[go: up one dir, main page]

JP4061213B2 - Steel sheet for hot forming - Google Patents

Steel sheet for hot forming Download PDF

Info

Publication number
JP4061213B2
JP4061213B2 JP2003056291A JP2003056291A JP4061213B2 JP 4061213 B2 JP4061213 B2 JP 4061213B2 JP 2003056291 A JP2003056291 A JP 2003056291A JP 2003056291 A JP2003056291 A JP 2003056291A JP 4061213 B2 JP4061213 B2 JP 4061213B2
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
hot forming
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003056291A
Other languages
Japanese (ja)
Other versions
JP2004197213A (en
Inventor
正浩 大神
正芳 末廣
純 真木
和久 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003056291A priority Critical patent/JP4061213B2/en
Publication of JP2004197213A publication Critical patent/JP2004197213A/en
Application granted granted Critical
Publication of JP4061213B2 publication Critical patent/JP4061213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部品の構造部材に使用されるような強度が必要とされる部材に関し、特に高温成形後の硬化能に優れた鋼板に関するものである。
【0002】
【従来の技術】
地球環境問題に端を発する自動車の燃費向上対策の一つとして車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかし、自動車の軽量化のために一般に鋼板を高強度化していくと伸びやr値が低下し、成形性が劣化していく。このような課題を解決するために、温間で成形し、その際の熱を利用して強度上昇を図る技術が、特開2000−234153号公報(特許文献1)に開示されている。この技術では、鋼中成分を適切に制御し、200〜850℃の温度域で保持・成形加工し、この温度域での析出強化を利用して強度を上昇させることを狙っている。
【0003】
また、特開2000−87183号公報(特許文献2)では、プレス成形精度を向上させる目的で温間プレス時での降伏強度を低く、常温での降伏強度を高くする高強度鋼板が提案されている。しかしながら、これらの技術では得られる強度に限度がある可能性がある。
一方、より高強度を得る目的で、成形後に高温のオーステナイト単相域に加熱し、その後の冷却過程で硬質の相に変態させる技術が特開2000−38640号公報(特許文献3)に開示されている。
【0004】
【引用文献】
(1)特許文献1(特開2000−234153号公報)
(2)特許文献2(特開2000−87183号公報)
(3)特許文献3(特開2000−38640号公報)
【0005】
【発明が解決しようとする課題】
このように、これまでに開示されている技術を用い、高温成形後に高強度となる高温プレスに適した鋼板を製造することは困難である。本発明は上記課題を解決するためになされたものであり、熱間成形後にHv400以上の高い硬度を得ることができる高温成形後の硬化能および衝撃特性に優れた鋼板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、
(1)質量%で、C:0.2〜0.35%、Si:1%以下、Mn:1.07〜1.5%、Al:0.01〜0.1%、Ti:0.001〜0.04%、B:0.0005〜0.005%、N:0.001〜0.01%、P:0.03%以下、S:0.02%以下、O:0.015%以下、Cr:0.01%未満、Mo:0.005%未満、Nb:0.005%未満、V:0.01%未満、Cu:0.01%未満、残部がFeおよび不可避の不純物よりなり、下記(1)式及び(2)式を満足することを特徴とする熱間成形後にHv400以上の硬度を得ることができる熱間成形加工用鋼板。
Ti/47.88−N/14.01≧0 ・・・(1)式
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1.5×(0.9−%C)×%B2 }≧1.0 ・・・(2)式
【0007】
)質量%で、更に、Nb:0.005〜0.5%を含有することを特徴とする前記(1)に記載の熱間成形加工用鋼板。
【0008】
)質量%で、Ni:0.005〜1%を含有することを特徴とする前記(1)または前記(2)に記載の熱間成形加工用鋼板。
)質量%で、S:0.005%以下を含有することを特徴とする前記(1)から前記()のいずれかに記載の熱間成形加工用鋼板にある。
【0009】
【発明の実施の形態】
本発明においては、特定の化学組成を有する熱延素材あるいは冷延素材を用いるが、その熱延素材あるいは冷延素材を製造する手段は特に限定されない。また、熱間成形加工とは、Ac3 変態点以上のオーステナイト領域に加熱後、Ac3 変態点以上の温度で成形加工(例えばプレス加工)を開始し、加工と同時に金型で抜熱することにより急速冷却し、マルテンサイト変態させて硬化させる加工をいう。
【0010】
次に、鋼板の化学成分について説明する。
Cは、基地中に固溶あるいは炭化物として析出し、鋼の強度を増加させる元素であり、また、セメンタイト、パーライト、ベイナイト、マルテンサイト等の硬質な第2相として析出し、高強度化と一様伸びの向上に寄与する。強度向上のために0.2%以上のCが必要であるが、C含有量が0.35%を超えると、加工性や溶接性が劣化するため、Cは0.2〜0.35%の範囲に規定した。
【0011】
Siは、固溶強化型の合金元素であり、強度を確保するために必要であるが、1%を超えると、表面スケールの問題が生じる。このため、Siは1%以下に規定した。また、鋼板表面にメッキ処理を行う場合は、Siの添加量が多いとメッキ性が劣化するため、上限を0.5%とすることが好ましい。なお、更に好ましくは、0.01〜0.5%の範囲である。また、Siの含有量が多いと、衝撃特性や延性が低下するため、Siの添加量は0.5%以下とすることが好ましい。なお、Si含有量を低減するとシャルピー吸収エネルギーは向上し、同時に延性脆性遷移温度も低温化させることができるため、衝撃特性は向上する。このため、Si含有量を0.15%未満に制限することがより好ましい。
【0012】
Mnは、強度および焼入れ性を向上させる元素であり、1.07%未満では焼入れ時の強度を十分に得られず、また、15%を超えて添加しても効果が飽和するため、Mnは1.07〜1.5%の範囲に規定した。
Alは、溶鋼の脱酸材として使われる必要な元素であり、またNを固定する元素でもあり、その量は結晶粒径や機械的性質に大きな影響を及ぼす。このような効果を有するためには0.01%以上の含有量が必要であるが、0.1%を超えると非金属介在物が多くなり製品に表面疵が発生しやすくなる。このため、Alは0.01〜0.1%の範囲に規定した。
【0013】
Tiは、B添加による焼入れ性を安定かつ効果的に向上させるために作用するが、0.001%未満およびTi/47.88−N/14.01≧0式を満足しない範囲では効果が期待できず、0.04%超ではTiの窒化物が多く生成して、靱性が劣化する傾向があるため、Tiは0.001〜0.04%の範囲に規定した。
Bは、微量添加で鋼材の焼入れ性を大幅に向上させる元素であり、また、粒界強化およびM23(C,B)6 などとして析出強化の効果もある。添加量が0.0005%未満では焼入れ性に効果が期待できず、また、0.005%を超えると粗大なB含有相を生成する傾向があり、また、脆化が起こりやすくなる。このため、Bは0.0005〜0.005%の範囲に規定した。
【0014】
Nは、窒化物または炭窒化物を析出させ、強度を高める重要な元素の一つである。0.001%以上の添加により効果を発揮するが、0.01%を超えると窒化物の粗大化および固溶Nによる時効硬化により、靱性が劣化する傾向がみられる。このため、Nは0.001〜0.01%の範囲に規定した。
Pは、溶接割れ性および靱性に悪影響を及ぼす元素であるため、Pは0.03%以下に規制した。なお、好ましくは、0.02%以下である。また、更に好ましくは0.015%以下である。
【0015】
Sは、鋼中の非金属介在物に影響し、加工性を劣化させるとともに、靱性劣化、異方性および再熱割れ感受性の増大の原因となる。このため、Sは0.02%以下に規定した。なお、好ましくは、0.01%以下である。また、Sを0.005%以下に規制することにより、衝撃特性が飛躍的に向上する。
Oは、靱性に悪影響を及ぼす酸化物の生成の原因となるとともに、疲労破壊の起点となる酸化物を生成するため、上限を0.015%に規定した。
【0016】
Crは、焼入れ性を向上させる元素であり、またマトリックス中へM236 型炭化物を析出させる効果を有し、強度を高めるとともに、炭化物を微細化する作用を有する。0.01%未満ではこれらの効果が十分期待できず、また、1%を超えると降伏強度が過度に上昇する傾向にあるため、Crは0.01〜1%の範囲が望ましい。より望ましくは、0.05〜1%である。
Moは、焼入れ性を向上させる元素であり、また固溶強化をもたらす元素であるとともに、マトリックス中のM236 型炭化物を安定化させる元素である。0.005%未満ではこの効果が十分期待できにくく、1%を超えると降伏強度が過度に上昇し、また靱性を劣化させるため、添加する場合はMoは0.005〜1%の範囲が望ましい。
【0017】
Nbは、炭窒化物を形成し、強度を向上させる元素であるが、0.5%を超えて添加すると、降伏強度の上昇が過度に大きくなる。0.005%未満では強度向上の効果が発揮されにくいため、添加する場合は、Nbは0.005〜0.5%の範囲が望ましい。
Vは、炭窒化物を形成し、強度を向上させる元素であるが、0.5%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.01%未満では強度向上の効果が発揮されにくいため、Vは0.01〜0.5%の範囲とするのが望ましい。
【0018】
Niは、強度および靱性を向上させる元素であるが、1%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.005%未満では強度および靱性の向上効果が発揮されにくいため、Niは0.005〜1%の範囲が望ましい。より望ましくは0.01〜1%である。
Cuは、強度を向上させる元素であるが、1%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.01%未満では強度向上の効果が発揮されにくいため、Cuは0.01〜1%の範囲とするのが望ましい。
下式にしたがう値は、高温成形後の硬さに影響し、その値が1.0未満では必要硬さが得られないため、その下限を1.0に規定した。
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1.5×(0.9−%C)×%B2 }≧1.0
【0019】
【実施例】
表1の組成をもつ各種鋼スラブに鋳造した。これらのスラブを1200℃に加熱し、熱間圧延にて仕上温度850℃、巻取温度600℃で板厚4mmの熱延鋼板とした。また、一部の熱延鋼板を冷間圧延により板厚1.2mmの冷延鋼板とした。炉加熱によりAc3 点以上である950℃のオーステナイト領域に加熱した後、Ac3 点以上である900℃から水冷式金型を有するプレス機にてハットフォーム成形加工を行った。成形時間を約1秒とし、成形完了10秒間はプレス金型をそのままの状態にして金型による冷却を行った。また、10秒後の鋼板温度を測定した。成形された鋼板について、冷延鋼板の圧延方向に垂直な断面をビッカース硬度計にて硬度測定を実施し、更に光学顕微鏡にて金属組織を観察し、マルテンサイト率を測定した。また、更に板厚4mmの熱延鋼板を炉加熱によりAc3 点以上である950℃のオーステナイト領域に加熱した後、900℃から水冷した素材を用いて衝撃試験を実施した。その条件または結果を表2に示す。
【0020】
【表1】

Figure 0004061213
【0021】
【表2】
Figure 0004061213
【0022】
表2に示した本発明例No.1〜は、マルテンサイト率を90%以上とすることで高温成形後の硬さがHv420以上であり、自動車の構造部材として必要な特性を満足し、形状凍結性も良い。それに比較し、本発明の範囲を外れた比較例では、焼入れ硬さ、衝撃特性および形状凍結性が劣化している。また、本発明例No.2〜4は、本発明例の中でも衝撃特性が優れている例である。比較例No.、No.、No.11、No.12、No.14、No.16、No.19は、式Ti/47.88−N/14.01≧0を満足していないため、焼入れ性が不足し、焼入れ硬さを満足していない例である。
【0023】
比較例No.、No.、No.、No.13、No.14、No.15、No.19は、式(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1.5×(0.9−%C)×%B2 }≧1.0を満足していないため、焼入れ性が不足し、焼入れ硬さを満足していない例である。比較例No.は、C量が規定値を超えているために靱性が低下した例であり、比較例No.はSi量が、比較例No.はMn量が、それぞれ規定値を超えているために、衝撃特性が低下した例である。
【0024】
比較例No.10はP量が、比較例No.11はS量が、それぞれ規定値を超えているために、衝撃特性が劣化した例。比較例No.20は、O量が規定値を超えているために酸化物が多く生成し、衝撃特性が劣化した例である。
比較例No.15は、Ti量が規定値を超えているために靱性が低下した例。比較例No.17は、B量が規定値を超えているために粗大なB含有相を生成したために脆化し、衝撃特性が劣化した例である。比較例No.16は、Cr量が規定値を超えているために衝撃特性が劣化した例であり、比較例No.18は、Mo量が規定値を超えているために粗大炭化物が多く生成し、靱性が低下した例である。
【0025】
【発明の効果】
以上述べたように本発明鋼は、自動車部品の構造部材に使用され、高温成形後の硬化能が高く高強度となる鋼板であり、また、衝撃特性および加工性にも優れており、加工工程の省略化に貢献するものである。その工業的意義は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member that requires strength such as that used for a structural member of an automobile part, and particularly relates to a steel plate having excellent curability after high temperature forming.
[0002]
[Prior art]
As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight reduction of the vehicle body has been promoted, and it is necessary to increase the strength of steel plates used in automobiles as much as possible. However, in general, when the strength of a steel plate is increased in order to reduce the weight of an automobile, the elongation and the r value decrease, and the formability deteriorates. In order to solve such a problem, Japanese Patent Application Laid-Open No. 2000-234153 (Patent Document 1) discloses a technique for forming a product warm and using the heat at that time to increase the strength. This technique aims to appropriately control the components in the steel, hold and form in a temperature range of 200 to 850 ° C., and increase the strength using precipitation strengthening in this temperature range.
[0003]
Japanese Patent Laid-Open No. 2000-87183 (Patent Document 2) proposes a high-strength steel sheet that has low yield strength at the time of warm pressing and high yield strength at room temperature for the purpose of improving press forming accuracy. Yes. However, these techniques may limit the strength that can be obtained.
On the other hand, for the purpose of obtaining higher strength, a technique for heating to a high-temperature austenite single-phase region after molding and transforming to a hard phase in the subsequent cooling process is disclosed in Japanese Patent Application Laid-Open No. 2000-38640 (Patent Document 3). ing.
[0004]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 2000-234153)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 2000-87183)
(3) Patent Document 3 (Japanese Patent Laid-Open No. 2000-38640)
[0005]
[Problems to be solved by the invention]
Thus, it is difficult to manufacture a steel sheet suitable for a high-temperature press that has high strength after high-temperature forming using the techniques disclosed so far. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a steel sheet excellent in curability and impact characteristics after high-temperature forming that can obtain a high hardness of Hv400 or higher after hot forming. To do.
[0006]
[Means for Solving the Problems]
The present invention
(1) By mass%, C: 0.2 to 0.35%, Si: 1% or less, Mn: 1.07 to 1.5%, Al: 0.01 to 0.1%, Ti: 0.00. 001 to 0.04%, B: 0.0005 to 0.005%, N: 0.001 to 0.01%, P: 0.03% or less, S: 0.02% or less, O: 0.015 % Or less , Cr: less than 0.01%, Mo: less than 0.005%, Nb: less than 0.005%, V: less than 0.01%, Cu: less than 0.01% , the balance being Fe and inevitable impurities things I Rinari, the following equation (1), and (2) hot molded steel plate can be obtained Hv400 or more hardness after hot forming which satisfies the equation.
Ti / 47.88-N / 14.01 ≧ 0 (1) Formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × ( 1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1.5 × (0.9−% C) ×% B 2 } ≧ 1.0 (2) Formula
( 2 ) The steel sheet for hot forming according to (1 ) above, further containing Nb: 0.005 to 0.5% by mass%.
[0008]
( 3 ) The steel sheet for hot forming according to (1) or ( 2) above, which contains Ni: 0.005 to 1% by mass.
( 4 ) It is the steel sheet for hot forming according to any one of (1) to ( 3 ) above, which contains S: 0.005% or less by mass% .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a hot-rolled material or a cold-rolled material having a specific chemical composition is used, but the means for producing the hot-rolled material or the cold-rolled material is not particularly limited. Also, the hot-forming process, after heating to the austenite range above Ac 3 transformation point, to start molding at Ac 3 transformation point or above the temperature (for example, pressing), to remove heat by working at the same time as the mold This is a process of rapidly cooling and transforming martensite to cure.
[0010]
Next, chemical components of the steel plate will be described.
C is an element that precipitates as a solid solution or carbide in the matrix and increases the strength of the steel, and also precipitates as a hard second phase such as cementite, pearlite, bainite, martensite, etc. Contributes to the improvement of the growth. 0.2% or more of C is necessary to improve the strength, but if the C content exceeds 0.35%, workability and weldability deteriorate, so C is 0.2 to 0.35%. Stipulated in the range.
[0011]
Si is a solid solution strengthened alloy element and is necessary to ensure strength, but if it exceeds 1%, a problem of surface scale occurs. For this reason, Si was specified to be 1% or less. In addition, when plating is performed on the surface of the steel sheet, if the amount of Si added is large, the plateability deteriorates, so the upper limit is preferably set to 0.5%. In addition, More preferably, it is 0.01 to 0.5% of range. Moreover, since impact characteristics and ductility will fall when there is much content of Si, it is preferable that the addition amount of Si shall be 0.5% or less. If the Si content is reduced, the Charpy absorbed energy is improved, and at the same time, the ductile brittle transition temperature can be lowered, so that the impact characteristics are improved. For this reason, it is more preferable to limit Si content to less than 0.15%.
[0012]
Mn is an element that improves strength and hardenability. If it is less than 1.07 %, sufficient strength at the time of quenching cannot be obtained, and even if added over 15%, the effect is saturated. It was defined in the range of 1.07 to 1.5 percent.
Al is a necessary element used as a deoxidizer for molten steel, and is also an element that fixes N, and its amount has a great influence on the crystal grain size and mechanical properties. In order to have such an effect, a content of 0.01% or more is necessary. However, if it exceeds 0.1%, nonmetallic inclusions increase and surface defects are likely to occur in the product. For this reason, Al was specified in the range of 0.01 to 0.1%.
[0013]
Ti acts to improve the hardenability by addition of B stably and effectively, but the effect is expected in the range of less than 0.001% and not satisfying the formula of Ti / 47.88-N / 14.01 ≧ 0. However, if it exceeds 0.04%, a large amount of Ti nitride is generated and the toughness tends to deteriorate, so Ti was specified in the range of 0.001 to 0.04%.
B is an element that greatly improves the hardenability of the steel material by adding a small amount, and also has the effect of strengthening the grain boundary and precipitation strengthening such as M 23 (C, B) 6 . If the addition amount is less than 0.0005%, no effect on the hardenability can be expected, and if it exceeds 0.005%, a coarse B-containing phase tends to be formed, and embrittlement tends to occur. For this reason, B was specified in the range of 0.0005 to 0.005%.
[0014]
N is one of important elements for precipitating nitrides or carbonitrides and increasing the strength. The effect is exhibited by addition of 0.001% or more, but when it exceeds 0.01%, the toughness tends to deteriorate due to coarsening of nitride and age hardening due to solid solution N. For this reason, N was specified in the range of 0.001 to 0.01%.
Since P is an element that adversely affects weld cracking and toughness, P is regulated to 0.03% or less. In addition, Preferably, it is 0.02% or less. Further, it is more preferably 0.015% or less.
[0015]
S affects non-metallic inclusions in the steel and deteriorates workability, and causes toughness deterioration, anisotropy and increased reheat cracking sensitivity. For this reason, S was specified to 0.02% or less. In addition, Preferably, it is 0.01% or less. Moreover, by restricting S to 0.005% or less, impact characteristics are dramatically improved.
O causes generation of oxides that adversely affect toughness, and also generates oxides that serve as starting points for fatigue fracture, so the upper limit was specified to be 0.015%.
[0016]
Cr is an element that improves hardenability and has the effect of precipitating M 23 C 6 type carbide in the matrix, and has the effect of increasing the strength and miniaturizing the carbide. If it is less than 0.01%, these effects cannot be expected sufficiently, and if it exceeds 1%, the yield strength tends to increase excessively, so Cr is desirably in the range of 0.01 to 1%. More desirably, it is 0.05 to 1%.
Mo is an element that improves hardenability, an element that causes solid solution strengthening, and an element that stabilizes M 23 C 6 type carbide in the matrix. If it is less than 0.005%, this effect cannot be expected sufficiently, and if it exceeds 1%, the yield strength excessively increases and the toughness is deteriorated. Therefore, when added, Mo is preferably in the range of 0.005 to 1%. .
[0017]
Nb is an element that forms carbonitride and improves strength, but if added over 0.5%, the yield strength increases excessively. If it is less than 0.005%, the effect of improving the strength is hardly exhibited. Therefore, when Nb is added, the Nb content is preferably in the range of 0.005 to 0.5%.
V is an element that forms carbonitrides and improves strength, but if added over 0.5%, the yield strength tends to increase excessively. If it is less than 0.01%, the effect of improving the strength is difficult to be exhibited. Therefore, V is preferably in the range of 0.01 to 0.5%.
[0018]
Ni is an element that improves the strength and toughness, but if added over 1%, the yield strength tends to increase excessively. If it is less than 0.005%, the effect of improving strength and toughness is hardly exhibited, so Ni is preferably in the range of 0.005 to 1%. More desirably, the content is 0.01 to 1%.
Cu is an element that improves the strength, but if added over 1%, the yield strength tends to increase excessively. If it is less than 0.01%, the effect of improving the strength is difficult to be exhibited, so it is desirable that Cu be in the range of 0.01 to 1%.
The value according to the following formula affects the hardness after high temperature molding, and if the value is less than 1.0, the required hardness cannot be obtained, so the lower limit is defined as 1.0.
(0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × (1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1. 5 × (0.9−% C) ×% B 2 } ≧ 1.0
[0019]
【Example】
Cast into various steel slabs having the composition of Table 1. These slabs were heated to 1200 ° C., and hot rolled into hot rolled steel sheets having a finishing temperature of 850 ° C., a winding temperature of 600 ° C., and a plate thickness of 4 mm. Some hot-rolled steel sheets were made into cold-rolled steel sheets with a thickness of 1.2 mm by cold rolling. After heating to an austenite region of 950 ° C., which is higher than the Ac 3 point, by furnace heating, hat foam molding was performed from 900 ° C., which is higher than the Ac 3 point, using a press having a water-cooled mold. The molding time was about 1 second, and for 10 seconds after the molding was completed, the press mold was left as it was and cooling with the mold was performed. Further, the steel plate temperature after 10 seconds was measured. About the formed steel plate, the hardness of the cross section perpendicular to the rolling direction of the cold-rolled steel plate was measured with a Vickers hardness tester, and the metal structure was observed with an optical microscope to measure the martensite ratio. Further, a hot-rolled steel sheet having a thickness of 4 mm was heated in an austenite region of 950 ° C., which is at least Ac 3 point, by furnace heating, and then subjected to an impact test using a material cooled from 900 ° C. with water. The conditions or results are shown in Table 2.
[0020]
[Table 1]
Figure 0004061213
[0021]
[Table 2]
Figure 0004061213
[0022]
Invention Example No. 1 shown in Table 2. Nos. 1 to 4 have a martensite ratio of 90% or more, so that the hardness after high-temperature molding is Hv 420 or more, satisfies the characteristics required as a structural member of an automobile, and has good shape freezing properties. In contrast, in the comparative examples that are out of the scope of the present invention, the quenching hardness, impact characteristics, and shape freezing properties are degraded. In addition, Invention Example No. 2 to 4 are examples in which the impact characteristics are excellent among the examples of the present invention. Comparative Example No. 5 , no. 9, No. 11 , no. 12 , no. 14 , no. 16 , no. Since No. 19 does not satisfy the formula Ti / 47.88-N / 14.01 ≧ 0, the hardenability is insufficient and the quenching hardness is not satisfied.
[0023]
Comparative Example No. 5 , no. 7 , no. 8 , no. 13, No. 14 , no. 15 , no. 19 is the formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × (1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) X {1 + 1.5 × (0.9−% C) ×% B 2 } ≧ 1.0 is not satisfied, so that the hardenability is insufficient and the quenching hardness is not satisfied. Comparative Example No. No. 6 is an example in which the toughness is lowered because the C amount exceeds the specified value. 7 shows the amount of Si in Comparative Example No. No. 9 is an example in which the impact characteristics deteriorate because the amount of Mn exceeds the specified value.
[0024]
Comparative Example No. No. 10 has a P amount of Comparative Example No. 11 is an example in which the impact characteristics deteriorated because the amount of S exceeds the specified value. Comparative Example No. 20, oxide is often generated for the O amount exceeds the specified value, an example of impact properties is deteriorated.
Comparative Example No. 15 is an example in which the toughness is reduced because the Ti amount exceeds the specified value. Comparative Example No. No. 17 is an example in which since the B amount exceeds the specified value, a coarse B-containing phase was generated, and thus the material became brittle and impact characteristics deteriorated. Comparative Example No. No. 16 is an example in which the impact characteristics deteriorate because the Cr amount exceeds the specified value. No. 18 is an example in which a large amount of coarse carbide is generated because the amount of Mo exceeds the specified value, and the toughness is lowered.
[0025]
【The invention's effect】
As described above, the steel of the present invention is a steel plate that is used for a structural member of an automobile part, has high curability and high strength after high temperature forming, and has excellent impact characteristics and workability, and is a processing step. It contributes to the omission of. The industrial significance is extremely great.

Claims (4)

質量%で、
C :0.2〜0.35%、
Si:1%以下、
Mn:1.07〜1.5%、
Al:0.01〜0.1%、
Ti:0.001〜0.04%、
B :0.0005〜0.005%、
N :0.001〜0.01%、
P :0.03%以下、
S :0.02%以下、
O :0.015%以下、
Cr:0.01%未満、
Mo:0.005%未満、
Nb:0.005%未満、
V :0.01%未満、
Cu:0.01%未満
残部がFeおよび不可避の不純物よりなり、下記(1)式及び(2)式を満足することを特徴とする熱間成形後にHv400以上の硬度を得ることができる熱間成形加工用鋼板。
Ti/47.88−N/14.01≧0 ・・・(1)式
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1.5×(0.9−%C)×%B2 }≧1.0 ・・・(2)式
% By mass
C: 0.2 to 0.35%,
Si: 1% or less,
Mn: 1.07 to 1.5%
Al: 0.01 to 0.1%,
Ti: 0.001 to 0.04%,
B: 0.0005 to 0.005%,
N: 0.001 to 0.01%,
P: 0.03% or less,
S: 0.02% or less,
O: 0.015% or less,
Cr: less than 0.01%,
Mo: less than 0.005%,
Nb: less than 0.005%,
V: less than 0.01%,
Cu: Hot balance capable of obtaining hardness of Hv400 or higher after hot forming characterized in that the balance is less than 0.01% of Fe and inevitable impurities and satisfies the following formulas (1) and (2) Steel plate for forming process.
Ti / 47.88-N / 14.01 ≧ 0 (1) Formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × ( 1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1.5 × (0.9−% C) ×% B 2 } ≧ 1.0 (2)
質量%で、更に、Nb:0.005〜0.5%を含有することを特徴とする請求項1に記載の熱間成形加工用鋼板。By mass%, further, Nb: hot forming process for steel sheet according to claim 1, characterized in that 0.005 to 0.5%. 質量%で、Ni:0.005〜1%を含有することを特徴とする請求項1または請求項2に記載の熱間成形加工用鋼板。The steel sheet for hot forming according to claim 1 or 2, characterized by containing, in mass%, Ni: 0.005 to 1%. 質量%で、S:0.005%以下を含有することを特徴とする請求項1から請求項のいずれかに記載の熱間成形加工用鋼板。The steel sheet for hot forming according to any one of claims 1 to 3 , characterized by containing, by mass%, S: 0.005% or less.
JP2003056291A 2002-07-12 2003-03-03 Steel sheet for hot forming Expired - Fee Related JP4061213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056291A JP4061213B2 (en) 2002-07-12 2003-03-03 Steel sheet for hot forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002203712 2002-07-12
JP2002307726 2002-10-23
JP2003056291A JP4061213B2 (en) 2002-07-12 2003-03-03 Steel sheet for hot forming

Publications (2)

Publication Number Publication Date
JP2004197213A JP2004197213A (en) 2004-07-15
JP4061213B2 true JP4061213B2 (en) 2008-03-12

Family

ID=32776755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056291A Expired - Fee Related JP4061213B2 (en) 2002-07-12 2003-03-03 Steel sheet for hot forming

Country Status (1)

Country Link
JP (1) JP4061213B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896061B2 (en) * 2002-10-07 2007-03-22 新日本製鐵株式会社 Steel sheet with excellent curability after hot forming and method of using the same
WO2007015385A1 (en) * 2005-08-01 2007-02-08 Sharp Kabushiki Kaisha Atmospheric pressure plasma processing system
JP6947335B1 (en) 2019-11-13 2021-10-13 日本製鉄株式会社 Steel plate for hot stamping and hot stamping molded product
WO2022059321A1 (en) 2020-09-17 2022-03-24 日本製鉄株式会社 Steel sheet for hot stamping, and hot stamp molded body
JP7397380B2 (en) 2020-09-17 2023-12-13 日本製鉄株式会社 Steel plates for hot stamping and hot stamping molded bodies

Also Published As

Publication number Publication date
JP2004197213A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4288138B2 (en) Steel sheet for hot forming
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
JP5521818B2 (en) Steel material and manufacturing method thereof
KR101540507B1 (en) Ultra high strength cold rolled steel sheet having excellent ductility and delayed fracture resistance and method for manufacturing the same
JP5206244B2 (en) Cold rolled steel sheet
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2018033960A1 (en) Hot press-formed member
KR101108838B1 (en) Heat-treated hardened steel with excellent impact performance and method of manufacturing heat-hardened component using the same
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
KR940007374B1 (en) Austenitic high manganese steel with excellent formability, strength and weldability, and its manufacturing method
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP2010514928A (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP3896061B2 (en) Steel sheet with excellent curability after hot forming and method of using the same
JP4094473B2 (en) Steel sheet for hot forming process with excellent post-high temperature forming ability and method for using the same
JP3993831B2 (en) Steel sheet with excellent curability and impact properties after hot forming and method of using the same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP2007302937A (en) Steel plate for quenched member, quenched member and method for producing the same
JP4061213B2 (en) Steel sheet for hot forming
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same
JP2013216936A (en) Hot-dip galvannealed hot-rolled steel sheet and production method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees