[go: up one dir, main page]

WO2022097660A9 - 複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置 - Google Patents

複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置 Download PDF

Info

Publication number
WO2022097660A9
WO2022097660A9 PCT/JP2021/040495 JP2021040495W WO2022097660A9 WO 2022097660 A9 WO2022097660 A9 WO 2022097660A9 JP 2021040495 W JP2021040495 W JP 2021040495W WO 2022097660 A9 WO2022097660 A9 WO 2022097660A9
Authority
WO
WIPO (PCT)
Prior art keywords
tool
holding
configuration information
information
tools
Prior art date
Application number
PCT/JP2021/040495
Other languages
English (en)
French (fr)
Other versions
WO2022097660A1 (ja
Inventor
拓磨 大倉
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021004516.4T priority Critical patent/DE112021004516T5/de
Priority to US18/249,970 priority patent/US20230398650A1/en
Priority to JP2022560797A priority patent/JPWO2022097660A1/ja
Priority to CN202180074031.XA priority patent/CN116547106A/zh
Publication of WO2022097660A1 publication Critical patent/WO2022097660A1/ja
Publication of WO2022097660A9 publication Critical patent/WO2022097660A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • B23Q3/157Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools
    • B23Q3/15713Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling of rotary tools a transfer device taking a single tool from a storage device and inserting it in a spindle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a tool management device that manages tools of a target device that has a tool holding mechanism that holds a plurality of tools.
  • a turret having a plurality of tool mounting surfaces to which a plurality of tools can be mounted is rotatably arranged, and by rotating the turret, the tool facing the work can be switched, such as a turret lathe. machine is known.
  • Patent Document 1 discloses a machine tool having a plurality of turret faces, a plurality of tools attached to at least one of the turret faces, and an X-axis direction separating and contacting the work axis.
  • a turret tool selection command method for selecting and commanding an arbitrary tool in a turnable turret which is movable in the X-axis direction and the Y-axis direction perpendicular to the Z-axis direction which is the work center line
  • each turret A turret surface number is assigned to each surface and a tool number is assigned to each tool.
  • Y-axis position information corresponding to the tool number is set and stored in advance.
  • the surface number and the tool number are specified at the same time, and when the machining program is executed, the turret surface corresponding to the specified turret surface number is determined, and the Y-axis position information corresponding to the specified tool number is read out to determine the position of the tool.
  • a turret tool selection instruction method characterized by positioning in the Y-axis direction, and a numerical controller for implementing the method.
  • a tool storage device that stores and manages multiple tools used for processing along with the machine tool is installed, and automatic tool exchange is provided between the machine tool and the tool storage device.
  • Systems are known for arranging mechanisms to transfer multiple tools between a machine tool and a tool storage device.
  • a tool storage device applied to such a system usually uses an automatic control device for storing a plurality of tools at predetermined positions within the tool storage device.
  • Patent Document 2 discloses a tool changing device for changing tools stored in a tool magazine of a machine tool at the time of setup.
  • a sub-tool magazine for storing tools used in machining operations, tool position recognition means for recognizing storage positions of the tools stored in the sub-tool magazine, and a machining program for the next machining operation are stored. and a memory for storing a tool replacement instruction program in the order of execution of the machining program to be executed next and before the start of the machining program to be executed next;
  • Tool replacement means for reading a stored tool replacement instruction program and replacing the tools stored in the sub-tool magazine recognized by the tool position recognition means with the tools stored in the tool magazine.
  • a tool changing device characterized by the following is disclosed. As a result, it is possible to shorten the setup time, improve the reliability, and provide a low-cost tool changer.
  • control device that controls the target device normally operates with a control program that corresponds to the specifications of the turret and tool magazine used in the target device to be controlled. For this reason, there is also a problem that it is not possible to cope with a specification change such as a change in the upper limit of the number of tools set at the time of designing the target device or a change in the target device itself to be controlled.
  • a tool management apparatus that manages tools for a target device that includes a tool holding mechanism that holds a plurality of tools includes information for acquiring configuration information including the current tool holding state of the tool holding mechanism. a holding position setting unit for setting a holding position for holding a tool in a tool holding mechanism based on the configuration information and the tool information of the tool; and a command generation unit that generates a drive command to move to.
  • the tool management apparatus since the information acquisition unit acquires the configuration information including the current tool holding state in the tool holding mechanism, the tool management apparatus itself does not need a memory for constantly storing the configuration information of the target device. becomes. Further, the holding position setting unit sets a holding position for holding the tool in the tool holding mechanism based on the configuration information and the tool information of the tool, and the command generation unit transfers the holding position of the tool holding mechanism to the tool. In order to generate a drive command for moving to the transfer position, the drive command is generated by setting the holding position based on the configuration information acquired by the information acquisition unit. Therefore, even if there is a change in the specification of the target device or a change in the target device itself, it is possible to deal with the change and to eliminate the need to add or change the memory.
  • FIG. 1 is a block diagram showing the relationship between a tool management device and target devices according to the first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a part of the specific structure of the target device shown in FIG. 1
  • FIG. FIG. 4 is a schematic diagram showing an example of the operation of the machine tool according to commands from the tool management system according to the first embodiment
  • FIG. 4 is a schematic diagram showing an example of the operation of the machine tool according to commands from the tool management system according to the first embodiment
  • FIG. 4 is a schematic diagram showing an example of the operation of the machine tool according to commands from the tool management system according to the first embodiment
  • It is a schematic diagram showing a first modification of the tool management device according to the first embodiment.
  • FIG. 7 is a block diagram showing the relationship between the tool management device and target devices according to the second embodiment of the present invention
  • FIG. 11 is a block diagram showing the relationship between a tool management device and target devices according to a third embodiment of the present invention
  • FIG. 1 is a block diagram showing the relationship between a tool management device and target devices according to a first embodiment, which is a representative example of the present invention.
  • a tool management apparatus 100 is connected by wire or wirelessly to a target apparatus (machine tool) 10 holding a plurality of tools. It is configured as a processing system that exchanges data.
  • the machine tool 10 that includes a turning turret 16 as a tool holding mechanism is applied.
  • the machine tool 10 includes a base portion 12, a work holding portion 14 that holds a work W rotatably around a predetermined rotation axis, a revolving turret 16 that holds a plurality of tools T, and the revolving type It is configured as a turret lathe including a turret holding section 18 containing a drive mechanism for rotating the turret 16 and a control section 19 controlling the operation of the entire machine tool 10 .
  • a turret lathe a plurality of tools T are attached to the rotary turret 16 so that the machining blades are radially exposed, and the rotary turret 16 is rotated based on commands from the control unit 19.
  • a specific tool T is brought into contact with the workpiece W for machining.
  • the swivel turret 16 has holding mechanisms such as chucks for radially attaching a plurality of tools T1 to T12 at holding positions P1 to P12, respectively.
  • the holding positions P1 to P12 are arranged on the outer periphery of the swivel turret 16 at regular intervals (that is, at intervals of 30°).
  • the positions (angles) of the holding positions P1 to P12 are determined with the angle of the holding position P1 as a reference angle (0°). Based on this reference angle, a turning amount (angle) for generating a turning command for the turning type turret 16 is obtained in the command generation unit 130 of the tool management device 100, which will be described later. Further, in the swivel turret 16, a transfer position EP for transferring (that is, attaching and detaching) the tool T is set.
  • the tool management apparatus 100 Based on the tool information TI of the tools T1 to T12, a holding position setting unit 120 for setting holding positions P1 to P12 for holding the tools T1 to T12 in the rotary turret 16, and a transfer position for setting the holding positions P1 to P12. and a command generation unit 130 that generates a drive command DC to move to the EP.
  • the tool information TI includes information such as the total number and specifications of the tools T to be managed and the type of machining performed by each tool T, and is manually input by the operator or is obtained by accessing an external storage device (not shown) or the like.
  • the configuration information CI includes information such as the structure of the turning turret 16 of the machine tool 10 and whether or not the tools T1 to T12 are currently held at the respective holding positions P1 to P12. 10 control unit 19 holds.
  • the tool management apparatus 100 does not require a permanent memory for storing and saving the current tool T holding information.
  • the information acquisition unit 110 of the tool management device 100 acquires the configuration information CI of the machine tool 10 from the control unit 19 of the machine tool 10, acquires the tool information TI for the tool T from the outside, and obtains these Temporarily store the information of
  • the information acquisition unit 110 also has a function of extracting all or part of the acquired configuration information CI and tool information TI and sending them to the holding position setting unit 120 .
  • the holding position setting unit 120 sets the holding positions P1 to P12 of the newly mounted tool T on the swivel turret 16 based on the configuration information CI and the tool information TI sent from the information acquisition unit 110 . Specifically, the holding position setting unit 120 determines the holding status of the tool T in the rotary turret 16 in the configuration information CI (that is, the availability status of the holding positions P1 to P12), and the tool T to be mounted in the tool information TI. Holding positions P1 to P12 for individual tools T to be attached are set in consideration of the number of tools and specifications (size, etc.). Information on the set holding positions P1 to P12 is sent to the command generation unit 130 .
  • the command generation unit 130 generates a drive command for moving the set holding position P on the rotary turret 16 to the tool T transfer position EP based on the holding position P information sent from the holding position setting unit 120 .
  • Generate DC Specifically, the current angle formed between the set holding position P and the transfer position EP is calculated, and a drive command DC for turning the turret corresponding to the angle formed is generated.
  • the generated drive command DC is then sent to the controller 19 of the machine tool 10 .
  • FIG. 3 to 5 the case of attaching the tool T to the swivel turret 16 is illustrated, but the designated tool T is removed from the swivel turret 16 or replaced with another tool T. may be applied in some cases.
  • 3 to 5 are schematic diagrams showing an example of machine tool operations according to commands from the tool management device according to the first embodiment.
  • the information acquisition section 110 first acquires the configuration information CI about the swivel turret 16 from the control section 19 of the machine tool 10 .
  • the configuration information CI includes, for example, the number and arrangement of the holding positions P1 to P12 provided on the swivel turret 16, the number of tools T1 to T12 already attached to the holding positions P1 to P12, and the It contains information such as the number and the current angle of the holding position P1, which is the reference position.
  • the sensors provided at the holding positions P1 to P12 respectively detect the presence or absence of the tools T, and the information is obtained via the control unit 19. good.
  • the information acquisition unit 110 acquires tool information TI related to the tool T to be replaced from the outside together with the configuration information CI.
  • the tool information TI at this time includes the number of tools T to be replaced, specifications, etc., as described above.
  • the information acquiring section 110 then sends the acquired configuration information CI and tool information TI to the holding position setting section 120 .
  • the holding position setting unit 120 selects the holding positions P1 to P12 of the swivel turret 16 suitable for the tool T to be replaced based on the configuration information CI and the tool information TI, and transmits the number information of the holding positions to the command generation unit. Send to 130. Specifically, in the case of the arrangement shown in FIG. 3, for example, the holding position P2, which is closest to the holding position P1, which is the reference position, and to which the tool T is not attached, is selected.
  • the command generation unit 130 determines how much the rotary turret 16 should move in order for the holding position P2 for the tool T set by the holding position setting unit 120 to be positioned at the tool T transfer position EP (that is, , and by what angle to turn), and generate a drive command DC for turning the turning type turret 16 by the calculated movement amount to the control unit 19 of the machine tool 10 .
  • a turning angle 60° shown in FIG. 4
  • a clockwise drive command DC corresponding to the turning angle is generated. Output to the control unit 19 .
  • the holding position setting unit 120 and the command generation unit 130 repeat the above-described operations based on the already acquired configuration information CI.
  • the information acquisition unit 110 acquires the configuration information CI including the current tool holding state in the tool holding mechanism (swivel turret 16). It is not necessary to add a memory for storing the CI.
  • FIG. 6 a modified example of the tool management device according to the first embodiment will be described with reference to FIGS. 6 to 8.
  • FIG. 1 A modified example of the tool management device according to the first embodiment will be described with reference to FIGS. 6 to 8.
  • FIG. 6 is a schematic diagram showing a first modified example of the tool management device according to the first embodiment.
  • the first modification shows a case where large-diameter tools T1 to T3 and small-diameter tools T4 to T10 are attached to the swivel turret 16 of the machine tool 10 in a mixed manner.
  • the swivel turret 16 applied to the tool management apparatus 100 of the first modified example is designed to handle the tools T indicated by the large-diameter tools T1 to T3 and the small-diameter tools T4 to T10.
  • Each type has a plurality of type areas A1 and A2.
  • the holding position setting unit 120 of the tool management device 100 sets the holding position P for each tool T based on the calculated reference positions in the type areas A1 and A2.
  • holding positions P1 to P3 that match the large-diameter tools are arranged at equal intervals in the type area A1, and the holding position The amount of movement is calculated by setting P1 as the reference position.
  • holding positions P4 to P10 corresponding to small-diameter tools are arranged at equal intervals in the type area A2, and the holding position P4 is used as a reference position for calculating the amount of movement (turning angle). to calculate the amount of movement.
  • FIG. 7 is a schematic diagram showing a second modification of the tool management device according to the first embodiment.
  • the second modification has a function of changing the configuration information CI stored in the control unit 19 of the machine tool 10 when there is a change in the mounting condition of the tool T on the turning turret 16 .
  • the tool management apparatus 100 of the second modification includes the information acquisition unit 110, the holding position setting unit 120, and the command generation unit 130 shown in FIG. It further includes a configuration information updating unit 140 that updates the configuration information CI based on the received drive command DC.
  • the configuration information update unit 140 changes the configuration information CI acquired by the information acquisition unit 110 in consideration of the drive command DC to the control unit 19 of the machine tool 10 generated by the command generation unit 130, and updates the changed configuration information CI. to the control unit 19.
  • the configuration information CI first acquired by the information acquisition unit 110 includes information that "the tool T is not attached to the holding position P2.” is As shown in FIG. 4, when a new tool T2 is attached to the holding position P2, when another tool T is attached next time, if there is no information indicating that the tool T2 has been attached to the holding position P2, the old There is a possibility that the holding position setting unit 120 repeatedly selects and sets the holding position P2 to which the tool T2 is already attached according to the configuration information CI.
  • the configuration information updating unit 140 included in the tool management device 100 causes the information acquiring unit 110 to acquire change information for the holding position P included in the drive command DC output from the command generating unit 130.
  • New configuration information CI′ is created by overwriting the configuration information CI, and is transmitted to the control unit 19 of the machine tool 10 .
  • the information acquisition unit 110 operates so as to always acquire the latest configuration information CI.
  • FIG. 8 is a schematic diagram showing a third modification of the tool management device according to the first embodiment.
  • a tool management device 100 is connected to machine tools 10 and 10', which are a plurality of target devices, and performs tool management for the plurality of target devices.
  • the tool management apparatus 100 of the third modification is connected by wire or wirelessly to a machine tool 10 and a machine tool 10', which are target apparatuses holding a plurality of tools. It is configured as a processing system that exchanges signals and data with the machines 10 and 10'.
  • FIG. 9 illustrates the case where the tool management device 100 is connected to two machine tools 10 and 10′, the tool management device 100 may be connected to three or more target devices. may be configured.
  • the information acquisition unit 110 of the tool management apparatus 100 when attaching or replacing a predetermined tool T, individually connects to a plurality of machine tools 10, 10', thereby obtaining information according to the tool information TI.
  • the tools T can be distributed to the machine tool 10 or 10' by using the machine tool 10 or 10'. In other words, it becomes possible to attach or replace a tool to a machine tool designated for each type of work to be machined, machining conditions, or tool specifications.
  • the configuration information CI and CI' are acquired from the control units 19 and 19' of the machine tools 10 and 10', respectively. Then, the information acquisition unit 110 selects the configuration information CI as appropriate configuration information that matches the acquired tool information TI.
  • the holding position setting unit 120 sets the holding position P of the tool T on the swivel turret 16 based on the selected configuration information CI and tool information TI. Then, the command generation unit 130 generates a drive command DC for moving the set holding position P to the delivery position EP, and outputs the drive command DC to the control unit 19 .
  • the holding position setting unit 120 sets the holding position P' of the tool T' on the rotary turret 16' based on the selected configuration information CI' and tool information TI'. Then, the command generation unit 130 generates a drive command DC' for moving the set holding position P' to the delivery position EP' and outputs it to the control unit 19'.
  • the tool T to be attached or replaced is selected by considering the configuration information CI, CI' of the plurality of machine tools 10, 10' and the appropriate turning turrets 16, 16'. It is possible to select, install and manage.
  • the configuration information CI, CI' of each of the plurality of machine tools 10, 10' is first acquired, but the configuration information CI Alternatively, it may be configured to selectively acquire CI'.
  • the information acquisition unit acquires configuration information including the current tool holding state of the tool holding mechanism (swivel turret).
  • the device itself does not require a memory for always storing the configuration information of the target device (machine tool).
  • the holding position setting unit sets a holding position for holding the tool in the tool holding mechanism based on the configuration information and the tool information of the tool, and the command generation unit transfers the holding position of the tool holding mechanism to the tool.
  • the drive command is generated by setting the holding position based on the configuration information acquired by the information acquisition unit. Therefore, even if there is a change in the specification of the target device or a change in the target device itself, it is possible to deal with the change and to eliminate the need to add or change the memory.
  • FIG. 9 is a block diagram showing the relationship between the tool management system and target devices according to the second embodiment of the present invention.
  • the same reference numerals are given to the components that can adopt the same or common configuration as the first embodiment shown in FIGS. omitted.
  • a tool management device 100 is connected to a target device (tool storage device) 20 holding a plurality of tools by wire or wirelessly. It is configured as a tool storage system that exchanges signals and data.
  • the tool storage device 20 includes a chain type tool stocker 24 as a tool holding mechanism.
  • the tool storage device 20 includes a base portion 22, a chain-type tool stocker 24 for holding and storing a plurality of tools T, a pair of pulleys 26 for rotating the chain-type tool stocker 24, and a pair of pulleys 26 for rotating the chain-type tool stocker 24.
  • a tool storage unit including a tool stocker holding section 28 containing a drive mechanism for rotating the pulley 26 and a control section 29 for controlling the operation of the tool storage device 20 as a whole.
  • a plurality of tools T1 to T14 are held at holding positions (see symbol P1 in FIG. 9) of individual chain elements C1 to C14 constituting a chain type tool stocker 24.
  • the chain-type tool stocker 24 has a plurality of chain elements C1 to C14 rotatably connected by a predetermined connection mechanism (not shown), and a tool holder ( (not shown) at holding positions P1 to P14, respectively.
  • the holding positions P1 to P14 are arranged at regular intervals in the connecting direction of the chain-type tool stocker 24 .
  • the positions of the holding positions P1 to P14 are determined depending on how far away from the reference position the position of the holding position P1 is. That is, based on the distance (length) from this reference position, the turning amount (chain element C1 to C14 movement distance) is obtained.
  • the information acquisition section 110 first acquires the configuration information CI about the chain-type tool stocker 24 from the control section 29 of the tool storage device 20 .
  • the configuration information CI includes, as an example, the number and arrangement of the holding positions P1 to P14 provided in the chain-type tool stocker 24, the number and arrangement of the tools T1 to T14 already attached to the holding positions P1 to P14, and the It contains information such as the number and the current position of the holding position P1, which is the reference position.
  • the sensors provided at the holding positions P1 to P14 respectively detect information on the presence or absence of the tools T, and control the It may be acquired via the unit 29 .
  • the information acquisition unit 110 acquires tool information TI related to the tool T to be replaced from the outside together with the configuration information CI.
  • the tool information TI at this time includes the number of tools T to be replaced, specifications, etc., as described above.
  • the information acquiring section 110 then sends the acquired configuration information CI and tool information TI to the holding position setting section 120 .
  • the holding position setting unit 120 selects the holding positions P1 to P14 of the chain-type tool stocker 24 suitable for the tool T to be replaced based on the configuration information CI and the tool information TI, and generates command number information for the holding positions. Send to section 130 . At this time, as in the case of the first embodiment, as an example, a holding position closest to the holding position P1 that is the reference position and to which the tool T is not attached is selected.
  • the command generation unit 130 determines how much the chain element C having the holding position P set so that the holding position P for the tool T set by the holding position setting unit 120 is positioned at the transfer position EP of the tool T. (i.e., how much the chain-type tool stocker 24 should rotate), and the control unit 29 of the tool storage device 20 drives the chain-type tool stocker 24 to rotate.
  • Generate a command DC Specifically, it calculates the amount of movement from the set holding position P to the transfer position EP, generates a drive command DC corresponding to the amount of rotation of the pair of pulleys 26 corresponding to the amount of movement, and sends it to the control unit 29. Output.
  • the holding position setting unit 120 and the command generation unit 130 repeat the above-described operations based on the already acquired configuration information CI.
  • the information acquisition unit 110 acquires the configuration information CI including the current tool holding state in the tool holding mechanism (chain-type tool stocker 24), so that the tool management device 100 itself is always in the tool storage device 20. It is not necessary to add a memory for storing the configuration information CI.
  • the tool management apparatus can perform Since the information acquisition unit acquires and manages the configuration information including the current tool holding state in the tool holding mechanism (chain-type tool stocker), the tool management device itself always stores the configuration information of the target device (machine tool). memory is no longer required. Further, the holding position setting unit sets a holding position for holding the tool in the tool holding mechanism based on the configuration information and the tool information of the tool, and the command generation unit transfers the holding position of the tool holding mechanism to the tool. In order to generate a drive command for moving to the transfer position, the drive command is generated by setting the holding position based on the configuration information acquired by the information acquisition unit. Therefore, even if there is a change in the specification of the target device or a change in the target device itself, it is possible to deal with the change and to eliminate the need to add or change the memory.
  • a chain type tool stocker is used as the tool holding mechanism in FIG.
  • the effects of the present invention can be obtained by calculating the amount of movement between the holding position for holding the tool and the transfer position and outputting the drive command.
  • FIG. 10 is a block diagram showing the relationship between a tool management device and target devices according to the third embodiment of the present invention.
  • the same reference numerals are given to the elements that can adopt the same or common configuration as the first embodiment and the second embodiment shown in FIGS. 1 to 9. These repetitive descriptions are omitted.
  • the tool management apparatus 100 includes, as an example, a machine tool 10 holding a plurality of tools T shown in FIG.
  • a tool storage device 20 that stores a plurality of tools T and a tool transfer device 30 that transfers tools between the machine tool 10 and the tool storage device 20 are connected to each other by wire or wirelessly.
  • the tool management device 100 according to the third embodiment constitutes a machining system in which the machine tool 10, the tool storage device 20, and the tool transfer device 30 exchange signals and data with each other.
  • the machine tool 10 is configured as a turret lathe including a base portion 12, a work holding portion 14, a swivel turret 16, a turret holding portion 18, and a control portion 19.
  • the tool storage device 20 also constitutes a tool storage unit including a base portion 22 , a chain-type tool stocker 24 , a pair of pulleys 26 , a tool stocker holding portion 28 and a control portion 29 .
  • the transfer position EP1 of the machine tool 10 and the transfer position EP2 of the tool storage device 20 are arranged at positions facing each other.
  • the tool transfer device 30 includes, as an example, a base portion 32, a robot arm 34 formed of a plurality of arms, a tool gripping portion 36 provided at one end of the robot arm 34, and the entire tool transfer device 30. and a control unit 38 for controlling the operation of the multi-joint robot mechanism.
  • the tool transfer device 30 is arranged so that the tool T can be exchanged between the machine tool 10 and the tool storage device 20 by rotating the robot arm 34 with respect to the base portion 32 .
  • the information acquisition unit 110 of the tool management device 100 acquires the tool T Along with obtaining the tool information TI, the configuration information CI2 is obtained from the control unit 29 of the tool storage device 20 . Subsequently, the holding position setting unit 120 determines whether or not there is a tool T corresponding to the acquired tool information TI in the chain type tool stocker 24 of the tool storage device 20, and if the corresponding tool T exists, it is attached. The holding position P is set and sent to the command generation unit 130 .
  • the command generation unit 130 generates a drive command DC2 for moving the holding position P set in the chain-type tool stocker 24 to the transfer position EP2, and outputs it to the control unit 29.
  • the pair of pulleys 26 of the tool storage device 20 rotates, the chain-type tool stocker 24 rotates, and the specified tool T moves to the delivery position EP2.
  • the information acquisition unit 110 acquires the configuration information CI1 from the control unit 19 of the machine tool 10. Then, the holding position setting unit 120 determines whether or not there is a holding position P corresponding to the tool T designated on the turning turret 16 of the machine tool 10, sets the holding position P, and sends the command generation unit 130 send.
  • the command generation unit 130 generates a drive command DC1 for moving the holding position P set in the swivel turret 16 to the transfer position EP1 and outputs it to the control unit 19 .
  • the revolving turret 16 of the machine tool 10 is rotated, and the holding position P for attaching the specified tool T is moved to the delivery position EP1.
  • the command generation unit 130 generates a drive command DC3 for the operation of conveying the tool T from the transfer position EP2 of the tool storage device 20 to the transfer position EP1 of the machine tool 10 to the control unit 38 of the tool transfer device 30. and output.
  • the drive command DC3 may simply be a command to start the transfer operation for the tool transfer device 30, or may be an operation command including the position from the transfer position EP2 to the transfer position EP1 and the movement of the robot arm 34.
  • the drive command DC3 to the tool transfer device 30 is generated and output after outputting the drive command DC1 or DC2 to the machine tool 10 or the tool storage device 20.
  • the command DC3 may be generated and output during operation according to the drive command DC1 or DC2.
  • the tool management system according to the third embodiment can be a machining system having both the machine tool 10 and the tool storage device 20 and having an automatic tool change function. always requires a memory for storing the configuration information of the target device (machine tool). Also, as in the case of the first and second embodiments, even if there is a change in the specification of the target device or a change in the target device itself, it is possible to deal with the change and make it possible to eliminate the need for adding or changing the memory. .
  • the present invention can also be applied in combination with the above-described embodiments.
  • tool management can be performed for a plurality of tool storage apparatuses.
  • the configuration provided with the configuration information updating section shown in the second modified example of the first embodiment may be applied to the tool management apparatus connected to the machining system shown in the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)

Abstract

本発明による、複数の工具Tを保持する工具保持機構を備えた対象装置に対して工具Tを管理する工具管理装置100は、工具保持機構における現在の工具保持状態を含む構成情報を取得する情報取得部110と、上記構成情報及び工具の工具情報に基づいて、工具保持機構における工具を保持する保持位置を設定する保持位置設定部120と、上記工具保持機構の保持位置を、工具を受け渡す受け渡し位置に移動させる駆動指令を生成する指令生成部130と、を含む。

Description

複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置
 本発明は、複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置に関する。
 機械加工等を行う工作機械において、複数の工具を用いてワークに複数種類の加工を行う場合、これら複数の工具をワークにアプローチさせるためには、加工の種類を変更するごとに主軸ヘッドに複数の工具を付け替える必要があるため、煩雑な作業と工具の交換時間とが増大していた。これを解消するために、例えば、複数の工具を取り付け可能な複数の工具取付面を有するタレットを回転自在に配置して、当該タレットを回転させることによりワークに臨む工具を切り替えるタレット旋盤等の工作機械が知られている。
 こうした工作機械の一例として、例えば特許文献1には、複数個のタレット面を備え、少なくとも1個のタレット面に複数個の工具が取り付けられ、ワーク軸芯に対して離接するX軸方向、該X軸方向及びワーク中心線であるZ軸方向に直交するY軸方向に夫々移動可能であって、旋回可能なタレットにあって、任意の工具を選択指令するタレット工具選択指令方法において、各タレット面にタレット面番号を付与するとともに各工具に工具番号を付与し、上記工具番号に対応するY軸位置情報を予め設定・記憶しておき、加工プログラムの作成時に一つのプログラム指令によって任意のタレット面番号と工具番号を同時に指定するようにし、加工プログラムの実行時において指定したタレット面番号に対応するタレット面が割り出されるとともに指定した工具番号に対応したY軸位置情報を読み出してその工具のY軸方向の位置決めを行なうようにしたことを特徴とするタレット工具選択指令方法、及び当該方法を実施する数値制御装置が開示されている。これにより、タレット面の割り出しと、工具の選択を、一つのプログラム指令で選択できるため、プログラム作成作業が容易になり、且つ、プログラム自体も簡素化されるとされている。
 一方、複数の工具により加工を行う工作機械において、当該工作機械とともに加工に供される複数の工具を保管・管理する工具保管装置を併設し、工作機械と工具保管装置との間に自動工具交換機構を配置して、複数の工具を工作機械と工具保管装置との間でやり取りするシステムが知られている。このようなシステムに適用される工具保管装置では、通常、複数の工具を工具保管装置内の決められた位置に保管するための自動制御装置が用いられている。
 こうした工具保管装置の一例として、例えば特許文献2には、段取り時に工作機械の工具マガジンに収納されている工具を入替える工具入替え装置において、前記工具マガジンに隣接して設けられ次に実施される加工作業で使用される工具を収納するサブ工具マガジンと、このサブ工具マガジンに収納された工具の収納位置を認識する工具位置認識手段と、前記次に実施される加工作業の加工プログラムを記憶するとともに前記次に実施される加工プログラム実行の順でかつ前記次に実施される加工プログラムの開始前に工具入替え指示プログラムを記憶するメモリと、前記次に実施される加工作業開始前に前記メモリに記憶されている工具入替え指示プログラムを読み取り前記工具位置認識手段で認識された前記サブ工具マガジンに収納されている工具と前記工具マガジンに収納されている工具とを入替える工具入替え手段とを具備したことを特徴とする工具入替え装置が開示されている。これにより、段取り時間を短縮できて信頼性を向上させかつ低コストの工具入替え装置を提供できるとされている。
特開平10-58279号公報 特開平2-172649号公報
 ところで、上記例示したようなタレットを備えた工作機械や工具マガジンを備えた工具入替え装置の工具管理を行う制御装置においては、それぞれの対象装置に取り付けあるいは格納される複数の工具ごとの工具位置やサイズ等の工具情報を予めまとめて記憶あるいは保存している。このため、使用する工具の本数が増加すると工具情報を記憶するために要するメモリ量も増加してしまうという問題があった。
 また、対象装置を制御する制御装置は、制御される対象装置で使用されるタレットや工具マガジンの仕様に対応した制御プログラムで動作するのが通常である。このため、対象装置の設計時に設定された工具本数の上限を変更するような仕様変更や制御対象の対象装置自体が変更された場合に対応できないという問題もあった。
 このような経緯から、対象装置の仕様変更や対象装置自体の変更があったとしても対応可能でかつメモリの増設あるいは変更が不要となる工具管理装置が求められている。
 本発明の一態様による、複数の工具を保持する工具保持機構を備えた対象装置に対して工具を管理する工具管理装置は、工具保持機構における現在の工具保持状態を含む構成情報を取得する情報取得部と、上記構成情報及び工具の工具情報に基づいて、工具保持機構における工具を保持する保持位置を設定する保持位置設定部と、上記工具保持機構の保持位置を、工具を受け渡す受け渡し位置に移動させる駆動指令を生成する指令生成部と、を含む。
 本発明の一態様によれば、情報取得部が工具保持機構における現在の工具保持状態を含む構成情報を取得するため、工具管理装置自体が常に対象装置の構成情報を記憶するためのメモリが不要となる。また、保持位置設定部が上記構成情報及び工具の工具情報に基づいて、工具保持機構における工具を保持する保持位置を設定し、指令生成部が上記工具保持機構の保持位置を、工具を受け渡す受け渡し位置に移動させる駆動指令を生成するため、情報取得部が取得した構成情報に基づいて保持位置を設定して駆動指令を生成する。このため、対象装置の仕様変更や対象装置自体の変更があったとしても対応可能でかつメモリの増設あるいは変更を不要とすることが可能となる。
本発明の第1の実施形態による工具管理装置と対象装置との関連を示すブロック図である。 図1で示した対象装置の具体的な構造の一部を抜粋して示した概略図である。 第1の実施形態による工具管理装置からの指令による工作機械の動作の一例を示す模式図である。 第1の実施形態による工具管理装置からの指令による工作機械の動作の一例を示す模式図である。 第1の実施形態による工具管理装置からの指令による工作機械の動作の一例を示す模式図である。 第1の実施形態による工具管理装置の第1変形例を示す概略図である。 第1の実施形態による工具管理装置の第2変形例を示す概略図である。 第1の実施形態による工具管理装置の第3変形例を示す概略図である。 本発明の第2の実施形態による工具管理装置と対象装置との関連を示すブロック図である。 本発明の第3の実施形態による工具管理装置と対象装置との関連を示すブロック図である。
 以下、本発明の代表的な一例による、複数の工具を保持する工具保持機構を備えた対象装置に対して前記工具を管理する工具管理装置の実施形態を図面と共に説明する。
<第1の実施形態>
 図1は、本発明の代表的な一例である、第1の実施形態による工具管理装置と対象装置との関連を示すブロック図である。また、図2は、図1で示した対象装置の具体的な構造の一部を抜粋して示した概略図である。
 図1に示すように、第1の実施形態による工具管理装置100は、複数の工具を保持する対象装置(工作機械)10と有線あるいは無線で接続され、当該工作機械10との間で信号やデータのやり取りを行う加工システムとして構成されている。ここで、第1の実施形態において、工作機械10は、工具保持機構としての旋回型タレット16を含むものが適用されている。
 工作機械10は、その一例として、ベース部12と、ワークWを所定の回転軸まわりに回転自在に保持するワーク保持部14と、複数の工具Tを保持する旋回型タレット16と、当該旋回型タレット16を回動させる駆動機構を内蔵したタレット保持部18と、工作機械10全体の動作を制御する制御部19と、を含むタレット旋盤として構成される。このようなタレット旋盤では、複数の工具Tが旋回型タレット16に対して加工刃が放射状に露出するように取り付けられており、制御部19からの指令に基づいて旋回型タレット16が回動することにより、特定の工具TをワークWに向けて接触させて加工を行う。
 旋回型タレット16は、図2に示すように、複数の工具T1~T12を放射状に取り付けるチャック等の保持機構を保持位置P1~P12にそれぞれ有している。ここで、図2の具体例では、保持位置P1~P12は、旋回型タレット16の外周に等間隔(すなわち角度30°間隔)で配置されている。
 また、旋回型タレット16において、保持位置P1~P12は、保持位置P1の角度を基準角度(0°)としてそれぞれの配置位置(角度)が決定されている。この基準角度に基づいて、後述する工具管理装置100の指令生成部130において、旋回型タレット16の旋回指令が生成される際の旋回量(角度)が求められる。さらに、旋回型タレット16において、工具Tを受け渡す(すなわち着脱する)受け渡し位置EPが設定されている。
 工具管理装置100は、図1に示すように、工作機械10の工具保持機構(旋回型タレット16)における現在の工具保持状態を含む構成情報CIを取得する情報取得部110と、構成情報CI及び工具T1~T12の工具情報TIに基づいて、旋回型タレット16における工具T1~T12を保持する保持位置P1~P12を設定する保持位置設定部120と、設定された保持位置P1~P12を受け渡し位置EPに移動させる駆動指令DCを生成する指令生成部130と、を含む。ここで、工具情報TIは、管理される工具Tの総本数や諸元、個々の工具Tが実行する加工種別等の情報を含むものであり、オペレータが手入力するか、あるいは情報取得部110が外部の記憶装置(図示せず)等にアクセスすることによって取得される。
 一方、構成情報CIは、工作機械10の旋回型タレット16の構造や各保持位置P1~P12で現在工具T1~T12を保持しているか否か等の情報を含むものであり、通常は工作機械10の制御部19が保持している。これにより、本発明による工具管理装置100は、現在の工具Tの保持情報を記憶・保存するためのメモリを常設する必要がない。
 工具管理装置100の情報取得部110は、その一例として、工作機械10の制御部19から当該工作機械10の構成情報CIを取得するとともに、外部から工具Tに対する工具情報TIを取得して、これらの情報を一時的に保存する。情報取得部110は、取得した構成情報CI及び工具情報TIのすべてあるいはそのうちの一部を抽出して保持位置設定部120に送る機能を併せて有する。
 保持位置設定部120は、情報取得部110から送られてきた構成情報CI及び工具情報TIに基づいて、旋回型タレット16において新たに取り付けられる工具Tの保持位置P1~P12を設定する。具体的には、保持位置設定部120は、構成情報CIにおける旋回型タレット16における工具Tの保持状況(すなわち保持位置P1~P12の空き状況)と、工具情報TIにおけるこれから取り付けようとする工具Tの本数や諸元(サイズ等)とを考慮して、取り付けようとする個々の工具Tに対する保持位置P1~P12を設定する。そして、設定された保持位置P1~P12の情報は指令生成部130に送られる。
 指令生成部130は、保持位置設定部120から送られてきた保持位置Pの情報に基づいて、旋回型タレット16における設定された保持位置Pを工具Tの受け渡し位置EPに移動させるための駆動指令DCを生成する。具体的には、設定された保持位置Pと受け渡し位置EPとの現在のなす角度を演算し、そのなす角度に対応したタレットの旋回動作の駆動指令DCを生成する。そして、生成された駆動指令DCは工作機械10の制御部19に送信される。
[規則91に基づく訂正 04.01.2023] 
 ここで、指令生成部130が設定された保持位置Pと受け渡し位置EPとのなす角度を演算する際には、その一例として、直接なす角度を算出する手法や旋回型タレット16の特定の保持位置Pを「基準位置」として、当該基準位置から設定された保持位置Pまでの角度と基準位置から受け渡し位置EPまでの角度との差分により算出する手法を採用しても良い。すなわち、例えば、図2に示す保持位置P1を旋回型タレット16における「基準位置」とした場合、保持位置P11を設定すると、当該保持位置P11から基準位置である保持位置P1までの角度は60°となり、保持位置P1から受け渡し位置EPまでの角度は90°となるため、旋回動作の指示角度は120°となる。
 次に、図3~図5を用いて、第1の実施形態による工具管理装置の具体的な動作を説明する。なお、図3~図5に示す具体例では、旋回型タレット16にこれから工具Tを取り付ける場合を例示しているが、指定する工具Tを旋回型タレット16から取り外すあるいは別の工具Tと交換する場合に適用しても良い。
 図3~図5は、第1の実施形態による工具管理装置からの指令による工作機械の動作の一例を示す模式図である。図3に示すように、第1の実施形態による工具管理装置100は、まず情報取得部110が、工作機械10の制御部19から旋回型タレット16についての構成情報CIを取得する。
 上述のとおり、構成情報CIには、その一例として、旋回型タレット16に設けられた保持位置P1~P12の数や配置、既に保持位置P1~P12に取り付けられている工具T1~T12の数や番号、さらには基準位置となる保持位置P1の現在角度等の情報が含まれている。なお、上記した工具T1~T12の取り付けられている位置については、保持位置P1~P12にそれぞれ設けられたセンサが工具Tの有無の情報を検出して、制御部19を介して取得しても良い。
 情報取得部110は、構成情報CIと併せて、外部から交換する工具Tに関する工具情報TIを取得する。このときの工具情報TIは、上述のとおり、交換する工具Tの本数や諸元等が含まれる。そして、情報取得部110は、取得した構成情報CIと工具情報TIとを保持位置設定部120に送る。
 保持位置設定部120は、構成情報CI及び工具情報TIに基づいて、交換対象の工具Tに適合する旋回型タレット16の保持位置P1~P12を選択し、その保持位置の番号情報を指令生成部130に送る。具体的には、例えば図3に示す配置の場合、基準位置である保持位置P1から最も近くにあって工具Tが取り付けられていない保持位置P2が選択される。
 指令生成部130は、保持位置設定部120で設定された工具Tに対する保持位置P2が工具Tの受け渡し位置EPに位置するために旋回型タレット16がどれだけの移動量で動けば良いか(すなわち、どれだけの角度で旋回すれば良いか)を算出するとともに、工作機械10の制御部19に対して旋回型タレット16を算出された移動量だけ旋回させるための駆動指令DCを生成する。具体的には、図3に示す保持位置P2の位置から受け渡し位置EPまでの旋回角度(図4に示す60°)を算出し、当該旋回角度に対応する時計回りの駆動指令DCを生成して制御部19に出力する。
 そして、複数の工具Tを旋回型タレット16に取り付ける(あるいは交換する)場合、既に取得した構成情報CIに基づいて、保持位置設定部120及び指令生成部130が上記した動作を繰り返す。こうした動作を行うことにより、情報取得部110が工具保持機構(旋回型タレット16)における現在の工具保持状態を含む構成情報CIを取得するため、工具管理装置100自体が常に工作機械10の構成情報CIを記憶するためのメモリの増設が不要となる。
 なお、図5に示すように、取り付けたい工具Tに適合する保持位置が複数ある場合には、その現在位置から受け渡し位置EPへの移動量(すなわち旋回角度)が最小となる保持位置を採用するように構成しても良い。具体的には、保持位置P2の移動量(旋回角度60°)に対して保持位置P5の移動量(旋回角度30°)の方が小さいため、保持位置P5を選択して、反時計回りの駆動指令DCを出力しても良い。これにより、工具Tの取り付け時間(交換時間)を短縮できる。
 次に、図6~図8を用いて、第1の実施形態による工具管理装置の変形例を説明する。
 図6は、第1の実施形態による工具管理装置の第1変形例を示す概略図である。第1変形例では、工作機械10の旋回型タレット16に大径の工具T1~T3と小径の工具T4~T10を混在させて取り付けた場合を示している。
 すなわち、図6に示すように、第1変形例の工具管理装置100に適用される旋回型タレット16は、上記した大径の工具T1~T3と小径の工具T4~T10で示される工具Tの種類ごとに複数の種別領域A1、A2を有している。そして、工具管理装置100の保持位置設定部120は、上記種別領域A1及びA2におけるそれぞれの算出基準位置を基準として、工具Tごとに保持位置Pを設定する。
 具体的には、大径の工具T1~T3については、種別領域A1に大径の工具に合わせた保持位置P1~P3を等間隔に配置し、移動量(旋回角度)の算出基準として保持位置P1を基準位置に設定して移動量の算出を行う。同様に、小径の工具T4~T10については、種別領域A2に小径の工具に合わせた保持位置P4~P10を等間隔に配置し、移動量(旋回角度)の算出基準として保持位置P4を基準位置に設定して移動量の算出を行う。
 このような構成により、ワークの材質や加工の種別に適した諸元の工具Tを複数種類同時に旋回型タレット16に取り付けて選択的に加工を行うことが可能となる。なお、図6に示した第1変形例では、大径と小径の2種類の工具Tの場合を例示したが、工具Tの種類を3以上とした場合でも、種別領域を増やすことにより対応できる。
 図7は、第1の実施形態による工具管理装置の第2変形例を示す概略図である。第2変形例では、旋回型タレット16の工具Tの取り付け状況に変更が生じた場合に、工作機械10の制御部19に保存されている構成情報CIを変更する機能を持たせている。
 すなわち、図7に示すように、第2変形例の工具管理装置100は、図1に示した情報取得部110、保持位置設定部120、指令生成部130に加えて、指令生成部130で生成された駆動指令DCに基づいて、構成情報CIを更新する構成情報更新部140をさらに含んでいる。構成情報更新部140は、情報取得部110が取得した構成情報CIを指令生成部130が生成した工作機械10の制御部19への駆動指令DCを考慮して変更し、変更された構成情報CIを制御部19に返送する機能を有する。
 具体的には、例えば図3及び図4に示した動作において、最初に情報取得部110が取得した構成情報CIには、「保持位置P2には工具Tが取り付けられていない」という情報が含まれている。そして、図4に示すように、新たに工具T2を保持位置P2に取り付けた場合、次に別の工具Tを取り付ける際に上記した保持位置P2に工具T2を取り付けたという情報がないと、古い構成情報CIにより既に工具T2が取り付けられた保持位置P2保持位置設定部120が繰り返し選択して設定してしまう可能性がある。
 そこで、第2変形例において、工具管理装置100に含まれる構成情報更新部140が、指令生成部130から出力された駆動指令DCに含まれる保持位置Pに対する変更情報を情報取得部110が取得した構成情報CIに対して上書き更新した新たな構成情報CI’を作成して工作機械10の制御部19に送信する。これにより、旋回型タレット16の工具Tの保持状況の最新情報を考慮した工具管理が可能となる。このとき、連続的に工具Tの取り付けあるいは交換を行う場合には、情報取得部110が常に最新の構成情報CIを取得するように動作すると良い。
 図8は、第1の実施形態による工具管理装置の第3変形例を示す概略図である。第3変形例では、工具管理装置100が複数の対象装置である工作機械10、10’に接続されて複数の対象装置に対する工具管理を行う。
 すなわち、図8に示すように、第3変形例の工具管理装置100は、複数の工具を保持する対象装置である工作機械10及び工作機械10’と有線あるいは無線で接続され、これら複数の工作機械10、10’との間で信号やデータのやり取りを行う加工システムとして構成されている。なお、図9では、工具管理装置100が2台の工作機械10、10’と接続されている場合を例示しているが、工具管理装置100が3台以上の対象装置と接続されるように構成されても良い。
 第3変形例では、工具管理装置100の情報取得部110が、所定の工具Tを取り付けるあるいは交換する際に、複数の工作機械10、10’と個別に接続することにより、工具情報TIに応じて工具Tを工作機械10あるいは10’に振り分けて管理することができる。すなわち、ワークへの加工種別や加工条件、あるいは工具の諸元ごとに指定した工作機械に工具を取り付けるあるいは交換することが可能となる。
 具体的には、例えば図8に示した構成において、工具Tを工作機械10あるいは10’に取り付けようとする場合、まず工具管理装置100の情報取得部110が、工具Tの工具情報TIを取得するとともに、工作機械10及び10’のそれぞれの制御部19及び19’から構成情報CI及びCI’と取得する。そして、情報取得部110は、取得した工具情報TIに適合する適切な構成情報として、構成情報CIを選択する。
 続いて、保持位置設定部120が、選択した構成情報CI及び工具情報TIに基づいて旋回型タレット16における工具Tの保持位置Pを設定する。そして、指令生成部130が、設定された保持位置Pを受け渡し位置EPに移動させる駆動指令DCを生成して制御部19に出力する。
 次に、別の工具T’を工作機械10あるいは10’に取り付けようとする場合、工具管理装置100の情報取得部110が、工具T’の工具情報TI’を取得する。そして、情報取得部110は、新たに取得した工具情報TI’に適合する適切な構成情報として、構成情報CI’を選択する。
[規則91に基づく訂正 04.01.2023] 
 続いて、保持位置設定部120が、選択した構成情報CI’及び工具情報TI’に基づいて旋回型タレット16’における工具T’の保持位置P’を設定する。そして、指令生成部130が、設定された保持位置P’を受け渡し位置EP’に移動させる駆動指令DC’を生成して制御部19’に出力する。
 このような動作を繰り返し実行することにより、取り付けたいあるいは交換したい工具Tを、複数の工作機械10、10’の構成情報CI、CI’を考慮して、適切な旋回型タレット16、16’を選択して取り付けて管理することが可能となる。なお、上記した具体例では、最初に複数の工作機械10、10’の各々の構成情報CI,CI’を取得する場合を例示したが、取得した工具情報TI、TI’に応じて構成情報CIあるいはCI’を選択的に取得するように構成しても良い。
 上記のような構成を備えることにより、第1の実施形態による工具管理装置は、情報取得部が工具保持機構(旋回型タレット)における現在の工具保持状態を含む構成情報を取得するため、工具管理装置自体が常に対象装置(工作機械)の構成情報を記憶するためのメモリが不要となる。また、保持位置設定部が上記構成情報及び工具の工具情報に基づいて、工具保持機構における工具を保持する保持位置を設定し、指令生成部が上記工具保持機構の保持位置を、工具を受け渡す受け渡し位置に移動させる駆動指令を生成するため、情報取得部が取得した構成情報に基づいて保持位置を設定して駆動指令を生成する。このため、対象装置の仕様変更や対象装置自体の変更があったとしても対応可能でかつメモリの増設あるいは変更を不要とすることが可能となる。
<第2の実施形態>
 図9は、本発明の第2の実施形態による工具管理装置と対象装置との関連を示すブロック図である。なお、第2の実施形態においては、図1~図8に示した第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
 図9に示すように、第2の実施形態による工具管理装置100は、複数の工具を保持する対象装置(工具保管装置)20と有線あるいは無線で接続され、当該工具保管装置20との間で信号やデータのやり取りを行う工具保管システムとして構成されている。ここで、第2の実施形態において、工具保管装置20は、工具保持機構としてのチェーン式工具ストッカ24を含むものが適用されている。
 工具保管装置20は、その一例として、ベース部22と、複数の工具Tを保持して保管するチェーン式工具ストッカ24と、当該チェーン式工具ストッカ24を回動させる一対のプーリ26と、これら一対のプーリ26を回転させる駆動機構を内蔵した工具ストッカ保持部28と、工具保管装置20全体の動作を制御する制御部29と、を含む工具保管ユニットを構成している。このような工具保管装置20では、複数の工具T1~T14がチェーン式工具ストッカ24を構成する個々のチェーン要素C1~C14の保持位置(図9の符号P1参照)に保持されており、制御部29からの指令に基づいて一対のプーリ26が回転してチェーン式工具ストッカ24が回動することにより、特定の工具Tを受け渡し位置EPに移動させる。
 チェーン式工具ストッカ24は、その一例として、複数のチェーン要素C1~C14が所定の連結機構(図示せず)により回動自在に連結されており、複数の工具T1~T14を保持する工具ホルダ(図示せず)を保持位置P1~P14にそれぞれ有している。ここで、図9の具体例では、保持位置P1~P14は、チェーン式工具ストッカ24の連結方向に対して等間隔となるように配置されている。
 また、チェーン式工具ストッカ24において、保持位置P1~P14は、保持位置P1の位置を基準位置として、それぞれ基準位置からどの程度の距離が離れているかにより配置位置が決定される。すなわち、この基準位置からの距離(長さ)に基づいて、後述する工具管理装置100の指令生成部130において、チェーン式工具ストッカ24の旋回指令が生成される際の旋回量(チェーン要素C1~C14の移動距離)が求められる。
 次に、図9を用いて、第2の実施形態による工具管理装置の具体的な動作を説明する。第2の実施形態による工具管理装置100は、まず情報取得部110が、工具保管装置20の制御部29からチェーン式工具ストッカ24についての構成情報CIを取得する。
 ここで、構成情報CIには、その一例として、チェーン式工具ストッカ24に設けられた保持位置P1~P14の数や配置、既に保持位置P1~P14に取り付けられている工具T1~T14の数や番号、さらには基準位置となる保持位置P1の現在位置等の情報が含まれている。なお、第1の実施形態と同様に、上記した工具T1~T14の取り付けられている位置については、保持位置P1~P14にそれぞれ設けられたセンサが工具Tの有無の情報を検出して、制御部29を介して取得しても良い。
 情報取得部110は、構成情報CIと併せて、外部から交換する工具Tに関する工具情報TIを取得する。このときの工具情報TIは、上述のとおり、交換する工具Tの本数や諸元等が含まれる。そして、情報取得部110は、取得した構成情報CIと工具情報TIとを保持位置設定部120に送る。
 保持位置設定部120は、構成情報CI及び工具情報TIに基づいて、交換対象の工具Tに適合するチェーン式工具ストッカ24の保持位置P1~P14を選択し、その保持位置の番号情報を指令生成部130に送る。このとき、第1の実施形態の場合と同様に、その一例として、基準位置である保持位置P1から最も近くにあって工具Tが取り付けられていない保持位置が選択される。
 指令生成部130は、保持位置設定部120で設定された工具Tに対する保持位置Pが工具Tの受け渡し位置EPに位置するために設定された保持位置Pを有するチェーン要素Cがどれだけの移動量で動けば良いか(すなわち、チェーン式工具ストッカ24がどれだけ旋回すれば良いか)を算出するとともに、工具保管装置20の制御部29に対してチェーン式工具ストッカ24の旋回を行うための駆動指令DCを生成する。具体的には、設定された保持位置Pの受け渡し位置EPまでの移動量を算出し、当該移動量に対応する一対のプーリ26の回転量に対応する駆動指令DCを生成して制御部29に出力する。
 そして、複数の工具Tをチェーン式工具ストッカ24に取り付ける(あるいは交換する)場合、既に取得した構成情報CIに基づいて、保持位置設定部120及び指令生成部130が上記した動作を繰り返す。こうした動作を行うことにより、情報取得部110が工具保持機構(チェーン式工具ストッカ24)における現在の工具保持状態を含む構成情報CIを取得するため、工具管理装置100自体が常に工具保管装置20の構成情報CIを記憶するためのメモリの増設が不要となる。
 上記のような構成を備えることにより、第2の実施形態による工具管理装置は、対象装置が加工を行う工作機械10から工具を保管管理する工具保管装置20に変更された場合であっても、情報取得部が工具保持機構(チェーン式工具ストッカ)における現在の工具保持状態を含む構成情報を取得して管理を行うため、工具管理装置自体が常に対象装置(工作機械)の構成情報を記憶するためのメモリが不要となる。また、保持位置設定部が上記構成情報及び工具の工具情報に基づいて、工具保持機構における工具を保持する保持位置を設定し、指令生成部が上記工具保持機構の保持位置を、工具を受け渡す受け渡し位置に移動させる駆動指令を生成するため、情報取得部が取得した構成情報に基づいて保持位置を設定して駆動指令を生成する。このため、対象装置の仕様変更や対象装置自体の変更があったとしても対応可能でかつメモリの増設あるいは変更を不要とすることが可能となる。
 なお、第2の実施形態において、図9では工具保持機構としてチェーン式の工具ストッカの場合を例示したが、工具保持機構としては周知の構造、例えばラック式マガジンやドラム式のマガジン等を適用しても良い。これらの構造においても、工具を保持する保持位置と受け渡し位置との移動量を算出して駆動指令を出力することにより、本願発明の効果を得ることができる。
<第3の実施形態>
 図10は、本発明の第3の実施形態による工具管理装置と対象装置との関連を示すブロック図である。なお、第3の実施形態においては、図1~図9に示した第1の実施形態及び第2の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
 図10に示すように、第3の実施形態による工具管理装置100は、その一例として、図1で示した複数の工具Tを保持してワークWの加工を行う工作機械10と、図9で示した複数の工具Tを保管する工具保管装置20と、これら工作機械10及び工具保管装置20との間で工具の受け渡しを行う工具受け渡し装置30と、の間で互いに有線あるいは無線で接続されている。そして、第3の実施形態による工具管理装置100は、工作機械10、工具保管装置20及び工具受け渡し装置30との間で相互に信号やデータのやり取りを行う加工システムを構成している。
 図10に示すように、工作機械10は、ベース部12と、ワーク保持部14と、旋回型タレット16と、タレット保持部18と、制御部19と、を含むタレット旋盤として構成される。また、工具保管装置20は、ベース部22と、チェーン式工具ストッカ24と、一対のプーリ26と、工具ストッカ保持部28と、制御部29と、を含む工具保管ユニットを構成している。そして、これらの工作機械10の受け渡し位置EP1と工具保管装置20の受け渡し位置EP2とが、それぞれ対向する位置に配置されている。
 一方、工具受け渡し装置30は、その一例として、ベース部32と、複数のアームで形成されたロボットアーム34と、当該ロボットアーム34の一端に設けられた工具把持部36と、工具受け渡し装置30全体の動作を制御する制御部38と、を含む多関節ロボット機構として構成される。そして、工具受け渡し装置30は、ロボットアーム34がベース部32に対して回動することにより、工作機械10と工具保管装置20との間で工具Tのやり取りができるように配置されている。
 次に、第3の実施形態による工具管理装置100によって、工作機械10と工具保管装置20との間で工具Tをやり取りする動作について説明する。
 第3の実施形態で示した加工システムでは、例えば所定の工具Tを工具保管装置20から取り出しで工作機械10に取り付けようとする場合、まず工具管理装置100の情報取得部110が、工具Tの工具情報TIを取得するとともに、工具保管装置20の制御部29から構成情報CI2を取得する。続いて、保持位置設定部120が、工具保管装置20のチェーン式工具ストッカ24に取得した工具情報TIに対応する工具Tがあるかどうかを判別し、対応する工具Tが存在する場合は取り付けられている保持位置Pを設定して指令生成部130に送る。
 次に、指令生成部130が、チェーン式工具ストッカ24において設定された保持位置Pを受け渡し位置EP2に移動させるための駆動指令DC2を生成して制御部29に出力する。これにより、工具保管装置20の一対のプーリ26が回転してチェーン式工具ストッカ24が回動し、指定された工具Tが受け渡し位置EP2に移動される。
 続いて、情報取得部110が、工作機械10の制御部19から構成情報CI1を取得する。そして、保持位置設定部120が、工作機械10の旋回型タレット16に指定された工具Tに対応する保持位置Pがあるかどうかを判別し、当該保持位置Pを設定して指令生成部130に送る。
 次に、指令生成部130が、旋回型タレット16において設定された保持位置Pを受け渡し位置EP1に移動させるための駆動指令DC1を生成して制御部19に出力する。これにより、工作機械10の旋回型タレット16が回動し、指定された工具Tを取り付けるための保持位置Pが受け渡し位置EP1に移動される。
 続いて、指令生成部130が、工具受け渡し装置30の制御部38に対して、工具保管装置20の受け渡し位置EP2から工作機械10の受け渡し位置EP1に工具Tを搬送する動作の駆動指令DC3を生成して出力する。このとき、駆動指令DC3は、単に工具受け渡し装置30に対する受け渡し動作を開始する指令でも良いし、受け渡し位置EP2から受け渡し位置EP1への位置やロボットアーム34の動きを含む動作指令であっても良い。
 このような動作により、工具管理装置100からの指令に基づいて、工具保管装置20のチェーン式工具ストッカ24から所定の工具Tを工作機械10の旋回型タレット16に自動で移動させることが可能となる。なお、上記の動作を逆の流れで指令を行うことにより、工作機械10の旋回型タレット16から所定の工具Tを取り外して工具保管装置20のチェーン式工具ストッカ24に移動させることも可能である。
 また、上記の具体例では、工具受け渡し装置30への駆動指令DC3を、工作機械10あるいは工具保管装置20への駆動指令DC1又はDC2に出力した後に生成して出力する場合を例示したが、駆動指令DC3を駆動指令DC1あるいはDC2による動作中に生成して出力するように構成しても良い。これにより、工具受け渡し装置30が動作する待機時間が少なくなるため、工具Tを移動する際の所要時間が削減できる。
 上記のような構成を備えることにより、第3の実施形態による工具管理装置は、工作機械10及び工具保管装置20を両方備えた自動工具交換機能を有する加工システムであっても、工具管理装置自体が常に対象装置(工作機械)の構成情報を記憶するためのメモリが不要となる。また、第1及び第2の実施形態の場合と同様に、対象装置の仕様変更や対象装置自体の変更があったとしても対応可能でかつメモリの増設あるいは変更を不要とすることが可能となる。
 なお、本発明は、上記した実施形態を組合せて適用することも可能である。例えば、第2の実施形態で示した工具保管装置を複数台、本発明による工具管理装置に接続することにより、複数の工具保管装置に対して工具管理を行うこともできる。また、第3の実施形態で示した加工システムに接続される工具管理装置に、第1の実施形態の第2変形例で示した構成情報更新部を備える構成を適用しても良い。
 本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 10 工作機械
 16 旋回型タレット
 20 工具保管装置
 24 チェーン式工具ストッカ
 30 工具受け渡し装置
 34 ロボットアーム
 100 工具管理装置
 110 情報取得部
 120 保持位置設定部
 130 指令生成部
 140 構成情報更新部

Claims (8)

  1.  複数の工具を保持する工具保持機構を備えた対象装置に対して前記工具を管理する工具管理装置であって、
     前記工具保持機構における現在の工具保持状態を含む構成情報を取得する情報取得部と、
     前記構成情報及び前記工具の工具情報に基づいて、前記工具保持機構における前記工具を保持する保持位置を設定する保持位置設定部と、
     前記工具保持機構の前記保持位置を、前記工具を受け渡す受け渡し位置に移動させる駆動指令を生成する指令生成部と、
    を含む工具管理装置。
  2.  前記保持位置設定部は、前記受け渡し位置への移動量が最小となるように前記保持位置を設定する
    請求項1に記載の工具管理装置。
  3.  前記工具保持機構は、前記工具の種類ごとに複数の種別領域を有しており、
     前記保持位置設定部は、前記種別領域における算出基準位置を基準として、前記工具ごとに前記保持位置を設定する
    請求項1に記載の工具管理装置。
  4.  前記駆動指令に基づいて、前記構成情報を更新する構成情報更新部をさらに含む
    請求項1~3のいずれか1項に記載の工具管理装置。
  5.  前記対象装置は複数で構成されており、
     前記情報取得部は、当該複数の前記対象装置から各々の前記対象装置に対応する構成情報を取得するとともに、前記工具情報を考慮して前記対応する構成情報のうちの適切なものを選択する機能をさらに有する
    請求項1~4のいずれか1項に記載の工具管理装置。
  6.  前記対象装置は工作機械であり、前記工具保持機構は前記工作機械の旋回型タレットである
    請求項1~5のいずれか1項に記載の工具管理装置。
  7.  前記対象装置は工具保管装置であり、前記工具保持機構は前記工具保管装置の工具ストッカである
    請求項1~5のいずれか1項に記載の工具管理装置。
  8.  前記対象装置は、工作機械及び工具保管装置であり、
     前記工作機械は、第1の工具保持機構として旋回型タレットを備え、
     前記工具保管装置は、第2の工具保持機構として工具ストッカを備え、
     前記保持位置設定部は、前記第1の工具保持機構に対する第1の構成情報及び前記工具情報に基づいて第1の保持位置を設定するとともに、前記第2の工具保持機構に対する第2の構成情報及び前記工具情報に基づいて第2の保持位置を設定し、
     前記指令生成部は、前記第1の保持位置を前記受け渡し位置に移動させる第1の駆動指令を生成するとともに、前記第2の保持位置を前記受け渡し位置に移動させる第2の駆動指令を生成する
    請求項1~5のいずれか1項に記載の工具管理装置。
PCT/JP2021/040495 2020-11-06 2021-11-04 複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置 WO2022097660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021004516.4T DE112021004516T5 (de) 2020-11-06 2021-11-04 Werkzeugverwaltungsvorrichtung zur Verwaltung von Werkzeugen einer Zielvorrichtung mit einem Werkzeughaltemechanismus, der mehrere Werkzeuge hält
US18/249,970 US20230398650A1 (en) 2020-11-06 2021-11-04 Tool management device that manages tools of target device including tool holding mechanism that holds a plurality of tools
JP2022560797A JPWO2022097660A1 (ja) 2020-11-06 2021-11-04
CN202180074031.XA CN116547106A (zh) 2020-11-06 2021-11-04 对具备保持多个工具的工具保持机构的对象装置的工具进行管理的工具管理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020185677 2020-11-06
JP2020-185677 2020-11-06

Publications (2)

Publication Number Publication Date
WO2022097660A1 WO2022097660A1 (ja) 2022-05-12
WO2022097660A9 true WO2022097660A9 (ja) 2023-04-06

Family

ID=81457041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040495 WO2022097660A1 (ja) 2020-11-06 2021-11-04 複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置

Country Status (5)

Country Link
US (1) US20230398650A1 (ja)
JP (1) JPWO2022097660A1 (ja)
CN (1) CN116547106A (ja)
DE (1) DE112021004516T5 (ja)
WO (1) WO2022097660A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530472B1 (ja) * 2023-03-27 2024-08-07 Dmg森精機株式会社 マガジン装置、及び、それを備えた工作機械
KR102642083B1 (ko) * 2023-12-15 2024-02-29 주식회사 이안하이텍 6축다관절로봇과 연동된 atc시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248439A (ja) * 1985-08-29 1987-03-03 Toshiba Corp 工具マガジン装置
JPH02172649A (ja) 1988-12-24 1990-07-04 Toshiba Corp 工具入替え装置
JP3207125B2 (ja) 1996-08-22 2001-09-10 スター精密株式会社 タレット工具選択指令方法
JP2008238356A (ja) * 2007-03-28 2008-10-09 Brother Ind Ltd 工作機械、工作機械の工具マガジン制御プログラム及び工具マガジン制御プログラム記録媒体
JP6761004B2 (ja) * 2018-07-26 2020-09-23 ファナック株式会社 工具管理システム、工具管理装置及び工具管理方法
JP6779406B1 (ja) * 2020-07-20 2020-11-04 Dmg森精機株式会社 工作機械

Also Published As

Publication number Publication date
US20230398650A1 (en) 2023-12-14
CN116547106A (zh) 2023-08-04
DE112021004516T5 (de) 2023-07-06
WO2022097660A1 (ja) 2022-05-12
JPWO2022097660A1 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2022097660A9 (ja) 複数の工具を保持する工具保持機構を備えた対象装置の工具を管理する工具管理装置
US11712770B2 (en) Machine tool
KR20180008177A (ko) 자동 공구교환 장치 및 이를 이용한 자동 공구교환 방법
JPH0220371B2 (ja)
JP4694715B2 (ja) 電気部品装着ライン
US20070184954A1 (en) Method and system for loading and unloading a machine tool with tools
CN211554727U (zh) 机床、加工系统以及管理系统
JP4947534B2 (ja) 工作機械及び工作機械を操作する方法
CN101109949B (zh) 用于在机械加工设备和传递装置之间交换信息的系统
JP6342940B2 (ja) 工作機械用自動工具交換システム
US8249741B2 (en) Control of machine tools comprising a tool magazine and an intermediate storage station
JP5186055B2 (ja) 電気回路板組立システム
JPS641270B2 (ja)
KR101787602B1 (ko) 공구 교환 시간을 획기적으로 감소시킬 수 있는 자동 공구 교환 장치를 포함하는 공작 기계
JP5396529B2 (ja) 電気回路板組立システム
JP5073043B2 (ja) 電気回路板組立システム
US10974385B2 (en) Redundant, diverse collision monitoring
CN113579818A (zh) 刀库控制方法及加工设备
JPH06246599A (ja) Fmsにおける加工スケジュール制御方法
EP1837133A1 (en) An industrial production arrangement and a method for production
JP4330403B2 (ja) 工作機械
CN206224218U (zh) 工具清洗装置
JP5124695B2 (ja) 電気回路板組立システム
JPS62259738A (ja) Nc工作機械工具自動供給装置
CN116880347B (zh) 运动控制的二维位置比较系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180074031.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21889213

Country of ref document: EP

Kind code of ref document: A1