[go: up one dir, main page]

WO2022075348A1 - 性状が改善されたディーゼル燃料の製造方法及び製造システム - Google Patents

性状が改善されたディーゼル燃料の製造方法及び製造システム Download PDF

Info

Publication number
WO2022075348A1
WO2022075348A1 PCT/JP2021/036923 JP2021036923W WO2022075348A1 WO 2022075348 A1 WO2022075348 A1 WO 2022075348A1 JP 2021036923 W JP2021036923 W JP 2021036923W WO 2022075348 A1 WO2022075348 A1 WO 2022075348A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
enzyme
phase
water
diesel fuel
Prior art date
Application number
PCT/JP2021/036923
Other languages
English (en)
French (fr)
Inventor
直彌 吉川
浩康 中村
Original Assignee
直彌 吉川
浩康 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直彌 吉川, 浩康 中村 filed Critical 直彌 吉川
Priority to JP2022555522A priority Critical patent/JPWO2022075348A1/ja
Priority to EP21877647.4A priority patent/EP4227386A4/en
Priority to US18/248,304 priority patent/US20240150661A1/en
Publication of WO2022075348A1 publication Critical patent/WO2022075348A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/63Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/40Applying a magnetic field or inclusion of magnets in the apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing diesel fuel. More specifically, a method for producing diesel oil, which is manufactured using petro diesel as a starting material, conforms to various standards required by JIS standards, EN standards, etc., and whose properties are improved compared to the original starting material, and Regarding the manufacturing system.
  • Diesel fuel is generally an oil distillate having a boiling point range of about 170 to 370 ° C., and is used as a diesel fuel, for example, as a fuel for an automobile diesel engine, other power generation, a fuel for a diesel engine of agriculture / construction machinery, and heating of a boiler or the like. It is used as fuel for fuel (hereinafter referred to as petro diesel fuel based on petroleum diesel fuel).
  • Petrodiesel is composed of approximately 75% saturated hydrocarbons (mainly paraffins containing n, iso, and cycloparaffin) and 25% aromatic hydrocarbons (including naphthalene and alkylbenzenes).
  • Table 1 shows the standards for light oil in Japan
  • Table 2 shows the standards in Europe (EN590).
  • biodiesel In addition to petroleum diesel, biodiesel, BTL, GTL, and other non-petroleum-derived alternatives are being developed.
  • biodiesel a method for extracting oil from a carbonaceous raw material previously invented by the inventors of the present application by thermal decomposition or a lipase derived from a specific yeast in the presence of fat and alcohol as described in Patent Document 1 is used.
  • a method for producing biodiesel that carries out an esterification reaction of fats and oils.
  • Diesel engines that use such light oil have the advantages of good fuel efficiency and high torque, but nitrogen oxides (NO x ) and particulate matter (PM) are abundantly present in the exhaust gas. , Has the drawback that the exhaust gas is not clean. Therefore, diesel engines that use light oil are subject to various emission regulations.
  • NO x nitrogen oxides
  • PM particulate matter
  • Euro 5 introduced in the European Union (EU) region from 2009 is a stricter emission regulation for automobiles that is more environmentally friendly, and is a diesel passenger car compared to Euro 4 introduced in 2005.
  • the PM (particulate matter) was 80% (0.025 g / km to 0.005 g / km), and the NO x (nitrogen oxide) was 20% (0.25 g / km to 0.2 g / km).
  • the EU has called for an upper limit on emissions for diesel and gasoline vehicles at Euro 1, which was already introduced in 1992. Subsequently, the standards have shifted to Euro 2 (January 1996), Euro 3 (January 2000), and Euro 4 (January 2005).
  • Euro 4 it is strict to halve the PM and NO x of diesel passenger cars and halve CO (carbon monoxide), hydrocarbons and NO x for gasoline passenger cars.
  • Euro 5 will introduce stricter regulations, which will cover all new models 18 months after they take effect and all newly registered vehicles 36 months after they take effect.
  • Euro 6 there is a plan to shift to Euro 6, which requires diesel vehicles to have emission standards comparable to those of gasoline vehicles, and interest in hybrid vehicles, bioethanol fuel, hydrogen fuel, fuel cells, etc. It is showing a rise.
  • exhaust gas recirculation that takes in a part of the exhaust gas after combustion and re-intakes it mainly for the purpose of reducing nitrogen oxides (NO x ) in the exhaust gas and improving fuel efficiency at the time of partial load.
  • EGR exhaust Gas Recirculation
  • a three-way catalyst (Threee-Way Catalyst, TWC) carrying platinum, palladium, and rhodium is used to provide hydrocarbons (HC) and monoxide, which are harmful substances contained in the exhaust gas.
  • a device for simultaneously removing carbon (CO) and nitrogen oxides (NO x ) is used.
  • an SCR: selective catalytic reduction denitration device (SCR) that converts NO x into nitrogen molecules N 2 and water H 2 O by a catalyst has also been proposed as a NO x purification device.
  • SCR selective catalytic reduction denitration device
  • an exhaust gas purification system that combines EGR and urea SCR using a urea catalyst was adopted by some major automobile manufacturers, but automobile manufacturers who were reluctant to adopt it due to the high cost are reluctant to adopt it. As a result, it developed into a misconduct called exhaust gas camouflage.
  • Patent Document 2 Patent No. 53382678 has been proposed as a low compression ratio clean diesel engine that employs EGR without using a NO x catalyst in addition to a form to be retrofitted to a diesel engine.
  • Patent Document 3 contains 2 to 15 parts of a low-temperature fluidity improver (ethylene vinyl acetate copolymer-based additive) and 5 to 25 parts of a cetane number improver (alkyl nitrate having 6 or 8 carbon atoms). It is said that the amount of the cleaning agent (imide-based additive) for preventing stains on the fuel injection nozzle is 1 to 10 parts, and the cetane number improving agent is mainly due to the generation of nitro radicals. In addition, these premium diesel fuels have disappeared from the market at the end of 2012 due to high costs and other reasons.
  • a low-temperature fluidity improver ethylene vinyl acetate copolymer-based additive
  • cetane number improver alkyl nitrate having 6 or 8 carbon atoms
  • Patent Document 4 discloses a method for producing a fuel for producing fuel oil by reacting enzyme water produced by mixing a natural plant complex enzyme with water with petroleum-based oil. According to this method, it is described that fuel efficiency can be improved, it is easy to suppress the generation of harmful substances, and it is stable.
  • the method according to Patent Document 4 is a method of producing fuel oil from each petroleum-based oil, and when this is applied to light oil-based fuel, the reaction time is very long, and the obtained fuel is also Japan or Europe. It is difficult to obtain diesel fuel with stable properties because it may deviate from the standards such as. In addition, the performance of the obtained oil varies depending on the properties of the source oil as a starting material. Furthermore, as with general diesel fuel, there is a conflict between suppressing exhaust gas such as NO x , SO x , CO, and PM to produce clean exhaust gas, and improving combustion efficiency and fuel efficiency. It is not applicable to the task.
  • an object of the present invention is to provide a method for efficiently producing a diesel fuel that conforms to the standards of each country and has various properties improved as compared with the starting material, using light oil derived from petro diesel as a starting material. Is.
  • Another object of the present invention is to provide a system for efficiently producing diesel fuel that conforms to the standards of each country and has various properties improved as compared with the starting material, using light oil derived from petro diesel as a starting material. Is.
  • the present invention that solves the above problems relates to the following items. 1
  • a source oil consisting of petrodiesel-derived light oil as a starting material
  • the cetane number, cetane index, polycyclic aromatic mass, pour point, sulfur content mass, and 10% residual carbon content mass of the residual oil are compared with the source oil.
  • a method for producing diesel fuel with improved properties which comprises.
  • any one of 1 to 3 comprising an impurity removing step of applying a pulse wave or shaking the oil-water mixture to remove impurities in the oil phase.
  • Soft water having a hardness of 0 to 60 mg / L is used as a water source for the aqueous enzyme solution, and the first enzyme is added thereto and aged for at least 60 hours while being exposed to air at a temperature of 20 ° C to 30 ° C.
  • a Aqueous phase prepared by mixing a water-soluble alcohol into an aqueous solution of an enzyme containing 0.01 to 0.10% by mass of lipase enzyme as the first enzyme so as to be an aqueous solution of an alcohol having a concentration of 20 to 35% is stored while aerating.
  • C1 An oil-water mixing tank in which the prepared oil phase is weighed and added to the water phase at a predetermined pressure so that the liquid temperature is within a predetermined range.
  • a separation and purification device that separates and refines diesel fuel with improved properties obtained by C3 reaction from the aqueous phase, and C4 A diesel fuel production system comprising a diesel fuel production line equipped with a storage tank for storing separated and refined diesel fuel.
  • the aqueous phase line further includes an enzyme mixing tank that mixes raw water from a water source and lipase enzyme as a first enzyme, and an aeration device that matures a mixed solution of the raw water and lipase enzyme under aeration to prepare an enzyme aqueous solution.
  • an enzyme mixing tank that mixes raw water from a water source and lipase enzyme as a first enzyme
  • an aeration device that matures a mixed solution of the raw water and lipase enzyme under aeration to prepare an enzyme aqueous solution.
  • water is mixed with a water-soluble alcohol so as to be a 20-35% alcohol aqueous solution with an enzyme aqueous solution containing a lipase enzyme as a first enzyme, using a source oil consisting of petrodiesel-derived light oil as a starting material.
  • a source oil consisting of petrodiesel-derived light oil as a starting material.
  • the obtained diesel fuel conforms to the performance standards of each country, and has a cetane number, cetane index, polycyclic aromatic mass, ignition point, sulfur content mass, and 10% residual carbon content mass of residual oil compared to the original oil. At least one of the properties selected from the group consisting of pour point, ash mass and viscosity has been improved. More specifically, the cetane number (cetane index) and flash point increase, and the aromatic content, kinematic viscosity, and sulfur content decrease, resulting in a high-quality diesel fuel.
  • the source oil is a diesel fuel that does not conform to the standards of each country, for example, even if a raw material with a cetane index of about 40 or a raw material with a sulfur content of about 0.5% by mass is used, the diesel fuel that conforms to the standards of each country can be used. can get.
  • the obtained diesel fuel with improved properties is applied to a diesel engine (diesel engine)
  • the amount of CO, SO x and PM generated decreases without increasing NO x in the exhaust gas.
  • This overcomes the disadvantages that NO x and PM are easily emitted and the exhaust gas is not clean, while maintaining the advantages of diesel fuel such as good fuel economy and high torque, and the manufacturing method of the present invention. Only achieved with improved properties of diesel fuel produced by.
  • a system for stably producing diesel fuel having improved properties conforming to the standards of each country is provided.
  • FIG. 1 It is a flowchart which shows the process of the manufacturing method of the diesel fuel of this invention.
  • A) is a flowchart showing the aqueous phase preparation step in FIG. 1
  • (b) is a flowchart showing the water reforming step in (a).
  • (A) and (b) are schematic diagrams showing an embodiment in which the diesel fuel production line in the diesel fuel production system of the present invention is mobile. It is a schematic diagram which shows another example of the structure of the diesel fuel production system of this invention.
  • the "crude petrodiesel” is a petrodiesel that has been incompletely refined and does not satisfy at least one of the properties shown in Tables 1 and 2, for example, contains about 0.5% by mass of sulfur. Say Petro Diesel.
  • Diesel fuel diesel fuel mainly composed of petrodiesel or petrodiesel
  • Table 1 in the country of use, for example, Japan
  • Table 2 in Europe. It means diesel fuel that satisfies the physical characteristics of.
  • Improved properties means that the physical properties specified in each country are improved compared to the original starting material.
  • the diesel fuel obtained by the production method of the present invention is manufactured by using such petro diesel or crude petro diesel as a source oil and its properties are improved as compared with the source oil, and has properties conforming to the standards of each country. It is a diesel fuel having.
  • FIG. 1 An enzyme aqueous solution is first prepared, and a predetermined amount of alcohol is added to the prepared enzyme aqueous solution to prepare an aqueous phase to prepare petro diesel as a raw material.
  • a predetermined amount of alcohol is added to the prepared enzyme aqueous solution to prepare an aqueous phase to prepare petro diesel as a raw material.
  • the amount of diesel fuel in the oil phase is increased, and the oil phase obtained by separating the oil phase and the aqueous phase is refined by a precision filter. It is a method of manufacturing diesel fuel to obtain (upgraded) diesel fuel that meets the standards of each country.
  • the first enzyme used in the present invention is a lipase enzyme or a mixture of a lipase enzyme and a cellulase enzyme for hydrolysis or catalytic decomposition by stirring and mixing with an oil phase, which will be described later, and then contacting the oil phase.
  • the enzyme is not particularly limited as long as it is a lipase enzyme exhibiting the action and effect of the above, and is conventionally selected from the production of biodiesel and the lipase-based enzyme described in Patent Document 4.
  • the enzyme SUPER X sold by GGI Worldwide Management Limited is preferable.
  • This enzyme is an enzyme-containing carrier containing about 70 to 90% by mass of fruit-based lipase and about 30 to 10% by mass of cellulase enzyme in a zeolite carrier (hereinafter referred to as the first enzyme).
  • an enzyme aqueous solution of the first enzyme is first prepared, and the enzyme concentration in the enzyme aqueous solution at this time is 0.01 to 0.10 for the lipase enzyme as the first enzyme. It may be added so as to be by mass%, or it may be diluted and added as the first enzyme so as to be 0.01 to 0.10% by mass of the lipase enzyme.
  • the water used to prepare this aqueous enzyme solution is preferably soft water having a hardness of 0 to 60 mg / L. It is not preferable to use water having a hardness of more than 60 mg / L because the enzyme activity may be inhibited by minerals such as calcium.
  • so-called softening When the hardness of the raw water used is so-called hard water exceeding 60 mg / L, it is preferable to perform so-called softening so that the hardness is 60 mg / L, preferably less than 30 mg / L.
  • Such softening is generally performed by a water softening device using a conventionally known water filter for softening.
  • the raw water used is reformed.
  • Modifications applicable in the present invention include, for example, modifications such as breaking hydrogen bonds in water molecules using magnetism.
  • radicals are applied to water, the applied radicals are amplified and maintained, and then the radicals are eliminated once or repeatedly.
  • the present invention is subjected to such a desired softening treatment, added to raw water having a modified hardness of 60 mg / L or less so as to have a first enzyme of 0.01 to 0.10% by mass, and then at 20 to 30 ° C. Aeration is carried out at a temperature (room temperature) for at least 60 hours, preferably 72 hours to activate the enzyme.
  • a temperature room temperature
  • the effect of the present invention that is, the enzyme water for the aqueous phase for increasing the amount of the source oil and reforming and producing the diesel fuel conforming to the standards of each country is prepared. ..
  • aging is required for at least 72 hours, but as shown in FIG. 2 (b), when soft water of a predetermined hardness is modified and treated as a raw material, the aging time is required. It is possible to reduce the aging time, which was required for 72 hours or more, to 60 hours.
  • the enzyme in the zeolite carrier is used as the first enzyme as in the present embodiment, it is used before mixing with the oil phase so that the used zeolite does not mix with the oil phase, preferably at the completion of aging.
  • Zeolite carrier is removed by a filter.
  • another enzyme for example, a lipase-based enzyme having a different origin, cellulase, or the like can be added prior to or during the aging step.
  • a water-soluble alcohol is added and mixed with the enzyme aqueous solution prepared in this manner so as to form a 20-35% alcohol aqueous solution to prepare an aqueous phase.
  • the alcohol that can be used in the present invention is not particularly limited as long as it is a water-soluble alcohol, and examples thereof include methanol, ethanol (including bioethanol), n-propanol, i-propanol, and mixtures thereof. Methanol is preferable because it is easily available and inexpensive.
  • the (crude) petrodiesal that constitutes the oil phase and is the source oil has an oil fraction of 170 to 370 ° C. as described above, and is about 75% saturated hydrocarbon (mainly n, iso).
  • saturated hydrocarbon mainly n, iso
  • paraffin containing cycloparaffin and 25% aromatic hydrocarbons (including naphthalene and alkylbenzene), and high boiling point compounds such as sulfur, nitrogen compounds, metals and asphaltene are present as impurities.
  • Patent Document 4 is mainly for the purpose of reforming heavy oil and increasing the amount of fuel, and does not consider producing fuel that meets the standards of each country.
  • the present inventor made a diligent study so that the diesel fuel conforming to the standards of each country obtained as a whole can be reproduced with good reproduction while reforming the original oil.
  • a pineapple-derived enzyme containing a predetermined amount of bromelain with respect to the original oil was found to be solved by adding a second enzyme dissolved in light oil, and was created based on such a technical idea.
  • This second enzyme is sold as SUPER X by GGI Worldwide Management Limited as a cetane improver for diesel fuel. According to the experiment of the present inventor, the addition of a small amount of this enzyme in the oil phase improves the startability, especially at low temperature, increases the cetane number, increases the combustion efficiency and reduces the generation of PM. It is a cetane improver.
  • the aqueous phase which is an alcohol aqueous solution containing a predetermined amount of the first enzyme, and the oil phase containing a predetermined amount of the second enzyme are stirred and mixed, and the first enzyme in the aqueous phase is directly or water.
  • the phase and the oil phase are brought into contact with each other through the interface to reform the (crude) diesel fuel, which is the main oil, and to carry out an increase reaction to produce the light oil component itself.
  • the present invention improves the fluidity, the distillation properties and the reduction of aromatic components by the action of the second enzyme, enhances the reactivity of the oil phase, and improves the properties of the obtained diesel fuel. That is, by increasing the fluidity, a pulse wave is applied to the oil phase and the oil phase is shaken to increase the degree of contact with the interface with the aqueous phase.
  • the reactivity of the aqueous phase with alcohol is enhanced by opening the ring of aromatic components and reducing the molecular weight of diesel oil. Therefore, it is possible to increase the yield (10 to 20%) and shorten the reaction time (about 10% to 20%) as compared with the case where the second enzyme is not added to the oil phase.
  • the ratio of the aqueous phase to the oil phase is 2 to 4: 8 to 6, preferably 2.5 to 3.5: 7.5 to 6.5, and more preferably about 7: 3 in terms of volume ratio. .. If the amount of the aqueous phase is larger than the following range, it is disadvantageous in terms of the treatment of water after the reaction and the cost of the alcohol content of the reaction. On the contrary, if it is less than the above range, the reaction becomes insufficient.
  • the mixing method of the aqueous phase and the oil phase is a temperature at room temperature (about 25 ° C.) at a pressure of 2.5 to 3 MPa in the oil phase and at a temperature at which the first enzyme (and the second enzyme) is not inactivated.
  • the aqueous phase is added at a liquid temperature preferably kept at 45 ° C. or lower so as not to exceed 60 ° C., and similarly, stirring is performed while keeping the liquid temperature below 60 ° C., preferably 45 ° C. or lower.
  • the reason why the liquid temperature is kept below 60 ° C. is that the first enzyme may be inactivated if the temperature exceeds 60 ° C.
  • the stirring method may be mixing with a blade, it is preferable to stir by causing a swirl flow from the viewpoint of not causing frictional heat.
  • a pulse wave is applied to the oil-water mixture by a pulse generator, or the oil-water mixture is shaken by a shaking device to retain impurities. Separates and removes solids and metals via the aqueous phase.
  • the oil phase and the aqueous phase are continuously or intermittently contacted with each other by shaking or stirring and left at room temperature for several hours, preferably 20 hours or more, more preferably 40 hours or more to proceed with the reforming and reaction. ..
  • the first enzyme permeates from the aqueous phase to the oil phase from the interface between the oil phase and the aqueous phase, and the higher hydrocarbon is produced by hydrolysis and catalytic cracking of the hydrocarbon in the diesel fuel as a raw material. Lower hydrocarbon formation proceeds (reaction from the interface).
  • the aromatic components in the oil phase are olefinized and sequentially converted to lower olefins, and the elements such as N and S in the aromatic are mediated by the aqueous phase. It is removed when the oil and water are separated.
  • the diesel fuel reformed and manufactured in this way is reformed into a high-quality diesel fuel by increasing the cetane number (cetane index) and flash point, reducing the aromatic content, kinematic viscosity, and sulfur content. ..
  • diesel fuel can be obtained in an amount of about 22.5 to 45% by volume with respect to the original oil, that is, 1.225 to 1.45 times the volume of the original oil as a whole.
  • Table 3 shows the exhaust gas components performed using the combustion chamber (62.5 kW / 1800 rpm) in comparison with the source oil as a raw material.
  • the density, aromatic content, distillation property 90% distillation temperature, and sulfur content are due to the interaction between the action of the first enzyme from the interface and the action of the second enzyme in the oil phase.
  • the cetan index has increased a little.
  • the diesel fuel produced by the production method of the present invention has various properties improved as compared with the original oil used as a starting material, and when it is used in a diesel engine, it is compared with the original oil. It can be said that clean exhaust gas is emitted.
  • the method for producing a diesel fuel having improved properties of the present invention improves the fluidity of the source oil by adding the second enzyme to the source oil. Therefore, by applying a pulse or shaking to the oil phase in which the second enzyme is added to the original oil, the contact conditions with the aqueous phase are improved as compared with the case where the second enzyme is not added. Therefore, it is considered that the reaction efficiency is increased, and the yield can be increased (10 to 20%) and the reaction time can be shortened (10 to 20%).
  • diesel fuel manufacturing system The property-improved diesel fuel of the present invention having such excellent properties can be produced, for example, by the system shown in FIGS. 3 to 5.
  • the aqueous phase is prepared based on the straight enzyme aqueous solution which is used as it is without diluting the enzyme water, but the concentrate of the first enzyme is prepared. It is also within the scope of the present invention to dilute this so as to have a predetermined concentration of an aqueous enzyme solution before use.
  • the manufacturing system of the present invention includes an aqueous phase preparation line WL (aqueous phase line A in the claim), an oil phase preparation line OL (the oil phase line B in the claim), and a diesel fuel production line PL (the diesel fuel in the claim). It is mainly composed of production line C).
  • the aqueous phase preparation line WL includes an enzyme mixing tank 12 for adding and mixing raw water from the water source WS and lipase enzyme as a first enzyme, and an aging tank 13 for aging a mixed solution of raw water and lipase enzyme to prepare an enzyme aqueous solution. And a first mixing tank 14 for preparing an aqueous phase by adding alcohol to the prepared enzyme aqueous solution.
  • the aqueous phase preparation line WL may be an aqueous phase line composed of an aqueous phase tank for storing the aqueous phase while aerating it.
  • raw water from the water source WS is stored in the raw water tank 10 and used after confirming whether or not it meets the raw material standards.
  • the water has a hardness, that is, soft water having a small amount of minerals that inhibit the activity of enzymes such as calcium and magnesium contained in the water.
  • a hardness of 0 to 100 mg / L is classified as soft water, 101 to 300 mg / L is classified as medium hard water, and 301 mg / L or more is classified as hard water, but in the present invention, soft water of 60 mg / L or less is preferable.
  • water softening having a function of replacing cations such as calcium ions and magnesium ions contained in the water with sodium ions by the action of an ion exchange resin. It is reformed by the apparatus (water reformer 11).
  • water from the water source WS containing chlorine or microorganisms in excess of a predetermined value such as tap water
  • a predetermined amount in the case of an undiluted straight enzyme aqueous solution, 0.01 to 0.10% by mass of the first enzyme
  • a predetermined amount is added to the raw water thus modified as desired in the enzyme mixing tank 12.
  • Add the enzyme is added.
  • the aqueous solution to which the enzyme is added in this way is aerated in the aging tank 13 with an aeration device (not shown) at room temperature for 60 hours (when a reformer described later is used) or longer, generally 72 hours or longer. Aged.
  • the aging tank 13 In the system of the present invention, aging for 60 hours or more, generally 72 hours or more is required, so that the aging tank 13 becomes enormous for the preparation of a large amount of enzyme solution and the production of diesel fuel. .. Therefore, the aging tank 13 can be composed of a plurality of tanks 13 arranged in parallel and / or in series. Alternatively, the enzyme aqueous solution may be prepared as a concentrated solution and diluted when mixed with alcohol.
  • the aqueous enzyme solution in the (final) aging tank 13 thus prepared is then transferred to the first mixing tank 14, where a predetermined amount of alcohol is added.
  • the transfer line to the first mixing tank 14 is provided with a filter for removing the zeolite carrier.
  • another enzyme for example, a lipase-based enzyme having a different origin, cellulase, or the like may be added as an auxiliary before the addition of the alcohol.
  • the enzyme aqueous solution to which alcohol is added is stored in the aqueous phase tank WT while being aerated by an aeration device (not shown) until it is used as the aqueous phase.
  • the oil phase preparation line OL is an oil phase preparation line equipped with a source oil tank OS for preparing and storing the source oil as a raw material, and adding a predetermined amount of the second enzyme to prepare the oil phase.
  • a predetermined amount of the second enzyme is added by a second enzyme addition device 20a to a predetermined amount of the original oil transferred from the original oil tank OS and introduced into the oil phase preparation tank 20.
  • the oil phase prepared in the oil phase preparation tank 20 is transferred to the oil phase tank OT and stored there until it is mixed with the aqueous phase.
  • the aqueous phase in the aqueous phase tank WT and the oil phase in the oil phase tank OT separately prepared and stored separately in advance in the aqueous phase preparation line WL and the oil phase preparation line OL prepared in this way, respectively. Is mixed and reacted on the diesel fuel production line PL to produce diesel fuel.
  • the oil-water mixing tank 30 first introduces and fills the oil phase in the oil phase tank OT via the pump Po so that the water phase has a predetermined volume ratio in the oil phase, and then fills the filled oil phase. It is a tank in which an aqueous phase WP is pressure-fed through a pump Pw within a predetermined pressure and a predetermined temperature range to add and mix.
  • the stirring tank 31 is a tank for stirring the oil-water mixture mixed in the oil-water mixing tank 30.
  • the stirring means at this time may be a blade or the like, but it is preferable to include a stirring device that generates a swirl flow for mixing oil and water while controlling the generation of heat.
  • the mixed / stirred oil-water mixture is continuously or intermittently brought into contact with the oil phase and the aqueous phase in the reaction tank 34 at room temperature for several hours, preferably 24 hours or more, more preferably 48 hours or more. Leave it to react.
  • a pulse applying device 32 for applying a pulse wave to the oil-water mixture is provided, and the mixture is shaken and stirred by the pulse wave.
  • reaction tank 34 Since this reaction also requires a long period of time, it is preferable to configure the reaction in a plurality of reaction tanks 34, preferably reaction tanks 34 connected in series. Since the reaction proceeds even if the oil-water mixture sufficiently mixed and stirred in the reaction tank 34 is allowed to stand, the reaction tank 34 on the subsequent stage side does not need to be provided with a shaking device, a pulse applying device 32, or the like. Further, when a plurality of reaction tanks 34 are arranged in series, a shaking device, a pulse applying device 32, or the like may be provided.
  • the first enzyme permeates from the aqueous phase to the oil phase from the interface between the oil phase and the aqueous phase, and the higher hydrocarbon is produced by hydrolysis and catalytic cracking of the hydrocarbon in the diesel fuel as a raw material.
  • Lower hydrocarbon formation proceeds (reaction from the interface).
  • the aromatic components in the oil phase are olefinized and sequentially converted to lower olefins, and the elements such as N and S in the aromatic are mediated by the aqueous phase. It is removed when the oil and water are separated.
  • the system of the present invention reforms the source oil and uses the source oil as a raw material to generate about 22.5 to 45% by volume of diesel fuel that can meet the standards of each country, that is, as a whole. Diesel fuel can be reliably produced in an amount of 1.225 to 1.45 times the capacity 1 of the original oil.
  • FIG. 3 The same components as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the aqueous phase preparation line WL having a large reaction time and installation location needs to be installed at a fixed installation location, but the oil phase preparation line OL and the diesel fuel production line PL are not necessarily installed at the fixed location.
  • it can be placed in the transport container shown in FIG. 4 (a) and installed in a moving body M such as a truck or a ship as shown in FIG. 4 (b).
  • the diesel fuel production line PL can be installed on the loading platform of the mobile body M or the like, preferably in a transportation container.
  • the aqueous phase prepared in the aqueous phase preparation line WL and the oil phase prepared in the oil phase preparation line OL are sequentially charged into the mixing tank 30, and the present invention is being moved, moved to, or both.
  • FIG. 3 and 4 The same components as those in FIGS. 3 and 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • the amount of water used in the aqueous phase preparation line WL is large, and the water reformed for this purpose is water for various purposes, such as water for emergency measures in the event of a disaster, drinking water, domestic water, and agricultural water. It is possible to use it in combination.
  • the reformer 11 applies radicals to water, amplifies and maintains the applied radicals, and then eliminates the radicals once or repeatedly.
  • water is mixed with a water-soluble alcohol so as to be a 20-35% alcohol aqueous solution with an enzyme aqueous solution containing a lipase enzyme as a first enzyme, using a source oil consisting of petrodiesel-derived light oil as a starting material.
  • a source oil consisting of petrodiesel-derived light oil as a starting material.
  • the obtained diesel fuel conforms to the performance standards of each country, and has a cetane number, cetane index, polycyclic aromatic mass, ignition point, sulfur content mass, and 10% residual carbon content mass of residual oil compared to the original oil. At least one of the properties selected from the group consisting of pour point, ash mass and viscosity has been improved. More specifically, the cetane number (cetane index) and flash point increase, and the aromatic content, kinematic viscosity, and sulfur content decrease, resulting in a high-quality diesel fuel.
  • the source oil is a diesel fuel that does not conform to the standards of each country, for example, even if a raw material with a cetane index of about 40 or a raw material with a sulfur content of about 0.5% by mass is used, the diesel fuel that conforms to the standards of each country can be used. can get.
  • the obtained diesel fuel with improved properties is applied to a diesel engine (diesel engine)
  • the amount of CO, SO x and PM generated decreases without increasing NO x in the exhaust gas.
  • This overcomes the disadvantages that NO x and PM are easily emitted and the exhaust gas is not clean, while maintaining the advantages of diesel fuel such as good fuel economy and high torque, and the manufacturing method of the present invention. Only achieved with improved properties of diesel fuel produced by.
  • a system for stably producing diesel fuel having improved properties conforming to the standards of each country is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

出発原料の元油と比較してセタン価、セタン指数、多環芳香族質量、引火点、硫黄分質量、10%残油の残留炭素分質量、流動点、灰分質量及び粘度からなる群から選択された性状の少なくとも1つが改善されたディーゼル燃料は第1酵素としてリパーゼ酵素0.01~0.10質量%を含有する酵素水溶液に、水溶性アルコールを20~35%濃度のアルコール水溶液なるように混合して水相を調製し、前記元油に対してブロメラインを含むパイナップル由来酵素0.0001~0.01質量%を軽油に溶解した第2の酵素軽油溶液を前記元油に添加して油相を調製し、油相に水相を60℃を超えない温度を保持しながら水相:油相の容量比が2~4:8~6となるように添加し、油相と水相とを混合して、振盪や攪拌により接触させながら常温で放置して水相と油相とを反応させて油相の性状を改善するとともにディーゼル燃料を生成する。 

Description

性状が改善されたディーゼル燃料の製造方法及び製造システム
 本発明は、ディーゼル燃料の製造方法に関する。より詳しく述べるとペトロディーゼルを出発原料として製造し、JIS規格、EN規格等で要求される各種規格に合致しなおかつその性状が元の出発原料と比較して改善されているディーゼルオイルの製造方法及び製造システムに関する。
 軽油は、一般に沸点範囲がおよそ170~370℃の石油留分であり、ディーゼル燃料として、例えば自動車用ディーゼルエンジン用燃料として、その他発電、農業・建設機械のディーゼルエンジン用燃料、さらにボイラー等の加熱用燃料として使用されている(石油系ディーゼル燃料以下、ペトロディーゼルという)。
 ペトロディーゼルは、約75%の飽和炭化水素(主にn、iso、およびシクロパラフィンを含むパラフィン)と、25%の芳香族炭化水素(ナフタレンおよびアルキルベンゼンを含む)で構成されている。表1に日本における軽油の規格、表2に欧州における規格(EN590)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 また、ペトロディーゼルに加えてバイオディーゼル、BTL、またはGTLなど、石油に由来しない代替品の開発が進んでいる。例えば、バイオディーゼルとしては本願発明者等が先に発明した炭素質原料を熱分解により油分を取り出す方法や特許文献1に記載のように油脂とアルコールの存在下特定の酵母由来のリパーゼを用いて油脂のエステル化反応を行うバイオディーゼルの製造方法がある。
 このような軽油を用いるディーゼルエンジンは、燃費が良い点と高トルクを得ることができるというメリットがあるが、排ガス中に窒素酸化物(NO)と粒子状物質(PM)が多量に存在し、排ガスがクリーンでないという欠点を有している。そのため、軽油を用いるディーゼルエンジンは各種排ガス規制の対象となっている。
 排ガス規制として、例えば、2009年から欧州連合(EU)域内において導入されるユーロ5は、環境に配慮したより厳しい自動車の排出ガス規制であり、05年導入のユーロ4に比して、ディーゼル乗用車に対してPM(粒子状物質)を80%(0.025g/kmから0.005g/km)、NO(窒素酸化物)も20%(0.25g/kmから0.2g/km)とする、排出量の大幅な削減を求めている。EUでは、すでに1992年に導入されたユーロ1で、ディーゼル車とガソリン車について、排出量の上限を求めた。続いて基準は、ユーロ2(96年1月)、ユーロ3(2000年1月)、さらにユーロ4(05年1月)へ移行してきている。特にユーロ4では、ディーゼル乗用車のPMとNOを半減し、ガソリン乗用車にもCO(一酸化炭素)、炭化水素、NOの半減を求めるという厳しいものである。ユーロ5では、さらに厳しい規制が導入されるもので、発効後18カ月ですべての新型車、36カ月ですべての新規登録車が対象となる。さらにまた14年には、ディーゼル車に対し、ガソリン車並みの排出基準を求める、ユーロ6への移行も予定されており、ハイブリッド車や、バイオエタノール燃料、水素燃料、燃料電池などへの関心の高まりを見せている。
 ディーゼル燃料からの排ガス対策として、主として排気ガス中の窒素酸化物(NO)の低減や部分負荷時の燃費向上を目的とした燃焼後の排気ガスの一部を取り入れ、再度吸気させる排気再循環(Exhaust Gas Recirculation:EGR)システムが提案されている。
 また、ディーゼル燃料からの別の排ガス対策として、プラチナ、パラジウム、ロジウムを担持した三元触媒(Three-Way Catalyst, TWC)により、排ガス中に含まれる有害物質である炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)を同時に除去する装置が使用されている。
 さらに、NOを触媒により窒素分子Nと水HOに転換するSCR:選択触媒還元脱硝装置(Selective catalytic reduction, SCR)もNO浄化装置として提案されている。特に、EGRと尿素系触媒を用いた尿素SCRを組み合わせた排ガス浄化システムが一部の大手自動車メーカーにより採用されていたが、コストがかかるために採用に消極的だった自動車メーカーは採用に消極的であり、それによって排ガス偽装という不祥事まで発展した。
 このように、ディーゼルエンジンに後付けする様式に加えて、NO触媒を用いずEGRを採用した低圧縮比クリーンディーゼルエンジンとして特許文献2(特許第5338268号公報)が提案されている。
 ディーゼルエンジン側を工夫するのとは別の試みとして、ディーゼル燃料そのものを改質する試みもなされている。
 1990年代、石油供給会社は、一般的な軽油(ノーマル軽油)より付加価値の高い軽油としてプレミアム軽油を発売した。このプレミアム軽油は一般的な軽油(ノーマル軽油)に対し、燃料噴射系の汚れを落とす「清浄剤」、自己着火(発火)性を向上し、低温始動時の白煙や高負荷時の黒煙を減少させるセタン価向上剤(セタン価+3程度)、防錆剤が添加されている(特許文献3:特開平5-132682号公報)。
 なお、特許文献3の組成物は、低温流動性向上剤(エチレン酢酸ビニルコポリマー系添加剤)を2~15部、セタン価向上剤(炭素数6または8のアルキルナイトレート)を5~25部、燃料噴射ノズルの汚れ防止用清浄剤(イミド系添加剤)を1~10部なり、セタン価向上剤は主としてニトロラジカルの生成によるものであるといわれている。
 また、これらの各社プレミアム軽油は、コストが高いこと等の理由で2012年を最後に市場から消えている。
 また、特許文献4には、天然植物性複合酵素を水に混合して作成された酵素水を石油系の油と反応させて燃料油を製造する燃料の製造方法が開示されている。この方法によると、燃料効率を向上でき、有害物質の発生を抑制するのが容易であり、しかも安定していると記載されている。
特開2002-233393号公報 特許第5338268号公報 特開平5-132682号公報 特許第4397432号公報
 しかしながら、特許文献4による方法は、各石油系の油から燃料油を製造する方法であり、これを軽油系の燃料に適応すると、反応時間が非常に長く、また得られる燃料も日本国や欧州等の規格から外れる場合もあり、安定した性状のディーゼル燃料を得ることは困難である。また、出発原料となる元油の性質に応じて、得られたオイルの性能にばらつきが生じる。さらに、一般のディーゼル燃油と同様に、NO,SO,CO,PM等の排ガスを抑制してクリーンな排ガスとするということと、燃焼効率を向上して燃費を向上させるということの相反する課題に適用できるものではない。
 そこで、ほぼ全ての国の基準に適合し、ほぼすべてのディーゼルエンジン(ディーゼル機関)に対して燃費が良く高トルクを得るというメリットを生かしつつ、NOとPMを抑制し、クリーンな排ガスを排出するディーゼル燃料に対する要望がある。
 従って、本発明の課題は、ペトロディーゼル由来の軽油を出発原料にして、各国の規格に適合し、出発原料に比較して各種性状が改善されたディーゼル燃料を効率よく製造する方法を提供することである。
 本発明の別の課題は、ペトロディーゼル由来の軽油を出発原料にして、各国の規格に適合し、出発原料に比較して各種性状が改善されたディーゼル燃料を効率よく製造するシステムを提供することである。
 上記課題を解決する本発明は、次の各項目に関する。
1 ペトロディーゼル由来の軽油からなる元油を出発原料として、前記元油と比較してセタン価、セタン指数、多環芳香族質量、引火点、硫黄分質量、10%残油の残留炭素分質量、流動点、灰分質量及び粘度からなる群から選択された性状の少なくとも1つが改善されたディーゼル燃料の製造方法であって、
下記工程:
(a) 第1酵素としてリパーゼ酵素0.01~0.10質量%を含有する酵素水溶液に、水溶性アルコールを20~35%濃度のアルコール水溶液なるように混合して水相を調製する水相調製工程、
(b) 前記元油に対してブロメラインを含むパイナップル由来酵素0.0001~0.01質量%を軽油に溶解した第2酵素の軽油溶液を前記元油に添加して油相を調製する油相調製工程と、
(c) 油相調製工程(b)で調製した油相に工程(a)で調製した水相を60℃を超えない温度を保持しながら水相:油相の容量比が2~4:8~6となるように添加し、油相と水相とを攪拌下に混合する油水混合工程と、
(d) 連続してあるいは間欠的に油水混合物に振盪や攪拌により接触させながら常温で放置して水相と油相とを反応させて油相の性状を改善するとともにディーゼル燃料を生成する反応工程と、
(e) 反応工程(d)後に、油相を水相から分離し、分離した油相を精密濾過により精製する分離・精製工程と、
を含むことを特徴とする性状が改善されたディーゼル燃料の製造方法。
2 前記(c)油水混合工程は、前記油相中に2.5~3MPaの圧力で液温が40℃を超えないように水相を添加することを特徴とする1に記載の方法。
3 前記攪拌を渦巻流により行うことを特徴とする1又は2に記載の方法。
4 さらに油水混合工程(c)後に、前記油水混合物にパルス波を付与するか振盪を施し、油相中の不純物を除去する不純物除去工程を含むことを特徴とする1から3のいずれか1項に記載の方法。
5 前記酵素水溶液の水源として硬度0~60mg/Lの軟水を使用し、これに前記第1酵素を添加して20℃から30℃の温度で曝気しながら少なくとも60時間前記第1酵素を熟成させて、酵素水溶液を調製し、調製した酵素水溶液に前記アルコールを添加して水相を調製することを特徴とする特徴とする1から4のいずれか1項に記載の方法。
6 前記軟水にラジカル付与処理とラジカル消去処理を1回又は複数回繰り返して前記軟水を改質することを特徴とする請求項3に記載のディーゼル燃料の製造方法。
7 請求項1から請求項6のいずれか1項に記載の方法により得られた性状が改善されたディーゼル燃料。
8 1から6のいずれか1項に記載の方法により性状が改善されたディーゼル燃料を製造するディーゼル燃料製造システムであって、
A 第1酵素としてリパーゼ酵素0.01~0.10質量%を含有する酵素水溶液に、水溶性アルコールを20~35%濃度のアルコール水溶液なるように混合して調製した水相を曝気しながら保存する水相タンクを備えた水相ラインと、
B1 ペトロディーゼル由来の軽油からなる元油を保存する元油タンク及び、
B2 前記元油に第2酵素を添加して油相を調製する油相調製部を備えた油相ラインと、
C1 調製した油相を計量添加し、これに水相を所定圧力で液温が所定範囲内となるように軽量添加する油水混合タンク、
C2 油水混合タンクからの油水混合物を振盪する振盪装置及び/又はパルス付与するパルス付与装置を備えた反応タンク、
C3 反応して得られた性状が改善されたディーゼル燃料を水相から分離して精製する分離精製装置及び、
C4 分離精製した性状が改善されたディーゼル燃料を貯蔵する貯蔵タンクを備えたディーゼル燃料製造ラインを含むことを特徴とするディーゼル燃料製造システム。
9 前記反応タンクの後段に振盪装置及び/又はパルス付与装置を備えたあるいは備えていないさらに少なくとも1つの反応タンクを備えたことを特徴とする8に記載のシステム。
10 前記ディーゼル燃料製造ラインは、移動体に搭載されていることを特徴とする8又は9に記載のシステム。
11 前記水相ラインはさらに、水源からの原水と第1酵素としてのリパーゼ酵素を混合する酵素混合タンクと、前記原水とリパーゼ酵素の混合溶液を曝気下で熟成して酵素水溶液を調製する曝気装置を具備した熟成タンクと、調製した酵素水溶液にアルコールを添加して水相を調製する混合タンクとを備えたことを特徴とする9に記載のシステム。
12 リパーゼ系酵素を含むアルコール水溶液からなる水相と、元油としてペトロディーゼル又は粗製ペトロディーゼルからなる油相とを混合して反応させてディーゼル燃料を製造するにあたって、油相に添加する反応促進剤としてブロメラインを含むパイナップル由来酵素を使用する方法。
 本発明によると、ペトロディーゼル由来の軽油からなる元油を出発原料として、第1酵素としてリパーゼ酵素を含有する酵素水溶液に、水溶性アルコールを20~35%アルコール水溶液となるように混合して水相を、反応促進剤として第2酵素であるブロメラインを含むパイナップル由来酵素を予め添加した油相と反応させることによって、元油に対して約22.5~45容量%、すなわち全体で元油の容量1に対して、1.225~1.45倍量でディーゼル燃料を得ることができる。また、第2の酵素を添加しない場合に比較して反応時間も1割から2割程度短くなる。
 得られたディーゼル燃料は、各国の性能基準に適合し、元油と比較してセタン価、セタン指数、多環芳香族質量、引火点、硫黄分質量、10%残油の残留炭素分質量、流動点、灰分質量及び粘度からなる群から選択された性状の少なくとも1つが改善されている。より具体的にはセタン価(セタン指数)や引火点が上昇し、芳香族含有率、動粘度、硫黄分が減少し質の良いディーゼル燃料となる。
 元油が各国の規格に適合していないディーゼル燃料の場合でも、例えばセタン指数が40程度の原料や硫黄分が0.5質量%程度の原料を用いても各国の規格に適合するディーゼル燃料が得られる。
 さらに、得られた性状が改善されたディーゼル燃料をディーゼル機関(ディーゼルエンジン)に適用すると、排ガス中のNOが増加することになしに、CO、SOやPMの発生量が減少する。このことは、燃費が良い点と高トルクを得るができるというディーゼル燃料のメリットを維持しつつ、NOとPMが出しやく、排ガスがクリーンでないという欠点を克服しており、本発明の製造方法によって製造された性状が改善されたディーゼル燃料によってはじめて達成される。
 さらに、本発明によると各国の規格に適合した改善した性状を有するディーゼル燃料を安定的に製造するシステムが提供される。
本発明のディーゼル燃料の製造方法の工程を示すフローチャートである。 (a)は図1における水相調製工程を示すフローチャートであり、(b)は(a)における水の改質工程を示すフローチャートである。 本発明のディーゼル燃料製造システムの構成の一例を示す模式図である。 (a)及び(b)は、本発明のディーゼル燃料製造システムにおけるディーゼル燃料製造ラインを移動式にした実施形態を示す模式図である。 本発明のディーゼル燃料製造システムの構成の別の一例を示す模式図である。
 以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。
 なお、本発明において使用する用語は以下の意義を有する。
 「ペトロディーゼル」とは、一般に沸点範囲がおよそ170~370℃の石油留分であり、表1~表2の規格に該当する物性を有している。
 「粗製ペトロディーゼル」とは、精製が不完全なペトロディーゼルであり、表1~表2に記載の性状のうち少なくとも1つの性状を満足していない、例えば硫黄分が0.5質量%程度含むペトロディーゼルを言う。
 「各国の規格に適合」とは、使用国、例えば日本においては表1に規定の物性を満足するディーゼル燃料(ペトロディーゼル又はペトロディーゼルを主体としたディーゼル燃料)を、欧州においては表2に規定の物性を満足するディーゼル燃料を意味する。
 「性状が改善された」とは、各国で規定する物性が元の出発原料と比較して改善されていることを示す。
 本発明の製造方法で得られるディーゼル燃料は、このようなペトロディーゼル又は粗製ペトロディーゼルを元油として用いてその性状が元油と比較して改善されて製造された、各国の規格に適合する性状を有するディーゼル燃料である。
(製造方法)
 以下、図1~図3に基づいて、本発明のディーゼル燃料の製造方法を説明する。
 本発明の本発明のディーゼル燃料の製造方法は、図1に示す通り、まず酵素水溶液を調製し、調製した酵素水溶液に所定量のアルコールを添加して水相を調製し、原料となるペトロディーゼルから構成された油相と混合して、反応させることによって、油相中のディーゼル燃料を増量させ、油相と水相とを分離して得られた油相を精密フィルタにより精製することにより、各国の規格に適合する(アップグレードされた)ディーゼル燃料を得るディーゼル燃料の製造方法である。
 一般に、ディーゼル燃料の性状とディーゼル機関から排出される排ガス特性との関係については多くの報告があり、燃料性状で影響の大きいものとして、セタン価(セタン指数)、蒸留性状、芳香族組成などが主要な指標として挙げられている。セタン価(セタン指数)はエンジン内における燃焼と密接に関係しているためほとんどの排ガス成分に影響を与えるのに対し、蒸留性状については重質分の増加が粒子状物質(PM)に影響を与えるといわれている。芳香族成分が増加するとPMの排出が増加するといわれており、さらにNOの排出を増加させるとも考えられる。本発明の製造方法で製造されたディーゼル燃料は、このような二律背反な事項を克服し、燃料の性状を改善しなおかつ粒子状物質(PM)とNOの排出量を抑えることが可能である(後述の表3参照のこと)。
 本発明において使用する第1酵素は、後述する油相との攪拌・混合、その後の接触により加水分解や接触分解するためのリパーゼ酵素あるいはリパーセ酵素とセルラーゼ酵素の混合物であり、このような本発明の作用・効果を示すリパーゼ酵素であれば特に限定されるものではなく、従来バイオディーゼルの製造や特許文献4に記載のリパーゼ系の酵素から選択される。好ましくは、GGI ワールドワイド マネージメント リミテッドから販売される酵素SUPER Xが好ましい。この酵素は、ゼオライト担体中に果実系のリパーゼ約70~90質量%とセルラーゼ酵素約30~10質量%を含んだ酵素含有担体である(以下、第1酵素という)。
 図2(a)に示す通り、本発明においては、まず第1酵素の酵素水溶液を調製するが、この際の酵素水溶液中の酵素濃度は、第1酵素としてリパーゼ酵素0.01~0.10質量%となるように添加してもよく、あるいは希釈して第1酵素としてリパーゼ酵素0.01~0.10質量%となるように添加してもよい。
 そして、この酵素水溶液を調製するために使用する水は、硬度0~60mg/Lの軟水であることが好ましい。硬度60mg/Lを超える水を使用するとカルシウム等のミネラル分により酵素活性が阻害される可能性があるので好ましくない。
 使用する原水の硬度が60mg/Lを超えるいわゆる硬水である場合、硬度を60mg/L、好ましくは30mg/L未満にするいわゆる軟水化を行うことが好ましい。このような軟水化には、従来周知の軟水化用の水フィルタを用いた軟水化装置により行うことが一般的である。
 軟水化に加えて、本発明の好ましい実施形態では、使用する原水を改質する。本発明で適用可能な改質としては、例えば磁気を用いて水分子における水素結合を分断するような改質があげられる。
 本発明の好ましい実施形態によると、図2(b)に示す通り、水に対してラジカルを付与し、付与したラジカルを増幅維持した後、ラジカルを消去することを1回または繰り返し行う。
 本発明者等によるとラジカル発生工程と、ラジカル増幅・維持工程とラジカル消去工程を繰り返す装置に軟水を通過させると水中の微生物が殺滅され、浸透性が高まり、酸化還元電位が低減することが分った。このような水の環境下で第1酵素を添加熟成すると第1酵素の拡散熟成速度や活性化が増加し、約10%~20%の熟成時間が短縮されることが分った。このような装置は、例えば本発明者等による特開2008-15506号公報に記載されている。
 本発明はこのような所望により軟水化処理し、改質した硬度が60mg/L以下の原水に第1酵素0.01~0.10質量%となるように添加した後、20~30℃の温度(室温)で曝気しながら少なくとも60時間、好ましくは72時間熟成を行い酵素を活性化させる。このような条件で熟成することにより、本発明の効果、すなわち元油の量の増量と各国の規格に適合するディーゼル燃料を改質し、製造するための水相用の酵素水が調製される。所定硬度の軟水を使用する場合には、少なくとも72時間の熟成が必要であるが、図2(b)に示す通り、所定の硬度の軟水を改質処理した水を原料とした場合、熟成時間の短縮、例えば72時間以上必要だった熟成時間が60時間まで短縮することが可能である。
 なお、本実施形態のように第1酵素としてゼオライト担体中の酵素を使用する場合、使用済のゼオライトが油相と混合しないように油相と混合する前に、好ましくは熟成完了時に、使用済のゼオライト担体をフィルタにより除去する。
 なお、本発明の特定の実施形態において、この熟成工程に先立ってあるいは熟成工程中に補助的に他の酵素、例えば由来の異なるリパーゼ系酵素やセルラーゼ等を添加することができる。
 このようにして調製した酵素水溶液に対して水溶性アルコールを20~35%アルコール水溶液となるように添加・混合して水相を調製する。本発明において使用できるアルコールは水溶性アルコールであれば特に限定されるものではなく、例えばメタノール、エタノール(バイオエタノール含む)、n-プロパノール、i-プロパノール及びこれらの混合物が挙げられる。入手の容易性や安価であることからメタノールが好ましい。
 一方、本発明において油相を構成し、元油となる(粗製)ペトロディーゼルには、前述の通り170~370℃の石油留分であり、約75%の飽和炭化水素(主にn、iso、およびシクロパラフィンを含むパラフィン)と、25%の芳香族炭化水素(ナフタレンおよびアルキルベンゼンを含む)で構成され、不純物として硫黄、窒素化合物や金属、アスファルテン等の高沸点化合物が存在している。
 これを特許文献4に記載の通り、単に第1酵素のみで反応させると、同一の元油を用いて同一の条件で反応を行っても得られたディーゼル燃料の性状は一定でなくなり、場合によっては各国の規格に適合しないディーゼル燃料となる場合もあった。
 これは、特許文献4は主として重油の改質と燃料の増量を目的としたものであって、各国の規格に合致する燃料を製造することを考慮していないからである。
 本発明者は、元油を改質しながら全体として得られる各国の規格に適合するディーゼル燃料を再現良く再現できるように鋭意検討したところ、元油に対して所定量のブロメラインを含むパイナップル由来酵素を軽油に溶解した第2酵素を添加することによって解決することを見出し、このような技術的思想に基づいて創作されたものである。
 この第2酵素は、ディーゼル燃料のセタン改良剤として、GGI ワールドワイド マネージメント リミテッドからSUPER Xとして販売されている。本発明者の実験によると、油相中にこの酵素を微量添加すると、始動性、特に低温時での始動性が改善され、セタン価が増加し、燃焼効率も上昇しPMの発生が減少するセタン改良剤である。
 本発明においては、所定量の第1酵素を含有するアルコール水溶液である水相と所定量の第2酵素を含有する油相とを攪拌・混合して水相中の第1酵素を直接あるいは水相と油相の界面を介して接触させて元油である(粗製)ディーゼル燃料の改質と軽油成分自体を生成する増量反応を行う。
 本発明は、第2酵素の作用により、流動性の改善、蒸留性状の改善や芳香族分の減少を行い、油相の反応性を高めるとともに得られるディーゼル燃料の性状の改善を行う。すなわち、流動性を高めることにより、油相にパルス波を付与したり油相を振盪したりすることにより水相との界面との接触度合を高める。また、芳香族成分の開環やディーゼル油の低分子化により、水相のアルコールとの反応性を高める。そのために、第2酵素を油相に添加しない場合に比較して、収量の増加(10から20%)、反応時間(10%から20%程度)の短縮が可能となる。しかも、どのような理由か不明だが、本発明者等の繰り返しの実験の結果、本発明の製造方法により得られた性状が改善されたディーゼル燃料をディーゼルエンジンに適用すると、排ガス中の窒素酸化物の排出量を増加させることなしに一定範囲内に維持しつつ、一酸化炭素、粒子状物質PM等の排出量を低減することができる。
 この際の水相と油相との比率は容量比で2~4:8~6、好ましくは2.5~3.5:7.5~6.5、より好ましくは約7:3である。水相の量が以下の範囲より多い場合、反応後の水分の処理とみ反応のアルコール分のコストの点で不利である。逆に、上記の範囲より少ない場合には反応が不十分となる。
 また、水相と油相との混合の仕方は、室温(約25℃)において油相中に2.5~3MPaの圧力でなおかつ第1酵素(及び第2酵素)が失活しない温度、すなわち60℃を超えないように、好ましくは45℃以下を保つような液温で水相を添加し、同様に60℃未満、好ましくは45℃以下に液温を保ちながら攪拌を行う。液温を60℃未満に保つのは60℃を超えると第1酵素が失活する恐れがあるからである。
 また、攪拌の仕方はブレードによる混合であってもよいが、摩擦熱を起こさない観点から渦巻流を起こして攪拌することが好ましい。
 このようにして油相と水相とを攪拌・混合した後、所望により、油水混合物にパルス発生装置により油水混合物にパルス波を付与してあるいは振盪装置により油水混合物を振盪して不純物である残留固形物や金属類を水相を介して分離除去する。
 しかる後、連続してあるいは間欠的に油相と水相とを振盪や攪拌により接触させながら常温で数時間、好ましく20時間以上、より好ましくは40時間以上放置して改質と反応を進行させる。
 このように放置することにより、油相と水相の界面より第1酵素が水相から油相へと浸透し、原料となるディーゼル燃料中の炭化水素の加水分解と接触分解により高級炭化水素を低級炭化水素化していくことにより、低級オレフィン化が進行していく(界面からの反応)。
 一方、油相中に添加した第2酵素の作用により、油相中の芳香族分はオレフィン化し、順次低級オレフィン化していくとともに、芳香族中のN、S等の元素は、水相を介して油水分離時に除去される。
 このように、油水界面からの第1酵素の作用と油相中の第2酵素の両方の作用により、低級オレフィン化が進行し、各国の規格に適合するアップグレーディングされたディーゼル燃料が製造される。
 このようにして改質・製造されたディーゼル燃料は、セタン価(セタン指数)や引火点が上昇し、芳香族含有率、動粘度、硫黄分が減少し質の良いディーゼル燃料に改質される。
 また、元油が各国の規格に適合していないディーゼル燃料の場合でも、例えばセタン指数が40程度の原料や硫黄分が0.5質量%程度の原料を用いても各国の規格に適合するディーゼル燃料を得ることができる。本発明においては、元油に対して約22.5~45容量%、すなわち全体で元油の容量1に対して、1.225~1.45倍量でディーゼル燃料を得ることができる。
 一例として、表3に示す性状を有する軽油を元油として、本発明の製造方法により製造したディーゼル燃料(表中本発明の燃料)の性状及びCaterpillar3304(4シリンダ,総排気量7000cc,副室式燃焼室,62.5kW/1800rpm)を用いて行った排ガス成分について、原料となる元油と比較して表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、本発明においては、第1酵素の界面からの作用と第2酵素の油相中の作用の相互作用により、密度、芳香族分、蒸留性状90%留出温度、硫黄分が少し、セタン指数が増加している。
 一方、単位時間当たりの燃料使用量が減少することにより燃費が向上したものと考えられる、また、一酸化炭素の排出量及び粒子状物質の排出量が減少しかつ、窒素酸化物の排出量は同程度であった。このことにより、本発明の製造方法によって製造されたディーゼル燃料は、出発原料として使用した元油と比較して各種性状が改善されており、しかもこれをディーゼル機関に使用した場合、元油と比較してクリーンな排ガスを排出するといえる。
 さらに、本発明の性状が改善されたディーゼル燃料の製造方法は、第2酵素を元油に添加することにより、元油の流動性を改善する。そのため、元油に第2酵素を添加した油相にパルスを付与するか又は振盪することにより、第2酵素を添加しない場合と比較して水相との接触条件が良好になる。そのため、反応効率が上がるものと考えられ、そして収量の増加(10から20%)や反応時間の短縮(10から20%)が可能となる。
(ディーゼル燃料の製造システム)
 このような優れた特性を有する本発明の性状化改善されたディーゼル燃料は、例えば図3~図5に示すシステムにより製造することができる。
 以下、本発明のディーゼル燃料の製造方法によりディーゼル燃料を製造するディーゼル燃料の製造システム(以下、本発明の製造システムという)を説明する。なお、以下に示す製造システムは、酵素水を希釈しないで製造しているが、希釈しないでそのまま使用するストレート酵素水溶液を基づいて水相を調製しているが、第1酵素の濃縮液を調製してこれを、使用する前に所定の濃度の酵素水溶液となるように希釈して使用することも本発明の範囲内である。
 本発明の製造システムは、水相調製ラインWL(請求項における水相ラインA)と、油相調製ラインOL(請求項における油相ラインB)と、ディーゼル燃料製造ラインPL(請求項におけるディーゼル燃料製造ラインC)とから主として構成されている。
 水相調製ラインWLは、水源WSからの原水と第1酵素としてのリパーゼ酵素を添加・混合する酵素混合タンク12と、原水とリパーゼ酵素の混合溶液を熟成して酵素水溶液を調製する熟成タンク13と、調製した酵素水溶液にアルコールを添加して水相を調製する第1混合タンク14とを備えている。なお、水相調製ラインWLは、予め調製された水相を使用する場合、水相を曝気しながら保存する水相タンクから構成される水相ラインとしてもよい。
 一般に水源WSからの原水は、原水タンク10に貯留され、原料基準にあっているか否かを確認の上使用される。具体的には、本発明においては、水の硬度、すなわち水中に含まれるカルシウムやマグネシウムといった酵素の活性を阻害するミネラル分の量が少ない軟水であることが好ましい。
 一般に、硬度0~100mg/Lを軟水、101~300mg/Lを中硬水、301mg/L以上を硬水と分類されるが本発明においては、60mg/L以下の軟水であることが好ましい。
 そのため、本発明においては、硬度の高い水を使用する場合には、水の中に含まれるカルシウムイオンやマグネシウムイオンなどの陽イオンを、イオン交換樹脂の働きでナトリウムイオンに置き換える働きを持つ軟水化装置(水改質装置11)により改質する。
 また、例えば水道水等のように所定以上の塩素や微生物が混入している水源WSの水を原水として使用する場合、これらに見合った改質を行うことが好ましい。さらには、水中に含まれているマイナス要因を改善するのではなく、水そのものを活性化する改質を行うことも本発明の範囲内である。
 このような装置として、図2(b)に示した前述の改質技術を使用することが好ましい(詳細は、図5を参照)。
 本発明のシステムでは、このようにして所望により改質された原水に酵素混合タンク12で所定量(希釈しないストレート酵素水溶液の場合、第1酵素0.01~0.10質量%)の第1酵素を添加する。次いで、このようにして酵素を添加した水溶液を熟成タンク13で図示しない曝気装置により曝気しながら室温で60時間(後述する改質装置を使用した場合)又はそれ以上、一般には72時間又はそれ以上熟成する。
 本発明のシステムにおいて、このように60時間以上、一般には72時間又はそれ以上の熟成が必要となるので、多量の酵素液の調製、ひいてはディーゼル燃料の製造のために熟成タンク13は巨大化する。そのために、この熟成タンク13は、複数の並列及び/又は直列に配置されたタンク13から構成することができる。あるいは、酵素水溶液を濃縮液として調製し、アルコールと混合する際に希釈する構成としてもよい。
 そして、本発明のシステムにおいて、このようにして調製された(最後の)熟成タンク13内の酵素水溶液は次いで第1混合タンク14に移送され、ここで所定量のアルコールが添加される。この際に、使用した第1酵素が前述の通りゼオライト担体中の酵素である場合には、第1混合タンク14への移送ラインにはゼオライト担体を除去するためのフィルタが備えられている。さらに前述の通り第1混合タンクにおいて、アルコールの添加に先立って補助的に他の酵素、例えば由来の異なるリパーゼ系酵素やセルラーゼ等を添加してもよい。
 そして、アルコールを添加した酵素水溶液は、水相として使用するまで、好ましくは図示しない曝気装置で曝気しながら水相タンクWTに保存される。
 油相調製ラインOLは、原料となる元油を準備・保管する元油タンクOSを備え、所定量の第2酵素を添加して油相を調製する油相調製ラインである。本実施形態では、元油タンクOSから移送されて油相調製タンク20内に導入された所定量の元油に対して所定量の第2酵素を計量添加する第2酵素添加装置20aにより添加して油相を調製し、油相調製タンク20で調製した油相は、水相と混合するまで油相タンクOT移されてそこで保存される。
 本発明のシステムでは、このようにして準備された水相調製ラインWLと油相準備ラインOLで各々予め別途調製・保存された水相タンクWT中の水相と油相タンクOT中の油相をディーゼル燃料の製造ラインPLで混合・反応させてディーゼル燃料を製造する。
 油水混合タンク30は、油相に前記水相を所定容量比となるように、まず、油相タンクOT中の油相をポンプPoを介して導入・充填し、次いで、充填した油相中に所定圧力・所定温度範囲内で水相WPをポンプPwを介して圧送して添加混合するタンクである。
 攪拌タンク31は、油水混合タンク30で混合された油水混合物を攪拌するためのタンクである。この際の攪拌手段は、ブレード等であることができるが、熱の発生を制御しながら油水混合するために渦巻流を発生させる攪拌装置を備えていることが好ましい。
 混合・攪拌された油水混合物は、反応タンク34で連続してあるいは間欠的に油相と水相とを振盪や攪拌により接触させながら常温で数時間、好ましく24時間以上、より好ましくは48時間以上放置して反応させる。本発明の好ましい態様では、油水混合物にパルス波を付与するパルス付与装置32を設けてパルス波により振盪・攪拌する。
 この反応も長期間を要するので複数の反応タンク34、好ましくは直列に接続された反応タンク34で反応を行う構成とすることが好ましい。反応タンク34中で十分に混合・攪拌された油水混合物は、静置しても反応が進行するので後段側の反応タンク34は、振盪装置やパルス付与装置32等を設けなくともよい。また、複数の反応タンク34を直列に配置する場合、振盪装置やパルス付与装置32等を設ける構成にすることもできる。
 このように放置することにより、油相と水相の界面より第1酵素が水相から油相へと浸透し、原料となるディーゼル燃料中の炭化水素の加水分解と接触分解により高級炭化水素を低級炭化水素化していくことにより、低級オレフィン化が進行していく(界面からの反応)。一方、油相中に添加した第2酵素の作用により、油相中の芳香族分はオレフィン化し、順次低級オレフィン化していくとともに、芳香族中のN、S等の元素は、水相を介して油水分離時に除去される。
 このように、油水界面からの第1酵素の作用と油相中の第2酵素の両方の作用により、低級オレフィン化が進行し、各国の規格に適合するアップグレーディングされたディーゼル燃料が製造される。製造されたディーゼル燃料は、精製装置で油水分離後、精製されて製品タンクであるディーゼル燃料タンクPTで保存される。
 このようにして、本発明のシステムは、元油を改質するとともに、元油を原料として各国の基準に適合できるディーゼル燃料を元油に対して約22.5~45容量%、すなわち全体で元油の容量1に対して、1.225~1.45倍量でディーゼル燃料を確実に製造することができる。
 次に、本発明のシステムの別の実施形態を図4に基づいて説明する。なお、図3と同様の構成要素は同一符号を付してその説明を省略する。
 本発明のシステムにおいて、多量の反応時間と設置個所を有する水相調製ラインWLは、固定設置場所に設置する必要があるが、油相準備ラインOLとディーゼル燃料製造ラインPLは必ずしも固定箇所に設置する必要はなく、例えば図4(a)に示す輸送コンテナに配置して、図4(b)に示す通りトラック、船舶等の移動体Mに設置することが可能である。
 図4に示す実施形態は、ディーゼル燃料製造ラインPLを移動体Mの荷台等に設置、好ましくは輸送コンテナに設置することが可能である。
 このように構成することにより、水相調製ラインWLで調製された水相と油相準備ラインOLで用意された油相を順次混合タンク30に投入して移動中、移動先又は両者で本発明のディーゼル燃料を製造することができる。
 次に、本発明のシステムの別の実施形態を図5に基づいて説明する。なお、図3及び図4と同様の構成要素は同一符号を付してその説明を省略する。
 この実施形態は、水相調製ラインWLで使用する水の量が多大であり、そのために改質した水は各種用途水、例えば災害時の緊急対策用の用水、飲料水、生活用水、農業用水等に複合的に使用することが可能である。
 この場合、改質装置11で、水に対してラジカルを付与し、付与したラジカルを増幅維持した後、ラジカルを消去することを1回または繰り返し行うことが好ましい。
 ラジカル発生工程と、ラジカル増幅・維持工程とラジカル消去工程を繰り返す装置に軟水を通過させると水中の微生物が殺滅され、浸透性が高まり、酸化還元電位が低減することが分った。このような水の環境下で第1酵素を添加熟成すると第1酵素の拡散熟成速度や活性化が増加し約5%~10%の熟成時間が短縮されると同時に殺菌した低い硬度の軟水として本発明の水相調製ラインWLの水と併用可能である。
 以上、本発明の実施の形態を説明したが、本発明は、これらの実施形態に限定されるものではない。
 本発明によると、ペトロディーゼル由来の軽油からなる元油を出発原料として、第1酵素としてリパーゼ酵素を含有する酵素水溶液に、水溶性アルコールを20~35%アルコール水溶液となるように混合して水相を、反応促進剤として第2酵素であるブロメラインを含むパイナップル由来酵素を予め添加した油相と反応させることによって、元油に対して約22.5~45容量%、すなわち全体で元油の容量1に対して、1.225~1.45倍量でディーゼル燃料を得ることができる。また、第2の酵素を添加しない場合に比較して反応時間も1割から2割程度短くなる。
 得られたディーゼル燃料は、各国の性能基準に適合し、元油と比較してセタン価、セタン指数、多環芳香族質量、引火点、硫黄分質量、10%残油の残留炭素分質量、流動点、灰分質量及び粘度からなる群から選択された性状の少なくとも1つが改善されている。より具体的にはセタン価(セタン指数)や引火点が上昇し、芳香族含有率、動粘度、硫黄分が減少し質の良いディーゼル燃料となる。
 元油が各国の規格に適合していないディーゼル燃料の場合でも、例えばセタン指数が40程度の原料や硫黄分が0.5質量%程度の原料を用いても各国の規格に適合するディーゼル燃料が得られる。
 さらに、得られた性状が改善されたディーゼル燃料をディーゼル機関(ディーゼルエンジン)に適用すると、排ガス中のNOが増加することになしに、CO、SOやPMの発生量が減少する。このことは、燃費が良い点と高トルクを得るができるというディーゼル燃料のメリットを維持しつつ、NOとPMが出しやく、排ガスがクリーンでないという欠点を克服しており、本発明の製造方法によって製造された性状が改善されたディーゼル燃料によってはじめて達成される。
 さらに、本発明によると各国の規格に適合した改善した性状を有するディーゼル燃料を安定的に製造するシステムが提供される。
WL  水相調製ライン
WS  水源
WT  水相タンク
OL  油相調製ライン
OS  元油
OT  油相タンク
PL  ディーゼル燃料製造ライン
PT  ディーゼル燃料タンク
M   移動体
PO  油相供給ポンプ
PW  水相供給ポンプ
10  原料タンク
11  水改質装置
12  酵素混合タンク
12a 第1酵素添加装置
13  熟成タンク(酵素水溶液調製タンク)
14  第1混合タンク(水/アルコール混合タンク)
14a アルコールタンク
20  元油準備タンク(第2混合タンク)
20a 第2酵素添加装置
30  油水混合タンク
31  攪拌タンク
32  パルス付与装置
33  反応タンク
34  精製装置
 

Claims (12)

  1. ペトロディーゼル由来の軽油からなる元油を出発原料として、前記元油と比較してセタン価、セタン指数、多環芳香族質量、引火点、硫黄分質量、10%残油の残留炭素分質量、流動点、灰分質量及び粘度からなる群から選択された性状の少なくとも1つが改善されたディーゼル燃料の製造方法であって、
    下記工程:
    (a) 第1酵素としてリパーゼ酵素0.01~0.10質量%を含有する酵素水溶液に、水溶性アルコールを20~35%濃度のアルコール水溶液なるように混合して水相を調製する水相調製工程、
    (b) 前記元油に対してブロメラインを含むパイナップル由来酵素0.0001~0.01質量%を軽油に溶解した第2酵素の軽油溶液を前記元油に添加して油相を調製する油相調製工程と、
    (c) 油相調製工程(b)で調製した油相に工程(a)で調製した水相を60℃を超えない温度を保持しながら水相:油相の容量比が2~4:8~6となるように添加し、油相と水相とを攪拌下に混合する油水混合工程と、
    (d) 連続してあるいは間欠的に油水混交物に振盪や攪拌により接触させながら常温で放置して水相と油相とを反応させて油相の性状を改善するとともにディーゼル燃料を生成する反応工程と、
    (e) 反応工程(d)後に、油相を水相から分離し、分離した油相を精密濾過により精製する分離・精製工程と、
    を含むことを特徴とする性状が改善されたディーゼル燃料の製造方法。
  2. 前記(c)油水混合工程は、前記油相中に2.5~3MPaの圧力で液温が40℃を超えないように水相を添加することを特徴とする請求項1に記載の方法。
  3. 前記攪拌を渦巻流により行うことを特徴とする請求項1又は請求項2に記載の方法。
  4. さらに油水混合工程(c)後に、前記油水混合物にパルス波を付与するか振盪を施し、油相中の不純物を除去する不純物除去工程を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の方法。
  5. 前記酵素水溶液の水源として硬度0~60mg/Lの軟水を使用し、これに前記第1酵素を添加して20℃から30℃の温度で曝気しながら少なくとも60時間前記第1酵素を熟成させて、酵素水溶液を調製し、調製した酵素水溶液に前記アルコールを添加して水相を調製することを特徴とする特徴とする請求項1から請求項4のいずれか1項に記載の方法。
  6. 前記軟水にラジカル付与処理とラジカル消去処理を1回又は複数回繰り返して前記軟水を改質することを特徴とする請求項3に記載のディーゼル燃料の製造方法。
  7. 請求項1から請求項6のいずれか1項に記載の方法により得られた性状が改善されたディーゼル燃料。
  8. 請求項1から請求項6のいずれか1項に記載の方法により性状が改善されたディーゼル燃料を製造するディーゼル燃料製造システムであって、
    A 第1酵素としてリパーゼ酵素0.01~0.10質量%を含有する酵素水溶液に、水溶性アルコールを20~35%濃度のアルコール水溶液なるように混合して調製した水相を曝気しながら保存する水相タンクを備えた水相ラインと、
    B1 ペトロディーゼル由来の軽油からなる元油を保存する元油タンク及び、
    B2 前記元油に第2酵素を添加して油相を調製する油相調製部を備えた油相ラインと、
    C1 調製した油相を計量添加し、これに水相を所定圧力で液温が所定範囲内となるように軽量添加する油水混合タンク、
    C2 油水混合タンクからの油水混合物を振盪する振盪装置及び/又はパルス付与するパルス付与装置を備えた反応タンク、
    C3 反応して得られた性状が改善されたディーゼル燃料を水相から分離して精製する分離精製装置及び、
    C4 分離精製した性状が改善されたディーゼル燃料を貯蔵する貯蔵タンクを備えたディーゼル燃料製造ラインを含むことを特徴とするディーゼル燃料製造システム。
  9. 前記反応タンクの後段に振盪装置及び/又はパルス付与装置を備えたあるいは備えていないさらに少なくとも1つの反応タンクを備えたことを特徴とする請求項8に記載のシステム。
  10. 前記ディーゼル燃料製造ラインは、移動体に搭載されていることを特徴とする請求項8又は請求項9に記載のシステム。
  11. 前記水相ラインはさらに、水源からの原水と第1酵素としてのリパーゼ酵素を混合する酵素混合タンクと、前記原水とリパーゼ酵素の混合溶液を曝気下で熟成して酵素水溶液を調製する曝気装置を具備した熟成タンクと、調製した酵素水溶液にアルコールを添加して水相を調製する混合タンクとを備えたことを特徴とする請求項9に記載のシステム。
  12. リパーゼ系酵素を含むアルコール水溶液からなる水相と、元油としてペトロディーゼル又は粗製ペトロディーゼルからなる油相とを混合して反応させてディーゼル燃料を製造するにあたって、油相に添加する反応促進剤としてブロメラインを含むパイナップル由来酵素を使用する方法。
     
PCT/JP2021/036923 2020-10-07 2021-10-06 性状が改善されたディーゼル燃料の製造方法及び製造システム WO2022075348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022555522A JPWO2022075348A1 (ja) 2020-10-07 2021-10-06
EP21877647.4A EP4227386A4 (en) 2020-10-07 2021-10-06 METHOD AND SYSTEM FOR PRODUCING DIESEL FUEL WITH IMPROVED PROPERTIES
US18/248,304 US20240150661A1 (en) 2020-10-07 2021-10-06 Method and system for producing diesel fuel having improved property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169481 2020-10-07
JP2020-169481 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075348A1 true WO2022075348A1 (ja) 2022-04-14

Family

ID=81126000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036923 WO2022075348A1 (ja) 2020-10-07 2021-10-06 性状が改善されたディーゼル燃料の製造方法及び製造システム

Country Status (4)

Country Link
US (1) US20240150661A1 (ja)
EP (1) EP4227386A4 (ja)
JP (1) JPWO2022075348A1 (ja)
WO (1) WO2022075348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025018324A1 (ja) * 2023-07-15 2025-01-23 直彌 吉川 燃料添加剤、その製造方法及びその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132682A (ja) 1991-11-13 1993-05-28 Mitsubishi Oil Co Ltd デイーゼル燃料添加剤組成物およびその使用方法
JP2002233393A (ja) 2001-02-06 2002-08-20 National Research Inst Of Brewing バイオディーゼル(モノアルキルエステル)の製造方法
JP2005529993A (ja) * 2002-06-11 2005-10-06 オリックス エナージー インターナショナル, インコーポレイティッド 炭化水素を含むディーゼル燃料にセタン価向上剤として安定化ベータカロチンを使用する方法および組成物
JP4397432B1 (ja) 2009-06-19 2010-01-13 有限会社中部エンザイム 燃料製造方法および燃料製造装置
JP5338268B2 (ja) 2008-11-18 2013-11-13 マツダ株式会社 ディーゼルエンジンの燃焼室構造
JP2015124328A (ja) * 2013-12-27 2015-07-06 秀司 泉 燃料油の製造方法及び製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132682A (ja) 1991-11-13 1993-05-28 Mitsubishi Oil Co Ltd デイーゼル燃料添加剤組成物およびその使用方法
JP2002233393A (ja) 2001-02-06 2002-08-20 National Research Inst Of Brewing バイオディーゼル(モノアルキルエステル)の製造方法
JP2005529993A (ja) * 2002-06-11 2005-10-06 オリックス エナージー インターナショナル, インコーポレイティッド 炭化水素を含むディーゼル燃料にセタン価向上剤として安定化ベータカロチンを使用する方法および組成物
JP5338268B2 (ja) 2008-11-18 2013-11-13 マツダ株式会社 ディーゼルエンジンの燃焼室構造
JP4397432B1 (ja) 2009-06-19 2010-01-13 有限会社中部エンザイム 燃料製造方法および燃料製造装置
JP2012072199A (ja) * 2009-06-19 2012-04-12 Cyubu Enzyme Ltd 燃料製造方法および燃料製造装置
JP2015124328A (ja) * 2013-12-27 2015-07-06 秀司 泉 燃料油の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227386A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025018324A1 (ja) * 2023-07-15 2025-01-23 直彌 吉川 燃料添加剤、その製造方法及びその用途

Also Published As

Publication number Publication date
EP4227386A1 (en) 2023-08-16
JPWO2022075348A1 (ja) 2022-04-14
EP4227386A4 (en) 2024-04-03
US20240150661A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
Song Introduction to chemistry of diesel fuels
WO2007064015A1 (ja) 軽油組成物
WO2007064019A1 (ja) 液化燃料ガス組成物
WO2012006316A1 (en) Pyrolysis oil based fuel and method of production
CN103026028A (zh) 制备压燃式发动机燃料的方法
JP2010514850A5 (ja)
WO2022075348A1 (ja) 性状が改善されたディーゼル燃料の製造方法及び製造システム
CN101392199B (zh) 清洁醇醚汽油车用燃料
JP5072010B2 (ja) 軽油組成物
WO2008153160A1 (ja) 軽油組成物
JP2004277457A (ja) 燃料油組成物
US8084508B2 (en) Ethanol as a feedstock for a BCTL facility
Berlowitz et al. Fuel choices for fuel cell powered vehicles
JP5121137B2 (ja) 軽油組成物
KR20090025241A (ko) 수소화 처리방법, 환경친화형 가솔린 기재 및 무연 가솔린 조성물
JP2023154444A (ja) 性状が改善されたディーゼル燃料の製造方法及び製造システム
Traver et al. Fuels and transportation
JP5121138B2 (ja) 軽油組成物
CN101497830A (zh) 一种高效环保节能柴油添加剂
JP2009161669A (ja) 軽油組成物
US20030192232A1 (en) Catalyst and method for improving combustion efficiency in engines, boilers, and other equipment operating on fuels
JP4847116B2 (ja) 液化燃料ガス組成物の製造方法。
JP2006233032A (ja) クリーンガソリン組成物
CN101586048A (zh) 一种汽油清净剂
CN108753384A (zh) 清洁柴油添加剂、其制备方法及清洁柴油组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877647

Country of ref document: EP

Effective date: 20230508