WO2022160567A1 - 一种基于原位还原的无机改性膜的制备方法及其应用 - Google Patents
一种基于原位还原的无机改性膜的制备方法及其应用 Download PDFInfo
- Publication number
- WO2022160567A1 WO2022160567A1 PCT/CN2021/100570 CN2021100570W WO2022160567A1 WO 2022160567 A1 WO2022160567 A1 WO 2022160567A1 CN 2021100570 W CN2021100570 W CN 2021100570W WO 2022160567 A1 WO2022160567 A1 WO 2022160567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic
- membrane
- situ reduction
- mixture
- modified
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 124
- 230000009467 reduction Effects 0.000 title claims abstract description 55
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 47
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 35
- 231100000719 pollutant Toxicity 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007800 oxidant agent Substances 0.000 claims abstract description 21
- 238000001354 calcination Methods 0.000 claims abstract description 15
- 238000011068 loading method Methods 0.000 claims abstract description 7
- 241000195493 Cryptophyta Species 0.000 claims abstract description 4
- 239000003651 drinking water Substances 0.000 claims abstract description 3
- 235000020188 drinking water Nutrition 0.000 claims abstract description 3
- 239000010842 industrial wastewater Substances 0.000 claims abstract description 3
- 239000010865 sewage Substances 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 28
- 229920002101 Chitin Polymers 0.000 claims description 23
- 229910021538 borax Inorganic materials 0.000 claims description 20
- 239000004328 sodium tetraborate Substances 0.000 claims description 20
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 20
- 239000000872 buffer Substances 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 15
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 14
- 239000004327 boric acid Substances 0.000 claims description 14
- 239000007853 buffer solution Substances 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 239000005416 organic matter Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000001509 sodium citrate Substances 0.000 claims description 6
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 6
- 150000003623 transition metal compounds Chemical class 0.000 claims description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 229930091371 Fructose Natural products 0.000 claims description 3
- 239000005715 Fructose Substances 0.000 claims description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- 229930182830 galactose Natural products 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 235000013922 glutamic acid Nutrition 0.000 claims description 3
- 239000004220 glutamic acid Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 3
- 239000012286 potassium permanganate Substances 0.000 claims description 3
- 239000001632 sodium acetate Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- LEAHFJQFYSDGGP-UHFFFAOYSA-K trisodium;dihydrogen phosphate;hydrogen phosphate Chemical compound [Na+].[Na+].[Na+].OP(O)([O-])=O.OP([O-])([O-])=O LEAHFJQFYSDGGP-UHFFFAOYSA-K 0.000 claims description 3
- 239000011592 zinc chloride Substances 0.000 claims description 3
- 235000005074 zinc chloride Nutrition 0.000 claims description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 2
- -1 ferrate Chemical compound 0.000 claims description 2
- 238000004108 freeze drying Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 2
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 claims description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims 1
- 241000894007 species Species 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 19
- 238000006731 degradation reaction Methods 0.000 description 19
- 229960005404 sulfamethoxazole Drugs 0.000 description 16
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 16
- 239000002351 wastewater Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000012510 hollow fiber Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000009285 membrane fouling Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-L peroxysulfate(2-) Chemical compound [O-]OS([O-])(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0067—Inorganic membrane manufacture by carbonisation or pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
Definitions
- the invention relates to a preparation method of a modified inorganic film and its application.
- the birth of membrane technology has played a crucial role in solving the problems of algae pollution and two insects.
- the membrane has a screening function. According to the size of the pollutant, a membrane with a suitable pore size is selected and the pollutant can be separated from the water body through physical action. Although this method of physical separation is simple and does not introduce new contaminants, it also has significant limitations. First of all, the membrane will cause serious membrane fouling during use. The pollutants much larger than the membrane pore size are deposited on the membrane surface and form a filter cake layer. With the compaction and thickening of the filter cake layer, the membrane flux and pollutants are removed. The pollution rate will be significantly affected. This part of the pollution can be alleviated by cleaning, but cleaning will not only generate costs but also cause secondary pollution.
- the purpose of the present invention is to solve the problems that existing commercial membranes are easy to cause pollution during use, and the removal of pollution by cleaning will increase costs, cause secondary pollution and cannot remove small molecular organics. Preparation method and application of modified membrane.
- a preparation method of an inorganic modified membrane based on in-situ reduction is completed according to the following steps:
- the buffer solution described in step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 0.1mmol/L ⁇ 25mmol/L;
- the organic matter with load function described in step 1 is one or a mixture of several of trimesic acid, chitin, chitosan, cellulose, glucose, fructose, galactose and glutamic acid;
- Adopt method 1, method 2 or method 3 to load a load layer on the surface of the inorganic film to obtain an inorganic film loaded with the load layer, and then calcine to obtain a modified inorganic film;
- the calcination temperature described in step 2 is 600 °C ⁇ 1200 °C, the calcination time is 6h ⁇ 12h, the heating rate of calcination is 3 °C/min ⁇ 15 °C/min, and the gas flow rate during calcination is 150mL/min ⁇ 250mL/min ;
- the compound of transition metal described in step 3 is one or several of them in titanium tetrachloride, potassium permanganate, iron chloride, iron nitrate, cobalt nitrate, cobalt chloride, copper sulfate and zinc chloride. mixture;
- the concentration of the transition metal compound in the catalyst seed solution described in step 3 is 1mmol/L ⁇ 200mmol/L;
- the modified inorganic membrane is immersed in the catalyst seed solution for 5 h to 18 h to obtain an inorganic modified membrane based on in-situ reduction.
- the catalyst is supported on the surface of the inorganic membrane by in-situ reduction, and a small amount of oxidant is added to the water body to be treated.
- the catalyst will rapidly catalyze the reaction between the oxidant and the pollutant, thereby converting the pollutant into Non-toxic and harmless small molecules, at the same time, the content of pollutants deposited on the membrane surface or attached to the membrane pores is reduced, and membrane pollution is alleviated or even removed.
- the in-situ reduction method not only fixes the catalyst on the membrane, but does not require a separate Introducing other reducing agents, no reduction by-products are generated, saving reducing agents, and it is a green and environment-friendly membrane modification method.
- the present invention reduces and fixes the oxidized catalyst on the membrane to prepare a modified inorganic membrane, which has the following advantages:
- the present invention reduces the catalyst and stably supports it on the membrane based on the principle of in-situ reduction, saves the reducing agent and does not produce secondary pollution, and the preparation method is green and efficient;
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which plays an important role in the complete removal of pollutants;
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which has a significant effect on alleviating or even eliminating membrane pollution, saving the agent and cost of membrane cleaning, and prolonging the use time of the membrane;
- the construction of the support layer provides a wider support site for the catalyst and improves the catalytic efficiency of the membrane
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which can save the use of chemical oxidants and reduce the cost of pollutant removal;
- the inorganic modified membrane based on in-situ reduction prepared by the present invention has fast and efficient degradation ability, and the removal rate of pollutants can reach 90% within 5 minutes.
- the invention reduces and fixes the catalyst in the oxidized state in the solution on the surface of the membrane, the membrane preparation process does not require the introduction of a reducing agent, is efficient and environmentally friendly, and the prepared modified membrane not only has the function of retaining pollutants, It can also completely degrade pollutants under the condition of low oxidant dosage, and has a very positive effect on the removal of pollutants in water bodies and the mitigation of membrane fouling, and has a good practical application prospect.
- the present invention can obtain an inorganic modified membrane based on in-situ reduction.
- Fig. 1 is a schematic diagram of the result of the modified inorganic membrane obtained in step 2 of Example 1, in which 1 is a hollow fiber membrane, and 2 is a load layer;
- FIG. 2 is a schematic cross-sectional view of the in-situ reduction-based inorganic modified membrane obtained in step 4 of Example 1, in which 1 is a hollow fiber membrane, 2 is a load layer chitin, and 3 is MnO 2 ;
- Example 3 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the in-situ reduction-based inorganic modified membrane prepared in Example 1 and the oxidant in Example 5;
- Example 4 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the in-situ reduction-based inorganic modified membrane prepared in Example 2 and the oxidant in Example 5;
- Example 5 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the inorganic modified membrane based on in-situ reduction prepared in Example 3 and the oxidant in Example 5;
- Fig. 6 is the effect diagram of the degradation of sulfamethoxazole in the pharmaceutical wastewater by the combination of the inorganic modified membrane based on in-situ reduction prepared in the fourth embodiment and the oxidant in the fifth embodiment.
- Embodiment 1 This embodiment is a preparation method of an inorganic modified membrane based on in-situ reduction, which is completed according to the following steps:
- the buffer solution described in step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 0.1mmol/L ⁇ 25mmol/L;
- the organic matter with load function described in step 1 is one or a mixture of several of trimesic acid, chitin, chitosan, cellulose, glucose, fructose, galactose and glutamic acid;
- Adopt method 1, method 2 or method 3 to load a load layer on the surface of the inorganic film to obtain an inorganic film loaded with the load layer, and then calcine to obtain a modified inorganic film;
- the calcination temperature described in step 2 is 600 °C ⁇ 1200 °C, the calcination time is 6h ⁇ 12h, the heating rate of calcination is 3 °C/min ⁇ 15 °C/min, and the gas flow rate during calcination is 150mL/min ⁇ 250mL/min ;
- the compound of transition metal described in step 3 is one or several of them in titanium tetrachloride, potassium permanganate, iron chloride, iron nitrate, cobalt nitrate, cobalt chloride, copper sulfate and zinc chloride. mixture;
- the concentration of the transition metal compound in the catalyst seed solution described in step 3 is 1mmol/L ⁇ 200mmol/L;
- the modified inorganic membrane is immersed in the catalyst seed solution for 5 h to 18 h to obtain an inorganic modified membrane based on in-situ reduction.
- This embodiment reduces and fixes the oxidized catalyst on the membrane based on the principle of in-situ reduction to prepare a modified inorganic membrane, which has the following advantages:
- the catalyst is reduced and stably loaded on the membrane based on the principle of in-situ reduction, the reducing agent is saved and secondary pollution is not generated, and the preparation method is green and efficient;
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which plays an important role in the complete removal of pollutants;
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which has a significant effect on alleviating or even eliminating membrane pollution, saving the agent and cost of membrane cleaning, and prolonging the use time of the membrane;
- the construction of the support layer provides a wider support site for the catalyst and improves the catalytic efficiency of the membrane
- the catalyst on the membrane can quickly catalyze the degradation of pollutants, which can save the use of chemical oxidants and reduce the cost of pollutant removal;
- the inorganic modified membrane based on in-situ reduction prepared by this embodiment has fast and efficient degradation ability, and the pollutant removal rate can reach 90% within 5 minutes.
- an inorganic modified film based on in-situ reduction can be obtained.
- Embodiment 2 The difference between this embodiment and Embodiment 1 is that the buffer described in step 1 is a mixture of boric acid and borax, a mixture of citric acid and sodium citrate, a mixture of acetic acid-sodium acetate, a A mixture of sodium hydrogen-disodium hydrogen phosphate, tris hydrochloride or a mixture of borax and sodium hydroxide. Other steps are the same as in the first embodiment.
- Embodiment 3 The difference between this embodiment and Embodiment 1 or 2 is that the molar ratio of boric acid and borax in the mixture of boric acid and borax is 1:(1-70); the citric acid In the mixture with sodium citrate, the mol ratio of citric acid and sodium citrate is (1 ⁇ 20): (1 ⁇ 20); In the mixture of described acetic acid-sodium acetate, the mol ratio of acetic acid and sodium acetate is (1 ⁇ 20) 10): (1 ⁇ 20); The molar ratio of sodium dihydrogen phosphate and disodium hydrogen phosphate in the mixture of described sodium dihydrogen phosphate-disodium hydrogen phosphate is (1 ⁇ 15): (1 ⁇ 20); The molar ratio of borax and sodium hydroxide in the mixture of borax and sodium hydroxide is (1 ⁇ 5):1. Other steps are the same as in the first or second embodiment.
- Embodiment 4 One of the differences between this embodiment and Embodiments 1 to 3 is that the concentration of the organic matter with the loading function in the solution of the supporting layer described in step 1 is 0.2 g/L to 25 g/L. Other steps are the same as those of the specific embodiments 1 to 3.
- Embodiment 5 One of the differences between this embodiment and Embodiments 1 to 4 is that the inorganic film described in step 2 is a commercial inorganic film, and the commercial inorganic film is Al 2 O 3 , TiO 2 , ZrO 2 A composite of one or more of , SiO 2 , zeolite and glass. Other steps are the same as those in the first to fourth embodiments.
- Embodiment 6 The difference between this embodiment and Embodiments 1 to 5 is that: the first method described in step 2 is: 1. Evenly coat the support layer solution on the surface of the inorganic film, and then dry it; 2., Repeat step 1 3 to 50 times to obtain the inorganic film loaded with the load layer; the second method described in step 2 is: immerse the inorganic film in the solution of the load layer for 0.5h to 1h, take it out and dry to obtain the load layer loaded with the load layer.
- the method 3 described in step 2 is as follows: 1. Immerse the inorganic film into the solution of the load layer, then pull up the coating, and finally dry it; 2. Repeat step 1 3 to 50 times to obtain a load-bearing layer. Inorganic film; the drying described in the second step is freeze drying, natural ventilation drying and drying in an oven, the drying temperature is less than 40°C, and the drying time is 3h to 10h. Other steps are the same as those of the specific embodiments 1 to 5.
- Embodiment 7 This embodiment differs from Embodiments 1 to 6 in that the calcination atmosphere described in step 2 is a helium atmosphere, a nitrogen atmosphere, a xenon atmosphere or a vacuum atmosphere. Other steps are the same as those of the specific embodiments 1 to 6.
- Embodiment 8 The difference between this embodiment and Embodiments 1 to 7 is that: the stirring speed described in step 3 is 500r/min ⁇ 1000r/min, and the stirring time is 1h ⁇ 2h; Solvents are water, ethylene glycol, dimethylformamide or dimethylsulfoxide. Other steps are the same as those of the specific embodiments 1 to 7.
- Embodiment 9 is an in-situ reduction-based inorganic modified membrane used in combination with an oxidant to treat micro-pollutants in drinking water, treat pollutants existing in water after secondary treatment in sewage treatment plants, and treat Refractory pollutants in industrial wastewater, treatment of turbidity and algae in lake and reservoir water.
- Embodiment 10 The difference between this embodiment and Embodiment 9 is that the oxidant is one or several of persulfate, ozone, ferrate, hydrogen peroxide and perchlorate. mixture. Other steps are the same as in the ninth embodiment.
- Embodiment 1 A preparation method of an inorganic modified membrane based on in-situ reduction is completed according to the following steps:
- the buffer solution described in the step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 10mmol/L; the buffer is the mixture of boric acid and borax, and the mol ratio of boric acid and borax is 1:35 ;
- the concentration of chitin in the chitin solution described in step 1 is 1g/L;
- the inorganic membrane substrate described in the second step is a commercial inorganic membrane, and the commercial inorganic membrane is a hollow fiber membrane made of TiO 2 ;
- the concentration of KMnO is 10mmol /L
- the modified inorganic membrane was immersed in the catalyst seed solution for 10 hours to obtain an inorganic modified membrane based on in-situ reduction.
- Fig. 1 is a schematic diagram of the result of the modified inorganic membrane obtained in step 2 of Example 1, in which 1 is a hollow fiber membrane, and 2 is a load layer;
- FIG. 2 is a schematic cross-sectional view of the in-situ reduction-based inorganic modified membrane obtained in step 4 of Example 1, in which 1 is a hollow fiber membrane, 2 is a load layer chitin, and 3 is MnO 2 ;
- Embodiment 2 a kind of preparation method of inorganic modified membrane based on in-situ reduction is completed according to the following steps:
- the buffer solution described in the step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 10mmol/L; the buffer is the mixture of boric acid and borax, and the mol ratio of boric acid and borax is 1:35 ;
- the concentration of chitin in the chitin solution described in step 1 is 1g/L;
- the inorganic membrane substrate described in the second step is a commercial inorganic membrane, and the commercial inorganic membrane is a hollow fiber membrane made of TiO 2 ;
- the concentration of Fe(NO 3 ) 3 9H 2 O is 10mmol/L, and the concentration of KMnO 4 is 10mmol/L;
- the modified inorganic membrane was immersed in the catalyst seed solution for 15 hours to obtain an inorganic modified membrane based on in-situ reduction.
- Embodiment 3 a kind of preparation method of inorganic modified membrane based on in-situ reduction is completed according to the following steps:
- trimesic acid To buffer solution, add trimesic acid to obtain trimesic acid solution;
- the buffer solution described in the step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 10mmol/L; the buffer is the mixture of boric acid and borax, and the mol ratio of boric acid and borax is 1:35 ;
- the concentration of trimesic acid is 0.5g/L
- step 1 20 times to obtain the inorganic film of trimesic acid; 3.
- the inorganic film of trimellitic acid was placed in a tube furnace, nitrogen was introduced into the tube furnace, and the gas flow rate was 220 mL/min. °C, and then calcined at 900 °C for 2 h to obtain a modified inorganic film;
- the inorganic membrane substrate described in the second step is a commercial inorganic membrane, and the commercial inorganic membrane is a hollow fiber membrane made of TiO 2 ;
- the concentration of Fe(NO 3 ) 3 ⁇ 9H 2 O in the catalyst seed solution described in step 3 is 10mmol/L;
- the modified inorganic membrane was immersed in the catalyst seed solution for 10 hours to obtain an inorganic modified membrane based on in-situ reduction.
- Embodiment 4 a kind of preparation method of inorganic modified membrane based on in-situ reduction is completed according to the following steps:
- the buffer solution described in the step 1 is obtained by dissolving the buffer in water, wherein the concentration of the buffer is 10mmol/L; the buffer is the mixture of boric acid and borax, and the mol ratio of boric acid and borax is 1:35 ;
- the concentration of chitin in the chitin solution described in step 1 is 1g/L;
- the inorganic film substrate described in the second step is a commercial inorganic film, and the commercial inorganic film is an Al 2 O 3 film;
- the concentration of Fe(NO 3 ) 3 ⁇ 9H 2 O in the catalyst seed solution described in step 3 is 10mmol/L;
- the modified inorganic membrane was immersed in the catalyst seed solution for 10 hours to obtain an inorganic modified membrane based on in-situ reduction.
- Embodiment 5 Utilize the inorganic modified membranes based on in-situ reduction prepared in Embodiments 1, 2, 3 and 4 to treat the pharmaceutical factory wastewater containing sulfamethoxazole in combination with peroxymonosulfate respectively, which is completed according to the following steps:
- the oxidant permonosulfate (PMS) was added to the waste water of the pharmaceutical factory containing sulfamethoxazole, and the method of cross-flow filtration was adopted to make the waste water pass through the inorganic modification based on in-situ reduction prepared in Examples 1, 2, 3 and 4, respectively.
- the degradation of sulfamethoxazole is shown in Figures 3-6 shown;
- the initial concentration of sulfamethoxazole in the waste water of the pharmaceutical factory containing sulfamethoxazole is 10 mg/L;
- the concentration of the oxidant PMS in the sulfamethoxazole-containing pharmaceutical factory wastewater is 1 mmol/L.
- Figures 3 to 6 show the effect of the degradation of sulfamethoxazole in pharmaceutical wastewater by using the inorganic modified membrane based on in-situ reduction prepared in Example 1, Example 2, Example 3, and Example 4 in combination with an oxidant. ;
- Example 3 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the in-situ reduction-based inorganic modified membrane prepared in Example 1 and the oxidant in Example 5;
- Example 4 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the in-situ reduction-based inorganic modified membrane prepared in Example 2 and the oxidant in Example 5;
- Example 5 is an effect diagram of the degradation of sulfamethoxazole in pharmaceutical wastewater by the combination of the inorganic modified membrane based on in-situ reduction prepared in Example 3 and the oxidant in Example 5;
- Fig. 6 is the effect diagram of the degradation of sulfamethoxazole in the pharmaceutical wastewater by the combination of the inorganic modified membrane based on in-situ reduction prepared in the fourth embodiment and the oxidant in the fifth embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种基于原位还原的无机改性膜的制备方法及其应用。无机改性膜的制备方法为:一、制备催化剂负载层;二、在无机膜表面负载负载层,得到负载有负载层的无机膜,再煅烧,得到改性无机膜;三、制备催化剂种子溶液;四、将改性无机膜浸入到催化剂种子溶液中。基于原位还原的无机改性膜与氧化剂结合使用,用于处理饮用水中微污染物、处理污水处理厂二级处理后水中存在的污染物、处理工业废水中难降解污染物、处理湖泊水和水库水中的浊度和藻类。
Description
本发明涉及一种改性无机膜的制备方法及其应用。
膜技术的诞生对解决藻类污染、两虫问题起到了至关重要的作用。膜具有筛分作用,根据污染物的尺寸大小,选择合适孔径的膜并通过物理作用可将污染物与水体分离。虽然这种物理分离的方法简单且不引入新的污染物,但也具有很大的局限性。首先膜在使用过程会造成严重的膜污染,比膜孔径大得多的污染物沉积在膜表面并形成滤饼层,随着滤饼层的压实和增厚,膜通量和污染物去除率都将会受到显著影响,这部分污染可通过清洗来缓解,但是清洗不但产生花费还将造成二次污染。其次和膜孔径相仿的污染物,在去除过程中很可能会附着在膜孔内壁,难以通过清洗而去除。最后一些小分子有机物如抗生素、藻毒素和一些个人护理用品类污染物等,可能会穿过膜孔。因此对市面上常见的基于物理筛分作用从而去除污染物的商品膜进行改性是十分必要的。
发明内容
本发明的目的是要解决现有商品膜在使用过程中易造成污染,通过清洗去除污染会增加成本,造成二次污染和无法去除小分子有机物的问题,而提供一种基于原位还原的无机改性膜的制备方法及其应用。
一种基于原位还原的无机改性膜的制备方法,是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入具有负载功能的有机物,得到负载层溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为0.1mmol/L~25mmol/L;
步骤一中所述的具有负载功能的有机物为均苯三甲酸、甲壳素、壳聚糖、纤维素、葡萄糖、果糖、半乳糖和谷氨酸中的一种或其中几种的混合物;
二、采用方法一、方法二或方法三在无机膜表面负载负载层,得到负载有负载层的无机膜,再煅烧,得到改性无机膜;
步骤二中所述的煅烧温度为600℃~1200℃,煅烧时间为6h~12h,煅烧的升温速率为3℃/min~15℃/min,煅烧时的气流量为150mL/min~250mL/min;
三、将过渡金属的化合物分散到溶剂中,再搅拌,得到催化剂种子溶液;
步骤三中所述的过渡金属的化合物为四氯化钛、高锰酸钾、氯化铁、硝酸铁、硝酸钴、氯化钴、硫酸铜和氯化锌中的一种或其中几种的混合物;
步骤三中所述的催化剂种子溶液中过渡金属的化合物的浓度为1mmol/L~200mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中5h~18h,得到基于原位还原的无机改性膜。
本发明的原理:
本发明通过原位还原的方式在无机膜的表面负载催化剂,在待处理的水体中加入少量氧化剂,在水流通过膜面时,催化剂将迅速催化氧化剂和污染物发生反应,从而将污染物转化为无毒无害的小分子,同时沉积在膜表面或者附着在膜孔中的污染物含量降低,膜污染得到缓解甚至去除,原位还原的方式既将催化剂固定在了膜上,又不需要单独引入其他还原剂,无还原副产物的生成,节约了还原药剂,是一种绿色的、环境友好的膜改性方式。
本发明的有益效果:
本发明基于原位还原的原理将氧化态的催化剂还原并固定在膜上,制备出一种改性无机膜,其具有以下优点:
一、本发明基于原位还原的原理将催化剂还原并稳定负载在膜上,节约还原药剂并不产生二次污染,制备方法绿色高效;
二、膜上的催化剂能迅速催化污染物的降解,对于污染物的彻底去除有着重要作用;
三、膜上的催化剂能迅速催化污染物的降解,对于缓解甚至消除膜污染有显著效果,节约了膜清洗的药剂和费用,延长了膜使用的时间;
四、负载层的构建为催化剂提供了更广阔的负载位点,提高了膜的催化效率;
五、膜上的催化剂能迅速催化污染物的降解,可以节约化学氧化剂的使用量,降低了污染物去除的成本;
六、污染物的去除不再是单纯的物理筛分作用,能够去除污染物尺寸大小小于膜孔径的污染物;
七、利用本发明制备的基于原位还原的无机改性膜具有快速高效的降解能力,5min内污染物去除率可达90%。
本发明基于原位还原技术,将溶液中处于氧化态的催化剂还原并固定在膜表面,制膜工艺无需还原剂的引入,高效且环境友好,制备的改性膜不但具有污染物截留的作用,还能在低氧化剂投加量的情况下彻底降解污染物,对于水体中污染物的去除,膜污染的缓解 具有十分积极的作用,具有很好的实际应用前景。
本发明可获得基于原位还原的无机改性膜。
图1为实施例一步骤二得到的改性无机膜的结果示意图,图中1为中空纤维膜,2为负载层;
图2为实施例一步骤四得到的基于原位还原的无机改性膜的剖面示意图,图中1为中空纤维膜,2为负载层甲壳素,3为MnO
2;
图3为实施例五利用实施例一制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图4为实施例五利用实施例二制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图5为实施例五利用实施例三制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图6为实施例五利用实施例四制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图。
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
具体实施方式一:本实施方式是一种基于原位还原的无机改性膜的制备方法,是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入具有负载功能的有机物,得到负载层溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为0.1mmol/L~25mmol/L;
步骤一中所述的具有负载功能的有机物为均苯三甲酸、甲壳素、壳聚糖、纤维素、葡萄糖、果糖、半乳糖和谷氨酸中的一种或其中几种的混合物;
二、采用方法一、方法二或方法三在无机膜表面负载负载层,得到负载有负载层的无机膜,再煅烧,得到改性无机膜;
步骤二中所述的煅烧温度为600℃~1200℃,煅烧时间为6h~12h,煅烧的升温速率为3℃/min~15℃/min,煅烧时的气流量为150mL/min~250mL/min;
三、将过渡金属的化合物分散到溶剂中,再搅拌,得到催化剂种子溶液;
步骤三中所述的过渡金属的化合物为四氯化钛、高锰酸钾、氯化铁、硝酸铁、硝酸钴、氯化钴、硫酸铜和氯化锌中的一种或其中几种的混合物;
步骤三中所述的催化剂种子溶液中过渡金属的化合物的浓度为1mmol/L~200mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中5h~18h,得到基于原位还原的无机改性膜。
本实施方式的有益效果:
本实施方式基于原位还原的原理将氧化态的催化剂还原并固定在膜上,制备出一种改性无机膜,其具有以下优点:
一、本实施方式基于原位还原的原理将催化剂还原并稳定负载在膜上,节约还原药剂并不产生二次污染,制备方法绿色高效;
二、膜上的催化剂能迅速催化污染物的降解,对于污染物的彻底去除有着重要作用;
三、膜上的催化剂能迅速催化污染物的降解,对于缓解甚至消除膜污染有显著效果,节约了膜清洗的药剂和费用,延长了膜使用的时间;
四、负载层的构建为催化剂提供了更广阔的负载位点,提高了膜的催化效率;
五、膜上的催化剂能迅速催化污染物的降解,可以节约化学氧化剂的使用量,降低了污染物去除的成本;
六、污染物的去除不再是单纯的物理筛分作用,能够去除污染物尺寸大小小于膜孔径的污染物;
七、利用本实施方式制备的基于原位还原的无机改性膜具有快速高效的降解能力,5min内污染物去除率可达90%。
本实施方式可获得基于原位还原的无机改性膜。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的缓冲剂为硼酸和硼砂的混合物、柠檬酸和柠檬酸钠的混合物、乙酸-乙酸钠的混合物、磷酸二氢钠-磷酸氢二钠的混合物、三羟甲基氨基甲烷盐酸盐或硼砂和氢氧化钠的混合物。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:所述的硼酸和硼砂的混合物中硼酸和硼砂的摩尔比为1:(1~70);所述的柠檬酸和柠檬酸钠的混合物中柠檬酸与柠檬酸钠的摩尔比为(1~20):(1~20);所述的乙酸-乙酸钠的混合物中乙酸与乙酸钠的 摩尔比为(1~10):(1~20);所述的磷酸二氢钠-磷酸氢二钠的混合物中磷酸二氢钠与磷酸氢二钠的摩尔比为(1~15):(1~20);所述的硼砂和氢氧化钠的混合物中硼砂与氢氧化钠的摩尔比为(1~5):1。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的负载层溶液中具有负载功能的有机物的浓度为0.2g/L~25g/L。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的无机膜为商品无机膜,所述的商品无机膜为Al
2O
3、TiO
2、ZrO
2、SiO
2、沸石和玻璃中的一种或几种的复合物。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的方法一为:①、将负载层溶液均匀涂覆到无机膜的表面,再干燥;②、重复步骤①3次~50次,得到负载有负载层的无机膜;步骤二中所述的方法二为:将无机膜浸入到负载层溶液中0.5h~1h,取出后干燥,得到负载有负载层的无机膜;步骤二中所述的方法三为:①、将无机膜浸入到负载层溶液中,再提拉镀膜,最后干燥;②、重复步骤①3次~50次,得到负载有负载层的无机膜;步骤二中所述的干燥为冷冻干燥、自然通风干燥和使用烘箱烘干,干燥的温度小于40℃,干燥的时间为3h~10h。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的煅烧的氛围为氦气气氛、氮气气氛、氙气气氛或是真空气氛。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中所述的搅拌速度为500r/min~1000r/min,搅拌时间为1h~2h;步骤三中所述的溶剂为水、乙二醇、二甲基甲酰胺或二甲基亚砜。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式是一种基于原位还原的无机改性膜与氧化剂结合使用,用于处理饮用水中微污染物、处理污水处理厂二级处理后水中存在的污染物、处理工业废水中难降解污染物、处理湖泊水和水库水中的浊度和藻类。
具体实施方式十:本实施方式与具体实施方式九的不同点是:所述的氧化剂为过硫酸盐、臭氧、高铁酸盐、过氧化氢和高氯酸盐中的一种或其中几种的混合物。其它步骤与具体实施方式九相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种基于原位还原的无机改性膜的制备方法是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入甲壳素,得到甲壳素溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为10mmol/L;所述的缓冲剂为硼酸和硼砂的混合物,其中硼酸和硼砂的摩尔比为1:35;
步骤一中所述的甲壳素溶液中甲壳素的浓度为1g/L;
二、①、将甲壳素溶液均匀涂覆到无机膜的表面,再在25℃下干燥10h;②、重复步骤①50次,得到负载有甲壳素的无机膜;③、将负载有甲壳素的无机膜放入管式炉中,向管式炉中通入氮气,气流速度为220mL/min,在氮气气氛下将管式炉从室温以10℃/min的升温速率升温至900℃,再在900℃下煅烧2h,得到改性无机膜;
步骤二中所述的无机膜基底为商品无机膜,所述商品无机膜是由TiO
2制成的中空纤维膜;
三、将KMnO
4分散到去离子水中,再在搅拌速度为500r/min下搅拌1h,得到催化剂种子溶液;
步骤三中所述的催化剂种子溶液中KMnO
4的浓度为10mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中10h,得到基于原位还原的无机改性膜。
图1为实施例一步骤二得到的改性无机膜的结果示意图,图中1为中空纤维膜,2为负载层;
图2为实施例一步骤四得到的基于原位还原的无机改性膜的剖面示意图,图中1为中空纤维膜,2为负载层甲壳素,3为MnO
2;
实施例二:一种基于原位还原的无机改性膜的制备方法是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入甲壳素,得到甲壳素溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为10mmol/L;所述的缓冲剂为硼酸和硼砂的混合物,其中硼酸和硼砂的摩尔比为1:35;
步骤一中所述的甲壳素溶液中甲壳素的浓度为1g/L;
二、①、将甲壳素溶液均匀涂覆到无机膜的表面,再在25℃下干燥10h;②、重复步骤①50次,得到负载有甲壳素的无机膜;③、将负载有甲壳素的无机膜放入管式炉中,向管式炉中通入氮气,气流速度为220mL/min,在氮气气氛下将管式炉从室温以10℃/min的升温速率升温至900℃,再在900℃下煅烧2h,得到改性无机膜;
步骤二中所述的无机膜基底为商品无机膜,所述商品无机膜是由TiO
2制成的中空纤 维膜;
三、将Fe(NO
3)
3·9H
2O和KMnO
4分散到去离子水中,再在搅拌速度为500r/min下搅拌1h,得到催化剂种子溶液;
步骤三中所述的催化剂种子溶液中Fe(NO
3)
3·9H
2O的浓度为10mmol/L,KMnO
4的浓度为10mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中15h,得到基于原位还原的无机改性膜。
实施例三:一种基于原位还原的无机改性膜的制备方法是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入均苯三甲酸,得到均苯三甲酸溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为10mmol/L;所述的缓冲剂为硼酸和硼砂的混合物,其中硼酸和硼砂的摩尔比为1:35;
步骤一中所述的均苯三甲酸溶液中均苯三甲酸的浓度为0.5g/L;
二、①、将均苯三甲酸溶液均匀涂覆到无机膜的表面,再在-50℃下干燥10h;②、重复步骤①20次,得到均苯三甲酸的无机膜;③、将负载有均苯三甲酸的无机膜放入管式炉中,向管式炉中通入氮气,气流速度为220mL/min,在氮气气氛下将管式炉从室温以10℃/min的升温速率升温至900℃,再在900℃下煅烧2h,得到改性无机膜;
步骤二中所述的无机膜基底为商品无机膜,所述商品无机膜是由TiO
2制成的中空纤维膜;
三、将Fe(NO
3)
3·9H
2O分散到去离子水中,再在搅拌速度为500r/min下搅拌1h,得到催化剂种子溶液;
步骤三中所述的催化剂种子溶液中Fe(NO
3)
3·9H
2O的浓度为10mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中10h,得到基于原位还原的无机改性膜。
实施例四:一种基于原位还原的无机改性膜的制备方法是按以下步骤完成的:
一、制备催化剂负载层:
向缓冲溶液中加入甲壳素,得到甲壳素溶液;
步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为10mmol/L;所述的缓冲剂为硼酸和硼砂的混合物,其中硼酸和硼砂的摩尔比为1:35;
步骤一中所述的甲壳素溶液中甲壳素的浓度为1g/L;
二、①、将甲壳素溶液均匀涂覆到无机膜的表面,再在25℃下干燥10h;②、重复步骤①20次,得到负载有甲壳素的无机膜;③、将负载有甲壳素的无机膜放入管式炉中, 向管式炉中通入氮气,气流速度为220mL/min,在氮气气氛下将管式炉从室温以10℃/min的升温速率升温至900℃,再在900℃下煅烧2h,得到改性无机膜;
步骤二中所述的无机膜基底为商品无机膜,所述的商品无机膜为Al
2O
3膜;
三、将Fe(NO
3)
3·9H
2O分散到去离子水中,再在搅拌速度为500r/min下搅拌1h,得到催化剂种子溶液;
步骤三中所述的催化剂种子溶液中Fe(NO
3)
3·9H
2O的浓度为10mmol/L;
四、将改性无机膜浸入到催化剂种子溶液中10h,得到基于原位还原的无机改性膜。
实施例五:利用实施例一、二、三和四制备的基于原位还原的无机改性膜分别与过一硫酸盐结合处理含磺胺甲恶唑的药厂废水,是按以下步骤完成的:
在含有磺胺甲恶唑的药厂废水中加入氧化剂过一硫酸盐(PMS),采用错流过滤的方式,使污水分别通过实施例一、二、三和四制备的基于原位还原的无机改性膜,推动力为100cm的水柱所形成的压力,实验进行25min,每隔5min取样一次,并用高效液相色谱测出磺胺甲恶唑的浓度,磺胺甲恶唑的降解情况如图3~6所示;
所述含有磺胺甲恶唑的药厂废水中磺胺甲恶唑的初始浓度为10mg/L;
所述氧化剂PMS在含有磺胺甲恶唑的药厂废水中的浓度为1mmol/L。
利用实施例一、实施例二、实施例三、实施例四制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图见图3~图6所示;
图3为实施例五利用实施例一制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图4为实施例五利用实施例二制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图5为实施例五利用实施例三制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图;
图6为实施例五利用实施例四制备的基于原位还原的无机改性膜与氧化剂结合对制药废水中磺胺甲恶唑降解的效果图。
从图3~6可知,实施例一、二、三和四制备的基于原位还原的无机改性膜具有快速高效的降解能力,5min内污染物去除率约为90%。
Claims (10)
- 一种基于原位还原的无机改性膜的制备方法,其特征在于一种基于原位还原的无机改性膜的制备方法是按以下步骤完成的:一、制备催化剂负载层:向缓冲溶液中加入具有负载功能的有机物,得到负载层溶液;步骤一中所述的缓冲溶液为缓冲剂溶解到水中得到的,其中缓冲剂的浓度为0.1mmol/L~25mmol/L;步骤一中所述的具有负载功能的有机物为均苯三甲酸、甲壳素、壳聚糖、纤维素、葡萄糖、果糖、半乳糖和谷氨酸中的一种或其中几种的混合物;二、采用方法一、方法二或方法三在无机膜表面负载负载层,得到负载有负载层的无机膜,再煅烧,得到改性无机膜;步骤二中所述的煅烧温度为600℃~1200℃,煅烧时间为6h~12h,煅烧的升温速率为3℃/min~15℃/min,煅烧时的气流量为150mL/min~250mL/min;三、将过渡金属的化合物分散到溶剂中,再搅拌,得到催化剂种子溶液;步骤三中所述的过渡金属的化合物为四氯化钛、高锰酸钾、氯化铁、硝酸铁、硝酸钴、氯化钴、硫酸铜和氯化锌中的一种或其中几种的混合物;步骤三中所述的催化剂种子溶液中过渡金属的化合物的浓度为1mmol/L~200mmol/L;四、将改性无机膜浸入到催化剂种子溶液中5h~18h,得到基于原位还原的无机改性膜。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步骤一中所述的缓冲剂为硼酸和硼砂的混合物、柠檬酸和柠檬酸钠的混合物、乙酸-乙酸钠的混合物、磷酸二氢钠-磷酸氢二钠的混合物、三羟甲基氨基甲烷盐酸盐或硼砂和氢氧化钠的混合物。
- 根据权利要求2所述的一种基于原位还原的无机改性膜的制备方法,其特征在于所述的硼酸和硼砂的混合物中硼酸和硼砂的摩尔比为1:(1~70);所述的柠檬酸和柠檬酸钠的混合物中柠檬酸与柠檬酸钠的摩尔比为(1~20):(1~20);所述的乙酸-乙酸钠的混合物中乙酸与乙酸钠的摩尔比为(1~10):(1~20);所述的磷酸二氢钠-磷酸氢二钠的混合物中磷酸二氢钠与磷酸氢二钠的摩尔比为(1~15):(1~20);所述的硼砂和氢氧化钠的混合物中硼砂与氢氧化钠的摩尔比为(1~5):1。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步骤一中所述的负载层溶液中具有负载功能的有机物的浓度为0.2g/L~25g/L。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步 骤二中所述的无机膜为商品无机膜,所述的商品无机膜为Al 2O 3、TiO 2、ZrO 2、SiO 2、沸石和玻璃中的一种或几种的复合物。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步骤二中所述的方法一为:①、将负载层溶液均匀涂覆到无机膜的表面,再干燥;②、重复步骤①3次~50次,得到负载有负载层的无机膜;步骤二中所述的方法二为:将无机膜浸入到负载层溶液中0.5h~1h,取出后干燥,得到负载有负载层的无机膜;步骤二中所述的方法三为:①、将无机膜浸入到负载层溶液中,再提拉镀膜,最后干燥;②、重复步骤①3次~50次,得到负载有负载层的无机膜;步骤二中所述的干燥为冷冻干燥、自然通风干燥和使用烘箱烘干,干燥的温度小于40℃,干燥的时间为3h~10h。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步骤二中所述的煅烧的氛围为氦气气氛、氮气气氛、氙气气氛或是真空气氛。
- 根据权利要求1所述的一种基于原位还原的无机改性膜的制备方法,其特征在于步骤三中所述的搅拌速度为500r/min~1000r/min,搅拌时间为1h~2h;步骤三中所述的溶剂为水、乙二醇、二甲基甲酰胺或二甲基亚砜。
- 如权利要求1所述的制备方法制备的一种基于原位还原的无机改性膜的应用,其特征在于一种基于原位还原的无机改性膜与氧化剂结合使用,用于处理饮用水中微污染物、处理污水处理厂二级处理后水中存在的污染物、处理工业废水中难降解污染物、处理湖泊水和水库水中的浊度和藻类。
- 根据权利要求9所述的一种基于原位还原的无机改性膜的应用,其特征在于所述的氧化剂为过硫酸盐、臭氧、高铁酸盐、过氧化氢和高氯酸盐中的一种或其中几种的混合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110114380.1 | 2021-01-27 | ||
CN202110114380.1A CN112933997B (zh) | 2021-01-27 | 2021-01-27 | 一种基于原位还原的无机改性膜的制备方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022160567A1 true WO2022160567A1 (zh) | 2022-08-04 |
Family
ID=76238279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100570 WO2022160567A1 (zh) | 2021-01-27 | 2021-06-17 | 一种基于原位还原的无机改性膜的制备方法及其应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112933997B (zh) |
WO (1) | WO2022160567A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115739034A (zh) * | 2022-11-02 | 2023-03-07 | 中国地质大学(武汉) | 一种甲壳素微球负载纳米零价铁材料及其制备方法与应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112933997B (zh) * | 2021-01-27 | 2022-04-15 | 哈尔滨工业大学 | 一种基于原位还原的无机改性膜的制备方法及其应用 |
CN113713627A (zh) * | 2021-08-13 | 2021-11-30 | 清华大学 | 一种具有催化功能的陶瓷超滤膜及其制备方法与应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5772735A (en) * | 1995-11-02 | 1998-06-30 | University Of New Mexico | Supported inorganic membranes |
CN103495345A (zh) * | 2013-10-21 | 2014-01-08 | 哈尔滨工业大学 | 一种用于水处理无机催化膜的改性方法 |
CN105540819A (zh) * | 2016-01-29 | 2016-05-04 | 中国矿业大学 | 一种载体改性制备臭氧催化剂处理难降解有机废水的方法 |
CN109110869A (zh) * | 2018-09-03 | 2019-01-01 | 湖南大学 | 利用壳聚糖修饰活性焦原位负载纳米金催化剂处理有机污染物的方法 |
CN109701585A (zh) * | 2019-02-28 | 2019-05-03 | 哈尔滨工业大学 | 一种无机催化膜的制备方法和应用 |
CN111675373A (zh) * | 2020-05-20 | 2020-09-18 | 哈尔滨工业大学 | 一种尖晶石型复合金属氧化物改性陶瓷膜过滤耦合臭氧催化氧化的协同组合水处理方法 |
CN112933997A (zh) * | 2021-01-27 | 2021-06-11 | 哈尔滨工业大学 | 一种基于原位还原的无机改性膜的制备方法及其应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2764399A1 (fr) * | 1997-06-05 | 1998-12-11 | Eastman Kodak Co | Depollution d'un effluent photographique par traitement avec un alumino-silicate polymere fibreux |
CN102489180B (zh) * | 2011-12-01 | 2014-04-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种高分子/纳米材料复合多孔滤膜的制备方法 |
CN103894074B (zh) * | 2012-12-28 | 2017-09-29 | 中国科学院上海高等研究院 | 新型杂化膜及其制备和应用 |
KR20140134990A (ko) * | 2013-05-15 | 2014-11-25 | 한국화학연구원 | 광촉매 나노입자가 고정된 다공성 알루미나 멤브레인을 포함하는 수처리시스템, 이의 운전방법 및 이를 이용한 폐수의 정화방법 |
CN103418250B (zh) * | 2013-07-05 | 2015-12-02 | 烟台绿水赋膜材料有限公司 | 一种在分离膜表面原位生成纳米粒子的方法 |
WO2015191662A1 (en) * | 2014-06-11 | 2015-12-17 | Yale University | In situ formation of biocidal metal nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation |
CN105597558B (zh) * | 2015-09-29 | 2018-11-13 | 浙江理工大学 | 一种具有催化降解功能的复合纳滤膜及其制备方法、应用 |
TWI746476B (zh) * | 2015-11-13 | 2021-11-21 | 美商艾克頌美孚硏究工程公司 | 混合之二甲苯的分離 |
CN106110901B (zh) * | 2016-07-22 | 2018-12-25 | 浙江理工大学 | 一种抗菌防污油水分离材料及其制备方法 |
CN106823831A (zh) * | 2017-03-03 | 2017-06-13 | 哈尔滨工业大学 | 一种有机催化膜的制备方法及应用 |
CN107008156B (zh) * | 2017-04-21 | 2019-12-03 | 中国科学院生态环境研究中心 | 石墨烯过滤复合膜及其制备方法 |
CN107158900B (zh) * | 2017-06-26 | 2020-05-26 | 南京工程学院 | 一种固体碳材料及以此为还原剂电化学脱硝的方法 |
-
2021
- 2021-01-27 CN CN202110114380.1A patent/CN112933997B/zh active Active
- 2021-06-17 WO PCT/CN2021/100570 patent/WO2022160567A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5772735A (en) * | 1995-11-02 | 1998-06-30 | University Of New Mexico | Supported inorganic membranes |
CN103495345A (zh) * | 2013-10-21 | 2014-01-08 | 哈尔滨工业大学 | 一种用于水处理无机催化膜的改性方法 |
CN105540819A (zh) * | 2016-01-29 | 2016-05-04 | 中国矿业大学 | 一种载体改性制备臭氧催化剂处理难降解有机废水的方法 |
CN109110869A (zh) * | 2018-09-03 | 2019-01-01 | 湖南大学 | 利用壳聚糖修饰活性焦原位负载纳米金催化剂处理有机污染物的方法 |
CN109701585A (zh) * | 2019-02-28 | 2019-05-03 | 哈尔滨工业大学 | 一种无机催化膜的制备方法和应用 |
CN111675373A (zh) * | 2020-05-20 | 2020-09-18 | 哈尔滨工业大学 | 一种尖晶石型复合金属氧化物改性陶瓷膜过滤耦合臭氧催化氧化的协同组合水处理方法 |
CN112933997A (zh) * | 2021-01-27 | 2021-06-11 | 哈尔滨工业大学 | 一种基于原位还原的无机改性膜的制备方法及其应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115739034A (zh) * | 2022-11-02 | 2023-03-07 | 中国地质大学(武汉) | 一种甲壳素微球负载纳米零价铁材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112933997B (zh) | 2022-04-15 |
CN112933997A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022160567A1 (zh) | 一种基于原位还原的无机改性膜的制备方法及其应用 | |
WO2021093832A1 (zh) | 一种c3n4改性有机膜的制备方法及应用 | |
CN112387131A (zh) | 一种聚合物微孔膜、其制备方法及应用 | |
CN106807257A (zh) | 基于金属掺杂g‑C3N4的可见光催化中空纤维超滤膜及制备方法 | |
CN109126480B (zh) | 一种金属有机框架纳米片改性正渗透膜及其制备方法和应用 | |
US20210347658A1 (en) | Novel conductive membrane filtration system for degradation of organic pollutants from wastewater | |
CN109745865A (zh) | 一种基于石墨/二氧化钛复合材料的聚偏氟乙烯电催化超滤膜 | |
CN115193469B (zh) | 光催化陶瓷膜的制备方法、应用及水处理方法 | |
CN108658177A (zh) | 一种适用于水中难降解有机物去除的电化学活性炭纤维毡膜反应器 | |
CN108479429A (zh) | 一种利用纳米Fe3O4改性PVDF微滤膜的制备方法及其运用 | |
CN115888405B (zh) | 原位生长钴碳纳米管过滤膜的制备方法及用途 | |
CN106830471A (zh) | 一种光催化、超滤、纳滤组合工艺控制饮用水中有机微污染物的方法 | |
CN100427190C (zh) | 一种利用纳米二氧化钛改性聚砜酰胺分离膜的方法 | |
CN106693730A (zh) | 基于非金属多掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法 | |
CN105498552A (zh) | 一种半导体氧化物改性的导电滤膜及其制备方法和应用 | |
CN106731879B (zh) | 基于金属掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法 | |
CN1228138C (zh) | 一种用于降解水中有机污染物的改性二氧化钛固定化方法 | |
CN110550702B (zh) | 一种膜反应器 | |
CN112121648A (zh) | 一种具有光催化自清洁性能的聚偏氟乙烯混合基质膜及其制备方法与应用 | |
CN112158853B (zh) | 一种管式自由基氧化剂及其制备方法 | |
CN217909816U (zh) | 一体化光催化陶瓷膜水处理装置 | |
CN113209842B (zh) | 一种过滤刚果红时具有电场敏感性的复合分离膜 | |
CN116099384A (zh) | 一种尖晶石纳米颗粒改性的陶瓷膜制备方法 | |
CN114768766A (zh) | 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用 | |
CN108211820B (zh) | 一种导电无机陶瓷膜材料及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21922165 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21922165 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21922165 Country of ref document: EP Kind code of ref document: A1 |