[go: up one dir, main page]

WO2022049750A1 - 回転電機および固定子の製造方法 - Google Patents

回転電機および固定子の製造方法 Download PDF

Info

Publication number
WO2022049750A1
WO2022049750A1 PCT/JP2020/033714 JP2020033714W WO2022049750A1 WO 2022049750 A1 WO2022049750 A1 WO 2022049750A1 JP 2020033714 W JP2020033714 W JP 2020033714W WO 2022049750 A1 WO2022049750 A1 WO 2022049750A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator core
magnet
core
electric machine
Prior art date
Application number
PCT/JP2020/033714
Other languages
English (en)
French (fr)
Inventor
拓郎 山田
亮治 宮武
晴之 米谷
勇二 滝澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080103694.5A priority Critical patent/CN116057820A/zh
Priority to JP2022546839A priority patent/JP7357805B2/ja
Priority to PCT/JP2020/033714 priority patent/WO2022049750A1/ja
Priority to US17/922,817 priority patent/US12289016B2/en
Priority to EP20952484.2A priority patent/EP4213344A4/en
Publication of WO2022049750A1 publication Critical patent/WO2022049750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to a method for manufacturing a rotary electric machine and a stator.
  • a magnetic geared motor that integrates a magnetic speed reducer or a magnetic speed increaser and a motor (generator) is used as a generator for wind power generators and the like.
  • a magnetic geared motor is composed of a low-speed rotor, a high-speed rotor provided coaxially with the low-speed rotor, and a stator having a stator coil and a stator magnet (permanent magnet). ..
  • a magnetic geared motor generator
  • the low speed rotor rotates in conjunction with the wind turbine.
  • the high-speed rotor rotates at high speed due to the rotation of the low-speed rotor, which generates induced power in the stator coil and generates electricity. Since such a rotary electric machine can change the rotation speed of the two rotors in a non-contact manner, maintenance for mechanical wear and the like becomes unnecessary.
  • the stator of this rotary electric machine includes a stator core having a plurality of slots, and a stator coil and a stator magnet stored in each slot.
  • the stator coil and stator magnet stored in each slot are arranged side by side in the radial direction, and each stator magnet is magnetized so that the radial poles are the same pole. .. Therefore, in order to improve the output of the rotary electric machine, it is conceivable to provide a magnet yoke portion made of a magnetic material between the stator coil and the stator magnet.
  • a magnet yoke portion is formed by providing a portion where the space between the stator coils and the stator magnets is narrow in the slots of the stator core (see, for example, Patent Document 1). ).
  • the present application has been made to solve the above-mentioned problems, and an object thereof is to provide a rotary electric machine in which the effect of improving the output by the magnet yoke portion is enhanced and the stator coil can be easily inserted into the slot. ..
  • the rotor of the present application is a stator core having a plurality of slots, a stator having a stator coil and a stator magnet inserted in each of the plurality of slots, and a stator via a stator and a first gap.
  • it has a first rotor rotatably provided, and a second rotor coaxially provided with the first rotor via a first rotor and a second gap.
  • the stator core has a magnet yoke portion at a position sandwiched between the stator coil and the stator magnet, and the stator core has a second stator core having a first stator core and a magnet yoke portion. It is composed of and.
  • the stator core is composed of a first stator core and a second stator core having a magnet yoke portion, so that the effect of improving the output by the magnet yoke portion is enhanced and the slot is moved to the slot.
  • the stator coil can be easily inserted.
  • FIG. It is sectional drawing of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a partial cross-sectional view of the stator in Embodiment 1.
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 1.
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 1.
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 1.
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 1.
  • FIG. It is a schematic diagram which shows the shape of the protrusion of the stator core in Embodiment 1.
  • FIG. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 2. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 2. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 2. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 2. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 2. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 3. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 3. It is explanatory drawing which shows the procedure of the manufacturing method of the stator in Embodiment 3.
  • FIG. 1 is a schematic cross-sectional view of the rotary electric machine according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view of a surface orthogonal to the axial direction of a rotary electric machine.
  • the rotary electric machine of the present embodiment is, for example, a magnetic geared motor (generator) used as a generator of a wind power generator.
  • the rotary electric machine 1 of the present embodiment has a stator 10, a low-speed rotor 20 rotatably provided with respect to the stator 10 via the stator 10 and a gap, and the low-speed rotor 20 and a gap. It is provided with a high-speed rotor 30 provided coaxially via the rotor 30.
  • the stator 10, the low-speed rotor 20, and the high-speed rotor 30 have a cylindrical shape and are arranged coaxially.
  • the rotary electric machine 1 of the present embodiment is arranged in the order of the stator 10, the low-speed rotor 20, and the high-speed rotor 30 from the outer peripheral side.
  • the stator 10 includes a cylindrical stator core 11, a stator coil 12, and a stator magnet 13.
  • the stator core 11 has 12 teeth 14 projecting to the inner peripheral side, and 12 slots 15 are formed between the teeth 14.
  • the stator core 11 is composed of, for example, a laminated body of electrical steel sheets.
  • the stator coil 12 is inserted on the outer peripheral side inside the slot 15, and the stator magnet 13 is arranged on the inner peripheral side inside the slot 15.
  • the stator magnet 13 is a permanent magnet, and the stator magnet 13 inserted into each slot 15 is magnetized so that the radial poles are the same pole.
  • a magnet yoke portion 16 protruding from the teeth 14 toward the slot 15 is formed between the stator coil 12 and the stator magnet 13.
  • the stator core 11 is composed of a first stator core 11a and a second stator core 11b, which will be described later.
  • the cylindrical low-speed rotor 20 includes a plurality of magnetic pole pieces 21 arranged side by side in the circumferential direction, and a plurality of non-magnetic metal connecting members 22 arranged between the plurality of magnetic pole pieces 21. .. 17 magnetic pole pieces 21 and 17 connecting members 22 are arranged.
  • the high-speed rotor 30 includes a cylindrical high-speed rotor core 31 and ten rotor magnets 32 arranged side by side in the circumferential direction on the outer peripheral surface of the high-speed rotor core 31.
  • the rotor magnet 32 is a permanent magnet magnetized in the radial direction, and the ten rotor magnets 32 arranged side by side in the circumferential direction have S poles and N poles alternately inverted in the circumferential direction.
  • FIG. 2 is a partial cross-sectional view of a stator in the rotary electric machine according to the present embodiment.
  • the stator coil 12 is inserted on the outer peripheral side inside the slot 15, and the stator magnet 13 is arranged on the inner peripheral side inside the slot 15.
  • a magnet yoke portion 16 protruding from the teeth 14 toward the slot 15 is formed between the stator coil 12 and the stator magnet 13.
  • the magnet yoke portion 16 can pass a large amount of magnetic flux of the stator magnet 13 and can improve the magnetic force of the stator magnet 13. By improving the magnetic force of the stator magnet 13, the required torque can be obtained with a small amount of magnet. As a result, the magnet yoke portion 16 has the effect of improving the output of the rotary electric machine.
  • the number of slots 15 of the stator 10 is 12
  • the number of magnetic pole pieces 21 of the low speed rotor 20 is 17, and the number of rotor magnets 32 of the high speed rotor 30 is 10.
  • these numbers are not limited to this.
  • FIG. 3 is an explanatory diagram showing a procedure of a stator manufacturing method in the present embodiment.
  • a second stator core 11b from which the outer peripheral portion of the slot 15 of the stator core 11 is removed is prepared.
  • a magnet yoke portion 16 is formed on the second stator core 11b.
  • a stator magnet 13 is fixed to the second stator core 11b.
  • the second stator core 11b is formed with a groove 17a having a quadrangular cross section for fitting with the first stator core described later.
  • the second stator core 11b and the stator magnet 13 are connected and integrated in the circumferential direction.
  • the second stator core 11b may be divided into the stator core module 10a shown by the broken line in FIG.
  • stator core module 10a In the stator core module 10a, a portion of one tooth 14, magnet yoke portions 16 on both sides, and stator magnets 13 on both sides divided into two are integrated. By arranging and coupling the stator core modules 10a in the circumferential direction, the second stator core 11b and the stator magnet 13 can be configured.
  • FIG. 4 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment.
  • the stator coil 12 is inserted into the slot 15 from the radial outer peripheral side of the second stator core 11b. With this method, the stator coil 12 molded in advance can be inserted into the slot 15.
  • FIG. 5 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment.
  • the first stator core 11a is inserted from the axial direction into the outer peripheral side of the stator coil 12 inserted in the slot 15.
  • the first stator core 11a is formed with a protrusion 17b having a quadrangular cross section for fitting into the groove 17a of the second stator core 11b.
  • FIG. 6 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 6, the first stator core 11a and the second stator core 11b inserted from the axial direction are fitted to complete the stator 10.
  • the stator core 11 in the present embodiment is configured by fitting the first stator core 11a and the second stator core 11b having the magnet yoke portion 16.
  • the second stator core 11b has a plurality of slots 15, and the stator magnet 13 is fixed to the second stator core 11b.
  • the first stator core 11a is fitted to the second stator core 11b on the outer peripheral side of each stator coil 12 inserted into the plurality of slots 15.
  • stator configured in this way, it is not necessary to pass through the gap of the magnet yoke portion when inserting the stator coil into the slot, so the magnet yoke portion can be enlarged. As a result, the effect of improving the output by the magnet yoke portion can be enhanced, and the stator coil can be easily inserted into the slot.
  • the stator magnet 13 does not necessarily have to be fixed to the second stator core 11b from the beginning.
  • the stator magnet 13 is fixed to the second stator core 11b after the stator coil 12 is inserted into the second stator core 11b or after the first stator core 11a is fitted to the second stator core 11b. You may.
  • a protrusion 17b is formed on the first stator core 11a in order to fit the first stator core 11a and the second stator core 11b, and the second stator core is formed.
  • a groove 17a is formed in 11b.
  • the protrusion 17b and the groove 17a may be interchanged with each other.
  • FIG. 7 is a schematic view showing the shape of the protrusion formed on the stator core in the present embodiment.
  • the protrusion 17b formed on the stator core has a quadrangular (A), trapezoidal (B, C), triangular (D), hexagonal (E), wedge-shaped (F), or T-shaped cross section. It may have a shape such as (G) or a round shape (H). Since it is fitted with the protrusion 17b, the shape of the groove 17a is matched to the shape of the protrusion 17b.
  • FIG. 8 is an explanatory diagram showing the winding of the stator coil in the present embodiment.
  • FIG. 8A shows a state in which one stator coil of distributed winding is inserted in one slot.
  • FIG. 8B shows a state in which two stator coils of distributed winding are inserted side by side in the radial direction in one slot.
  • FIG. 8C shows a state in which one stator coil of centralized winding is inserted into two adjacent slots.
  • the winding of the stator coil can be applied regardless of whether it is distributed winding or centralized winding.
  • the stator core 11 is not divided into a first stator core and a second stator core, but is shown as one.
  • Embodiment 2 The structure of the rotary electric machine of the second embodiment is the same as the structure of the rotary electric machine of the first embodiment.
  • the stator coil is inserted into the slot 15 from the outer peripheral side in the radial direction.
  • the stator coil is inserted into the slot 15 from the inner peripheral side in the radial direction. A method for manufacturing a stator in the present embodiment will be described.
  • FIG. 9 is an explanatory diagram showing a procedure of a stator manufacturing method in the present embodiment.
  • the first stator core 11a from which the inner peripheral portion of the slot 15 of the stator core 11 is removed is prepared.
  • the first stator core 11a is formed with a groove 17a having a T-shaped cross section for fitting with the second stator core described later.
  • FIG. 10 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 10, the stator coil 12 is inserted into the slot 15 from the radial inner peripheral side of the first stator core 11a.
  • FIG. 11 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment.
  • the second stator core 11b is inserted from the axial direction into the inner peripheral side of the stator coil 12 inserted into the slot 15.
  • the second stator core 11b is integrated with the stator magnet 13.
  • a magnet yoke portion 16 is formed on the second stator core 11b.
  • the second stator core 11b is formed with a protrusion 17b having a T-shaped cross section for fitting into the groove 17a of the first stator core 11a. Therefore, the second stator core 11b is separated into the same number as the number of stator coils 12.
  • the second stator core 11b may be divided into the stator core module 10a shown by the broken line in FIG.
  • stator core module 10a one magnet yoke portion 16 and the stator magnet 13 divided into two are integrated.
  • the second stator core 11b can be configured by connecting two stator core modules 10a side by side.
  • the stator core module 10a may be inserted into the first stator core 11a from the axial direction, respectively.
  • shape of the T-shaped protrusion 17b may be another shape shown in FIG. 7.
  • FIG. 12 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 12, the second stator core 11b and the first stator core 11a inserted from the axial direction are fitted to complete the stator 10.
  • the stator core 11 in the present embodiment is configured by fitting the first stator core 11a and the second stator core 11b having the magnet yoke portion 16.
  • the first stator core 11a has a plurality of slots 15, the stator magnet 13 is fixed to the second stator core 11b, and the second stator core 11b is fixed in each of the plurality of slots 15. It is fitted to the first stator core 11a on the inner peripheral side of the child coil 12.
  • stator configured in this way, it is not necessary to pass through the gap of the magnet yoke portion when inserting the stator coil into the slot, so the magnet yoke portion can be enlarged. As a result, the effect of improving the output by the magnet yoke portion can be enhanced, and the stator coil can be easily inserted into the slot.
  • the stator of the present embodiment since the first stator core 11a can be integrally molded, the number of parts is smaller than that of the first embodiment.
  • the stator magnet 13 does not necessarily have to be fixed to the second stator core 11b from the beginning.
  • the stator magnet 13 may be fixed to the second stator core 11b after the second stator core 11b is fitted to the first stator core 11a.
  • Embodiment 3 The structure of the rotary electric machine of the third embodiment is the same as the structure of the rotary electric machine of the first embodiment.
  • the stator coil is inserted into the slot 15 from the outer peripheral side in the radial direction.
  • the stator coil is inserted into the slot 15 from the inner peripheral side in the radial direction. A method for manufacturing a stator in the present embodiment will be described.
  • FIG. 13 is an explanatory diagram showing a procedure of a stator manufacturing method in the present embodiment.
  • the first stator core 11a excluding the inner peripheral portion of the slot 15 of the stator core 11 is prepared.
  • the first stator core 11a is formed with a groove 17a having a T-shaped cross section for fitting with the second stator core described later.
  • FIG. 14 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 14, the stator coil 12 is inserted into the slot 15 from the radial inner peripheral side of the first stator core 11a.
  • FIG. 15 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment.
  • the second stator core 11b is inserted from the axial direction into the inner peripheral side of the stator coil 12 inserted into the slot 15.
  • the second stator core 11b is integrated with the inner peripheral portion of the stator core 11 and the stator magnet 13 connected in the circumferential direction.
  • a magnet yoke portion 16 is formed on the second stator core 11b.
  • the second stator core 11b is formed with a protrusion 17b having a T-shaped cross section for fitting into the groove 17a of the first stator core 11a.
  • the second stator core 11b may be divided into the stator core module 10a shown by the broken line in FIG.
  • stator core module 10a the magnet yoke portions 16 on both sides, the stator magnets 13 on both sides divided into two, and the inner peripheral portion of the stator core 11 are integrated.
  • the second stator core 11b and the stator magnet 13 can be configured.
  • the stator core module 10a may be inserted into the first stator core 11a from the axial direction, respectively.
  • the shape of the T-shaped protrusion 17b may be another shape shown in FIG. 7.
  • FIG. 16 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 16, the second stator core 11b and the first stator core 11a inserted from the axial direction are fitted to complete the stator 10.
  • the stator core 11 in the present embodiment is configured by fitting the first stator core 11a and the second stator core 11b having the magnet yoke portion 16.
  • the first stator core 11a has a plurality of slots 15, the stator magnet 13 is fixed to the second stator core 11b, and the second stator core 11b is fixed in each of the plurality of slots 15. It is fitted to the first stator core 11a on the inner peripheral side of the child coil 12.
  • stator configured in this way, it is not necessary to pass through the gap of the magnet yoke portion when inserting the stator coil into the slot, so the magnet yoke portion can be enlarged. As a result, the effect of improving the output by the magnet yoke portion can be enhanced, and the stator coil can be easily inserted into the slot.
  • the fitting of the first stator core 11a and the second stator core 11b is two places for one slot.
  • the fitting of the first stator core 11a and the second stator core 11b can be set to one place for one slot. Therefore, the stator of the present embodiment has a simpler structure than the stator of the second embodiment.
  • the stator magnet 13 does not necessarily have to be fixed to the second stator core 11b from the beginning.
  • the stator magnet 13 may be fixed to the second stator core 11b after the second stator core 11b is fitted to the first stator core 11a.
  • Embodiment 4 The structure of the rotary electric machine of the fourth embodiment is the same as the structure of the rotary electric machine of the first embodiment.
  • the stators of the first to third embodiments grooves and protrusions are used for fitting the first stator core and the second stator core.
  • a stator ring is arranged on the outer periphery of the stator core, and the first stator core and the second stator core are fitted together by using this stator ring. A method for manufacturing a stator in the present embodiment will be described.
  • FIG. 17 is an explanatory diagram showing a procedure of a stator manufacturing method in the present embodiment.
  • a second stator core 11b excluding the outer peripheral portion of the slot 15 of the stator core 11 is prepared.
  • the second stator core 11b is connected and integrated with the stator magnet 13 in the circumferential direction.
  • a magnet yoke portion 16 is formed on the second stator core 11b.
  • the second stator core 11b may be divided into the stator core module 10a shown by the broken line in FIG.
  • the teeth 14, the magnet yoke portions 16 on both sides, and the stator magnets 13 on both sides divided into two are integrated.
  • FIG. 18 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 18, the stator coil 12 is inserted into the slot 15 from the radial outer peripheral side of the second stator core 11b.
  • FIG. 19 is an explanatory diagram showing the following procedure of the stator manufacturing method in the present embodiment. As shown in FIG. 19, the first stator core 11a is inserted into the outer peripheral side of the stator coil 12 inserted in the slot 15 from the outer peripheral side in the radial direction.
  • FIG. 20 is an explanatory diagram showing the next procedure of the stator manufacturing method in the present embodiment.
  • the stator ring 10b is installed on the outer periphery of the first stator core 11a inserted from the outer peripheral side in the radial direction.
  • the stator ring 10b can be installed using, for example, shrink fitting.
  • the stator ring 10b has a function of tightening the first stator core 11a and the second stator core 11b from the outer periphery.
  • the first stator core 11a and the second stator core 11b are fitted together with the stator ring 10b to complete the stator 10.
  • the stator core 11 in the present embodiment is configured by fitting the first stator core 11a and the second stator core 11b having the magnet yoke portion 16.
  • the second stator core 11b has a plurality of slots 15, the stator magnet 13 is fixed to the second stator core 11b, and the first stator core 11a is each fixed inserted into the plurality of slots 15. It is fitted to the second stator core 11b on the outer peripheral side of the child coil 12.
  • stator configured in this way, it is not necessary to pass through the gap of the magnet yoke portion when inserting the stator coil into the slot, so the magnet yoke portion can be enlarged. As a result, the effect of improving the output by the magnet yoke portion can be enhanced, and the stator coil can be easily inserted into the slot. Further, in the stator of the present embodiment, the groove and the protrusion are not used for fitting the first stator core and the second stator core. Therefore, since the first stator core can be inserted from the outer peripheral side in the radial direction, the stator can be easily manufactured.
  • the stator ring of the present embodiment may be applied to the stator of the first to third embodiments having a groove and a protrusion on the stator core.
  • the fitting between the first stator core and the second stator core is further strengthened.
  • stator magnet 13 does not necessarily have to be fixed to the second stator core 11b from the beginning.
  • the stator magnet 13 is fixed to the second stator core 11b after the stator coil 12 is inserted into the second stator core 11b or after the first stator core 11a is fitted to the second stator core 11b. You may.
  • the stator core can be configured by arranging and connecting the stator core modules in the circumferential direction.
  • the stator configured in this way, since a force is applied to the inner diameter side of the stator core, an excessive force is applied to the stator magnet and the stator magnet may be damaged. Further, when the stator is enlarged, it is difficult to maintain the roundness only by the stator core composed of the laminated body of the electromagnetic steel sheets.
  • a spacer is inserted into the stator core, and the spacer and the stator ring arranged on the outer periphery of the stator core are fastened to each other.
  • FIG. 21 is a partial cross-sectional view of a stator in the rotary electric machine of the present embodiment.
  • a spacer is inserted into the stator core, and the spacer and the stator ring arranged on the outer periphery of the stator core are fastened to each other. ..
  • the spacer 10c is inserted in the axial direction of the first stator core 11a and the second stator core 11b.
  • the spacer 10c and the stator ring 10b are fastened with a tightening bolt 10d.
  • An adjusting liner 10e is inserted between the tightening bolt 10d and the stator ring 10b.
  • FIG. 22 is a perspective view of the spacer 10c according to the present embodiment.
  • the spacer 10c includes a bolt hole 10f that fits with the tightening bolt 10d.
  • stator 10 configured in this way, the first stator core 11a and the second stator core 11b are fixed to the stator ring 10b by tightening with the tightening bolt 10d, so that the stator core 10 is located on the inner diameter side of the stator core. No excessive force is applied. Therefore, the first stator core 11a and the second stator core 11b can be fixed without applying an excessive force to the stator magnet. Further, the stator ring 10b can maintain the roundness of the stator.
  • the stator ring may be integrated with a stator frame that fixes the stator to the main body of the rotary electric machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

磁石ヨーク部による出力向上の効果を高めると共に、スロットへの固定子コイルの挿入が容易な回転電機を提供する。 回転電機(1)は、複数のスロット(15)を有する固定子鉄心(11)、複数のスロットにそれぞれ挿入された固定子コイル(12)および固定子磁石(13)を備えた固定子(10)と、第1回転子(20)と、第2回転子(30)とを有する。そして、固定子鉄心は、固定子コイルと固定子磁石とに挟まれた位置に磁石ヨーク部(16)を有し、かつ固定子鉄心は、第1固定子鉄心(11a)と磁石ヨーク部を有する第2固定子鉄心(11b)とで構成されている。

Description

回転電機および固定子の製造方法
 本願は、回転電機および固定子の製造方法に関する。
 風力発電装置等の発電機として磁気減速機または磁気増速機とモータ(発電機)とを一体化させた磁気ギアードモータ(発電機)が用いられている。磁気ギアードモータ(発電機)は、低速回転子と、低速回転子と同軸状に設けられた高速回転子と、固定子コイルおよび固定子磁石(永久磁石)を有する固定子とで構成されている。磁気ギアードモータ(発電機)が風力発電装置の発電機として用いられる場合、低速回転子は風車に連動して回転する。低速回転子の回転により磁気ギア効果で高速回転子が高速で回転し、これにより固定子コイルに誘起電力が発生して発電が行われる。このような回転電機は非接触で2つの回転子の回転速度を変速することができるため、機械的な摩耗などに対するメンテナンスが不要となる。
 この回転電機の固定子は、複数のスロットを有する固定子鉄心と、それぞれのスロット内に格納された固定子コイルおよび固定子磁石とを備えている。それぞれのスロット内に格納された固定子コイルと固定子磁石とは径方向に並んで配置されており、それぞれの固定子磁石は径方向の極が同一の極となるように着磁されている。このため、回転電機の出力を向上させるために、固定子コイルと固定子磁石との間に磁性体で構成された磁石ヨーク部を設けることが考えられる。
 従来の回転電機においては、固定子鉄心のスロットにおいて、固定子コイルと固定子磁石との間にスロットの間隔が狭い部分を設けることで磁石ヨーク部を構成している(例えば、特許文献1参照)。
特開2016-135014号公報
 従来の回転電機においては、径方向内側からスロットに固定子コイルを挿入する場合、固定子コイルを磁石ヨーク部のギャップを通す必要がある。そのため、スロットへ固定子コイルを挿入するためには磁石ヨーク部のギャップをある程度確保する必要がある。しかしながら、この磁石ヨーク部のギャップを大きくすると磁石ヨーク部が小さくなるため出力向上の効果が十分に得られないという問題がある。一方、この磁石ヨーク部のギャップを小さくすると、スロットへの固定子コイルの挿入が困難になるという問題があった。
 本願は上述のような課題を解決するためになされたもので、磁石ヨーク部による出力向上の効果を高めると共に、スロットへの固定子コイルの挿入が容易な回転電機を提供することを目的とする。
 本願の回転電機は、複数のスロットを有する固定子鉄心、複数のスロットにそれぞれ挿入された固定子コイルおよび固定子磁石を備えた固定子と、固定子と第1の空隙を介して固定子に対して回転可能に設けられた第1回転子と、第1回転子と第2の空隙を介して第1回転子と同軸状に設けられた第2回転子とを有する。そして、固定子鉄心は、固定子コイルと固定子磁石とに挟まれた位置に磁石ヨーク部を有し、かつ固定子鉄心は、第1固定子鉄心と磁石ヨーク部を有する第2固定子鉄心とで構成されている。
 本願の回転電機においては、固定子鉄心が第1固定子鉄心と、磁石ヨーク部を有する第2固定子鉄心とで構成されているので、磁石ヨーク部による出力向上の効果が高まると共に、スロットへの固定子コイルの挿入が容易となる。
実施の形態1に係る回転電機の断面模式図である。 実施の形態1における固定子の部分断面図である。 実施の形態1における固定子の製造方法の手順を示す説明図である。 実施の形態1における固定子の製造方法の手順を示す説明図である。 実施の形態1における固定子の製造方法の手順を示す説明図である。 実施の形態1における固定子の製造方法の手順を示す説明図である。 実施の形態1における固定子鉄心の突起の形状を示す模式図である。 実施の形態1における固定子コイルの巻線の説明図である。 実施の形態2における固定子の製造方法の手順を示す説明図である。 実施の形態2における固定子の製造方法の手順を示す説明図である。 実施の形態2における固定子の製造方法の手順を示す説明図である。 実施の形態2における固定子の製造方法の手順を示す説明図である。 実施の形態3における固定子の製造方法の手順を示す説明図である。 実施の形態3における固定子の製造方法の手順を示す説明図である。 実施の形態3における固定子の製造方法の手順を示す説明図である。 実施の形態3における固定子の製造方法の手順を示す説明図である。 実施の形態4における固定子の製造方法の手順を示す説明図である。 実施の形態4における固定子の製造方法の手順を示す説明図である。 実施の形態4における固定子の製造方法の手順を示す説明図である。 実施の形態4における固定子の製造方法の手順を示す説明図である。 実施の形態5における固定子の部分断面図である。 実施の形態5におけるスペーサの斜視図である。
 以下、本願を実施するための実施の形態に係る回転電機について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
 図1は、実施の形態1に係る回転電機の断面模式図である。図1は、回転電機の軸方向と直交する面の断面模式図である。本実施の形態の回転電機は、例えば風力発電装置の発電機として用いられる磁気ギアードモータ(発電機)である。本実施の形態の回転電機1は、固定子10と、この固定子10と空隙を介して固定子10に対して回転可能に設けられた低速回転子20と、この低速回転子20と空隙を介して同軸状に設けられた高速回転子30とを備えている。固定子10、低速回転子20および高速回転子30は、円筒状の形状であり、同軸状に配置されている。本実施の形態の回転電機1は、外周側から固定子10、低速回転子20および高速回転子30の順に配置されている。
 固定子10は、円筒状の固定子鉄心11と、固定子コイル12と、固定子磁石13とを備えている。固定子鉄心11は内周側に突出した12個のティース14を有し、ティース14の間には12個のスロット15が形成されている。固定子鉄心11は、例えば電磁鋼板の積層体で構成されている。スロット15の内部の外周側に固定子コイル12が挿入されており、スロット15の内部の内周側に固定子磁石13が配置されている。固定子磁石13は永久磁石であり、それぞれのスロット15に挿入された固定子磁石13は径方向の極が同一の極となるように着磁されている。固定子コイル12と固定子磁石13との間には、ティース14からスロット15側に突き出した磁石ヨーク部16が形成されている。固定子鉄心11は、後述する第1固定子鉄心11aと第2固定子鉄心11bとで構成されている。
 円筒状の低速回転子20は、周方向に並んで配置された複数の磁極片21と、複数の磁極片21の間にそれぞれ配置された複数の非磁性金属の連結部材22とを備えている。磁極片21と連結部材22とはそれぞれ17個ずつ配置されている。
 高速回転子30は、円筒状の高速回転子鉄心31と、高速回転子鉄心31の外周側の表面に周方向に並んで配置された10個の回転子磁石32とを備えている。回転子磁石32は径方向に着磁された永久磁石であり、周方向に並んで配置された10個の回転子磁石32は周方向に交互にS極とN極とが反転している。本実施の形態の回転電機1は、いわゆる10極12スロットの磁気ギアードモータ(発電機)である。また、磁極片数/極対数で決まる増速比は17/5=3.4となっており、高速回転子30は低速回転子20の回転数の3.4倍で回転する。
 図2は、本実施の形態に係る回転電機における固定子の部分断面図である。スロット15の内部の外周側に固定子コイル12が挿入されており、スロット15の内部の内周側に固定子磁石13が配置されている。固定子コイル12と固定子磁石13との間には、ティース14からスロット15側に突き出した磁石ヨーク部16が形成されている。この磁石ヨーク部16は、固定子磁石13の磁束を多く通すことが可能となり、固定子磁石13の磁力を向上させることができる。固定子磁石13の磁力が向上することで、少ない磁石量で必要とするトルクを得ることができる。その結果、磁石ヨーク部16には回転電機の出力を向上させる効果がある。
 なお、本実施の形態の回転電機1において、固定子10のスロット15の数を12、低速回転子20の磁極片21の個数を17、および高速回転子30の回転子磁石32の個数を10としたが、これらの数はこれに限定されない。
 次に、本実施の形態における固定子の製造方法について説明する。
 図3は、本実施の形態における固定子の製造方法の手順を示す説明図である。図3に示すように、固定子鉄心11のスロット15の外周部分が除かれた第2固定子鉄心11bを準備する。この第2固定子鉄心11bには、磁石ヨーク部16が形成されている。また、この第2固定子鉄心11bには固定子磁石13が固定されている。さらに、この第2固定子鉄心11bには、後述する第1固定子鉄心と嵌め合わせるための断面が四角形の溝17aが形成されている。第2固定子鉄心11bと固定子磁石13とは周方向に連結されて一体となっている。なお、第2固定子鉄心11bは、図3において破線で示した固定子鉄心モジュール10aに分割されていてもよい。この固定子鉄心モジュール10aは、1つのティース14の部分と両側の磁石ヨーク部16と2分割された両側の固定子磁石13とが一体化されている。この固定子鉄心モジュール10aを周方向に並べて結合することで第2固定子鉄心11bと固定子磁石13とを構成することができる。
 図4は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図4に示すように、第2固定子鉄心11bの径方向の外周側からスロット15に固定子コイル12が挿入される。この方法であれば、予め成型された固定子コイル12をスロット15に挿入することが可能となる。
 図5は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図5に示すように、スロット15に挿入された固定子コイル12の外周側に第1固定子鉄心11aが軸方向から挿入される。第1固定子鉄心11aには、第2固定子鉄心11bの溝17aに嵌め合わせるための断面が四角形の突起17bが形成されている。
 図6は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図6に示すように、軸方向から挿入された第1固定子鉄心11aと第2固定子鉄心11bとが嵌め合わされて固定子10が完成する。
 上述のように本実施の形態における固定子鉄心11は、第1固定子鉄心11aと磁石ヨーク部16を有する第2固定子鉄心11bとが嵌め合わされて構成されている。第2固定子鉄心11bは複数のスロット15を有し、固定子磁石13は第2固定子鉄心11bに固定されている。さらに、第1固定子鉄心11aは複数のスロット15に挿入されたそれぞれの固定子コイル12の外周側で第2固定子鉄心11bに嵌め合わされている。
 このように構成された固定子においては、固定子コイルをスロットに挿入するときに磁石ヨーク部のギャップを通す必要がないので、磁石ヨーク部を大きくできる。その結果、磁石ヨーク部による出力向上の効果を高めることができると共に、スロットへの固定子コイルの挿入が容易となる。
 なお、固定子磁石13は必ずしも始めから第2固定子鉄心11bに固定されている必要はない。第2固定子鉄心11bに固定子コイル12が挿入された後、あるいは第2固定子鉄心11bに第1固定子鉄心11aが嵌め合わされた後に固定子磁石13が第2固定子鉄心11bに固定されてもよい。
 本実施の形態の固定子においては、第1固定子鉄心11aと第2固定子鉄心11bとを嵌め合わせるために、第1固定子鉄心11aに突起17bが形成されており、第2固定子鉄心11bに溝17aが形成されている。突起17bと溝17aとは互いに入れ替わってもよい。図7は、本実施の形態において、固定子鉄心に形成される突起の形状を示す模式図である。図7に示すように、固定子鉄心に形成される突起17bは、断面が四角形(A)、台形(B、C)、三角形(D)、六角形(E)、楔形(F)、T字形(G)、丸形(H)などの形状でもよい。なお、突起17bと嵌め合わされるために、溝17aの形状は突起17bの形状に合わせた形状となる。
 図8は、本実施の形態における固定子コイルの巻線を示した説明図である。図8Aは、1つのスロットに分布巻きの1つの固定子コイルが挿入された状態を示している。図8Bは、1つのスロットに分布巻きの2つの固定子コイルが径方向に並んで挿入された状態を示している。図8Cは、隣り合う2つのスロットに集中巻きの1つの固定子コイルがそれぞれ挿入された状態を示している。本実施の形態の回転電機において、固定子コイルの巻線は分布巻き、集中巻きを問わず適用可能である。なお、図8においては、固定子鉄心11は、第1固定子鉄心と第2固定子鉄心とに分割されておらず一体として示している。
実施の形態2.
 実施の形態2の回転電機の構造は、実施の形態1の回転電機の構造と同様である。実施の形態1の固定子においては、固定子コイルは径方向の外周側からスロット15に挿入されている。本実施の形態の固定子においては、固定子コイルは径方向の内周側からスロット15に挿入される。
 本実施の形態における固定子の製造方法について説明する。
 図9は、本実施の形態における固定子の製造方法の手順を示す説明図である。図9に示すように、固定子鉄心11のスロット15の内周部分が除かれた第1固定子鉄心11aを準備する。この第1固定子鉄心11aには、後述する第2固定子鉄心と嵌め合わせるための断面がT字形の溝17aが形成されている。
 図10は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図10に示すように、第1固定子鉄心11aの径方向の内周側からスロット15に固定子コイル12が挿入される。
 図11は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図11に示すように、スロット15に挿入された固定子コイル12の内周側に第2固定子鉄心11bが軸方向から挿入される。この第2固定子鉄心11bは、固定子磁石13で一体化されている。また、この第2固定子鉄心11bには、磁石ヨーク部16が形成されている。さらに、第2固定子鉄心11bには、第1固定子鉄心11aの溝17aに嵌め合わせるための断面がT字形の突起17bが形成されている。したがって、第2固定子鉄心11bは、固定子コイル12の数と同数に分離されている。なお、第2固定子鉄心11bは、図11において破線で示した固定子鉄心モジュール10aに分割されていてもよい。この固定子鉄心モジュール10aは、一方の磁石ヨーク部16と2分割された固定子磁石13とが一体化されている。この固定子鉄心モジュール10aを2つ並べて結合することで第2固定子鉄心11bを構成することができる。あるいは、この固定子鉄心モジュール10aがそれぞれ第1固定子鉄心11aに軸方向から挿入されてもよい。また、T字形の突起17bの形状は、図7に示す別の形状としてもよい。
 図12は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図12に示すように、軸方向から挿入された第2固定子鉄心11bと第1固定子鉄心11aとが嵌め合わされて固定子10が完成する。
 上述のように本実施の形態における固定子鉄心11は、第1固定子鉄心11aと磁石ヨーク部16を有する第2固定子鉄心11bとが嵌め合わされて構成されている。第1固定子鉄心11aは複数のスロット15を有し、固定子磁石13は第2固定子鉄心11bに固定されており、第2固定子鉄心11bは複数のスロット15に挿入されたそれぞれの固定子コイル12の内周側で第1固定子鉄心11aに嵌め合わされている。
 このように構成された固定子においては、固定子コイルをスロットに挿入するときに磁石ヨーク部のギャップを通す必要がないので、磁石ヨーク部を大きくできる。その結果、磁石ヨーク部による出力向上の効果を高めることができると共に、スロットへの固定子コイルの挿入が容易となる。
 また、本実施の形態の固定子においては、第1固定子鉄心11aを一体で成型することが可能となるので、実施の形態1に比べて部品点数が少なくなる。
 なお、固定子磁石13は必ずしも始めから第2固定子鉄心11bに固定されている必要はない。第1固定子鉄心11aに第2固定子鉄心11bが嵌め合わされた後に固定子磁石13が第2固定子鉄心11bに固定されてもよい。
実施の形態3.
 実施の形態3の回転電機の構造は、実施の形態1の回転電機の構造と同様である。実施の形態1の固定子においては、固定子コイルは径方向の外周側からスロット15に挿入されている。本実施の形態の固定子においては、実施の形態2と同様に、固定子コイルは径方向の内周側からスロット15に挿入される。
 本実施の形態における固定子の製造方法について説明する。
 図13は、本実施の形態における固定子の製造方法の手順を示す説明図である。図13に示すように、固定子鉄心11のスロット15の内周部分を除いた第1固定子鉄心11aを準備する。この第1固定子鉄心11aには、後述する第2固定子鉄心と嵌め合わせるための断面がT字形の溝17aが形成されている。
 図14は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図14に示すように、第1固定子鉄心11aの径方向の内周側からスロット15に固定子コイル12が挿入される。
 図15は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図15に示すように、スロット15に挿入された固定子コイル12の内周側に第2固定子鉄心11bが軸方向から挿入される。この第2固定子鉄心11bは、固定子鉄心11の内周部分と固定子磁石13とが周方向に連結されて一体となっている。また、この第2固定子鉄心11bには、磁石ヨーク部16が形成されている。さらに、第2固定子鉄心11bには、第1固定子鉄心11aの溝17aに嵌め合わせるための断面がT字形の突起17bが形成されている。なお、第2固定子鉄心11bは、図15において破線で示した固定子鉄心モジュール10aに分割されていてもよい。この固定子鉄心モジュール10aは、両側の磁石ヨーク部16と2分割された両側の固定子磁石13と固定子鉄心11の内周部分とが一体化されている。この固定子鉄心モジュール10aを周方向に並べて結合することで第2固定子鉄心11bと固定子磁石13とを構成することができる。あるいは、この固定子鉄心モジュール10aがそれぞれ第1固定子鉄心11aに軸方向から挿入されてもよい。また、T字形の突起17bの形状は、図7に示す別の形状としてもよい。
 図16は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図16に示すように、軸方向から挿入された第2固定子鉄心11bと第1固定子鉄心11aとが嵌め合わされて固定子10が完成する。
 上述のように本実施の形態における固定子鉄心11は、第1固定子鉄心11aと磁石ヨーク部16を有する第2固定子鉄心11bとが嵌め合わされて構成されている。第1固定子鉄心11aは複数のスロット15を有し、固定子磁石13は第2固定子鉄心11bに固定されており、第2固定子鉄心11bは複数のスロット15に挿入されたそれぞれの固定子コイル12の内周側で第1固定子鉄心11aに嵌め合わされている。
 このように構成された固定子においては、固定子コイルをスロットに挿入するときに磁石ヨーク部のギャップを通す必要がないので、磁石ヨーク部を大きくできる。その結果、磁石ヨーク部による出力向上の効果を高めることができると共に、スロットへの固定子コイルの挿入が容易となる。
 また、実施の形態2の固定子においては、第1固定子鉄心11aと第2固定子鉄心11bとの嵌め合いが1スロットに対して2箇所となっている。本実施の形態の固定子においては、第1固定子鉄心11aと第2固定子鉄心11bとの嵌め合いを1スロットに対して1箇所にすることができる。そのため、本実施の形態の固定子は、実施の形態2の固定子に比べて構造が簡素になる。
 なお、固定子磁石13は必ずしも始めから第2固定子鉄心11bに固定されている必要はない。第1固定子鉄心11aに第2固定子鉄心11bが嵌め合わされた後に固定子磁石13が第2固定子鉄心11bに固定されてもよい。
実施の形態4.
 実施の形態4の回転電機の構造は、実施の形態1の回転電機の構造と同様である。実施の形態1から3の固定子においては、第1固定子鉄心と第2固定子鉄心との嵌め合わせに溝と突起とを用いている。本実施の形態の固定子においては、固定子鉄心の外周に固定子リングを配置し、この固定子リングを用いて第1固定子鉄心と第2固定子鉄心とを嵌め合わせている。
 本実施の形態における固定子の製造方法について説明する。
 図17は、本実施の形態における固定子の製造方法の手順を示す説明図である。図17に示すように、固定子鉄心11のスロット15の外周部分を除いた第2固定子鉄心11bを準備する。この第2固定子鉄心11bは、固定子磁石13と周方向に連結されて一体となっている。また、この第2固定子鉄心11bには、磁石ヨーク部16が形成されている。なお、第2固定子鉄心11bは、図17において破線で示した固定子鉄心モジュール10aに分割されていてもよい。この固定子鉄心モジュール10aは、ティース14と両側の磁石ヨーク部16と2分割された両側の固定子磁石13とが一体化されている。この固定子鉄心モジュール10aを周方向に並べて結合することで第2固定子鉄心11bと固定子磁石13とを構成することができる。
 図18は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図18に示すように、第2固定子鉄心11bの径方向の外周側からスロット15に固定子コイル12が挿入される。
 図19は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図19に示すように、スロット15に挿入された固定子コイル12の外周側に第1固定子鉄心11aが径方向の外周側から挿入される。
 図20は、本実施の形態における固定子の製造方法の次の手順を示す説明図である。図20に示すように、径方向の外周側から挿入された第1固定子鉄心11aの外周に固定子リング10bを設置する。固定子リング10bは、例えば焼き嵌めを用いて設置することができる。この固定子リング10bは、外周から第1固定子鉄心11aと第2固定子鉄心11bとを締め付ける機能を有する。この固定子リング10bで第1固定子鉄心11aと第2固定子鉄心11bとが嵌め合わされて固定子10が完成する。
 上述のように本実施の形態における固定子鉄心11は、第1固定子鉄心11aと磁石ヨーク部16を有する第2固定子鉄心11bとが嵌め合わされて構成されている。第2固定子鉄心11bは複数のスロット15を有し、固定子磁石13は第2固定子鉄心11bに固定されており、第1固定子鉄心11aは複数のスロット15に挿入されたそれぞれの固定子コイル12の外周側で第2固定子鉄心11bに嵌め合わされている。
 このように構成された固定子においては、固定子コイルをスロットに挿入するときに磁石ヨーク部のギャップを通す必要がないので、磁石ヨーク部を大きくできる。その結果、磁石ヨーク部による出力向上の効果を高めることができると共に、スロットへの固定子コイルの挿入が容易となる。また、本実施の形態の固定子においては、第1固定子鉄心と第2固定子鉄心との嵌め合わせに溝と突起とを用いていない。そのため、第1固定子鉄心を径方向の外周側から挿入できるので固定子の製造が容易となる。
 なお、本実施の形態の固定子リングは、固定子鉄心に溝および突起を備えた実施の形態1から3の固定子に適用してもよい。実施の形態1から3の固定子に固定子リングを適用することにより、第1固定子鉄心と第2固定子鉄心との嵌め合わせがさらに強固になる。
 また、固定子磁石13は必ずしも始めから第2固定子鉄心11bに固定されている必要はない。第2固定子鉄心11bに固定子コイル12が挿入された後、あるいは第2固定子鉄心11bに第1固定子鉄心11aが嵌め合わされた後に固定子磁石13が第2固定子鉄心11bに固定されてもよい。
実施の形態5.
 実施の形態1から4の回転電機の固定子において、固定子鉄心モジュールを周方向に並べて結合することで固定子鉄心を構成することができることを説明した。このように構成された固定子においては、固定子鉄心の内径側に力がかかるため、固定子磁石に過度な力がかかり固定子磁石が破損する可能性がある。また、固定子を大型化した場合には、電磁鋼板の積層体で構成された固定子鉄心のみで真円度を保つことが困難である。実施の形態5の回転電機においては、固定子鉄心にスペーサを挿入し、このスペーサと固定子鉄心の外周に配置された固定子リングとを締結したものである。
 図21は、本実施の形態の回転電機における固定子の部分断面図である。本実施の形態の回転電機は、実施の形態4の回転電機において、固定子鉄心にスペーサが挿入されており、このスペーサと固定子鉄心の外周に配置された固定子リングとが締結されている。図21に示すように、スペーサ10cが第1固定子鉄心11aおよび第2固定子鉄心11bの軸方向に挿入されている。このスペーサ10cと固定子リング10bとが締め付けボルト10dで締結されている。締め付けボルト10dと固定子リング10bとの間には調整ライナー10eが挿入されている。図22は、本実施の形態のスペーサ10cの斜視図である。スペーサ10cは、締め付けボルト10dと嵌合するボルト穴10fを備えている。
 このように構成された固定子10は、締め付けボルト10dで締め付けることで固定子リング10bに第1固定子鉄心11aおよび第2固定子鉄心11bを固定しているので、固定子鉄心の内径側に過度な力がかからない。そのため、固定子磁石に過度な力がかからずに、第1固定子鉄心11aと第2固定子鉄心11bとを固定することができる。また、固定子リング10bで固定子の真円度を保つことができる。
 なお、固定子リングは、固定子を回転電機本体に固定する固定子フレームと一体となっていてもよい。
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 回転電機、10 固定子、10a 固定子鉄心モジュール、10b 固定子リング、10c スペーサ、10d 締め付けボルト、10e 調整ライナー、10f ボルト穴、11 固定子鉄心、11a 第1固定子鉄心、11b 第2固定子鉄心、12 固定子コイル、13 固定子磁石、14 ティース、15 スロット、16 磁石ヨーク部、17a 溝、17b 突起、20 低速回転子、21 磁極片、22 連結部材、30 高速回転子、31 高速回転子鉄心、32 回転子磁石。

Claims (7)

  1.  複数のスロットを有する固定子鉄心、複数の前記スロットにそれぞれ挿入された固定子コイルおよび固定子磁石を備えた固定子と、前記固定子と第1の空隙を介して前記固定子に対して回転可能に設けられた第1回転子と、前記第1回転子と第2の空隙を介して前記第1回転子と同軸状に設けられた第2回転子とを有する回転電機であって、
     前記固定子鉄心は、前記固定子コイルと前記固定子磁石とに挟まれた位置に磁石ヨーク部を有し、かつ前記固定子鉄心は、第1固定子鉄心と前記磁石ヨーク部を有する第2固定子鉄心とで構成されていることを特徴とする回転電機。
  2.  前記第2固定子鉄心は複数の前記スロットを有し、前記第1固定子鉄心は複数の前記スロットに挿入されたそれぞれの前記固定子コイルの外周側で前記第2固定子鉄心に嵌め合わされていることを特徴とする請求項1に記載の回転電機。
  3.  前記第1固定子鉄心は複数の前記スロットを有し、前記第2固定子鉄心は複数の前記スロットに挿入されたそれぞれの前記固定子コイルの内周側で前記第1固定子鉄心に嵌め合わされていることを特徴とする請求項1に記載の回転電機。
  4.  前記第2固定子鉄心は、前記固定子コイルの数と同数に分離されて前記第1固定子鉄心に嵌め合わされていることを特徴とする請求項3に記載の回転電機。
  5.  前記固定子は、前記固定子鉄心の外周に固定子リングをさらに備えたことを特徴とする請求項1から4のいずれか1項に記載の回転電機。
  6.  前記固定子は、前記固定子鉄心と前記固定子リングとを締結する締結機構をさらに備えたことを特徴とする請求項5に記載の回転電機。
  7.  複数のスロットを有する固定子鉄心、複数の前記スロットにそれぞれ挿入された固定子コイルおよび固定子磁石を備え、前記固定子鉄心は、前記固定子コイルと前記固定子磁石とに挟まれた位置に磁石ヨーク部を有し、かつ前記固定子鉄心は、第1固定子鉄心と前記磁石ヨーク部を有する第2固定子鉄心とで構成された固定子の製造方法であって、
     複数の前記スロットの径方向の内周側または外周側から前記固定子コイルを挿入するステップと、
     複数の前記スロットの前記固定子コイルが挿入された側で前記第1固定子鉄心と前記第2固定子鉄心とを嵌め合わせるステップとを有することを特徴とする固定子の製造方法。
PCT/JP2020/033714 2020-09-07 2020-09-07 回転電機および固定子の製造方法 WO2022049750A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080103694.5A CN116057820A (zh) 2020-09-07 2020-09-07 旋转电机以及定子的制造方法
JP2022546839A JP7357805B2 (ja) 2020-09-07 2020-09-07 回転電機および固定子の製造方法
PCT/JP2020/033714 WO2022049750A1 (ja) 2020-09-07 2020-09-07 回転電機および固定子の製造方法
US17/922,817 US12289016B2 (en) 2020-09-07 2020-09-07 Rotating electric machine and stator manufacturing method
EP20952484.2A EP4213344A4 (en) 2020-09-07 2020-09-07 ELECTRIC LATHE AND ROTOR MANUFACTURING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033714 WO2022049750A1 (ja) 2020-09-07 2020-09-07 回転電機および固定子の製造方法

Publications (1)

Publication Number Publication Date
WO2022049750A1 true WO2022049750A1 (ja) 2022-03-10

Family

ID=80490795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033714 WO2022049750A1 (ja) 2020-09-07 2020-09-07 回転電機および固定子の製造方法

Country Status (5)

Country Link
US (1) US12289016B2 (ja)
EP (1) EP4213344A4 (ja)
JP (1) JP7357805B2 (ja)
CN (1) CN116057820A (ja)
WO (1) WO2022049750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3144721A1 (fr) * 2022-12-29 2024-07-05 Commissariat à l'Energie Atomique et aux Energies Alternatives Montage réversible d’aimant permanent dans une machine électrique
WO2024241363A1 (ja) * 2023-05-19 2024-11-28 三菱電機株式会社 固定子およびそれを備えた回転電機
WO2024247211A1 (ja) * 2023-06-01 2024-12-05 三菱電機株式会社 磁気ギアード回転機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169647B (zh) * 2019-02-26 2024-05-31 松下知识产权经营株式会社 磁齿轮电机
CN114982107A (zh) * 2020-01-21 2022-08-30 三菱电机株式会社 定子以及使用定子的旋转电机
JP7262623B2 (ja) * 2020-01-21 2023-04-21 三菱電機株式会社 固定子およびこれを用いた回転電機
WO2022137405A1 (ja) * 2020-12-23 2022-06-30 三菱電機株式会社 永久磁石式回転電機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135014A (ja) 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置
US20190393739A1 (en) * 2018-06-21 2019-12-26 Korea Electronics Technology Institute Stator for external rotor type motor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563059B1 (fr) * 1984-04-13 1988-04-15 Cem Comp Electro Mec Machine electrodynamique vernier
JPH07241050A (ja) * 1994-02-25 1995-09-12 Hino Motors Ltd 電気自動車用モータのギャップ調整装置
JP2005168128A (ja) 2003-12-01 2005-06-23 Honda Motor Co Ltd 回転電機用ロータ
JP5111410B2 (ja) 2009-02-12 2013-01-09 三菱電機株式会社 回転電機
DE102010039300A1 (de) * 2010-08-13 2012-02-16 Robert Bosch Gmbh Elektromotor mit einem segmentierten Stator
DE102011121174B4 (de) * 2011-12-16 2014-04-03 Eads Deutschland Gmbh Elektrische Maschine, insbesondere für Luftfahrzeuge
JP5954198B2 (ja) * 2013-01-28 2016-07-20 株式会社デンソー 回転電機
JP6093592B2 (ja) * 2013-02-22 2017-03-08 株式会社Ihi 磁気波動歯車装置
EP3026791B1 (en) * 2013-07-24 2020-04-08 Mitsubishi Electric Corporation Method for manufacturing a stator, a rotating electrical machine, and an electric power steering device
WO2017135054A1 (ja) * 2016-02-03 2017-08-10 三菱電機株式会社 回転電機
CN209497335U (zh) * 2019-04-29 2019-10-15 广东威灵电机制造有限公司 定子组件及电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135014A (ja) 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置
US20190393739A1 (en) * 2018-06-21 2019-12-26 Korea Electronics Technology Institute Stator for external rotor type motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4213344A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3144721A1 (fr) * 2022-12-29 2024-07-05 Commissariat à l'Energie Atomique et aux Energies Alternatives Montage réversible d’aimant permanent dans une machine électrique
WO2024241363A1 (ja) * 2023-05-19 2024-11-28 三菱電機株式会社 固定子およびそれを備えた回転電機
WO2024247211A1 (ja) * 2023-06-01 2024-12-05 三菱電機株式会社 磁気ギアード回転機

Also Published As

Publication number Publication date
US12289016B2 (en) 2025-04-29
US20230198319A1 (en) 2023-06-22
JP7357805B2 (ja) 2023-10-06
EP4213344A1 (en) 2023-07-19
JPWO2022049750A1 (ja) 2022-03-10
EP4213344A4 (en) 2024-04-03
CN116057820A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
JP7357805B2 (ja) 回転電機および固定子の製造方法
US8847464B2 (en) Electrical machine with improved stator flux pattern across a rotor that permits higher torque density
EP1990895B1 (en) Stress distributing permanent magnet rotor geometry for electric machines
US20090315424A1 (en) Permanent magnet synchronous machine with shell magnets
WO2009119333A1 (ja) 回転電機
US20080238232A1 (en) Motor, rotor structure and magnetic machine
US20120080977A1 (en) Multi-gap electric rotating machine
US20140184009A1 (en) Rotating electric machine
EP3661021B1 (en) Turbo machine comprising a permanent magnet rotor of an electric machine in its tail cone
JP2005176424A (ja) 回転電機の回転子
CN101779366A (zh) 轴向间隙型电动机
JP6723490B1 (ja) 回転電機の回転子
JP2008271640A (ja) アキシャルギャップ型モータ
JP2007274869A (ja) スロットレス永久磁石型回転電機
WO2022202050A1 (ja) 磁気ギアード回転機械、及び発電システム
WO2021149753A1 (ja) 磁気ギアード回転電機、及びステータの製造方法
JP6658707B2 (ja) 回転電機
US20240235360A1 (en) Magnetic geared rotating machine, power generation system, and drive system
JP2005124378A (ja) リング状の固定子コイルを有する誘導電動機
JP6804699B1 (ja) 固定子およびこれを用いた回転電機
JP2006262603A (ja) 回転電機
WO2011036723A1 (ja) 同期発電機
JP7373394B2 (ja) 回転電機
JP7527493B2 (ja) 磁気波動歯車装置
EP4329152A1 (en) Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020952484

Country of ref document: EP

Effective date: 20230411

WWG Wipo information: grant in national office

Ref document number: 17922817

Country of ref document: US