[go: up one dir, main page]

WO2022156177A1 - 一种采用纳米硅量子点防治玉米粘虫的方法 - Google Patents

一种采用纳米硅量子点防治玉米粘虫的方法 Download PDF

Info

Publication number
WO2022156177A1
WO2022156177A1 PCT/CN2021/108891 CN2021108891W WO2022156177A1 WO 2022156177 A1 WO2022156177 A1 WO 2022156177A1 CN 2021108891 W CN2021108891 W CN 2021108891W WO 2022156177 A1 WO2022156177 A1 WO 2022156177A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
quantum dots
silicon quantum
plant
silicon
Prior art date
Application number
PCT/CN2021/108891
Other languages
English (en)
French (fr)
Inventor
王震宇
肖正高
王传洗
乐乐
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to JP2022565705A priority Critical patent/JP2023529548A/ja
Priority to US17/549,982 priority patent/US11445728B2/en
Publication of WO2022156177A1 publication Critical patent/WO2022156177A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to a method for controlling corn armyworm by using nano-silicon quantum dots, and belongs to the technical field of nano-material prevention and control of crop pests.
  • the content of silicon (Silicon) in the earth's crust is second only to oxygen, ranking second. It is a relatively inert and environmentally friendly beneficial element for plants. etc.) and biotic (disease and insect) stress resistance.
  • the slow release of soluble silicon from a large number of farmland soils in my country has been unable to meet the demand for silicon of crops (such as rice, corn and other silicon-loving plants), which seriously restricts the high and stable yield of farmland crops.
  • crops such as rice, corn and other silicon-loving plants
  • the application of traditional silicate fertilizers has been continuously increased in agricultural production, which further aggravates soil compaction, soil structure damage and fertility decline.
  • Nanotechnology is widely used in many fields. Among them, nano-insecticide is one of the directions of effective application of nano-technology in agriculture. Compared with conventional pesticides, nano-pesticides have better surface area, biocompatibility, etc., which make them have obvious advantages in the efficient control of agricultural pests. Studies have shown that nano-silver modified with polyvinylpyrrolidone can effectively inhibit the growth of larvae and pupae of the lepidopteran pest Spodoptera litura. Nickel nanoparticles can effectively kill 93% of adult bean beetles.
  • metal-based nanoparticles have a high insecticidal effect
  • the release of large doses of metal-based nanoparticles (such as nano-silver, nano-copper) into the environment can also lead to heavy metal toxicity and ultimately cause environmental pollution risks.
  • the present invention applies nano-silicon quantum dots in the control of corn armyworm to establish an optimal control system for corn armyworm.
  • the application process of the present invention is simple and easy to operate.
  • the first object of the present invention is to provide a method for preventing and controlling corn armyworm by using nano-silicon quantum dots. or leaves.
  • the concentration of the aqueous solution of the nano-silicon quantum dots is 10-150 mg/L.
  • the size of the nano-silicon quantum dots is 3-8 nm.
  • the concentration of the aqueous solution of nano-silicon quantum dots applied to the roots is 50 mg/L; the volume of the aqueous solution of nano-silicon quantum dots sprayed to the roots is 200 mL/plant.
  • the concentration of the aqueous solution of the nano-silicon quantum dots sprayed on the foliar surface is 50-150 mg/L; the volume of the aqueous solution of the nano-silicon quantum dots sprayed on the foliar surface is 20 mL/plant .
  • the application period is the three-leaf and one-centre stage of the plant.
  • the plant is corn.
  • the preparation method of the nano-silicon quantum dots is:
  • the ratio of N-aminoethyl-3-aminopropylmethyldimethoxysilane, ascorbic acid, and water in the method for preparing nano-silicon quantum dots is: 1-3 mL : 2 to 3 g: 7 to 9 mL.
  • continuous stirring is required in the reaction process in the preparation method of nano-silicon quantum dots.
  • dialysis in the method for preparing nano-silicon quantum dots, is to use a dialysis bag (1 kDa, molecular weight cut-off) to remove excess reactants.
  • centrifugation is performed at 4°C and 10000 r/min for 20 min.
  • the present invention not only improves the effect of conventional silicon fertilizer on plant stress resistance, but also directly improves the direct insecticidal effect of nano-silicon and the improvement of the plant's own chemical defense ability; Compared with traditional pesticide control methods, this control method can effectively avoid the accidental killing of non-target insects and cause environmental pollution.
  • the nano-silicon quantum dots used in the present invention can be used as exogenous non-biological stimulators of plants to induce the metabolic synthesis of plant anti-insect phenolic substances, increase the content of total phenols and chlorogenic acid of anti-insect substances in leaves, and then inhibit the invasion of armyworms and growth.
  • nano-silicon quantum dots are applied on corn, which significantly increases the content of chlorogenic acid, an insect-resistant substance in corn leaves, above 33.3%, which can be as high as 70.3%; and increases the content of total phenols in corn leaves, which can be as high as 70.3%. It can increase the net photosynthesis of maize leaves by up to 38.6%, and increase the above-ground biomass of maize by 40%.
  • Figure 1 is a TEM photo of the prepared nano-silicon quantum dots.
  • Figure 2 is an FT-IR photograph of the prepared nano-silicon quantum dots.
  • TEM characterization The size and morphology of the prepared nano-silicon quantum dots with different particle sizes were characterized by JEM-2100 transmission electron microscope.
  • FT-IR characterization The surface functional groups of nano-Si quantum dots were analyzed by Fourier transform infrared (FTIR) spectroscopy.
  • HPLC High performance liquid chromatography
  • 100 mg of fresh leaf tissue was ground in liquid nitrogen, 2 mL of 70% methanol (v/v) was added, and then in an ultrasonic water bath Set aside for 50 minutes.
  • the solution was then centrifuged at 10000 rpm for 5 minutes and the supernatant was collected and diluted to 10 mL.
  • the extracts were then filtered on a 0.22 ⁇ m membrane and analyzed by an HPLC system (Agilent Technologies Inc., USA) at 30°C using an Eclipse Plus C18 column (5 ⁇ m, 4.6 ⁇ 250 mm).
  • Liquid phase conditions Use solvent A (acetonitrile) and solvent B (0.1% formic acid) to generate mobile phase: 0-5 minutes (10-15% A), 5-10 minutes (15-20% A), and 10-15 minutes minutes (20-10% A).
  • the flow rate was maintained at 0.5 mL/min.
  • the detection wavelength was set to 280 nm, and the injection volume was 5 ⁇ L.
  • Folin-Ciocalteu colorimetric method was used: 20 mg of leaf tissue was ground into a homogeneous powder in liquid nitrogen, and extracted with 2 mL of pre-cooled 95% (v/v) methanol for 48 hours at room temperature. Then, 200 mL of 10% (v/v) Folin-Ciocalteu reagent was mixed with 100 mL of extract, standard substance (gallic acid) and 95% (v/v) methanol blank, respectively. Add 800 mL of 700 mM Na2CO3 solution and incubate the reaction temperature for 2 hours at room temperature, and measure its absorbance at 765 nm.
  • Test of net photosynthesis rate cut from the base of the corn plant stem, and then use an electronic balance to measure the quality of the plant tissue in the shoot.
  • Test method for fresh weight of shoots Select the bottom two leaves of maize plants, and measure their net photosynthetic rate by photosynthesis instrument (CIRAS-3, PP-Systems, USA).
  • a preparation method of nano-silicon quantum dots comprising the following steps:
  • the size of the obtained nano-silicon quantum dots is 5 nm, the shape is spherical (as shown in Figure 1), the surface has functional groups such as -OH and -NH ( Figure 2), the hydrated diameter is about 42.9 nm, and the surface charge is 10.6 eV.
  • a method for preventing and controlling corn armyworm by using nano-silicon quantum dots comprising the following steps:
  • test results are: nano-silicon quantum dots can inhibit armyworm growth (body weight) by 35.1% after 48 hours (Table 1).
  • Example 2 The concentration of the aqueous solution of nano-silicon quantum dots (Example 1) in Example 2 was adjusted to 10 and 150 mg/L, and the others were the same as those of Example 2.
  • Example 2 The aqueous solution of the nano-silicon quantum dots in Example 2 was adjusted to be water, and the others were the same as those in Example 2.
  • aqueous solutions of nano-silicon quantum dots in Examples 2 and 3 were adjusted to be the traditional aqueous solution of silicon fertilizer and sodium silicate, and the others were the same as those in Example 2.
  • nano-silicon quantum dots improved the net photosynthesis of maize leaves, especially when spraying 50mg/L nano-silicon quantum dots aqueous solution to improve the net photosynthesis of maize leaves The effect reached 38.6%, and finally the above-ground biomass of maize was increased by 40% (Table 1);
  • foliar spraying of 50 mg/L of nano-silicon quantum dots has the best control effect on armyworm, and effectively alleviates the damage of armyworm to corn and promotes the growth of corn.
  • Example 2 The aqueous solution of the nano-silicon quantum dots in Example 2 was adjusted to spray a 5 nm nano-silicon oxide solution, and the others were the same as those in Example 2.
  • test results of embodiment 2 and comparative example 3 are:
  • the nano-silicon quantum dots had significantly better effects on the insect-resistant chlorogenic acid and total phenolic content of corn leaves, as well as on the net photosynthesis and biomass of corn, than the nano-silica treatment with the equivalent concentration (Table 2).
  • Example 2 The particle size of the nano-silicon quantum dots in Example 2 was adjusted as shown in Table 3, and the others were the same as those in Example 2.
  • test results of embodiment 2 and embodiment 4 are:
  • nano-silicon quantum dots with different particle sizes were not significantly different, and the 5nm nano-silicon quantum dots had the best effect on the content of insect-resistant substances and growth in corn (Table 3).
  • test results of embodiment 2 and embodiment 5 are:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)
  • Catching Or Destruction (AREA)

Abstract

本发明公开了一种采用纳米硅量子点防治玉米粘虫的方法,属于农作物害虫纳米材料防治技术领域。本发明所述的采用纳米硅量子点防治玉米粘虫的方法,所述的方法是将纳米硅量子点配制为纳米硅量子点的水溶液,之后作为植物肥料施加在植物根部或者叶部;其中所述的纳米硅量子点的水溶液的浓度为10~150mg/L;所述的纳米硅量子点的尺寸为3~8nm。本发明所述的方法不仅提升常规硅肥对植物抗逆性的效果,还是直接提高了纳米硅的直接杀虫效果以及对植物自身化学防御能力的提升;通过喷施不同浓度的纳米硅量子点对粘虫的生长发育实验,确立了纳米硅量子点最优喷施量。

Description

一种采用纳米硅量子点防治玉米粘虫的方法 技术领域
本发明涉及一种采用纳米硅量子点防治玉米粘虫的方法,属于农作物害虫纳米材料防治技术领域。
背景技术
粘虫(Mythimna separata)属鳞翅目夜蛾科,是一种典型的季节性远距离迁飞害虫,也是我国及其它亚洲和澳洲国家粮食作物上重大害虫,具有发生范围广、危害世代多、受害作物种类和组织多、产量损失重以及发生危害历史长的特点。目前,在我国对粘虫的防治手段中主要还是依赖化学农药,但传统农药防治的不科学施用对生态环境、人类健康和生物多样性的负面效应日趋凸显。例如,大量使用化学农药对空气、土壤和水体造成严重污染、导致非靶标生物的死亡、害虫抗药性持续增强、农残超标威胁食品安全等。因此,开发对粘虫活性较高、对环境友好的防治措施,对粘虫的绿色防控具有重要意义。
硅(Silicon)在地壳中的含量仅次于氧,位居第2位,是一种相对惰性且环境友好的植物有益元素,特别在提高植物对一系列非生物(干旱、盐、重金属、低温等)和生物(病虫害)胁迫的抗性方面都具有重要作用。目前,我国大量农田土壤缓慢释放的可溶性硅已经无法满足作物(如:水稻、玉米等嗜硅植物)对硅的需求,严重制约了农田作物的高产、稳产。为了提高作物增产和抗逆,在农业生产中不断加大传统硅酸盐肥料的施用量,这又进一步加剧了土壤板结、土壤结构破坏以及肥力下降等。
1959年,物理学家理查德·费曼提出纳米技术这一概念,得到了世界各国专家学者的关注,纳米技术广泛应用在许多领域。其中,纳米杀虫剂就是纳米技术在农业上有效应用的方向之一。相较于常规农药,纳米农药具有更优的表面积、生物兼容性等,使其农业害虫高效防治上具有明显的优势。研究表明,聚乙烯吡咯烷酮修饰的纳米银能有效抑制鳞翅目害虫斜纹夜蛾幼虫和蛹生长。镍纳米颗粒能够有效杀灭93%的豆甲成虫。尽管金属类纳米颗粒具有很高的杀虫效果,但大剂量金属基纳米颗粒(如:纳米银、纳米铜)释放到环境中也会导致重金属毒性,最终造成环境污染风险。
发明内容
为了解决上述至少一个问题,本发明将纳米硅量子点应用在防治玉米粘虫中建立了玉米粘虫最优的防治体系。本发明的应用过程简单,易操作。
本发明的第一个目的是提供一种采用纳米硅量子点防治玉米粘虫的方法,所述的方法是 将纳米硅量子点配制为纳米硅量子点的水溶液,之后作为植物肥料施加在植物根部或者叶部。
在本发明的一种实施方式中,所述的纳米硅量子点的水溶液的浓度为10~150mg/L。
在本发明的一种实施方式中,所述的纳米硅量子点的尺寸为3~8nm。
在本发明的一种实施方式中,所述的根部施加的纳米硅量子点的水溶液的浓度为50mg/L;根部喷施的纳米硅量子点的水溶液的体积为200mL/株。
在本发明的一种实施方式中,所述的叶面喷施的纳米硅量子点的水溶液的浓度为50~150mg/L;叶面喷施的纳米硅量子点的水溶液的体积为20mL/株。
在本发明的一种实施方式中,所述的施加的时期为植株三叶一心期。
在本发明的一种实施方式中,所述的植物为玉米。
在本发明的一种实施方式中,所述的纳米硅量子点的制备方法为:
称取N-氨乙基-3-氨丙基甲基二甲氧基硅烷、抗坏血酸、水混合均匀,之后在70~90℃下水浴反应7~10小时,反应结束后透析、离心、干燥,得到纳米硅量子点。
在本发明的一种实施方式中,所述的纳米硅量子点的制备方法中N-氨乙基-3-氨丙基甲基二甲氧基硅烷、抗坏血酸、水的比例为:1~3mL:2~3g:7~9mL。
在本发明的一种实施方式中,所述的纳米硅量子点的制备方法中反应过程需要持续搅拌。
在本发明的一种实施方式中,所述的纳米硅量子点的制备方法中透析是采用透析袋(1kDa,截留分子量)除去过量的反应物。
在本发明的一种实施方式中,所述的纳米硅量子点的制备方法中离心是4℃、10000r/min离心20min。
本发明的有益效果:
(1)本发明将硅进行纳米化后,不仅提升常规硅肥对植物抗逆性的效果,还是直接提高了纳米硅的直接杀虫效果以及对植物自身化学防御能力的提升;通过喷施不同浓度的纳米硅量子点对粘虫的生长发育实验,确立了纳米硅量子点最优喷施量,相较于传统农药防治方法,该防治方法可有效避免误杀非靶标昆虫、造成环境污染。
(2)本发明采用的纳米硅量子点可以作为植物外源非生物激发子,诱导植物抗虫酚类物质代谢合成,提高叶片中抗虫物质总酚和绿原酸含量,进而抑制粘虫侵害和生长。
(3)本发明将纳米硅量子点施加在玉米上,显著提高了玉米叶片中抗虫物质绿原酸含量,在33.3%以上,可以高达70.3%;提高了玉米叶片中总酚的含量,可以达到53.5%以上;抑制粘虫生长达到21.8%以上;而且还可以提高玉米叶片净光合作用,高达38.6%,使得玉米地上部生物量增加40%。
附图说明
图1为制备的纳米硅量子点TEM照片。
图2为制备的纳米硅量子点FT-IR照片。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
测试方法:
TEM表征:采用JEM-2100型透射电子显微镜对制备的不同粒径的纳米硅量子点进行尺寸和形貌表征。
FT-IR表征:纳米硅量子点的表面官能团通过傅立叶变换红外(FTIR)光谱进行了分析。
绿原酸含量测定:采用高效液相色谱(HPLC)法测定叶片中的绿原酸,将100mg新鲜叶片组织在液氮中研磨,添加2mL 70%甲醇(v/v),然后在超声水浴中放置50分钟。然后将溶液以10000rpm离心5分钟,收集上清液并稀释至10mL。然后,将提取物过滤在0.22μm的膜上,并在30℃下使用Eclipse Plus C18色谱柱(5μm,4.6×250mm)通过HPLC系统(Agilent Technologies Inc.,美国)进行分析。液相条件:用溶剂A(乙腈)和溶剂B(0.1%甲酸)生成流动相:0-5分钟(10~15%A),5~10分钟(15~20%A),和10~15分钟(20~10%A)。流速维持在0.5mL/min。检测波长设定为280nm,进样量为5μL。
总酚测定:采用Folin-Ciocalteu比色法:将20mg叶片组织在液氮中研磨成均质粉末,室温下用2mL预冷的95%(v/v)甲醇萃取48小时。然后,将200mL的10%(v/v)Folin–Ciocalteu试剂分别与100mL的提取物、标准物质(没食子酸)和95%(v/v)的甲醇空白液混合。加入800mL 700mM Na 2CO 3溶液并在室温下孵育反应温度2小时,测定其在765nm处的吸光度。
净光合作用速率的测试:从玉米植株茎基部剪断,再用电子天平测定地上部的植株组织质量。
地上部鲜重的测试方法:选择玉米植株的倒二叶,采用光合仪(CIRAS-3,PP-Systems,美国)测定其净光合速率。
粘虫体重的测试:48h粘虫体重增加量=48h后粘虫的体重-48h前粘虫的体重。
实施例1
一种纳米硅量子点的制备方法,包括如下步骤:
称取抗坏血酸2.3g溶于8.0mL水中,再加入2.0mL N-氨乙基-3-氨丙基甲基二甲氧基硅烷,80℃混合均匀,之后在80℃水浴下搅拌8h进行反应;反应结束之后用透析袋(1kDa,截留分子量)除去过量的反应物;然后将透析之后的溶液在4℃、10000r/min离心20min;将沉淀物干燥得到纳米硅量子点。
得到的纳米硅量子点的尺寸为5nm,形貌为球形(如图1),表面具有-OH和-NH等官能团(图2),水合直径约为42.9nm,表面电荷10.6eV。
实施例2
一种采用纳米硅量子点防治玉米粘虫的方法,包括如下步骤:
(1)将来自江苏省农业科学院的玉米种子(苏玉29)在5%次氯酸钠溶液中消毒10分钟,然后用去离子水冲洗3次,进行消毒;
(2)消毒完成后将玉米种子在去离子水中浸泡4小时,然后将玉米种子放进垫有潮湿滤纸的培养皿中,在温室黑暗条件下培养,每天定时喷水;
(3)培养5天后,挑选出芽均匀的玉米种子,转移到装有1.0Kg土的盆钵中生长;
(4)当玉米幼苗长到三叶一心时,叶面喷洒浓度为50mg/L的纳米硅量子点(实施例1)的水溶液20mL;在玉米幼苗接种等量(3头)的3龄玉米粘虫(科云生物),侵染48小时后评估粘虫生长发育情况。
测试结果为:纳米硅量子点作用48小时后对抑制粘虫生长(体重)达35.1%(表1)。
实施例3
调整实施例2中纳米硅量子点(实施例1)的水溶液的浓度为10、150mg/L,其他和实施例2保持一致。
对照例1
调整实施例2中的纳米硅量子点的水溶液为水,其他和实施例2保持一致。
对照例2
调整实施例2、3中的纳米硅量子点的水溶液为传统硅肥硅酸钠水溶液,其他和实施例2保持一致。
实施例2、3和对照例1、2的测试结果为:
表1 实施例2、3和对照例1、2的测试结果
Figure PCTCN2021108891-appb-000001
喷施10、50和150mg/L纳米硅量子点水溶液分别显著提高了玉米叶片中抗虫物质绿原酸含量达40.7%、70.3%和33.3%,而喷施10、50和150mg/L常规硅肥硅酸钠则分别提高叶片中绿原酸含量达11.1%,29.6%和18.5%(表1);此外,喷施50mg/L纳米硅量子点水溶液和常规硅肥硅酸钠还分别提高了玉米叶片中抗虫物质总酚含量达53.5%和9.0%(表1)。
喷施10、50和150mg/L纳米硅量子点水溶液48小时后,分别抑制粘虫生长达27.3%、35.1%和21.8%(表1),而10、50和150mg/L的常规硅肥硅酸钠则抑制粘虫生长达18.1%、24.8%和16.1%(表1);纳米硅量子点提高玉米叶片净光合作用,特别是喷施50mg/L纳米硅量子点水溶液时提高玉米叶片净光合作用达38.6%,最终提高玉米40%的地上部生物量(表1);
因此,叶面喷施50mg/L的纳米硅量子点对粘虫的防治效果最好,并有效性缓解了粘虫对玉米的危害,促进玉米生长。
对照例3
调整实施例2中的纳米硅量子点的水溶液调整为喷施5nm的纳米氧化硅溶液,其他和实施例2保持一致。
实施例2和对照例3的测试结果为:
纳米硅量子点对玉米叶片抗虫物质绿原酸、总酚含量以及对玉米净光合作用和生物量的促进作用,明显优于当量浓度的纳米氧化硅处理(表2)。
表2 对照例3的测试结果
Figure PCTCN2021108891-appb-000002
实施例4
调整实施例2中纳米硅量子点的粒径为如表3,其他和实施例2保持一致。
实施例2和实施例4的测试结果为:
不同粒径的纳米硅量子点对玉米抗虫性和生长的促进效果差异不明显,其中5nm的纳米硅量子点的对玉米抗虫物质含量以及生长的促进效果最好(表3)。
表3 实施例4的测试结果
Figure PCTCN2021108891-appb-000003
实施例5
调整实施例2叶面施用方式调整为土壤施入纳米硅量子点(实施例1)的水溶液。具体步骤如下:
(1)将来自江苏省农业科学院的玉米种子(苏玉29)在5%次氯酸钠溶液中消毒10分钟,然后用去离子水冲洗3次,进行消毒;
(2)消毒完成后将玉米种子在去离子水中浸泡4小时,然后将玉米种子放进垫有潮湿滤纸的培养皿中,在温室黑暗条件下培养,每天定时喷水;
(3)培养5天后,挑选出芽均匀的玉米种子,转移到装有1.0Kg土的盆钵中生长,随后土壤施入50mg/L的纳米硅量子点(实施例1)的水溶液200mL;在玉米三叶一心期接种等量(3头)的3龄玉米粘虫(科云生物),侵染48小时后评估粘虫生长发育情况。
实施例2和实施例5的测试结果为:
相较于叶面喷施纳米硅量子点溶液,土施纳米硅量子点提高玉米抗虫物质总酚含量达16.1%,最终对粘虫生长(体重)的抑制效果更加明显(表4)。
表4 实施例5的测试结果
Figure PCTCN2021108891-appb-000004
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (16)

  1. 一种采用纳米硅量子点防治玉米粘虫的方法,其特征在于,所述的方法是将纳米硅量子点配制为纳米硅量子点的水溶液,之后作为植物肥料施加在植物根部或者叶部;其中所述的纳米硅量子点的水溶液的浓度为10~150mg/L。
  2. 根据权利要求1所述的方法,其特征在于,所述的纳米硅量子点的尺寸为3~8nm。
  3. 根据权利要求1或2所述的方法,其特征在于,所述的根部施加的纳米硅量子点的水溶液的浓度为50mg/L;根部喷施的纳米硅量子点的水溶液的体积为200mL/株。
  4. 根据权利要求1或2所述的方法,其特征在于,所述的叶面喷施的纳米硅量子点的水溶液的浓度为50~150mg/L;叶面喷施的纳米硅量子点的水溶液的体积为20mL/株。
  5. 根据权利要求3所述的方法,其特征在于,所述的叶面喷施的纳米硅量子点的水溶液的浓度为50~150mg/L;叶面喷施的纳米硅量子点的水溶液的体积为20mL/株。
  6. 根据权利要求1、2、5任一项所述的方法,其特征在于,所述的施加的时期为植株三叶一心期。
  7. 根据权利要求3所述的方法,其特征在于,所述的施加的时期为植株三叶一心期。
  8. 根据权利要求4所述的方法,其特征在于,所述的施加的时期为植株三叶一心期。
  9. 根据权利要求1、2、5、7、8任一项所述的方法,其特征在于,所述的植物为玉米。
  10. 根据权利要求3所述的方法,其特征在于,所述的植物为玉米。
  11. 根据权利要求4所述的方法,其特征在于,所述的植物为玉米。
  12. 根据权利要求6所述的方法,其特征在于,所述的植物为玉米。
  13. 根据权利要求1所述的方法,其特征在于,所述的纳米硅量子点的制备方法为:
    称取N-氨乙基-3-氨丙基甲基二甲氧基硅烷、抗坏血酸、水混合均匀,之后在70~90℃下水浴反应7~10小时,反应结束后透析、离心、干燥,得到纳米硅量子点。
  14. 根据权利要求13所述的方法,其特征在于,所述的纳米硅量子点的制备方法中N-氨乙基-3-氨丙基甲基二甲氧基硅烷、抗坏血酸、水的比例为:1~3mL:2~3g:7~9mL。
  15. 根据权利要求13所述的方法,其特征在于,所述的纳米硅量子点的制备方法中离心是4℃、10000r/min离心20min。
  16. 根据权利要求13~15任一项所述的方法,其特征在于,所述的纳米硅量子点的制备方法中反应过程需要持续搅拌。
PCT/CN2021/108891 2021-01-21 2021-07-28 一种采用纳米硅量子点防治玉米粘虫的方法 WO2022156177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022565705A JP2023529548A (ja) 2021-01-21 2021-07-28 ナノシリコン量子ドットを用いたトウモロコシアワヨトウの防除方法
US17/549,982 US11445728B2 (en) 2021-01-21 2021-12-14 Application method of silicon quantum dots for controlling corn armyworm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110100263.X 2021-01-21
CN202110100263.XA CN112841218B (zh) 2021-01-21 2021-01-21 一种采用纳米硅量子点防治玉米粘虫的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/549,982 Continuation US11445728B2 (en) 2021-01-21 2021-12-14 Application method of silicon quantum dots for controlling corn armyworm

Publications (1)

Publication Number Publication Date
WO2022156177A1 true WO2022156177A1 (zh) 2022-07-28

Family

ID=76008997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108891 WO2022156177A1 (zh) 2021-01-21 2021-07-28 一种采用纳米硅量子点防治玉米粘虫的方法

Country Status (2)

Country Link
CN (1) CN112841218B (zh)
WO (1) WO2022156177A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023529548A (ja) 2021-01-21 2023-07-11 江南大学 ナノシリコン量子ドットを用いたトウモロコシアワヨトウの防除方法
CN112841218B (zh) * 2021-01-21 2021-08-24 江南大学 一种采用纳米硅量子点防治玉米粘虫的方法
CN113287634B (zh) * 2021-06-09 2022-02-01 江南大学 一种基于纳米单质硫控制番茄枯萎病的方法
CN113973667A (zh) * 2021-10-21 2022-01-28 江南大学 一种提高玉米生长、产量和品质的纳米生物调控方法
CN115521178B (zh) * 2022-10-12 2023-06-27 江南大学 一种提高纳米材料在植物叶面生物有效性的方法
CN116649350B (zh) * 2023-05-12 2025-06-10 江南大学 一种硅基纳米壳聚糖材料的制备及其在作物害虫防治中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406482A (zh) * 2001-09-13 2003-04-02 舟山明日纳米材料有限公司 杀虫剂及其制备方法
CN107156118A (zh) * 2017-05-26 2017-09-15 华中师范大学 农药控释组合物和纳米配方杀菌剂及其制备方法
CN109777401A (zh) * 2018-12-31 2019-05-21 华南农业大学 一种水溶性蓝色荧光硅量子点的制备方法、其应用
CN112841218A (zh) * 2021-01-21 2021-05-28 江南大学 一种采用纳米硅量子点防治玉米粘虫的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU755845B1 (en) * 2001-11-27 2002-12-19 Gem Of The North Pty Ltd An pesticide composition containing finely ground amorphous silica
CN100417324C (zh) * 2004-05-14 2008-09-10 北京化工大学 一种农药组合物及其制备方法
CN101278680B (zh) * 2007-04-06 2011-06-08 中国科学院动物研究所 一种水分散粒剂剂型昆虫杆状病毒杀虫剂及制备方法
CN100546483C (zh) * 2007-11-29 2009-10-07 中国科学院武汉病毒研究所 一种用替代宿主生产的广谱杆状病毒杀虫剂
DE102007060320A1 (de) * 2007-12-12 2009-06-18 Stiftung Nano Innovations, Olten Schutzschicht für Pflanzen und Bäume, deren Herstellung und Verwendung
CN102145896A (zh) * 2010-02-08 2011-08-10 中国科学院过程工程研究所 具有三维介孔孔道的超顺磁性二氧化硅介孔纳米颗粒及其制备方法
PL217463B1 (pl) * 2010-05-07 2014-07-31 Inst Chemii Przemysłowej Im Prof Ignacego Mościckiego Sposób wytwarzania nanoproszków krzemionkowych o właściwościach grzybobójczych, zwłaszcza do kompozytów polimerowych
US20150274606A1 (en) * 2012-10-24 2015-10-01 Jan Helskens Plant growth enhancer
KR20140058897A (ko) * 2012-11-07 2014-05-15 김재삼 천연방균방충조성물
PT107001B (pt) * 2013-06-12 2016-03-16 Ecoticket Lda Formulações e nanopartículas reactivas de sílica com atividade repelente de insetos em substratos têxteis e em outros materiais e respectivo processo de obtenção e fixação
CN105802611B (zh) * 2016-04-20 2018-07-27 复旦大学 一种比率型纳米硅量子点荧光探针及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406482A (zh) * 2001-09-13 2003-04-02 舟山明日纳米材料有限公司 杀虫剂及其制备方法
CN107156118A (zh) * 2017-05-26 2017-09-15 华中师范大学 农药控释组合物和纳米配方杀菌剂及其制备方法
CN109777401A (zh) * 2018-12-31 2019-05-21 华南农业大学 一种水溶性蓝色荧光硅量子点的制备方法、其应用
CN112841218A (zh) * 2021-01-21 2021-05-28 江南大学 一种采用纳米硅量子点防治玉米粘虫的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOUSA K M, ELSHARKAWY M M, KHODEIR I A, EL-DAKHAKHNI T N, YOUSSEF A E: "Growth Perturbation, Abnormalities and Mortality of Oriental Armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) Caused by Silica Nanoparticles and Bacillus thuringiensis Toxin", EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL, vol. 24, no. 2, 31 January 2014 (2014-01-31), pages 283 - 287, XP055953094, ISSN: 1110-1768 *

Also Published As

Publication number Publication date
CN112841218A (zh) 2021-05-28
CN112841218B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022156177A1 (zh) 一种采用纳米硅量子点防治玉米粘虫的方法
CN104429751B (zh) 有机富硒稻的种植方法
CN103342616B (zh) 超微粉型油菜种衣剂
CN102027998A (zh) 芽孢杆菌芽胞和木霉菌厚垣孢子复合制剂、其制备方法及应用
CN111484374A (zh) 一种减少作物真菌病害与毒素污染的木霉源纳米硒叶面肥
CN107114416A (zh) 防治水稻稻瘟病的植物源杀菌剂
Zheng et al. Green synthesis of a chlorfenapyr chitosan nanopesticide for maize root application: Reducing environmental pollution and risks to nontarget organisms
CN108849995A (zh) 黄帚橐吾提取物纳米杀虫剂及其制备方法
CN104584950B (zh) 一种用于谷子种植的除草方法
US11445728B2 (en) Application method of silicon quantum dots for controlling corn armyworm
CN102224786B (zh) 光合细菌培养液用于药材种植的方法及应用
KR100555077B1 (ko) 식물체 발효액 및 상기 발효액을 사용하는 시비 또는 살충방법
CN106576807A (zh) 一种促进花生生长和结果的种植方法
CN109180362A (zh) 一种对作物具有抗逆潜能调动和根冠促压功能的组合物
CN100571518C (zh) 抑杀植物病原真菌的郁金活性成分及其制备与应用
CN110810401B (zh) 一种烯酰吗啉和福美双杀菌剂及其制备方法和用途
CN103609560A (zh) 一种防治玉米叶、穗、茎部病害和地下害虫的悬浮种衣剂
CN102173954B (zh) 一种促进植物生长并防治虫害微生态叶面肥的制备方法
CN114403146B (zh) 普鲁兰多糖制备植物诱抗剂的应用、植物诱抗剂及方法
CN100594785C (zh) 用施用的或诱导的生长素抑制植物病原体和害虫
CN107926978A (zh) 玉米抗倒伏抗逆境增产调节剂及其制备方法与应用
CN114831111A (zh) 一种基于植物孢粉的农药载体及其应用
CN109868228B (zh) 一株近玫色锁掷孢酵母及其应用
IL319383A (en) Natural porphyrin salt and its use as a growth regulator and inducer of immune resistance in plants
CN102219602B (zh) 一种生防与植物活力复合剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920558

Country of ref document: EP

Kind code of ref document: A1