31W includes a terminal wire connected to a terminal 43W of the first detection resistor RS_1_W of the series resistor circuit opposite to the second detection resistor RS_2_W , and a terminal wire connected to the second terminal wire of the series resistor circuit. terminal wiring connected to the terminal 44W on the opposite side to the first detection resistor RS_1_W in the detection resistor RS_2_W.
  • the second terminal pair 32W is composed of two terminal wirings that are short-circuited and connected to each other at a terminal 45W to which the first detection resistor RS_1_W and the second detection resistor RS_2_W are connected.
  • Sensing unit 33B detects only noise components input through second terminal pairs 32U, 32V and 32W from current value detection signals including noise components input through first terminal pairs 31U, 31V and 31W. By subtracting the signal, the common mode noise component in the wiring 24 of each phase is removed, and the current value in the wiring 25 of each phase from which the noise component has been removed is measured.
  • the first terminal pair 31U and the second terminal pair 32U have the same terminal wire length.
  • the first terminal pair 31V and the second terminal pair 32V have the same terminal wire length.
  • the first terminal pair 31W and the second terminal pair 32W have the same terminal wire length.
  • the first terminal pair 31U includes a terminal wire (1) that connects the terminal 34U and the positive terminal (+) of the amplifier circuit 3311, and a terminal that connects the terminal 35U and the negative terminal (-) of the amplifier circuit 3311.
  • the terminal wirings (1) to (4) are , have the same wiring length.
  • the wiring lengths of the terminal wirings forming the first terminal pair and the second terminal pair are the same between the same phase and the different phases.
  • the electronic device 1A includes a detection resistor, a first terminal pair and a second terminal pair respectively connected to the wirings 23U, 23V and 23W shown in FIG. and a sensing resistor, the first terminal pair and the second terminal pair respectively connected to the .
  • the detection resistors the first terminal pairs and the second terminal pairs respectively connected to the wirings 23U, 23V and 23W shown in FIG. 24, the detection resistor, the first terminal pair and the second terminal pair, respectively, and the detection resistor, the first terminal pair and the second terminal pair respectively connected to the wiring 25 of each phase shown in FIG.
  • the electronic device 1A may include only the detection resistor, the first terminal pair, and the second terminal pair respectively connected to the wiring 24 of each phase shown in FIG.
  • the sensor circuit 3 or 3A subtracts the noise component input through the second terminal pair from the detection signal input through the first terminal pair. Thereby, the sensor circuit 3 or 3A can remove the error due to the noise component from the current or voltage measurement value in the wiring included in the electronic device 1A.
  • the sensor circuit 3 or 3A may not have the detection resistors, the first terminal pairs and the second terminal pairs in all the phase wirings of the wirings 23U, 23V and 23W. Of these, any two phases may be provided with a detection resistor, a first terminal pair, and a second terminal pair.
  • the detection resistors are not limited to those composed of two resistors, the first detection resistor RS_1 and the second detection resistor RS_2 .
  • a resistance circuit in which three or more resistance elements are combined may be used.
  • the sensor circuit 3 or 3A when the electronic device 1A includes a plurality of circuit units 2A, the sensor circuit 3 or 3A includes a detection resistor, a first terminal pair, and a second terminal pair for each of the plurality of circuit units 2A. may In this case, the sensor circuit 3 or 3A can simultaneously measure a plurality of circuit units 2A.
  • the sensing unit 33B may be a discrete component independent of the control unit 4A, or may be a single integrated circuit (IC) including the sensing unit 33B and the control unit 4A.
  • IC integrated circuit
  • the electronic device 1A includes the sensor circuit 3 or 3A, the wiring to which the detection resistor is connected, the three-phase inverter circuit 21A as the driving circuit, and the driving circuit via the wiring. It has a three-phase motor 22A which is a connected load circuit.
  • the sensor circuit 3A subtracts the noise component input through the second terminal pair from the detection signal input through the first terminal pair, thereby removing the error due to the noise component from the current or voltage measurement value in the wiring. be able to. Thereby, the electronic device 1A can control the operation using, for example, the error-removed measurement value.
  • the DC input positive terminal of the inverter circuit 21A is connected to the positive terminal (+) of the DC power supply 21B, and the DC input negative terminal is connected to the negative terminal (-) of the DC power supply 21B. ) is connected.
  • the three-phase output wirings 23U, 23V, and 23W in the inverter circuit 21A at least two-phase output wirings are connected to a series resistor circuit configured by a first detection resistor and a second detection resistor. .
  • the first terminal pairs 31U, 31V and 31W are configured by terminal wirings respectively connected to both terminals of the series resistance circuit.
  • the second terminal pairs 32U, 32V and 32W are configured by terminal wiring shorted to each other at terminals to which the first detection resistor and the second detection resistor in the series resistance circuit are connected.
  • the sensor circuit 3 subtracts the noise components input through the second terminal pairs 32U, 32V and 32W from the detection signals input through the first terminal pairs 31U, 31V and 31W, respectively, so that the wirings 23U, 23V and 23W are detected.
  • the error due to the noise component can be removed from the current or voltage measurements at .
  • the electronic device 1A can accurately feedback-control the drive of the three-phase motor 22A.
  • the DC input positive terminal of the inverter circuit 21A is connected to the positive terminal (+) of the DC power supply 21B, and the DC input negative terminal is connected to the negative terminal (-) of the DC power supply 21B. ) is connected.
  • a second A series resistance circuit is connected in which one detection resistor and a second detection resistor are connected in series.
  • the first terminal pairs 31U, 31V and 31W are configured by terminal wirings respectively connected to both terminals of the series resistance circuit.
  • the second terminal pairs 32U, 32V and 32W are configured by terminal wiring shorted to each other at terminals to which the first detection resistor and the second detection resistor in the series resistance circuit are connected.
  • the sensor circuit 3A subtracts the noise components input through the second terminal pairs 32U, 32V and 32W from the detection signals input through the first terminal pairs 31U, 31V and 31W, respectively, so that the wirings 23U, 23V and 23W are detected.
  • the error due to the noise component can be removed from the current or voltage measurements at .
  • the electronic device 1A can accurately feedback-control the drive of the three-phase motor 22A.
  • An electronic device 1A includes a three-phase inverter circuit 21A in which upper arm switching elements 211U, 211V and 211W and lower arm switching elements 212U, 212V and 212W are connected in series, and a DC current of the inverter circuit 21A.
  • a DC power supply 21B having a positive terminal (+) connected to the input positive terminal and a negative terminal (-) connected to the DC input negative terminal, upper arm switching elements 211U, 211V and 211W, and the positive terminal (+) of the DC power supply 21B.
  • a first terminal pair 31U, 31V and 31W constituted by terminal wirings respectively connected to both terminals of the detection resistors connected in series to the wiring 24 connecting the detection resistors;
  • the sensor circuit 3 or 3A subtracts the noise components input through the second terminal pairs 32U, 32V and 32W from the detection signals input through the first terminal pairs 31U, 31V and 31W, respectively, so that the Errors due to noise components can be removed from the current or voltage measurements on line 24 .
  • An electronic device 1A includes a three-phase inverter circuit 21A in which upper arm switching elements 211U, 211V and 211W and lower arm switching elements 212U, 212V and 212W are connected in series, and a DC current of the inverter circuit 21A.
  • a DC power supply 21B having a positive terminal (+) connected to the input positive terminal and a negative terminal (-) connected to the DC input negative terminal, lower arm switching elements 212U, 212V and 212W, and the negative terminal (-) of the DC power supply 21B.
  • a first terminal pair 31U, 31V and 31W constituted by terminal wirings respectively connected to both terminals of the detection resistor connected in series to the wiring 25 connecting the detection resistor,
  • the sensor circuit 3 or 3A subtracts the noise components input through the second terminal pairs 32U, 32V and 32W from the detection signals input through the first terminal pairs 31U, 31V and 31W, respectively, thereby Errors due to noise components can be removed from the current or voltage measurements on line 25 .
  • a sensor circuit according to the present disclosure can be used, for example, in an electronic device having a three-phase inverter circuit and a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

センサ回路(3)は、配線(23)に接続された検出用抵抗と、検出用抵抗の両方の端部にそれぞれ接続された端子配線によって構成された第1の端子対(31)と、検出用抵抗の一方の端部において互いにショートされた端子配線によって構成された第2の端子対(32)と、第1の端子対(31)を通じて入力された検出信号と、第2の端子対(32)を通じて入力された検出信号とを用いて、ノイズ成分を除去した電流または電圧を測定するセンシング部(33)を備える。

Description

センサ回路および電子機器
 本開示は、センサ回路および電子機器に関する。
 差動デバイスにおけるコモンモードノイズの除去は、コモンモード除去比(以下、CMRRと記載する。)を用いて定量的に表される。CMRRを改善するための従来の技術として、例えば、特許文献1に記載される差動プローブがある。当該差動プローブが備える接触端子の対には、コモンモードチョークコイル(以下、CMCと記載する。)が接続されている。CMCは、コモンモードノイズに対して高インピーダンスとなることにより、当該差動プローブに流入するコモンモードノイズが低減される。
特開平7-12871号公報
 特許文献1に記載された差動プローブは、CMCを備えるセンサ回路であり、CMCには、そのコイル巻線の両端に寄生容量が不可避的に生じる。CMCに生じた寄生容量は、高周波のコモンモードノイズに対するCMCのインピーダンスを低減させるので、コモンモードノイズによって高周波数領域における測定精度が低下するという課題があった。
 本開示は上記課題を解決するものであり、電子機器が備える駆動回路と負荷回路とを接続する配線における電流または電圧の測定値からノイズ成分による誤差を除去することができるセンサ回路およびこれを備えた電子機器を得ることを目的とする。
 本開示に係るセンサ回路は、配線によって駆動回路と負荷回路とが接続された回路部を有する電子機器の配線における電流または電圧を測定するセンサ回路であって、配線に接続された検出用抵抗と、検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対と、検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対と、第1の端子対を通じて入力された検出信号と第2の端子対を通じて入力された検出信号とを用いて、ノイズ成分を除去した電流または電圧を測定するセンシング部を備える。
 本開示によれば、第1の端子対を通じて入力された検出信号には、配線における電流または電圧の真値であるディファレンシャル成分に加え、コモンモードノイズ成分が重畳されている。第2の端子対は、検出用抵抗の一方の端子において互いにショートされているので、第2の端子対を通じて入力された検出信号には、誤差であるコモンモードノイズ成分のみが含まれる。これにより、本開示に係るセンサ回路は、第1の端子対を通じて入力された検出信号から第2の端子対を通じて入力されたノイズ成分を差し引くことで、電子機器が備える駆動回路と負荷回路とを接続する配線における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
実施の形態1に係る電子機器の構成例を示すブロック図である。 センサ回路の変形例の構成を示すブロック図である。 センシング部の構成例を示すブロック図である。 センシング部によって行われるノイズ補正の概要を示す説明図である。 センシング部の変形例の構成を示すブロック図である。 実施の形態2に係る電子機器の構成例を示すブロック図である。 センサ回路の変形例の構成を示すブロック図である。 実施の形態2に係る電子機器の変形例(1)の構成を示すブロック図である。 実施の形態2に係る電子機器の変形例(2)の構成を示すブロック図である。
実施の形態1.
 図1は、実施の形態1に係る電子機器1の構成例を示すブロック図である。図1において、電子機器1は、回路部2、センサ回路3および制御部4を備える。回路部2は、駆動回路21と負荷回路22を備えており、駆動回路21と負荷回路22は、配線23によって電気的に接続されている。駆動回路21は、負荷回路22を駆動させる回路であり、配線23に対して電圧Vを印加する。負荷回路22は、インピーダンスZを有した回路であり、駆動回路21によって駆動される。回路部2は、寄生容量Cによってグラウンド電位の基準GNDと結合している。回路部2には、寄生容量Cを含んだループ経路が形成され、このループ経路には、電圧Vのコモンモードノイズが存在する。
 センサ回路3は、配線23を通じて駆動回路21が負荷回路22に供給する電流または電圧を測定する回路である。すなわち、センサ回路3は、配線23における電流または電圧を測定する。センサ回路3は、配線23に接続された検出用抵抗である第1の検出用抵抗RS_1および第2の検出用抵抗RS_2と、第1の端子対31と、第2の端子対32と、センシング部33を備える。第1の検出用抵抗RS_1および第2の検出用抵抗RS_2は、配線23中に二直列に接続された直列抵抗回路を構成する。また、第1の検出用抵抗RS_1および第2の検出用抵抗RS_2は、同一の抵抗値Rを有した抵抗素子である。
 第1の端子対31は、検出用抵抗の両方の端子34,35にそれぞれ接続された端子配線によって構成されている。図1において、第1の端子対31は、上記直列抵抗回路の第1の検出用抵抗RS_1における第2の検出用抵抗RS_2とは反対側の端子34に接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2における第1の検出用抵抗RS_1とは反対側の端子35に接続された端子配線とによって構成されている。
 第2の端子対32は、検出用抵抗の一方の端子36において互いにショートされた2つの端子配線によって構成されている。図1において、第2の端子対32を構成する2つの端子配線は、直列抵抗回路における第1の検出用抵抗RS_1と第2の検出用抵抗RS_2とが接続された端子36において互いに接続されてショートされている。
 センシング部33は、第1の端子対31を通じて入力した検出信号と第2の端子対32を通じて入力した検出信号を用いて、配線23におけるノイズ成分を除去した電流または電圧を測定する。センシング部33によって測定された電流または電圧の測定データは、制御部4に出力される。電子機器1は、図1に記載された構成要素以外の構成要素を備えている。制御部4は、センサ回路3によって回路部2から測定された電流または電圧の測定値に基づいて構成要素の動作を制御する。
 図2は、センサ回路3の変形例であるセンサ回路3Aの構成を示すブロック図である。図2に示すように、センサ回路3Aが備える検出用抵抗は、配線23と配線23Aとの間に第1の検出用抵抗RS_1と第2の検出用抵抗RS_2とが配線23に直列に接続された直列抵抗回路である。配線23Aは、駆動回路21と負荷回路22とを接続する配線のうち、寄生容量Cによってグラウンド電位の基準GNDと結合している側の配線である。このような検出用抵抗において、第1の端子対31は、図2に示すように、直列抵抗回路の両方の端子37および38にそれぞれ接続された端子配線によって構成され、第2の端子対32は、直列抵抗回路における第1の検出用抵抗RS_1と第2の検出用抵抗RS_2とが接続された端子39においてショートされた2つの端子配線によって構成されている。
 図3は、センシング部33の構成例を示すブロック図である。図3に示されるように、センシング部33は、信号測定回路331、ノイズ測定回路332およびノイズ補正回路333を備える。信号測定回路331およびノイズ測定回路332は、全ての回路構成が同一である。信号測定回路331は、増幅回路3311を備え、第1の端子対31を通じて入力された、ノイズ成分を含む電流または電圧の検出信号を増幅する。図3において、増幅回路3311は、第1の端子対31を通じて入力された検出信号を増幅し、増幅した信号(電圧VOUT1)を、ノイズ補正回路333に出力する。
 ノイズ測定回路332は、増幅回路3321を備え、第2の端子対32を通じて入力されたノイズ成分のみを含む検出信号を増幅する。図3において、増幅回路3321は、第2の端子対32を通じて入力された検出信号を増幅し、増幅した信号(電圧VOUT2)を、ノイズ補正回路333に出力する。
 増幅回路3311および増幅回路3321は、例えば、オペアンプを用いた反転増幅回路または非反転増幅回路によって構成される。
 ノイズ補正回路333は、アナログ減算回路3331を備えており、信号測定回路331によって増幅された検出信号の値から、ノイズ測定回路332によって増幅された検出信号の値を減算する。アナログ減算回路3331は、信号測定回路331から入力された電圧VOUT1から、ノイズ測定回路332から入力された電圧VOUT2を減算することにより、電圧VOUT1-VOUT2のアナログ信号を、制御部4に出力する。アナログ減算回路3331は、例えば、オペアンプを用いた減算回路によって構成される。
 また、第1の端子対31および第2の端子対32は、端子配線の配線長が同一である。例えば、第1の端子対31が、端子34と増幅回路3311の正端子(+)とを接続する端子配線(1)と、端子35と増幅回路3311の負端子(-)とを接続する端子配線(2)とによって構成され、第2の端子対32が、端子36によってショートされた端子配線(3)と端子配線(4)によって構成される場合、端子配線(1)~(4)は、同一の配線長である。
 図4は、センシング部33によって行われるノイズ補正の概要を示す説明図である。図4に示すように、第1の端子対31における正端子(+)は、配線23における端子34に接続され、第1の端子対31における負端子(-)は、配線23における端子35に接続されている。グラウンド電位である基準GNDに対する端子34の電位Vは、下記式(1)によって表される。下記式(1)において、Vは、駆動回路21によって配線23に印加される電圧であり、Vは、コモンモードノイズの電圧である。
 V=V+V   ・・・(1)
 また、グラウンド電位である基準GNDに対する端子35の電位Vは、下記式(2)によって表される。下記式(2)において、Kは、変数である。
 V=K・V+V   ・・・(2)
 上記式(2)における変数Kは、負荷回路22のインピーダンスZ、第1の検出用抵抗RS_1の抵抗値Rおよび第2の検出用抵抗RS_2の抵抗値Rを用いて、下記式(3)によって表される。
 K=Z/(2・R+Z)   ・・・(3)
 第1の端子対31を通じて増幅回路3311に入力される、コモンモードノイズ成分の電圧値を含むディファレンシャルモード電圧VDIFFは、下記式(4)によって表される。
 VDIFF=V-V=(1-K)・V   ・・・(4)
 また、第2の端子対32を通じて増幅回路3321に入力される、コモンモードノイズ成分の電圧であるコモンモード電圧VCOMは、下記式(5)によって表される。
 VCOM=(V+V)/2={(1+K)/2}・V+V   ・・・(5)
 増幅回路3311によって増幅された信号の出力電圧VOUT1は、基準電位がグラウンド電位である場合、差動利得A、同相利得A、ディファレンシャルモード電圧VDIFF、コモンモード電圧VCOMおよび変数Kを用いて、下記式(6)によって表される。検出用抵抗の両方の端子間の電圧VOUT1は、下記式(6)の関係により、同相利得Aに応じてコモンモード電圧VCOMが増幅されると、その測定精度が劣化する。
 VOUT1=A・VDIFF+A・VCOM=A・(1-K)・V+A・[{(1+K)/2}・V+V]   ・・・(6)
 第2の端子対32における正端子(+)および負端子(-)は、端子36においてショートされている。グラウンド電位に対する端子36の電位Vは、下記式(7)によって表される。
 V={(1+K)/2}・V+V   ・・・(7)
 増幅回路3321によって増幅された信号の出力電圧VOUT2において、ディファレンシャル成分のディファレンシャルモード電圧VDIFFは0(V)であり、ノイズ成分として、上記式(5)によって表されるコモンモード電圧VCOMのみが含まれる。このため、出力電圧VOUT2は、下記式(8)によって表される。なお、増幅回路3321と増幅回路3311とは同一の回路構成であるので、差動利得Aと同相利得Aは、増幅回路3321と増幅回路3311とで同じ値である。
 VOUT2=A・VDIFF+A・VCOM
 =A・[{(1+K)/2}・V+V]   ・・・(8)
 アナログ減算回路3331は、上記式(6)によって表される出力電圧VOUT1から上記式(9)によって表される出力電圧VOUT2を減算することにより、下記式(9)によって表される出力電圧VOUT3の信号を制御部4に出力する。
 VOUT3=VOUT1-VOUT2=A・(1-K)・V   ・・・(9)
 上記式(9)から明らかなように、センシング部33の出力電圧VOUT3は、上記式(6)によって表される出力電圧VOUT1と比べて、同相利得Aによって増幅されるコモンモード電圧VCOMの成分が除去されており、センシングの精度が向上している。
 図5は、センシング部33の変形例であるセンシング部33Aの構成を示すブロック図である。図5において、図3と同一の構成要素には同一の符号が付されている。センシング部33Aは、信号測定回路331、ノイズ測定回路332およびノイズ補正回路333Aを備える。信号測定回路331とノイズ測定回路332は、全ての回路構成が同一である。ノイズ補正回路333Aは、AD変換器3332、AD変換器3333および減算器3334を備える。
 AD変換器3332は、信号測定回路331によって増幅された検出信号をディジタル信号に変換し、ディジタル信号を減算器3334に出力する。AD変換器3333は、ノイズ測定回路332によって増幅された検出信号をディジタル信号に変換し、ディジタル信号を減算器3334に出力する。減算器3334は、電圧VOUT1を示すディジタル信号から電圧VOUT2を示すディジタル信号を減算することによって、電圧VOUT1-VOUT2を示すディジタル信号を、制御部4に出力する。
 AD変換器3332によって変換されたディジタル信号とAD変換器3333によって変換されたディジタル信号には、減算器3334へ出力されるまでにフィルタリング処理が施されてもよい。例えば、ディファレンシャル成分およびコモンモードノイズ成分以外のノイズ成分をディジタル信号から除去するフィルタリング処理が行われる。減算器3334は、フィルタリング処理後のディジタル信号の減算を行う。
 センサ回路3または3Aにおいて、検出用抵抗は、第1の検出用抵抗RS_1および第2の検出用抵抗RS_2の2つの抵抗によって構成されるものに限定されず、1つの抵抗素子であってもよいし、3つ以上の抵抗素子が組み合わされた抵抗回路であってもよい。
 電子機器1が複数の回路部2を備える場合、センサ回路3または3Aは、複数の回路部2のそれぞれに対して、検出用抵抗、第1の端子対および第2の端子対を備えてもよい。この場合、センサ回路3または3Aは、複数の回路部2についての測定を同時に行うことが可能である。
 また、センシング部33または33Aは、制御部4とは独立したディスクリート部品であってもよいし、センシング部33または33Aと制御部4と一つの集積回路(IC)であってもよい。
 配線23が高速信号配線である場合、センサ回路3または3Aは、高速信号配線における電流または電圧を測定する。この場合、制御部4は、センサ回路3または3Aによって測定された電流または電圧の信号を用いて、高速信号配線における信号解析を行う。
 以上のように、実施の形態1に係るセンサ回路3または3Aは、配線23に接続された検出用抵抗と、検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対31と、検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対32と第1の端子対31を通じて入力された検出信号と第2の端子対32を通じて入力された検出信号を用いて、ノイズ成分を除去した電流または電圧を測定するセンシング部33を備える。第1の端子対31を通じて入力された検出信号には、配線における電流または電圧の真値であるディファレンシャル成分に加えて、コモンモードノイズ成分が重畳されている。第2の端子対32は、検出用抵抗の一方の端子において互いにショートされているので、第2の端子対32を通じて入力された検出信号には、コモンモードノイズ成分のみが含まれる。これにより、センサ回路3または3Aは、第1の端子対31を通じて入力された検出信号から第2の端子対32を通じて入力されたノイズ成分を差し引くことにより、配線23における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
 実施の形態1に係るセンサ回路3または3Aにおいて、センシング部33または33Aは、第1の端子対31を通じて入力した検出信号を増幅する信号測定回路331と、第2の端子対32を通じて入力された検出信号を増幅するノイズ測定回路332と、信号測定回路331によって増幅された検出信号の値からノイズ測定回路332によって増幅された検出信号の値を減算して出力するノイズ補正回路333を備え、信号測定回路331およびノイズ測定回路332は、同一の回路構成である。この構成を有することにより、センサ回路3は、第1の端子対31を通じて入力された検出信号から第2の端子対32を通じて入力されたノイズ成分を適切に差し引くことが可能である。
 実施の形態1に係るセンサ回路3において、検出用抵抗は、配線23中に直列に接続された第1の検出用抵抗RS_1および第2の検出用抵抗RS_2によって構成された直列抵抗回路である。第1の端子対31は、直列抵抗回路の両方の端子34および35にそれぞれ接続された端子配線によって構成されている。第2の端子対32は、直列抵抗回路における第1の検出用抵抗RS_1と第2の検出用抵抗RS_2とが接続された端子36において互いにショートされた端子配線によって構成されている。この構成を有することにより、センサ回路3は、第1の端子対31を通じて入力された検出信号から、第2の端子対32を通じて入力されたノイズ成分を適切に差し引くことが可能である。
 実施の形態1に係るセンサ回路3Aにおいて、検出用抵抗は、配線23と配線23Aとの間に直列に接続された第1の検出用抵抗RS_1および第2の検出用抵抗RS_2によって構成された直列抵抗回路である。第1の端子対31は、直列抵抗回路の各端子37および38に接続された端子配線によって構成される。第2の端子対32は、直列抵抗回路における第1の検出用抵抗RS_1と第2の検出用抵抗RS_2との接続点である端子39において互いにショートされた端子配線によって構成される。この構成を有することにより、第1の端子対31を通じて入力された検出信号から、第2の端子対32を通じて入力されたノイズ成分を適切に差し引くことが可能である。
 実施の形態1に係るセンサ回路3または3Aにおいて、第1の検出用抵抗RS_1および第2の検出用抵抗RS_2は、同一の抵抗値である。これにより、センサ回路3は、第1の端子対31を通じて入力された検出信号から、第2の端子対32を通じて入力されたノイズ成分を適切に差し引くことが可能である。
 実施の形態1に係るセンサ回路3または3Aにおいて、第1の検出用抵抗RS_1および第2の検出用抵抗RS_2は、端子配線の配線長が同一である。これにより、センサ回路3は、第1の端子対31を通じて入力された検出信号から、第2の端子対32を通じて入力されたノイズ成分を適切に差し引くことが可能である。
実施の形態2.
 図6は、実施の形態2に係る電子機器1Aの構成例を示すブロック図である。図6において、電子機器1Aは、回路部2A、センサ回路3および制御部4Aを備える。回路部2Aは、駆動回路である三相のインバータ回路21Aと、負荷回路である三相のモータ22Aとを備えており、インバータ回路21Aとモータ22Aは、配線23U、配線23Vおよび配線23Wによって電気的に接続されている。
 インバータ回路21Aは、直流電源21Bによって直流電圧が印加される。インバータ回路21Aの直流入力正端子には、直流電源21Bの正端子(+)が接続され、インバータ回路の直流入力負端子には、直流電源21Bの負端子(-)が接続される。また、配線23U、配線23Vおよび配線23Wは、インバータ回路21Aからモータ22Aへ電流を出力するための出力配線である。なお、配線23U、配線23Vおよび配線23Wは、プリント基板に形成された配線パターンであってよいし、導体ケーブルであってもよい。
 また、インバータ回路21Aは、上アームを構成するスイッチング素子である上アームスイッチング素子と、下アームを構成するスイッチング素子である下アームスイッチング素子とを、U相、V相およびW相ごとに備える。前述のインバータ回路21Aにおける直流入力正端子は、上アーム側の入力端子であり、直流入力負端子は、下アーム側の入力端子である。
 各相の上アームスイッチング素子と下アームスイッチング素子は、直列に接続されている。その接続点には、各相の出力配線である配線23U、配線23Vおよび配線23Wがそれぞれ接続されている。インバータ回路21Aは、上アームスイッチング素子と下アームスイッチング素子をスイッチングすることにより、配線23U、配線23Vおよび配線23Wを通じて、三相のモータ22Aに電流を供給して駆動させる。
 センサ回路3は、三相のインバータ回路21Aから三相のモータ22Aへ供給される電流値を測定する。センサ回路3によって測定された各相の電流値を示す信号は、制御部4Aに出力される。制御部4Aは、三相のモータ22Aの駆動を、フィードバック制御する。例えば、制御部4Aは、センサ回路3Aによって測定された各相の電流値に基づいて、上アームスイッチング素子と下アームスイッチング素子をスイッチング制御することにより、三相のモータ22Aの駆動を制御する。制御部4Aは、例えば、PWM(Pulse Width Modulation)制御を用いてスイッチング制御を行う。
 センサ回路3は、検出用抵抗、第1の端子対および第2の端子対を、相ごとに備え、さらに、センシング部33Bを備える。すなわち、センサ回路3は、配線23Uに接続された第1の検出用抵抗RS_1_Uおよび第2の検出用抵抗RS_2_Uと、第1の端子対31Uと、第2の端子対32Uとを備え、配線23Vに接続された第1の検出用抵抗RS_1_Vおよび第2の検出用抵抗RS_2_Vと、第1の端子対31Vと、第2の端子対32Vとを備え、配線23Wに接続された第1の検出用抵抗RS_1_Wおよび第2の検出用抵抗RS_2_Wと、第1の端子対31Wと、第2の端子対32Wとを備える。
 第1の検出用抵抗RS_1_Uおよび第2の検出用抵抗RS_2_Uは、配線23Uに二直列に接続された直列抵抗回路を構成する。第1の検出用抵抗RS_1_Vおよび第2の検出用抵抗RS_2_Vは、配線23Vに二直列に接続された直列抵抗回路を構成する。第1の検出用抵抗RS_1_Wおよび第2の検出用抵抗RS_2_Wは、配線23Wに二直列に接続された直列抵抗回路を構成する。
 第1の端子対31Uは、直列抵抗回路の第1の検出用抵抗RS_1_Uにおける第2の検出用抵抗RS_2_Uとは反対側の端子34Uに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Uにおける第1の検出用抵抗RS_1_Uとは反対側の端子35Uに接続された端子配線とによって構成される。第2の端子対32Uは、第1の検出用抵抗RS_1_Uと第2の検出用抵抗RS_2_Uとが接続された端子36Uにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 第1の端子対31Vは、直列抵抗回路の第1の検出用抵抗RS_1_Vにおける第2の検出用抵抗RS_2_Vとは反対側の端子34Vに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Vにおける第1の検出用抵抗RS_1_Vとは反対側の端子35Vに接続された端子配線とによって構成される。第2の端子対32Vは、第1の検出用抵抗RS_1_Vと第2の検出用抵抗RS_2_Vとが接続された端子36Vにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 第1の端子対31Wは、直列抵抗回路の第1の検出用抵抗RS_1_Wにおける第2の検出用抵抗RS_2_Wとは反対側の端子34Wに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Wにおける第1の検出用抵抗RS_1_Wとは反対側の端子35Wに接続された端子配線とによって構成されている。第2の端子対32Wは、第1の検出用抵抗RS_1_Wと第2の検出用抵抗RS_2_Wとが接続された端子36Wにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 センシング部33Bは、実施の形態1で示したセンシング部と同様に、例えば、信号測定回路331、ノイズ測定回路332およびノイズ補正回路333を備える。センシング部33Bにおいても、信号測定回路331およびノイズ測定回路332は全ての回路構成が同一である。また、信号測定回路331は、増幅回路3311を備えており、第1の端子対31U、31Vおよび31Wを通じて入力された、ノイズ成分を含む電流の検出信号をそれぞれ増幅する。増幅回路3311は、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号をそれぞれ増幅し、増幅した各相の信号をノイズ補正回路333に出力する。
 ノイズ測定回路332は、増幅回路3321を備え、第2の端子対32U、32Vおよび32Wを通じて入力された、ノイズ成分のみを含む検出信号をそれぞれ増幅する。増幅回路3321は、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号をそれぞれ増幅し、増幅した各相の信号をノイズ補正回路333に出力する。
 なお、増幅回路3311および増幅回路3321は、例えば、オペアンプを用いた反転増幅回路または非反転増幅回路によって構成される。
 ノイズ補正回路333は、アナログ減算回路3331を備えており、信号測定回路331によって増幅された各相の検出信号の値から、ノイズ測定回路332によって増幅された各相の検出信号の値を減算する。アナログ減算回路3331によって減算された各相の電流値を示すアナログ信号は、制御部4Aに出力される。センシング部33Bから制御部4Aへ出力される各相の電流を示す信号は、同相利得によって増幅されるコモンモードノイズ成分が除去されている。これにより、センサ回路3は、配線23U、配線23Vおよび配線23Wにおける電流のセンシング精度が向上している。
 また、センシング部33Bは、ノイズ補正回路333の代わりに、ノイズ補正回路333Aを備えてもよい。ノイズ補正回路333Aが備えるAD変換器3332は、信号測定回路331によって増幅された各相の検出信号をディジタル信号に変換し、ディジタル信号を相ごとに減算器3334に出力する。AD変換器3333は、ノイズ測定回路332によって増幅された各相の検出信号をディジタル信号に変換し、ディジタル信号を相ごとに減算器3334に出力する。減算器3334は、信号測定回路331によって増幅された各相のディジタル信号から、ノイズ測定回路332によって増幅された各相のディジタル信号を減算することにより、減算結果のディジタル信号を、制御部4Aに出力する。
 なお、AD変換器3332によって変換された各相のディジタル信号とAD変換器3333によって変換された各相のディジタル信号には、減算器3334へ出力されるまでにフィルタリング処理が施されてもよい。例えば、ディファレンシャル成分およびコモンモードノイズ成分以外のノイズ成分を、各相のディジタル信号から除去するフィルタリング処理が行われる。減算器3334は、フィルタリング処理後の各相のディジタル信号の減算を行う。
 また、第1の端子対31Uおよび第2の端子対32Uは、端子配線の配線長が同一である。第1の端子対31Vおよび第2の端子対32Vは、端子配線の配線長が同一である。第1の端子対31Wおよび第2の端子対32Wは、端子配線の配線長が同一である。
 例えば、第1の端子対31Uが、端子34Uと増幅回路3311の正端子(+)とを接続する端子配線(1)と、端子35Uと増幅回路3311の負端子(-)とを接続する端子配線(2)とによって構成され、第2の端子対32Uが、端子36Uによってショートされた端子配線(3)と端子配線(4)によって構成される場合、端子配線(1)~(4)は、同一の配線長である。なお、同じ相および異なる相間において、第1の端子対および第2の端子対を構成する端子配線の配線長は同一である。
 図7は、センサ回路3の変形例であるセンサ回路3Aの構成を示すブロック図であり、U相における検出用抵抗を例に挙げている。図7に示すように、センサ回路3Aが備える
検出用抵抗は、第1の検出用抵抗RS_1_Uと第2の検出用抵抗RS_2_Uとが配線23Uと配線23Aとの間に直列に接続された直列抵抗回路であってもよい。同様に、V相においては、検出用抵抗は、第1の検出用抵抗RS_1_Vと第2の検出用抵抗RS_2_Vとが配線23Vと配線23Aとの間に直列に接続された直列抵抗回路であり、W相においては、第1の検出用抵抗RS_1_Wと第2の検出用抵抗RS_2_Wとが配線23Wと配線23Aとの間に直列に接続された直列抵抗回路である。配線23Aは、直流電源21Bの負端子(-)に接続されている。
 第1の端子対31Uは、上記直列抵抗回路の両方の端子37Uおよび38Uにそれぞれ接続された端子配線によって構成される。第2の端子対32Uは、上記直列抵抗回路における第1の検出用抵抗RS_1_Uと第2の検出用抵抗RS_2_Uとが接続された端子39Uにおいてショートされた2つの端子配線によって構成される。第1の端子対31V、第2の端子対32V、第1の端子対31Wおよび第2の端子対32Wについても同様である。
 すなわち、第1の端子対31Vは、上記直列抵抗回路の両方の端子37Vおよび38Vにそれぞれ接続された端子配線によって構成されている。第2の端子対32Vは、上記直列抵抗回路における第1の検出用抵抗RS_1_Vと第2の検出用抵抗RS_2_Vとが接続された端子39Vにおいてショートされた2つの端子配線によって構成される。第1の端子対31Wは、上記直列抵抗回路の両方の端子37Wおよび38Wにそれぞれ接続された端子配線によって構成されている。第2の端子対32Wは、上記直列抵抗回路における第1の検出用抵抗RS_1_Wと第2の検出用抵抗RS_2_Wとが接続された端子39Wにおいてショートされた2つの端子配線によって構成される。
 図8は、電子機器1Aの変形例(1)の構成を示すブロック図である。センサ回路3または3Aにおいて、検出用抵抗は、図8に示すように、相ごとの上アームスイッチング素子と直流電源の正端子(+)との間をそれぞれ接続する配線24に対して第1の検出用抵抗と第2の検出用抵抗とが直列に接続された直列抵抗回路であってもよい。
 第1の端子対31Uは、直列抵抗回路の第1の検出用抵抗RS_1_Uにおける第2の検出用抵抗RS_2_Uとは反対側の端子40Uに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Uにおける第1の検出用抵抗RS_1_Uとは反対側の端子41Uに接続された端子配線とによって構成される。第2の端子対32Uは、第1の検出用抵抗RS_1_Uと第2の検出用抵抗RS_2_Uとが接続された端子42Uにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 図8において記載が省略された第1の端子対31V、第2の端子対32V、第1の端子対31Wおよび第2の端子対32Wについても同様である。すなわち、第1の端子対31Vは、直列抵抗回路の第1の検出用抵抗RS_1_Vにおける第2の検出用抵抗RS_2_Vとは反対側の端子40Vに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Vにおける第1の検出用抵抗RS_1_Vとは反対側の端子41Vに接続された端子配線とによって構成される。第2の端子対32Vは、第1の検出用抵抗RS_1_Vと第2の検出用抵抗RS_2_Vとが接続された端子42Vにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 第1の端子対31Wは、直列抵抗回路の第1の検出用抵抗RS_1_Wにおける第2の検出用抵抗RS_2_Wとは反対側の端子40Wに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Wにおける第1の検出用抵抗RS_1_Wとは反対側の端子41Wに接続された端子配線とによって構成される。第2の端子対32Wは、第1の検出用抵抗RS_1_Wと第2の検出用抵抗RS_2_Wとが接続された端子42Wにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 センシング部33Bは、第1の端子対31U、31Vおよび31Wを通じて入力されたノイズ成分を含む電流値の検出信号から、第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分のみを含む検出信号を差し引くことにより、各相の配線24におけるノイズ成分(コモンモードノイズ成分)を除去し、ノイズ成分を除去した各相の配線24における電流値をそれぞれ測定する。
 電子機器1Aは、図6に示した配線23U、23Vおよび23Wにそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対に加えて、図8に示した各相の配線24にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対を備えてもよい。
 また、電子機器1Aは、図6に示した検出用抵抗、第1の端子対および第2の端子対を備えず、図8に示した各相の配線24にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対のみを備えてもよい。
 いずれの電子機器1Aにおいても、センサ回路3または3Aは、第1の端子対を通じて入力された検出信号から、第2の端子対を通じて入力されたノイズ成分を差し引く。これにより、センサ回路3または3Aは、電子機器1Aが備える配線における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
 図9は、電子機器1Aの変形例(2)の構成を示すブロック図である。センサ回路3または3Aにおいて、検出用抵抗は、図9に示すように、相ごとの下アームスイッチング素子と直流電源の負端子(-)との間をそれぞれ接続する配線25に対して第1の検出用抵抗と第2の検出用抵抗とが直列に接続された直列抵抗回路であってもよい。
 第1の端子対31Uは、直列抵抗回路の第1の検出用抵抗RS_1_Uにおける第2の検出用抵抗RS_2_Uとは反対側の端子43Uに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Uにおける第1の検出用抵抗RS_1_Uとは反対側の端子44Uに接続された端子配線とによって構成される。第2の端子対32Uは、第1の検出用抵抗RS_1_Uと第2の検出用抵抗RS_2_Uとが接続された端子45Uにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 図9において記載が省略された第1の端子対31V、第2の端子対32V、第1の端子対31Wおよび第2の端子対32Wについても同様である。すなわち、第1の端子対31Vは、直列抵抗回路の第1の検出用抵抗RS_1_Vにおける第2の検出用抵抗RS_2_Vとは反対側の端子43Vに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Vにおける第1の検出用抵抗RS_1_Vとは反対側の端子44Vに接続された端子配線とによって構成される。第2の端子対32Vは、第1の検出用抵抗RS_1_Vと第2の検出用抵抗RS_2_Vとが接続された端子45Vにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 第1の端子対31Wは、直列抵抗回路の第1の検出用抵抗RS_1_Wにおける第2の検出用抵抗RS_2_Wとは反対側の端子43Wに接続された端子配線と、直列抵抗回路の第2の検出用抵抗RS_2_Wにおける第1の検出用抵抗RS_1_Wとは反対側の端子44Wに接続された端子配線とによって構成される。第2の端子対32Wは、第1の検出用抵抗RS_1_Wと第2の検出用抵抗RS_2_Wとが接続された端子45Wにおいて互いに接続されてショートされた2つの端子配線によって構成される。
 センシング部33Bは、第1の端子対31U、31Vおよび31Wを通じて入力されたノイズ成分を含む電流値の検出信号から、第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分のみを含む検出信号を差し引くことにより、各相の配線24におけるコモンモードノイズ成分を除去し、ノイズ成分を除去した各相の配線25における電流値をそれぞれ測定する。
 図7、図8および図9において、第1の端子対31Uおよび第2の端子対32Uは、端子配線の配線長が同一である。第1の端子対31Vおよび第2の端子対32Vは、端子配線の配線長が同一である。第1の端子対31Wおよび第2の端子対32Wは、端子配線の配線長が同一である。例えば、第1の端子対31Uが、端子34Uと増幅回路3311の正端子(+)とを接続する端子配線(1)と、端子35Uと増幅回路3311の負端子(-)とを接続する端子配線(2)とによって構成され、第2の端子対32Uが、端子36Uによってショートされた端子配線(3)と端子配線(4)によって構成される場合、端子配線(1)~(4)は、同一の配線長である。なお、同じ相および異なる相間において、第1の端子対および第2の端子対を構成する端子配線の配線長は同一である。
 電子機器1Aは、図6に示した配線23U、23Vおよび23Wにそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対に加えて、図9に示した各相の配線25にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対を備えてもよい。
 また、電子機器1Aは、図6に示した配線23U、23Vおよび23Wにそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対に加え、図8に示した各相の配線24にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対、さらに、図9に示した各相の配線25にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対を備えてもよい。
 さらに、電子機器1Aは、図9に示した各相の配線24にそれぞれ接続された検出用抵抗、第1の端子対および第2の端子対のみを備えてもよい。
 いずれの電子機器1Aにおいても、センサ回路3または3Aは、第1の端子対を通じて入力された検出信号から、第2の端子対を通じて入力されたノイズ成分を差し引く。これにより、センサ回路3または3Aは、電子機器1Aが備える配線における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
 また、センサ回路3または3Aは、配線23U、23Vおよび23Wの全ての相の配線に検出用抵抗、第1の端子対および第2の端子対を有していなくてもよく、例えば、三相のうち、任意の二相に対して検出用抵抗、第1の端子対および第2の端子対を設けてもよい。
 センサ回路3または3Aにおいて、検出用抵抗は、第1の検出用抵抗RS_1および第2の検出用抵抗RS_2の2つの抵抗によって構成されるものに限定されず、1つの抵抗素子であってもよいし、3つ以上の抵抗素子が組み合わされた抵抗回路であってもよい。
 また、電子機器1Aが複数の回路部2Aを備える場合、センサ回路3または3Aは、複数の回路部2Aのそれぞれに対して、検出用抵抗、第1の端子対および第2の端子対を備えてもよい。この場合、センサ回路3または3Aは、複数の回路部2Aについての測定を同時に行うことが可能である。
 また、センシング部33Bは、制御部4Aとは独立したディスクリート部品であってもよいし、センシング部33Bと制御部4Aと一つの集積回路(IC)であってもよい。
 以上のように、実施の形態2に係る電子機器1Aは、センサ回路3または3Aと、検出用抵抗が接続された配線と、駆動回路である三相のインバータ回路21Aと、配線によって駆動回路と接続された負荷回路である三相のモータ22Aを備える。センサ回路3Aは、第1の端子対を通じて入力された検出信号から、第2の端子対を通じて入力されたノイズ成分を差し引くことにより、配線における電流または電圧の測定値からノイズ成分による誤差を除去することができる。これにより、電子機器1Aは、例えば、誤差が除去された測定値を用いた動作の制御が可能である。
 実施の形態2に係る電子機器1Aにおいて、インバータ回路21Aの直流入力正端子には、直流電源21Bの正端子(+)が接続され、直流入力負端子には、直流電源21Bの負端子(-)が接続される。インバータ回路21Aにおける三相の出力配線23U、23Vおよび23Wのうち、少なくとも二相の出力配線には、第1の検出用抵抗および第2の検出用抵抗によって構成された直列抵抗回路が接続される。第1の端子対31U、31Vおよび31Wは、直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成される。第2の端子対32U、32Vおよび32Wは、直列抵抗回路における第1の検出用抵抗と第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成される。センサ回路3は、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号から第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分をそれぞれ差し引くことにより、配線23U、23Vおよび23Wにおける電流または電圧の測定値からノイズ成分による誤差を除去することができる。これにより、電子機器1Aは、三相のモータ22Aの駆動を正確にフィードバック制御することが可能である。
 実施の形態2に係る電子機器1Aにおいて、インバータ回路21Aの直流入力正端子には、直流電源21Bの正端子(+)が接続され、直流入力負端子には、直流電源21Bの負端子(-)が接続される。インバータ回路21Aにおける三相の出力配線23U、23Vおよび23Wのうち、少なくとも二相の出力配線と、直流電源21Bの負端子(-)に接続された負端子側配線23Aとの間には、第1の検出用抵抗および第2の検出用抵抗が直列に接続された直列抵抗回路が接続される。第1の端子対31U、31Vおよび31Wは、直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成される。第2の端子対32U、32Vおよび32Wは、直列抵抗回路における第1の検出用抵抗と第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成される。センサ回路3Aは、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号から第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分をそれぞれ差し引くことで、配線23U、23Vおよび23Wにおける電流または電圧の測定値からノイズ成分による誤差を除去することができる。これにより、電子機器1Aは、三相のモータ22Aの駆動を正確にフィードバック制御することが可能である。
 実施の形態2に係る電子機器1Aは、上アームスイッチング素子211U、211Vおよび211Wと下アームスイッチング素子212U、212Vおよび212Wとが直列に接続された三相のインバータ回路21Aと、インバータ回路21Aの直流入力正端子に正端子(+)が接続され、直流入力負端子に負端子(-)が接続された直流電源21Bと、上アームスイッチング素子211U、211Vおよび211Wと直流電源21Bの正端子(+)とを接続する配線24に対して直列に接続された検出用抵抗、検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対31U、31Vおよび31W、検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対32U、32Vおよび32W、および、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号と第2の端子対32U、32Vおよび32Wを通じて入力された検出信号とを用いて、各相の配線24におけるノイズ成分を除去した電流または電圧を測定するセンシング部33Bを有したセンサ回路3または3Aを備える。センサ回路3または3Aは、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号から、第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分をそれぞれ差し引くことにより、各相の配線24における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
 実施の形態2に係る電子機器1Aは、上アームスイッチング素子211U、211Vおよび211Wと下アームスイッチング素子212U、212Vおよび212Wとが直列に接続された三相のインバータ回路21Aと、インバータ回路21Aの直流入力正端子に正端子(+)が接続され、直流入力負端子に負端子(-)が接続された直流電源21Bと、下アームスイッチング素子212U、212Vおよび212Wと直流電源21Bの負端子(-)とを接続する配線25に対して直列に接続された検出用抵抗、検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対31U、31Vおよび31W、検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対32U、32Vおよび32W、および、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号と第2の端子対32U、32Vおよび32Wを通じて入力された検出信号とを用いて、各相の配線25におけるノイズ成分を除去した電流または電圧を測定するセンシング部33Bを有したセンサ回路3または3Aを備える。センサ回路3または3Aは、第1の端子対31U、31Vおよび31Wを通じて入力された検出信号から、第2の端子対32U、32Vおよび32Wを通じて入力されたノイズ成分をそれぞれ差し引くことにより、各相の配線25における電流または電圧の測定値からノイズ成分による誤差を除去することができる。
 なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本開示に係るセンサ回路は、例えば、三相のインバータ回路およびモータを有した電子機器に利用可能である。
 1,1A 電子機器、2,2A 回路部、3,3A センサ回路、4,4A 制御部、21 駆動回路、21A インバータ回路、21B 直流電源、22 負荷回路、22A モータ、23,23U,23V,23W,24,25 配線、31,31U,31V,31W 第1の端子対、32,32U,32V,32W 第2の端子対、33,33A,33B センシング部、34,34U,34V34,W,35,35U,35V,35W,36,36U,36V,36W,37,37U,37V,37W,38,38U,38V,38W,39,39U,39V,39W,40,40U,40V,40W,41,41U,41V,41W,42,42U,42V,42W,43,43U,43V,43W,44,44U,44V,44W,45U,45V,45W,211U,211V,211W 上アームスイッチング素子、212U,212V,212W 下アームスイッチング素子、331 信号測定回路、332 ノイズ測定回路、333,333A ノイズ補正回路、3311,3321 増幅回路、3331 アナログ減算回路、3332,3333 AD変換器、3334 減算器。

Claims (11)

  1.  配線によって駆動回路と負荷回路とが接続された回路部を有する電子機器の前記配線における電流または電圧を測定するセンサ回路であって、
     前記配線に接続された検出用抵抗と、
     前記検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対と、
     前記検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対と、
     前記第1の端子対を通じて入力された検出信号と前記第2の端子対を通じて入力された検出信号とを用いて、ノイズ成分を除去した電流または電圧を測定するセンシング部と、
     を備えたことを特徴とするセンサ回路。
  2.  前記センシング部は、
     前記第1の端子対を通じて入力された検出信号を増幅する信号測定回路と、
     前記第2の端子対を通じて入力された検出信号を増幅するノイズ測定回路と、
     前記信号測定回路によって増幅された検出信号の値から、前記ノイズ測定回路によって増幅された検出信号の値を減算して出力するノイズ補正回路と、
     を備え、
     前記信号測定回路および前記ノイズ測定回路は、同一の回路構成であること
     を特徴とする請求項1に記載のセンサ回路。
  3.  前記検出用抵抗は、前記配線中に直列に接続された第1の検出用抵抗および第2の検出用抵抗によって構成された直列抵抗回路であり、
     前記第1の端子対は、前記直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成され、
     前記第2の端子対は、前記直列抵抗回路における前記第1の検出用抵抗と前記第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成されること
     を特徴とする請求項1に記載のセンサ回路。
  4.  前記検出用抵抗は、前記駆動回路と前記負荷回路とを接続する複数の前記配線のうちの前記配線間に直列に接続された第1の検出用抵抗および第2の検出用抵抗によって構成された直列抵抗回路であり、
     前記第1の端子対は、前記直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成され、
     前記第2の端子対は、前記直列抵抗回路における前記第1の検出用抵抗と前記第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成されること
     を特徴とする請求項1に記載のセンサ回路。
  5.  前記第1の検出用抵抗および前記第2の検出用抵抗は、同一の抵抗値であること
     を特徴とする請求項3または請求項4に記載のセンサ回路。
  6.  前記第1の端子対および前記第2の端子対は、端子配線の配線長が同一であること
     を特徴とする請求項1から請求項4のいずれか1項に記載のセンサ回路。
  7.  請求項1に記載のセンサ回路と、
     前記検出用抵抗が接続された前記配線と、
     前記駆動回路と、
     前記配線によって前記駆動回路と接続された前記負荷回路と、
     を備えたことを特徴とする電子機器。
  8.  前記駆動回路は、三相のインバータ回路および直流電源を備え、
     前記インバータ回路の直流入力正端子には、前記直流電源の正端子が接続され、
     前記インバータ回路の直流入力負端子には、前記直流電源の負端子が接続され、
     前記インバータ回路における三相の出力配線のうち、少なくとも二相の出力配線には、第1の検出用抵抗および第2の検出用抵抗が直列に接続された直列抵抗回路が接続され、
     前記第1の端子対は、前記直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成され、
     前記第2の端子対は、前記直列抵抗回路における前記第1の検出用抵抗と前記第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成されること
     を特徴とする請求項7に記載の電子機器。
  9.  前記駆動回路は、三相のインバータ回路および直流電源を備え、
     前記インバータ回路の直流入力正端子には、前記直流電源の正端子が接続され、
     前記インバータ回路の直流入力負端子には、前記直流電源の負端子が接続され、
     前記インバータ回路における三相の出力配線のうち、少なくとも二相の出力配線と、前記直流電源の負端子に接続された負端子側配線との間には、第1の検出用抵抗および第2の検出用抵抗が直列に接続された直列抵抗回路が接続され、
     前記第1の端子対は、前記直列抵抗回路の両方の端子にそれぞれ接続された端子配線によって構成され、
     前記第2の端子対は、前記直列抵抗回路における前記第1の検出用抵抗と前記第2の検出用抵抗とが接続された端子において互いにショートされた端子配線によって構成されること
     を特徴とする請求項7に記載の電子機器。
  10.  上アームスイッチング素子および下アームスイッチング素子が直列に接続された三相のインバータ回路と、
     前記インバータ回路の直流入力正端子に正端子が接続され、前記インバータ回路の直流入力負端子に負端子が接続された直流電源と、
     前記上アームスイッチング素子と前記直流電源の正端子とを接続する配線に対して直列に接続された検出用抵抗、前記検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対、前記検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対、および、前記第1の端子対を通じて入力された検出信号と、前記第2の端子対を通じて入力された検出信号とを用いて、前記配線におけるノイズ成分を除去した電流または電圧を測定するセンシング部を有したセンサ回路と、
     を備えたことを特徴とする電子機器。
  11.  上アームスイッチング素子および下アームスイッチング素子が直列に接続された三相のインバータ回路と、
     前記インバータ回路の直流入力正端子に正端子が接続され、前記インバータ回路の直流入力負端子に負端子が接続された直流電源と、
     前記下アームスイッチング素子と前記直流電源の負端子とを接続する配線に対して直列に接続された検出用抵抗、前記検出用抵抗の両方の端子にそれぞれ接続された端子配線によって構成された第1の端子対、前記検出用抵抗の一方の端子において互いにショートされた端子配線によって構成された第2の端子対、および、前記第1の端子対を通じて入力された検出信号と、前記第2の端子対を通じて入力された検出信号とを用いて、前記配線におけるノイズ成分を除去した電流または電圧を測定するセンシング部を有したセンサ回路と、
     を備えたことを特徴とする電子機器。
PCT/JP2021/003441 2021-02-01 2021-02-01 センサ回路および電子機器 WO2022162924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/003441 WO2022162924A1 (ja) 2021-02-01 2021-02-01 センサ回路および電子機器
CN202180090700.2A CN116710788A (zh) 2021-02-01 2021-02-01 传感器电路和电子设备
DE112021006202.6T DE112021006202B4 (de) 2021-02-01 2021-02-01 Sensorschaltung und elektronische Vorrichtung
JP2022574647A JP7224568B2 (ja) 2021-02-01 2021-02-01 センサ回路および電子機器
US18/197,285 US20230288468A1 (en) 2021-02-01 2023-05-15 Sensor circuit and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003441 WO2022162924A1 (ja) 2021-02-01 2021-02-01 センサ回路および電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/197,285 Continuation US20230288468A1 (en) 2021-02-01 2023-05-15 Sensor circuit and electronic equipment

Publications (1)

Publication Number Publication Date
WO2022162924A1 true WO2022162924A1 (ja) 2022-08-04

Family

ID=82653229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003441 WO2022162924A1 (ja) 2021-02-01 2021-02-01 センサ回路および電子機器

Country Status (5)

Country Link
US (1) US20230288468A1 (ja)
JP (1) JP7224568B2 (ja)
CN (1) CN116710788A (ja)
DE (1) DE112021006202B4 (ja)
WO (1) WO2022162924A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053013A1 (ja) * 2022-09-07 2024-03-14 ファナック株式会社 ノイズ除去回路及びセンサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712871A (ja) * 1993-06-22 1995-01-17 Nippon Telegr & Teleph Corp <Ntt> 高周波重畳微小信号検出用差動プローブ
JPH09211026A (ja) * 1996-02-05 1997-08-15 Yokogawa Electric Corp プローブ
JPH10501665A (ja) * 1994-06-15 1998-02-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 低電源電圧に関して同相除去をする差動増幅器
JP2000332550A (ja) * 1999-05-19 2000-11-30 Canon Inc 信号処理回路及びそれの駆動方法並びに放射線撮像システム
JP2015111153A (ja) * 2015-03-03 2015-06-18 プライムアースEvエナジー株式会社 電圧検出回路
CN110850126A (zh) * 2018-08-03 2020-02-28 均豪精密工业股份有限公司 检测系统、探针装置及面板检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018885A1 (de) * 2008-04-14 2009-10-22 Sew-Eurodrive Gmbh & Co. Kg Leiterplatte, Verfahren zur Bestimmung eines Stromraumzeigers, Umrichter, Leiterplatte und Baureihe von Umrichtern
JP6254977B2 (ja) * 2015-07-22 2017-12-27 ファナック株式会社 ノイズの影響を受けない電流検出回路
JP6487396B2 (ja) 2016-09-06 2019-03-20 ファナック株式会社 ノイズの影響を受けない電流検出回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712871A (ja) * 1993-06-22 1995-01-17 Nippon Telegr & Teleph Corp <Ntt> 高周波重畳微小信号検出用差動プローブ
JPH10501665A (ja) * 1994-06-15 1998-02-10 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 低電源電圧に関して同相除去をする差動増幅器
JPH09211026A (ja) * 1996-02-05 1997-08-15 Yokogawa Electric Corp プローブ
JP2000332550A (ja) * 1999-05-19 2000-11-30 Canon Inc 信号処理回路及びそれの駆動方法並びに放射線撮像システム
JP2015111153A (ja) * 2015-03-03 2015-06-18 プライムアースEvエナジー株式会社 電圧検出回路
CN110850126A (zh) * 2018-08-03 2020-02-28 均豪精密工业股份有限公司 检测系统、探针装置及面板检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053013A1 (ja) * 2022-09-07 2024-03-14 ファナック株式会社 ノイズ除去回路及びセンサ

Also Published As

Publication number Publication date
DE112021006202B4 (de) 2025-01-23
JPWO2022162924A1 (ja) 2022-08-04
DE112021006202T5 (de) 2023-09-14
CN116710788A (zh) 2023-09-05
JP7224568B2 (ja) 2023-02-17
US20230288468A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
CN1478319B (zh) 相电流检测装置
JP7224568B2 (ja) センサ回路および電子機器
US9429611B2 (en) Noise sensor
CN109155593B (zh) 电力转换装置
CN100546164C (zh) 相电流检测装置
WO2007040058A1 (ja) ホール素子デバイスとそれを用いたホール素子回路
JP4106704B2 (ja) 三相電流制御装置
CN110018341B (zh) 相电压检测电路
US20070258172A1 (en) Analog ground-interference canceling device
WO2022113732A1 (ja) モータ制御装置
JP2007212192A (ja) 電流計測回路及びそれを用いた検査装置
KR0182195B1 (ko) 인버터출력 전압측정방법
JP2020187014A (ja) センサ装置
US20130134963A1 (en) Motor Control Circuitry
TWI828419B (zh) 用於直流無刷電機的電流檢測和過流保護電路
CN221507018U (zh) 电流检测装置
JPS5916835Y2 (ja) 電子機器の入力回路
KR200276850Y1 (ko) 전자교반기 진단장치
JP2006345618A (ja) モータ駆動装置
JPS6129120Y2 (ja)
CN118265915A (zh) 检测电路
JPS5821211Y2 (ja) リニアicの耐ノイズ回路
CN118891529A (zh) 电流传感器以及电流检测方法
SWITCH A typical application for the AD8202 is high-side measurement of a current through a solenoid for PWM control of the solenoid opening. Typical applications include hydraulic transmission control and diesel injec-tion control.
JPH01183208A (ja) 演算増幅器の劣化診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574647

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090700.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006202

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922938

Country of ref document: EP

Kind code of ref document: A1