[go: up one dir, main page]

WO2022153965A1 - レーザー印字された包装体 - Google Patents

レーザー印字された包装体 Download PDF

Info

Publication number
WO2022153965A1
WO2022153965A1 PCT/JP2022/000492 JP2022000492W WO2022153965A1 WO 2022153965 A1 WO2022153965 A1 WO 2022153965A1 JP 2022000492 W JP2022000492 W JP 2022000492W WO 2022153965 A1 WO2022153965 A1 WO 2022153965A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser
less
film
laser printing
Prior art date
Application number
PCT/JP2022/000492
Other languages
English (en)
French (fr)
Inventor
慎太郎 石丸
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US18/272,505 priority Critical patent/US20240075719A1/en
Priority to KR1020237021782A priority patent/KR20230132448A/ko
Priority to JP2022575580A priority patent/JPWO2022153965A1/ja
Priority to EP22739372.5A priority patent/EP4279413A4/en
Priority to CN202280010219.2A priority patent/CN116710366A/zh
Publication of WO2022153965A1 publication Critical patent/WO2022153965A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to a package printed by a laser.
  • packaging made of plastic film has been widely used for distribution articles represented by foods, pharmaceuticals and industrial products. Many of these packages not only protect the contents, but also display information on the product name, manufacturing date, raw materials, etc. (hereinafter, may be referred to as "printing").
  • a package printed by a laser as described in Patent Document 1 has been disclosed. This expresses the laser printing function by applying (coating) an ink layer containing a color former (pigment) that reacts with a laser to a film as a base material.
  • the laminating strength of the coated surface may be lowered by coating with a laser-printable pigment.
  • the package is required to have a plurality of functions such as sealing strength and mechanical strength in addition to the above-mentioned display function, and therefore, a plurality of films are adopted accordingly.
  • Lamination is widely used when laminating a plurality of films, and the use of a laser pigment may cause peeling (delamination) of the laminated portion.
  • Patent Document 1 does not mention a method of ensuring the laminate strength when a laser pigment is used.
  • Patent Document 2 is a technique relating to a package having a laser printing function by applying a laser pigment as in Patent Document 1, and here, the lamination strength of a printing layer (a layer containing a laser pigment) and a base material layer is provided. It is disclosed that laser printing performance and delamination suppression can be achieved at the same time by designing the laminate strength of the print layer and the sealant layer to be higher (for example, 3.8 N / 15 mm or more) than (1.8 to 3.5 N / 15 mm). Has been done. However, in general, lowering the laminate strength (intentionally) lowers the performance as a package, and there is a problem that it cannot be used in applications requiring high laminate strength.
  • Patent Document 2 it is complicated to control the laminating strength between each layer as in Patent Document 2, and considering that a wide variety of quality items are required at a high level in recent packaging, the degree of freedom of the packaging is high. Was sometimes restricted. Further, in Patent Document 2, the content of the resin component in the white ink constituting the laser printing layer is low, 50% by weight or less, and if the amount of the resin component is larger than that, it is difficult to form a discolored region by laser light irradiation. Is disclosed. A small amount of resin component means a large amount of laser pigment and the like, which leads to an increase in cost.
  • the region where the ink layer containing the laser pigment is formed is often limited to only a part of the package, not the entire package. This is because coating the entire package with the laser pigment leads not only to the above-mentioned delamination but also to a decrease in productivity and an increase in cost.
  • coating only a part of the package with the laser pigment causes a new problem of impairing the design of the package. This is because titanium oxide and carbon black, which are widely used for laser pigments, are white or black, and therefore the color tone changes only in the portion coated with the laser pigment. That is, the current situation is that packaging using laser printing technology is not satisfied with quality, productivity / economy, and design.
  • An object of the present invention is to solve the above-mentioned problems of the prior art. That is, an object of the present invention is to provide a laser-printed package made of a laminate having excellent lamination strength and visibility of a printed portion without using an ink containing a laser pigment.
  • the present invention has the following configuration. 1. 1. It has at least one laser printing layer that can be printed by laser irradiation, and the laser printing layer is composed of a laminate having a laser-printed portion and a non-printing portion, and further having a seal layer. The package has the seal layer at least in the innermost layer, and at least a part of the seal layers of the innermost layer is adhered to each other. A package that meets the following requirements (1) to (3).
  • the difference in color L * value between the laser-printed part and the non-printed part is 1.0 or more and 10 or less
  • the adhesive strength between the seal layers is 2N / 15mm or more and 80N / 15mm or less
  • the lamination strength with the layer adjacent to at least one side of the laser printing layer is 2N / 15mm or more and 10N / 15mm or less.
  • the height or width of the print size in the laser-printed portion is 0.2 mm or more and 100 mm or less.
  • the laser printing layer contains one or more simple substances or compounds selected from the group consisting of bismuth, gadolinium, neodymium, titanium, antimony, tin, aluminum, calcium, and barium as the laser printing pigment.
  • the main resin constituting the laser printing layer is either polyester, polypropylene, or polyethylene.
  • the content of the resin constituting the laser printing layer is more than 50% by mass and 99.95% by mass or less.
  • the packaging described in either. 7 is further laminated with a base material layer. From 6.
  • a gas barrier layer is further laminated on the laminated body. From 7.
  • the thickness of the laser printing layer is 5 ⁇ m or more and 200 ⁇ m or less. From 8.
  • the present invention it is possible to satisfy the laminate strength without complicating the design of the package, and further, it is possible to provide a package having high productivity, economy and design.
  • the package of the present invention is composed of a laminated body, has at least one film layer (laser printing layer) that can be printed by laser irradiation, and the laser printing layer has a laser-printed portion printed by a laser.
  • the non-printed portion must be present, and the seal layer must be at least in the innermost layer, and at least a part of the seal layers in the innermost layer must be adhered to each other. From the viewpoint that the present invention holds even if the design of the packaging material is simplified, it is a preferable form to have the laser printing layer in the entire region (in the plane direction) of the laminate constituting the packaging body.
  • the package of the present invention may be provided with a printing layer on which characters and patterns other than the printing formed by the laser are described. The necessary or preferable requirements for these layers will be described later.
  • the laminate may be abbreviated as "Lami”.
  • “Lami” and “seal” are essentially the same “adhesive”, but in the present invention, when laminating each layer, “Lami” is used, and the package is sealed (the innermost layers of the laminated body are partially sealed). When (adhesive), it is described as “seal” to distinguish it.
  • the package of the present invention may be further provided with an anchor coat layer laminated on the base material layer or the adhesive layer or an overcoat layer laminated on the gas barrier layer, if necessary.
  • the thickness of the package is not particularly limited, but is preferably 5 ⁇ m or more and 500 ⁇ m or less. If the thickness of the package is thinner than 5 ⁇ m, the mechanical strength and heat seal strength may be insufficient, which is not preferable.
  • the thickness of the package may be thicker than 500 ⁇ m, but this is not preferable because the cost of the material (film or lamination material) used increases accordingly.
  • the thickness of the package is more preferably 10 ⁇ m or more and 495 ⁇ m or less, and further preferably 15 ⁇ m or more and 490 ⁇ m or less.
  • the thickness of the print layer constituting the laminate of the present invention is preferably 3 ⁇ m or more and 190 ⁇ m or less. If this thickness is less than 3 ⁇ m, the visibility of laser printing may decrease even if the concentration of the laser printing pigment described later is increased. On the other hand, if the thickness of the printing layer exceeds 190 ⁇ m, the volume of the film that absorbs the laser becomes extremely large and the damage becomes large, which may cause deformation or perforation of the laminated body.
  • the thickness of the printing layer is more preferably 10 ⁇ m or more and 180 ⁇ m or less, and further preferably 15 ⁇ m or more and 170 ⁇ m or less.
  • Laser printing layer 1.2.1. Types of Laser Printing Pigments, Addition Amount, Addition Method
  • a laser printing pigment having a discoloration function by laser irradiation. Since the plastics constituting the laminate usually hardly react to laser light, they cannot be printed by laser irradiation.
  • the laser printing pigment is excited by the energy of the laser light, and the surrounding plastic is carbonized to enable printing. In addition to the carbonizing action of plastics, some types of laser printing pigments themselves turn black. Printing on the printing layer becomes possible by the single or combined effect of this carbonization action and the discoloration action of the laser printing pigment. From the viewpoint of print density, it is preferable to select a laser printing pigment having both a carbonizing action of plastic and a discoloring action of itself.
  • laser printing pigments include elemental substances or oxides of bismuth, gadolinium, neodymium, titanium, antimony, tin, aluminum, calcium, and barium.
  • titanium oxide, calcium carbonate, bismuth trioxide, antimony trioxide, and barium sulfate are preferable, and titanium oxide, calcium carbonate, and bismuth trioxide are more preferable.
  • the particle size of the laser printing pigment is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the particle size of the laser printing pigment is less than 0.1 ⁇ m, the color change during laser irradiation may not be sufficient.
  • the particle size of the laser printing pigment exceeds 10 ⁇ m, there is a concern that the filter may be clogged in the extrusion process when the film is formed.
  • the particle size of the laser printing pigment is more preferably 1 ⁇ m or more and 9 ⁇ m or less, and further preferably 2 ⁇ m or more and 8 ⁇ m or less.
  • the amount of the laser printing pigment added to the laser printing layer is preferably 0.05% by mass or more and 50% by mass or less. If the amount of the pigment added is less than 0.05% by mass, the printing density by the laser becomes insufficient, which is not preferable. On the other hand, if the amount of the pigment added exceeds 50% by mass, the amount (volume) of the carbonized plastic is relatively reduced, so that the print density may not be sufficient.
  • the amount of the laser printing pigment added is more preferably 0.1% by mass or more and 49% by mass or less, further preferably 0.15% by mass or more and 48% by mass or less, and 0.2% by mass or more and 47% by mass or less. It is particularly preferable to have it.
  • the amount of the laser printing pigment added to the entire laser printing layer can be obtained by proportionally dividing the thickness ratio of each layer and the amount of the laser printing pigment added.
  • a method of blending the laser printing pigment it can be added at any stage of manufacturing a resin as a raw material of the laser printing layer or a film to be the laser printing layer.
  • a method of blending a slurry of particles dispersed in a solvent with a plastic raw material using a kneading extruder with a vent, or a kneading extruder of dried particles and a plastic resin is used in the stage of producing a resin.
  • a method of blending master batching.
  • a method of using a masterbatch containing a laser printing pigment as a raw material for a film is preferable.
  • Types of Plastics The types of plastics that make up the laser-printed layer of the present invention are not particularly limited and can be freely used without departing from the spirit of the present invention.
  • Examples of the type of plastic (resin) include polyester, polyolefin, polyamide and the like.
  • polyesters include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBN), polylacticene (PLA), and polyethylene furano. Examples thereof include ate (PEF) and polybutylene succinate (PBS).
  • modified polyesters in which the monomers of these acid or diol moieties are modified may be used.
  • the acid moiety monomer include aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid.
  • aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid.
  • aliphatic dicarboxylic acids and alicyclic dicarboxylic acids include aliphatic dicarboxylic acids and alicyclic dicarboxylic acids.
  • Examples of the monomer of the diol moiety include neopentyl glycol, 1,4-cyclohexanedimethanol, diethylene glycol, 2,2-diethyl 1,3-propanediol, and 2-n-butyl-2-ethyl-1,3-.
  • Long-chain diols such as propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, hexanediol, and 1,4-butanediol, hexanediol
  • aliphatic diols, aromatic diols such as bisphenol A, and the like can be mentioned.
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol or the like may be contained.
  • a polyester raw material listed above a plurality of types of homopolyester in which a carboxylic acid monomer and a diol monomer are polymerized in a one-to-one ratio may be mixed (dry blended), or two or more types of carboxylic acids may be used.
  • An acid monomer or two or more kinds of diol monomers may be copolymerized and used. Further, the homopolyester and the copolymerized polyester may be mixed and used.
  • the ultimate viscosity (IV) of polyester as a raw material is not particularly limited, and any one can be used, but it is preferably 0.5 to 1.2 dL / g. If the IV is less than 0.5 dL / g, the molecular weight of the raw material is too low, so that problems such as breakage easily occur during film formation and the tensile breaking strength of the display body is less than 40 MPa are likely to occur. On the other hand, if IV exceeds 1.2 dL / g, the resin pressure in the extrusion process during film formation becomes too high, and filter deformation and the like are likely to occur, which is not preferable.
  • polyolefin IV is more preferably 0.55 dL / g or more and 1.15 dL / g or less, and further preferably 0.6 dL / g or more and 1.1 dL / g or less.
  • polyolefins include polypropylene (PP) and polyethylene (PE).
  • PP polypropylene
  • PE polyethylene
  • the stereoregularity is not particularly limited, and it may be isotactic, syndiotactic, or atactic, and each of them may be contained in an arbitrary ratio.
  • polyethylene its density (branching degree) is not particularly limited, and may be high density (HDPE), linear low density (LLDPE), or low density (LDPE).
  • a raw material obtained by copolymerizing two or more kinds of dissimilar monomers may be used, and examples of the monomer used for the copolymerization include ethylene and ⁇ -olefin, and ⁇ -As olefins, propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, 4-methyl-1-hexene. And so on.
  • the form of copolymerization may be either random copolymerization or block copolymerization.
  • polyolefin elastomers and ionomers may be used.
  • the melt flow rate (MFR) of polyolefin as a raw material is not particularly limited, and any one can be used, but it is preferably 1 to 10 g / 10 minutes. If the MFR is less than 1 g / 10 minutes, the melt viscosity of the raw material becomes too high, so that the resin pressure in the extrusion process during film formation becomes too high, and the filter is easily deformed, which is not preferable. On the other hand, if the MFR exceeds 10 g / 10 minutes, the molecular weight is extremely lowered, so that there is a possibility that fracture is likely to occur during film formation and the blocking resistance is lowered.
  • the MFR is more preferably 2 g / 10 minutes or more and 8 g / 10 minutes, and further preferably 3 g / 10 minutes or more and 7 g / 10 minutes.
  • polyamides examples include polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), caprolactam / lauryllactam copolymer (nylon 6/12), caprolactam / hexamethylene diammonide adipate copolymer (nylon 6).
  • an adhesive modification layer can be provided on the surface of the above-mentioned plastic film.
  • the material of the adhesive modification layer include acrylic, water-soluble or water-dispersible polyester, and hydrophobic polyester in which acrylic is graft-copolymerized.
  • the relative viscosity (RV) of polyamide as a raw material is preferably 2.2 or more and 4 or less. If the RV is less than 2.2, the crystallization rate becomes too high, and breakage or the like may easily occur during stretching during the film forming process. On the other hand, if the RV exceeds 4, the load on the extruder becomes too high, and the filter is easily deformed, which is not preferable.
  • the RV is more preferably 2.3 or more and 3.9 or less, and further preferably 2.4 or more and 3.8 or less.
  • the relative viscosity in the present invention means a value measured at 25 ° C. using a solution of 0.5 g of a polymer in 50 ml of 97.5% sulfuric acid.
  • polyester, polypropylene, and polyethylene are preferable from the viewpoints of mechanical strength, film forming stability, and laser printing performance.
  • the content of the plastic constituting the laser printing layer is preferably more than 50% by mass and 99.95% by mass or less. If the content of the plastic is less than 50% by mass, the tensile breaking strength described later may easily fall below 40 MPa, which is not preferable. Further, when the content of the plastic exceeds 99.95% by mass, the content of the laser printing pigment is relatively less than 0.05% by mass, and the color L * value of the printed portion and the non-printed portion This is not preferable because the difference tends to be less than 1.0.
  • the content of the plastic is more preferably 51% by mass or more and 99.9% by mass or less, further preferably 52% by mass or more and 99.85% by mass, and particularly preferably 53% by mass or more and 99.8% by mass or less. preferable.
  • the plastic content of the entire laser printing layer can be obtained by proportionally dividing the thickness ratio of each layer and the plastic content.
  • additives other than laser-printed pigments in the laser-printed layer constituting the package of the present invention, various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, and reductions are included as required.
  • a viscous agent, a heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber and the like can be added.
  • fine particles as a lubricant for improving the slipperiness. Any fine particles can be selected.
  • examples of the inorganic fine particles include silica, alumina, kaolin, lead white, titanium white, zeolite, zinc flower, and lithopone
  • examples of the organic fine particles include acrylic particles, melamine particles, silicone particles, and crosslinked particles. Examples thereof include polystyrene particles, carbon black, and iron oxide.
  • the average particle size of the fine particles can be appropriately selected within the range of 0.05 to 3.0 ⁇ m when measured with a Coulter counter, if necessary.
  • the lower limit of the fine particle content is preferably 0.01% by mass, more preferably 0.015% by mass, and further preferably 0.02% by mass. If it is less than 0.01% by mass, the slipperiness may decrease.
  • the upper limit is preferably 1% by mass, more preferably 0.2% by mass, and even more preferably 0.1% by mass. If it exceeds 1% by mass, the smoothness of the surface is lowered and problems such as faint printability may occur, which is not preferable.
  • the particles can be added at any stage in the production of the plastic raw material, and the above-mentioned "1.2.1. Types of laser printing pigments, addition amount, addition method". The same method can be adopted.
  • the seal layer constituting the package of the present invention is not particularly limited as long as it has adhesiveness, and conventionally known ones can be arbitrarily used as long as the gist of the present invention is not deviated.
  • a heat-sealing layer that develops adhesiveness by heat and an adhesive (tack) layer that has adhesiveness at room temperature can be mentioned.
  • the type of plastic constituting the heat seal layer include polyester, polyolefin, polyamide and the like.
  • polyesters examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBN), polylacticene (PLA), and polyethylene furano. Examples thereof include ate (PEF) and polybutylene succinate (PBS). Further, in addition to the polyesters mentioned in the above examples, modified polyesters in which the monomers of these acid or diol moieties are modified may be used.
  • Examples of the acid moiety monomer include aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid. Examples thereof include aliphatic dicarboxylic acids and alicyclic dicarboxylic acids. Examples of the monomer of the diol moiety include neopentyl glycol, 1,4-cyclohexanedimethanol, diethylene glycol, 2,2-diethyl 1,3-propanediol, and 2-n-butyl-2-ethyl-1,3-.
  • Long-chain diols such as propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, hexanediol, 1,4-butanediol, and hexanediol.
  • aliphatic diols aromatic diols such as bisphenol A, and the like can be mentioned.
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol or the like may be contained.
  • polyester raw material listed above a plurality of types of homopolyester in which a carboxylic acid monomer and a diol monomer are polymerized in a one-to-one ratio may be mixed (dry blended), or two or more types of carboxylic acids may be used.
  • An acid monomer or two or more kinds of diol monomers may be copolymerized and used. Further, the homopolyester and the copolymerized polyester may be mixed and used.
  • polyolefins examples include polypropylene (PP) and polyethylene (PE).
  • PP polypropylene
  • PE polyethylene
  • the stereoregularity is not particularly limited, and it may be isotactic, syndiotactic, or atactic, and each of them may be contained in an arbitrary ratio.
  • polyethylene its density (branching degree) is not particularly limited, and may be high density (HDPE), linear low density (LLDPE), or low density (LDPE).
  • a raw material obtained by copolymerizing two or more kinds of dissimilar monomers may be used, and examples of the monomer used for the copolymerization include ethylene and ⁇ -olefin, and ⁇ -As olefins, propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, 4-methyl-1-hexene. And so on.
  • the form of copolymerization may be either random copolymerization or block copolymerization.
  • melt flow rate (MFR) of the polyolefin as a raw material is not particularly limited, and any one can be used, but it is preferably 1 to 10 g / 10 minutes. If the MFR is less than 1 g / 10 minutes, the melt viscosity of the raw material becomes too high, so that the resin pressure in the extrusion process during film formation becomes too high, and the filter is easily deformed, which is not preferable.
  • the MFR is more preferably 2 g / 10 minutes or more and 8 g / 10 minutes, and further preferably 3 g / 10 minutes or more and 7 g / 10 minutes.
  • polyamides examples include polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), caprolactam / lauryllactam copolymer (nylon 6/12), caprolactam / hexamethylene diammonide adipate copolymer (nylon 6).
  • ethyleneammonium adipate / hexamethylene diammonium adipate / hexamethylene diammonium sevacate copolymer nylon 6/66/610
  • polymer of metaxylylene diamine and adipic acid MXD-6
  • hexamethylene examples thereof include one type of resin selected from an isophthalamide / terephthalamide copolymer (amorphous nylon), or a mixed raw material obtained by mixing two or more of these types.
  • an adhesive modification layer can be provided on the surface of the above-mentioned plastic film.
  • the material of the adhesive modification layer examples include acrylic, water-soluble or water-dispersible polyester, and hydrophobic polyester in which acrylic is graft-copolymerized.
  • the lower limit of the relative viscosity (RV) of the polyamide as a raw material is preferably 2.2, more preferably 2.3. If it is less than the above, the crystallization rate may be too fast and biaxial stretching may be difficult.
  • the upper limit of the RV of the polyamide is preferably 4, more preferably 3.9. If it exceeds the above, the load on the extruder becomes too high, and the productivity may decrease.
  • the relative viscosity in the present invention means a value measured at 25 ° C. using a solution of 0.5 g of a polymer in 50 ml of 97.5% sulfuric acid.
  • the type of plastic constituting the adhesive layer examples include polyester, polyolefin, polystyrene, acrylic resin and the like, and it is particularly preferable that the glass transition temperature Tg is lower than room temperature (around 25 ° C.).
  • polyester it is preferable to use a saturated carboxylic acid component or a saturated diol component as a monomer capable of lowering Tg.
  • saturated carboxylic acid include adipic acid, azelaic acid, sebacic acid, decandicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like. Among these, adipic acid and azelaic acid are preferable.
  • Saturated diol components include long-chain diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 2,2-diethyl-1,3-propanediol and 1,4-butanediol, and aliphatic diols such as hexanediol. Can be mentioned. Of these, diethylene glycol, 1,3-propanediol, and 1,4-butanediol are preferably used. Further, a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol, or the like may be used as a component constituting the polyester resin. The polyester elastomer can be preferably used because it has an effect of lowering Tg.
  • polyolefin-based products include polyolefin-based elastomers.
  • polyolefin-based elastomers include ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers, and ethylene-4-methyl-1-.
  • Penten copolymer ethylene-propylene-1-butene copolymer, ethylene-propylene-1-hexene copolymer, ethylene-1-butene-1-hexene copolymer, propylene-1-butene copolymer, propylene -1-Hexene copolymer, propylene-1-octene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene-1-hexene copolymer, propylene-1-butene-4 -Methyl-1-pentene copolymer and the like can be mentioned. Further, a small amount of styrene-based elastomer such as SBS and SEBS may be added thereto.
  • SBS styrene-based elastomer
  • polystyrene examples include polystyrene-based elastomers.
  • examples of the polystyrene-based elastomer include a polymer obtained by block-copolymerizing an aromatic alkenyl compound and a conjugated diene, and examples of the aromatic alkenyl compound include styrene, tert-butyl styrene, ⁇ -methyl styrene, p-methyl styrene, and the like.
  • Examples include p-ethylstyrene, divinylbenzene, 1,1-diphenylethylene, vinylnaphthalene, vinylanthracene, N, N-dimethyl-p-aminoethylstyrene, N, N-diethyl-p-aminoethylstyrene and vinylpyridine.
  • conjugated diene monomer for example, 1,3-butadiene, 1,2-butadiene, isoprene, 2,3-dimethyl-butadiene, 1,3-pentadiene, 2-methyl-1,3-butadiene can be used.
  • the acrylic resin may be a copolymer of an acrylic monomer, or a copolymer of an acrylic monomer and another copolymerizable monomer.
  • the acrylic monomer include (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, propyl (meth) acrylic acid, isopropyl acrylate, n-butyl (meth) acrylic acid, and acrylic acid.
  • Examples thereof include copolymers derived from the monomer of.
  • Examples of copolymerizable monomers other than acrylic include maleic acid, maleic anhydride, itaconic acid, itaconic anhydride and the like as monomers having at least one carboxyl group in a radically polymerizable unsaturated group. ..
  • Examples of a monomer having at least one hydroxyl group in addition to the radically polymerizable unsaturated group 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydrokibutyl (meth) acrylate, and diethylene glycol mono Examples include (meth) acrylate.
  • vinyl monomers copolymerizable with acrylic monomers for example, aromatic vinyl monomers such as styrene and ⁇ -styrene; trialkyloxysilyl group-containing vinyl monomers such as vinyl trimethoxysilane; acrylonitrile, methacrylylonitrile.
  • aromatic vinyl monomers such as styrene and ⁇ -styrene
  • trialkyloxysilyl group-containing vinyl monomers such as vinyl trimethoxysilane
  • acrylonitrile methacrylylonitrile
  • examples thereof include nitrile group-containing vinyl-based monomers such as bnitrile, acrylamide, methacrylicamide group-containing vinyl-based monomers, vinyl esters such as vinyl acetate and vinyl versaticate, and the like.
  • plastics as raw materials, they can be arbitrarily used as a film formed by any of non-stretching, uniaxial stretching, and biaxial stretching, or as a coating agent dispersed in a solvent or the like.
  • the film is formed as a film, it is preferably unstretched or uniaxially stretched, and more preferably non-stretched, in order to exhibit the sealing property.
  • the print layer and the seal layer may be laminated via the adhesive layer described later, or the seal layer may be laminated in the extrusion process when the print layer is formed.
  • the thickness of the seal layer constituting the laminate of the present invention is preferably 2 ⁇ m or more and 190 ⁇ m or less.
  • the thickness of the seal layer is less than 2 ⁇ m, the heat seal strength of the laminated body is lowered, which is not preferable.
  • the thickness of the seal layer exceeds 190 ⁇ m, the heat sealability of the laminated body is improved, but the thickness of the print layer is relatively reduced, which is not preferable because the visibility of printing is lowered.
  • the thickness of the seal layer is more preferably 3 ⁇ m or more and 180 ⁇ m or less, and further preferably 4 ⁇ m or more and 170 ⁇ m or less.
  • Laminating agent As a laminating agent that can be used when laminating each layer of the package of the present invention, an adhesive for dry laminating or a resin layer made by extrusion laminating can be used. Any known material can be adopted.
  • the adhesive may be either a one-component type (drying type) or a two-component type (curing reaction type).
  • dry laminating a commercially available polyurethane-based or polyester-based adhesive for dry lamination can be used. Typical examples are DIC Dick Dry (registered trademark) LX-703VL, DIC KR-90, Mitsui Chemicals Takenate (registered trademark) A-4, and Mitsui Chemicals Takerack (registered trademark) A-905.
  • the laminating agent is applied to one of the films, and then the laminating agent dries or reacts and cures to complete the laminating.
  • the thickness of the laminated layer after drying is preferably 1 ⁇ m or more and 6 ⁇ m or less, and more preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the laminated strength tends to be less than 2N / 15 mm, which is not preferable.
  • the thickness of the laminated layer after drying exceeds 6 ⁇ m, the drying time required for curing the laminating agent becomes long, and the productivity of the package is lowered, which is not preferable.
  • Base material layer examples of the type of plastic constituting the base material layer that can be preferably contained in the package of the present invention include polyester, polyolefin, polyamide and the like.
  • polyesters examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBN), polylacticene (PLA), and polyethylene furano. Examples thereof include ate (PEF) and polybutylene succinate (PBS). Further, in addition to the polyesters mentioned in the above examples, modified polyesters in which the monomers of these acid or diol moieties are modified may be used.
  • Examples of the acid moiety monomer include aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid. Examples thereof include aliphatic dicarboxylic acids and alicyclic dicarboxylic acids. Examples of the monomer of the diol moiety include neopentyl glycol, 1,4-cyclohexanedimethanol, diethylene glycol, 2,2-diethyl 1,3-propanediol, and 2-n-butyl-2-ethyl-1,3-.
  • Long-chain diols such as propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, hexanediol, 1,4-butanediol, and hexanediol.
  • aliphatic diols aromatic diols such as bisphenol A, and the like can be mentioned.
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol or the like may be contained.
  • polyester raw material listed above a plurality of types of homopolyester in which a carboxylic acid monomer and a diol monomer are polymerized in a one-to-one ratio may be mixed (dry blended), or two or more types of carboxylic acids may be used.
  • An acid monomer or two or more kinds of diol monomers may be copolymerized and used. Further, the homopolyester and the copolymerized polyester may be mixed and used.
  • polyolefins examples include polypropylene (PP) and polyethylene (PE).
  • PP polypropylene
  • PE polyethylene
  • the stereoregularity is not particularly limited, and it may be isotactic, syndiotactic, or atactic, and each of them may be contained in an arbitrary ratio.
  • polyethylene its density (branching degree) is not particularly limited, and may be high density (HDPE), linear low density (LLDPE), or low density (LDPE).
  • a raw material obtained by copolymerizing two or more kinds of dissimilar monomers may be used, and examples of the monomer used for the copolymerization include ethylene and ⁇ -olefin, and ⁇ -As olefins, propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, 4-methyl-1-hexene. And so on.
  • the form of copolymerization may be either random copolymerization or block copolymerization.
  • melt flow rate (MFR) of the polyolefin as a raw material is not particularly limited, and any one can be used, but it is preferably 1 to 10 g / 10 minutes. If the MFR is less than 1 g / 10 minutes, the melt viscosity of the raw material becomes too high, so that the resin pressure in the extrusion process during film formation becomes too high, and the filter is easily deformed, which is not preferable.
  • the MFR is more preferably 2 g / 10 minutes or more and 8 g / 10 minutes, and further preferably 3 g / 10 minutes or more and 7 g / 10 minutes.
  • polyamides examples include polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), caprolactam / lauryllactam copolymer (nylon 6/12), caprolactam / hexamethylene diammonide adipate copolymer (nylon 6).
  • ethyleneammonium adipate / hexamethylene diammonium adipate / hexamethylene diammonium sevacate copolymer nylon 6/66/610
  • polymer of metaxylylene diamine and adipic acid MXD-6
  • hexamethylene examples thereof include one type of resin selected from an isophthalamide / terephthalamide copolymer (amorphous nylon), or a mixed raw material obtained by mixing two or more of these types.
  • an adhesive modification layer can be provided on the surface of the above-mentioned plastic film.
  • the material of the adhesive modification layer examples include acrylic, water-soluble or water-dispersible polyester, and hydrophobic polyester in which acrylic is graft-copolymerized.
  • the lower limit of the relative viscosity (RV) of the polyamide as a raw material is preferably 2.2, more preferably 2.3. If it is less than the above, the crystallization rate may be too fast and biaxial stretching may be difficult.
  • the upper limit of the RV of the polyamide is preferably 4, more preferably 3.9. If it exceeds the above, the load on the extruder becomes too high, and the productivity may decrease.
  • the relative viscosity in the present invention means a value measured at 25 ° C. using a solution of 0.5 g of a polymer in 50 ml of 97.5% sulfuric acid.
  • plastics as raw materials, they can be arbitrarily used as a film formed by any of non-stretching, uniaxial stretching, and biaxial stretching, or as a coating agent dispersed in a solvent or the like.
  • uniaxial stretching or biaxial stretching is preferable, and biaxial stretching is more preferable in order to develop mechanical strength.
  • the print layer and the base material layer may be laminated via the adhesive layer described later, or the base material layer may be laminated in the extrusion step when the print layer is formed.
  • the base material layer contains a lubricant in order to improve the slipperiness
  • the content concentration is preferably 100 ppm or more and 2000 ppm or less. If the concentration of the lubricant is less than 100 ppm, the slipperiness deteriorates, which is not preferable because not only the position shift or the like occurs when the laminated body is produced (bonded), but also the handleability is deteriorated when the laminated body is formed. On the other hand, if the lubricant concentration exceeds 2000 ppm, the transparency of the base material layer is lowered, which is not preferable.
  • the lubricant concentration is more preferably 200 ppm or more and 1900 ppm or less, and further preferably 300 ppm or more and 1800 ppm or less.
  • the base material layer may be provided with a layer that has been subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the printability and slipperiness of the surface, and is within the range that does not deviate from the requirements of the present invention. Can be provided arbitrarily with.
  • the package of the present invention may have a layer other than the above-mentioned laser printing layer and sealing layer. Taking the configuration described in "1.1. Layer structure and thickness" as an example, the base material layer, the gas barrier layer (transparent, opaque), and the printing layer will be described below.
  • the gas barrier layer that can be arbitrarily laminated on the laminate of the present invention is preferably composed of an inorganic thin film containing a metal or a metal oxide as a main constituent. Further, in addition to the gas barrier made of the inorganic thin film, an anchor coat layer provided under the inorganic thin film layer (between the plastic film and the inorganic thin film) and an overcoat layer provided on the inorganic thin film layer may be provided. By providing these layers, it is expected that the adhesion to the gas barrier layer will be improved, the gas barrier property will be improved, and the like.
  • the raw material type of the gas barrier layer is not particularly limited, and conventionally known materials can be used, and can be appropriately selected according to the purpose in order to satisfy the desired gas barrier property and the like.
  • raw material species for the gas barrier layer include metals such as silicon, aluminum, tin, zinc, iron, and manganese, and inorganic compounds containing one or more of these metals.
  • the applicable inorganic compounds include oxides and nitrides. , Carbide, fluoride and the like. These inorganic substances or inorganic compounds may be used alone or in combination of two or more.
  • silicon oxide (SiOx) and aluminum oxide (AlOx) can be used alone (unit) or in combination (binary).
  • the component of the inorganic compound is a binary product of silicon oxide and aluminum oxide
  • the content of aluminum oxide is preferably 20% by mass or more and 80% by mass or less, and more preferably 25% by mass or more and 70% by mass or less. ..
  • the content of aluminum oxide is 20% by mass or less, the density of the gas barrier layer is lowered and the gas barrier property may be lowered, which is not preferable.
  • the content of aluminum oxide is 80% by mass or more, the flexibility of the gas barrier layer is lowered and cracks are likely to occur, and as a result, the gas barrier property may be lowered, which is not preferable.
  • the element ratio of oxygen / metal of the metal oxide used for the gas barrier layer is 1.3 or more and less than 1.8, there is little variation in the gas barrier property, and excellent gas barrier property can always be obtained, which is preferable.
  • the elemental ratio of oxygen / metal can be obtained by measuring the amounts of each element of oxygen and metal by X-ray photoelectron spectroscopy (XPS) and calculating the elemental ratio of oxygen / metal.
  • the thickness of the gas barrier layer that can be preferably used for the laminate of the present invention is preferably 2 nm or more and 100 nm or less when a metal or a metal oxide is vapor-deposited and used as the gas barrier layer.
  • the thickness of the inorganic thin film layer is more preferably 5 nm or more and 97 nm or less, and further preferably 8 nm or more and 94 nm or less.
  • the thickness of the metal foil is preferably 3 ⁇ m or more and 100 ⁇ m or less. If the thickness of this layer is less than 3 ⁇ m, the gas barrier property tends to decrease, which is not preferable. On the other hand, even if the thickness of this layer exceeds 100 nm, there is no corresponding effect of improving the gas barrier property, and the manufacturing cost increases, which is not preferable.
  • the thickness of the inorganic thin film layer (metal leaf) is more preferably 5 ⁇ m or more and 97 ⁇ m or less, and further preferably 8 ⁇ m or more and 94 ⁇ m or less.
  • the gas barrier layer can be formed by bonding aluminum foil or vapor deposition of aluminum.
  • the thickness of the aluminum foil is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the gas barrier laminate provided in this way has a water vapor transmission rate of 0.05 [g / (m 2 ⁇ d)] or more and 4 [g / (m 2 ⁇ d)] in an environment of a temperature of 40 ° C. and a relative humidity of 90% RH. d)]
  • the following is preferable. If the water vapor transmission rate exceeds 4 [g / (m 2 ⁇ d)], the shelf life of the contents will be shortened when used as a package containing the contents, which is not preferable. On the other hand, when the water vapor transmission rate is smaller than 0.05 [g / (m 2 ⁇ d)], the gas barrier property is enhanced and the shelf life of the contents is extended, which is preferable.
  • the gas barrier laminate has an oxygen permeability of 0.05 [cc / (m 2 ⁇ d ⁇ atm)] or more and 4 [cc / (m 2 ⁇ d ⁇ ) in an environment of a temperature of 23 ° C. and a relative humidity of 65% RH. atm)] or less is preferable.
  • the oxygen permeability exceeds 4 [cc / (m 2 ⁇ d ⁇ atm)], the shelf life of the contents will be shortened, which is not preferable.
  • the oxygen permeability is smaller than 0.05 [cc / (m 2 ⁇ d ⁇ atm)], the gas barrier property is enhanced and the shelf life of the contents is extended, which is preferable.
  • Is 0.05 [cc / (m 2 ⁇ d ⁇ atm)] is the lower limit. Even if the lower limit of oxygen permeability is 0.05 [cc / (m 2 ⁇ d ⁇ atm)], it can be said that it is practically sufficient.
  • the upper limit of oxygen permeability is preferably 3.8 [cc / (m 2 ⁇ d ⁇ atm)], more preferably 3.6 [cc / (m 2 ⁇ d ⁇ atm)].
  • the gas barrier laminated body using the laminated body of the present invention (in this section, these are collectively referred to as "laminated body") has the above-mentioned gas barrier layer laminated, and has scratch resistance and further gas barrier property.
  • An overcoat layer may be provided for the purpose of improvement or the like.
  • the type of the overcoat layer is not particularly limited, but conventionally, a composition composed of a urethane resin and a silane coupling agent, a compound composed of organic silicon and its hydrolyzate, a water-soluble polymer having a hydroxyl group or a carboxyl group, and the like have been conventionally used.
  • a known material can be used, and it can be appropriately selected according to the purpose in order to satisfy the desired gas barrier property and the like.
  • additives are added to the overcoat layer for the purpose of imparting antistatic property, ultraviolet absorption, coloring, thermal stability, slipperiness, etc., as long as the object of the present invention is not impaired.
  • the type and amount of the various additives may be appropriately selected according to the desired purpose.
  • Printing layer In addition to printing by laser irradiation, characters and patterns may be provided for the purpose of improving design. As the material constituting these characters and patterns, known materials such as ink for gravure printing and ink for flexographic printing can be used.
  • the number of printing layers may be one layer or a plurality of layers. In order to improve the design by using a plurality of colors for printing, it is preferable to have a printing layer composed of a plurality of layers. The print layer may be located on either the outermost layer or the intermediate layer.
  • L * value difference the absolute value of the difference between the color L * values of the printed portion and the non-printed portion. Need to be. If this difference is less than 1.0, the color tones of the printed portion and the non-printed portion become close to each other, and it becomes difficult to visually recognize the print. On the other hand, if the difference in L * values exceeds 10.0, the print will be easier to see, but it will be necessary to increase the power of laser irradiation by that amount, and the damage to the package will increase, causing problems such as holes. It is not preferable because it is likely to occur.
  • the difference between the L * values is more preferably 1.5 or more and 9.5 or less, and further preferably 2.0 or more and 9.0 or less.
  • the package of the present invention needs to have a peel strength (hereinafter, sometimes referred to as seal strength) of the portion where the seal layers are adhered to be 2N / 15 mm or more and 80N / 15 mm or less. .. If the seal strength is less than 2N / 15 mm, the seal portion is easily peeled off, which is not preferable.
  • the seal strength is more preferably 3N / 15 mm or more, and further preferably 4N / 15 mm or more. The greater the seal strength, the higher the sealing performance of the package, which is preferable. However, the upper limit that can be obtained at present is about 80 N / 15 mm. Even if the seal strength is 40 N / 15 mm, it can be said that it is sufficiently preferable in practical use.
  • Laminate strength The package of the present invention needs to have a laminate strength of 2N / 15 mm or more and 10N / 15 mm or less between the laser-printed layer and the layer adjacent to one of the layers. If the laminate strength is less than 2N / 15 mm, not only delamination is likely to occur, but also the seal strength is likely to be less than 2N / 15 mm, which is not preferable. On the other hand, even if the laminate strength exceeds 10 N / 15 mm, the performance of the package is preferable, but the upper limit that can be obtained at present is about 10 N / 15 mm. Even if the laminate strength is about 4N / 15 mm, it can be said that it is sufficiently preferable in practical use.
  • the difference in lamination strength between the lami layers when two or more lami layers are present, the difference in laminate strength).
  • the one having the largest difference in laminate strength is preferably 1.5 N / 15 mm or less. If the difference in the laminating strength between the laminating layers exceeds 1.5 N / 15 mm, delamination is likely to occur in the laminating layer having the lowest laminating strength, which is not preferable. It is considered that when partial peeling (notch) occurs in the laminated layer having the lowest laminate strength, stress is concentrated there and delamination is likely to occur.
  • the difference in laminate strength is more preferably 1 N / 15 mm or less, further preferably 0.5 N / 15 mm or less, and particularly preferably 0 N / 15 mm.
  • the difference in the laminating strength between the laminated layers is 0N / 15 mm, the laminating strengths between the laminating layers are all the same, so that delamination is less likely to occur, which is preferable.
  • the size of printing formed on the package of the present invention by a laser is preferably 0.2 mm or more and 100 mm or less in either height or width.
  • the resolution of the human eye is said to be about 0.2 mm, and if the character size is less than 0.2 mm, the difference in color L * values tends to be less than 1.0, making it difficult to recognize printing. ..
  • the print size exceeds 100 mm, it is preferable that the print is easily recognized, but if the print size is too large, the amount of information written on the package is reduced, which is not preferable.
  • the print size is more preferably 0.5 mm or more and 90 mm or less, and further preferably 1 mm or more and 80 mm or less.
  • Heat shrinkage rate In the package of the present invention, when any part where the innermost layers are not sealed is cut out and treated in hot air at 150 ° C. for 30 minutes, the heat in any at least one direction of the surface of the package is obtained.
  • the shrinkage rate is preferably ⁇ 5% or more and 5% or less. If the heat shrinkage rate exceeds 5%, the package will not retain its original shape due to large deformation when placed in a high temperature environment such as hot water treatment such as boiling or retort or heating with a microwave oven. It is not preferable because it significantly impairs the design.
  • the heat shrinkage rate of hot water is less than -5%, it means that the package is stretched, which is not preferable because it becomes difficult for the package to maintain its original shape as in the case of a high heat shrinkage rate.
  • the heat shrinkage rate of the package is more preferably -4% or more and 4% or less, and further preferably -3% or more and 3% or less.
  • Tensile breaking strength In the package of the present invention, when the tensile breaking strength is measured in any at least one direction of the flat surface of the package by cutting out arbitrary portions where the innermost layers are not sealed, this is preferably 40 MPa or more and 400 MPa. .. If the tensile breaking strength is less than 40 MPa, the package is easily broken by external tension, which is not preferable.
  • the lower limit of the tensile breaking strength is more preferably 50 MPa, and even more preferably 60 MPa.
  • 400 MPa is the upper limit. Even if the tensile breaking strength is 300 MPa, it is practically sufficient.
  • the laser printing pigment is a metal, it usually has a higher specific density than the resin constituting the film.
  • the supply of the raw materials tends to vary (segregation).
  • a stirrer is installed in the pipe or hopper directly above the extruder, or a pipe (inner pipe) is inserted inside the hopper directly above the extruder filled with base resin to supply laser printing pigment. It is preferable to perform melt extrusion by taking measures such as installing a Jinkasa that cuts the grain pressure of the raw material in each raw material hopper.
  • the laser printing layer is obtained by melting and extruding the raw materials supplied in the above "3.1.1. Mixing and supplying raw materials" from an extruder to form an unstretched film, which is obtained through a predetermined step shown below. be able to.
  • the seal layer and the base material layer may be laminated together with the laser printing layer in the extrusion step, and each layer can be laminated at an arbitrary timing. It is preferable to adopt the co-extrusion method for laminating at the time of melt extrusion.
  • a method for melt extrusion of the raw material resin a known method can be used, and a method using an extruder equipped with a barrel and a screw is preferable.
  • the moisture content is 100 ppm or less, more preferably 90 ppm or less, and further using a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer. It is preferable to dry until it becomes 80 ppm or less.
  • the unstretched film can be obtained by quenching the resin melted by the extruder.
  • any existing method such as a T-die method or a tubular method can be adopted.
  • the unstretched film can be obtained by quenching the film melted by extrusion.
  • a method for rapidly cooling the molten resin a method of casting the molten resin from a mouthpiece onto a rotary drum and quenching and solidifying the molten resin to obtain a substantially unoriented resin sheet can be preferably adopted.
  • the film to be the laser printing layer may be formed by any method of non-stretching, uniaxial stretching (stretching in at least one of the longitudinal (longitudinal) direction and the horizontal (width) direction), and biaxial stretching.
  • uniaxial stretching is preferable, and biaxial stretching is more preferable.
  • the base material layer is preferably uniaxially stretched, and more preferably biaxially stretched.
  • the seal layer is preferably unstretched in order to develop the seal strength.
  • the film may be introduced into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged.
  • a longitudinal stretching machine in which a plurality of roll groups are continuously arranged.
  • the preheating temperature is set between the glass transition temperature Tg and the melting point Tm + 50 ° C., based on the Tg of the plastic constituting the film. If the preheating temperature is lower than Tg, it becomes difficult to stretch when stretching in the vertical direction, and breakage is likely to occur, which is not preferable.
  • the film tends to adhere to the roll and the film easily wraps around, which is not preferable.
  • Tg to Tm + 50 ° C. longitudinal stretching is performed.
  • the longitudinal stretching ratio is preferably 1 to 5 times or less. Since 1x is not longitudinally stretched, the longitudinal stretching ratio is 1x to obtain a horizontally uniaxially stretched film, and 1.1 times or more is required to obtain a biaxially stretched film. It is preferable to set the longitudinal stretching ratio to 1.1 times or more because cavities appear in the printing layer.
  • the upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, fracture is likely to occur in the next transverse stretching, so it is preferably 10 times or less.
  • the longitudinal stretching ratio is more preferably 1.2 times or more and 9.8 times or less, and further preferably 1.4 times or more and 9.6 times or less.
  • Second (horizontal) stretching After the first (longitudinal) stretching, the film is held by clips at both ends in the width direction (direction orthogonal to the longitudinal direction) in the tenter, and is 2 to 13 times at Tg to Tm + 50 ° C. It is preferable to perform transverse stretching at a stretching ratio of about. Preheating is preferably performed before stretching in the lateral direction, and the preheating is preferably performed until the surface temperature of the display material or the package becomes Tg to Tm + 50 ° C.
  • the transverse stretching ratio is more preferably 2.2 times or more and 12.8 times or less, and more preferably 2.4 times or more and 12.6 times or less.
  • the stretching speed is different between the longitudinal stretching and the transverse stretching (the stretching speed is faster in the longitudinal stretching), the range of the preferable stretching ratio is different.
  • the area magnification obtained by multiplying the magnifications of the longitudinal stretching and the transverse stretching is preferably 2.2 times or more and 64 times.
  • After transverse stretching it is preferable to pass the film through an intermediate zone where no aggressive heating operation is performed. Since the temperature is higher in the next final heat treatment zone than in the transverse stretching zone of the tenter, the heat of the final heat treatment zone (hot air itself or radiant heat) will flow into the transverse stretching process unless the intermediate zone is provided. In this case, the temperature of the transverse stretching zone is not stable, so that the physical properties vary.
  • the film after the transverse stretching is passed through the intermediate zone to allow a predetermined time to elapse, and then the final heat treatment is performed.
  • this intermediate zone the accompanying flow accompanying the running of the film, the lateral stretching zone, and the final so that when the strip-shaped piece of paper hangs down without passing through the film, the piece of paper hangs down almost completely in the vertical direction. It is important to block hot air from the heat treatment zone. It is sufficient that the transit time of the intermediate zone is about 1 second to 5 seconds. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect is insufficient. On the other hand, it is preferable that the intermediate zone is long, but if it is too long, the equipment will become large, so about 5 seconds is sufficient.
  • Heat treatment After passing through the intermediate zone, it is preferable to heat-treat at 100 to 280 ° C. in the heat treatment zone. Since the heat treatment promotes the crystallization of the film, not only the heat shrinkage rate generated in the stretching step can be reduced, but also the tensile breaking strength tends to increase. If the heat treatment temperature is less than 100 ° C., the heat shrinkage rate of the film tends to increase, which is not preferable. On the other hand, if the heat treatment temperature exceeds 280 ° C., the film tends to melt and the tensile breaking strength tends to decrease, which is not preferable.
  • the heat treatment temperature is more preferably 110 ° C. to 270 ° C., and even more preferably 120 ° C.
  • the passage time of the heat treatment zone is preferably 2 seconds or more and 20 seconds or less. If the passing time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, which makes the heat treatment meaningless. The longer the transit time, the higher the effect of the heat treatment, so 5 seconds or more is more preferable. However, if the transit time is to be lengthened, the equipment will become huge, so 20 seconds or less is sufficient for practical use.
  • the heat shrinkage rate in the width direction can be reduced by reducing the distance between the clips of the tenter at an arbitrary magnification (relaxation in the width direction). Therefore, in the final heat treatment, it is preferable to relax in the width direction in the range of 0% or more and 10% or less (a relaxation rate of 0% means that relaxation is not performed).
  • a relaxation rate of 0% means that relaxation is not performed.
  • the higher the relaxation rate in the width direction, the lower the shrinkage rate in the width direction, but the upper limit of the relaxation rate (shrinkage rate in the width direction of the film immediately after lateral stretching) is the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. It is not possible to carry out relaxation beyond this, as it is determined by.
  • the relaxation rate in the width direction is limited to 10%. Further, during the heat treatment, it is possible to reduce the distance between the clips in the longitudinal direction by an arbitrary magnification (relaxation in the longitudinal direction).
  • a film roll After passing through the cooling heat treatment zone, it is preferable to cool the film in the cooling zone with a cooling air of 10 ° C. or higher and 50 ° C. or lower with a passing time of 2 seconds or more and 20 seconds or less. After that, a film roll can be obtained by winding while cutting and removing both ends of the film.
  • Laminate When manufacturing a laminate used for the packaging of the present invention, a laser printing layer, a seal layer, and other layers (if necessary, a gas barrier layer, an anchor coat layer, and an overcoat layer laminated on any of the layers are used. When laminating after separately forming a film by the method described in "3.1. Film manufacturing conditions" above, the laminating method is not particularly limited, as described in "1.4. Laminating agent”. Adjacent layers can be laminated with a conventionally known dry laminate or extrusion laminate using a laminating agent.
  • a laminating agent is applied to one of the layers, the other layer is attached to the coated surface, and the solvent is volatilized by drying. There is a way to make it.
  • the drying conditions differ depending on the laminating agent, but the laminating agent is cured by, for example, leaving it in an environment of 40 ° C. for 1 day or more.
  • the method for forming the gas barrier layer is not particularly limited, and a known production method can be adopted as long as the object of the present invention is not impaired.
  • the known production methods it is preferable to adopt the vapor deposition method.
  • the vapor deposition method include a vacuum vapor deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, a CVD method (chemical vapor deposition method), and the like.
  • the vacuum vapor deposition method and the physical vapor deposition method are preferable, and the vacuum vapor deposition method is particularly preferable from the viewpoint of production speed and stability.
  • the heating method in the vacuum vapor deposition method resistance heating, high frequency induction heating, electron beam heating and the like can be used.
  • the reactive gas oxygen, nitrogen, water vapor or the like may be introduced, or reactive vapor deposition using means such as ozone addition and ion assist may be used.
  • the film forming conditions may be changed as long as the object of the present invention is not impaired, such as applying a bias to the substrate or raising or cooling the substrate temperature.
  • the laminate of the present invention is conveyed to the gas barrier layer manufacturing apparatus via a metal roll.
  • An example of the configuration of the gas barrier layer manufacturing apparatus includes a take-up roll, a coating drum, a take-up roll, an electron beam gun, a crucible, and a vacuum pump.
  • the laminate is set on a take-up roll and is taken up by a take-up roll via a coating drum.
  • the pass line of the laminate (inside the gas barrier layer manufacturing equipment) is depressurized by a vacuum pump, and the inorganic material set in the crucible is evaporated by the beam emitted from the electron gun and deposited on the laminate passing through the coating drum. Will be done.
  • the inorganic material is vapor-deposited, heat is applied to the laminate, and tension is also applied between the unwinding rolls and the winding rolls. If the temperature applied to the laminated body is too high, not only the thermal shrinkage of the laminated body becomes large, but also the softening progresses, so that elongation deformation due to tension is likely to occur.
  • the temperature drop (cooling) of the laminate becomes large, the amount of shrinkage after expansion (different from heat shrinkage) becomes large, cracks occur in the gas barrier layer, and the desired gas barrier property is exhibited. It is not preferable because it becomes difficult.
  • the lower the temperature applied to the laminated body the more the deformation of the laminated body is suppressed, which is preferable. Occurs.
  • the temperature applied to the laminate is preferably 100 ° C. or higher and 180 ° C. or lower, more preferably 110 ° C. or higher and 170 ° C. or lower, and further preferably 120 ° C. or higher and 160 ° C. or lower.
  • Overcoat layer When the overcoat layer is formed, the laminate is conveyed to the coating equipment via a metal roll.
  • equipment configurations include unwinding rolls, coating steps, drying steps, and take-up steps.
  • the laminate set on the unwinding roll is passed through the metal roll through the coating step and the drying step, and finally led to the take-up roll.
  • the coating method is not particularly limited, and the gravure coating method, reverse coating method, dipping method, low coating method, air knife coating method, comma coating method, screen printing method, spray coating method, gravure offset method, die coating method, bar coating method, etc.
  • a conventionally known method can be adopted, and can be appropriately selected according to a desired purpose.
  • the gravure coating method, the reverse coating method, and the bar coating method are preferable from the viewpoint of productivity.
  • the drying method one or a combination of two or more heating methods such as hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, and UV irradiation can be used.
  • the laminate In the drying process, the laminate is heated and tension is also applied between the metal rolls. If the temperature at which the laminated body is heated in the drying step is too high, not only the thermal shrinkage of the laminated body becomes large, but also the softening progresses, so that elongation deformation due to tension is likely to occur, and cracks occur in the gas barrier layer of the laminated body. It will be easier. Furthermore, after leaving the drying process, the temperature drop (cooling) of the laminate increases, and the amount of shrinkage after expansion (different from heat shrinkage) increases accordingly, causing cracks in the gas barrier layer and overcoat layer. It is not preferable because it becomes difficult to satisfy the desired gas barrier property.
  • the temperature at which the laminate is heated is preferably 60 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher and 180 ° C. or lower, and further preferably 100 ° C. or higher and 160 ° C. or lower.
  • the shape and bag-making method of the packaged body of the present invention conventionally known techniques can be arbitrarily adopted.
  • the shape of the package include a vertical pillow, a horizontal pillow, a three-way seal bag, a four-way seal bag, a gusset bag, a stick package, and a standing pouch.
  • the innermost layers of the laminate can be sealed to form a bag.
  • a sealing method a heat seal such as heat seal or impulse seal, or an adhesive such as hot melt may be used, and as long as the sealing strength between the innermost layers is within the specified range, the seal layers are adhered. It can be arbitrarily selected according to the performance.
  • the types (wavelengths) of lasers that can be used for laser printing on the packaging of the present invention include, for example, CO2 laser (10600 nm), YAG laser (1064 nm), YVO4 laser (1064 nm), fiber laser (1064, 1090 nm), green laser (532 nm), UV laser (355 nm).
  • the type of laser used for printing of the present invention is not particularly limited, but the CO2 laser is often used for burning off plastic, and is used for a purpose different from the printing which is the purpose of the present invention. It is not preferable as a laser source because it is often used.
  • a YAG laser, a YVO4 laser, a fiber laser, a green laser, and a UV laser are preferable as a laser source, and a YAG laser, a fiber laser, and a UV laser are more preferable.
  • Commercially available equipment can be used for laser printing, as typical examples: Brother Industrial Printing LM-2550 (YAG laser), OMRON MX-Z2000H-V1 (fiber laser), Trotec 8028 Trotec Speedy 100 flexx. (Fiber laser), MD-X1000 (YVO4 laser) manufactured by Keyence, MD-U1000C (UV laser) and the like.
  • KEYENCE MD-U1000C UV laser, wavelength 355 nm
  • the laser power is preferably 20% or more and 80% or less with respect to the maximum device specification of 13 W. If the output is less than 20%, the print density is lowered and the visibility is lowered, which is not preferable. If the output is 80% or more, holes are generated in the display body, which is not preferable. The output is more preferably 25% or more and 75% or less, and further preferably 30% or more and 70% or less.
  • the pulse frequency is preferably 10 kHz or more and 100 kHz or less. If the frequency is lower than 10 kHz, the laser energy per irradiation becomes high and the thickness reduction rate of the printed portion tends to exceed 80 vol%, which is not preferable.
  • the thickness reduction rate of the printed portion tends to be 80 vol% or less, but it may be difficult to make the difference between the color L * values of the printed portion 1 or more. It is more preferably 15 kHz or more and 95 kHz or less, and further preferably 20 kHz or more and 90 kHz or less.
  • the scan speed is preferably 10 mm / sec or more and 3000 mm / sec or less. If the scanning speed is less than 10 mm / sec, the printing speed is extremely lowered, which is not preferable because the production speed of the display body is slowed down.
  • the scan speed is more preferably 100 mm / sec or more and 2900 mm / or less, and further preferably 200 mm / sec or more and 2800 mm / or less.
  • polyester raw material As polyester A, RE553 manufactured by Toyobo Co., Ltd. was used.
  • polyester B As the polyester B, 50% by mass of TiO2 was kneaded into the polyester A to obtain a polyester B.
  • polyester C As polyester C, laser pigment "TOMATEC COLOR42-920A (main component Bi 2 O 3 )" (manufactured by Tokan Material Technology Co., Ltd.) is mixed (dry blended) with polyester A at a mass ratio of 95: 5 and used in a screw extruder. It was charged and heated at 275 ° C. to melt and mix.
  • polyester D As the polyester D, RE555 manufactured by Toyobo Co., Ltd. (a master batch in which 7000 ppm of SiO2 was kneaded) was used. Table 1 shows the compositions of each polyolefin raw material and polyester raw material.
  • Polyolefin A, polyolefin C, and polyolefin D were mixed as raw materials for the layer A at a mass ratio of 40:50:10, and polyolefin A, polyolefin B, and polyolefin C were mixed as raw materials for the layer B at a mass ratio of 10:70:20.
  • the mixed raw materials of the A layer and the B layer were put into separate screw extruders, melted, and extruded from the T die at a shear rate of 1000 sec-1.
  • Each molten resin is joined by a feed block in the middle of the flow path, discharged from a T-die, and taken up at a draft ratio of 1.2 while being cooled on a chill roll set at a surface temperature of 30 ° C. to form an unstretched laminated film. Obtained.
  • the flow path of the molten resin is set so that the central layer is the A layer and both outermost layers are the B layer (B / A / B 2 types and 3 layers), and the thickness ratio of the A layer and the B layer is set.
  • the unstretched laminated film obtained by cooling and solidifying was led to a longitudinal stretching machine in which a plurality of roll groups were continuously arranged, preheated on preheating rolls until the film temperature reached 125 ° C., and then stretched four times.
  • the film after the longitudinal stretching was guided to a transverse stretching machine (tenter), preheated for 8 seconds until the surface temperature reached 160 ° C., and then stretched 9.8 times in the width direction (horizontal direction).
  • the film after the transverse stretching was directly led to the intermediate zone and passed in 1.0 second.
  • the film that passed through the intermediate zone was led to the heat treatment zone and heat-treated at 165 ° C. for 9 seconds.
  • the heat treatment was performed and at the same time, the clip interval in the film width direction was narrowed to perform a 3% relaxation treatment in the width direction.
  • the film was cooled with cooling air at 30 ° C. for 5 seconds.
  • the films 5 and 6 are non-stretched polypropylene film Pyrene film CT (registered trademark) P1128-30 ⁇ m manufactured by Toyo Boseki Co., Ltd.
  • the film 6 is a non-stretched linear low-density polyethylene film manufactured by Toyo Boseki Co., Ltd.
  • Example 1 A urethane-based two-component curable adhesive (Mitsui Chemicals'"Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50" are mixed at a weight ratio of 13.5: 1) on the film 1.
  • a laminate was obtained by laminating the film 5 with the film 5 and aging at 40 ° C. for 4 days by the dry laminating method. At this time, the thickness of the adhesive layer was 3 ⁇ m.
  • This laminated body is cut into a size of 15 cm square, two sheets are laminated so that the film 5 to be a sealant is on the inside, and the three sides of the laminated body are adhered by heat sealing to prepare a bag having an inner size of 13 cm. did.
  • the heat sealing conditions at this time were a temperature of 140 ° C., a pressure of 0.2 MPa, a time of 1 second, and a sealing width of 1.0 cm.
  • the obtained bag was printed with "12345 ABCDE" in the center of the film at a pulse frequency of 40 kHz, a scan speed of 2000 mm / min, and an output of 30% using a UV laser with a wavelength of 355 nm (laser marker MD-U1000C manufactured by KEYENCE). did.
  • the size of each character was about 5 mm in height ⁇ about 3 mm in width.
  • Table 3 shows the layer structure of the obtained package and the evaluation results of physical properties.
  • Example 2 Aluminum was used as a vapor deposition source on one side of the film 7, and an aluminum oxide (Al 2 O 3 ) thin film was formed as a gas barrier layer by a vacuum vapor deposition method while introducing oxygen gas with a vacuum vapor deposition machine. The thickness of the gas barrier layer was 10 nm. The gas barrier layer side of the film 7 and the film 1 were bonded together in the same manner as in Example 1. A film 6 was further bonded to the film 1 side of the bonded film in the same manner as described above to prepare a laminated body.
  • Al 2 O 3 aluminum oxide
  • This laminate was heat-sealed on three sides in the same manner as in Example 1 to prepare a bag, and a fiber laser having a wavelength of 1064 nm (Laser marker 8028 Trotec Speedy 100 flexx manufactured by Trotec) was used to generate a pulse frequency of 30 kHz.
  • a display body was produced by printing "12345 ABCDE" in the center of the film at a scan speed of 1500 mm / min and an output of 80%. The size of each character was about 8 mm in height ⁇ about 5 mm in width.
  • Table 3 shows the layer structure of the obtained package and the evaluation results of physical properties.
  • Example 3 to 6 and Comparative Examples 1 and 2 the display body was prepared by changing the type of film used, the laser source, and the irradiation conditions in the same manner as in Examples 1 and 2. Keyence's laser marker MD-U1000C was used for all UV lasers, and Trotec's laser marker 8028 Trotec Speedy 100 flexx was used for all fiber lasers. In Comparative Example 2, only the laser printing layer (film 1) was used as a single substance, and heat sealing was not performed. Therefore, one film was used for laser printing. Table 3 shows the layer structure of the obtained package and the evaluation results of physical properties.
  • a laser printing layer was formed by coating a white ink layer with a gravure roll on one surface of the film 8.
  • the white ink layer was prepared by mixing methyl ethyl ketone, isopropyl alcohol, polyurethane, and titanium oxide in a ratio of 11: 3: 38: 48% by mass.
  • the thickness of the laser printing layer was 3 ⁇ m.
  • the laser printing layer (white ink layer) formed on the film 8 and the film 5 were bonded together in the same manner as in Example 1 and heat-sealed on three sides to obtain a package.
  • a print was formed by irradiating this package with a laser in the same manner as in Example 1.
  • Table 3 shows the layer structure of the obtained package and the evaluation results of physical properties.
  • the evaluation method of the laminated body is as follows. As the sample of the non-printed portion, a portion separated by 1 mm or more from the printed portion and the sealed portion was cut out and used as a sample. [Thickness] Five points were measured using a micrometer (Millitron 1254D manufactured by Fine Eck), and the average value was calculated.
  • a 6 ⁇ sample table (the opening exposed to the measurement light has a diameter of about 1 cm) and a 6 ⁇ opening were used as the measurement light source of the color difference meter, and the letter “B” was inserted in the opening of the sample table.
  • the sample table may be changed as necessary (for example, 10 ⁇ , 30 ⁇ , etc.). Even if the print protrudes, it is sufficient that a part of the print enters the opening of the sample table and is exposed to the measurement light.
  • the non-printed portion a sample of 3 cm square was cut out from the non-printed portion, and the color L * value was measured using a 6 ⁇ sample as the opening of the color difference meter and the sample stand.
  • the opening of the color difference meter and the sample table may be changed to 10 ⁇ , 30 ⁇ , etc. as necessary, and the sample size in that case should cover the opening of the sample table (measurement light does not leak). It can be of any size.
  • the adhesive sample has the width direction of the sealed portion (the direction of 1 cm in the heat seal of the package) as the tensile direction, the length of the two bonded laminated bodies is 60 mm or more, and the direction perpendicular to the tensile direction (sample at the time of the tensile test). It was cut out so that the width) was 15 mm.
  • the seal strength of this sample was measured by a universal tensile tester "Autograph AG-Xplus" (manufactured by Shimadzu Corporation) at a distance between chucks of 50 mm and a tensile speed of 200 mm / min.
  • the peel strength is indicated by the strength per 15 mm (N / 15 mm). If the sample length cannot be cut out at 60 mm or more due to the limitation of the package size, the length may be shorter than that (for example, 20 mm). In this case, if the chuck on one side is provided with at least a length of 5 mm or more for gripping the sample, the inter-chuck distance may be 50 mm or less (for example, when the sample length is 20 mm, the inter-chuck distance is 10 mm).
  • Laminate strength A sample is cut out from the laser-printed and unsealed part of the package to a width of 15 mm and a length of 200 mm to make a test piece, which is a universal tensile tester under the conditions of a temperature of 23 ° C. and a relative humidity of 65%.
  • the laminate strength was measured using "Autograph AG-Xplus” (manufactured by Shimadzu Corporation). When measuring the laminate strength, the tensile speed was 200 mm / min and the peeling angle was 90 degrees.
  • Total light transmittance (non-printed part) In accordance with JIS-K-7136, the total light transmittance of the non-printed portion was measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., 300A). The measurement was performed twice, and the average value was calculated.
  • the water vapor transmission rate was measured according to the JIS K7126 B method. Using a water vapor transmission rate measuring device (PERMATRAN-W3 / 33MG MOCON), humidity control gas permeates from the heat seal layer side of the laminate to the inorganic thin film layer side in an atmosphere of temperature 40 ° C. and humidity 90% RH. The water vapor transmission rate was measured in the direction of Before the measurement, the sample was left for 4 hours in a humidity of 65% RH environment to control the humidity.
  • PERMATRAN-W3 / 33MG MOCON PERMATRAN-W3 / 33MG MOCON
  • Oxygen permeability was measured according to JIS K7126-2 method. Oxygen permeates from the heat seal layer side of the laminate to the inorganic thin film layer side in an atmosphere of a temperature of 23 degrees and a humidity of 65% RH using an oxygen permeation measuring device (OX-TRAN 2/20 MOCOM). Oxygen permeability was measured in the direction. Before the measurement, the sample was left for 4 hours in a humidity of 65% RH environment to control the humidity.
  • the present invention is excellent in laminate strength and visibility of the laser printed portion without using ink containing a laser pigment. Therefore, it is possible to provide a highly productive, economical and well-designed package without complicating the design of the package.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、レーザー照射によって印字可能なレーザー印字層を少なくとも一層有し、かつ該レーザー印字層にはレーザーで印字されたレーザー印字部分と、非印字部分が存在し、さらにシール層を有する積層体から構成される包装体で、該シール層を少なくとも最内層に有し、この最内層のシール層同士の少なくとも一部が接着されており、レーザー印字部分と非印字部分とのカラーL*値の差、シール層同士の接着強度、およびレーザー印字層と、該レーザー印字層の少なくとも片側に隣接する層とのラミネート強度が所定範囲内である包装体であり、レーザー顔料を含むインキを使用することなく、ラミネート強度と印字部の視認性に優れた積層体からなるレーザー印字された包装体を提供する。

Description

レーザー印字された包装体
 本発明は、レーザーによって印字された包装体に関するものである。
 従来、食品、医薬品および工業製品に代表される流通物品にプラスチックフィルムからなる包装体が広く用いられている。これらの包装体の多くは、内容物を保護するだけでなく、製品名や製造日、原材料等に関する情報を表示(以下、「印字」と記載することもある)する役割も担っている。近年、例えば特許文献1に記載されているようなレーザーにより印字された包装体が開示されている。これは、レーザーに反応する発色体(顔料)を含むインキ層を、基材となるフィルムに塗布(コーティング)することによってレーザー印字機能を発現させている。ただし、非特許文献1に記載されているように、レーザー印字可能な顔料をコーティングすることにより、コーティング面のラミネート強度は下がる場合がある。一般的に、包装体には上述の表示機能以外にも、シール強度や機械強度などの複数の機能が求められるため、それに応じて複数のフィルムが採用される。複数のフィルムを積層する際にはラミネートが広く採用されており、レーザー顔料を用いることによってラミネート部分の剥がれ(デラミネーション)が起こるおそれがある。特許文献1には、レーザー顔料を用いたときにラミネート強度を担保する方法は言及されていない。
 特許文献2は、特許文献1と同様にレーザー顔料を塗布することでレーザー印字機能を持たせた包装体に関する技術であり、ここでは印刷層(レーザー顔料を含む層)と基材層のラミネート強度(1.8~3.5N/15mm)よりも、印刷層とシーラント層のラミネート強度を高く(例えば3.8N/15mm以上)設計することで、レーザー印字性能とデラミネーション抑制を両立できると開示されている。ただし、一般的にラミネート強度を(意図して)低くすることは、包装体としての性能を下げることであり、高いラミネート強度を要求される用途には使用できない問題があった。さらに、特許文献2のようにラミネート強度を各層間でコントロールするのは煩雑であり、近年の包装体には多種多様な品質項目が高い水準で要求されることを鑑みると、包装体の自由度に制限がかかることがあった。
 また、特許文献2ではレーザー印字層を構成する白色インク中における樹脂成分の含有量は低く、50重量%以下であり、樹脂成分量がそれよりも多いとレーザー光照射による変色域の形成が難しいことが開示されている。樹脂成分量が少ないことは、レーザー顔料量等が多いことを意味し、コストの増加につながる。
また、例えば包装体への表示手段として上述のレーザー顔料のコーティング技術を用いる場合、レーザー顔料を含むインキ層が形成される領域は、包装体全体ではなく一部分のみに限られることも多い。これは、レーザー顔料を包装体全体にコーティングすることで上述のデラミネーションだけでなく生産性の低下、コストの増加につながるためである。ただし、レーザー顔料を包装体の一部分のみにコーティングすることで、新たに包装体のデザイン性を損なう問題が生じる。これは、レーザー顔料に広く使用されている酸化チタンやカーボンブラックは白色や黒色を呈しているため、レーザー顔料をコーティングした部分のみ色調が変わるためである。すなわち、レーザー印字技術を用いた包装体は、品質、生産性・経済性、デザイン性をすべて満足できていないのが現状である。
特開2019-214392号公報 特許6268873号公報
五邉正男,他2名,「グラビアラミネートインキのラミネート強度に及ぼす顔料の影響」,色材,64巻,12号,1991年
 本発明は、前記のような従来技術の問題点を解消することを課題とするものである。すなわち、本発明の課題は、レーザー顔料を含むインキを使用することなく、ラミネート強度と印字部の視認性に優れた積層体からなるレーザー印字された包装体を提供するものである。
 本発明は、以下の構成よりなる。
 1.レーザー照射によって印字可能なレーザー印字層を少なくとも一層有し、かつ該レーザー印字層にはレーザーで印字されたレーザー印字部分と、非印字部分が存在し、さらにシール層を有する積層体から構成される包装体で、該シール層を少なくとも最内層に有し、この最内層のシール層同士の少なくとも一部が接着されており、
以下の(1)~(3)の要件を満たす包装体。
(1)レーザー印字部分と非印字部分とのカラーL*値の差が1.0以上10以下
(2)シール層同士の接着強度が2N/15mm以上80N/15mm以下
(3)レーザー印字層と、該レーザー印字層の少なくとも片側に隣接する層とのラミネート強度が2N/15mm以上10N/15mm以下
 2.レーザー印字部分における印字サイズの高さまたは幅いずれかが0.2mm以上100mm以下であることを特徴とする1.に記載の包装体。
 3.レーザー印字層を、包装体を構成する積層体平面の全領域にわたって有することを特徴とする1.、2.いずれかに記載の包装体。
 4.レーザー印字顔料として、ビスマス、ガドリニウム、ネオジム、チタン、アンチモン、スズ、アルミニウム、カルシウム、及びバリウムからなる群より選択されてなる1種以上の単体または化合物がレーザー印字層中に含まれていることを特徴とする1.から3.いずれかに記載の包装体。
 5.レーザー印字層を構成する主たる樹脂がポリエステル、ポリプロピレン、又はポリエチレンのいずれかであることを特徴とする1.から4.のいずれかに記載の包装体。
 6.レーザー印字層を構成する樹脂の含有量が50質量%を超えて99.95質量%以下であることを特徴とする1.から5.いずれかに記載の包装体。
 7.前記積層体にはさらに基材層が積層されていることを特徴とする1.から6.いずれかに記載の包装体。
 8.前記積層体にはさらにガスバリア層が積層されていることを特徴とする1.から7.いずれかに記載の包装体。
 9.レーザー印字層の厚みが5μm以上200μm以下であることを特徴とする1.から8.いずれかに記載の包装体。
 本発明により、包装体の設計を複雑化せずともラミネート強度を満足することができ、さらには生産性・経済性とデザイン性の高い包装体を提供することができる。
 以下、本発明の包装体について説明する。
1.包装体の構成
1.1.層構成、厚み
 本発明の包装体は積層体から構成されてなり、レーザー照射によって印字可能なフィルム層(レーザー印字層)を少なくとも一層有し、レーザー印字層にはレーザーで印字されたレーザー印字部分と、非印字部分が存在し、さらにシール層を少なくとも最内層に有しているとともに、この最内層のシール層同士の少なくとも一部が接着されていなければならない。本発明が包装材の設計を簡素化しても成立するという趣旨からは、包装体を構成する積層体の(平面方向における)全領域にレーザー印字層を有しているのが好ましい形態である。また、本発明の包装体には、前記のレーザー印字層とシール層以外にも他の層が積層されていてもよい。さらに、本発明の包装体には、デザイン性を向上させるため、レーザーによって形成された印字以外の文字や図柄を記載した印刷層を設けてもよい。これらの層に必要または好ましい各要件は後述する。
 本発明の好ましい層構成としては、以下のような構成を例示することができる。なお、以下ではラミネートを「ラミ」と簡略化して記載することがある。また、「ラミ」と「シール」は本質的には同じ「接着」であるが、本発明では各層の積層するときは「ラミ」、包装体を封緘(積層体の最内層同士を部分的に接着)するときは「シール」と記載して区別する。
 
(外側)印字層/印刷層/ラミ層/シール層(内側)
(外側)基材層/印刷層/基材層/ラミ層/印字層/ラミ層/シール層(内側)
(外側)基材層/印刷層/透明ガスバリア層/ラミ層/印字層/ラミ層/シール層(内側)
(外側)基材層/ラミ層/印字層/不透明ガスバリア層(金属箔)/ラミ層/シール層(内側)
 また、本発明の包装体には、必要に応じてさらに基材層又は接着層に積層されるアンカーコート層やガスバリア層に積層されるオーバーコート層を設けることもできる。これらの層を設けることにより、包装体のガスバリア性や耐擦過性を向上させることができる。
包装体の厚みは特に限定されないが、5μm以上500μm以下が好ましい。包装体の厚みが5μmより薄いと機械強度やヒートシール強度が不足するおそれがあるため好ましくない。また包装体の厚みは500μmより厚くても構わないが、その分使用する材料(フィルムやラミネーション材)のコストが高くなるので好ましくない。包装体の厚みは10μm以上495μm以下であるとより好ましく、15μm以上490μm以下であるとさらに好ましい。
 本発明の積層体を構成する印字層の厚みは、3μm以上190μm以下であると好ましい。この厚みが3μm未満であると、後述のレーザー印字顔料の濃度を増加させたとしても、レーザー印字の視認性が低下してしまうおそれがある。一方、印字層の厚みが190μmを超えると、レーザーを吸収するフィルムの体積が極端に大きくなってダメージが大きくなり、積層体の変形や穴あきが起こるおそれがある。印字層の厚みは10μm以上180μm以下であるとより好ましく、15μm以上170μm以下であるとさらに好ましい。
また、本発明の包装体を構成するすべての層には、表面の印刷性や滑り性等の特性を良好にするためにコロナ処理、コーティング処理や火炎処理などを施した層を設けることも可能であり、本発明の要件を逸しない範囲で任意に設けることができる。
1.2.レーザー印字層
1.2.1.レーザー印字顔料の種類、添加量、添加方法
 本発明を構成する印字層をレーザー印字可能なものとするには、レーザー照射による変色機能を有するレーザー印字顔料を添加する必要がある。積層体を構成するプラスチックは通常、レーザー光にはほとんど反応しないため、レーザー照射によって印字することはできない。レーザー印字顔料はレーザー光のエネルギーによって励起され、周囲のプラスチックが炭化されることで印字が可能となる。また、プラスチックの炭化作用に加え、レーザー印字顔料の種類によってはそれ自身が黒色に変化するものもある。この炭化作用とレーザー印字顔料の変色作用の単独または複合効果により、印字層への印字が可能となる。印字濃度の観点からは、プラスチックの炭化作用と自身の変色作用いずれも有したレーザー印字顔料を選択するのが好ましい。
 レーザー印字顔料の具体的な種類としては、ビスマス、ガドリニウム、ネオジム、チタン、アンチモン、スズ、アルミニウム、カルシウム、バリウムのいずれかの単体または酸化物が挙げられる。これらの中で、酸化チタン、炭酸カルシウム、三酸化ビスマス、三酸化アンチモン、硫酸バリウムであると好ましく、酸化チタン、炭酸カルシウム、三酸化ビスマスであるとより好ましい。また、レーザー印字顔料の粒径は、0.1μm以上10μm以下であると好ましい。レーザー印字顔料の粒径が0.1μm未満であると、レーザー照射時の色変化が十分でなくなるおそれがある。一方、レーザー印字顔料の粒径が10μmを超えると、フィルムを製膜するときの押出工程でのフィルターの目詰まりを早めてしまう懸念がある。レーザー印字顔料の粒径は1μm以上9μm以下であるとより好ましく、2μm以上8μm以下であるとさらに好ましい。
 レーザー印字層中へのレーザー印字顔料の添加量は、0.05質量%以上50質量%以下であると好ましい。顔料の添加量が0.05質量%未満であると、レーザーによる印字濃度が十分でなくなるため好ましくない。一方、顔料の添加量が50質量%を超えると、炭化されるプラスチックの量(体積)が相対的に減少してしまうため、やはり印字濃度が十分でなくなるおそれがある。レーザー印字顔料の添加量は0.1質量%以上49質量%以下であるとより好ましく、0.15質量%以上48質量%以下であるとさらに好ましく、0.2質量%以上47質量%以下であると特に好ましい。なお、レーザー印字層が複数層となる場合は、各層の厚み比率とレーザー印字顔料の添加量とを按分することによってレーザー印字層全体のレーザー印字顔料添加量を求めることができる。
レーザー印字顔料を配合する方法としては、レーザー印字層の原料となるレジン、またはレーザー印字層となるフィルムを製造する任意の段階において添加することができる。例えば、レジンを製造する段階においては、ベント付き混練押出し機を用いて溶媒に分散させた粒子のスラリーとプラスチック原料とをブレンドする方法や、乾燥させた粒子とプラスチックレジンとを混練押出機を用いてブレンドする方法(マスターバッチ化)なども挙げられる。これらの中でも、レーザー印字顔料を含むマスターバッチをフィルムの原料として使用する方法が好ましい。
1.2.2.プラスチックの種類
 本発明のレーザー印字層を構成するプラスチックの種類は特に限定されず、本発明の趣旨を逸脱しない範囲で自由に使用することができる。プラスチック(樹脂)の種類としては、例えばポリエステル、ポリオレフィン、ポリアミド等が挙げられる。
ポリエステルの例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンナフタレート(PBN)、ポリ乳酸(PLA)、ポリエチレンフラノエート(PEF)、ポリブチレンサクシネート(PBS)等が挙げられる。さらに、上記の例で挙げたポリエステルに加え、これらの酸またはジオール部位のモノマーを変更した変性ポリエステルを用いてもよい。酸部分のモノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。また、ジオール部位のモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。上記に挙げたポリエステル原料は、カルボン酸モノマーとジオールモノマーが1種対1種で重合されているホモポリエステルを、複数種混合(ドライブレンド)して使用してもよいし、2種以上のカルボン酸モノマーまたは2種以上のジオールモノマーを共重合して使用してもよい。また、ホモポリエステルと共重合ポリエステルを混合して使用してもよい。
 原料としてのポリエステルの極限粘度(IV)は特に限定されず任意のものを用いることができるが、0.5~1.2dL/gであると好ましい。IVが0.5dL/g未満だと原料の分子量が低すぎるため、製膜中に破断が起きやすくなる、表示体の引張破断強度が40MPaを下回る等の問題が起こりやすくなる。一方、IVが1.2dL/gを超えると、製膜中の押出工程における樹脂圧力が高くなりすぎてしまい、フィルター変形等を起こしやすくなり好ましくない。IVは0.55dL/g以上1.15dL/g以下であるとより好ましく、0.6dL/g以上1.1dL/g以下であるとさらに好ましい。
 ポリオレフィンの例としては、ポリプロピレン(PP)やポリエチレン(PE)等が挙げられる。ポリプロピレンを用いる場合、立体規則性は特に限定されず、アイソタクチック、シンジオタクチック、アタクチックいずれであってもよく、それぞれが任意の割合で含まれていてよい。また、ポリエチレンを用いる場合、その密度(分岐度)は特に限定されず、高密度(HDPE)、直鎖状低密度(LLDPE)、低密度(LDPE)いずれであってもよい。また、上記のホモポリマー以外にも、異種のモノマーを2種類以上共重合した原料を使用してもよく、共重合に使用されるモノマーとしては、例えばエチレンやα―オレフィン等が挙げられ、α―オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセンなどが挙げられる。共重合の形態は、ランダム共重合、ブロック共重合いずれであっても構わない。さらに、上記に挙げた原料以外にも、ポリオレフィンエラストマーやアイオノマーを用いてもよい。
 原料としてのポリオレフィンのメルトフローレート(MFR)は特に限定されず任意のものを用いることができるが、1~10g/10分であると好ましい。MFRが1g/10分未満だと原料の溶融粘度が高くなりすぎるため、製膜中の押出工程における樹脂圧力が高くなりすぎてしまい、フィルター変形等を起こしやすくなり好ましくない。一方、MFRが10g/10分を超えると分子量が極端に低下してしまうため、製膜中に破断が起きやすくなったり、耐ブロッキング性が低下したりするおそれがある。MFRは2g/10分以上8g/10分であるとより好ましく、3g/10分以上7g/10分であるとさらに好ましい。
 ポリアミドの例としては、ポリカプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、メタキシリレンジアミンとアジピン酸の重合物(MXD-6)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体(非晶質ナイロン)から選ばれる樹脂の1種、もしくはこれらの2種以上を混合した混合原料などが挙げられる。また、上記に挙げたプラスチックよりなるフィルムの表面に接着改質層を設けることもできる。接着改質層の材料としては例えば、アクリル、水溶性または水分散性のポリエステル、アクリルがグラフト共重合された疎水性ポリエステルなどが挙げられる。
 原料としてのポリアミドの相対粘度(RV)は2.2以上4以下であると好ましい。RVが2.2未満であると結晶化速度が速くなりすぎてしまい、フィルム製膜工程中で延伸するときに破断等が発生しやすくなることがある。一方、RVが4を超えると押出機への負荷が高くなりすぎてしまい、フィルター変形等を起こしやすくなり好ましくない。RVは2.3以上3.9以下であるとより好ましく、2.4以上3.8以下であるとさらに好ましい。なお、本発明における相対粘度とは、ポリマー0.5gを97.5%硫酸50mlに溶解した溶液を用いて25℃で測定した場合の値をいう。
 レーザー印字層を構成するプラスチックの種類は上記に挙げた中でも、機械強度や製膜安定性、レーザー印字性能の観点より、ポリエステル、ポリプロピレン、ポリエチレンであると好ましい。
 レーザー印字層を構成するプラスチックの含有量は、50質量%を超えて99.95質量%以下であると好ましい。プラスチックの含有量が50質量%を下回ると、後述の引張破断強度が40MPaを下回りやすくなるおそれがあるため好ましくない。また、プラスチックの含有量が99.95質量%を超えると、相対的にレーザー印字顔料の含有量が0.05質量%を下回ることになり、印字部と非印字部とのカラーL*値の差が1.0を下回りやすくなるため好ましくない。プラスチックの含有量は51質量%以上99.9質量%以下であるとより好ましく、52質量%以上99.85質量%であるとさらに好ましく、53質量%以上99.8質量%以下であると特に好ましい。なお、レーザー印字層が複数層となる場合は、各層の厚み比率とプラスチック含有量とを按分することによってレーザー印字層全体のプラスチック含有量を求めることができる。
1.2.3.レーザー印字顔料以外の添加剤
 本発明の包装体を構成するレーザー印字層の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤などを添加することができる。また、レーザー印字層が最表層となる場合は、滑り性を良好にする滑剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができる。例えば、無機系微粒子としては、シリカ、アルミナ、カオリン、鉛白、チタニウムホワイト、ゼオライト、亜鉛華、リトポン等をあげることができ、有機系微粒子としては、アクリル系粒子、メラミン粒子、シリコーン粒子、架橋ポリスチレン粒子、カーボンブラック、酸化鉄等を挙げることができる。微粒子の平均粒径は、コールターカウンタにて測定したときに0.05~3.0μmの範囲内で必要に応じて適宜選択することができる。微粒子含有率の下限は好ましくは0.01質量%であり、より好ましくは0.015質量%であり、さらに好ましくは0.02質量%である。0.01質量%未満であると滑り性が低下することがある。上限は好ましくは1質量%であり、より好ましくは0.2質量%であり、さらに好ましくは0.1質量%である。1質量%を超えると表面の平滑性が低下して印刷性がかすれる等の問題が起きる場合があるため好ましくない。
 レーザー印字層の中に粒子を配合する方法としては、プラスチック原料を製造する任意の段階において添加することができ、上記「1.2.1.レーザー印字顔料の種類、添加量、添加方法」と同じ方法を採用することができる。
1.3.シール層
 本発明の包装体を構成するシール層としては、接着性を有するものであれば特に限定されず、本発明の趣旨を逸脱しない範囲で従来公知のものを任意に用いることができる。例えば、熱によって接着性を発現する熱シール層、常温において接着性を有する粘着(タック)層が挙げられる。
 熱シール層を構成するプラスチックの種類としては、例えばポリエステル、ポリオレフィン、ポリアミド等が挙げられる。
 ポリエステルの例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンナフタレート(PBN)、ポリ乳酸(PLA)、ポリエチレンフラノエート(PEF)、ポリブチレンサクシネート(PBS)等が挙げられる。さらに、上記の例で挙げたポリエステルに加え、これらの酸またはジオール部位のモノマーを変更した変性ポリエステルを用いてもよい。酸部分のモノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。また、ジオール部位のモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。上記に挙げたポリエステル原料は、カルボン酸モノマーとジオールモノマーが1種対1種で重合されているホモポリエステルを、複数種混合(ドライブレンド)して使用してもよいし、2種以上のカルボン酸モノマーまたは2種以上のジオールモノマーを共重合して使用してもよい。また、ホモポリエステルと共重合ポリエステルを混合して使用してもよい。
 ポリオレフィンの例としては、ポリプロピレン(PP)やポリエチレン(PE)等が挙げられる。ポリプロピレンを用いる場合、立体規則性は特に限定されず、アイソタクチック、シンジオタクチック、アタクチックいずれであってもよく、それぞれが任意の割合で含まれていてよい。また、ポリエチレンを用いる場合、その密度(分岐度)は特に限定されず、高密度(HDPE)、直鎖状低密度(LLDPE)、低密度(LDPE)いずれであってもよい。また、上記のホモポリマー以外にも、異種のモノマーを2種類以上共重合した原料を使用してもよく、共重合に使用されるモノマーとしては、例えばエチレンやα―オレフィン等が挙げられ、α―オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセンなどが挙げられる。共重合の形態は、ランダム共重合、ブロック共重合いずれであっても構わない。さらに、上記に挙げた原料以外にも、ポリオレフィンエラストマーやアイオノマーを用いてもよい。
 原料としてのポリオレフィンのメルトフローレート(MFR)は特に限定されず任意のものを用いることができるが、1~10g/10分であると好ましい。MFRが1g/10分未満だと原料の溶融粘度が高くなりすぎるため、製膜中の押出工程における樹脂圧力が高くなりすぎてしまい、フィルター変形等を起こしやすくなり好ましくない。一方、MFRが10g/10分を超えると分子量が極端に低下してしまうため、製膜中に破断が起きやすくなったり、耐ブロッキング性が低下したりするおそれがある。MFRは2g/10分以上8g/10分であるとより好ましく、3g/10分以上7g/10分であるとさらに好ましい。
 ポリアミドの例としては、ポリカプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、メタキシリレンジアミンとアジピン酸の重合物(MXD-6)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体(非晶質ナイロン)から選ばれる樹脂の1種、もしくはこれらの2種以上を混合した混合原料などが挙げられる。また、上記に挙げたプラスチックよりなるフィルムの表面に接着改質層を設けることもできる。接着改質層の材料としては例えば、アクリル、水溶性または水分散性のポリエステル、アクリルがグラフト共重合された疎水性ポリエステルなどが挙げられる。
 原料としてのポリアミドの相対粘度(RV)の下限は好ましくは2.2であり、より好ましくは2.3である。上記未満であると結晶化速度が速すぎて二軸延伸が困難となることがある。一方、ポリアミドのRVの上限は好ましくは4であり、より好ましくは3.9である。上記を超えると押出機への負荷などが高くなりすぎて、生産性が低下するおそれがある。なお、本発明における相対粘度とは、ポリマー0.5gを97.5%硫酸50mlに溶解した溶液を用いて25℃で測定した場合の値をいう。
 粘着層を構成するプラスチックの種類としては、例えばポリエステル、ポリオレフィン、ポリスチレン、アクリル樹脂等が挙げられ、特にガラス転移温度Tgが室温(25℃付近)を下回っているものが好ましい。
 ポリエステルの例としては、Tgを下げることのできるモノマーとして飽和カルボン酸成分または飽和ジオール成分を使用することが好ましい。飽和カルボン酸として、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。これらの中でも、アジピン酸、アゼライン酸が好ましい。飽和ジオール成分としては、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオールを挙げることができる。これらの中、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールを用いると好ましい。さらに、ポリエステル系樹脂を構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを使用してもよい。ポリエステルエラストマーは、Tgを下げる効果があるため好適に使用することができる。
 ポリオレフィン系の例としては、ポリオレフィン系エラストマーを挙げることができる。ポリオレフィン系エラストマーの例としては、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-プロピレン-1-ブテン共重合体、エチレン-プロピレン-1-ヘキセン共重合体、エチレン-1-ブテン-1-ヘキセン共重合体、プロピレン-1-ブテン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-1-オクテン共重合体、プロピレン-4-メチル-1-ペンテン共重合体、プロピレン-1-ブテン-1-ヘキセン共重合体、プロピレン-1-ブテン-4-メチル-1-ペンテン共重合等が挙げられる。また、これらの中にSBS、SEBS等のスチレン系エラストマーを少量添加しても良い。
 ポリスチレンの例としては、ポリスチレン系エラストマーを挙げることができる。ポリスチレン系エラストマーの例としては、芳香族アルケニル化合物と共役ジエンをブロック共重合したポリマーが挙げられ、芳香族アルケニル化合物としては例えば、スチレン、tert-ブチルスチレン、α-メチルスチレン、p-メチルスチレン、p-エチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、ビニルナフタレン、ビニルアントラセン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレンおよびビニルピリジン等を挙げることができ、共役ジエン単量体としては例えば、1,3-ブタジエン、1,2-ブタジエン、イソプレン、2,3-ジメチル-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、ミルセンおよびクロロプレン等のジオレフィンを挙げることができる。
 アクリル樹脂は、アクリル系モノマーの共重合体、アクリル系モノマーとそれ以外の共重合可能なモノマーとの共重合体であってもよい。アクリル系モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノルマルオクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル類、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸環状エステル類、(メタ)アクリル酸アリル、(メタ)アクリル酸1-メチルアリル、(メタ)アクリル酸2-メチルアリル等の(メタ)アクリル酸ビニル等の不飽和基含有(メタ)アクリル酸エステル類、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル等の複素環含有(メタ)アクリル酸エステル類、(メタ)アクリル酸N-メチルアミノエチル、(メタ)アクリル酸N-トリブチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル等のアミノ機含有(メタ)アクリル酸エステル類、3-メタクリロキシプロピルトリメトキシシラン等のアルコキシシリル基含有(メタ)アクリル酸エステル類、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸のエチレンオキサイド付加物などの(メタ)アクリル酸誘導体類、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸パーフルオロブチル等の(メタ)アクリル酸パーフルオロアルキルエステル類、トリ(メタ)アクリル酸トリメチロールプロパン等の多官能(メタ)アクリル酸エステル類等のモノマーに由来する共重合体が挙げられる。また、アクリル系以外の共重合可能なモノマーとしては例えば、ラジカル重合性不飽和基に少なくとも1個のカルボキシル基を有するモノマーとして、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸等が挙げられる。また、ラジカル重合性不飽和基の他に少なくとも1個の水酸基を有するモノマーとして、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート等が挙げられる。さらに、アクリル系モノマーと共重合可能なビニルモノマー等として、例えば、スチレン、α-スチレン、等の芳香族ビニル系モノマー;ビニルトリメトキシシランなどのトリアルキルオキシシリル基含有ビニルモノマー類;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー類、アクリルアミド、メタクリルアミド基含有ビニル系モノマー類、酢酸ビニル、バーサチック酸ビニル等のビニルエステル類等が挙げられる。
 上記に挙げた種類のプラスチックを原料として、無延伸、一軸延伸、二軸延伸のいずれかで製膜したフィルム、または溶媒等に分散させたコーティング剤として任意に用いることができる。フィルムとして製膜する場合、シール性を発現させるためには無延伸または一軸延伸であると好ましく、無延伸であるとさらに好ましい。この場合、後述の接着層を介して印字層とシール層を積層させてもよいし、印字層を製膜するときの押出工程でシール層を積層させてもよい。
本発明の積層体を構成するシール層の厚みは、2μm以上190μm以下であると好ましい。シール層の厚みが2μmを下回ると、積層体のヒートシール強度が低下してしまうため好ましくない。シール層の厚みが190μmを上回る、積層体のヒートシール性は向上するが、相対的に印字層の厚みが低下してしまい、印字の視認性が低下してしまうため好ましくない。シール層の厚みは3μm以上180μm以下であるとより好ましく、4μm以上170μm以下であるとさらに好ましい。
1.4.ラミネート剤
 本発明の包装体の各層を積層するときに使用できるラミネート剤として、ドライラミネート用接着剤や押出ラミネートによる樹脂層を使用することができ、発明の効果の欄で述べたように、従来公知のものを任意に採用することができる。接着剤は1液型(乾燥タイプ)、2液型(硬化反応タイプ)いずれであっても構わない。ドライラミネートの場合は市販のポリウレタン系やポリエステル系のドライラミネーション用接着剤を用いることができる。代表例としては、DIC社製ディックドライ(登録商標)LX-703VL、DIC社製KR-90、三井化学社製タケネート(登録商標)A-4、三井化学社製タケラック(登録商標)A-905などである。押出ラミネートの場合は、層間、又は層とその他の層の間にポリエチレンなどのポリオレフィン系樹脂を溶融させて接着させるが、層等の表面の接着性を高めるためにアンカーコート層を積層しておくことも好ましい。
ラミネート剤を介してフィルム同士を積層させる場合、ラミネート剤をどちらか一方のフィルムに塗布した後、ラミネート剤が乾燥または反応して硬化することによって積層が完了する。本発明の包装体において、乾燥後のラミネート層厚みは1μm以上6μm以下であると好ましく、2μm以上5μm以下であるとより好ましい。乾燥後のラミネート層厚みが1μmを下回ると、ラミネート強度が2N/15mmを下回りやすくなるため好ましくない。一方、乾燥後のラミネート層厚みが6μmを超えると、ラミネート剤の硬化に要する乾燥時間が長くなり、包装体の生産性が低下するため好ましくない。
1.5.基材層
 本発明の包装体に好ましく含むことのできる基材層を構成するプラスチックの種類としては、例えばポリエステル、ポリオレフィン、ポリアミド等が挙げられる。
 ポリエステルの例としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンナフタレート(PBN)、ポリ乳酸(PLA)、ポリエチレンフラノエート(PEF)、ポリブチレンサクシネート(PBS)等が挙げられる。さらに、上記の例で挙げたポリエステルに加え、これらの酸またはジオール部位のモノマーを変更した変性ポリエステルを用いてもよい。酸部分のモノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。また、ジオール部位のモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。上記に挙げたポリエステル原料は、カルボン酸モノマーとジオールモノマーが1種対1種で重合されているホモポリエステルを、複数種混合(ドライブレンド)して使用してもよいし、2種以上のカルボン酸モノマーまたは2種以上のジオールモノマーを共重合して使用してもよい。また、ホモポリエステルと共重合ポリエステルを混合して使用してもよい。
 ポリオレフィンの例としては、ポリプロピレン(PP)やポリエチレン(PE)等が挙げられる。ポリプロピレンを用いる場合、立体規則性は特に限定されず、アイソタクチック、シンジオタクチック、アタクチックいずれであってもよく、それぞれが任意の割合で含まれていてよい。また、ポリエチレンを用いる場合、その密度(分岐度)は特に限定されず、高密度(HDPE)、直鎖状低密度(LLDPE)、低密度(LDPE)いずれであってもよい。また、上記のホモポリマー以外にも、異種のモノマーを2種類以上共重合した原料を使用してもよく、共重合に使用されるモノマーとしては、例えばエチレンやα―オレフィン等が挙げられ、α―オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセンなどが挙げられる。共重合の形態は、ランダム共重合、ブロック共重合いずれであっても構わない。さらに、上記に挙げた原料以外にも、ポリオレフィンエラストマーやアイオノマーを用いてもよい。
 原料としてのポリオレフィンのメルトフローレート(MFR)は特に限定されず任意のものを用いることができるが、1~10g/10分であると好ましい。MFRが1g/10分未満だと原料の溶融粘度が高くなりすぎるため、製膜中の押出工程における樹脂圧力が高くなりすぎてしまい、フィルター変形等を起こしやすくなり好ましくない。一方、MFRが10g/10分を超えると分子量が極端に低下してしまうため、製膜中に破断が起きやすくなったり、耐ブロッキング性が低下したりするおそれがある。MFRは2g/10分以上8g/10分であるとより好ましく、3g/10分以上7g/10分であるとさらに好ましい。
 ポリアミドの例としては、ポリカプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、メタキシリレンジアミンとアジピン酸の重合物(MXD-6)、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体(非晶質ナイロン)から選ばれる樹脂の1種、もしくはこれらの2種以上を混合した混合原料などが挙げられる。また、上記に挙げたプラスチックよりなるフィルムの表面に接着改質層を設けることもできる。接着改質層の材料としては例えば、アクリル、水溶性または水分散性のポリエステル、アクリルがグラフト共重合された疎水性ポリエステルなどが挙げられる。
 原料としてのポリアミドの相対粘度(RV)の下限は好ましくは2.2であり、より好ましくは2.3である。上記未満であると結晶化速度が速すぎて二軸延伸が困難となることがある。一方、ポリアミドのRVの上限は好ましくは4であり、より好ましくは3.9である。上記を超えると押出機への負荷などが高くなりすぎて、生産性が低下するおそれがある。なお、本発明における相対粘度とは、ポリマー0.5gを97.5%硫酸50mlに溶解した溶液を用いて25℃で測定した場合の値をいう。
 上記に挙げた種類のプラスチックを原料として、無延伸、一軸延伸、二軸延伸のいずれかで製膜したフィルム、または溶媒等に分散させたコーティング剤として任意に用いることができる。フィルムとして製膜する場合、機械強度を発現させるためには一軸延伸または二軸延伸であると好ましく、二軸延伸であるとさらに好ましい。この場合、後述の接着層を介して印字層と基材層を積層させてもよいし、印字層を製膜するときの押出工程で基材層を積層させてもよい。
基材層には、滑り性を良好にするために滑剤を含有させると好ましく、含有濃度は100ppm以上2000ppm以下であると好ましい。滑剤の濃度が100ppmを下回ると滑り性が悪化するため、積層体を作製する(貼り合わせ)際に位置ズレ等が生じるだけでなく、積層体としたときもハンドリング性が低下するため好ましくない。一方、滑剤濃度が2000ppmを超えると、基材層の透明性が低下するため好ましくない。滑剤濃度は200ppm以上1900ppm以下であるとより好ましく、300ppm以上1800ppm以下であるとさらに好ましい。
 また、基材層には、表面の印刷性や滑り性を良好にするためにコロナ処理、コーティング処理や火炎処理などを施した層を設けることも可能であり、本発明の要件を逸しない範囲で任意に設けることができる。
1.6.その他の層
 本発明の包装体には、上述のレーザー印字層とシール層以外の層を有していてもよい。上記「1.1.層構成、厚み」で記載した構成を例にとり、以下では基材層、ガスバリア層(透明、不透明)、印刷層について説明する。
1.6.1.ガスバリア層
 本発明の積層体へ任意に積層することのできるガスバリア層は、金属または金属酸化物を主たる構成成分とする無機薄膜から構成されることが好ましい。さらに、前記の無機薄膜からなるガスバリアに加え、無機薄膜層の下(プラスチックフィルムと無機薄膜の間)に設けるアンカーコート層、無機薄膜層の上に設けるオーバーコート層を有していてもよい。これらの層を設けることにより、ガスバリア層との密着性の向上、ガスバリア性の向上等が期待できる。
 ガスバリア層の原料種は特に限定されず、従来から公知の材料を使用することができ、所望のガスバリア性等を満たすために目的に合わせて適宜選択することができる。ガスバリア層の原料種としては、例えば、ケイ素、アルミニウム、スズ、亜鉛、鉄、マンガン等の金属、これら金属の1種以上を含む無機化合物があり、該当する無機化合物としては、酸化物、窒化物、炭化物、フッ化物等が挙げられる。これらの無機物または無機化合物は単体で用いてもよいし、複数で用いてもよい。
 ガスバリア層が透明の場合、酸化ケイ素(SiOx)、酸化アルミニウム(AlOx)を単体(一元体)または併用(二元体)で使用することができる。無機化合物の成分が酸化ケイ素と酸化アルミニウムの二元体からなる場合、酸化アルミニウムの含有量は20質量%以上80質量%以下であると好ましく、25質量%以上70質量%以下であるとより好ましい。酸化アルミニウムの含有量が20質量%以下の場合、ガスバリア層の密度が下がり、ガスバリア性が低下する恐れがあるため好ましくない。また、酸化アルミニウムの含有量が80質量%以上であると、ガスバリア層の柔軟性が低下してクラックが発生しやすくなり、結果としてガスバリア性が低下する恐れが生じるため好ましくない。
 ガスバリア層に使用する金属酸化物の酸素/金属の元素比は、1.3以上1.8未満であればガスバリア性のバラツキが少なく、常に優れたガスバリア性が得られるため好ましい。酸素/金属の元素比は、酸素および金属の各元素の量をX線光電子分光分析法(XPS)で測定し、酸素/金属の元素比を算出することで求めることができる。
本発明の積層体に好ましく用いることのできるガスバリア層の厚みは、金属または金属酸化物を蒸着させてガスバリア層として用いる場合、2nm以上100nm以下であると好ましい。この層の厚みが2nmを下回ると、ガスバリア性が低下しやすくなるため好ましくない。一方、この層の厚みが100nmを上回っても、それに相当するガスバリア性の向上効果はなく、製造コストが高くなるため好ましくない。無機薄膜層の厚みは、5nm以上97nm以下であるとより好ましく、8nm以上94nm以下であるとさらに好ましい。
 ガスバリア層を金属箔とする場合は、金属箔の厚みが3μm以上100μm以下であると好ましい。この層の厚みが3μmを下回ると、ガスバリア性が低下しやすくなるため好ましくない。一方、この層の厚みが100nmを上回っても、それに相当するガスバリア性の向上効果はなく、製造コストが高くなるため好ましくない。無機薄膜層(金属箔)の厚みは、5μm以上97μm以下であるとより好ましく、8μm以上94μm以下であるとさらに好ましい。
 ガスバリア層が不透明の場合、アルミニウム箔の接着、またはアルミニウムの蒸着によりガスバリア層を形成することができる。アルミニウム箔の厚みは1μm以上100μm以下であると好ましい。
 このようにして設けたガスバリア積層体は、温度40℃、相対湿度90%RH環境下での水蒸気透過度が0.05[g/(m・d)]以上4[g/(m・d)]以下であると好ましい。水蒸気透過度が4[g/(m・d)]を超えると、内容物を含む包装体として使用した場合に、内容物のシェルフライフが短くなってしまうため好ましくない。一方、水蒸気透過度が0.05[g/(m・d)]より小さい場合はガスバリア性が高まり、内容物のシェルフライフは長くなるため好ましいが、現状の技術水準では0.05[g/(m・d)]が下限である。水蒸気透過度の下限が0.05[g/(m・d)]であっても実用上は十分といえる。水蒸気透過度の上限は3.8[g/(m・d)]であると好ましく、3.6[g/(m・d)]であるとより好ましい。
 また、ガスバリア積層体は、温度23℃、相対湿度65%RH環境下での酸素透過度が0.05[cc/(m・d・atm)]以上4[cc/(m・d・atm)]以下であると好ましい。酸素透過度が4[cc/(m・d・atm)]を超えると、内容物のシェルフライフが短くなってしまうため好ましくない。一方、酸素透過度が0.05[cc/(m・d・atm)]より小さい場合はガスバリア性が高まり、内容物のシェルフライフは長くなるため好ましいが、現状の技術水準では酸素透過度が0.05[cc/(m・d・atm)]が下限である。酸素透過度の下限が0.05[cc/(m・d・atm)]であっても実用上は十分といえる。酸素透過度の上限は3.8[cc/(m・d・atm)]であると好ましく、3.6[cc/(m・d・atm)]であるとより好ましい。
 また、本発明の積層体を用いたガスバリア性積層体(この項では、これらをまとめて「積層体」と呼ぶ)は、上記のガスバリア層を積層した上に、耐擦過性やさらなるガスバリア性の向上等を目的としてオーバーコート層を設けることもできる。
 オーバーコート層の種類は特に限定されないが、ウレタン系樹脂とシランカップリング剤からなる組成物、有機ケイ素およびその加水分解物からなる化合物、ヒドロキシル基またはカルボキシル基を有する水溶性高分子等、従来から公知の材料を使用することができ、所望のガスバリア性等を満たすために目的に合わせて適宜選択することができる。
 また、オーバーコート層は、本発明の目的を損なわない範囲で、帯電防止性、紫外線吸収性、着色、熱安定性、滑り性等を付与する目的で、各種添加剤が1種類以上添加されていてもよく、各種添加剤の種類や添加量は、所望の目的に応じて適宜選択することができる。
1.6.2.印刷層
 レーザー照射による印字以外に、意匠性を向上させる目的で文字や図柄を設けてもよい。これらの文字や図柄を構成する材料としては、グラビア印刷用のインキやフレキソ印刷用のインキ等、公知のものを用いることができる。印刷層数は1層であってもよく、複数層であってもよい。印刷を複数色にして意匠性を向上させるためには、複数層からなる印刷層があると好ましい。印刷層は、最表層、中間層いずれに位置しても構わない。
2.包装体の特性
2.1.カラーL*値の差(非印字部-印字部)
 本発明の包装体は、印字部と非印字部のカラーL*値の差の絶対値(以下、単に「L*値の差」と称することがある)が1.0以上10.0以下となる必要がある。この差が1.0未満であると、印字部と非印字部の色調が近くなり、印字を視認することが困難となる。一方、L*値の差が10.0を超えると印字は視認しやすくなるが、その分だけレーザー照射のパワーを上げる必要があり、包装体へのダメージが大きくなって穴あきなどの問題が起こりやすくなるため好ましくない。L*値の差は1.5以上9.5以下であるとより好ましく、2.0以上9.0以下であるとさらに好ましい。
2.2.シール層同士の接着強度
 本発明の包装体は、シール層同士が接着された部分の剥離強度(以下、シール強度と記載することがある)が2N/15mm以上80N/15mm以下となる必要がある。シール強度が2N/15mm未満であると、シール部分が容易に剥離されるため好ましくない。シール強度は3N/15mm以上であるとより好ましく、4N/15mm以上であるとさらに好ましい。シール強度が大きいほど包装体としたときの封緘性が増して好ましいが、現状得られる上限は80N/15mm程度である。シール強度は40N/15mmであっても実用上は十分好ましいものといえる。
2.3.ラミネート強度
 本発明の包装体は、レーザー印字層と、そのいずれか一方の片側に隣接する層との間のラミネート強度が2N/15mm以上10N/15mm以下の必要がある。ラミネート強度が2N/15mmを下回ると、デラミネーションが起こりやすくなるだけでなく、シール強度も2N/15mmを下回りやすくなるため好ましくない。一方、ラミネート強度は10N/15mmを超えても包装体の性能としては好ましいものであるが、現状得られる上限は10N/15mm程度である。ラミネート強度は4N/15mm程度であっても実用上は十分好ましいものといえる。また、「1.1.層構成、厚み」で例示した構成のうち、ラミ層が2つ以上存在する場合、それぞれのラミ層におけるラミネート強度の差(ラミ層が3つ以上存在する場合は、ラミネート強度の差が最も大きいもの)が1.5N/15mm以下であると好ましい。各ラミ層間のラミネート強度の差が1.5N/15mmを超えると、最もラミネート強度の低いラミ層でデラミネーションが起きやすくなってしまうため好ましくない。これは、最もラミネート強度の低いラミ層で部分的な剥がれ(切欠)が発生すると、そこに応力が集中してデラミネーションが起きやすくなると考えられる。各ラミ層間のラミネート強度の差を1.5N/15mm以下とすることにより、あるラミ層で切欠が生じたとしても、応力の集中を回避しやすくなり、デラミネーションを食い止めやすくなると考えられる。
 ラミネート強度の差は1N/15mm以下であるとより好ましく、0.5N/15mm以下であるとさらに好ましく、0N/15mmであると特に好ましい。各ラミ層間のラミネート強度の差が0N/15mmであると、各ラミ層間のラミネート強度がすべて同じになるため、デラミネーションが起きにくくなり好ましい。
2.4.印字の大きさ
 本発明の包装体にレーザーで形成される印字の大きさは、高さ、または幅いずれかが0.2mm以上100mm以下であると好ましい。人間の目の分解能は0.2mm程度と言われており、文字の大きさが0.2mmを下回るとカラーL*値の差が1.0未満となりやすく、印字を認識するのが困難となる。一方、印字の大きさが100mmを上回ると印字を認識するのが容易となって好ましいものの、印字サイズがあまりに大きすぎると包装体に記載される情報量が少なくなってしまうため好ましくない。印字の大きさは0.5mm以上90mm以下であるとより好ましく、1mm以上80mm以下であるとさらに好ましい。
2.5.熱収縮率
 本発明の包装体は、最内層同士がシールされていない任意の部分を切り取って150℃の熱風中で30分間に亘って処理したとき、包装体平面の任意の少なくとも一方向における熱収縮率が-5%以上5%以下であると好ましい。熱収縮率が5%を超えると、ボイルやレトルトなどの熱水処理や電子レンジによる温め等、高温環境下に置かれたときに変形が大きくなって元の形状を保てなくなり、包装体のデザイン性を著しく損なうため好ましくない。一方、温湯熱収縮率が-5%を下回る場合、包装体が伸びることを意味しており、熱収縮率が高い場合と同様に包装体が元の形状を維持できにくくなるため好ましくない。包装体の熱収縮率は-4%以上4%以下であるとより好ましく、-3%以上3%以下であるとさらに好ましい。
2.6.引張破断強度
 本発明の包装体は、最内層同士がシールされていない任意の部分を切り取って包装体平面の任意の少なくとも一方向において引張破断強度を測定したとき、これが40MPa以上400MPaであると好ましい。引張破断強度が40MPaを下回ると、包装体が外部からの張力によって容易に破断するため好ましくない。引張破断強度の下限は50MPaであるとより好ましく、60MPaであるとさらに好ましい。一方、引張破断強度が400MPaを超えると機械強度としては好ましいものであるが、本発明の技術水準では400MPaが上限である。引張破断強度は300MPaであっても実用上は十分である。
3.製造条件
3.1.プラスチックフィルム層(レーザー印字層、シール層、その他の層)
 本発明の包装体を構成するレーザー印字層とシール層、またその他の層は、以下に記載される方法・条件で製造することができる。以下では、主にレーザー印字層を例に挙げて説明する。
3.1.1.原料混合、供給
 本発明の包装体に含まれるレーザー印字層を製造するにあたり、上記「1.2.1.レーザー印字顔料の種類、添加量、添加方法」で記載したレーザー印字顔料を添加する必要がある。
レーザー印字顔料は金属であるため、通常はフィルムを構成する樹脂よりも比重が大きい。押し出し機に比重の異なる2種以上の原料を混合して投入すると、原料の供給にバラツキ(偏析)が生じやすくなる。このバラツキを防止するため、押出機直上の配管やホッパーに攪拌機を設置する、またはベース樹脂の充填された押出機直上ホッパーの内部に配管(インナーパイプ)を挿入してレーザー印字顔料を供給する、原料の粒体圧をカットする陣笠を各原料ホッパーに設置する等の対策を講じて溶融押出しをすることが好ましい。
3.1.2.溶融押し出し(共押し出しによる積層)
 レーザー印字層は、上記「3.1.1.原料混合、供給」で供給された原料を押出機より溶融押し出しして未延伸のフィルムを形成し、それを以下に示す所定の工程を経て得ることができる。なお、押し出し工程でレーザー印字層と一緒にシール層や基材層を積層してもよく、各層は任意のタイミングで積層させることができる。溶融押し出し時に積層させるには共押し出し法を採用するのが好ましい。これは各層の原料となる樹脂をそれぞれ別々の押し出し機によって溶融押し出しし、樹脂流路の途中でフィードブロック等を用いて接合させる方法である。また、レーザー印字層を押し出した後から巻き取りまでの任意の工程において、シール層となる樹脂をスロットダイから溶融押出して積層させる押出ラミネートを採用してもよい。
 原料樹脂の溶融押出の方法としては公知の方法を用いることができ、バレルとスクリューが具備された押出機を用いる方法が好ましい。溶融時に水分の影響で分解する原料(ポリエステル、ポリアミド等)の場合はあらかじめ、ホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて水分率が100ppm以下、より好ましくは90ppm以下、さらに好ましくは80ppm以下となるまで乾燥するのが好ましい。そのように原料を乾燥させた後、押出機によって溶融された樹脂を急冷することにより未延伸フィルムを得ることができる。押し出しはTダイ法、チューブラー法等、既存の任意の方法を採用することができる。
その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 レーザー印字層となるフィルムは、無延伸、一軸延伸(縦(長手)方向、横(幅)方向のいずれか少なくとも一方向への延伸)、二軸延伸いずれの方式で製膜されてもよい。ただし、機械強度を考慮すると、一軸延伸であると好ましく、二軸延伸であるとより好ましい。延伸フィルムとすることにより、レーザー印字顔料を用いることよる機械的強度や伸度の低下を防止することができる。基材層についても同様に、一軸延伸であると好ましく、二軸延伸であるとより好ましい。ただし、シール層についてはシール強度を発現させるために無延伸であると好ましい。
 以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸による逐次二軸延伸法に主眼を置いて説明するが、順番を逆にする横延伸-縦延伸であっても、主配向方向が変わるだけなので構わない。また、縦方向と横方向を同時に延伸する、同時二軸延伸法でも構わない。
3.1.3.第一(縦)延伸
 第一方向(縦または長手方向)の延伸は、フィルムを複数のロール群を連続的に配置した縦延伸機へと導入するとよい。縦延伸にあたっては、予熱ロールでフィルムを予備加熱することが好ましい。予備加熱の温度としては、フィルムを構成するプラスチックのTgを基準として、ガラス転移温度Tg~融点Tm+50℃の間で設定する。予備加熱温度がTgよりも低いと、縦方向に延伸する際に延伸しにくくなり、破断が生じやすくなるため好ましくない。また、加熱温度がTm+50℃より高いと、ロールにフィルムが粘着しやすくなり、フィルムが巻き付きやすくなるため好ましくない。
 フィルムがTg~Tm+50℃になったら縦延伸を行う。縦延伸倍率は、1倍以上5倍以下とすると良い。1倍は縦延伸をしていないということなので、横一軸延伸フィルムを得るには縦の延伸倍率を1倍に、二軸延伸フィルムを得るには1.1倍以上の縦延伸となる。縦延伸倍率を1.1倍以上とすることによって、印字層中に空洞が発現するため好ましい。縦延伸倍率の上限は何倍でも構わないが、あまりに高い縦延伸倍率だと次の横延伸で破断が生じやすくなるので10倍以下であることが好ましい。縦延伸倍率は1.2倍以上9.8倍以下であるとより好ましく、1.4倍以上9.6倍以下であるとさらに好ましい。
3.1.4.第二(横)延伸
 第一(縦)延伸の後、テンター内でフィルムの幅方向(長手方向と直交する方向)の両端際をクリップによって把持した状態で、Tg~Tm+50℃で2~13倍程度の延伸倍率で横延伸を行うのが好ましい。横方向の延伸を行う前には、予備加熱を行っておくことが好ましく、予備加熱は表示材料または包装体表面温度がTg~Tm+50℃になるまで行うとよい。
横延伸倍率は2.2倍以上12.8倍以下であるとより好ましく、2.4倍以上12.6倍以下であるとより好ましい。なお、縦延伸と横延伸では、延伸速度が異なる(縦延伸の方が延伸速度は速い)ため、好ましい延伸倍率の範囲は異なる。縦延伸と横延伸の倍率を掛け合わせた面積倍率は、2.2倍以上64倍であると好ましい。
 横延伸の後は、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させることが好ましい。テンターの横延伸ゾーンに対し、その次の最終熱処理ゾーンでは温度が高いため、中間ゾーンを設けないと最終熱処理ゾーンの熱(熱風そのものや輻射熱)が横延伸工程に流れ込んでしまう。この場合、横延伸ゾーンの温度が安定しないため、物性にバラツキが生じてしまう。そこで、横延伸後のフィルムは中間ゾーンを通過させて所定の時間を経過させた後、最終熱処理を実施するのが好ましい。この中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流、横延伸ゾーンや最終熱処理ゾーンからの熱風を遮断することが重要である。中間ゾーンの通過時間は、1秒~5秒程度で充分である。1秒より短いと、中間ゾーンの長さが不充分となって、熱の遮断効果が不足する。一方、中間ゾーンは長い方が好ましいが、あまりに長いと設備が大きくなってしまうので、5秒程度で充分である。
3.1.5.熱処理
 中間ゾーンの通過後は熱処理ゾーンにて、100~280℃で熱処理すると好ましい。熱処理ではフィルムの結晶化を促進されるため、延伸工程で生じた熱収縮率を低減できるだけでなく、引張破断強度が増加しやすくなる。熱処理温度が100℃未満であると、フィルムの熱収縮率が増加しやすくなるため好ましくない。一方、熱処理温度が280℃を超えるとフィルムが融解しやすくなり、引張破断強度が低下しやすくなるため好ましくない。熱処理温度は110℃~270℃であるとより好ましく、120℃~260℃であるとさらに好ましい。
 熱処理ゾーンの通過時間は2秒以上20秒以下であると好ましい。通過時間が2秒以下であると、フィルムの表面温度が設定温度に到達しないまま熱処理ゾーンを通過してしまうため、熱処理の意味をなさなくなる。通過時間は長ければ長いほど熱処理の効果が上がるため、5秒以上であるとより好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。
 熱処理の際、テンターのクリップ間距離を任意の倍率で縮めること(幅方向へのリラックス)によって幅方向の熱収縮率を低減させることができる。そのため、最終熱処理では、0%以上10%以下の範囲で幅方向へのリラックスを行うと好ましい(リラックス率0%はリラックスを行わないことを指す)。幅方向へのリラックス率が高いほど幅方向の収縮率は下がるものの、リラックス率(横延伸直後のフィルムの幅方向への収縮率)の上限は使用する原料や幅方向への延伸条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明の表示材料を構成するレーザー印字層においては、幅方向へのリラックス率は10%が上限である。また、熱処理の際に、長手方向におけるクリップ間距離を任意の倍率で縮めること(長手方向へのリラックス)も可能である。
3.1.6.冷却
 熱処理ゾーン通過後は、冷却ゾーンにて10℃以上50℃以下の冷却風を用いて、通過時間2秒以上20秒以下でフィルムを冷却するのが好ましい。
 後は、フィルム両端部を裁断除去しながら巻き取れば、フィルムロールが得られる。
3.2.ラミネート
 本発明の包装体に用いる積層体を製造する際、レーザー印字層とシール層やその他の層(必要に応じて、いずれかの層に積層されたガスバリア層、アンカーコート層、オーバーコート層を含む)を上記「3.1.フィルムの製造条件」で記載した方法で別々に製膜した後に積層させる場合、積層方法は特に限定されず、「1.4.ラミネート剤」で記載したようなラミネート剤を用いて従来公知のドライラミネートや押出ラミネートにより隣接する層同士をラミネートすることができる。本発明でレーザー印字層とシール層やその他の層を積層するには、ラミネート剤をいずれか一方の層に塗布した後、もう一方の層をラ塗布面に貼りあわせ、乾燥させて溶剤を揮発させる方法が挙げられる。乾燥条件は、ラミネート剤によって異なるが、例えば40℃環境下で1日以上放置する等によりラミネート剤が硬化する。
3.3.ガスバリア層
 ガスバリア層の成膜方法は特に限定されず、本発明の目的を損なわない限り公知の製造方法を採用することができる。公知の製造方法の中でも、蒸着法を採用することが好ましい。蒸着法としての例は、真空蒸着法、スパッター法、イオンブレーティングなどのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などが挙げられる。これらの中でも、真空蒸着法と物理蒸着法が好ましく、生産の速度や安定性の観点からは特に真空蒸着法が好ましい。真空蒸着法における加熱方式としては、抵抗加熱、高周波誘導加熱、電子ビーム加熱等を用いることができる。また、反応性ガスとして、酸素、窒素、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を用いたりしてもよい。また、基板にバイアス等を加える、基板温度を上昇あるいは冷却する等、本発明の目的を損なわない限りは成膜条件を変更してもよい。
 ここでは、真空蒸着法によるガスバリア層の成膜方法を説明する。ガスバリア層を成膜する際、本発明の積層体をガスバリア層の製造装置へ金属ロールを介して搬送する。ガスバリア層の製造装置の構成例としては、巻き出しロール、コーティングドラム、巻き取りロール、電子ビーム銃、坩堝、真空ポンプからなる。積層体は巻き出しロールにセットされ、コーティングドラムを経て巻き取りロールで巻き取られる。積層体のパスライン(ガスバリア層の製造装置内)は真空ポンプによって減圧されており、坩堝にセットされた無機材料が電子銃から発射されたビームによって蒸発し、コーティングドラムを通る積層体へと蒸着される。無機材料の蒸着の際、積層体には熱がかかり、さらに巻き出しロールと巻き取りロールの間で張力も加えられる。積層体にかかる温度が高すぎると、積層体の熱収縮が大きくなるだけでなく、軟化が進むため、張力による伸長変形も起こりやすくなる。さらに、蒸着工程を出た後に積層体の温度降下(冷却)が大きくなり、膨張後の収縮量(熱収縮とは異なる)が大きくなり、ガスバリア層にクラックが生じて所望のガスバリア性を発現しにくくなるため好ましくない。一方、積層体にかかる温度は低いほど、積層体の変形は抑制されるため好ましいものの、無機材料の蒸発量が少なくなることでガスバリア層の厚みが低下するため、所望のガスバリア性を満たせなくなる懸念が生じる。積層体にかかる温度は100℃以上180℃以下であると好ましく、110℃以上170℃以下であるとより好ましく、120℃以上160℃以下であるとさらに好ましい。
また、不透明ガスバリア層としてアルミニウム箔を接着させる場合、上記「1.4.接着層」で挙げた方法で接着することができる。
3.4.オーバーコート層
 オーバーコート層を成膜する際、積層体をコーティング設備へ金属ロールを介して搬送する。設備の構成例としては、巻き出しロール、コーティング工程、乾燥工程、巻き取り工程が挙げられる。オーバーコートの際、巻き出しロールにセットされた積層体が金属ロールを介してコーティング工程と乾燥工程を経て、最終的に巻き取りロールまで導かれる。コーティング方法は特に限定されず、グラビアコート法、リバースコート法、ディッピング法、ローコート法、エアナイフコート法、コンマコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法、ダイコート法、バーコート法等、従来公知の方法を採用でき、所望の目的に応じて適宜選択することができる。これらの中でも、グラビアコート法、リバースコート法、バーコート法が生産性の観点で好ましい。乾燥方法は、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射など、加熱する方法を1種類あるいは2種類以上組み合わせて用いることができる。
 乾燥工程では積層体が加熱され、さらに金属ロール間で張力も加えられる。乾燥工程で積層体が加熱される温度が高すぎると、積層体の熱収縮が大きくなるだけでなく、軟化が進むため、張力による伸長変形も起こりやすくなり、積層体のガスバリア層にクラックが生じやすくなる。さらに、乾燥工程を出た後に積層体の温度降下(冷却)が大きくなり、その分だけ膨張後の収縮量(熱収縮とは異なる)が大きくなり、ガスバリア層やオーバーコート層にクラックが生じて所望のガスバリア性を満たしにくくなるため好ましくない。一方、積層体が加熱される温度は低いほど、積層体の変形は抑制されるため好ましいものの、コーティング液の溶媒が乾燥されにくくなるため、所望のガスバリア性を満たせなくなる懸念が生じる。積層体が加熱される温度は60℃以上200℃以下であると好ましく、80℃以上180℃以下であるとより好ましく、100℃以上160℃以下であるとさらに好ましい。
3.5.包装体
本発明の包装体の形状・製袋方法としては、従来公知の技術を任意に採用することができる。包装体の形状としては例えば、縦ピロー、横ピロー、三方シール袋、四方シール袋、ガゼット袋、スティック包装、スタンディングパウチといった袋などが挙げられる。「1.包装体の構成」で記載した各層やラミネート剤を用いて積層体を作製した後、この積層体の最内層同士をシールすることによって製袋することができる。シールの方法としては、ヒートシールやインパルスシールなどの熱シール、またはホットメルト等の接着剤を用いていてもよく、最内層同士のシール強度が規定の範囲内にある限りは、シール層の接着性能に応じて任意に選択することができる。
3.6.レーザー印字条件
 本発明の包装体にレーザーで印字するにあたって使用できるレーザーの種類(波長)としては、例えばCO2レーザー(10600nm)、YAGレーザー(1064nm)、YVOレーザー(1064nm)、ファイバーレーザー(1064、1090nm)、グリーンレーザー(532nm)、UVレーザー(355nm)が挙げられる。これらの中で、本発明の印字に用いるレーザーの種類としては特に限定されないが、CO2レーザーはプラスチックを焼き切るために使用されることが多く、本発明の趣旨である印字とは異なる目的で使用されることが多いため、レーザー源としては好ましくない。YAGレーザー、YVOレーザー、ファイバーレーザー、グリーンレーザー、UVレーザーがレーザー源として好ましく、YAGレーザー、ファイバーレーザー、UVレーザーがより好ましい。レーザー印字には市販の装置を使用することができ、代表例として、ブラザーインダストリアルプリンティング社製LM-2550(YAGレーザー)、オムロン製MX-Z2000H-V1(ファイバーレーザー)、トロテック製8028 Trotec Speedy 100 flexx(ファイバーレーザー)、キーエンス製MD-X1000(YVO4レーザー)、MD-U1000C(UVレーザー)等が挙げられる。
レーザーの印字条件については、装置メーカーや機種ごとに仕様や設定できる条件が異なっており、さらに印字するフィルムによっても異なるため一概にはいえないが、キーエンス製MD-U1000C(UVレーザー、波長355nm)を例として挙げれば以下の通りである。
 レーザーパワーは装置仕様最大13Wに対して出力20%以上80%以下が好ましい。出力20%未満であると印字濃度が低下してしまい、視認性が低下するため好ましくない。出力が80%以上であると、表示体に穴あきが発生してしまうため好ましくない。出力は25%以上75%以下であるとより好ましく、30%以上70%以下であるとさらに好ましい。パルス周波数は、10kHz以上100kHz以下であると好ましい。周波数が10kHzを下回る場合、1照射あたりのレーザーエネルギーが高くなってしまい印字部の厚み減少率が80vol%を上回りやすくなるため好ましくない。反対に周波数が100kHzを上回ると、印字部の厚み減少率は80vol%以下としやすくなるが、印字部のカラーL*値の差を1以上とするのが困難となる場合がある。15kHz以上95kHz以下であるとより好ましく、20kHz以上90kHz以下であるとさらに好ましい。スキャンスピードは、10mm/秒以上3000mm/秒以下であると好ましい。スキャンスピードが10mm/秒を下回ると印字速度が極端に低下するため、表示体の生産速度が遅くなり好ましくない。一方、スキャンスピードが3000mm/秒を上回ると、印字濃度が低下してカラーL*値の差を1以上としにくくなるため好ましくない。スキャンスピードは100mm/秒以上2900mm/以下であるとより好ましく、200mm/秒以上2800mm/以下であるとさらに好ましい。
 次に、実施例および比較例を用いて本発明を具体的に説明するが、本発明はかかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。
<ポリオレフィン原料>
<ポリオレフィンA>
 ポリオレフィンAとして、住友化学株式会社製FS2011DG3を用いた。
<ポリオレフィンB>
ポリオレフィンBとして、住友化学株式会社製FS7053G3を用いた。
<ポリオレフィンC>
ポリオレフィンAにCaCO3を60質量%練りこみ、ポリオレフィンCとした。
<ポリオレフィンD>
 ポリオレフィンAにTiO2を60質量%練りこみ、ポリオレフィンDとした。
<ポリエステル原料>
[ポリエステルA]
 ポリエステルAとして、東洋紡株式会社製RE553を用いた。
 [ポリエステルB]
 ポリエステルBとして、ポリエステルAにTiO2を50質量%練りこみ、ポリエステルBとした。
 [ポリエステルC]
 ポリエステルCとして、ポリエステルAにレーザー顔料「TOMATEC COLOR42-920A(主成分Bi)」(東罐マテリアル・テクノロジー社製)を質量比95:5で混合(ドライブレンド)してスクリュー押出機に投入し、275℃で加熱して溶融・混合させた。この溶融樹脂をストランドダイから円柱状に連続的に吐出し、ストランドカッターで裁断することによってチップ状のポリエステルC(マスターバッチ)を得た。
 [ポリエステルD]
 ポリエステルDとして、東洋紡株式会社製RE555(SiO2を7000ppm練りこんだマスターバッチ)を用いた。
 各ポリオレフィン原料、ポリエステル原料の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[フィルム1]
 A層の原料としてポリオレフィンAとポリオレフィンCとポリオレフィンDを質量比40:50:10で混合し、B層の原料としてポリオレフィンAとポリオレフィンBとポリオレフィンCを質量比10:70:20で混合した。
 A層及びB層の混合原料はそれぞれ別々のスクリュー押出機に投入して溶融させてTダイからせん断速度1000sec-1で押し出した。それぞれの溶融樹脂は、流路の途中でフィードブロックによって接合させてTダイより吐出し、表面温度30℃に設定したチルロール上で冷却しながらドラフト比1.2で引き取って未延伸の積層フィルムを得た。積層フィルムは中心層がA層、両方の最表層がB層(B/A/Bの2種3層構成)となるように溶融樹脂の流路を設定し、A層とB層の厚み比率が90/10(B/A/B=5/90/5)となるように吐出量を調整した。
 冷却固化して得た未延伸の積層フィルムを複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が125℃になるまで予備加熱した後に4倍に延伸した。
 縦延伸後のフィルムを横延伸機(テンター)に導いて表面温度が160℃になるまで8秒間の予備加熱を行った後、幅方向(横方向)に9.8倍延伸した。横延伸後のフィルムはそのまま中間ゾーンに導き、1.0秒で通過させた。なお、テンターの中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、熱処理ゾーンからの熱風と横延伸ゾーンからの熱風を遮断した。
 その後、中間ゾーンを通過したフィルムを熱処理ゾーンに導き、165℃で9秒間熱処理した。このとき、熱処理を行うと同時にフィルム幅方向のクリップ間隔を狭めることにより、幅方向に3%リラックス処理を行った。最終熱処理ゾーンを通過後はフィルムを30℃の冷却風で5秒間冷却した。両縁部を裁断除去して幅400mmでロール状に巻き取ることによって、厚さ70μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。得られたフィルムの特性は上記の方法によって評価した。製造条件を表2示す。
[フィルム2~4]
 フィルム2~4もフィルム1と同様にして、各種条件を変更したフィルムを連続的に製膜した。各フィルムの製造条件を表2に示す。
[フィルム5~8]
 フィルム5には無延伸のポリプロピレンフィルムである東洋紡株式会社製パイレンフィルムCT(登録商標)P1128-30μmを、フィルム6には無延伸の直鎖状低密度ポリエチレンフィルムである東洋紡株式会社製リックスフィルム(登録商標)L4102-30μmを、フィルム7には二軸延伸したポリエチレンテレフタレートフィルムである東洋紡株式会社製エステルフィルム(登録商標)E5102-12μmを、フィルム8にはは二軸延伸したポリアミドフィルムである東洋紡株式会社製ハーデンフィルム(登録商標)N1102-15μmを使用した。各フィルムの名称を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 フィルム1の上に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を重量比13.5:1の割合で配合)を用いてドライラミネート法により、フィルム5と貼りあわせ、40℃にて4日間エージングすることで積層体を得た。このとき、接着層の厚みは3μmであった。
この積層体を15cm四方の大きさにカットし、シーラントとなるフィルム5が内側になるように2枚を重ね合わせ、積層体の3辺をヒートシールにより接着して内寸は13cmの袋を作製した。なお、このときのヒートシール条件は、温度140℃、圧力0.2MPa、時間1秒、シール幅1.0cmとした。
 得られた袋には、波長355nmのUVレーザー(キーエンス社製レーザーマーカー MD-U1000C)を用いて、パルス周波数40kHz、スキャンスピード2000mm/分、出力30%でフィルムの中央部に「12345ABCDE」と印字した。1文字あたりの大きさは、高さ約5mm×幅約3mmとした。
得られた包装体の層構成、物性評価結果を表3に示す。
[実施例2]
 フィルム7の片側に、蒸着源としてアルミニウムを用いて、真空蒸着機にて酸素ガスを導入しながら真空蒸着法で酸化アルミニウム(Al)薄膜をガスバリア層として成膜した。ガスバリア層の厚みは10nmであった。フィルム7のガスバリア層側とフィルム1とを、実施例1と同様の方法で貼りあわせた。この貼り合わせたフィルムのフィルム1側に、上記と同様にしてさらにフィルム6を貼り合わせて積層体を作製した。
この積層体を、実施例1と同様の方法で3辺をヒートシールして袋を作製し、波長1064nmのファイバーレーザー(トロテック社製レーザーマーカー 8028 Trotec Speedy 100 flexx)を用いて、パルス周波数30kHz、スキャンスピード1500mm/分、出力80%でフィルムの中央部に「12345ABCDE」と印字して表示体を作製した。1文字あたりの大きさは、高さ約8mm×幅約5mmとした。
得られた包装体の層構成、物性評価結果を表3に示す。
 [実施例3~6、比較例1、2]
 実施例3~6、比較例1、2も実施例1または2と同様にして、使用するフィルムの種類、レーザー源・照射条件を種々変更して表示体を作製した。UVレーザーにはすべてキーエンス社製レーザーマーカー MD-U1000Cを用い、ファイバーレーザーにはすべてトロテック社製レーザーマーカー 8028 Trotec Speedy 100 flexxを用いた。なお、比較例2はレーザー印字層(フィルム1)のみを単体として用いており、ヒートシールされなかった。そのため、レーザー印字には1枚のフィルムを用いた。
得られた包装体の層構成、物性評価結果を表3に示す。
[比較例3]
フィルム8の一方の面上に、白色インキ層をグラビアロールでコーティングすることによってレーザー印字層を形成した。白色インキ層は、メチルエチルケトンとイソプロピルアルコールとポリウレタンと酸化チタンを11:3:38:48質量%となるよう混合して作製した。なお、レーザー印字層の厚みは3μmであった。
フィルム8上に形成したレーザー印字層(白色インキ層)とフィルム5とを、実施例1と同様の方法で貼り合わせ、3辺をヒートシールすることによって包装体を得た。この包装体を実施例1と同様の方法でレーザーを照射することで印字を形成した。
得られた包装体の層構成、物性評価結果を表3に示す。
<積層体の評価方法>
 積層体の評価方法は以下の通りである。非印字部分のサンプルは、印字部分やシール部分から1mm以上離れた部分を切り出し、サンプルとして使用した。
[厚み]
マイクロメーター(ファインプリューフ社製ミリトロン1254D)を用いて、5点を測定し、その平均値を求めた。
[カラーL*値(印字部、非印字部)]
 分光式色差計(日本電色株式会社製、ZE-6000)を用い、反射法によりフィルムサンプル1枚で印字部と非印字部それぞれのL*値を測定した。印字部の測定方法は、具体的に以下の通りである。
 「12345ABCDE」と印字されている文字のうち、「B」すべてが入るように3cm四方のサンプルを切り出して測定した(このとき、「B」以外の文字が入ってもよい)。また、色差計の測定光源には6φ試料台(測定光の当たる開口部が直径約1cm)と6φ見口を使用し、試料台の開口部に文字「B」が入るようにした。なお、印字が試料台の開口部に入りきらない(はみ出る)場合、必要に応じて試料台を変更してもよい(例えば、10φ、30φ等)。仮に印字がはみ出たとしても、印字の一部が試料台の開口部に入って測定光が当たればよい。
 また、非印字部については、印字部されていない部分から3cm四方のサンプルを切り出し、色差計の見口と試料台には6φのものを使用してカラーL*値を測定した。なお、色差計の見口と試料台は必要に応じて10φ、30φ等に変更してもよく、その場合のサンプルサイズは試料台の開口部を覆う(測定光が漏れない)ようにすれば任意のサイズであってよい。
[シール層同士の接着強度]
 JIS Z1707に準拠して測定した。接着サンプルは、シール部分の幅方向(包装体のヒートシールで1cmとした方向)を引張方向とし、接着された2枚の積層体長さが60mm以上、引張方向と垂直方向(引張試験時のサンプル幅)が15mmとなるように切り出した。このサンプルのシール強度を万能引張試験機「オートグラフAG-Xplus」(島津製作所製)により、チャック間距離50mm、引張速度200mm/分で測定した。剥離強度は15mmあたりの強度(N/15mm)で示す。なお、包装体サイズの制限によってサンプル長を60mm以上で切り出すことができないときは、それ以下の長さ(例えば20mmなど)としてもよい。この場合、片側のチャックに少なくともサンプルをつかむ長さを5mm以上設ければチャック間距離を50mm以下(例えば、サンプル長が20mmの場合、チャック間距離10mm)としてよい。
[ラミネート強度]
 包装体のレーザー印字されておらず、かつシールされていない部分から、幅15mm、長さ200mmにサンプルを切り出して試験片とし、温度23℃、相対湿度65%の条件下で、万能引張試験機「オートグラフAG-Xplus」(島津製作所製)を用いてラミネート強度を測定した。なお、ラミネート強度の測定時、引張速度は200mm/分、剥離角度は90度とした。
[印字サイズ]
 「12345ABCDE」と印字されている文字のうち、「345ABC」の高さと幅について、ステンレス直定規(コクヨ株式会社製 TZ-RS15)を用いて、目視により0.5mm刻みで計測してその平均値を印字サイズとした。印字の大きさが0.5mmを下回る場合は別途、HIROX社製デジタルマイクロスコープRH-2000を用いて印字の大きさを計測した。印字サイズの計測には、HIROX社製デジタルマイクロスコープRH-2000に付属のソフトウェアを用いた。
 [熱収縮率]
 フィルムを10cm×10cmの正方形に裁断し、98±0.5℃の温水中に無荷重状態で10秒間浸漬して収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から出した。その後、フィルムの縦および横方向の寸法を測定し、下式1にしたがって各方向の収縮率を求めた。なお、測定は2回行い、その平均値を求めた。

 収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
[引張破断強度]
 JIS K7113に準拠し、測定方向が140mm、測定方向と直交する方向(フィルム幅方向)が20mmの短冊状のフィルムサンプルを作製した。万能引張試験機「オートグラフAG-Xplus」(島津製作所製)を用いて、試験片の両端をチャックで片側20mmずつ把持(チャック間距離100mm)して、雰囲気温度23℃、引張速度200mm/minの条件にて引張試験を行い、引張破壊時の強度(応力)を引張破壊強度(MPa)とした。なお、測定方向は長手方向、幅方向とした。
[全光線透過率(非印字部)]
 JIS-K-7136に準拠し、ヘイズメータ(日本電色工業株式会社製、300A)を用いて非印字部の全光線透過率を測定した。測定は2回行い、その平均値を求めた。
[水蒸気透過度]
 水蒸気透過度はJIS K7126 B法に準じて測定した。水蒸気透過度測定装置(PERMATRAN-W3/33MG MOCON社製)を用いて、温度40℃、湿度90%RHの雰囲気下において、積層体のヒートシール層側から無機薄膜層側に調湿ガスが透過する方向で水蒸気透過度を測定した。なお、測定前には湿度65%RH環境下で、サンプルを4時間放置して調湿した。
[酸素透過度]
 酸素透過度はJIS K7126-2法に準じて測定した。酸素透過量測定装置(OX-TRAN 2/20 MOCOM社製)を用いて、温度23度、湿度65%RHの雰囲気下において、積層体のヒートシール層側から無機薄膜層側に酸素が透過する方向で酸素透過度を測定した。なお、測定前には湿度65%RH環境下で、サンプルを4時間放置して調湿した。
 [印字部の目視評価]
 積層体に印字された文字「12345ABCDE」の視認性を以下の基準で判定した。
判定○  目視で文字を認識することができる
判定×  目視で文字を認識することができない
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[フィルムの製造条件と評価結果]
 実施例1から6までの包装体はいずれも表3に掲載した物性に優れていた。
一方、比較例1は、印字層が含まれていないため、レーザーで印字することができず、レーザー印字された包装体としては好ましくないものとなった。
比較例2は、シール層が含まれていないため、包装体を作製することができなかった。
比較例3は、レーザー印字層を白色インキ層としたため、シール層とのラミネート強度が不足し、デラミネーションが懸念される包装体となった。
 本発明はレーザー顔料を含むインキを使用することなく、ラミネート強度とレーザー印字部の視認性に優れている。そのため、包装体の設計を複雑化せずとも生産性・経済性とデザイン性の高い包装体を提供することができる。

Claims (9)

  1.  レーザー照射によって印字可能なレーザー印字層を少なくとも一層有し、かつ該レーザー印字層にはレーザーで印字されたレーザー印字部分と、非印字部分が存在し、さらにシール層を有する積層体から構成される包装体で、該シール層を少なくとも最内層に有し、この最内層のシール層同士の少なくとも一部が接着されており、
    以下の(1)~(3)の要件を満たす包装体。
    (1)レーザー印字部分と非印字部分とのカラーL*値の差が1.0以上10以下
    (2)シール層同士の接着強度が2N/15mm以上80N/15mm以下
    (3)レーザー印字層と、該レーザー印字層の少なくとも片側に隣接する層とのラミネート強度が2N/15mm以上10N/15mm以下
  2.  レーザー印字部分における印字サイズの高さまたは幅いずれかが0.2mm以上100mm以下であることを特徴とする請求項1に記載の包装体。
  3.  レーザー印字層を、包装体を構成する積層体平面の全領域にわたって有することを特徴とする請求項1、2いずれかに記載の包装体。
  4.  レーザー印字顔料として、ビスマス、ガドリニウム、ネオジム、チタン、アンチモン、スズ、アルミニウム、カルシウム、及びバリウムからなる群より選択されてなる1種以上の単体または化合物がレーザー印字層中に含まれていることを特徴とする請求項1から3いずれかに記載の包装体。
  5.  レーザー印字層を構成する主たる樹脂がポリエステル、ポリプロピレン、又はポリエチレンのいずれかであることを特徴とする請求項1から4のいずれかに記載の包装体。
  6.  レーザー印字層を構成する樹脂の含有量が50質量%を超えて99.95質量%以下であることを特徴とする請求項1から5いずれかに記載の包装体。
  7.  前記積層体にはさらに基材層が積層されていることを特徴とする請求項1から6いずれかに記載の包装体。
  8.  前記積層体にはさらにガスバリア層が積層されていることを特徴とする請求項1から7いずれかに記載の包装体。
  9.  レーザー印字層の厚みが5μm以上200μm以下であることを特徴とする請求項1から8いずれかに記載の包装体。
PCT/JP2022/000492 2021-01-18 2022-01-11 レーザー印字された包装体 WO2022153965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/272,505 US20240075719A1 (en) 2021-01-18 2022-01-11 Laser-printed packaging
KR1020237021782A KR20230132448A (ko) 2021-01-18 2022-01-11 레이저 인자된 포장체
JP2022575580A JPWO2022153965A1 (ja) 2021-01-18 2022-01-11
EP22739372.5A EP4279413A4 (en) 2021-01-18 2022-01-11 LASER-PRINTED PACKAGING BODY
CN202280010219.2A CN116710366A (zh) 2021-01-18 2022-01-11 被激光印字了的包装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005985 2021-01-18
JP2021005985 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022153965A1 true WO2022153965A1 (ja) 2022-07-21

Family

ID=82448434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000492 WO2022153965A1 (ja) 2021-01-18 2022-01-11 レーザー印字された包装体

Country Status (7)

Country Link
US (1) US20240075719A1 (ja)
EP (1) EP4279413A4 (ja)
JP (1) JPWO2022153965A1 (ja)
KR (1) KR20230132448A (ja)
CN (1) CN116710366A (ja)
TW (1) TW202237495A (ja)
WO (1) WO2022153965A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274530A (ja) * 2009-05-28 2010-12-09 Dainippon Printing Co Ltd 積層フィルムおよびそれを用いた包装用フィルム
JP2015123616A (ja) * 2013-12-25 2015-07-06 味の素株式会社 レーザーマーキングが可能な樹脂積層体およびその製造方法
JP6268873B2 (ja) 2013-09-27 2018-01-31 大日本印刷株式会社 包装用積層小袋材及びそれを用いた小袋並びに包装用小袋レーザー印字体
JP2019214392A (ja) 2018-06-11 2019-12-19 フジモリプラケミカル株式会社 包装体、包装袋およびそれらのマーキング方法
WO2020071490A1 (ja) * 2018-10-03 2020-04-09 大日本印刷株式会社 蓄電デバイス用包装材料、蓄電デバイス、及びこれらの製造方法
JP2020146963A (ja) * 2019-03-14 2020-09-17 大日本印刷株式会社 レーザ印字用積層体
WO2021079868A1 (ja) * 2019-10-25 2021-04-29 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体
WO2021125135A1 (ja) * 2019-12-20 2021-06-24 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268873U (ja) 1985-10-21 1987-04-30
JP5589407B2 (ja) * 2010-01-28 2014-09-17 大日本印刷株式会社 包装材料、及びそれを用いた包装体
JP6903879B2 (ja) * 2016-07-29 2021-07-14 大日本印刷株式会社 酸素バリア性を有する積層体および該積層体からなる包装材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274530A (ja) * 2009-05-28 2010-12-09 Dainippon Printing Co Ltd 積層フィルムおよびそれを用いた包装用フィルム
JP6268873B2 (ja) 2013-09-27 2018-01-31 大日本印刷株式会社 包装用積層小袋材及びそれを用いた小袋並びに包装用小袋レーザー印字体
JP2015123616A (ja) * 2013-12-25 2015-07-06 味の素株式会社 レーザーマーキングが可能な樹脂積層体およびその製造方法
JP2019214392A (ja) 2018-06-11 2019-12-19 フジモリプラケミカル株式会社 包装体、包装袋およびそれらのマーキング方法
WO2020071490A1 (ja) * 2018-10-03 2020-04-09 大日本印刷株式会社 蓄電デバイス用包装材料、蓄電デバイス、及びこれらの製造方法
JP2020146963A (ja) * 2019-03-14 2020-09-17 大日本印刷株式会社 レーザ印字用積層体
WO2021079868A1 (ja) * 2019-10-25 2021-04-29 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体
WO2021125135A1 (ja) * 2019-12-20 2021-06-24 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAO GOBE, EFFECT OF PIGMENTS ON LAMINATION STRENGTH IN GRAVURE LAMINATING INKS, vol. 64, no. 12, 1991

Also Published As

Publication number Publication date
TW202237495A (zh) 2022-10-01
CN116710366A (zh) 2023-09-05
EP4279413A1 (en) 2023-11-22
KR20230132448A (ko) 2023-09-15
US20240075719A1 (en) 2024-03-07
EP4279413A4 (en) 2024-12-11
JPWO2022153965A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
CN115515797B (zh) 被激光印字了的显示材料及使用了该显示材料的包装体
WO2021079868A1 (ja) レーザー印字可能なフィルムおよびそれを用いた包装体
WO2024048097A1 (ja) ガスバリア性コートフィルム用ポリエチレンフィルム
WO2022153965A1 (ja) レーザー印字された包装体
WO2022230466A1 (ja) レーザー印字された粘着性積層体
WO2022202231A1 (ja) レーザー印字された包装体
WO2024048096A1 (ja) ガスバリア性コートフィルム
WO2022080211A1 (ja) レーザー印字された表示体および包装体
WO2022224646A1 (ja) レーザー印字されたインモールドラベル
WO2022196397A1 (ja) レーザー印字された積層表示体
JP4889841B2 (ja) 印刷性に優れた積層ポリオレフィン系フィルム
WO2021125136A1 (ja) レーザー印字可能なフィルムおよびそれを用いた包装体
JP2004025484A (ja) ガスバリア性に優れた易裂き性フィルム
US8641854B2 (en) Polypropylene film for electron-beam hardening applications
JP2006327019A (ja) 積層ポリプロピレン系フイルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575580

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272505

Country of ref document: US

Ref document number: 202280010219.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739372

Country of ref document: EP

Effective date: 20230818