[go: up one dir, main page]

WO2022059321A1 - Steel sheet for hot stamping, and hot stamp molded body - Google Patents

Steel sheet for hot stamping, and hot stamp molded body Download PDF

Info

Publication number
WO2022059321A1
WO2022059321A1 PCT/JP2021/026436 JP2021026436W WO2022059321A1 WO 2022059321 A1 WO2022059321 A1 WO 2022059321A1 JP 2021026436 W JP2021026436 W JP 2021026436W WO 2022059321 A1 WO2022059321 A1 WO 2022059321A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
content
steel sheet
ferrite
Prior art date
Application number
PCT/JP2021/026436
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 藤中
由梨 戸田
大介 前田
聡 菅谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022550377A priority Critical patent/JP7397381B2/en
Priority to KR1020227035607A priority patent/KR20220147142A/en
Priority to CN202180029845.1A priority patent/CN115427601B/en
Publication of WO2022059321A1 publication Critical patent/WO2022059321A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet for hot stamping and a hot stamp molded body.
  • a tailored blank is a single steel plate made by joining a plurality of steel plates having different plate thicknesses, chemical compositions, metal structures, etc. by welding.
  • the properties in a single joined steel sheet can be partially changed. For example, by giving a certain part a high strength, deformation in that part can be suppressed, and by giving another part a low strength, the part can be deformed and an impact can be absorbed.
  • the low-strength portion is required to have excellent ductility so as to suppress breakage during deformation.
  • a technique for applying a tailored blank to the hot stamping method there is a technique for using a tailored blank in which a steel plate having low strength after hot stamping and a steel plate having high strength after hot stamping are joined by welding.
  • a steel sheet having high strength after hot stamping for example, a steel sheet as disclosed in Patent Document 1 can be used.
  • the steel sheet having low strength after hot stamping the chemical composition of the steel may be adjusted so as to have low strength after cooling the mold in the hot stamping.
  • Low carbon steel is one of the steel types applied to tailored blanks. Since low carbon steel has a low carbon content, it has the characteristic that it is difficult to increase its strength even if it is rapidly cooled after heating.
  • Patent Document 2 discloses that ultra-low carbon steel is used as a low-strength material in the hot stamping method. Patent Document 2 discloses a technique for improving local deformability by heating a steel sheet to a temperature of 3 points or more and then hot stamping it to form a metal structure having bainite and bainitic ferrite as main phases. ing. Patent Document 2 discloses that this technique makes it difficult for fracture to occur when a vehicle body part is deformed in a bending mode at the time of a collision, and is excellent in impact absorption ability due to plastic deformation.
  • a hot stamp molded body having a tensile strength of less than 1500 MPa has been attracting attention.
  • Such a hot stamped body is required to have a desired strength and a higher ductility after hot stamping so as to be able to sufficiently suppress fracture during deformation.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot stamped molded product having high strength and excellent ductility, and a steel plate for hot stamping capable of producing this hot stamped molded product.
  • the present inventors have studied a method for improving the ductility of a hot stamp molded product. As a result, it was found that the ductility of the hot stamped body can be improved by increasing the area ratio of the hard phase having a high dislocation density existing on martensite in the metal structure of the hot stamped body.
  • the hot stamped product can be obtained by preferably controlling the chemical composition of the hot stamping steel sheet and increasing the ratio of the number of ferrites containing a hard phase in the ferrite grains. I found out.
  • the present invention has been obtained based on the above findings, and the gist of the present invention is as follows.
  • the steel sheet for hot stamping according to one aspect of the present invention has a chemical composition of% by mass.
  • the rest consists of Fe and impurities In the metallographic structure
  • the steel sheet for hot stamping according to (1) above has a chemical composition of% by mass. Nb: 0.001% or more, less than 0.020%, Ti: 0.010 to 0.100%, Cr: 0.05 to 0.50%, B: 0.0001 to 0.0100%, Mo: 0.01-1.00%, Co: 0.01-2.00%, Ni: 0.01-0.50%, V: 0.01-0.10%, Ca: 0.0005-0.0100%, Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100% It may contain one or more of the group consisting of.
  • the hot stamp molded product according to another aspect of the present invention has a chemical composition of% by mass.
  • the rest consists of Fe and impurities In the metallographic structure
  • martensite is 80% or more, The area ratio of the hard phase existing on the martensite and having a GAIQ value of 26000 or less
  • the hot stamp molded product according to (3) above has a chemical composition of% by mass.
  • Nb 0.001% or more, less than 0.020%, Ti: 0.010 to 0.100%, Cr: 0.05 to 0.50%, B: 0.0001 to 0.0100%, Mo: 0.01-1.00%, Co: 0.01-2.00%, Ni: 0.01-0.50%, V: 0.01-0.10%, Ca: 0.0005-0.0100%, Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100% It may contain one or more of the group consisting of.
  • the steel plate for hot stamping and the hot stamp molded body according to the present embodiment will be described in detail.
  • the reason for limiting the chemical composition of the hot stamping steel sheet according to the present embodiment will be described.
  • the lower limit value and the upper limit value are included in the numerical limitation range described with " ⁇ " in between. Numerical values indicated as “less than” and “greater than” do not include the value in the numerical range.
  • % of the chemical composition means mass%.
  • the hot stamped body according to the present embodiment has a chemical composition of% by mass, C: 0.060 to 0.200%, Si: 0.010 to 1.000%, Mn: 1.20 to 3.00. %, Al: 0.010 to 0.500%, P: 0.100% or less, S: 0.0100% or less, N: 0.0100% or less, and the balance: Fe and impurities.
  • C 0.060 to 0.200%
  • Si 0.010 to 1.000%
  • Mn 1.20 to 3.00.
  • Al 0.010 to 0.500%
  • P 0.100% or less
  • S 0.0100% or less
  • N 0.0100% or less
  • C 0.060 to 0.200% C is an element that greatly affects the strength and ductility of the hot stamped product. If the C content is too low, the martensitic transformation is not promoted, the strength of the hot stamped compact is lowered, and fracture is likely to occur due to insufficient strength. Therefore, the C content is set to 0.060% or more. Preferably, it is 0.080% or more, 0.100% or more, or 0.120% or more. On the other hand, if the C content is too high, the hardness of the martensite matrix becomes too high, and the ductility of the hot stamped product decreases. Therefore, the C content is set to 0.200% or less. Preferably, it is 0.170% or less or 0.150% or less.
  • Si 0.010 to 1.000%
  • Si is an element having a solid solution strengthening ability and is an element necessary for obtaining the strength of a hot stamp molded product. If the Si content is too low, the desired strength cannot be obtained in the hot stamped body. Therefore, the Si content is 0.010% or more. Preferably, it is 0.100% or more, 0.300% or more, or 0.500% or more. On the other hand, if the Si content is too high, the ferrite transformation proceeds excessively, and it becomes impossible to obtain a desired amount of martensite in the hot stamp molded product. Therefore, the Si content is 1.000% or less. It is preferably 0.900% or less or 0.800% or less.
  • Mn 1.20 to 3.00%
  • Mn is an element having a solid solution strengthening ability, and is contained in order to obtain the strength of the hot stamp molded product. If the Mn content is too low, the ferrite transformation proceeds too much and martensite is difficult to be generated, and the desired strength cannot be obtained in the hot stamped body. Therefore, the Mn content is 1.20% or more. It is preferably 1.40% or more or 1.60% or more. On the other hand, if the Mn content is too high, the hardenability of the steel becomes high, and the formation of ferrite in air cooling after heating during hot stamping is suppressed, so that the ductility of the hot stamped product is lowered. Therefore, the Mn content is set to 3.00% or less. It is preferably 2.80% or less or 2.60% or less.
  • Al 0.010 to 0.500%
  • Al is an important element for promoting ferrite transformation. If the Al content is too low, the ferrite transformation is less likely to proceed, and a desired amount of ferrite cannot be obtained in the hot stamp molded product. Therefore, the Al content is 0.010% or more. Preferably, it is 0.020% or more or 0.030% or more. On the other hand, if the Al content is too high, the transformation to ferrite proceeds excessively, and a desired amount of martensite cannot be obtained in the hot stamped body. Therefore, the Al content is set to 0.500% or less. Preferably, it is 0.450% or less or 0.400% or less.
  • P 0.100% or less
  • P is an element that has a solid solution strengthening ability and is effective for obtaining a desired strength in a hot stamped article.
  • the P content is set to 0.100% or less.
  • it is 0.080% or less, 0.060% or less, or 0.050% or less.
  • the lower limit of the P content is not particularly specified, but from the viewpoint of ensuring the strength by P, the P content may be 0.001% or more or 0.005% or more.
  • S 0.0100% or less
  • S is an element contained in steel as an impurity and embrittles the steel. Therefore, the smaller the S content, the more preferable.
  • the S content shall be 0.0100% or less. Preferably, it is 0.0080% or less, 0.0060% or less, or 0.0040% or less.
  • the lower limit of the S content is not particularly specified, but the S content may be 0.0005% or more or 0.0010% or more because the cost in the desulfurization step increases if the S content is excessively reduced.
  • N is an impurity element, which is an element that forms a nitride in steel and deteriorates the ductility of the hot stamped body. If the N content is too high, the nitride in the steel becomes coarse and the ductility of the hot stamped body deteriorates. Therefore, the N content is 0.0100% or less. Preferably, it is 0.0080% or less or 0.0060% or less. The lower limit of the N content is not particularly specified, but the N content may be 0.0010% or more because the cost in the steelmaking process increases if the N content is excessively reduced.
  • the steel sheet for hot stamping according to the present embodiment may contain the above elements, and the balance may consist of Fe and impurities.
  • impurities include those that are inevitably mixed from the steel raw material or scrap and / or in the steelmaking process, or elements that are allowed within a range that does not impair the characteristics of the hot stamped product according to the present embodiment.
  • the hot stamping steel sheet according to the present embodiment may contain an optional element shown below in place of a part of Fe in order to improve various properties. Since it is not necessary to intentionally contain these arbitrary elements in the steel in order to reduce the alloy cost, the lower limit of the content of these optional elements is 0%.
  • Nb 0.001% or more and less than 0.020%
  • Nb is an element that suppresses the grain growth of austenite, atomizes the austenite grains, and promotes the transformation to ferrite.
  • the Nb content is preferably 0.001% or more.
  • the Nb content is set to less than 0.020%.
  • Ti 0.010 to 0.100%
  • Ti is an element that suppresses the grain growth of austenite, atomizes the austenite grains, and promotes the transformation to ferrite.
  • the Ti content is preferably 0.010% or more.
  • the Ti content is set to 0.100% or less.
  • Cr 0.05 to 0.50% Cr is also an effective element for enhancing the hardenability of steel, promoting the formation of martensite, and increasing the strength of the hot stamped compact.
  • the Cr content is preferably 0.05% or more.
  • the Cr content is set to 0.50% or less.
  • B 0.0001 to 0.0100%
  • B is an element that segregates into the old austenite grain boundaries, has the effect of suppressing ferrite transformation, and contributes to the improvement of the strength of the hot stamped compact.
  • the B content is preferably 0.0001% or more.
  • the B content is 0.0100% or less.
  • Mo 0.01-1.00% Mo forms carbides in the steel and improves the strength of the hot stamped body by strengthening precipitation. In order to surely obtain this effect, the Mo content is preferably 0.01% or more. On the other hand, if the Mo content is too high, the ductility of the hot stamped product will decrease. Therefore, the Mo content is set to 1.00% or less.
  • Co 0.01-2.00% Co improves the strength of the hot stamped body by strengthening the solid solution.
  • the Co content is preferably 0.01% or more.
  • the Co content is 2.00% or less.
  • Ni 0.01-0.50% Ni improves the strength of the hot stamped body. In order to surely obtain this effect, the Ni content is preferably 0.01% or more. On the other hand, if the Ni content is too high, the castability may deteriorate. Therefore, the Ni content is set to 0.50% or less.
  • V 0.01-0.10% V improves the strength of the hot stamped compact by fortifying with the precipitate and suppressing the grain growth of austenite to make the austenite granules finer.
  • the V content is preferably 0.01% or more.
  • the V content is set to 0.10% or less.
  • Ca 0.0005-0.0100%
  • Ca is an element having an action of deoxidizing molten steel to make the steel sound (suppressing the occurrence of defects such as blow holes in the steel).
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is preferably 0.0100% or less.
  • Mg 0.0005-0.0100%
  • Mg is an element having an action of deoxidizing molten steel to make the steel sound.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content is preferably 0.0100% or less.
  • REM 0.0005-0.0100% REM is an element having an action of deoxidizing molten steel to make the steel sound.
  • the REM content is preferably 0.0005% or more.
  • the REM content is preferably 0.0100% or less.
  • REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids.
  • the REM content refers to the total content of these elements.
  • the above-mentioned chemical composition may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • the steel sheet for hot stamping according to the present embodiment has a metal structure having a polar density of more than 3.0 in the ⁇ 112 ⁇ ⁇ 110> direction at the center of the plate thickness and an area ratio of 5 to 95%.
  • the number ratio of the ferrites containing a hard phase in the ferrite grains is 30% or more.
  • each regulation will be described in detail.
  • the area ratio of the ferrite and the ferrite Specify the number ratio.
  • the extreme density of the ⁇ 112 ⁇ ⁇ 110> orientation at the center of the plate thickness is 3.0 or less. Cannot obtain the metallographic structure of. Therefore, the extreme density in the ⁇ 112 ⁇ ⁇ 110> direction at the center of the plate thickness is set to more than 3.0. It is preferably 3.5 or more or 4.0 or more. The upper limit is not particularly limited, but may be 10.0 or less.
  • the central portion of the plate thickness means a region from the surface to a depth of 1/4 of the plate thickness to a region from the surface to a depth of 3/4 of the plate thickness.
  • the extreme density of the ⁇ 112 ⁇ ⁇ 110> orientation at the center of the plate thickness is obtained by the following method.
  • a device combining a scanning electron microscope and an EBSD analysis device and OIM Analysis (registered trademark) manufactured by TSL Co., Ltd. are used.
  • OIM Analysis registered trademark
  • ⁇ 112 ⁇ ⁇ 110> Obtain the extreme density of the orientation.
  • the measurement range is from the surface to the depth of 1/4 of the plate thickness to the region of the surface to the depth of 3/4 of the plate thickness.
  • the measurement pitch is 5 ⁇ m / step.
  • ⁇ hkl ⁇ represents a crystal plane parallel to the rolling plane
  • ⁇ uvw> represents a crystal plane parallel to the rolling direction. That is, ⁇ hkl ⁇ ⁇ uvw> indicates a crystal in which ⁇ hkl ⁇ is oriented in the plate normal direction and ⁇ uvw> is oriented in the rolling direction.
  • the area ratio of ferrite 5 to 95% If the area ratio of the ferrite is less than 5%, the desired metal structure cannot be obtained in the hot stamped body, and as a result, the desired ductility cannot be obtained. Therefore, the area ratio of ferrite is set to 5% or more. It is preferably 30% or more, 40% or more, 50% or more or 60% or more. If the area ratio of the ferrite is more than 95%, the desired metal structure cannot be obtained in the hot stamped body. Therefore, the area ratio of ferrite is set to 95% or less. Preferably, it is 70% or less, 60% or less, 50% or less or 40% or less.
  • the remnant structure other than ferrite is a hard phase consisting of one or more of martensite, bainite and pearlite.
  • the area ratio of the hard phase is preferably 5% or more in total. It is preferably 10% or more.
  • the upper limit of the area ratio of the hard phase is not particularly limited, but may be 95% or less, 90% or less, 80% or less, or 70% or less in total.
  • Method for measuring the area ratio of the metallographic structure A sample is taken from a position 10 mm or more away from the end face of the hot stamping steel plate so that the thick cross section perpendicular to the surface becomes the observation surface. After polishing the observation surface, it corrodes with nital, and using an optical microscope and a scanning electron microscope (SEM), the plate thickness is 1/4 position from the surface (1/8 depth from the surface to the plate thickness from the surface). Observe at least 3 regions of 30 ⁇ m ⁇ 30 ⁇ m in the region of 3/8 depth). By performing image analysis on the microstructure photograph obtained by this microstructure observation, the area ratios of ferrite, pearlite and bainite are obtained. Then, after the repeller corrodes to the same observation position, the tissue is observed using an optical microscope and a scanning electron microscope, and the obtained tissue photograph is image-analyzed to obtain the area ratio of martensite. Is calculated.
  • Martensite is a structure with a high dislocation density and substructures such as blocks and packets in the grain, so it can be distinguished from other metal structures by electron channeling contrast images using a scanning electron microscope. It is possible. It is a collection of lath-shaped crystal grains, and has a structure that is not martensite among structures that do not contain Fe-based carbides with a major axis of 20 nm or more inside the structure, and Fe-based carbides that contain Fe-based carbides with a major axis of 20 nm or more inside the structure.
  • a structure in which the carbide has a single variant, that is, an Fe carbide extending in the same direction, is considered bainite.
  • the Fe-based carbide elongated in the same direction means that the difference in the elongation direction of the Fe-based carbide is within 5 °.
  • a structure that is a lumpy crystal grain and does not contain a substructure such as a lath inside the structure is regarded as ferrite.
  • a structure in which plate-shaped ferrite and Fe-based carbide are layered is regarded as pearlite.
  • Ratio of the number of ferrites containing a hard phase in the ferrite grains 30% or more
  • the ratio of the number of ferrites containing a hard phase in the ferrite grains is set to 30% or more. It is preferably 40% or more, 50% or more, or 60% or more.
  • the upper limit of the number ratio of ferrites containing a hard phase in the ferrite grains is not particularly limited, but may be 100% or less or 95% or less.
  • the hard phase referred to here is the above-mentioned residual structure, and refers to one or more of martensite, bainite and pearlite.
  • the steel sheet for hot stamping according to this embodiment may have a plating layer on one side or both sides. Having a plating layer on the surface is preferable because the corrosion resistance of the hot stamped molded product after hot stamping is improved.
  • the plating to be applied include aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot-dip galvanizing, electrozinc plating, and alloyed hot-dip galvanizing.
  • the thickness of the steel plate for hot stamping is not particularly limited, but it is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
  • the hot stamping compact according to the present embodiment which is obtained by hot stamping the above-mentioned hot stamping steel sheet, will be described. Since the chemical composition of the hot stamping compact according to the present embodiment can be regarded as the same as the chemical composition of the above-mentioned steel sheet for hot stamping, the description of the chemical composition will be omitted.
  • the area ratio of the hard phase having martensite of 80% or more and the GAIQ value existing on the martensite of 26000 or less in the metal structure is 1. It is 0% or more.
  • the area ratio of the martensite and the hardness at the position of 1/4 of the plate thickness from the surface (the region from the depth of 1/8 of the plate thickness to the depth of 3/8 of the plate thickness from the surface). Specifies the area ratio of the phase.
  • Area ratio of martensite 80% or more If the area ratio of martensite is less than 80%, the desired strength cannot be obtained in the hot stamp molded product. Therefore, the area ratio of martensite is 80% or more. It is preferably 85% or more or 90% or more. The upper limit of the area ratio of martensite is not particularly limited, but may be 100% or less or 95% or less.
  • the remaining structure other than martensite is one or two of ferrite, bainite and pearlite. If the area ratio of ferrite is less than 1%, excellent ductility may not be obtained. Therefore, the area ratio of ferrite may be 1% or more. More preferably, it is 2% or more. The total area ratio of bainite and pearlite may be 15% or less or 10% or less.
  • the area ratio of the hard phase existing on martensite with a GAIQ value of 26000 or less is 1.0% or more.
  • the area ratio of the hard phase present on martensite having a GAIQ value of 26000 or less is less than 1.0%, excellent ductility cannot be obtained. Therefore, the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is 1.0% or more. It is preferably 1.2% or more, 1.5% or more, 2.0% or more, 2.5% or more, or 3.0% or more.
  • the upper limit of the area ratio of the hard phase existing on martensite having a GAIQ value of 26000 or less is not particularly limited, but may be 10.0% or less or 7.0% or less.
  • the hard phase having a GAIQ value of 26000 or less includes martensite and bainite.
  • martensite and bainite may be contained as a hard phase having a GAIQ value of 26000 or less.
  • ferrite grains, bainite grains, etc. are present on martensite. It means that it exists outside the inside of pearlite grains, in other words, it exists at the lath boundary of martensite, between laths, inside the lath, the block boundary and the packet boundary, and the bainite grain boundary.
  • Method for measuring the area ratio of the metal structure and the area ratio of the hard phase having a GAIQ value of 26000 or less existing on martensite From a position 10 mm or more away from the end face of the hot stamped body (or a position avoiding the end). Take a sample so that the cross section of the plate thickness perpendicular to the surface is the observation surface. After polishing the observation surface, it corrodes with nital, and using an optical microscope and a scanning electron microscope (SEM), the plate thickness is 1/4 position from the surface (1/8 depth from the surface to the plate thickness from the surface). Observe at least 3 regions of 30 ⁇ m ⁇ 30 ⁇ m in the region of 3/8 depth).
  • each structure is identified by the same method as for the hot stamping steel sheet.
  • Crystal orientation information is obtained by electron backscatter diffraction method.
  • an EBSD device composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD device is 9.6 ⁇ 10 -5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the irradiation level of the electron beam is 62.
  • the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is measured.
  • the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is obtained.
  • martensite shall be identified by the above-mentioned method.
  • the hot stamp molded product according to the present embodiment may have a plating layer on one side or both sides. Having a plating layer on the surface is preferable because the corrosion resistance of the hot stamped molded product is improved.
  • the plating to be applied include aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot-dip galvanizing, electrozinc plating, and alloyed hot-dip galvanizing.
  • the plate thickness of the hot stamp molded product is not particularly limited, but is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
  • the tensile (maximum) strength of the hot stamp molded product according to this embodiment may be 980 to 1400 MPa. Further, the total elongation of the hot stamp molded product according to the present embodiment may be 7.0% or more. Further, in the hot stamp molded product according to the present embodiment, the product (TS ⁇ El) of the tensile strength and the total elongation may be 12000 MPa ⁇ % or more. Tensile strength and total elongation are obtained by taking a JIS No. 5 test piece from a hot stamped body and performing a tensile test in accordance with JIS Z 2241: 2011.
  • a preferred method for manufacturing a steel sheet for hot stamping according to the present embodiment includes the following steps.
  • a slab is obtained by setting the casting speed to 0.80 m / min or more.
  • a hot-rolled steel sheet is obtained by hot rolling with the winding temperature in the temperature range of 500 to 700 ° C.
  • the cold-rolled steel sheet is heated and held in a temperature range of 750 to Ac 3 points (first holding), and then the average cooling rate in the temperature range of 600 to 700 ° C. Cool to 15 ° C./s or less. Then, it is rapidly cooled to a temperature range of 300 to 500 ° C.
  • quenching means cooling having an average cooling rate of more than 15 ° C./s.
  • Casting speed 0.80 m / min or more By manufacturing the slab at a casting speed of 0.80 m / min or more, Mn segregation in steel can be promoted.
  • the casting speed may be 3.00 m / min or less from the viewpoint of suppressing slab cracking.
  • Winding temperature 500-700 ° C
  • Mn can be concentrated in the carbide.
  • the other conditions for hot rolling are not particularly limited and may be general conditions.
  • the conditions for cold rolling may also be general, and the cumulative rolling reduction may be 30 to 70%.
  • the cold-rolled steel sheet After the first holding, cool so that the average cooling rate is 15 ° C / s or less. After cold rolling, the cold-rolled steel sheet is heated and held in the two-phase region, that is, in the temperature range of 750 to Ac 3 points (first holding). ), Then cooling is performed so that the average cooling rate in the temperature range of 600 to 700 ° C. is 15 ° C./s or less, so that a hard phase in which Mn is concentrated can remain inside the ferrite grains.
  • untransformed austenite in which Mn is not concentrated is transformed into ferrite, but untransformed austenite in which Mn is enriched has a lowered transformation point, so that untransformed austenite is used as untransformed austenite without ferrite transformation. Remains.
  • the holding time in the first holding may be 10 to 300 seconds.
  • the average cooling rate is a value obtained by dividing the temperature difference between the surface temperature at the start of cooling and the surface temperature at the stop of cooling by the time difference from the start of cooling to the stop of cooling.
  • Ac 3 points can be obtained by the following formula.
  • the holding time in the second holding may be 10 to 600 seconds.
  • the steel sheet for hot stamping according to the present embodiment can be stably manufactured.
  • a step of forming a plating layer on one side or both sides of the hot stamping steel sheet may be provided.
  • the method for manufacturing a hot stamp molded product according to the present embodiment includes the following steps.
  • the steel sheet for hot stamping is heated to a temperature range of 3 points or more and held. Cool to a temperature range of 100 ° C. or lower so that the average cooling rate is 30 ° C./s or higher.
  • each step will be described.
  • Heating temperature and holding temperature Ac 3 points or more By heating and holding the above-mentioned hot stamping steel sheet in a temperature range of Ac 3 points or more, austenite can be sufficiently formed.
  • the holding time in the temperature range of Ac 3 points or more is not particularly limited, but may be, for example, 10 to 300 seconds.
  • Average cooling rate up to a temperature range of 100 ° C. or lower 30 ° C./s or more
  • a desired amount of hard phase is obtained. be able to.
  • it is possible to increase the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less. Cooling to a temperature range of 100 ° C. or lower may be performed by contact with a mold.
  • the hot stamp molded product according to the present embodiment can be obtained. Since the steel sheet for hot stamping according to the present embodiment has relatively low strength, it is joined to a steel sheet having high strength after hot stamping to form a tailored blank, which is then hot stamped and formed into a vehicle body part. Since this vehicle body part is manufactured by hot-stamping a tailored blank made of a low-strength material and a high-strength material, it has a low-strength portion and a high-strength portion.
  • the welding method is not particularly limited.
  • the high-strength material (steel plate having high strength after hot stamping) used together with the low-strength material (steel plate for hot stamping according to the present embodiment) is not particularly limited. These may be selected appropriately for each vehicle body part to be manufactured.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the steel sheets for hot stamping shown in Tables 2A to 2C were manufactured under the conditions shown in Tables 2A to 2C.
  • the hot stamp molded products shown in Tables 3A to 3C were obtained under the conditions shown in Tables 3A to 3C.
  • the slab was manufactured at the casting speeds shown in Tables 2A to 2C.
  • the cumulative rolling reduction was set to 30 to 70%.
  • the holding time in the first holding was 10 to 300 seconds, and the holding time in the second holding was 10 to 600 seconds.
  • the mixture was rapidly cooled to the second holding temperature. After the second holding, it was rapidly cooled to a temperature range of 100 ° C. or lower. Further, in the heating at the time of hot stamping, the holding time was set to 10 to 300 seconds.
  • the metallographic structure of the hot stamped steel sheet, the metallic structure of the hot stamped body, and the mechanical properties (tensile strength and total elongation) were measured. Examples having a tensile strength of 980 to 1400 MPa were judged to be acceptable because they had high strength. On the other hand, an example in which the tensile strength was less than 980 MPa or more than 1400 MPa was judged to be unacceptable. Further, an example in which the total elongation was 7.0% or more and the product of the tensile strength and the total elongation (TS ⁇ El) was 12000 MPa ⁇ % or more was judged to be acceptable because of its excellent ductility.
  • the hot stamp molded product according to the example of the present invention has high strength and excellent ductility.
  • the hot stamped product according to the comparative example does not have high strength and / or excellent ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This steel sheet for hot stamping has the desired chemical composition, and in the metal structure thereof, the pole density in the [112]<110> orientation of a central section in the sheet thickness direction is more than 3.0, ferrite constitutes 5-95% in terms of area ratio, and the number ratio of ferrite grains in which a hard phase is included in the ferrite grain to the total number of ferrite grains is 30% or more.

Description

ホットスタンプ用鋼板およびホットスタンプ成形体Steel plate for hot stamping and hot stamp molded body
 本発明は、ホットスタンプ用鋼板およびホットスタンプ成形体に関する。
 本願は、2020年9月17日に、日本に出願された特願2020-156562号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steel sheet for hot stamping and a hot stamp molded body.
This application claims priority based on Japanese Patent Application No. 2020-15656 filed in Japan on September 17, 2020, the contents of which are incorporated herein by reference.
 近年、車体軽量化および衝突安全性向上の要請から、高強度鋼板が自動車の車体部品に適用されている。車体部品はプレス成形によって成形されるため、プレス成形性の向上、特に形状凍結性の向上が課題とされている。そのため、形状精度に優れた高強度の車体部品を製造する方法として、ホットスタンプ工法が注目されている。 In recent years, high-strength steel plates have been applied to automobile body parts due to the demand for weight reduction and collision safety improvement. Since the vehicle body parts are molded by press molding, improvement of press moldability, particularly improvement of shape freezing property, is an issue. Therefore, the hot stamping method is attracting attention as a method for manufacturing high-strength vehicle body parts having excellent shape accuracy.
 また、近年、ホットスタンプ工法にテーラードブランクを適用する技術が検討されている。テーラードブランクとは、板厚、化学組成、金属組織などが異なる複数枚の鋼板を溶接により接合することで一枚の鋼板としたものである。テーラードブランクにおいては、接合させた一枚の鋼板中の特性を部分的に変化させることができる。例えば、ある部分に高い強度を持たせることでその部分における変形を抑制し、別の部分に低い強度を持たせることでその部分を変形させ、衝撃を吸収することができる。強度が低い部分には、変形時の破断を抑制できるよう、延性に優れることが求められる。 Also, in recent years, a technique for applying a tailored blank to the hot stamping method has been studied. A tailored blank is a single steel plate made by joining a plurality of steel plates having different plate thicknesses, chemical compositions, metal structures, etc. by welding. In a tailored blank, the properties in a single joined steel sheet can be partially changed. For example, by giving a certain part a high strength, deformation in that part can be suppressed, and by giving another part a low strength, the part can be deformed and an impact can be absorbed. The low-strength portion is required to have excellent ductility so as to suppress breakage during deformation.
 ホットスタンプ工法にテーラードブランクを適用する技術としては、ホットスタンプ後に低強度を有する鋼板と、ホットスタンプ後に高強度を有する鋼板とを溶接により接合したテーラードブランクを用いる技術がある。ホットスタンプ後に高強度を有する鋼板としては、例えば特許文献1に開示されるような鋼板を用いることができる。ホットスタンプ後に低強度を有する鋼板としては、ホットスタンプにおける金型冷却後に低強度を有するように、鋼の化学組成を調整すればよい。 As a technique for applying a tailored blank to the hot stamping method, there is a technique for using a tailored blank in which a steel plate having low strength after hot stamping and a steel plate having high strength after hot stamping are joined by welding. As the steel sheet having high strength after hot stamping, for example, a steel sheet as disclosed in Patent Document 1 can be used. As the steel sheet having low strength after hot stamping, the chemical composition of the steel may be adjusted so as to have low strength after cooling the mold in the hot stamping.
 テーラードブランクに適用される鋼種の一つに低炭素鋼がある。低炭素鋼は炭素含有量が低いため、加熱後に急速冷却されても高強度化しにくい特徴を持つ。特許文献2には、極低炭素鋼をホットスタンプ工法の低強度材として用いたことが開示されている。特許文献2には、鋼板をAc点以上の温度に加熱した後にホットスタンプし、ベイナイトおよびベイニティックフェライトを主相とする金属組織とすることにより、局部変形能を向上させる技術が開示されている。特許文献2には、この技術により、衝突時、曲げモードで車体部品が変形した際に破断が生じにくくなり、塑性変形による衝撃吸収能に優れることが開示されている。 Low carbon steel is one of the steel types applied to tailored blanks. Since low carbon steel has a low carbon content, it has the characteristic that it is difficult to increase its strength even if it is rapidly cooled after heating. Patent Document 2 discloses that ultra-low carbon steel is used as a low-strength material in the hot stamping method. Patent Document 2 discloses a technique for improving local deformability by heating a steel sheet to a temperature of 3 points or more and then hot stamping it to form a metal structure having bainite and bainitic ferrite as main phases. ing. Patent Document 2 discloses that this technique makes it difficult for fracture to occur when a vehicle body part is deformed in a bending mode at the time of a collision, and is excellent in impact absorption ability due to plastic deformation.
 近年では、高い衝突性能を有する高強度材料として、1500MPa未満の引張強さを有するホットスタンプ成形体が注目されている。このようなホットスタンプ成形体では、所望される強度を有した上で、変形時の破断を十分に抑制できるよう、ホットスタンプ後においてより高い延性を有することが求められる。 In recent years, as a high-strength material having high collision performance, a hot stamp molded body having a tensile strength of less than 1500 MPa has been attracting attention. Such a hot stamped body is required to have a desired strength and a higher ductility after hot stamping so as to be able to sufficiently suppress fracture during deformation.
日本国特開2004-197213号公報Japanese Patent Laid-Open No. 2004-197213 国際公開第2012/157581号International Publication No. 2012/157581
 本発明は上記実情に鑑みてなされたものであり、高い強度および優れた延性を有するホットスタンプ成形体、並びに、このホットスタンプ成形体を製造できるホットスタンプ用鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot stamped molded product having high strength and excellent ductility, and a steel plate for hot stamping capable of producing this hot stamped molded product.
 本発明者らは、ホットスタンプ成形体の延性を向上させる方法について検討した。その結果、ホットスタンプ成形体の金属組織において、マルテンサイト上に存在する転位密度の高い硬質相の面積率を増加させることで、ホットスタンプ成形体の延性を向上できることを知見した。 The present inventors have studied a method for improving the ductility of a hot stamp molded product. As a result, it was found that the ductility of the hot stamped body can be improved by increasing the area ratio of the hard phase having a high dislocation density existing on martensite in the metal structure of the hot stamped body.
 また、本発明者らは、ホットスタンプ用鋼板において、化学組成を好ましく制御し、且つフェライト粒内に硬質相を含むフェライトの個数割合を増加させることで、上記ホットスタンプ成形体が得られることを知見した。 Further, the present inventors have determined that the hot stamped product can be obtained by preferably controlling the chemical composition of the hot stamping steel sheet and increasing the ratio of the number of ferrites containing a hard phase in the ferrite grains. I found out.
 本発明は上記知見に基づいて得られたものであり、本発明の要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ用鋼板は、化学組成が、質量%で、
C :0.060~0.200%、
Si:0.010~1.000%、
Mn:1.20~3.00%、
Al:0.010~0.500%、
P :0.100%以下、
S :0.0100%以下、
N :0.0100%以下、
Nb:0%以上、0.020%未満、
Ti:0~0.100%、
Cr:0~0.50%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0~0.50%、
V :0~0.10%、
Ca:0~0.0100%、
Mg:0~0.0100%、および
REM:0~0.0100%を含み、
残部がFeおよび不純物からなり、
 金属組織において、
 板厚中央部の{112}<110>方位の極密度が3.0超であり、
 面積率で、フェライトが5~95%であり、
 全フェライトのうち、フェライト粒内に硬質相を含む前記フェライトの個数割合が30%以上である。
(2)上記(1)に記載のホットスタンプ用鋼板は、前記化学組成が、質量%で、
Nb:0.001%以上、0.020%未満、
Ti:0.010~0.100%、
Cr:0.05~0.50%、
B :0.0001~0.0100%、
Mo:0.01~1.00%、
Co:0.01~2.00%、
Ni:0.01~0.50%、
V :0.01~0.10%、
Ca:0.0005~0.0100%、
Mg:0.0005~0.0100%、および
REM:0.0005~0.0100%
からなる群のうち1種または2種以上を含有してもよい。
(3)本発明の別の態様に係るホットスタンプ成形体は、化学組成が、質量%で、
C :0.060~0.200%、
Si:0.010~1.00%、
Mn:1.20~3.00%、
Al:0.010~0.500%、
P :0.100%以下、
S :0.0100%以下、
N :0.0100%以下、
Nb:0%以上、0.020%未満、
Ti:0~0.100%、
Cr:0~0.50%、
B :0~0.0100%、
Mo:0~1.00%、
Co:0~2.00%、
Ni:0~0.50%、
V :0~0.10%、
Ca:0~0.0100%、
Mg:0~0.0100%、および
REM:0~0.0100%を含み、
残部がFeおよび不純物からなり、
 金属組織において、
 面積率で、マルテンサイトが80%以上であり、
 前記マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率が1.0%以上である。
(4)上記(3)に記載のホットスタンプ成形体は、前記化学組成が、質量%で、
Nb:0.001%以上、0.020%未満、
Ti:0.010~0.100%、
Cr:0.05~0.50%、
B :0.0001~0.0100%、
Mo:0.01~1.00%、
Co:0.01~2.00%、
Ni:0.01~0.50%、
V :0.01~0.10%、
Ca:0.0005~0.0100%、
Mg:0.0005~0.0100%、および
REM:0.0005~0.0100%
からなる群のうち1種または2種以上を含有してもよい。
The present invention has been obtained based on the above findings, and the gist of the present invention is as follows.
(1) The steel sheet for hot stamping according to one aspect of the present invention has a chemical composition of% by mass.
C: 0.060 to 0.200%,
Si: 0.010 to 1.000%,
Mn: 1.20 to 3.00%,
Al: 0.010 to 0.500%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0100% or less,
Nb: 0% or more, less than 0.020%,
Ti: 0 to 0.100%,
Cr: 0 to 0.50%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0 to 0.50%,
V: 0 to 0.10%,
Ca: 0-0.0100%,
Mg: 0 to 0.0100%, and REM: 0 to 0.0100%,
The rest consists of Fe and impurities
In the metallographic structure
The extreme density of the {112} <110> orientation at the center of the plate thickness is over 3.0.
Area rule, ferrite is 5 to 95%,
Of all the ferrites, the number ratio of the ferrites containing a hard phase in the ferrite grains is 30% or more.
(2) The steel sheet for hot stamping according to (1) above has a chemical composition of% by mass.
Nb: 0.001% or more, less than 0.020%,
Ti: 0.010 to 0.100%,
Cr: 0.05 to 0.50%,
B: 0.0001 to 0.0100%,
Mo: 0.01-1.00%,
Co: 0.01-2.00%,
Ni: 0.01-0.50%,
V: 0.01-0.10%,
Ca: 0.0005-0.0100%,
Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100%
It may contain one or more of the group consisting of.
(3) The hot stamp molded product according to another aspect of the present invention has a chemical composition of% by mass.
C: 0.060 to 0.200%,
Si: 0.010 to 1.00%,
Mn: 1.20 to 3.00%,
Al: 0.010 to 0.500%,
P: 0.100% or less,
S: 0.0100% or less,
N: 0.0100% or less,
Nb: 0% or more, less than 0.020%,
Ti: 0 to 0.100%,
Cr: 0 to 0.50%,
B: 0 to 0.0100%,
Mo: 0 to 1.00%,
Co: 0 to 2.00%,
Ni: 0 to 0.50%,
V: 0 to 0.10%,
Ca: 0-0.0100%,
Mg: 0 to 0.0100%, and REM: 0 to 0.0100%,
The rest consists of Fe and impurities
In the metallographic structure
In terms of area ratio, martensite is 80% or more,
The area ratio of the hard phase existing on the martensite and having a GAIQ value of 26000 or less is 1.0% or more.
(4) The hot stamp molded product according to (3) above has a chemical composition of% by mass.
Nb: 0.001% or more, less than 0.020%,
Ti: 0.010 to 0.100%,
Cr: 0.05 to 0.50%,
B: 0.0001 to 0.0100%,
Mo: 0.01-1.00%,
Co: 0.01-2.00%,
Ni: 0.01-0.50%,
V: 0.01-0.10%,
Ca: 0.0005-0.0100%,
Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100%
It may contain one or more of the group consisting of.
 本発明に係る上記態様によれば、高い強度および優れた延性を有するホットスタンプ成形体、並びに、このホットスタンプ成形体を製造できるホットスタンプ用鋼板を提供することができる。 According to the above aspect according to the present invention, it is possible to provide a hot stamped molded product having high strength and excellent ductility, and a steel plate for hot stamping capable of producing this hot stamped molded product.
 以下、本実施形態に係るホットスタンプ用鋼板およびホットスタンプ成形体について詳細に説明する。まず、本実施形態に係るホットスタンプ用鋼板の化学組成の限定理由について説明する。なお、「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。また、化学組成についての%は全て質量%を意味する。 Hereinafter, the steel plate for hot stamping and the hot stamp molded body according to the present embodiment will be described in detail. First, the reason for limiting the chemical composition of the hot stamping steel sheet according to the present embodiment will be described. In addition, the lower limit value and the upper limit value are included in the numerical limitation range described with "~" in between. Numerical values indicated as "less than" and "greater than" do not include the value in the numerical range. In addition,% of the chemical composition means mass%.
 本実施形態に係るホットスタンプ成形体は、化学組成が、質量%で、C:0.060~0.200%、Si:0.010~1.000%、Mn:1.20~3.00%、Al:0.010~0.500%、P:0.100%以下、S:0.0100%以下、N:0.0100%以下、並びに、残部:Feおよび不純物を含む。以下、各元素について説明する。 The hot stamped body according to the present embodiment has a chemical composition of% by mass, C: 0.060 to 0.200%, Si: 0.010 to 1.000%, Mn: 1.20 to 3.00. %, Al: 0.010 to 0.500%, P: 0.100% or less, S: 0.0100% or less, N: 0.0100% or less, and the balance: Fe and impurities. Hereinafter, each element will be described.
C:0.060~0.200%
 Cは、ホットスタンプ成形体の強度および延性に大きく影響を及ぼす元素である。C含有量が低すぎると、マルテンサイト変態が促進せずに、ホットスタンプ成形体の強度が低くなり、強度不足による破断が生じやすくなる。そのため、C含有量は0.060%以上とする。好ましくは、0.080%以上、0.100%以上または0.120%以上である。
 一方、C含有量が高すぎると、マルテンサイト母相の硬度が高くなりすぎるため、ホットスタンプ成形体の延性が低下する。そのため、C含有量は0.200%以下とする。好ましくは、0.170%以下または0.150%以下である。
C: 0.060 to 0.200%
C is an element that greatly affects the strength and ductility of the hot stamped product. If the C content is too low, the martensitic transformation is not promoted, the strength of the hot stamped compact is lowered, and fracture is likely to occur due to insufficient strength. Therefore, the C content is set to 0.060% or more. Preferably, it is 0.080% or more, 0.100% or more, or 0.120% or more.
On the other hand, if the C content is too high, the hardness of the martensite matrix becomes too high, and the ductility of the hot stamped product decreases. Therefore, the C content is set to 0.200% or less. Preferably, it is 0.170% or less or 0.150% or less.
Si:0.010~1.000%
 Siは、固溶強化能を有する元素であり、ホットスタンプ成形体の強度を得るために必要な元素である。Si含有量が低すぎると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、Si含有量は0.010%以上とする。好ましくは、0.100%以上、0.300%以上または0.500%以上である。
 一方、Si含有量が高すぎると、フェライト変態が過度に進行して、ホットスタンプ成形体において所望量のマルテンサイトを得ることができなくなる。そのため、Si含有量は1.000%以下とする。好ましくは、0.900%以下または0.800%以下である。
Si: 0.010 to 1.000%
Si is an element having a solid solution strengthening ability and is an element necessary for obtaining the strength of a hot stamp molded product. If the Si content is too low, the desired strength cannot be obtained in the hot stamped body. Therefore, the Si content is 0.010% or more. Preferably, it is 0.100% or more, 0.300% or more, or 0.500% or more.
On the other hand, if the Si content is too high, the ferrite transformation proceeds excessively, and it becomes impossible to obtain a desired amount of martensite in the hot stamp molded product. Therefore, the Si content is 1.000% or less. It is preferably 0.900% or less or 0.800% or less.
Mn:1.20~3.00%
 Mnは、固溶強化能を有する元素であり、ホットスタンプ成形体の強度を得るために含有させる。Mn含有量が低すぎると、フェライト変態が進み過ぎてマルテンサイトが生成しにくくなり、ホットスタンプ成形体において所望の強度が得られない。そのため、Mn含有量は1.20%以上とする。好ましくは、1.40%以上または1.60%以上である。
 一方、Mn含有量が高すぎると、鋼の焼入れ性が高くなり、ホットスタンプ時の加熱後、空冷中のフェライトの形成が抑制されることで、ホットスタンプ成形体の延性が低下する。そのため、Mn含有量は3.00%以下とする。好ましくは、2.80%以下または2.60%以下である。
Mn: 1.20 to 3.00%
Mn is an element having a solid solution strengthening ability, and is contained in order to obtain the strength of the hot stamp molded product. If the Mn content is too low, the ferrite transformation proceeds too much and martensite is difficult to be generated, and the desired strength cannot be obtained in the hot stamped body. Therefore, the Mn content is 1.20% or more. It is preferably 1.40% or more or 1.60% or more.
On the other hand, if the Mn content is too high, the hardenability of the steel becomes high, and the formation of ferrite in air cooling after heating during hot stamping is suppressed, so that the ductility of the hot stamped product is lowered. Therefore, the Mn content is set to 3.00% or less. It is preferably 2.80% or less or 2.60% or less.
Al:0.010~0.500%
 Alは、フェライト変態を促進させるために重要な元素である。Al含有量が低すぎると、フェライト変態が進行しにくくなり、ホットスタンプ成形体において所望量のフェライトを得ることができない。そのため、Al含有量は0.010%以上とする。好ましくは、0.020%以上または0.030%以上である。
 一方、Al含有量が高すぎると、フェライトへの変態が過度に進行し、ホットスタンプ成形体において所望量のマルテンサイトを得ることができない。そのため、Al含有量は0.500%以下とする。好ましくは、0.450%以下または0.400%以下である。
Al: 0.010 to 0.500%
Al is an important element for promoting ferrite transformation. If the Al content is too low, the ferrite transformation is less likely to proceed, and a desired amount of ferrite cannot be obtained in the hot stamp molded product. Therefore, the Al content is 0.010% or more. Preferably, it is 0.020% or more or 0.030% or more.
On the other hand, if the Al content is too high, the transformation to ferrite proceeds excessively, and a desired amount of martensite cannot be obtained in the hot stamped body. Therefore, the Al content is set to 0.500% or less. Preferably, it is 0.450% or less or 0.400% or less.
P:0.100%以下
 Pは、固溶強化能を有し、ホットスタンプ成形体において所望の強度を得るために有効な元素である。しかし、P含有量が高すぎると、ホットスタンプ成形体の延性が劣化する。そのため、P含有量は0.100%以下とする。好ましくは、0.080%以下、0.060%以下または0.050%以下である。
 P含有量の下限は特に規定しないが、Pによる強度確保の観点からは、P含有量を0.001%以上または0.005%以上としてもよい。
P: 0.100% or less P is an element that has a solid solution strengthening ability and is effective for obtaining a desired strength in a hot stamped article. However, if the P content is too high, the ductility of the hot stamped body deteriorates. Therefore, the P content is set to 0.100% or less. Preferably, it is 0.080% or less, 0.060% or less, or 0.050% or less.
The lower limit of the P content is not particularly specified, but from the viewpoint of ensuring the strength by P, the P content may be 0.001% or more or 0.005% or more.
S:0.0100%以下
 Sは、鋼中に不純物として含有され、鋼を脆化させる元素である。そのため、S含有量は少ないほど好ましい。S含有量は0.0100%以下とする。好ましくは、0.0080%以下、0.0060%以下、または0.0040%以下である。
 S含有量の下限は特に規定しないが、S含有量を過剰に低減すると脱硫工程におけるコストが増大するため、S含有量は0.0005%以上または0.0010%以上としてもよい。
S: 0.0100% or less S is an element contained in steel as an impurity and embrittles the steel. Therefore, the smaller the S content, the more preferable. The S content shall be 0.0100% or less. Preferably, it is 0.0080% or less, 0.0060% or less, or 0.0040% or less.
The lower limit of the S content is not particularly specified, but the S content may be 0.0005% or more or 0.0010% or more because the cost in the desulfurization step increases if the S content is excessively reduced.
N:0.0100%以下
 Nは、不純物元素であり、鋼中に窒化物を形成してホットスタンプ成形体の延性を劣化させる元素である。N含有量が高すぎると、鋼中の窒化物が粗大化し、ホットスタンプ成形体の延性が劣化する。そのため、N含有量は0.0100%以下とする。好ましくは、0.0080%以下または0.0060%以下である。
 N含有量の下限は特に規定しないが、N含有量を過剰に低減すると製鋼工程におけるコストが増大するため、N含有量は0.0010%以上としてもよい。
N: 0.0100% or less N is an impurity element, which is an element that forms a nitride in steel and deteriorates the ductility of the hot stamped body. If the N content is too high, the nitride in the steel becomes coarse and the ductility of the hot stamped body deteriorates. Therefore, the N content is 0.0100% or less. Preferably, it is 0.0080% or less or 0.0060% or less.
The lower limit of the N content is not particularly specified, but the N content may be 0.0010% or more because the cost in the steelmaking process increases if the N content is excessively reduced.
 本実施形態に係るホットスタンプ用鋼板は、上記の元素を含有し、残部がFeおよび不純物からなっていてもよい。不純物としては、鋼原料もしくはスクラップからおよび/または製鋼工程で不可避的に混入するもの、あるいは本実施形態に係るホットスタンプ成形体の特性を阻害しない範囲で許容される元素が例示される。 The steel sheet for hot stamping according to the present embodiment may contain the above elements, and the balance may consist of Fe and impurities. Examples of impurities include those that are inevitably mixed from the steel raw material or scrap and / or in the steelmaking process, or elements that are allowed within a range that does not impair the characteristics of the hot stamped product according to the present embodiment.
 本実施形態に係るホットスタンプ用鋼板は、各種の特性を向上させるため、以下に示す任意元素をFeの一部に代えて含有させてもよい。合金コストの低減のためには、これらの任意元素を意図的に鋼中に含有させる必要がないので、これらの任意元素の含有量の下限は、いずれも0%である。 The hot stamping steel sheet according to the present embodiment may contain an optional element shown below in place of a part of Fe in order to improve various properties. Since it is not necessary to intentionally contain these arbitrary elements in the steel in order to reduce the alloy cost, the lower limit of the content of these optional elements is 0%.
Nb:0.001%以上、0.020%未満
 Nbは、オーステナイトの粒成長を抑制してオーステナイト粒を細粒化し、フェライトへの変態を促進させる元素である。この効果を確実に得るためには、Nb含有量は0.001%以上とすることが好ましい。
 一方、Nb含有量が高すぎると、上記効果が飽和する上、コストが増加する。そのため、Nb含有量は0.020%未満とする。
Nb: 0.001% or more and less than 0.020% Nb is an element that suppresses the grain growth of austenite, atomizes the austenite grains, and promotes the transformation to ferrite. In order to surely obtain this effect, the Nb content is preferably 0.001% or more.
On the other hand, if the Nb content is too high, the above effects are saturated and the cost increases. Therefore, the Nb content is set to less than 0.020%.
Ti:0.010~0.100%
 Tiは、オーステナイトの粒成長を抑制してオーステナイト粒を細粒化し、フェライトへの変態を促進させる元素である。この効果を確実に得るためには、Ti含有量は0.010%以上とすることが好ましい。
 一方、Ti含有量が高すぎると、粗大なTi硫化物、Ti窒化物およびTi酸化物が形成され、鋼板の成形性が劣化する。そのため、Ti含有量は0.100%以下とする。
Ti: 0.010 to 0.100%
Ti is an element that suppresses the grain growth of austenite, atomizes the austenite grains, and promotes the transformation to ferrite. In order to surely obtain this effect, the Ti content is preferably 0.010% or more.
On the other hand, if the Ti content is too high, coarse Ti sulfides, Ti nitrides and Ti oxides are formed, and the formability of the steel sheet is deteriorated. Therefore, the Ti content is set to 0.100% or less.
Cr:0.05~0.50%
 Crも、鋼の焼入れ性を高め、マルテンサイトの形成を促進し、ホットスタンプ成形体の強度を高めるために有効な元素である。この効果を確実に得るためには、Cr含有量は、0.05%以上とすることが好ましい。
 一方、Cr含有量が高すぎると、破壊の起点となり得る粗大なCr炭化物が多量に形成される。そのため、Cr含有量は0.50%以下とする。
Cr: 0.05 to 0.50%
Cr is also an effective element for enhancing the hardenability of steel, promoting the formation of martensite, and increasing the strength of the hot stamped compact. In order to surely obtain this effect, the Cr content is preferably 0.05% or more.
On the other hand, if the Cr content is too high, a large amount of coarse Cr carbides that can be the starting point of fracture are formed. Therefore, the Cr content is set to 0.50% or less.
B:0.0001~0.0100%
 Bは、旧オーステナイト粒界に偏析し、フェライト変態を抑制する効果を有し、ホットスタンプ成形体の強度の向上に寄与する元素である。この効果を確実に得るためには、B含有量は0.0001%以上とすることが好ましい。
 一方、B含有量が高すぎると、ホットスタンプ成形体の延性を低下させる。そのため、B含有量は0.0100%以下とする。
B: 0.0001 to 0.0100%
B is an element that segregates into the old austenite grain boundaries, has the effect of suppressing ferrite transformation, and contributes to the improvement of the strength of the hot stamped compact. In order to surely obtain this effect, the B content is preferably 0.0001% or more.
On the other hand, if the B content is too high, the ductility of the hot stamp molded product is lowered. Therefore, the B content is 0.0100% or less.
Mo:0.01~1.00%
 Moは、鋼中に炭化物を形成して、析出強化によりホットスタンプ成形体の強度を向上させる。この効果を確実に得るためには、Mo含有量は0.01%以上とすることが好ましい。
 一方、Mo含有量が高すぎると、ホットスタンプ成形体の延性が低下する。そのため、Mo含有量は1.00%以下とする。
Mo: 0.01-1.00%
Mo forms carbides in the steel and improves the strength of the hot stamped body by strengthening precipitation. In order to surely obtain this effect, the Mo content is preferably 0.01% or more.
On the other hand, if the Mo content is too high, the ductility of the hot stamped product will decrease. Therefore, the Mo content is set to 1.00% or less.
Co:0.01~2.00%
 Coは、固溶強化により、ホットスタンプ成形体の強度を向上させる。この効果を確実に得るためには、Co含有量は0.01%以上とすることが好ましい。
 一方、Co含有量が高すぎると、上記作用による効果は飽和し、コストが増加する。したがって、Co含有量は、2.00%以下とする。
Co: 0.01-2.00%
Co improves the strength of the hot stamped body by strengthening the solid solution. In order to surely obtain this effect, the Co content is preferably 0.01% or more.
On the other hand, if the Co content is too high, the effect of the above action is saturated and the cost increases. Therefore, the Co content is 2.00% or less.
Ni:0.01~0.50%
 Niは、ホットスタンプ成形体の強度を向上させる。この効果を確実に得るためには、Ni含有量は0.01%以上とすることが好ましい。
 一方、Ni含有量が高すぎると、鋳造性が低下する場合がある。そのため、Ni含有量は0.50%以下とする。
Ni: 0.01-0.50%
Ni improves the strength of the hot stamped body. In order to surely obtain this effect, the Ni content is preferably 0.01% or more.
On the other hand, if the Ni content is too high, the castability may deteriorate. Therefore, the Ni content is set to 0.50% or less.
V:0.01~0.10%
 Vは、析出物による強化、オーステナイトの粒成長を抑制してオーステナイト粒を細粒化することによって、ホットスタンプ成形体の強度を向上させる。この効果を確実に得るためには、V含有量は、0.01%以上とすることが好ましい。
 一方、V含有量が高すぎると、炭窒化物が多量に析出して鋼板の成形性が低下する。そのため、V含有量は、0.10%以下とする。
V: 0.01-0.10%
V improves the strength of the hot stamped compact by fortifying with the precipitate and suppressing the grain growth of austenite to make the austenite granules finer. In order to surely obtain this effect, the V content is preferably 0.01% or more.
On the other hand, if the V content is too high, a large amount of carbonitride is deposited and the formability of the steel sheet is deteriorated. Therefore, the V content is set to 0.10% or less.
Ca:0.0005~0.0100%
 Caは、溶鋼を脱酸して鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する元素である。この作用を確実に得るためには、Ca含有量を0.0005%以上とすることが好ましい。
 一方、Ca含有量が高すぎても上記効果は飽和するため、Ca含有量は0.0100%以下とすることが好ましい。
Ca: 0.0005-0.0100%
Ca is an element having an action of deoxidizing molten steel to make the steel sound (suppressing the occurrence of defects such as blow holes in the steel). In order to surely obtain this effect, the Ca content is preferably 0.0005% or more.
On the other hand, if the Ca content is too high, the above effect is saturated, so the Ca content is preferably 0.0100% or less.
Mg:0.0005~0.0100%
 Mgは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この効果を確実に得るためには、Mg含有量は0.0005%以上とすることが好ましい。
 一方、Mg含有量が高すぎても、上記効果は飽和してコストの上昇を引き起こす。そのため、Mg含有量は0.0100%以下とすることが好ましい。
Mg: 0.0005-0.0100%
Mg is an element having an action of deoxidizing molten steel to make the steel sound. In order to surely obtain this effect, the Mg content is preferably 0.0005% or more.
On the other hand, if the Mg content is too high, the above effect is saturated and causes an increase in cost. Therefore, the Mg content is preferably 0.0100% or less.
REM:0.0005~0.0100%
 REMは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この効果を確実に得るためには、REM含有量を0.0005%以上とすることが好ましい。
 一方、REM含有量が高すぎても上記効果は飽和するため、REM含有量は0.0100%以下とすることが好ましい。
 なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指す。本実施形態では、REMの含有量とはこれらの元素の合計含有量を指す。
REM: 0.0005-0.0100%
REM is an element having an action of deoxidizing molten steel to make the steel sound. In order to surely obtain this effect, the REM content is preferably 0.0005% or more.
On the other hand, if the REM content is too high, the above effect is saturated, so the REM content is preferably 0.0100% or less.
In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids. In this embodiment, the REM content refers to the total content of these elements.
 上述した化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。ホットスタンプ用鋼板またはホットスタンプ成形体が表面にめっき層を備える場合は、機械研削により表面のめっき層を除去してから、化学組成の分析を行えばよい。 The above-mentioned chemical composition may be measured by a general analysis method. For example, ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) may be used for measurement. In addition, C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method. When the steel plate for hot stamping or the hot stamped body has a plating layer on the surface, the plating layer on the surface may be removed by mechanical grinding, and then the chemical composition may be analyzed.
 次に、本実施形態に係るホットスタンプ用鋼板の金属組織について説明する。
 本実施形態に係るホットスタンプ用鋼板は、金属組織において、板厚中央部の{112}<110>方位の極密度が3.0超であり、面積率で、フェライトが5~95%であり、全フェライトのうち、フェライト粒内に硬質相を含む前記フェライトの個数割合が30%以上である。以下、各規定について詳細に説明する。
 なお、本実施形態では、表面から板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における前記フェライトの面積率および前記フェライトの個数割合を規定する。
Next, the metal structure of the hot stamping steel sheet according to the present embodiment will be described.
The steel sheet for hot stamping according to the present embodiment has a metal structure having a polar density of more than 3.0 in the {112} <110> direction at the center of the plate thickness and an area ratio of 5 to 95%. Of all the ferrites, the number ratio of the ferrites containing a hard phase in the ferrite grains is 30% or more. Hereinafter, each regulation will be described in detail.
In addition, in this embodiment, the area ratio of the ferrite and the ferrite Specify the number ratio.
板厚中央部の{112}<110>方位の極密度:3.0超
 板厚中央部の{112}<110>方位の極密度が3.0以下であると、ホットスタンプ成形体において所望の金属組織を得ることができない。そのため、板厚中央部の{112}<110>方位の極密度は3.0超とする。好ましくは、3.5以上または4.0以上である。上限は特に限定しないが、10.0以下としてもよい。
 なお、本実施形態において板厚中央部とは、表面から板厚の1/4深さ~表面から板厚の3/4深さの領域のことをいう。
Extreme density of {112} <110> orientation at the center of the plate thickness: 3.0 or more It is desirable in the hot stamp molded body that the extreme density of the {112} <110> orientation at the center of the plate thickness is 3.0 or less. Cannot obtain the metallographic structure of. Therefore, the extreme density in the {112} <110> direction at the center of the plate thickness is set to more than 3.0. It is preferably 3.5 or more or 4.0 or more. The upper limit is not particularly limited, but may be 10.0 or less.
In the present embodiment, the central portion of the plate thickness means a region from the surface to a depth of 1/4 of the plate thickness to a region from the surface to a depth of 3/4 of the plate thickness.
 板厚中央部の{112}<110>方位の極密度は、以下の方法により得る。
 測定には、走査型電子顕微鏡とEBSD解析装置とを組み合わせた装置およびTSL社製のOIM Analysis(登録商標)を用いる。EBSD(Electron Back Scattering Diffraction)法で測定した方位データと球面調和関数とを用いて計算して算出した、3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から、{112}<110>方位の極密度を求める。測定範囲は、表面から板厚の1/4深さ~表面から板厚の3/4深さの領域とする。測定ピッチは5μm/stepとする。
The extreme density of the {112} <110> orientation at the center of the plate thickness is obtained by the following method.
For the measurement, a device combining a scanning electron microscope and an EBSD analysis device and OIM Analysis (registered trademark) manufactured by TSL Co., Ltd. are used. From the Crystal Orientation Distribution Function (ODF) that displays a three-dimensional aggregate structure calculated and calculated using the azimuth data measured by the EBSD (Electron Back Scattering Diffraction) method and the spherical harmonics, {112} <110> Obtain the extreme density of the orientation. The measurement range is from the surface to the depth of 1/4 of the plate thickness to the region of the surface to the depth of 3/4 of the plate thickness. The measurement pitch is 5 μm / step.
 なお、{hkl}は圧延面に平行な結晶面、<uvw>は圧延方向に平行な結晶方向を表す。すなわち、{hkl}<uvw>とは板面法線方向に{hkl}、圧延方向に<uvw>が向いている結晶を示す。 Note that {hkl} represents a crystal plane parallel to the rolling plane, and <uvw> represents a crystal plane parallel to the rolling direction. That is, {hkl} <uvw> indicates a crystal in which {hkl} is oriented in the plate normal direction and <uvw> is oriented in the rolling direction.
フェライトの面積率:5~95%
 フェライトの面積率が5%未満であると、ホットスタンプ成形体において、所望の金属組織を得られず、結果として所望の延性を得ることができない。そのため、フェライトの面積率は5%以上とする。好ましくは30%以上、40%以上、50%以上または60%以上である。
 フェライトの面積率が、95%超であると、ホットスタンプ成形体において所望の金属組織を得ることができない。そのため、フェライトの面積率は95%以下とする。好ましくは、70%以下、60%以下、50%以下または40%以下である。
Area ratio of ferrite: 5 to 95%
If the area ratio of the ferrite is less than 5%, the desired metal structure cannot be obtained in the hot stamped body, and as a result, the desired ductility cannot be obtained. Therefore, the area ratio of ferrite is set to 5% or more. It is preferably 30% or more, 40% or more, 50% or more or 60% or more.
If the area ratio of the ferrite is more than 95%, the desired metal structure cannot be obtained in the hot stamped body. Therefore, the area ratio of ferrite is set to 95% or less. Preferably, it is 70% or less, 60% or less, 50% or less or 40% or less.
残部組織
 フェライト以外の残部組織は、マルテンサイト、ベイナイトおよびパーライトの1種または2種以上からなる硬質相である。硬質相の面積率は、合計で5%以上とすることが好ましい。好ましくは10%以上である。硬質相の面積率の上限は特に限定しないが、合計で、95%以下、90%以下、80%以下または70%以下としてもよい。
Remaining structure The remnant structure other than ferrite is a hard phase consisting of one or more of martensite, bainite and pearlite. The area ratio of the hard phase is preferably 5% or more in total. It is preferably 10% or more. The upper limit of the area ratio of the hard phase is not particularly limited, but may be 95% or less, 90% or less, 80% or less, or 70% or less in total.
金属組織の面積率の測定方法
 ホットスタンプ用鋼板の端面から10mm以上離れた位置から、表面に直角な板厚断面が観察面となるようにサンプルを採取する。観察面を研磨した後、ナイタール腐食し、光学顕微鏡および走査型電子顕微鏡(SEM)を用いて、表面から板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における30μm×30μmの領域を少なくとも3領域観察する。この組織観察により得られた組織写真に対して画像解析を行うことによって、フェライト、パーライトおよびベイナイトのそれぞれの面積率を得る。その後、同様の観察位置に対し、レペラー腐食をした後、光学顕微鏡および走査型電子顕微鏡を用いて組織観察を行い、得られた組織写真に対して画像解析を行うことによって、マルテンサイトの面積率を算出する。
Method for measuring the area ratio of the metallographic structure A sample is taken from a position 10 mm or more away from the end face of the hot stamping steel plate so that the thick cross section perpendicular to the surface becomes the observation surface. After polishing the observation surface, it corrodes with nital, and using an optical microscope and a scanning electron microscope (SEM), the plate thickness is 1/4 position from the surface (1/8 depth from the surface to the plate thickness from the surface). Observe at least 3 regions of 30 μm × 30 μm in the region of 3/8 depth). By performing image analysis on the microstructure photograph obtained by this microstructure observation, the area ratios of ferrite, pearlite and bainite are obtained. Then, after the repeller corrodes to the same observation position, the tissue is observed using an optical microscope and a scanning electron microscope, and the obtained tissue photograph is image-analyzed to obtain the area ratio of martensite. Is calculated.
 上述の組織観察において、各組織は、以下の方法により同定する。
 マルテンサイトは転位密度が高く、かつ粒内にブロックおよびパケットといった下部組織を持つ組織であるので、走査型電子顕微鏡を用いた電子チャンネリングコントラスト像によれば、他の金属組織と区別することが可能である。
 ラス状の結晶粒の集合であり、組織の内部に長径20nm以上のFe系炭化物を含まない組織のうちマルテンサイトでない組織、および、組織の内部に長径20nm以上のFe系炭化物を含み、そのFe系炭化物が単一のバリアントを有する、すなわち同一方向に伸張したFe系炭化物である組織をベイナイトとみなす。ここで、同一方向に伸長したFe系炭化物とは、Fe系炭化物の伸長方向の差異が5°以内であるものをいう。
In the above-mentioned tissue observation, each tissue is identified by the following method.
Martensite is a structure with a high dislocation density and substructures such as blocks and packets in the grain, so it can be distinguished from other metal structures by electron channeling contrast images using a scanning electron microscope. It is possible.
It is a collection of lath-shaped crystal grains, and has a structure that is not martensite among structures that do not contain Fe-based carbides with a major axis of 20 nm or more inside the structure, and Fe-based carbides that contain Fe-based carbides with a major axis of 20 nm or more inside the structure. A structure in which the carbide has a single variant, that is, an Fe carbide extending in the same direction, is considered bainite. Here, the Fe-based carbide elongated in the same direction means that the difference in the elongation direction of the Fe-based carbide is within 5 °.
 塊状の結晶粒であって、組織の内部にラス等の下部組織を含まない組織をフェライトとみなす。
 板状のフェライトとFe系炭化物とが層状に重なっている組織をパーライトとみなす。
A structure that is a lumpy crystal grain and does not contain a substructure such as a lath inside the structure is regarded as ferrite.
A structure in which plate-shaped ferrite and Fe-based carbide are layered is regarded as pearlite.
フェライト粒内に硬質相を含むフェライトの個数割合:30%以上
 全フェライトのうち、フェライト粒内に硬質相を含むフェライトの個数割合が30%未満であると、ホットスタンプ成形体の金属組織において、硬質相を含むフェライト粒の個数割合が低くなり、結果として優れた延性を得ることができない。そのため、フェライト粒内に硬質相を含むフェライトの個数割合は30%以上とする。好ましくは40%以上、50%以上または60%以上である。
 フェライト粒内に硬質相を含むフェライトの個数割合の上限は特に限定しないが、100%以下または95%以下としてもよい。
 なお、ここでいう硬質相とは上述した残部組織のことであり、マルテンサイト、ベイナイトおよびパーライトの1種または2種以上のことをいう。
Ratio of the number of ferrites containing a hard phase in the ferrite grains: 30% or more When the ratio of the number of ferrites containing a hard phase in the ferrite grains is less than 30% of all ferrites, the metal structure of the hot stamped body will be affected. The ratio of the number of ferrite grains containing the hard phase becomes low, and as a result, excellent ductility cannot be obtained. Therefore, the number ratio of ferrites containing a hard phase in the ferrite grains is set to 30% or more. It is preferably 40% or more, 50% or more, or 60% or more.
The upper limit of the number ratio of ferrites containing a hard phase in the ferrite grains is not particularly limited, but may be 100% or less or 95% or less.
The hard phase referred to here is the above-mentioned residual structure, and refers to one or more of martensite, bainite and pearlite.
フェライト粒内に硬質相を含むフェライトの個数割合の測定方法
 上述した金属組織の面積率の測定に用いた組織写真を用いて、全フェライトの個数、並びに、フェライト粒の内部に硬質相(マルテンサイト、ベイナイトおよびパーライト)を含むフェライトの個数を測定する。全フェライトの個数に対する、フェライト粒の内部に硬質相を含むフェライトの個数を算出することで、フェライト粒内に硬質相を含むフェライトの個数割合((フェライト粒の内部に硬質相を含むフェライトの個数/全フェライトの個数)×100)を得る。
Method for measuring the number ratio of ferrites containing a hard phase in ferrite grains Using the microstructure photograph used for measuring the area ratio of the metal structure described above, the total number of ferrites and the hard phase (martensite) inside the ferrite grains were used. , Bainite and pearlite) and count the number of ferrites. By calculating the number of ferrites containing a hard phase inside the ferrite grains with respect to the total number of ferrites, the ratio of the number of ferrites containing a hard phase inside the ferrite grains ((the number of ferrites containing a hard phase inside the ferrite grains). / Number of all ferrites) × 100) is obtained.
 本実施形態に係るホットスタンプ用鋼板は、片面または両面にめっき層を有してもよい。表面にめっき層を有することで、ホットスタンプ後のホットスタンプ成形体の耐食性が向上するので好ましい。
 適用するめっきとしては、アルミめっき、アルミ-亜鉛めっき、アルミ-珪素めっき、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっきなどが例示される。
The steel sheet for hot stamping according to this embodiment may have a plating layer on one side or both sides. Having a plating layer on the surface is preferable because the corrosion resistance of the hot stamped molded product after hot stamping is improved.
Examples of the plating to be applied include aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot-dip galvanizing, electrozinc plating, and alloyed hot-dip galvanizing.
 ホットスタンプ用鋼板の板厚は特に限定しないが、車体軽量化の観点から、0.5~3.5mmとすることが好ましい。 The thickness of the steel plate for hot stamping is not particularly limited, but it is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
 次に、上述したホットスタンプ用鋼板をホットスタンプすることで得られる、本実施形態に係るホットスタンプ成形体について説明する。本実施形態に係るホットスタンプ成形体の化学組成は、上述したホットスタンプ用鋼板の化学組成と同じと見做せるため、化学組成についての説明は省略する。 Next, the hot stamping compact according to the present embodiment, which is obtained by hot stamping the above-mentioned hot stamping steel sheet, will be described. Since the chemical composition of the hot stamping compact according to the present embodiment can be regarded as the same as the chemical composition of the above-mentioned steel sheet for hot stamping, the description of the chemical composition will be omitted.
 本実施形態に係るホットスタンプ成形体は、金属組織において、面積率で、マルテンサイトが80%以上であり、前記マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率が1.0%以上である。以下、各規定について説明する。
 なお、本実施形態では、表面から板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における前記マルテンサイトの面積率および前記硬質相の面積率を規定する。
In the hot stamped body according to the present embodiment, the area ratio of the hard phase having martensite of 80% or more and the GAIQ value existing on the martensite of 26000 or less in the metal structure is 1. It is 0% or more. Hereinafter, each regulation will be described.
In this embodiment, the area ratio of the martensite and the hardness at the position of 1/4 of the plate thickness from the surface (the region from the depth of 1/8 of the plate thickness to the depth of 3/8 of the plate thickness from the surface). Specifies the area ratio of the phase.
マルテンサイトの面積率:80%以上
 マルテンサイトの面積率が80%未満であると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、マルテンサイトの面積率は80%以上とする。好ましくは、85%以上または90%以上である。マルテンサイトの面積率の上限は特に限定しないが、100%以下または95%以下としてもよい。
Area ratio of martensite: 80% or more If the area ratio of martensite is less than 80%, the desired strength cannot be obtained in the hot stamp molded product. Therefore, the area ratio of martensite is 80% or more. It is preferably 85% or more or 90% or more. The upper limit of the area ratio of martensite is not particularly limited, but may be 100% or less or 95% or less.
残部組織
 マルテンサイト以外の残部組織は、フェライト、ベイナイトおよびパーライトの1種または2種である。フェライトの面積率が1%未満であると、優れた延性を得ることができない場合がある。そのため、フェライトの面積率は1%以上としてもよい。より好ましくは2%以上である。
 ベイナイトおよびパーライトの面積率の合計は15%以下または10%以下としてもよい。
Remaining structure The remaining structure other than martensite is one or two of ferrite, bainite and pearlite. If the area ratio of ferrite is less than 1%, excellent ductility may not be obtained. Therefore, the area ratio of ferrite may be 1% or more. More preferably, it is 2% or more.
The total area ratio of bainite and pearlite may be 15% or less or 10% or less.
マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率が1.0%以上
 GAIQ値が高い程、転位密度が低いことを示し、GAIQ値が低い程、転位密度が高いことを示す。そのため、GAIQ値は、結晶粒の転位密度を反映することができるパラメータである。マルテンサイト上に存在する、GAIQ値が26000以下である硬質相、すなわち転位密度が高い硬質相の面積率を高めることで、ホットスタンプ成形体の延性を向上することができる。
The area ratio of the hard phase existing on martensite with a GAIQ value of 26000 or less is 1.0% or more. The higher the GAIQ value, the lower the dislocation density, and the lower the GAIQ value, the higher the dislocation density. show. Therefore, the GAIQ value is a parameter that can reflect the dislocation density of the crystal grains. By increasing the area ratio of the hard phase having a GAIQ value of 26000 or less, that is, the hard phase having a high dislocation density, which is present on martensite, the ductility of the hot stamped compact can be improved.
 マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率が1.0%未満であると、優れた延性を得ることができない。そのため、マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率は1.0%以上とする。好ましくは1.2%以上、1.5%以上、2.0%以上、2.5%以上または3.0%以上である。
 マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率の上限は特に限定しないが、10.0%以下または7.0%以下としてもよい。
If the area ratio of the hard phase present on martensite having a GAIQ value of 26000 or less is less than 1.0%, excellent ductility cannot be obtained. Therefore, the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is 1.0% or more. It is preferably 1.2% or more, 1.5% or more, 2.0% or more, 2.5% or more, or 3.0% or more.
The upper limit of the area ratio of the hard phase existing on martensite having a GAIQ value of 26000 or less is not particularly limited, but may be 10.0% or less or 7.0% or less.
 なお、GAIQ値が26000以下である硬質相には、マルテンサイトおよびベイナイトが含まれる。本実施形態では、GAIQ値が26000以下である硬質相として、マルテンサイトおよびベイナイトのいずれか一方、または両方が含まれていてもよいまた、マルテンサイト上に存在するとは、フェライト粒、ベイナイト粒、パーライト粒の内部以外に存在することをいい、換言すると、マルテンサイトのラス境界、ラス間、ラス内部、ブロック境界およびパケット境界、並びに旧オーステナイト粒界に存在することをいう。 The hard phase having a GAIQ value of 26000 or less includes martensite and bainite. In the present embodiment, either one or both of martensite and bainite may be contained as a hard phase having a GAIQ value of 26000 or less. Further, ferrite grains, bainite grains, etc. are present on martensite. It means that it exists outside the inside of pearlite grains, in other words, it exists at the lath boundary of martensite, between laths, inside the lath, the block boundary and the packet boundary, and the bainite grain boundary.
金属組織の面積率およびマルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率の測定方法
 ホットスタンプ成形体の端面から10mm以上離れた位置(または端部を避けた位置)から、表面に直角な板厚断面が観察面となるようにサンプルを採取する。観察面を研磨した後、ナイタール腐食し、光学顕微鏡および走査型電子顕微鏡(SEM)を用いて、表面から板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における30μm×30μmの領域を少なくとも3領域観察する。この組織観察により得られた組織写真に対して画像解析を行うことによって、パーライトおよびベイナイトのそれぞれの面積率を得る。その後、同様の観察位置に対し、レペラー腐食をした後、光学顕微鏡および走査型電子顕微鏡を用いて組織観察を行い、得られた組織写真に対して画像解析を行うことによって、マルテンサイトの面積率を算出する。
 組織観察において、各組織は、ホットスタンプ用鋼板のときと同様の方法により同定する。
Method for measuring the area ratio of the metal structure and the area ratio of the hard phase having a GAIQ value of 26000 or less existing on martensite From a position 10 mm or more away from the end face of the hot stamped body (or a position avoiding the end). Take a sample so that the cross section of the plate thickness perpendicular to the surface is the observation surface. After polishing the observation surface, it corrodes with nital, and using an optical microscope and a scanning electron microscope (SEM), the plate thickness is 1/4 position from the surface (1/8 depth from the surface to the plate thickness from the surface). Observe at least 3 regions of 30 μm × 30 μm in the region of 3/8 depth). By performing image analysis on the tissue photograph obtained by this tissue observation, the area ratios of pearlite and bainite are obtained. Then, after the repeller corrodes to the same observation position, the tissue is observed using an optical microscope and a scanning electron microscope, and the obtained tissue photograph is image-analyzed to obtain the area ratio of martensite. Is calculated.
In the structure observation, each structure is identified by the same method as for the hot stamping steel sheet.
 次に、ホットスタンプ成形体の端面から10mm以上離れた位置(または端部を避けた位置)から板厚断面が観察できるようにサンプルを切り出す。このサンプルの板厚断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液または純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。 Next, cut out a sample so that the plate thickness cross section can be observed from a position 10 mm or more away from the end face of the hot stamp molded body (or a position avoiding the end). After polishing the plate thickness section of this sample with # 600 to # 1500 silicon carbide paper, a mirror surface is used with a diluted solution such as alcohol or a liquid in which diamond powder having a particle size of 1 to 6 μm is dispersed in pure water. Finish to. Next, the strain introduced into the surface layer of the sample is removed by polishing at room temperature with colloidal silica containing no alkaline solution for 8 minutes.
 サンプルの板厚断面の長手方向の任意の位置において、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子後方散乱回折法により結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD装置を用いる。この際、EBSD装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。 At an arbitrary position in the longitudinal direction of the plate thickness cross section of the sample, a region having a length of 50 μm and a depth of 1/8 of the plate thickness from the surface to a depth of 3/8 of the plate thickness from the surface at a measurement interval of 0.1 μm. Crystal orientation information is obtained by electron backscatter diffraction method. For the measurement, an EBSD device composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD device is 9.6 × 10 -5 Pa or less, the acceleration voltage is 15 kV, the irradiation current level is 13, and the irradiation level of the electron beam is 62.
 得られた結晶方位情報について、EBSD装置に付属のソフトウェア「OIM Data Collection」機能、および「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Image Qualityマップ(GAIQマップ)を得る。得られたGAIQマップにおいて、結晶方位差が5°以上の粒界で囲まれた領域を結晶粒と定義する。単位結晶粒内の平均GAIQ値が42000以上である領域をフェライトとみなし、その面積率を算出することで、フェライトの面積率を得る。 For the obtained crystal orientation information, use the software "OIM Data Collection" function attached to the EBSD device and the "Grain Average Simulation" function installed in "OIM Analysis (registered trademark)" to use the Rain Average Image Qual. GAIQ map) is obtained. In the obtained GAIQ map, a region surrounded by grain boundaries having a crystal orientation difference of 5 ° or more is defined as a crystal grain. A region having an average GAIQ value of 42000 or more in a unit crystal grain is regarded as ferrite, and the area ratio thereof is calculated to obtain the area ratio of ferrite.
 また、得られたGAIQマップにおいて、マルテンサイト上に存在する、GAIQ値が26000以下である硬質相の面積率を測定する。これにより、マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率を得る。なお、マルテンサイトは、上述の方法により同定されるものとする。 Further, in the obtained GAIQ map, the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is measured. As a result, the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less is obtained. In addition, martensite shall be identified by the above-mentioned method.
 本実施形態に係るホットスタンプ成形体は、片面または両面にめっき層を有してもよい。表面にめっき層を有することで、ホットスタンプ成形体の耐食性が向上するので好ましい。
 適用するめっきとしては、アルミめっき、アルミ-亜鉛めっき、アルミ-珪素めっき、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっきなどが例示される。
The hot stamp molded product according to the present embodiment may have a plating layer on one side or both sides. Having a plating layer on the surface is preferable because the corrosion resistance of the hot stamped molded product is improved.
Examples of the plating to be applied include aluminum plating, aluminum-zinc plating, aluminum-silicon plating, hot-dip galvanizing, electrozinc plating, and alloyed hot-dip galvanizing.
 ホットスタンプ成形体の板厚は特に限定しないが、車体軽量化の観点から、0.5~3.5mmとすることが好ましい。 The plate thickness of the hot stamp molded product is not particularly limited, but is preferably 0.5 to 3.5 mm from the viewpoint of reducing the weight of the vehicle body.
 本実施形態に係るホットスタンプ成形体の引張(最大)強さは、980~1400MPaとしてもよい。また、本実施形態に係るホットスタンプ成形体の全伸びは、7.0%以上としてもよい。更に、本実施形態に係るホットスタンプ成形体は、引張強さと全伸びとの積(TS×El)は、12000MPa・%以上としてもよい。
 引張強さおよび全伸びは、ホットスタンプ成形体からJIS5号試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことにより得る。
The tensile (maximum) strength of the hot stamp molded product according to this embodiment may be 980 to 1400 MPa. Further, the total elongation of the hot stamp molded product according to the present embodiment may be 7.0% or more. Further, in the hot stamp molded product according to the present embodiment, the product (TS × El) of the tensile strength and the total elongation may be 12000 MPa ·% or more.
Tensile strength and total elongation are obtained by taking a JIS No. 5 test piece from a hot stamped body and performing a tensile test in accordance with JIS Z 2241: 2011.
 次に、本実施形態に係るホットスタンプ用鋼板の好ましい製造方法について説明する。本実施形態に係るホットスタンプ用鋼板の好ましい製造方法は、以下の工程を備える。
 鋳造速度を0.80m/min以上としてスラブを得る。
 巻取り温度を500~700℃の温度域として熱間圧延を行うことで熱延鋼板を得る。
 冷間圧延により冷延鋼板を得た後、この冷延鋼板を750~Ac点の温度域に加熱して保持し(1回目保持)、その後、600~700℃の温度域の平均冷却速度が15℃/s以下となるように冷却する。次いで、300~500℃の温度域まで急冷し、この温度域で保持する(2回目保持)。その後、100℃以下の温度域まで急冷する。
 なお、ここでいう急冷とは、平均冷却速度が15℃/s超である冷却のことをいう。
 以下、各工程について説明する。
Next, a preferable manufacturing method of the hot stamping steel sheet according to the present embodiment will be described. A preferred method for manufacturing a steel sheet for hot stamping according to the present embodiment includes the following steps.
A slab is obtained by setting the casting speed to 0.80 m / min or more.
A hot-rolled steel sheet is obtained by hot rolling with the winding temperature in the temperature range of 500 to 700 ° C.
After obtaining a cold-rolled steel sheet by cold rolling, the cold-rolled steel sheet is heated and held in a temperature range of 750 to Ac 3 points (first holding), and then the average cooling rate in the temperature range of 600 to 700 ° C. Cool to 15 ° C./s or less. Then, it is rapidly cooled to a temperature range of 300 to 500 ° C. and held in this temperature range (second holding). After that, it is rapidly cooled to a temperature range of 100 ° C. or lower.
The term "quenching" as used herein means cooling having an average cooling rate of more than 15 ° C./s.
Hereinafter, each step will be described.
鋳造速度:0.80m/min以上
 鋳造速度を0.80m/min以上としてスラブを製造することで、鋼中でのMn偏析を促進することができる。鋳造速度は、スラブ割れを抑制する観点から、3.00m/min以下としてもよい。
Casting speed: 0.80 m / min or more By manufacturing the slab at a casting speed of 0.80 m / min or more, Mn segregation in steel can be promoted. The casting speed may be 3.00 m / min or less from the viewpoint of suppressing slab cracking.
巻取り温度:500~700℃
 巻取り温度を500~700℃の温度域として熱間圧延を行うことで、炭化物中にMnを濃化させることができる。熱間圧延のその他の条件は特に限定されず、一般的な条件とすればよい。また、冷間圧延の条件も一般的でよく、累積圧下率は30~70%とすればよい。
Winding temperature: 500-700 ° C
By performing hot rolling with the winding temperature in the temperature range of 500 to 700 ° C., Mn can be concentrated in the carbide. The other conditions for hot rolling are not particularly limited and may be general conditions. The conditions for cold rolling may also be general, and the cumulative rolling reduction may be 30 to 70%.
1回目保持後、平均冷却速度が15℃/s以下となるように冷却
 冷間圧延後、冷延鋼板を加熱して2相域、すなわち750~Ac点の温度域で保持(1回目保持)した後、600~700℃の温度域の平均冷却速度が15℃/s以下となるように冷却することで、フェライト粒の内部に、Mnが濃化した硬質相を残存させることができる。上記温度域における保持により、Mnが濃化していない未変態オーステナイトはフェライトに変態するが、Mnが濃化した未変態オーステナイトは変態点が低下しているため、フェライト変態せずに未変態オーステナイトとして残存する。
After the first holding, cool so that the average cooling rate is 15 ° C / s or less. After cold rolling, the cold-rolled steel sheet is heated and held in the two-phase region, that is, in the temperature range of 750 to Ac 3 points (first holding). ), Then cooling is performed so that the average cooling rate in the temperature range of 600 to 700 ° C. is 15 ° C./s or less, so that a hard phase in which Mn is concentrated can remain inside the ferrite grains. By holding in the above temperature range, untransformed austenite in which Mn is not concentrated is transformed into ferrite, but untransformed austenite in which Mn is enriched has a lowered transformation point, so that untransformed austenite is used as untransformed austenite without ferrite transformation. Remains.
 なお、1回目保持における保持時間は10~300秒とすればよい。また、本実施形態において、平均冷却速度とは、冷却開始時の表面温度と冷却停止時の表面温度との温度差を、冷却開始時から冷却停止時までの時間差で除した値である。
 また、Ac点は下記式により求めることができる。
The holding time in the first holding may be 10 to 300 seconds. Further, in the present embodiment, the average cooling rate is a value obtained by dividing the temperature difference between the surface temperature at the start of cooling and the surface temperature at the stop of cooling by the time difference from the start of cooling to the stop of cooling.
Further, Ac 3 points can be obtained by the following formula.
Ac(℃)=910-203×C0.5+66×Si-25×Mn+700×P-11×Cr+109×Al+400×Ti-15.2×Ni+104×V+31.5×Mo
 上記式中の元素記号は、各元素の質量%での含有量を示し、当該元素を含有しない場合は0を代入する。
Ac 3 (° C) = 910-203 x C 0.5 +66 x Si-25 x Mn + 700 x P-11 x Cr + 109 x Al + 400 x Ti-15.2 x Ni + 104 x V + 31.5 x Mo
The element symbol in the above formula indicates the content of each element in mass%, and when the element is not contained, 0 is substituted.
急冷後、2回目保持し、更に急冷
 600~700℃の温度域の平均冷却速度が15℃/s以下となるように冷却した後、300~500℃の温度域まで急冷し、この温度域で保持(2回目保持)し、その後更に急冷する。これにより、フェライト粒内に残存していた炭化物を硬質相に変態させることができる。その結果、フェライト粒内に硬質相を含むフェライトの個数割合を高めることができる。
 なお、2回目保持における保持時間は10~600秒とすればよい。
After quenching, it is held for the second time, further cooled so that the average cooling rate in the temperature range of 600 to 700 ° C is 15 ° C / s or less, and then rapidly cooled to the temperature range of 300 to 500 ° C. Hold (hold for the second time) and then quench further. As a result, the carbide remaining in the ferrite grains can be transformed into a hard phase. As a result, the number ratio of ferrites containing a hard phase in the ferrite grains can be increased.
The holding time in the second holding may be 10 to 600 seconds.
 以上説明した製造方法により、本実施形態に係るホットスタンプ用鋼板を安定して製造することができる。なお、上述の製造方法に加えて、ホットスタンプ用鋼板の片面または両面にめっき層を形成する工程を備えていてもよい。 By the manufacturing method described above, the steel sheet for hot stamping according to the present embodiment can be stably manufactured. In addition to the above-mentioned manufacturing method, a step of forming a plating layer on one side or both sides of the hot stamping steel sheet may be provided.
 次に、本実施形態に係るホットスタンプ成形体の好ましい製造方法について説明する。本実施形態に係るホットスタンプ成形体の製造方法は、以下の工程を備える。
 ホットスタンプ用鋼板をAc点以上の温度域まで加熱して保持する。
 100℃以下の温度域まで平均冷却速度が30℃/s以上となるように冷却する。
 以下、各工程について説明する。
Next, a preferable manufacturing method of the hot stamp molded product according to the present embodiment will be described. The method for manufacturing a hot stamp molded product according to the present embodiment includes the following steps.
The steel sheet for hot stamping is heated to a temperature range of 3 points or more and held.
Cool to a temperature range of 100 ° C. or lower so that the average cooling rate is 30 ° C./s or higher.
Hereinafter, each step will be described.
加熱温度および保持温度:Ac点以上
 上述したホットスタンプ用鋼板をAc点以上の温度域に加熱し、保持することで、十分にオーステナイト化することができる。Ac点以上の温度域における保持時間は特に限定しないが、例えば10~300秒とすればよい。Ac点以上の温度域で保持した後、ホットスタンプする。
Heating temperature and holding temperature: Ac 3 points or more By heating and holding the above-mentioned hot stamping steel sheet in a temperature range of Ac 3 points or more, austenite can be sufficiently formed. The holding time in the temperature range of Ac 3 points or more is not particularly limited, but may be, for example, 10 to 300 seconds. Ac After holding in a temperature range of 3 points or more, hot stamp.
100℃以下の温度域までの平均冷却速度:30℃/s以上
 100℃以下の温度域までの平均冷却速度が30℃/s以上となるように冷却することで、所望量の硬質相を得ることができる。その結果、マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率を高めることができる。100℃以下の温度域までの冷却は、金型との接触によって行えばよい。
Average cooling rate up to a temperature range of 100 ° C. or lower: 30 ° C./s or more By cooling so that the average cooling rate up to a temperature range of 100 ° C. or lower is 30 ° C./s or more, a desired amount of hard phase is obtained. be able to. As a result, it is possible to increase the area ratio of the hard phase existing on martensite and having a GAIQ value of 26000 or less. Cooling to a temperature range of 100 ° C. or lower may be performed by contact with a mold.
 以上説明した方法により、本実施形態に係るホットスタンプ成形体を得ることができる。本実施形態に係るホットスタンプ用鋼板は比較的低強度のため、ホットスタンプ後に高強度を有する鋼板と接合されてテーラードブランクとされ、ホットスタンプされて車体部品に成形される。この車体部品は、低強度材と高強度材とからなるテーラードブランクがホットスタンプされて製造されたため、低強度の部分と高強度の部分とを有するものとなる。 By the method described above, the hot stamp molded product according to the present embodiment can be obtained. Since the steel sheet for hot stamping according to the present embodiment has relatively low strength, it is joined to a steel sheet having high strength after hot stamping to form a tailored blank, which is then hot stamped and formed into a vehicle body part. Since this vehicle body part is manufactured by hot-stamping a tailored blank made of a low-strength material and a high-strength material, it has a low-strength portion and a high-strength portion.
 テーラードブランクを製造する際の溶接方法は、レーザー溶接、シーム溶接、アーク溶接、プラズマ溶接など様々な方法が考えられるが、特に限定されない。また、低強度材(本実施形態に係るホットスタンプ用鋼板)と共に使用される、高強度材(ホットスタンプ後に高強度を有する鋼板)も特に限定されない。これらは製造される車体部品毎に適切なものを選択すればよい。 Various welding methods such as laser welding, seam welding, arc welding, and plasma welding can be considered when manufacturing a tailored blank, but the welding method is not particularly limited. Further, the high-strength material (steel plate having high strength after hot stamping) used together with the low-strength material (steel plate for hot stamping according to the present embodiment) is not particularly limited. These may be selected appropriately for each vehicle body part to be manufactured.
 本実施形態に係るホットスタンプ用鋼板をテーラードブランクに適用せずに、該鋼板のみを用いて車体部品等を製造しても何ら問題ではない。パッチワークなど鋼板をスポット溶接で接合して重ねたブランクを作製して、そのブランクをホットスタンプすることも何ら問題ではない。 There is no problem even if the steel plate for hot stamping according to the present embodiment is not applied to the tailored blank and the vehicle body parts and the like are manufactured using only the steel plate. It is not a problem to make a blank by joining steel plates such as patchwork by spot welding and stacking them, and hot stamping the blank.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
 表1Aおよび表1Bに示す化学組成を有するスラブを用いて、表2A~表2Cに示す条件で、表2A~表2Cに示すホットスタンプ用鋼板を製造した。次に、表3A~表3Cに示す条件で、表3A~表3Cに示すホットスタンプ成形体を得た。 Using the slabs having the chemical compositions shown in Tables 1A and 1B, the steel sheets for hot stamping shown in Tables 2A to 2C were manufactured under the conditions shown in Tables 2A to 2C. Next, the hot stamp molded products shown in Tables 3A to 3C were obtained under the conditions shown in Tables 3A to 3C.
 なお、スラブは表2A~表2Cに記載の鋳造速度により製造した。巻取り後の冷間圧延では、累積圧下率を30~70%とした。1回目保持における保持時間は10~300秒とし、2回目保持における保持時間は10~600秒とした。また、600~700℃の温度域の平均冷却速度が表2A~表2Cに記載の平均冷却速度となるように冷却した後は、2回目保持温度まで急冷した。2回目保持後は、100℃以下の温度域まで急冷した。
 更に、ホットスタンプ時の加熱では、保持時間を10~300秒とした。
The slab was manufactured at the casting speeds shown in Tables 2A to 2C. In cold rolling after winding, the cumulative rolling reduction was set to 30 to 70%. The holding time in the first holding was 10 to 300 seconds, and the holding time in the second holding was 10 to 600 seconds. Further, after cooling so that the average cooling rate in the temperature range of 600 to 700 ° C. became the average cooling rate shown in Tables 2A to 2C, the mixture was rapidly cooled to the second holding temperature. After the second holding, it was rapidly cooled to a temperature range of 100 ° C. or lower.
Further, in the heating at the time of hot stamping, the holding time was set to 10 to 300 seconds.
 上述の方法により、ホットスタンプ用鋼板の金属組織、ホットスタンプ成形体の金属組織および機械特性(引張強さおよび全伸び)を測定した。
 引張強さが980~1400MPaであった例は、高い強度を有するとして合格と判定した。一方、引張強さが980MPa未満または1400MPa超であった例は、不合格と判定した。
 また、全伸びが7.0%以上であり、且つ引張強さと全伸びとの積(TS×El)が12000MPa・%以上であった例は、延性に優れるとして合格と判定した。一方、全伸びが7.0%未満であった例および引張強さと全伸びとの積(TS×El)が12000MPa・%未満であった例は、延性に劣るとして不合格と判定した。
By the above method, the metallographic structure of the hot stamped steel sheet, the metallic structure of the hot stamped body, and the mechanical properties (tensile strength and total elongation) were measured.
Examples having a tensile strength of 980 to 1400 MPa were judged to be acceptable because they had high strength. On the other hand, an example in which the tensile strength was less than 980 MPa or more than 1400 MPa was judged to be unacceptable.
Further, an example in which the total elongation was 7.0% or more and the product of the tensile strength and the total elongation (TS × El) was 12000 MPa ·% or more was judged to be acceptable because of its excellent ductility. On the other hand, the cases where the total elongation was less than 7.0% and the cases where the product of the tensile strength and the total elongation (TS × El) was less than 12000 MPa ·% were judged to be inferior in ductility and rejected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1A~表3Cによれば、本発明例に係るホットスタンプ成形体は、高い強度および優れた延性を有することが分かる。
 一方、比較例に係るホットスタンプ成形体は、高い強度および/または優れた延性を有さないことが分かる。
According to Tables 1A to 3C, it can be seen that the hot stamp molded product according to the example of the present invention has high strength and excellent ductility.
On the other hand, it can be seen that the hot stamped product according to the comparative example does not have high strength and / or excellent ductility.
 本発明に係る上記態様によれば、高い強度および優れた延性を有するホットスタンプ成形体、並びに、このホットスタンプ成形体を製造できるホットスタンプ用鋼板を提供することができる。 According to the above aspect according to the present invention, it is possible to provide a hot stamped molded product having high strength and excellent ductility, and a steel plate for hot stamping capable of producing this hot stamped molded product.

Claims (4)

  1.  化学組成が、質量%で、
    C :0.060~0.200%、
    Si:0.010~1.000%、
    Mn:1.20~3.00%、
    Al:0.010~0.500%、
    P :0.100%以下、
    S :0.0100%以下、
    N :0.0100%以下、
    Nb:0%以上、0.020%未満、
    Ti:0~0.100%、
    Cr:0~0.50%、
    B :0~0.0100%、
    Mo:0~1.00%、
    Co:0~2.00%、
    Ni:0~0.50%、
    V :0~0.10%、
    Ca:0~0.0100%、
    Mg:0~0.0100%、および
    REM:0~0.0100%を含み、
    残部がFeおよび不純物からなり、
     金属組織において、
     板厚中央部の{112}<110>方位の極密度が3.0超であり、
     面積率で、フェライトが5~95%であり、
     全フェライトのうち、フェライト粒内に硬質相を含む前記フェライトの個数割合が30%以上である
    ことを特徴とするホットスタンプ用鋼板。
    The chemical composition is by mass%,
    C: 0.060 to 0.200%,
    Si: 0.010 to 1.000%,
    Mn: 1.20 to 3.00%,
    Al: 0.010 to 0.500%,
    P: 0.100% or less,
    S: 0.0100% or less,
    N: 0.0100% or less,
    Nb: 0% or more, less than 0.020%,
    Ti: 0 to 0.100%,
    Cr: 0 to 0.50%,
    B: 0 to 0.0100%,
    Mo: 0 to 1.00%,
    Co: 0 to 2.00%,
    Ni: 0 to 0.50%,
    V: 0 to 0.10%,
    Ca: 0-0.0100%,
    Mg: 0 to 0.0100%, and REM: 0 to 0.0100%,
    The rest consists of Fe and impurities
    In the metallographic structure
    The extreme density of the {112} <110> orientation at the center of the plate thickness is over 3.0.
    Area rule, ferrite is 5 to 95%,
    A steel sheet for hot stamping, wherein the number ratio of the ferrites containing a hard phase in the ferrite grains is 30% or more among all the ferrites.
  2.  前記化学組成が、質量%で、
    Nb:0.001%以上、0.020%未満、
    Ti:0.010~0.100%、
    Cr:0.05~0.50%、
    B :0.0001~0.0100%、
    Mo:0.01~1.00%、
    Co:0.01~2.00%、
    Ni:0.01~0.50%、
    V :0.01~0.10%、
    Ca:0.0005~0.0100%、
    Mg:0.0005~0.0100%、および
    REM:0.0005~0.0100%
    からなる群のうち1種または2種以上を含有する
    ことを特徴とする請求項1に記載のホットスタンプ用鋼板。
    The chemical composition is by mass%.
    Nb: 0.001% or more, less than 0.020%,
    Ti: 0.010 to 0.100%,
    Cr: 0.05 to 0.50%,
    B: 0.0001 to 0.0100%,
    Mo: 0.01-1.00%,
    Co: 0.01-2.00%,
    Ni: 0.01-0.50%,
    V: 0.01-0.10%,
    Ca: 0.0005-0.0100%,
    Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100%
    The steel sheet for hot stamping according to claim 1, wherein the steel sheet for hot stamping comprises one or more of the group consisting of two or more.
  3.  化学組成が、質量%で、
    C :0.060~0.200%、
    Si:0.010~1.000%、
    Mn:1.20~3.00%、
    Al:0.010~0.500%、
    P :0.100%以下、
    S :0.0100%以下、
    N :0.0100%以下、
    Nb:0%以上、0.020%未満、
    Ti:0~0.100%、
    Cr:0~0.50%、
    B :0~0.0100%、
    Mo:0~1.00%、
    Co:0~2.00%、
    Ni:0~0.50%、
    V :0~0.10%、
    Ca:0~0.0100%、
    Mg:0~0.0100%、および
    REM:0~0.0100%を含み、
    残部がFeおよび不純物からなり、
     金属組織において、
     面積率で、マルテンサイトが80%以上であり、
     前記マルテンサイト上に存在するGAIQ値が26000以下である硬質相の面積率が1.0%以上である
    ことを特徴とするホットスタンプ成形体。
    The chemical composition is by mass%,
    C: 0.060 to 0.200%,
    Si: 0.010 to 1.000%,
    Mn: 1.20 to 3.00%,
    Al: 0.010 to 0.500%,
    P: 0.100% or less,
    S: 0.0100% or less,
    N: 0.0100% or less,
    Nb: 0% or more, less than 0.020%,
    Ti: 0 to 0.100%,
    Cr: 0 to 0.50%,
    B: 0 to 0.0100%,
    Mo: 0 to 1.00%,
    Co: 0 to 2.00%,
    Ni: 0 to 0.50%,
    V: 0 to 0.10%,
    Ca: 0-0.0100%,
    Mg: 0 to 0.0100%, and REM: 0 to 0.0100%,
    The rest consists of Fe and impurities
    In the metallographic structure
    In terms of area ratio, martensite is 80% or more,
    A hot stamped body having a GAIQ value of 26000 or less and an area ratio of a hard phase existing on martensite of 1.0% or more.
  4.  前記化学組成が、質量%で、
    Nb:0.001%以上、0.020%未満、
    Ti:0.010~0.100%、
    Cr:0.05~0.50%、
    B :0.0001~0.0100%、
    Mo:0.01~1.00%、
    Co:0.01~2.00%、
    Ni:0.01~0.50%、
    V :0.01~0.10%、
    Ca:0.0005~0.0100%、
    Mg:0.0005~0.0100%、および
    REM:0.0005~0.0100%
    からなる群のうち1種または2種以上を含有する
    ことを特徴とする請求項3に記載のホットスタンプ成形体。
    The chemical composition is by mass%.
    Nb: 0.001% or more, less than 0.020%,
    Ti: 0.010 to 0.100%,
    Cr: 0.05 to 0.50%,
    B: 0.0001 to 0.0100%,
    Mo: 0.01-1.00%,
    Co: 0.01-2.00%,
    Ni: 0.01-0.50%,
    V: 0.01-0.10%,
    Ca: 0.0005-0.0100%,
    Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100%
    The hot stamp molded product according to claim 3, wherein the hot stamp molded product contains one or more of the group consisting of two or more.
PCT/JP2021/026436 2020-09-17 2021-07-14 Steel sheet for hot stamping, and hot stamp molded body WO2022059321A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022550377A JP7397381B2 (en) 2020-09-17 2021-07-14 Steel plates for hot stamping and hot stamping molded bodies
KR1020227035607A KR20220147142A (en) 2020-09-17 2021-07-14 Steel plate for hot stamping and hot stamping body
CN202180029845.1A CN115427601B (en) 2020-09-17 2021-07-14 Steel sheet for hot pressing and hot pressed molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-156562 2020-09-17
JP2020156562 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059321A1 true WO2022059321A1 (en) 2022-03-24

Family

ID=80776110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026436 WO2022059321A1 (en) 2020-09-17 2021-07-14 Steel sheet for hot stamping, and hot stamp molded body

Country Status (4)

Country Link
JP (1) JP7397381B2 (en)
KR (1) KR20220147142A (en)
CN (1) CN115427601B (en)
WO (1) WO2022059321A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065293A (en) * 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
WO2018033960A1 (en) * 2016-08-16 2018-02-22 新日鐵住金株式会社 Hot press-formed member
JP2018090895A (en) * 2016-03-31 2018-06-14 Jfeスチール株式会社 Process for manufacturing hot-rolled steel plate, process for manufacturing cold-rolled full hard steel plate, and process for manufacturing heat-treated plate
WO2019009410A1 (en) * 2017-07-07 2019-01-10 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2021145442A1 (en) * 2020-01-16 2021-07-22 日本製鉄株式会社 Hot stamped product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061213B2 (en) 2002-07-12 2008-03-12 新日本製鐵株式会社 Steel sheet for hot forming
CN100485072C (en) * 2004-03-31 2009-05-06 杰富意钢铁株式会社 High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP5088041B2 (en) * 2006-09-27 2012-12-05 新日本製鐵株式会社 High Young's modulus, high strength cold-rolled steel sheet with excellent local ductility and method for producing the same
ES2654055T3 (en) * 2011-04-21 2018-02-12 Nippon Steel & Sumitomo Metal Corporation High strength cold rolled steel sheet that has a highly uniform elongation capacity and excellent hole expandability and manufacturing process
BR112013028960B1 (en) 2011-05-13 2019-06-25 Nippon Steel & Sumitomo Metal Corporation HOT PRINTED ARTICLE, HOT PRINTED ARTICLE PRODUCTION METHOD, ENERGY ABSORBING MEMBER, AND ENERGY ABSORPTION MEMBER PRODUCTION METHOD
CN104321456B (en) 2013-02-08 2016-09-07 新日铁住金不锈钢株式会社 Stainless steel brake disc and manufacture method thereof
JP2017186645A (en) 2016-03-30 2017-10-12 株式会社神戸製鋼所 High strength cold rolled steel sheet, high strength galvanized steel sheet
KR102513331B1 (en) 2018-07-31 2023-03-22 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled galvanized steel sheet
MX2021009433A (en) 2019-02-15 2021-09-10 Nippon Steel Corp Steel sheet and method for producing same.
CN109652741B (en) * 2019-02-18 2020-09-04 安徽工业大学 A kind of grain-oriented pure iron and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065293A (en) * 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
JP2018090895A (en) * 2016-03-31 2018-06-14 Jfeスチール株式会社 Process for manufacturing hot-rolled steel plate, process for manufacturing cold-rolled full hard steel plate, and process for manufacturing heat-treated plate
WO2018033960A1 (en) * 2016-08-16 2018-02-22 新日鐵住金株式会社 Hot press-formed member
WO2019009410A1 (en) * 2017-07-07 2019-01-10 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2021145442A1 (en) * 2020-01-16 2021-07-22 日本製鉄株式会社 Hot stamped product

Also Published As

Publication number Publication date
CN115427601B (en) 2024-04-02
KR20220147142A (en) 2022-11-02
CN115427601A (en) 2022-12-02
JP7397381B2 (en) 2023-12-13
JPWO2022059321A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
KR102643398B1 (en) hot stamp molding body
JP5365217B2 (en) High strength steel plate and manufacturing method thereof
CN102471849B (en) High tensile steel plate and manufacture method thereof
WO2021200579A1 (en) Steel sheet, member, and method for manufacturing same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2014132968A1 (en) HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 980 MPa OR ABOVE, AND HAVING EXCELLENT AND BAKING HARDENABILITY AND LOW-TEMPERATURE TOUGHNESS
JP5114860B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2013088666A1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
CN110520550A (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP2006274318A (en) High strength hot rolled steel sheet having excellent hole expansion workability, and method for producing the same
WO2021090642A1 (en) Hot rolled steel sheet and production method thereof
JP5326362B2 (en) High strength steel plate and manufacturing method thereof
CN110337505B (en) High-strength steel sheet and method for producing same
WO2021141006A1 (en) Steel sheet and method for manufacturing same
CN115087754A (en) High-strength steel sheet and method for producing same
KR102791747B1 (en) hot rolled steel plate
WO2021153037A1 (en) Hot-rolled steel sheet
JP2006274317A (en) High strength hot rolled steel sheet having excellent hole expansion workability, and method for producing the same
KR20230040349A (en) hot rolled steel
KR102658729B1 (en) hot stamp molding body
JP4324227B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
WO2022059321A1 (en) Steel sheet for hot stamping, and hot stamp molded body
WO2022059320A1 (en) Steel sheet for hot stamping and hot stamped formed body
WO2020194995A1 (en) Hot-stamp-molded article
JP7513937B2 (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550377

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035607

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869008

Country of ref document: EP

Kind code of ref document: A1