[go: up one dir, main page]

WO2022004456A1 - Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask - Google Patents

Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask Download PDF

Info

Publication number
WO2022004456A1
WO2022004456A1 PCT/JP2021/023360 JP2021023360W WO2022004456A1 WO 2022004456 A1 WO2022004456 A1 WO 2022004456A1 JP 2021023360 W JP2021023360 W JP 2021023360W WO 2022004456 A1 WO2022004456 A1 WO 2022004456A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
layer
manufacturing
mask layer
target
Prior art date
Application number
PCT/JP2021/023360
Other languages
French (fr)
Japanese (ja)
Inventor
寿弘 鈴木
守男 細谷
修一郎 金井
修 中畦
Original Assignee
アルバック成膜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバック成膜株式会社 filed Critical アルバック成膜株式会社
Priority to JP2022533874A priority Critical patent/JPWO2022004456A1/ja
Priority to CN202180041394.3A priority patent/CN115698849A/en
Priority to KR1020227043117A priority patent/KR20230007511A/en
Publication of WO2022004456A1 publication Critical patent/WO2022004456A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching

Definitions

  • the present invention relates to a method for manufacturing a mask blank, a mask blank, a method for manufacturing a photomask, and a photomask.
  • the present invention relates to techniques suitable for use in photomask blanks with a mask layer containing silicon.
  • Photomask blanks are used to form FPDs (flat panel displays) and photomasks used in photolithography processes in semiconductor device manufacturing and the like.
  • the mask blanks have a structure in which a mask layer is laminated on one main surface of a transparent substrate such as a glass substrate.
  • the mask layer may be a single layer or a plurality of layers.
  • a photomask is manufactured by forming a resist pattern on a mask layer, using this resist pattern as a mask, and selectively etching and removing the mask layer to form a predetermined mask pattern.
  • Patent Documents 1 to 3 As the mask layer formed on the mask blanks, a film containing silicon, a mask layer composed of a film containing silicon and molybdenum, and the like are known (Patent Documents 1 to 3). Further, in recent years, there has been a demand for mask blanks used in a photolithography process capable of high-definition patterning.
  • the film thickness of the oxide layer formed on the surface layer becomes thicker and the pattern becomes thicker when the laser is applied in the exposure process, that is, the accuracy of the shape of the formed pattern becomes higher. There was a problem of deterioration. Further, in order to realize high-definition patterning, there is a demand to increase the etching rate of the mask layer in the pattern forming step.
  • the mask layer when sputtering is used to form the mask layer, a target containing silicon, which is a film forming material, is used, but the high resistivity hinders plasma generation and has desired film characteristics. There was a problem that the mask layer may not be obtained. Furthermore, when RF sputtering is used with a high resistance target when forming the mask layer, the plasma generation state fluctuates due to the decrease in the anode, and the mask layer having the desired film characteristics cannot be obtained. There was a problem.
  • the present invention has been made in view of the above circumstances, and achieves the following objects. 1. 1. To be able to provide mask blanks used in a photolithography process capable of high-definition patterning. 2. 2. To be able to provide mask blanks capable of accurate patterning. 3. 3. To increase the etching rate in the mask layer. 4. To enable the stabilization of plasma and the formation of a mask layer having desired film characteristics.
  • the method for manufacturing a mask blank according to one aspect of the present invention is a method for manufacturing a mask blank in which a mask layer containing silicon is laminated on a transparent substrate, and the mask layer is made by using a target containing a dopant that reduces resistivity. Is formed by sputtering.
  • the specific resistance of the target may be 0.001 ⁇ cm to 0.1 ⁇ cm.
  • the dopant may be one or more selected from the group consisting of boron, phosphorus, and arsenic.
  • the dopant is boron and the dopant concentration is within the range of 1 ⁇ 10 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3. May be.
  • the target may be a silicon single crystal or a silicon polycrystal.
  • the atmospheric gas used for the sputtering may contain nitrogen.
  • the atmospheric gas used for the sputtering may contain oxygen.
  • the sputtering may be DC sputtering.
  • the mask blanks according to one aspect of the present invention are mask blanks manufactured by the above-mentioned method for producing mask blanks, in which the mask layer contains boron as the dopant and the dopant concentration of the mask layer is 1 ⁇ 10. It is within the range of 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3.
  • the etching rate of the mask layer in dry etching is 1.05 to 1.5 times the etching rate of the layer formed by using a non-doped target. It is also good.
  • the mask layer may contain nitrogen or oxygen.
  • the composition ratio of nitrogen or oxygen in the mask layer may change in the film thickness direction.
  • the mask layer may include a phase shift layer.
  • the method for manufacturing a photomask according to one aspect of the present invention is a method for manufacturing a photomask from the above-mentioned mask blanks, in which a resist pattern is formed on the surface of the mask layer (resist pattern forming step), and the resist pattern is formed.
  • the photomask according to one aspect of the present invention is manufactured by the above-mentioned photomask manufacturing method.
  • the method for manufacturing a mask blank according to one aspect of the present invention is a method for manufacturing a mask blank in which a mask layer containing silicon is laminated on a transparent substrate, and the mask layer is made by using a target containing a dopant that reduces resistivity. Is formed by sputtering. As a result, when the mask layer is formed by sputtering, the specific resistance at the target is reduced, so that the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the mask layer is formed. Is possible.
  • the dopant can be contained in the mask layer, and the film characteristics in the mask layer can be improved.
  • the film characteristics of the mask layer that can be improved are specifically the endpoints for determining the end of etching by the light emission monitor as the selection ratio of the mask layer to the substrate increases as the etching rate increases. Judgment becomes easy. Therefore, it means that the depth at which the transparent substrate is excessively etched can be minimized.
  • the specific resistance of the target may be 0.001 ⁇ cm to 0.1 ⁇ cm.
  • the dopant may be one or more selected from the group consisting of boron, phosphorus, and arsenic. This makes it possible to realize the above-mentioned resistivity range in the target, stabilize the power for forming the plasma, stabilize the plasma in the film-forming state, and form the mask layer. As a result, it is possible to prevent the occurrence of an abnormal discharge phenomenon such as an arc during sputtering, reduce the characteristics of the thin film and the factors that cause defects, and improve the film forming characteristics.
  • boron when boron is used as the dopant, it is possible to form a p-type semiconductor, and when phosphorus or arsenic is used as the dopant, it is possible to form an n-type semiconductor, which is a target. It is possible to reduce the specific resistance.
  • the dopant in the target, is boron and the dopant concentration is within the range of 1 ⁇ 10 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3. May be.
  • the range of the specific resistance of the target described above is realized, the power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the mask layer can be formed.
  • plasma stabilization specifically means that the reproducibility of the cathode current value is high when the cathode current value during film formation fluctuates and when film formation is performed multiple times under the same conditions. That is, it means that the film thickness reproducibility is high when the film is formed by time control. Further, it is possible to make the film film uniform in the film-formed mask layer and the film characteristics at a plurality of different positions on the surface of the film-formed mask layer, and reduce the CD distribution when the wafer is exposed. .. Further, it is possible to improve the dry etching rate in the formed mask layer, thereby improving the cross-sectional shape.
  • the target may be a silicon single crystal or a silicon polycrystal.
  • the target can be formed by the FZ method, the CZ method or the cast growth method.
  • the atmospheric gas used for the sputtering may contain nitrogen.
  • a nitrided silicon film such as SiN or SiON can be formed as a mask layer.
  • a silicon film can be formed as a part of the mask layer.
  • the atmospheric gas used for the sputtering may contain oxygen.
  • an oxidized silicon film such as SiON or SiO can be formed as a mask layer.
  • a silicon film can be formed as a part of the mask layer.
  • the sputtering may be DC sputtering.
  • the reproducibility of the film thickness, the film characteristics, and the characteristic distribution can be improved as compared with the case where the mask layer is formed by RF sputtering.
  • the mask blanks according to one aspect of the present invention are mask blanks manufactured by the above-mentioned method for producing mask blanks, in which the mask layer contains boron as the dopant and the dopant concentration of the mask layer is 1 ⁇ 10. It is within the range of 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3.
  • the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced.
  • the selection ratio of the mask layer with respect to the transparent substrate is increased, and it becomes easy to determine the endpoint for determining the end of etching by the light emission monitor. Therefore, the depth at which the transparent substrate is excessively etched can be minimized. Further, since side etching on the mask layer can be suppressed, the cross-sectional shape can be further improved.
  • the etching rate of the mask layer in dry etching is 1.05 to 1.5 times the etching rate of the layer formed by using a non-doped target. It is also good. As a result, the etching time is shortened due to the faster etching rate, the shape accuracy in patterning is improved, and even higher-definition patterning is performed, as compared with the mask layer formed by using a silicon target containing no dopant. Can be realized.
  • the mask layer may contain nitrogen or oxygen.
  • a nitrided or oxidized silicon film such as SiN, SiON, and SiO can be formed as a mask layer.
  • a silicon film can be formed as part of the mask layer.
  • the composition ratio of nitrogen or oxygen in the mask layer may change in the film thickness direction.
  • the fluctuations in the transmittance and the reflectance with respect to the wavelength of the transmitted light are small, and the fluctuations in the etching rate at the layer interface become gentle. Therefore, mask blanks having a good cross-sectional shape can be obtained.
  • the mask layer may include a phase shift layer. This makes it possible to obtain mask blanks capable of manufacturing a phase shift mask capable of high-definition patterning.
  • the method for manufacturing a photomask according to one aspect of the present invention is a method for manufacturing a photomask from the above-mentioned mask blanks, in which a resist pattern is formed on the surface of the mask layer (resist pattern forming step), and the resist pattern is formed.
  • a resist pattern is formed on the surface of the mask layer (resist pattern forming step)
  • the resist pattern is formed.
  • the mask layer is dry-etched. ..
  • the selection ratio of the mask layer to the transparent substrate increases as the etching rate increases, and it becomes easy to determine the endpoint by the light emission monitor for determining the end of etching.
  • the depth at which the transparent substrate is excessively etched can be minimized.
  • the resist layer can be made thin, and the working time required for the resist pattern forming step can be shortened.
  • the etching rate for the mask layer can be increased to reduce the etching time during pattern formation for the mask layer. Damage to the resist layer can be suppressed and the accuracy of the shape in etching can be maintained. It is possible to manufacture a photomask that can be applied to high-definition patterning.
  • the photomask according to one aspect of the present invention is manufactured by the above-mentioned photomask manufacturing method. This makes it possible to realize high-definition patterning.
  • FIG. 1 is a flowchart showing a method for manufacturing mask blanks in the present embodiment.
  • 2 to 5 are cross-sectional views for explaining a process in the method for manufacturing a mask blank in the present embodiment.
  • reference numerals 10A and 10B are mask blanks.
  • the mask blanks 10B according to the present embodiment are used for light having a wavelength of 200 nm or less, particularly exposure light of ArF excimer laser light (wavelength 193 nm) used in photolithography using a phase shift mask.
  • the mask blanks 10B according to the present embodiment are used as a phase shift mask (photomask) used in the range where the wavelength of the exposure light is in the range of about 248 nm to 436 nm.
  • the mask blanks 10B according to the present embodiment are a glass substrate (transparent substrate) 11 and a mask layer (phase shift layer 12, antireflection) formed on the glass substrate 11 and having predetermined optical characteristics. It is composed of a layer 13) and a resist layer 15 formed on the mask layer.
  • the mask layer has a phase shift layer 12 formed on the glass substrate 11 and an antireflection layer 13 formed on the phase shift layer 12. That is, the antireflection layer 13 is provided at a position farther from the glass substrate 11 than the phase shift layer 12.
  • the phase shift layer 12 and the antireflection layer 13 have a refractive index, an extinction coefficient, a transmittance, a reflectance, a film thickness, etc. set to predetermined values as optical characteristics required for a photomask, and the phase shift is performed. It constitutes a mask layer that is a film.
  • a resist layer (photoresist layer) 15 is formed in advance on the mask layer in which the phase shift layer 12 and the antireflection layer 13 are laminated, as shown in FIG. A filmed configuration can also be adopted.
  • a configuration in which the antireflection layer 13 is not laminated can be adopted.
  • an adhesion layer in addition to the mask layer composed of the phase shift layer 12 and the antireflection layer 13, an adhesion layer, a chemical resistant layer, a protective layer, a light shielding layer, an etching stopper layer, and the like are laminated.
  • the configuration may be adopted.
  • the material of the light-shielding layer various materials can be applied, but it is preferable to use a film made of a chromium-based material that can also be used as an auxiliary film for etching processing. Further, as shown in FIG. 5, a resist layer 15 may be formed on the above-mentioned laminated film.
  • the glass substrate 11 a material having excellent transparency and optical isotropic properties is used, and for example, a quartz glass substrate can be used.
  • the size of the glass substrate 11 is not particularly limited, and can be used as a substrate to be exposed using the mask (for example, a semiconductor, an LCD (liquid crystal display), a plasma display, an FPD substrate such as an organic EL (electroluminescence) display, etc.). It will be selected as appropriate.
  • a rectangular substrate having a side length of about 100 mm or a rectangular substrate having a side length of 250 mm or more can be applied. Further, a substrate having a thickness of 1 mm or less, a substrate having a thickness of several mm, and a substrate having a thickness of 10 mm or more can also be used.
  • the flatness of the glass substrate 11 may be reduced by polishing the surface of the glass substrate 11.
  • the flatness of the glass substrate 11 can be, for example, 5 ⁇ m or less. As a result, the depth of focus of the mask becomes deeper, and it becomes possible to greatly contribute to the formation of a fine and highly accurate pattern. Further, the flatness is preferably a small value such as 0.5 ⁇ m or less.
  • the phase shift layer 12 contains Si (silicon) as a main component.
  • the phase shift layer 12 contains a predetermined dopant.
  • the phase shift layer 12 can further include O (oxygen) and N (nitrogen), C (carbon).
  • O oxygen
  • N nitrogen
  • C carbon
  • As the type of dopant a material (element) whose specific resistance is reduced by doping is selected in a state where the composition ratio (atm%) of Si, N, O or the like does not change. Specifically, one or more kinds of materials selected from the group consisting of B (boron), P (phosphorus), As (arsenic) and the like are adopted.
  • the phase shift layer 12 it is possible to adopt a structure in which the composition of the phase shift layer 12 changes in the thickness direction.
  • the configuration of the phase shift layer 12 one or 2 selected from the group consisting of Si alone and Si oxides, nitrides, carbides, oxide nitrides, carbides and oxide carbides. It is also possible to stack seeds or more.
  • the phase shift layer 12 has a thickness of the phase shift layer 12 and a composition ratio (atm%) of Si, N, O, etc. so that predetermined optical characteristics, etching rate, resistivity, etc. can be obtained. And the content rate (atm%) of the dopant are set.
  • the film thickness of the phase shift layer 12 is set by the optical characteristics required for the phase shift layer 12, and changes depending on the composition ratio of Si, N, O, or the like.
  • the film thickness of the phase shift layer 12 can be 40 nm to 150 nm.
  • phase shift layer 12 may be composed of a single layer so as to satisfy the phase difference and the transmittance required for the phase shift film.
  • the phase shift layer 12 may include a layer having antireflection functionality in order to satisfy a predetermined surface reflectance.
  • the phase shift layer 12 may be composed of multiple layers so as to satisfy the phase difference and transmittance required for the phase shift film in the entire phase shift layer 12.
  • the composition ratio of each layer constituting the phase shift layer 12 is in the thickness direction.
  • the phase shift layer 12 may be formed so as to continuously change to.
  • the phase shift layer 12 may be formed by a combination of two or more layers selected from a layer having different constituent elements and a layer having the same constituent elements but different composition ratios.
  • the phase shift layer 12 may be formed by a combination including the same layer, as long as the same layers are not arranged so as to be adjacent to each other.
  • the phase shift layer 12 has a predetermined phase shift amount (phase difference) with respect to light having a wavelength of 200 nm or less, particularly exposure light of ArF excima laser light (wavelength 193 nm) used in photolithography using a phase shift mask. , A film that provides a predetermined permeability.
  • the phase shift layer 12 is configured so that a portion made of a silicon-based material represented by SiN and SiON is provided in the thickness direction of the phase shift layer 12. As a result, it has a predetermined transmittance while ensuring a predetermined phase difference, and the chemical resistance is also improved.
  • the phase difference of the phase shift layer 12 is about 150 to 200 ° or about 180 ⁇ 10 ° at the boundary between the region where the phase shift film exists and the region where the phase shift film does not exist. It may be 175 to 185 °.
  • the transmittance of the phase shift layer 12 with respect to the exposure light is preferably in the range of 3% to 40%, and can be further in the range of 5% to 10%.
  • the thickness of the phase shift layer 12 is 40 nm to 70 nm and 50 nm to 65 nm.
  • the phase shift layer 12 can reduce the three-dimensional effect as the thickness of the pattern of the mask layer increases. Further, the thickness of the phase shift layer 12 is set within a thickness range in which predetermined optical characteristics can be obtained for light having a wavelength of 200 nm or less. The thinner the phase shift layer 12, the easier it is to form a fine pattern.
  • the phase shift layer 12 is made of a silicon-based material as described above. Specifically, the phase shift layer 12 is SiN (silicon nitride) or SiON (silicon oxynitride). The phase shift layer 12 may contain other elements. In this case, the dopant as an impurity is contained in the phase shift layer 12.
  • the transmittance is increased.
  • the shortage of transmittance is supplemented by adding the minimum necessary oxygen to the phase shift layer 12, and by suppressing the oxygen content to a low level, the phase shift layer 12 can be made thinner. Therefore, the oxygen content in the silicon-based material is preferably 1/3 (composition ratio) or less, particularly 1/5 (composition ratio) or less of the nitrogen content.
  • the phase shift layer 12 may include a layer composed of Si and N. Further, the phase shift layer 12 may be formed of two or more layers having different composition ratios of Si and N. Further, the phase shift layer 12 may be formed so that the composition ratio of Si and N changes stepwise or continuously in the thickness direction of the phase shift layer 12.
  • the phase shift layer 12 contains a predetermined dopant, specifically, one selected from the group consisting of B (boron), P (phosphorus), As (arsenic) and the like.
  • the dopant contained in the phase shift layer 12 is boron, and the dopant concentration is in the range of 1 ⁇ 10 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3 .
  • the antireflection layer 13 contains Cr (chromium) and O (oxygen) as main components. Further, the phase shift layer 12 contains C (carbon) and N (nitrogen).
  • the antireflection layer 13 one or two or more selected from the group consisting of oxides, nitrides, carbides, oxide nitrides, carbides and oxide carbides of Cr are laminated. It can also be configured. Further, in the antireflection layer 13, it is possible to adopt a structure in which the composition of the antireflection layer 13 changes in the thickness direction. As will be described later, the thickness of the antireflection layer 13 and the composition ratio of Cr, N, C, O, Si, etc. (atm%) so that predetermined adhesion (hydrophobicity) and predetermined optical characteristics can be obtained. Is set.
  • the oxygen content is set in the range of 6.7 atm% to 63.2 atm%
  • the nitrogen content is set in the range of 4.6 atm% to 39.3 atm%.
  • the film thickness of the antireflection layer 13 in the range of 30 nm to 60 nm, it is possible to obtain light having a wavelength of 200 nm or less, particularly ArF excimer laser light (wavelength 193 nm) used in photolithography using a phase shift mask. The reflectance in the exposure light can be reduced.
  • the composition ratio of the materials constituting the antireflection layer 13 is not limited to the above values. The composition ratio described above shows an example of the present invention.
  • the method for manufacturing a mask blank in the present embodiment includes a substrate preparation step S11, a mask layer forming step S12, and a resist forming step S13.
  • a glass substrate 11 made of quartz glass having a predetermined dimension is prepared.
  • the glass substrate 11 having excellent transparency and optical isotropic properties can be subjected to surface treatment such as polishing and HF cleaning.
  • a phase shift layer 12 and an antireflection layer 13 constituting the mask layer are sequentially formed on the glass substrate 11.
  • FIG. 6 is a schematic view showing a mask blank manufacturing apparatus according to the present embodiment.
  • the phase shift layer 12 and the antireflection layer 13 in the mask blanks 10A are manufactured by the manufacturing apparatus 100 shown in FIG.
  • the manufacturing apparatus 100 is a single-wafer DC sputtering apparatus. As shown in FIG. 6, the manufacturing apparatus 100 includes a load chamber 101a, an unload chamber 101b, a transport chamber 101c connected to the load chamber 101a and the unload chamber 101b via a sealing mechanism, and a vacuum chamber (first). It has a vacuum chamber (first vacuum processing chamber) 102 and a vacuum chamber (second vacuum chamber, second vacuum processing chamber) 103. The vacuum chambers 102 and 103 have a film forming mechanism corresponding to two film forming processes. The vacuum chambers 102 and 103 are film forming chambers connected to the transport chamber 101c.
  • the transport chamber 101c includes a transport mechanism 101d that transports the glass substrate 11 carried in from the outside of the manufacturing apparatus 100 via the load chamber 101a to the vacuum tank 102 and the vacuum tank 103, and a rotary pump that reduces the pressure inside the transport chamber 101c. , Equipped with an exhaust mechanism such as a turbo molecular pump.
  • FIG. 7 is a schematic view showing a vacuum chamber in the mask blank manufacturing apparatus according to the present embodiment.
  • FIG. 8 is a schematic view showing a vacuum chamber in the mask blank manufacturing apparatus according to the present embodiment.
  • the vacuum chamber 102 forms a material film for a mask blank by using a long slow sputtering (LTS) method.
  • LTS long slow sputtering
  • the vacuum chamber 102 has a film forming space 102K.
  • the reaction gas introduction port 114a and the inert gas introduction port 114b are connected to the film forming space 102K.
  • a vacuum exhaust port 114d and a vacuum exhaust port 114e are connected to the film forming space 102K.
  • the vacuum chamber 102 has a cathode electrode (backing plate) 105A (105) and a substrate holder 107.
  • the board holder 107 is provided with a board holding mechanism.
  • the substrate holder 107 is configured to hold the glass substrate 11 by facing the glass substrate 11 conveyed to the vacuum chamber 102 by the conveying mechanism 101d so as to be inclined toward the target 104A during film formation.
  • a heater 111 is provided inside the substrate holder 107.
  • the film forming space 102K is provided with a target 104A that functions as the first-stage film forming mechanism of the two-stage film forming mechanism and supplies the film forming material.
  • the film forming mechanism of the vacuum chamber 102 includes a target 104A, a cathode electrode 105A for holding the target 104A, and a power supply 112A for applying a negative potential sputtering voltage to the cathode electrode 105A.
  • the power supply 112A can apply a high frequency voltage or a DC voltage.
  • the surface of the cathode electrode 105A is provided with a flat plate-shaped target 104A that serves as a base material for the material film.
  • the cathode electrode 105A is arranged along the dome-shaped ceiling 102a constituting the vacuum chamber 102. That is, the vacuum chamber 102 has a configuration in which the flat plate-shaped target 104A, which is the base material of the material film, is inclined and arranged in a single film formation space 102K. In the vacuum chamber 102, the target 104A corresponding to the formation of the phase shift layer (mask layer) 12 is used.
  • the sputtering particles flying from the target 104A face the rotating (R: rotation direction) surface of the rectangular glass substrate 11.
  • Tilt formed by the vertical direction T11 (dotted arrow) of the target 104A with respect to the sputtering surface 104As and the line segment TSA (TS: solid arrow) connecting the center of the sputtering surface 104As of the target 104A and the center of the surface to be processed of the glass substrate 11.
  • the angle ⁇ A ( ⁇ ) is different from the vertical direction T11.
  • the line segment TSA (TS) is a so-called distance between the target 104A and the glass substrate 11.
  • a vacuum pump (not shown) is connected to the vacuum exhaust port 114d and the vacuum exhaust port 114e.
  • a magnet plate 109A (109) having magnets 110A (110) arranged in double concentric circles is provided on the back surface of the cathode electrode 105A.
  • a sputtering power supply (power supply) 112A (112) is electrically connected to the cathode electrode 105A.
  • the film forming mechanism of the vacuum chamber 102 includes an inert gas introduction port 114b, a reaction gas introduction port 114a, a vacuum exhaust port 114d, and a vacuum exhaust port 114e.
  • the inert gas introduction port 114b is connected to a gas introduction mechanism that introduces gas into the space near the cathode electrode 105A in the film formation space 102K.
  • the reaction gas introduction port 114a introduces the reaction gas into the space near the glass substrate 11.
  • the vacuum exhaust port 114d is connected to a high vacuum exhaust mechanism such as a turbo molecular pump that reduces the pressure in the film formation space 102K so that a high vacuum can be obtained.
  • the vacuum exhaust port 114d exhausts the gas in the film formation space 102K from a position near the cathode electrode 105A.
  • the vacuum exhaust port 114e exhausts the gas in the film formation space 102K from a position near the glass substrate 11.
  • the vacuum chamber 103 which is a film forming chamber separate from the vacuum chamber 102, has a film forming mechanism for supplying the film forming material of the second stage among the two-stage film forming mechanisms.
  • the vacuum chamber 103 has a mechanism substantially equivalent to the film forming mechanism of the vacuum chamber 102.
  • the vacuum chamber 103 has almost the same configuration as the vacuum chamber 102.
  • the vacuum chamber 103 forms a material film for a mask blank by using a long slow sputtering (LTS) method.
  • LTS long slow sputtering
  • the vacuum chamber 103 has a film forming space 103K.
  • the reaction gas introduction port 114a and the inert gas introduction port 114b are connected to the film forming space 103K.
  • a vacuum exhaust port 114d and a vacuum exhaust port 114e are connected to the film forming space 103K.
  • the vacuum chamber 103 has a cathode electrode (backing plate) 105B (105) and a substrate holder 107.
  • the board holder 107 is provided with a board holding mechanism.
  • the substrate holder 107 is configured to hold the glass substrate 11 by facing the glass substrate 11 conveyed to the vacuum chamber 103 by the conveying mechanism 101d so as to be inclined toward the target 104B during film formation.
  • a heater 111 is provided inside the substrate holder 107.
  • the film forming space 103K is provided with a target 104B that functions as the second-stage film forming mechanism of the two-stage film forming mechanism and supplies the film forming material.
  • the film forming mechanism of the vacuum chamber 103 includes a target 104B, a cathode electrode 105B for holding the target 104B, and a power supply 112B for applying a negative potential sputtering voltage to the cathode electrode 105B.
  • the power supply 112B can apply a high frequency voltage or a DC voltage.
  • the surface of the cathode electrode 105B is provided with a flat plate-shaped target 104B which is a base material of the material film.
  • the cathode electrode 105B is arranged along the dome-shaped ceiling 103a constituting the vacuum chamber 103. That is, the vacuum chamber 103 has a configuration in which the flat plate-shaped target 104B, which is the base material of the material film, is inclined and arranged in the single film forming space 103K.
  • the target 104B corresponding to the formation of the antireflection layer (mask layer) 13 is used.
  • the sputtering particles flying from the target 104B face the rotating (R: rotation direction) surface of the rectangular glass substrate 11.
  • Tilt formed by the vertical direction T11 (dotted arrow) of the target 104B with respect to the sputtering surface 104Bs and the line segment TSB (TS: solid arrow) connecting the center of the sputtering surface 104Bs of the target 104B and the center of the surface to be processed of the glass substrate 11.
  • the angle ⁇ B ( ⁇ ) is different from the vertical direction T11.
  • the line segment TSB (TS) is a so-called distance between the target 104B and the glass substrate 11.
  • a vacuum pump (not shown) is connected to the vacuum exhaust port 114d and the vacuum exhaust port 114e.
  • a magnet plate 109B (109) having double concentric magnets 110B (110) is provided on the back surface of the cathode electrode 105B.
  • a sputtering power supply (power supply) 112B (112) is electrically connected to the cathode electrode 105B.
  • the film forming mechanism of the vacuum chamber 103 includes an inert gas introduction port 114b, a reaction gas introduction port 114a, a vacuum exhaust port 114d, and a vacuum exhaust port 114e.
  • the inert gas introduction port 114b is connected to a gas introduction mechanism that introduces gas into the space near the cathode electrode 105B in the film formation space 103K.
  • the reaction gas introduction port 114a introduces the reaction gas into the space near the glass substrate 11.
  • the vacuum exhaust port 114d is connected to a high vacuum exhaust mechanism such as a turbo molecular pump that reduces the pressure in the film formation space 103K so that a high vacuum can be obtained.
  • the vacuum exhaust port 114d exhausts the gas in the film formation space 103K from a position near the cathode electrode 105B.
  • the vacuum exhaust port 114e exhausts the gas in the film forming space 103K from a position near the glass substrate 11.
  • the above-mentioned two-stage film forming mechanism is controlled so that the composition and film forming conditions necessary for forming the phase shift layer 12 and the antireflection layer 13 on the glass substrate 11 in order can be obtained.
  • the first-stage film forming mechanism in the vacuum chamber 102 corresponds to the film formation of the phase shift layer 12
  • the second-stage film forming mechanism in the vacuum chamber 103 corresponds to the film formation of the antireflection layer 13. It corresponds.
  • the target 104A contains silicon and a predetermined dopant as a composition necessary for forming the phase shift layer 12 on the glass substrate 11. Is formed of.
  • Target 104A contains a dopant in silicon that reduces resistivity.
  • the dopant at target 104A is boron.
  • the dopant concentration in the target 104A is in the range of 1 ⁇ 10 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3 .
  • the specific resistance of the target 104A is 0.001 ⁇ cm to 0.1 ⁇ cm.
  • the resistivity at the target 104A is reduced by the addition of the dopant.
  • the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the phase shift layer 12 can be formed.
  • the dopant can be contained in the phase shift layer 12, and the film characteristics in the mask layer including the phase shift layer 12 can be improved.
  • the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced. As a result, the resist film thickness can be reduced.
  • the target 104A is a silicon single crystal or polycrystal, and is formed by the FZ method, the CZ method, or the cast growth method.
  • the target 104A maintains the uniformity of the dopant content inside the target 104A, maintains the uniformity of the dopant concentration even in the atmosphere where plasma is generated, and maintains the uniformity of the dopant concentration in the film-formed mask layer. can do.
  • the film properties of the mask layer that can be improved specifically mean an increase in the etching rate and the like.
  • the accuracy of the shape of the mask layer at the time of forming the mask pattern is improved, and the mask blanks 10B capable of realizing high-definition patterning can be obtained.
  • the sputtering voltage applied from the power supply 112A to the cathode electrode 105A is set corresponding to the film forming of the phase shift layer 12.
  • the target 104B is formed of, for example, a material containing chromium as a composition necessary for forming the antireflection layer 13 on the phase shift layer 12. Has been done.
  • the gas supplied into the film forming space 103 from the inert gas introduction port 114b and the reaction gas introduction port 114a corresponds to the film formation of the antireflection layer 13.
  • gases include process gases and sputtering gases.
  • the process gas contains nitrogen, oxygen and the like.
  • the sputtering gas contains argon, nitrogen gas and the like.
  • the gas including the process gas and the sputtering gas is set so that a predetermined gas partial pressure can be obtained.
  • He, Ar, Ne, N 2 , NO, NO 2 , O 2 , CO 2 , and CH 4 can be applied as the atmospheric gas in the film formation of the antireflection layer 13.
  • the second-stage vacuum tank 103 exhaust from the vacuum exhaust port 114d connected to the high vacuum exhaust mechanism and exhaust from the vacuum exhaust port 114e are performed according to the film forming conditions. Further, in the second-stage film forming mechanism in the vacuum chamber 103, the sputtering voltage applied from the power supply 112B to the cathode electrode 105B is set corresponding to the film forming of the antireflection layer 13.
  • the glass substrate 11 carried into the transport chamber 101c from the load chamber 101a is carried into the vacuum chamber 102 by the transport mechanism 101d. Then, the first-stage sputtering film formation is performed on the glass substrate 11 in the vacuum chamber 102. After that, the glass substrate 11 is carried from the vacuum tank 102 to the vacuum tank 103 via the transport chamber 101c by the transport mechanism 101d. After that, a second-stage sputtering film formation is performed in the vacuum chamber 103. After that, the glass substrate 11 having been film-formed is carried out by the transport mechanism 101d to the unload chamber 101b via the transport chamber 101c, and further carried out from the unload chamber 101b to the outside of the manufacturing apparatus 100.
  • the sputtering gas is supplied as a supply gas from the inert gas introduction port 114b to the space near the backing plate 105A of the vacuum chamber 102.
  • the reaction gas is supplied as a supply gas from the reaction gas introduction port 114a to the space near the backing plate 105A of the vacuum chamber 102.
  • a sputtering voltage is applied from the power supply 112A to the cathode electrode 105A.
  • a predetermined magnetic field may be formed on the target 104A by the magnetron magnetic circuit of the magnet plate 109A.
  • a phase shift layer 12 having a predetermined composition is formed on the surface of the glass substrate 11.
  • the reactive gas containing nitrogen gas, oxygen-containing gas, etc. and having a predetermined partial pressure is contained in the vacuum chamber 102 from the inert gas introduction port 114b and the reaction gas introduction port 114a. Is supplied to. The operation of the gas introduction mechanism is switched so as to control the partial pressure, and the composition of the phase shift layer 12 is set within the set range.
  • nitrogen gas (N 2 gas), oxygen gas (O 2 gas), nitrogen oxide gas (N 2 O gas, NO gas, NO 2 gas), carbon dioxide gas (CO 2 ) Etc. can be used as the reactive gas.
  • oxygen gas (O 2 gas) oxygen gas
  • carbon dioxide gas (CO 2 ) Etc. sputtering gas
  • helium gas, neon gas, argon gas or the like can also be used as the rare gas.
  • the sputtering gas is supplied as a supply gas from the inert gas introduction port 114b to the space near the cathode electrode 105B of the vacuum chamber 103. Will be done.
  • the reaction gas is supplied as a supply gas from the reaction gas introduction port 114a to the space near the backing plate 105B of the vacuum chamber 103.
  • a sputtering voltage is applied from the power supply 112B to the cathode electrode 105B.
  • a predetermined magnetic field may be formed on the target 104B by the magnetron magnetic circuit of the magnet plate 109B.
  • nitrogen gas, oxygen-containing gas and the like are supplied into the vacuum chamber 103 from the inert gas introduction port 114b and the reaction gas introduction port 114a so that a predetermined partial pressure can be obtained. ..
  • the operation of the gas introduction mechanism is switched so as to control the partial pressure, and the composition of the antireflection layer 13 is set within the set range.
  • examples of the oxygen-containing gas include CO 2 (carbon dioxide), O 2 (oxygen), N 2 O (nitric oxide), NO (nitric oxide), CO (carbon monoxide) and the like.
  • examples of the carbon-containing gas include CO 2 (carbon dioxide), CH 4 (methane), C 2 H 6 (ethane), and CO (carbon monoxide).
  • another film may be laminated on the mask layer.
  • a method of preparing a target corresponding to another film material and forming a film by sputtering based on sputtering conditions such as gas is adopted.
  • the mask blanks 10A without the resist layer 15 may be manufactured by laminating the film on the mask layer by a film forming method other than sputtering.
  • an interback type or an in-line type film forming apparatus can be used instead of the manufacturing apparatus 100 for forming a single-wafer film.
  • the resist layer 15 is formed on the outermost surface of the mask blanks 10A on which the mask layer is formed.
  • the resist layer 15 may be a positive type or a negative type.
  • a liquid resist is used as the resist layer 15.
  • As the resist liquid a chemically amplified resist may be used.
  • the resist layer 15 is applied to the mask blanks 10A by using a known application device such as a spin coater.
  • the coating device can be used in the production of a mask blank with a photoresist film, and a resist solution is applied to the mask blanks 10A.
  • the resist layer 15 is applied to the outermost surface of the mask blanks 10A to form the resist layer 15, and then a bake treatment or the like is applied to complete the resist forming step S13. As shown in FIG. 5, the mask blanks 10B are manufactured. Will be done.
  • the antireflection layer 13, and the resist layer 15 as a mask layer, an adhesion layer, a protective layer, a light-shielding layer, a chemical resistant layer, an etching stopper layer, and the like are provided on a glass substrate. It may be laminated on 11. In this case, it is possible to have a step of laminating these layers on the glass substrate 11 before forming the resist layer 15.
  • FIG. 9 is a flowchart showing a method of manufacturing a photomask using mask blanks in the present embodiment.
  • 10 to 12 are cross-sectional views for explaining a process in a method for manufacturing a photomask using mask blanks in the present embodiment.
  • the phase shift mask (photomask) 10 in the present embodiment forms an exposure pattern on a mask blank 10B having a laminated phase shift layer 12, an antireflection layer 13, and a resist layer 15. Obtained by.
  • the method for manufacturing a photomask using mask blanks in the present embodiment includes a resist pattern forming step S21 and a mask pattern forming step S22.
  • the resist layer 15 is exposed and developed to form the resist pattern 15P on the outer side of the mask layer.
  • the resist pattern 15P functions as an etching mask between the phase shift layer 12 and the antireflection layer 13.
  • the chemically amplified resist layer 15 is selectively exposed to form a latent image.
  • This exposure process can be performed by irradiating with active rays.
  • a laser or an electron beam can be adopted as the active ray of the exposure process.
  • the resist layer 15 on which the latent image is formed by light irradiation is subjected to PEB treatment.
  • This PEB treatment is usually performed at a temperature of about 70 to 150 ° C. for 30 seconds to 150 seconds.
  • the resist layer 15 heated after exposure is brought into contact with a developer for lithography to reveal a resist pattern 15P corresponding to a latent image.
  • the shape of the resist pattern 15P is appropriately determined according to the etching pattern of the phase shift layer 12 and the antireflection layer 13. As an example, in the phase shift region, a shape having an opening width corresponding to the opening width of the phase shift pattern to be formed is set.
  • an antireflection pattern forming step is performed.
  • dry etching is performed via the resist pattern 15P, and the antireflection layer 13 is etched to form the antireflection pattern 13P.
  • chlorine-based dry etching containing oxygen can be used as the etching in the antireflection pattern forming step.
  • phase shift pattern forming step is performed.
  • the phase shift layer 12 is dry-etched via the patterned antireflection pattern 13P and the resist pattern 15P. As a result, as shown in FIG. 12, the phase shift pattern 12P is formed.
  • Fluorine-based dry etching can be used as the etching in the phase shift pattern forming step.
  • the target 104A used when forming the phase shift layer 12 contains a dopant that reduces the specific resistance in silicon.
  • the specific resistance at the target 104A can be set within the above range.
  • the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the phase shift layer 12 can be formed.
  • the film forming characteristics can be improved.
  • the dopant can be contained in the phase shift layer 12, and the film characteristics in the mask layer including the phase shift layer 12 can be improved.
  • the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced. Further, since the etching rate ratio of the mask layer to the glass substrate becomes large, the etching process can be easily controlled based on the determination of the endpoint for determining the end of etching. Therefore, the depth at which the glass substrate 11 is excessively etched can be minimized.
  • the target 104A is a silicon single crystal or a silicon polycrystal, and is formed by an FZ method, a CZ method, or a casting method. It is possible to maintain the uniformity of the dopant content in the target 104A, maintain the uniformity of the dopant concentration even in the atmosphere where plasma is generated, and maintain the uniformity of the dopant concentration in the film-formed mask layer.
  • the reproducibility of the film characteristics is improved as compared with the case where the mask layer is formed by RF sputtering. be able to.
  • the phase shift layer 12 represented by SiN or SiON contains, for example, B (boron).
  • the boron concentration is set to be in the range of 1 ⁇ 10 18 atm / cm 3 to 1 ⁇ 10 20 atm / cm 3.
  • the etching rate in dry etching can be improved by 1.05 to 1.5 times with respect to the etching rate of the layer formed by using the non-doped target.
  • the shift mask 10 can be manufactured.
  • the etching rate can be improved even when phosphorus or arsenic is used as the dopant.
  • Reactive sputtering was performed using a target made of silicon doped with a dopant to form a mask layer on a transparent substrate. Further, a DC voltage was applied as a sputtering voltage supplied from the power source to the target to perform DC sputtering film formation. At this time, the film forming conditions and the film thickness were optimized as follows.
  • Example 2 Similar to Experimental Example 1, reactive sputtering was performed using a target made of non-doped silicon not doped with boron or the like, and a mask layer was formed on a transparent substrate. At this time, the film forming conditions and the film thickness were optimized as follows.
  • phase difference reproducibility (deg) when the film was continuously formed was measured.
  • the phase difference reproducibility (deg) means the difference between the maximum value and the minimum value of the monitor value when the average phase difference of each substrate is used as the monitor value.
  • the phase difference reproducibility (deg) is an index showing the stability of the film thickness and the optical constant. The results are shown in Table 1.
  • Example 4 The mask layer obtained in Experimental Example 1 and the quartz substrate on which the mask layer was formed were dry-etched, and their respective etching rates (Etching Rate) were evaluated. In addition, the selection ratio (selectivity) at that time was measured. The result is shown in FIG.
  • Plasma source ICP (Inductively Coupled Plasma) Antenna power: 1.5kW Bias power: 0-200W Pressure of dry etching atmosphere: 1.36 Pa Supply gas: CF 4 : 150 sccm, O 2 : 8 sccm
  • Example 5 Similar to Experimental Example 4, the mask layer obtained in Experimental Example 3 and the quartz substrate on which the mask layer was formed were dry-etched, and their respective etching rates (Etching Rate) were evaluated. In addition, the selection ratio (selectivity) at that time was measured. The result is shown in FIG.
  • Example 6 A light-shielding layer containing Cr as a main component and an antireflection layer were laminated on the mask layer obtained in Experimental Example 1, and a resist layer was further formed on the antireflection layer. Next, these laminates were dry-etched under the same conditions as in Experimental Examples 4 and 5. After that, the cross-sectional shape of the laminated body was observed. Here, the bias power was set to 100 W.
  • the SEM image in Experimental Example 6 is shown in FIG. In FIG. 14, the surface of the quartz substrate in the vicinity of the mask layer on which the pattern is formed is shown by a solid line.
  • Example 7 Similar to Experimental Example 6, a light-shielding layer containing Cr as a main component and an antireflection layer were laminated on the mask layer obtained in Experimental Example 3, and a resist layer was further formed on the antireflection layer. Next, these laminates were dry-etched under the same conditions as in Experimental Examples 4 and 5. After that, the cross-sectional shape of the laminated body was observed. Here, the bias power was set to 100 W.
  • the SEM image in Experimental Example 7 is shown in FIG. In FIG. 15, the surface of the quartz substrate in the vicinity of the mask layer on which the pattern is formed is shown by a solid line.
  • the DC input power was set to 0.1 to 0.2 to 4.0 kW, and the film forming pressure was set to 0.05 to 0.6 to 0.7 Pa.
  • the sputtering may be carried out under the conditions. This makes it possible to stabilize the discharge.
  • the plasma forming power is set to 0.2 to 1.0 kW
  • the Bias power is set to 10 to 80 W
  • CF 4 is set as the dry etching conditions in the mask pattern forming step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

The purpose of the present invention is to solve problems of accuracy deterioration in the shape of a formed pattern which is caused by an increase in pattern thickness resulting from increase in thickness of an oxide layer formed on a surface layer of a mask layer including molybdenum when a laser is applied thereonto in an exposure step, and occurrence of a case where a mask layer of desired film characteristics cannot be obtained if a sputter target of high specific resistance is used, and to further increase the etching speed of the mask layer in a pattern forming step. A mask blank manufacturing method according to the present invention involves forming a mask layer containing silicon on a transparent substrate through sputtering using a target that includes a dopant for reducing specific resistance (S12).

Description

マスクブランクスの製造方法、マスクブランクス、フォトマスクの製造方法、及びフォトマスクManufacturing method of mask blanks, mask blanks, manufacturing method of photomask, and photomask
 本発明は、マスクブランクスの製造方法、マスクブランクス、フォトマスクの製造方法、及びフォトマスクに関する。特に、本発明は、シリコンを含むマスク層を備えたフォトマスクブランクスに用いて好適な技術に関する。
 本願は、2020年6月30日に日本に出願された特願2020-113378号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a mask blank, a mask blank, a method for manufacturing a photomask, and a photomask. In particular, the present invention relates to techniques suitable for use in photomask blanks with a mask layer containing silicon.
This application claims priority based on Japanese Patent Application No. 2020-113378 filed in Japan on June 30, 2020, the contents of which are incorporated herein by reference.
 FPD(flat panel display,フラットパネルディスプレイ)や、半導体デバイス製造等におけるフォトリソグラフィ工程で用いられるフォトマスクを形成するため、フォトマスクブランクス(マスクブランクス)が利用されている。マスクブランクスは、ガラス基板等の透明基板の一方の主面に、マスク層が積層された構造を有する。 Photomask blanks (mask blanks) are used to form FPDs (flat panel displays) and photomasks used in photolithography processes in semiconductor device manufacturing and the like. The mask blanks have a structure in which a mask layer is laminated on one main surface of a transparent substrate such as a glass substrate.
 マスクブランクスの製造では、透明基板上に、遮光層等、所定の光学特性を有するマスク層である膜を形成する。このマスク層は、単層または複数が積層されていてもよい。マスク層上にレジストパターンを形成し、このレジストパターンをマスクとして用い、マスク層を選択的にエッチング除去して、所定のマスクパターンを形成することでフォトマスクが製造される。 In the manufacture of mask blanks, a film that is a mask layer having predetermined optical characteristics, such as a light-shielding layer, is formed on a transparent substrate. The mask layer may be a single layer or a plurality of layers. A photomask is manufactured by forming a resist pattern on a mask layer, using this resist pattern as a mask, and selectively etching and removing the mask layer to form a predetermined mask pattern.
 マスクブランクスに形成されるマスク層としては、シリコンを含有する膜や、シリコンおよびモリブデンを含む膜からなるマスク層などが知られている(特許文献1~3)。
 また、近年、高精細なパターニングが可能なフォトリソグラフィ工程に用いられるマスクブランクスが求められている。
As the mask layer formed on the mask blanks, a film containing silicon, a mask layer composed of a film containing silicon and molybdenum, and the like are known (Patent Documents 1 to 3).
Further, in recent years, there has been a demand for mask blanks used in a photolithography process capable of high-definition patterning.
日本国特開2015-111246号公報Japanese Patent Application Laid-Open No. 2015-11246 日本国特許第6418035号公報Japanese Patent No. 6418035 Gazette 日本国特許第6579219号公報Japanese Patent No. 6579219
 しかし、マスク層がモリブデンを含んでいると、露光工程においてレーザーを当てたときに、表層に形成される酸化層膜厚が厚くなりパターンが太る、つまり、形成されたパターンの形状の正確性が劣化するという問題があった。
 さらに、高精細なパターニングを実現するために、パターン形成工程において、マスク層のエッチング速度をより大きくしたいという要求があった。
However, if the mask layer contains molybdenum, the film thickness of the oxide layer formed on the surface layer becomes thicker and the pattern becomes thicker when the laser is applied in the exposure process, that is, the accuracy of the shape of the formed pattern becomes higher. There was a problem of deterioration.
Further, in order to realize high-definition patterning, there is a demand to increase the etching rate of the mask layer in the pattern forming step.
 また、マスク層を形成する際にスパッタリングを用いた場合、成膜材料であるシリコンを含むターゲットを用いることになるが、比抵抗が高いためにプラズマ生成に支障を来し、所望の膜特性のマスク層が得られない場合があるという問題があった。
 さらに、マスク層を形成する際に高抵抗のターゲットを使用してRFスパッタリングを用いた場合、アノードの減少に起因してプラズマの発生状態が変動し、所望の膜特性のマスク層が得られないという問題があった。
In addition, when sputtering is used to form the mask layer, a target containing silicon, which is a film forming material, is used, but the high resistivity hinders plasma generation and has desired film characteristics. There was a problem that the mask layer may not be obtained.
Furthermore, when RF sputtering is used with a high resistance target when forming the mask layer, the plasma generation state fluctuates due to the decrease in the anode, and the mask layer having the desired film characteristics cannot be obtained. There was a problem.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成する。
 1.高精細なパターニングの可能なフォトリソグラフィ工程に用いられるマスクブランクスを提供可能とすること。
 2.正確なパターニングが可能なマスクブランクスを提供可能とすること。
 3.マスク層におけるエッチング速度の増大を図ること。
 4.プラズマの安定化を可能とし、所望の膜特性を有するマスク層の形成を可能とすること。
The present invention has been made in view of the above circumstances, and achieves the following objects.
1. 1. To be able to provide mask blanks used in a photolithography process capable of high-definition patterning.
2. 2. To be able to provide mask blanks capable of accurate patterning.
3. 3. To increase the etching rate in the mask layer.
4. To enable the stabilization of plasma and the formation of a mask layer having desired film characteristics.
 本発明の一態様に係るマスクブランクスの製造方法は、シリコンを含有するマスク層を透明基板に積層したマスクブランクスの製造方法であって、比抵抗を減少させるドーパントを含むターゲットを用いて前記マスク層をスパッタリングにより形成する。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットの比抵抗が0.001Ωcm~0.1Ωcmであってもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ドーパントが、ボロン、リン、及びヒ素からなる群より選ばれる1種類以上であってもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットは、前記ドーパントがボロンであり、ドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされてもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットが、シリコン単結晶もしくはシリコン多結晶であってもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングに用いられる雰囲気ガスが窒素を含んでもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングに用いられる雰囲気ガスが酸素を含んでもよい。
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングがDCスパッタリングとされてもよい。
 本発明の一態様に係るマスクブランクスは、上述したマスクブランクスの製造方法によって製造されたマスクブランクスであって、前記マスク層が前記ドーパントとしてボロンを含み、前記マスク層のドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる。
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層のドライエッチングにおけるエッチングレートが、ノンドープのターゲットを用いて成膜した層のエッチングレートに対して1.05~1.5倍であってもよい。
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層が窒素または酸素を含んでもよい。
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層における窒素または酸素の組成比が、膜厚方向において変化してもよい。
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層が位相シフト層を含んでもよい。
 本発明の一態様に係るフォトマスクの製造方法は、上述したマスクブランクスからフォトマスクを製造する方法であって、前記マスク層の表面にレジストパターンを形成し(レジストパターン形成工程)、前記レジストパターンをマスクとして用いて前記マスク層をパターニングすることでマスクパターンを形成し(マスクパターン形成工程)、前記マスクパターンを形成する際には(マスクパターン形成工程においては)、前記マスク層をドライエッチングする。
 本発明の一態様に係るフォトマスクは、上述したフォトマスクの製造方法によって製造されている。
The method for manufacturing a mask blank according to one aspect of the present invention is a method for manufacturing a mask blank in which a mask layer containing silicon is laminated on a transparent substrate, and the mask layer is made by using a target containing a dopant that reduces resistivity. Is formed by sputtering.
In the method for producing mask blanks according to one aspect of the present invention, the specific resistance of the target may be 0.001 Ωcm to 0.1 Ωcm.
In the method for producing mask blanks according to one aspect of the present invention, the dopant may be one or more selected from the group consisting of boron, phosphorus, and arsenic.
In the method for producing mask blanks according to one aspect of the present invention, in the target, the dopant is boron and the dopant concentration is within the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3. May be.
In the method for producing mask blanks according to one aspect of the present invention, the target may be a silicon single crystal or a silicon polycrystal.
In the method for producing mask blanks according to one aspect of the present invention, the atmospheric gas used for the sputtering may contain nitrogen.
In the method for producing mask blanks according to one aspect of the present invention, the atmospheric gas used for the sputtering may contain oxygen.
In the method for producing mask blanks according to one aspect of the present invention, the sputtering may be DC sputtering.
The mask blanks according to one aspect of the present invention are mask blanks manufactured by the above-mentioned method for producing mask blanks, in which the mask layer contains boron as the dopant and the dopant concentration of the mask layer is 1 × 10. It is within the range of 18 atm / cm 3 to 1 × 10 20 atm / cm 3.
In the mask blanks according to one aspect of the present invention, the etching rate of the mask layer in dry etching is 1.05 to 1.5 times the etching rate of the layer formed by using a non-doped target. It is also good.
In the mask blanks according to one aspect of the present invention, the mask layer may contain nitrogen or oxygen.
In the mask blanks according to one aspect of the present invention, the composition ratio of nitrogen or oxygen in the mask layer may change in the film thickness direction.
In the mask blanks according to one aspect of the present invention, the mask layer may include a phase shift layer.
The method for manufacturing a photomask according to one aspect of the present invention is a method for manufacturing a photomask from the above-mentioned mask blanks, in which a resist pattern is formed on the surface of the mask layer (resist pattern forming step), and the resist pattern is formed. Is used as a mask to form a mask pattern by patterning the mask layer (mask pattern forming step), and when forming the mask pattern (in the mask pattern forming step), the mask layer is dry-etched. ..
The photomask according to one aspect of the present invention is manufactured by the above-mentioned photomask manufacturing method.
 本発明の一態様に係るマスクブランクスの製造方法は、シリコンを含有するマスク層を透明基板に積層したマスクブランクスの製造方法であって、比抵抗を減少させるドーパントを含むターゲットを用いて前記マスク層をスパッタリングにより形成する。
 これにより、マスク層をスパッタリングにより形成する際に、ターゲットにおける比抵抗を減少することで、プラズマを形成するための電力が安定化し、成膜状態でのプラズマが安定化し、マスク層を形成することが可能となる。この結果、スパッタリング時にアーク(Arc)のような異常放電現象の発生を防止し、薄膜の特性及び欠陥を発生させる要因を削減し、成膜特性を向上することができる。さらに、マスク層内にドーパントを含有させることができ、マスク層における膜特性を向上することができる。
 ここで、向上可能なマスク層の膜特性とは、具体的に、エッチングレートの増大に伴って基板に対するマスク層の選択比が上昇し、発光モニターによるエッチングの終了を判断するためのエンドポイントの判定が容易になる。このため、透明基板が過剰にエッチングされてしまう深さを最小限に抑制できること等を意味する。このように膜特性を向上できることにより、パターン形成時におけるマスク層の形状の正確性が向上し、高精細なパターニングを実現できるマスクブランクスを提供することができる。
The method for manufacturing a mask blank according to one aspect of the present invention is a method for manufacturing a mask blank in which a mask layer containing silicon is laminated on a transparent substrate, and the mask layer is made by using a target containing a dopant that reduces resistivity. Is formed by sputtering.
As a result, when the mask layer is formed by sputtering, the specific resistance at the target is reduced, so that the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the mask layer is formed. Is possible. As a result, it is possible to prevent the occurrence of an abnormal discharge phenomenon such as an arc during sputtering, reduce the characteristics of the thin film and the factors that cause defects, and improve the film forming characteristics. Further, the dopant can be contained in the mask layer, and the film characteristics in the mask layer can be improved.
Here, the film characteristics of the mask layer that can be improved are specifically the endpoints for determining the end of etching by the light emission monitor as the selection ratio of the mask layer to the substrate increases as the etching rate increases. Judgment becomes easy. Therefore, it means that the depth at which the transparent substrate is excessively etched can be minimized. By improving the film characteristics in this way, it is possible to provide mask blanks capable of improving the accuracy of the shape of the mask layer at the time of pattern formation and realizing high-definition patterning.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットの比抵抗が0.001Ωcm~0.1Ωcmであってもよい。
 これにより、プラズマを形成するための電力が安定化し、成膜状態でのプラズマが安定化し、マスク層を形成することが可能となる。この結果、成膜特性を向上することができる。
In the method for producing mask blanks according to one aspect of the present invention, the specific resistance of the target may be 0.001 Ωcm to 0.1 Ωcm.
As a result, the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the mask layer can be formed. As a result, the film forming characteristics can be improved.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ドーパントが、ボロン、リン、及びヒ素からなる群より選ばれる1種類以上であってもよい。
 これにより、ターゲットにおいて、上述した比抵抗の範囲を実現し、プラズマを形成する電力を安定化して、成膜状態でのプラズマが安定し、マスク層を形成することが可能となる。この結果、スパッタリング時にアーク(Arc)のような異常放電現象の発生を防止し、薄膜の特性及び欠陥を発生させる要因を削減し、成膜特性を向上することができる。
 ここで、ドーパントとしてボロンを用いた場合にはp型の半導体を形成することが可能となり、ドーパントとしてリンあるいはヒ素を用いた場合には、n型の半導体を形成することが可能となり、ターゲットの比抵抗を下げることが可能である。
In the method for producing mask blanks according to one aspect of the present invention, the dopant may be one or more selected from the group consisting of boron, phosphorus, and arsenic.
This makes it possible to realize the above-mentioned resistivity range in the target, stabilize the power for forming the plasma, stabilize the plasma in the film-forming state, and form the mask layer. As a result, it is possible to prevent the occurrence of an abnormal discharge phenomenon such as an arc during sputtering, reduce the characteristics of the thin film and the factors that cause defects, and improve the film forming characteristics.
Here, when boron is used as the dopant, it is possible to form a p-type semiconductor, and when phosphorus or arsenic is used as the dopant, it is possible to form an n-type semiconductor, which is a target. It is possible to reduce the specific resistance.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットは、前記ドーパントがボロンであり、ドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされてもよい。
 これにより、上述したターゲットの比抵抗の範囲を実現し、プラズマを形成する電力を安定化して、成膜状態でのプラズマが安定し、マスク層を形成することが可能となる。この結果、スパッタリング時にアーク(Arc)のような異常放電現象の発生を防止し、薄膜の特性及び欠陥を発生させる要因を削減し、成膜特性を向上することができる。特に、ターゲットの比抵抗を小さくすることで、放電インピーダンスを低減することが可能であり、これにより、プラズマの安定化が可能となる。
 ここで、プラズマの安定化とは、具体的に、成膜中のカソード電流値が変動した場合および同じ条件で複数回成膜を行った場合のカソード電流値の再現性が高いことを意味し、つまり、時間制御で成膜した場合の膜厚再現性が高いことを意味する。
 さらに、成膜したマスク層における膜厚均一性と、成膜したマスク層の表面における異なる複数の位置での膜特性の均一化を図り、ウェーハに露光した際のCD分布を低減することができる。
 また、成膜したマスク層におけるドライエッチング速度の向上を実現し、これにより断面形状を改善することができる。
In the method for producing mask blanks according to one aspect of the present invention, in the target, the dopant is boron and the dopant concentration is within the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3. May be.
As a result, the range of the specific resistance of the target described above is realized, the power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the mask layer can be formed. As a result, it is possible to prevent the occurrence of an abnormal discharge phenomenon such as an arc during sputtering, reduce the characteristics of the thin film and the factors that cause defects, and improve the film forming characteristics. In particular, by reducing the specific resistance of the target, it is possible to reduce the discharge impedance, which makes it possible to stabilize the plasma.
Here, plasma stabilization specifically means that the reproducibility of the cathode current value is high when the cathode current value during film formation fluctuates and when film formation is performed multiple times under the same conditions. That is, it means that the film thickness reproducibility is high when the film is formed by time control.
Further, it is possible to make the film film uniform in the film-formed mask layer and the film characteristics at a plurality of different positions on the surface of the film-formed mask layer, and reduce the CD distribution when the wafer is exposed. ..
Further, it is possible to improve the dry etching rate in the formed mask layer, thereby improving the cross-sectional shape.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記ターゲットが、シリコン単結晶もしくはシリコン多結晶であってもよい。
 これにより、ターゲット内におけるドーパントの含有状態の均一性を保ち、プラズマが発生した雰囲気においてもドーパント濃度の均一性を維持し、成膜されたマスク層内におけるドーパント濃度の均一性を維持することができる。
 ターゲットは、FZ法、CZ法またはキャスト成長法により形成することができる。
In the method for producing mask blanks according to one aspect of the present invention, the target may be a silicon single crystal or a silicon polycrystal.
As a result, the uniformity of the dopant content in the target can be maintained, the uniformity of the dopant concentration can be maintained even in the atmosphere where plasma is generated, and the uniformity of the dopant concentration in the film-formed mask layer can be maintained. can.
The target can be formed by the FZ method, the CZ method or the cast growth method.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングに用いられる雰囲気ガスが窒素を含んでもよい。
 これにより、マスク層として、SiN、SiONなどの窒化されたシリコン膜を成膜することができる。あるいは、マスク層の一部として、シリコン膜を成膜することが可能となる。
In the method for producing mask blanks according to one aspect of the present invention, the atmospheric gas used for the sputtering may contain nitrogen.
As a result, a nitrided silicon film such as SiN or SiON can be formed as a mask layer. Alternatively, a silicon film can be formed as a part of the mask layer.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングに用いられる雰囲気ガスが酸素を含んでもよい。
 これにより、マスク層として、SiON、SiOなどの酸化されたシリコン膜を成膜することができる。あるいは、マスク層の一部として、シリコン膜を成膜することが可能となる。
In the method for producing mask blanks according to one aspect of the present invention, the atmospheric gas used for the sputtering may contain oxygen.
As a result, an oxidized silicon film such as SiON or SiO can be formed as a mask layer. Alternatively, a silicon film can be formed as a part of the mask layer.
 本発明の一態様に係るマスクブランクスの製造方法においては、前記スパッタリングがDCスパッタリングとされてもよい。
 これにより、RFスパッタリングによってマスク層を形成した場合に比べて、膜厚、膜特性、特性分布の再現性を高めることができる。
In the method for producing mask blanks according to one aspect of the present invention, the sputtering may be DC sputtering.
As a result, the reproducibility of the film thickness, the film characteristics, and the characteristic distribution can be improved as compared with the case where the mask layer is formed by RF sputtering.
 本発明の一態様に係るマスクブランクスは、上述したマスクブランクスの製造方法によって製造されたマスクブランクスであって、前記マスク層が前記ドーパントとしてボロンを含み、前記マスク層のドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる。
 これにより、マスク層に対するエッチングレートを増大させて、マスク層に対するパターン形成時におけるエッチング時間を減少させることができる。これにより、透明基板に対するマスク層の選択比が上昇し、発光モニターによるエッチングの終了を判断するためのエンドポイントの判定が容易になる。このため、透明基板が過剰にエッチングされてしまう深さを最小限に抑制できる。さらに、マスク層に対するサイドエッチングを抑制することができるため、断面形状をさらに改善することができる。
The mask blanks according to one aspect of the present invention are mask blanks manufactured by the above-mentioned method for producing mask blanks, in which the mask layer contains boron as the dopant and the dopant concentration of the mask layer is 1 × 10. It is within the range of 18 atm / cm 3 to 1 × 10 20 atm / cm 3.
As a result, the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced. As a result, the selection ratio of the mask layer with respect to the transparent substrate is increased, and it becomes easy to determine the endpoint for determining the end of etching by the light emission monitor. Therefore, the depth at which the transparent substrate is excessively etched can be minimized. Further, since side etching on the mask layer can be suppressed, the cross-sectional shape can be further improved.
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層のドライエッチングにおけるエッチングレートが、ノンドープのターゲットを用いて成膜した層のエッチングレートに対して1.05~1.5倍であってもよい。
 これにより、ドーパントを含まないシリコンターゲットを用いて成膜したマスク層に比べて、速いエッチング速度により、エッチング時間を短縮して、パターニングにおける形状の正確性を向上し、より一層の高精細なパターニングを実現できる。
In the mask blanks according to one aspect of the present invention, the etching rate of the mask layer in dry etching is 1.05 to 1.5 times the etching rate of the layer formed by using a non-doped target. It is also good.
As a result, the etching time is shortened due to the faster etching rate, the shape accuracy in patterning is improved, and even higher-definition patterning is performed, as compared with the mask layer formed by using a silicon target containing no dopant. Can be realized.
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層が窒素または酸素を含んでもよい。
 これにより、マスク層として、SiN、SiON、SiOなどの窒化あるいは酸化されたシリコン膜を成膜することができる。あるいは、マスク層の一部として、シリコン膜を成膜することができる。この結果、透過率が制御され、反射率が低いなど、所定の光学特性を有するマスクブランクスを得ることが可能となる。
In the mask blanks according to one aspect of the present invention, the mask layer may contain nitrogen or oxygen.
As a result, a nitrided or oxidized silicon film such as SiN, SiON, and SiO can be formed as a mask layer. Alternatively, a silicon film can be formed as part of the mask layer. As a result, it is possible to obtain mask blanks having predetermined optical characteristics such as controlled transmittance and low reflectance.
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層における窒素または酸素の組成比が、膜厚方向において変化してもよい。
 これにより、透過光の波長に対する透過率および反射率の変動が少なく、層界面におけるエッチング速度変動が緩やかになる。このため断面形状が良好なマスクブランクスとすることができる。
In the mask blanks according to one aspect of the present invention, the composition ratio of nitrogen or oxygen in the mask layer may change in the film thickness direction.
As a result, the fluctuations in the transmittance and the reflectance with respect to the wavelength of the transmitted light are small, and the fluctuations in the etching rate at the layer interface become gentle. Therefore, mask blanks having a good cross-sectional shape can be obtained.
 本発明の一態様に係るマスクブランクスにおいては、前記マスク層が位相シフト層を含んでもよい。
 これにより、高精細なパターニングが可能な位相シフトマスクを製造可能であるマスクブランクスとすることができる。
In the mask blanks according to one aspect of the present invention, the mask layer may include a phase shift layer.
This makes it possible to obtain mask blanks capable of manufacturing a phase shift mask capable of high-definition patterning.
 本発明の一態様に係るフォトマスクの製造方法は、上述したマスクブランクスからフォトマスクを製造する方法であって、前記マスク層の表面にレジストパターンを形成し(レジストパターン形成工程)、前記レジストパターンをマスクとして用いて前記マスク層をパターニングすることでマスクパターンを形成し(マスクパターン形成工程)、前記マスクパターンを形成する際には(マスクパターン形成工程においては)、前記マスク層をドライエッチングする。
 これにより、エッチングレートの増大に伴い透明基板に対するマスク層の選択比が上昇し、エッチングの終了を判断するための発光モニターによるエンドポイントの判定が容易になる。このため、透明基板が過剰にエッチングされてしまう深さを最小限に抑制できる。また、レジスト層を薄くし、レジストパターン形成工程に必要な作業時間を短縮することができる。マスク層に対するエッチングレートを増大させて、マスク層に対するパターン形成時におけるエッチング時間を減少させることができる。レジスト層に対するダメージを抑制し、エッチングにおける形状の正確性を維持することができる。高精細なパターニングに適用することが可能なフォトマスクを製造することができる。
The method for manufacturing a photomask according to one aspect of the present invention is a method for manufacturing a photomask from the above-mentioned mask blanks, in which a resist pattern is formed on the surface of the mask layer (resist pattern forming step), and the resist pattern is formed. Is used as a mask to form a mask pattern by patterning the mask layer (mask pattern forming step), and when forming the mask pattern (in the mask pattern forming step), the mask layer is dry-etched. ..
As a result, the selection ratio of the mask layer to the transparent substrate increases as the etching rate increases, and it becomes easy to determine the endpoint by the light emission monitor for determining the end of etching. Therefore, the depth at which the transparent substrate is excessively etched can be minimized. Further, the resist layer can be made thin, and the working time required for the resist pattern forming step can be shortened. The etching rate for the mask layer can be increased to reduce the etching time during pattern formation for the mask layer. Damage to the resist layer can be suppressed and the accuracy of the shape in etching can be maintained. It is possible to manufacture a photomask that can be applied to high-definition patterning.
 本発明の一態様に係るフォトマスクは、上述したフォトマスクの製造方法によって製造されている。これにより、高精細パターニングを実現できる。 The photomask according to one aspect of the present invention is manufactured by the above-mentioned photomask manufacturing method. This makes it possible to realize high-definition patterning.
 本発明によれば、高精細なパターニングに適用が可能な位相シフトマスクを製造できるマスクブランクスを提供することができるという効果を奏する。 According to the present invention, it is possible to provide mask blanks capable of producing a phase shift mask applicable to high-definition patterning.
本発明の実施形態に係るマスクブランクスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における成膜装置を示す模式図である。It is a schematic diagram which shows the film-forming apparatus in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における成膜装置の真空槽を示す模式図である。It is a schematic diagram which shows the vacuum chamber of the film forming apparatus in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスの製造方法における成膜装置の真空槽を示す模式図である。It is a schematic diagram which shows the vacuum chamber of the film forming apparatus in the manufacturing method of the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスを用いたフォトマスクの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the photomask using the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスを用いたフォトマスクの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the photomask using the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスを用いたフォトマスクの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the photomask using the mask blanks which concerns on embodiment of this invention. 本発明の実施形態に係るマスクブランクスを用いたフォトマスクの製造方法における工程を説明するための断面図である。It is sectional drawing for demonstrating the process in the manufacturing method of the photomask using the mask blanks which concerns on embodiment of this invention. 本発明の実施例に係るマスクブランクスを示すグラフである。It is a graph which shows the mask blanks which concerns on embodiment of this invention. 本発明の実施例に係るマスクブランクスを示す画像である。It is an image which shows the mask blanks which concerns on embodiment of this invention. 本発明の実施例に係るマスクブランクスを示す画像である。It is an image which shows the mask blanks which concerns on embodiment of this invention.
 以下、本発明の実施形態に係るマスクブランクス、位相シフトマスク(フォトマスク)、およびその製造方法の実施形態を、図面に基づいて説明する。
 図1は、本実施形態におけるマスクブランクスの製造方法を示すフローチャートである。図2~図5は、本実施形態におけるマスクブランクスの製造方法における工程を説明するための断面図である。図1~図5において、符号10A、10Bは、マスクブランクスである。
Hereinafter, embodiments of a mask blank, a phase shift mask (photomask), and a method for manufacturing the same according to the embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a method for manufacturing mask blanks in the present embodiment. 2 to 5 are cross-sectional views for explaining a process in the method for manufacturing a mask blank in the present embodiment. In FIGS. 1 to 5, reference numerals 10A and 10B are mask blanks.
 本実施形態に係るマスクブランクス10Bは、波長200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光に用いられる。
 あるいは、本実施形態に係るマスクブランクス10Bは、露光光の波長が248nm~436nm程度の範囲内で使用される位相シフトマスク(フォトマスク)に用いられる。
 本実施形態に係るマスクブランクス10Bは、図5に示すように、ガラス基板(透明基板)11と、ガラス基板11上に形成されて所定の光学特性を有するマスク層(位相シフト層12,反射防止層13)と、マスク層上に形成されたレジスト層15と、で構成される。
The mask blanks 10B according to the present embodiment are used for light having a wavelength of 200 nm or less, particularly exposure light of ArF excimer laser light (wavelength 193 nm) used in photolithography using a phase shift mask.
Alternatively, the mask blanks 10B according to the present embodiment are used as a phase shift mask (photomask) used in the range where the wavelength of the exposure light is in the range of about 248 nm to 436 nm.
As shown in FIG. 5, the mask blanks 10B according to the present embodiment are a glass substrate (transparent substrate) 11 and a mask layer (phase shift layer 12, antireflection) formed on the glass substrate 11 and having predetermined optical characteristics. It is composed of a layer 13) and a resist layer 15 formed on the mask layer.
 マスク層は、ガラス基板11上に形成された位相シフト層12と、位相シフト層12上に形成された反射防止層13と、を有する。つまり、反射防止層13は、位相シフト層12よりもガラス基板11から離間する位置に設けられる。
 位相シフト層12と反射防止層13とは、フォトマスクとして必要な光学特性として、屈折率、消衰係数、透過率、反射率、膜厚、等が所定の値に設定されており、位相シフト膜であるマスク層を構成している。
The mask layer has a phase shift layer 12 formed on the glass substrate 11 and an antireflection layer 13 formed on the phase shift layer 12. That is, the antireflection layer 13 is provided at a position farther from the glass substrate 11 than the phase shift layer 12.
The phase shift layer 12 and the antireflection layer 13 have a refractive index, an extinction coefficient, a transmittance, a reflectance, a film thickness, etc. set to predetermined values as optical characteristics required for a photomask, and the phase shift is performed. It constitutes a mask layer that is a film.
 本実施形態に係るマスクブランクス10Bの構成として、位相シフト層12と反射防止層13との積層されたマスク層に対して、図5に示すように、予めレジスト層(フォトレジスト層)15が成膜された構成を採用することもできる。なお、本実施形態に係るマスクブランクス10Bとして、反射防止層13を積層しない構成を採用することができる。 As a configuration of the mask blanks 10B according to the present embodiment, a resist layer (photoresist layer) 15 is formed in advance on the mask layer in which the phase shift layer 12 and the antireflection layer 13 are laminated, as shown in FIG. A filmed configuration can also be adopted. As the mask blanks 10B according to the present embodiment, a configuration in which the antireflection layer 13 is not laminated can be adopted.
 なお、本実施形態に係るマスクブランクス10Bにおいては、位相シフト層12と反射防止層13とからなるマスク層以外に、密着層、耐薬層、保護層、遮光層、エッチングストッパー層、等が積層された構成が採用されてもよい。遮光層の材料としては、種々の材料が適用可能であるが、エッチング加工用の補助膜としても利用可能なクロム系材料による膜を用いることが好ましい。
 さらに、上記の積層膜の上に、図5に示すように、レジスト層15が形成されてもよい。
In the mask blanks 10B according to the present embodiment, in addition to the mask layer composed of the phase shift layer 12 and the antireflection layer 13, an adhesion layer, a chemical resistant layer, a protective layer, a light shielding layer, an etching stopper layer, and the like are laminated. The configuration may be adopted. As the material of the light-shielding layer, various materials can be applied, but it is preferable to use a film made of a chromium-based material that can also be used as an auxiliary film for etching processing.
Further, as shown in FIG. 5, a resist layer 15 may be formed on the above-mentioned laminated film.
 ガラス基板11としては、透明性及び光学的等方性に優れた材料が用いられ、例えば、石英ガラス基板を用いることができる。ガラス基板11の大きさは、特に制限されず、当該マスクを用いて露光する基板(例えば、半導体、LCD(液晶ディスプレイ)、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイなどのFPD用基板等)に応じて適宜選定される。 As the glass substrate 11, a material having excellent transparency and optical isotropic properties is used, and for example, a quartz glass substrate can be used. The size of the glass substrate 11 is not particularly limited, and can be used as a substrate to be exposed using the mask (for example, a semiconductor, an LCD (liquid crystal display), a plasma display, an FPD substrate such as an organic EL (electroluminescence) display, etc.). It will be selected as appropriate.
 本実施形態では、ガラス基板11としては、一辺の長さが100mm程度である矩形基板や一辺の長さが250mm以上である矩形基板を適用可能である。さらに、厚み1mm以下の基板、厚み数mmの基板や、厚み10mm以上の基板も用いることができる。 In the present embodiment, as the glass substrate 11, a rectangular substrate having a side length of about 100 mm or a rectangular substrate having a side length of 250 mm or more can be applied. Further, a substrate having a thickness of 1 mm or less, a substrate having a thickness of several mm, and a substrate having a thickness of 10 mm or more can also be used.
 また、ガラス基板11の表面を研磨することで、ガラス基板11のフラットネスを低減するようにしてもよい。ガラス基板11のフラットネスは、例えば、5μm以下とすることができる。これにより、マスクの焦点深度が深くなり、微細かつ高精度なパターンの形成に大きく貢献することが可能となる。さらにフラットネスとしては、例えば、0.5μm以下といった、小さい値でありことが良好である。 Further, the flatness of the glass substrate 11 may be reduced by polishing the surface of the glass substrate 11. The flatness of the glass substrate 11 can be, for example, 5 μm or less. As a result, the depth of focus of the mask becomes deeper, and it becomes possible to greatly contribute to the formation of a fine and highly accurate pattern. Further, the flatness is preferably a small value such as 0.5 μm or less.
 位相シフト層12は、Si(シリコン)を主成分として含有する。位相シフト層12は、所定のドーパントを含有する。位相シフト層12は、さらに、O(酸素)およびN(窒素)、C(炭素)を含むこともできる。
 ドーパントの種類としては、Si,N,O等の組成比(atm%)が変化しない状態において、ドーピングによって比抵抗を減少させる材料(元素)が選択される。具体的には、B(ボロン)、P(リン)、As(ヒ素)等からなる群より選択された1種類以上の材料が採用される。
The phase shift layer 12 contains Si (silicon) as a main component. The phase shift layer 12 contains a predetermined dopant. The phase shift layer 12 can further include O (oxygen) and N (nitrogen), C (carbon).
As the type of dopant, a material (element) whose specific resistance is reduced by doping is selected in a state where the composition ratio (atm%) of Si, N, O or the like does not change. Specifically, one or more kinds of materials selected from the group consisting of B (boron), P (phosphorus), As (arsenic) and the like are adopted.
 さらに、位相シフト層12においては、厚み方向において位相シフト層12の組成が変化するような構造を採用することもできる。この場合、位相シフト層12の構成として、Si単体、並びにSiの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物からなる群より選択される1つ、または、2種以上を積層して構成することもできる。
 位相シフト層12は、後述するように、所定の光学特性、エッチングレート、抵抗率等が得られるように、位相シフト層12の厚み、および、Si,N,O等の組成比(atm%)と、ドーパントの含有率(atm%)とが設定される。
Further, in the phase shift layer 12, it is possible to adopt a structure in which the composition of the phase shift layer 12 changes in the thickness direction. In this case, as the configuration of the phase shift layer 12, one or 2 selected from the group consisting of Si alone and Si oxides, nitrides, carbides, oxide nitrides, carbides and oxide carbides. It is also possible to stack seeds or more.
As will be described later, the phase shift layer 12 has a thickness of the phase shift layer 12 and a composition ratio (atm%) of Si, N, O, etc. so that predetermined optical characteristics, etching rate, resistivity, etc. can be obtained. And the content rate (atm%) of the dopant are set.
 位相シフト層12の膜厚は、位相シフト層12に要求される光学特性によって設定され、Si,N,O等の組成比によって変化する。位相シフト層12の膜厚は、40nm~150nmとすることができる。 The film thickness of the phase shift layer 12 is set by the optical characteristics required for the phase shift layer 12, and changes depending on the composition ratio of Si, N, O, or the like. The film thickness of the phase shift layer 12 can be 40 nm to 150 nm.
 さらに、位相シフト層12は、位相シフト膜として必要な位相差及び透過率を満たすように、単層で構成してもよい。例えば、所定の表面反射率を満たすようにするために、位相シフト層12は、反射防止機能性を有する層を含んでもよい。位相シフト層12の全体において、位相シフト膜として必要な位相差及び透過率を満たすように、位相シフト層12は多層で構成することもできる。 Further, the phase shift layer 12 may be composed of a single layer so as to satisfy the phase difference and the transmittance required for the phase shift film. For example, the phase shift layer 12 may include a layer having antireflection functionality in order to satisfy a predetermined surface reflectance. The phase shift layer 12 may be composed of multiple layers so as to satisfy the phase difference and transmittance required for the phase shift film in the entire phase shift layer 12.
 位相シフト層12が単層で構成されている場合においても、また、位相シフト層12が多層で構成されている場合においても、位相シフト層12を構成する各々の層の組成比が厚さ方向に連続的に変化するように、位相シフト層12を形成してもよい。また、位相シフト層12を多層で構成する場合、構成元素が異なる層および構成元素が同一で組成比が異なる層から選ばれる2層以上の組み合わせによって、位相シフト層12が構成されてもよい。3層以上の多層膜を有するように位相シフト層12を構成する場合は、同じ層が互いに隣接するように配置しなければ、同じ層を含む組み合わせによって位相シフト層12が形成されてもよい。 Even when the phase shift layer 12 is composed of a single layer or when the phase shift layer 12 is composed of multiple layers, the composition ratio of each layer constituting the phase shift layer 12 is in the thickness direction. The phase shift layer 12 may be formed so as to continuously change to. Further, when the phase shift layer 12 is composed of multiple layers, the phase shift layer 12 may be formed by a combination of two or more layers selected from a layer having different constituent elements and a layer having the same constituent elements but different composition ratios. When the phase shift layer 12 is configured to have three or more multilayer films, the phase shift layer 12 may be formed by a combination including the same layer, as long as the same layers are not arranged so as to be adjacent to each other.
 位相シフト層12は、波長200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光に対して、所定の位相シフト量(位相差)と、所定の透過率とを与える膜である。 The phase shift layer 12 has a predetermined phase shift amount (phase difference) with respect to light having a wavelength of 200 nm or less, particularly exposure light of ArF excima laser light (wavelength 193 nm) used in photolithography using a phase shift mask. , A film that provides a predetermined permeability.
 例えば、位相シフト層12は、SiN、SiONと表現されるケイ素系材料からなる部分が位相シフト層12の厚さ方向に有するように構成されていることが好ましい。これにより、所定の位相差を確保した上で、所定の透過率を有し、耐薬品性も改善される。 For example, it is preferable that the phase shift layer 12 is configured so that a portion made of a silicon-based material represented by SiN and SiON is provided in the thickness direction of the phase shift layer 12. As a result, it has a predetermined transmittance while ensuring a predetermined phase difference, and the chemical resistance is also improved.
 位相シフト層12の位相差に関し、位相シフト膜が存在する領域と、位相シフト膜が存在しない領域との境界において、位相シフト層12の位相差が150~200°、あるいは、180±10°程度、175~185°であればよい。
 例えば、露光光に対する位相シフト層12の透過率は、3%~40%の範囲内であることが好ましく、さらに、5%~10%の範囲内であることができる。
Regarding the phase difference of the phase shift layer 12, the phase difference of the phase shift layer 12 is about 150 to 200 ° or about 180 ± 10 ° at the boundary between the region where the phase shift film exists and the region where the phase shift film does not exist. It may be 175 to 185 °.
For example, the transmittance of the phase shift layer 12 with respect to the exposure light is preferably in the range of 3% to 40%, and can be further in the range of 5% to 10%.
 位相シフト層12の厚さが、40nm~70nm、50nm~65nmとする。位相シフト層12は、マスク層のパターンの厚みが大きいほど3次元効果を低減できる。また、位相シフト層12の厚さは、波長200nm以下の光に対して所定の光学特性が得られる厚さ範囲に設定される。位相シフト層12の厚さが薄いほど、微細なパターンを形成しやすい。 The thickness of the phase shift layer 12 is 40 nm to 70 nm and 50 nm to 65 nm. The phase shift layer 12 can reduce the three-dimensional effect as the thickness of the pattern of the mask layer increases. Further, the thickness of the phase shift layer 12 is set within a thickness range in which predetermined optical characteristics can be obtained for light having a wavelength of 200 nm or less. The thinner the phase shift layer 12, the easier it is to form a fine pattern.
 位相シフト層12は、上述したようにケイ素系材料からなる。具体的には、位相シフト層12は、SiN(ケイ素窒化物)、SiON(ケイ素酸窒化物)である。位相シフト層12は、他の元素を含有してもよい。この場合、不純物としてのドーパントが位相シフト層12に含まれる。 The phase shift layer 12 is made of a silicon-based material as described above. Specifically, the phase shift layer 12 is SiN (silicon nitride) or SiON (silicon oxynitride). The phase shift layer 12 may contain other elements. In this case, the dopant as an impurity is contained in the phase shift layer 12.
 位相シフト層12に含まれる窒素の含有量をなるべく多くすることによって、透過率が増大する。透過率の不足分は、必要最小限の酸素を位相シフト層12に添加することによって補われる、酸素の含有量を少なく抑えることで、位相シフト層12の薄膜化を可能とする。そのため、ケイ素系材料に含まれる酸素の含有量は、窒素の含有量の1/3(組成比)以下、特に1/5(組成比)以下とすることが好ましい。 By increasing the content of nitrogen contained in the phase shift layer 12 as much as possible, the transmittance is increased. The shortage of transmittance is supplemented by adding the minimum necessary oxygen to the phase shift layer 12, and by suppressing the oxygen content to a low level, the phase shift layer 12 can be made thinner. Therefore, the oxygen content in the silicon-based material is preferably 1/3 (composition ratio) or less, particularly 1/5 (composition ratio) or less of the nitrogen content.
 位相シフト層12は、SiとNとからなる層を含んでもよい。さらに、位相シフト層12は、SiとNとの組成比が異なる2以上の多層で形成されてもよい。また、位相シフト層12の厚さ方向において、SiとNとの組成比が、段階的に又は連続的に変化するように位相シフト層12を形成してもよい。 The phase shift layer 12 may include a layer composed of Si and N. Further, the phase shift layer 12 may be formed of two or more layers having different composition ratios of Si and N. Further, the phase shift layer 12 may be formed so that the composition ratio of Si and N changes stepwise or continuously in the thickness direction of the phase shift layer 12.
 位相シフト層12は、所定のドーパント、具体的には、B(ボロン)、P(リン)、As(ヒ素)等からなる群より選択された一種を含む。
 位相シフト層12に含まれるドーパントは、ボロンであり、ドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる。
The phase shift layer 12 contains a predetermined dopant, specifically, one selected from the group consisting of B (boron), P (phosphorus), As (arsenic) and the like.
The dopant contained in the phase shift layer 12 is boron, and the dopant concentration is in the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3 .
 反射防止層13は、Cr(クロム)、O(酸素)を主成分して含有する。さらに、位相シフト層12は、C(炭素)およびN(窒素)を含む。
 この場合、反射防止層13として、Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物からなる群より選択される1つ、または、2種以上を積層して構成することもできる。さらに、反射防止層13においては、厚み方向において反射防止層13の組成が変化するような構造を採用することもできる。後述するように、所定の密着性(疎水性)、所定の光学特性が得られるように、反射防止層13の厚み、および、Cr,N,C,O,Si等の組成比(atm%)が設定される。
The antireflection layer 13 contains Cr (chromium) and O (oxygen) as main components. Further, the phase shift layer 12 contains C (carbon) and N (nitrogen).
In this case, as the antireflection layer 13, one or two or more selected from the group consisting of oxides, nitrides, carbides, oxide nitrides, carbides and oxide carbides of Cr are laminated. It can also be configured. Further, in the antireflection layer 13, it is possible to adopt a structure in which the composition of the antireflection layer 13 changes in the thickness direction. As will be described later, the thickness of the antireflection layer 13 and the composition ratio of Cr, N, C, O, Si, etc. (atm%) so that predetermined adhesion (hydrophobicity) and predetermined optical characteristics can be obtained. Is set.
 反射防止層13においては、酸素含有率(酸素濃度)を6.7atm%~63.2atm%の範囲内に設定し、窒素含有率(窒素濃度)を4.6atm%~39.3atm%の範囲内に設定することができる。
 反射防止層13の窒素濃度と酸素濃度を設定することで、反射防止層13の屈折率と消衰係数の値を低くすることが可能である。特に、反射防止層13の酸素濃度を増加させることで、反射防止層13の屈折率と消衰係数の値を大きく低下させる。
In the antireflection layer 13, the oxygen content (oxygen concentration) is set in the range of 6.7 atm% to 63.2 atm%, and the nitrogen content (nitrogen concentration) is set in the range of 4.6 atm% to 39.3 atm%. Can be set in.
By setting the nitrogen concentration and the oxygen concentration of the antireflection layer 13, it is possible to lower the values of the refractive index and the extinction coefficient of the antireflection layer 13. In particular, by increasing the oxygen concentration of the antireflection layer 13, the values of the refractive index and the extinction coefficient of the antireflection layer 13 are greatly reduced.
 また、反射防止層13の膜厚を30nm~60nmの範囲内に設定することで、波長200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光における反射率を低減できる。なお、反射防止層13を構成する材料の組成比は、上記の値に限定されない。上述した組成比は、本発明の一例を示している。 Further, by setting the film thickness of the antireflection layer 13 in the range of 30 nm to 60 nm, it is possible to obtain light having a wavelength of 200 nm or less, particularly ArF excimer laser light (wavelength 193 nm) used in photolithography using a phase shift mask. The reflectance in the exposure light can be reduced. The composition ratio of the materials constituting the antireflection layer 13 is not limited to the above values. The composition ratio described above shows an example of the present invention.
 本実施形態におけるマスクブランクスの製造方法は、図1に示すように、基板準備工程S11と、マスク層形成工程S12と、レジスト形成工程S13と、を有する。 As shown in FIG. 1, the method for manufacturing a mask blank in the present embodiment includes a substrate preparation step S11, a mask layer forming step S12, and a resist forming step S13.
 図1に示す基板準備工程S11においては、図2に示すように、例えば、所定の寸法を有する石英ガラス製のガラス基板11を準備する。
 基板準備工程S11においては、透明性および光学的等方性に優れたガラス基板11に対して、研磨、HF洗浄等の表面処理をおこなうことができる。
In the substrate preparation step S11 shown in FIG. 1, as shown in FIG. 2, for example, a glass substrate 11 made of quartz glass having a predetermined dimension is prepared.
In the substrate preparation step S11, the glass substrate 11 having excellent transparency and optical isotropic properties can be subjected to surface treatment such as polishing and HF cleaning.
 図1に示すマスク層形成工程S12においては、ガラス基板11にマスク層を構成する位相シフト層12と反射防止層13とを順に成膜する。 In the mask layer forming step S12 shown in FIG. 1, a phase shift layer 12 and an antireflection layer 13 constituting the mask layer are sequentially formed on the glass substrate 11.
 図6は、本実施形態におけるマスクブランクスの製造装置を示す模式図である。
 本実施形態におけるマスク層形成工程S12において、マスクブランクス10Aにおける位相シフト層12と反射防止層13は、図6に示す製造装置100により製造される。
FIG. 6 is a schematic view showing a mask blank manufacturing apparatus according to the present embodiment.
In the mask layer forming step S12 in the present embodiment, the phase shift layer 12 and the antireflection layer 13 in the mask blanks 10A are manufactured by the manufacturing apparatus 100 shown in FIG.
 製造装置100は、枚葉式のDCスパッタリング装置とされる。
 製造装置100は、図6に示すように、ロード室101aと、アンロード室101bと、ロード室101aおよびアンロード室101bに密閉機構を介して接続された搬送室101cと、真空槽(第1真空槽、第1真空処理室)102および真空槽(第2真空槽、第2真空処理室)103と、を有している。真空槽102、103は、2つの成膜処理に対応した成膜機構を有する。真空槽102、103は、搬送室101cに接続された成膜室である。
The manufacturing apparatus 100 is a single-wafer DC sputtering apparatus.
As shown in FIG. 6, the manufacturing apparatus 100 includes a load chamber 101a, an unload chamber 101b, a transport chamber 101c connected to the load chamber 101a and the unload chamber 101b via a sealing mechanism, and a vacuum chamber (first). It has a vacuum chamber (first vacuum processing chamber) 102 and a vacuum chamber (second vacuum chamber, second vacuum processing chamber) 103. The vacuum chambers 102 and 103 have a film forming mechanism corresponding to two film forming processes. The vacuum chambers 102 and 103 are film forming chambers connected to the transport chamber 101c.
 搬送室101cは、製造装置100の外部からロード室101aを介して搬入されたガラス基板11を真空槽102および真空槽103へと搬送する搬送機構101dと、搬送室101cの内部を減圧するロータリーポンプ、ターボ分子ポンプ等の排気機構を備える。 The transport chamber 101c includes a transport mechanism 101d that transports the glass substrate 11 carried in from the outside of the manufacturing apparatus 100 via the load chamber 101a to the vacuum tank 102 and the vacuum tank 103, and a rotary pump that reduces the pressure inside the transport chamber 101c. , Equipped with an exhaust mechanism such as a turbo molecular pump.
 図7は、本実施形態におけるマスクブランクスの製造装置における真空槽を示す模式図である。図8は、本実施形態におけるマスクブランクスの製造装置における真空槽を示す模式図である。
 真空槽102は、ロングスロースパッタリング(LTS)法を用いてマスクブランク用材料膜を形成する。
FIG. 7 is a schematic view showing a vacuum chamber in the mask blank manufacturing apparatus according to the present embodiment. FIG. 8 is a schematic view showing a vacuum chamber in the mask blank manufacturing apparatus according to the present embodiment.
The vacuum chamber 102 forms a material film for a mask blank by using a long slow sputtering (LTS) method.
 真空槽102は、図7に示すように、成膜空間102Kを有する。成膜空間102Kには、反応ガス導入口114a、不活性ガス導入口114bが接続される。また、成膜空間102Kには、真空排気口114d、および、真空排気口114eが接続される。さらに、真空槽102は、カソード電極(バッキングプレート)105A(105)と、基板ホルダ107と、を有する。 As shown in FIG. 7, the vacuum chamber 102 has a film forming space 102K. The reaction gas introduction port 114a and the inert gas introduction port 114b are connected to the film forming space 102K. Further, a vacuum exhaust port 114d and a vacuum exhaust port 114e are connected to the film forming space 102K. Further, the vacuum chamber 102 has a cathode electrode (backing plate) 105A (105) and a substrate holder 107.
 基板ホルダ107は、基板保持機構を備える。基板ホルダ107は、搬送機構101dによって真空槽102に搬送されてきたガラス基板11を成膜中にターゲット104Aに傾斜するように対向させ、ガラス基板11を保持するように構成されている。基板ホルダ107の内部にはヒータ111が設けられている。 The board holder 107 is provided with a board holding mechanism. The substrate holder 107 is configured to hold the glass substrate 11 by facing the glass substrate 11 conveyed to the vacuum chamber 102 by the conveying mechanism 101d so as to be inclined toward the target 104A during film formation. A heater 111 is provided inside the substrate holder 107.
 成膜空間102Kには、2段の成膜機構のうち一段目の成膜機構として機能しかつ成膜材料を供給するターゲット104Aが設けられている。
 真空槽102の成膜機構は、ターゲット104Aと、ターゲット104Aを保持するカソード電極105Aと、カソード電極105Aに負電位のスパッタリング電圧を印加する電源112Aと、を有する。電源112Aは、高周波電圧またはDC電圧を印加できる。
The film forming space 102K is provided with a target 104A that functions as the first-stage film forming mechanism of the two-stage film forming mechanism and supplies the film forming material.
The film forming mechanism of the vacuum chamber 102 includes a target 104A, a cathode electrode 105A for holding the target 104A, and a power supply 112A for applying a negative potential sputtering voltage to the cathode electrode 105A. The power supply 112A can apply a high frequency voltage or a DC voltage.
 カソード電極105Aの表面には材料膜の母材となる平板状のターゲット104Aを備えている。カソード電極105Aは、真空槽102を構成するドーム状の天井102aに沿って配置される。つまり、真空槽102は、単一の成膜空間102K内に、材料膜の母材となる平板状のターゲット104Aを傾斜させて配置する構成を有する。
 真空槽102においては、位相シフト層(マスク層)12の形成に対応したターゲット104Aを用いる。
The surface of the cathode electrode 105A is provided with a flat plate-shaped target 104A that serves as a base material for the material film. The cathode electrode 105A is arranged along the dome-shaped ceiling 102a constituting the vacuum chamber 102. That is, the vacuum chamber 102 has a configuration in which the flat plate-shaped target 104A, which is the base material of the material film, is inclined and arranged in a single film formation space 102K.
In the vacuum chamber 102, the target 104A corresponding to the formation of the phase shift layer (mask layer) 12 is used.
 真空槽102内においては、ターゲット104Aから飛翔したスパッタリング粒子が、矩形状のガラス基板11の回転する(R:回転方向)被処理面に向う。ターゲット104Aのスパッタリング面104Asに対する垂直方向T11(点線矢印)と、ターゲット104Aのスパッタリング面104Asの中心とガラス基板11の被処理面の中心とを結ぶ線分TSA(TS:実線矢印)とがなすティルト角ΔA(Δ)が、垂直方向T11と異なっている。ここで、線分TSA(TS)は、いわゆる、ターゲット104Aとガラス基板11との間隔である。 In the vacuum chamber 102, the sputtering particles flying from the target 104A face the rotating (R: rotation direction) surface of the rectangular glass substrate 11. Tilt formed by the vertical direction T11 (dotted arrow) of the target 104A with respect to the sputtering surface 104As and the line segment TSA (TS: solid arrow) connecting the center of the sputtering surface 104As of the target 104A and the center of the surface to be processed of the glass substrate 11. The angle ΔA (Δ) is different from the vertical direction T11. Here, the line segment TSA (TS) is a so-called distance between the target 104A and the glass substrate 11.
 真空排気口114d、および、真空排気口114eには、不図示の真空ポンプが接続されている。カソード電極105Aの裏面には、2重の同心円状に配置された磁石110A(110)を有するマグネットプレート109A(109)が設けられている。カソード電極105Aには、スパッタリング電源(電源)112A(112)が電気的に接続されている。 A vacuum pump (not shown) is connected to the vacuum exhaust port 114d and the vacuum exhaust port 114e. On the back surface of the cathode electrode 105A, a magnet plate 109A (109) having magnets 110A (110) arranged in double concentric circles is provided. A sputtering power supply (power supply) 112A (112) is electrically connected to the cathode electrode 105A.
 真空槽102の成膜機構は、不活性ガス導入口114bと、反応ガス導入口114aと、真空排気口114dと、真空排気口114eと、を有する。不活性ガス導入口114bは、成膜空間102K内でカソード電極105Aの付近の空間にガスを導入するガス導入機構に接続されている。反応ガス導入口114aは、ガラス基板11の付近の空間に反応ガスを導入する。真空排気口114dは、高真空が得られるように成膜空間102K内を減圧するターボ分子ポンプ等の高真空排気機構に接続されている。真空排気口114dは、成膜空間102K内のガスをカソード電極105Aの付近の位置から排気する。真空排気口114eは、成膜空間102K内のガスをガラス基板11の付近の位置から排気する。 The film forming mechanism of the vacuum chamber 102 includes an inert gas introduction port 114b, a reaction gas introduction port 114a, a vacuum exhaust port 114d, and a vacuum exhaust port 114e. The inert gas introduction port 114b is connected to a gas introduction mechanism that introduces gas into the space near the cathode electrode 105A in the film formation space 102K. The reaction gas introduction port 114a introduces the reaction gas into the space near the glass substrate 11. The vacuum exhaust port 114d is connected to a high vacuum exhaust mechanism such as a turbo molecular pump that reduces the pressure in the film formation space 102K so that a high vacuum can be obtained. The vacuum exhaust port 114d exhausts the gas in the film formation space 102K from a position near the cathode electrode 105A. The vacuum exhaust port 114e exhausts the gas in the film formation space 102K from a position near the glass substrate 11.
 さらに、真空槽102とは別室となる成膜室である真空槽103は、二段の成膜機構のうち二段目の成膜材料を供給する成膜機構を有する。真空槽103は、真空槽102の成膜機構と略同等の機構を備える。
 真空槽103は、真空槽102とほぼ同等の構成とされている。真空槽103は、ロングスロースパッタリング(LTS)法を用いてマスクブランク用材料膜を形成する。
Further, the vacuum chamber 103, which is a film forming chamber separate from the vacuum chamber 102, has a film forming mechanism for supplying the film forming material of the second stage among the two-stage film forming mechanisms. The vacuum chamber 103 has a mechanism substantially equivalent to the film forming mechanism of the vacuum chamber 102.
The vacuum chamber 103 has almost the same configuration as the vacuum chamber 102. The vacuum chamber 103 forms a material film for a mask blank by using a long slow sputtering (LTS) method.
 真空槽103は、図8に示すように、成膜空間103Kを有する。成膜空間103Kには、反応ガス導入口114a、不活性ガス導入口114bが接続される。また、成膜空間103Kには、真空排気口114d、および、真空排気口114eが接続される。さらに、真空槽103は、カソード電極(バッキングプレート)105B(105)と、基板ホルダ107と、を有する。 As shown in FIG. 8, the vacuum chamber 103 has a film forming space 103K. The reaction gas introduction port 114a and the inert gas introduction port 114b are connected to the film forming space 103K. Further, a vacuum exhaust port 114d and a vacuum exhaust port 114e are connected to the film forming space 103K. Further, the vacuum chamber 103 has a cathode electrode (backing plate) 105B (105) and a substrate holder 107.
 基板ホルダ107は、基板保持機構備える。基板ホルダ107は、搬送機構101dによって真空槽103に搬送されてきたガラス基板11を成膜中にターゲット104Bに傾斜するように対向させ、ガラス基板11を保持するように構成されている。基板ホルダ107の内部にはヒータ111が設けられている。 The board holder 107 is provided with a board holding mechanism. The substrate holder 107 is configured to hold the glass substrate 11 by facing the glass substrate 11 conveyed to the vacuum chamber 103 by the conveying mechanism 101d so as to be inclined toward the target 104B during film formation. A heater 111 is provided inside the substrate holder 107.
 成膜空間103Kには、2段の成膜機構のうち二段目の成膜機構として機能しかつ成膜材料を供給するターゲット104Bが設けられている。
 真空槽103の成膜機構は、ターゲット104Bと、ターゲット104Bを保持するカソード電極105Bと、カソード電極105Bに負電位のスパッタリング電圧を印加する電源112Bと、を有する。電源112Bは、高周波電圧またはDC電圧を印加することができる。
The film forming space 103K is provided with a target 104B that functions as the second-stage film forming mechanism of the two-stage film forming mechanism and supplies the film forming material.
The film forming mechanism of the vacuum chamber 103 includes a target 104B, a cathode electrode 105B for holding the target 104B, and a power supply 112B for applying a negative potential sputtering voltage to the cathode electrode 105B. The power supply 112B can apply a high frequency voltage or a DC voltage.
 カソード電極105Bの表面には材料膜の母材となる平板状のターゲット104Bを備えている。カソード電極105Bは、真空槽103を構成するドーム状の天井103aに沿って配置される。つまり、真空槽103は、単一の成膜空間103K内に、材料膜の母材となる平板状のターゲット104Bを傾斜させて配置する構成を有する。
 真空槽103においては、反射防止層(マスク層)13の形成に対応したターゲット104Bを用いる。
The surface of the cathode electrode 105B is provided with a flat plate-shaped target 104B which is a base material of the material film. The cathode electrode 105B is arranged along the dome-shaped ceiling 103a constituting the vacuum chamber 103. That is, the vacuum chamber 103 has a configuration in which the flat plate-shaped target 104B, which is the base material of the material film, is inclined and arranged in the single film forming space 103K.
In the vacuum chamber 103, the target 104B corresponding to the formation of the antireflection layer (mask layer) 13 is used.
 真空槽103内においては、ターゲット104Bから飛翔したスパッタリング粒子が、矩形状のガラス基板11の回転する(R:回転方向)被処理面に向う。ターゲット104Bのスパッタリング面104Bsに対する垂直方向T11(点線矢印)と、ターゲット104Bのスパッタリング面104Bsの中心とガラス基板11の被処理面の中心とを結ぶ線分TSB(TS:実線矢印)とがなすティルト角ΔB(Δ)が、垂直方向T11と異なっている。ここで、線分TSB(TS)は、いわゆる、ターゲット104Bとガラス基板11との間隔である。 In the vacuum chamber 103, the sputtering particles flying from the target 104B face the rotating (R: rotation direction) surface of the rectangular glass substrate 11. Tilt formed by the vertical direction T11 (dotted arrow) of the target 104B with respect to the sputtering surface 104Bs and the line segment TSB (TS: solid arrow) connecting the center of the sputtering surface 104Bs of the target 104B and the center of the surface to be processed of the glass substrate 11. The angle ΔB (Δ) is different from the vertical direction T11. Here, the line segment TSB (TS) is a so-called distance between the target 104B and the glass substrate 11.
 真空排気口114d、および、真空排気口114eには、不図示の真空ポンプが接続されている。カソード電極105Bの裏面には、2重の同心円状に配置された磁石110B(110)を有するマグネットプレート109B(109)が設けられている。カソード電極105Bには、スパッタリング電源(電源)112B(112)が電気的に接続されている。 A vacuum pump (not shown) is connected to the vacuum exhaust port 114d and the vacuum exhaust port 114e. On the back surface of the cathode electrode 105B, a magnet plate 109B (109) having double concentric magnets 110B (110) is provided. A sputtering power supply (power supply) 112B (112) is electrically connected to the cathode electrode 105B.
 真空槽103の成膜機構は、不活性ガス導入口114bと、反応ガス導入口114aと、真空排気口114dと、真空排気口114eと、を有する。不活性ガス導入口114bは、成膜空間103K内でカソード電極105Bの付近の空間にガスを導入するガス導入機構に接続されている。反応ガス導入口114aは、ガラス基板11の付近の空間に反応ガスを導入する。真空排気口114dは、高真空が得られるように成膜空間103K内を減圧するターボ分子ポンプ等の高真空排気機構に接続されている。真空排気口114dは、成膜空間103K内のガスをカソード電極105Bの付近の位置から排気する。真空排気口114eは、成膜空間103K内のガスをガラス基板11の付近の位置から排気する。 The film forming mechanism of the vacuum chamber 103 includes an inert gas introduction port 114b, a reaction gas introduction port 114a, a vacuum exhaust port 114d, and a vacuum exhaust port 114e. The inert gas introduction port 114b is connected to a gas introduction mechanism that introduces gas into the space near the cathode electrode 105B in the film formation space 103K. The reaction gas introduction port 114a introduces the reaction gas into the space near the glass substrate 11. The vacuum exhaust port 114d is connected to a high vacuum exhaust mechanism such as a turbo molecular pump that reduces the pressure in the film formation space 103K so that a high vacuum can be obtained. The vacuum exhaust port 114d exhausts the gas in the film formation space 103K from a position near the cathode electrode 105B. The vacuum exhaust port 114e exhausts the gas in the film forming space 103K from a position near the glass substrate 11.
 上述した二段の成膜機構は、ガラス基板11に順に位相シフト層12及び反射防止層13を成膜するために必要な組成や成膜条件が得られるように制御される。
 本実施形態において、真空槽102における一段目の成膜機構は、位相シフト層12の成膜に対応しており、真空槽103における二段目の成膜機構は反射防止層13の成膜に対応している。
The above-mentioned two-stage film forming mechanism is controlled so that the composition and film forming conditions necessary for forming the phase shift layer 12 and the antireflection layer 13 on the glass substrate 11 in order can be obtained.
In the present embodiment, the first-stage film forming mechanism in the vacuum chamber 102 corresponds to the film formation of the phase shift layer 12, and the second-stage film forming mechanism in the vacuum chamber 103 corresponds to the film formation of the antireflection layer 13. It corresponds.
 具体的には、真空槽102における一段目の成膜機構においては、ターゲット104Aが、ガラス基板11に位相シフト層12を成膜するために必要な組成として、シリコンおよび所定のドーパントを含有する材料で形成されている。 Specifically, in the first-stage film forming mechanism in the vacuum chamber 102, the target 104A contains silicon and a predetermined dopant as a composition necessary for forming the phase shift layer 12 on the glass substrate 11. Is formed of.
 ターゲット104Aは、シリコンに比抵抗を減少させるドーパントを含有する。ターゲット104Aにおけるドーパントは、ボロンである。ターゲット104Aにおけるドーパント濃度は、1×1018atm/cm~1×1020atm/cmの範囲内とされる。
 ターゲット104Aの比抵抗は、0.001Ωcm~0.1Ωcmである。
Target 104A contains a dopant in silicon that reduces resistivity. The dopant at target 104A is boron. The dopant concentration in the target 104A is in the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3 .
The specific resistance of the target 104A is 0.001 Ωcm to 0.1 Ωcm.
 ターゲット104Aにおける比抵抗は、ドーパントの添加により減少している。これにより、プラズマを形成するための電力が安定化し、成膜状態でのプラズマが安定化し、位相シフト層12を形成することが可能となる。この結果、スパッタリング時にアーク(Arc)のような異常放電現象の発生を防止し、薄膜の特性及び欠陥を発生させる要因を削減し、成膜特性を向上することができる。さらに、位相シフト層12内にドーパントを含有させることができ、位相シフト層12を含むマスク層における膜特性を向上することができる。 The resistivity at the target 104A is reduced by the addition of the dopant. As a result, the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the phase shift layer 12 can be formed. As a result, it is possible to prevent the occurrence of an abnormal discharge phenomenon such as an arc during sputtering, reduce the characteristics of the thin film and the factors that cause defects, and improve the film forming characteristics. Further, the dopant can be contained in the phase shift layer 12, and the film characteristics in the mask layer including the phase shift layer 12 can be improved.
 また、マスク層に対するエッチングレートを増大させて、マスク層に対するパターン形成時におけるエッチング時間を減少させることができる。これにより、レジスト膜厚を小さくすることができる。 Further, the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced. As a result, the resist film thickness can be reduced.
 ターゲット104Aは、シリコン単結晶もしくは多結晶であり、FZ法、CZ法、キャスト成長法により形成されている。ターゲット104Aは、ターゲット104Aの内部におけるドーパントの含有状態の均一性を保ち、プラズマが発生した雰囲気においてもドーパント濃度の均一性を維持し、成膜されたマスク層内におけるドーパント濃度の均一性を維持することができる。 The target 104A is a silicon single crystal or polycrystal, and is formed by the FZ method, the CZ method, or the cast growth method. The target 104A maintains the uniformity of the dopant content inside the target 104A, maintains the uniformity of the dopant concentration even in the atmosphere where plasma is generated, and maintains the uniformity of the dopant concentration in the film-formed mask layer. can do.
 ここで、向上可能なマスク層の膜特性とは、具体的に、エッチングレートの増大等を意味する。このように膜特性を向上できることにより、マスクパターン形成時におけるマスク層の形状の正確性が向上し、高精細なパターニングを実現できるマスクブランクス10Bを得ることができる。 Here, the film properties of the mask layer that can be improved specifically mean an increase in the etching rate and the like. By improving the film characteristics in this way, the accuracy of the shape of the mask layer at the time of forming the mask pattern is improved, and the mask blanks 10B capable of realizing high-definition patterning can be obtained.
 また、一段目の真空槽102においては、成膜条件に合わせて、高真空排気機構に接続された真空排気口114dからの排気、および、真空排気口114eからの排気がおこなわれる。
 また、真空槽102における一段目の成膜機構においては、電源112Aからカソード電極105Aに印加されるスパッタリング電圧が、位相シフト層12の成膜に対応して設定される。
Further, in the first-stage vacuum tank 102, exhaust from the vacuum exhaust port 114d connected to the high vacuum exhaust mechanism and exhaust from the vacuum exhaust port 114e are performed according to the film forming conditions.
Further, in the first-stage film forming mechanism in the vacuum chamber 102, the sputtering voltage applied from the power supply 112A to the cathode electrode 105A is set corresponding to the film forming of the phase shift layer 12.
 また、真空槽103における二段目の成膜機構においては、ターゲット104Bが、位相シフト層12上に反射防止層13を成膜するために必要な組成として、例えば、クロムを含有する材料で形成されている。 Further, in the second-stage film forming mechanism in the vacuum chamber 103, the target 104B is formed of, for example, a material containing chromium as a composition necessary for forming the antireflection layer 13 on the phase shift layer 12. Has been done.
 同時に、真空槽103における二段目の成膜機構においては、不活性ガス導入口114b及び反応ガス導入口114aから成膜空間103内に供給されるガスは、反射防止層13の成膜に対応して設定されている。このようなガスは、プロセスガスとスパッタリングガスを含む。プロセスガスは、窒素、酸素等を含有する。スパッタリングガスは、アルゴン、窒素ガス等を含有する。プロセスガスとスパッタリングガスを含むガスは、所定のガス分圧が得られるように設定される。
 ここで、反射防止層13の成膜における雰囲気ガスとしては、He、Ar、Ne、N、NO、NO、O、CO、CHが適応できる。
At the same time, in the second-stage film forming mechanism in the vacuum chamber 103, the gas supplied into the film forming space 103 from the inert gas introduction port 114b and the reaction gas introduction port 114a corresponds to the film formation of the antireflection layer 13. Is set. Such gases include process gases and sputtering gases. The process gas contains nitrogen, oxygen and the like. The sputtering gas contains argon, nitrogen gas and the like. The gas including the process gas and the sputtering gas is set so that a predetermined gas partial pressure can be obtained.
Here, He, Ar, Ne, N 2 , NO, NO 2 , O 2 , CO 2 , and CH 4 can be applied as the atmospheric gas in the film formation of the antireflection layer 13.
 また、二段目の真空槽103においては、成膜条件に合わせて、高真空排気機構に接続された真空排気口114dからの排気、および、真空排気口114eからの排気がおこなわれる。
 また、真空槽103における二段目の成膜機構においては、電源112Bからカソード電極105Bに印加されるスパッタリング電圧が、反射防止層13の成膜に対応して設定される。
Further, in the second-stage vacuum tank 103, exhaust from the vacuum exhaust port 114d connected to the high vacuum exhaust mechanism and exhaust from the vacuum exhaust port 114e are performed according to the film forming conditions.
Further, in the second-stage film forming mechanism in the vacuum chamber 103, the sputtering voltage applied from the power supply 112B to the cathode electrode 105B is set corresponding to the film forming of the antireflection layer 13.
 図6に示す製造装置100においては、ロード室101aから搬送室101cに搬入したガラス基板11は、搬送機構101dによって真空槽102に搬入する。そして、このガラス基板11に対して、真空槽102において一段目のスパッタリング成膜をおこなう。その後、ガラス基板11を、搬送機構101dによって真空槽102から搬送室101cを介して真空槽103に搬入する。その後、真空槽103において二段目のスパッタリング成膜をおこなう。その後、成膜の終了したガラス基板11を搬送機構101dによって搬送室101cを介してアンロード室101bに搬出し、さらに、アンロード室101bから製造装置100の外部に搬出する。 In the manufacturing apparatus 100 shown in FIG. 6, the glass substrate 11 carried into the transport chamber 101c from the load chamber 101a is carried into the vacuum chamber 102 by the transport mechanism 101d. Then, the first-stage sputtering film formation is performed on the glass substrate 11 in the vacuum chamber 102. After that, the glass substrate 11 is carried from the vacuum tank 102 to the vacuum tank 103 via the transport chamber 101c by the transport mechanism 101d. After that, a second-stage sputtering film formation is performed in the vacuum chamber 103. After that, the glass substrate 11 having been film-formed is carried out by the transport mechanism 101d to the unload chamber 101b via the transport chamber 101c, and further carried out from the unload chamber 101b to the outside of the manufacturing apparatus 100.
 位相シフト層形成工程においては、真空槽102における一段目の成膜機構において、不活性ガス導入口114bから真空槽102のバッキングプレート105Aの付近の空間に供給ガスとしてスパッタリングガスが供給される。また、反応ガス導入口114aから真空槽102のバッキングプレート105Aの付近の空間に供給ガスとして反応ガスが供給される。この状態で、電源112Aからカソード電極105Aにスパッタリング電圧を印加する。また、マグネットプレート109Aのマグネトロン磁気回路によりターゲット104A上に所定の磁場を形成してもよい。 In the phase shift layer forming step, in the first-stage film forming mechanism in the vacuum chamber 102, the sputtering gas is supplied as a supply gas from the inert gas introduction port 114b to the space near the backing plate 105A of the vacuum chamber 102. Further, the reaction gas is supplied as a supply gas from the reaction gas introduction port 114a to the space near the backing plate 105A of the vacuum chamber 102. In this state, a sputtering voltage is applied from the power supply 112A to the cathode electrode 105A. Further, a predetermined magnetic field may be formed on the target 104A by the magnetron magnetic circuit of the magnet plate 109A.
 真空槽102内のカソード電極105Aの付近の空間に発生したプラズマにより励起されたスパッタリングガスのイオンは、カソード電極105Aのターゲット104Aに衝突して成膜材料の粒子を飛び出させる。そして、飛び出した粒子と反応ガスとが結合した後、ガラス基板11に付着する。これにより、図3に示すように、ガラス基板11の表面に所定の組成を有する位相シフト層12が形成される。 The ions of the sputtering gas excited by the plasma generated in the space near the cathode electrode 105A in the vacuum chamber 102 collide with the target 104A of the cathode electrode 105A and eject the particles of the film-forming material. Then, after the ejected particles and the reaction gas are combined, they adhere to the glass substrate 11. As a result, as shown in FIG. 3, a phase shift layer 12 having a predetermined composition is formed on the surface of the glass substrate 11.
 この際、位相シフト層12の成膜では、不活性ガス導入口114b及び反応ガス導入口114aから、窒素ガス、酸素含有ガス等を含むと共に所定の分圧を有する反応性ガスが真空槽102内に供給される。その分圧を制御するようにガス導入機構の動作を切り替えて、位相シフト層12の組成を設定した範囲内にする。 At this time, in the film formation of the phase shift layer 12, the reactive gas containing nitrogen gas, oxygen-containing gas, etc. and having a predetermined partial pressure is contained in the vacuum chamber 102 from the inert gas introduction port 114b and the reaction gas introduction port 114a. Is supplied to. The operation of the gas introduction mechanism is switched so as to control the partial pressure, and the composition of the phase shift layer 12 is set within the set range.
 ここで、反応性ガスとしては、窒素ガス(Nガス)、酸素ガス(Oガス)、窒素酸化物ガス(NOガス、NOガス、NOガス)、二酸化炭素ガス(CO)などを用いることができる。スパッタリングガスには、希ガスとして、ヘリウムガス、ネオンガス、アルゴンガスなどを用いることもできる。 Here, as the reactive gas, nitrogen gas (N 2 gas), oxygen gas (O 2 gas), nitrogen oxide gas (N 2 O gas, NO gas, NO 2 gas), carbon dioxide gas (CO 2 ) Etc. can be used. As the sputtering gas, helium gas, neon gas, argon gas or the like can also be used as the rare gas.
 同様に、反射防止層形成工程においては、真空槽103における二段目の成膜機構において、不活性ガス導入口114bから真空槽103のカソード電極105Bの付近の空間に供給ガスとしてスパッタリングガスが供給される。また、反応ガス導入口114aから真空槽103のバッキングプレート105Bの付近の空間に供給ガスとして反応ガスが供給される。この状態で、電源112Bからカソード電極105Bにスパッタリング電圧を印加する。また、マグネットプレート109Bのマグネトロン磁気回路によりターゲット104B上に所定の磁場を形成してもよい。 Similarly, in the antireflection layer forming step, in the second stage film forming mechanism in the vacuum chamber 103, the sputtering gas is supplied as a supply gas from the inert gas introduction port 114b to the space near the cathode electrode 105B of the vacuum chamber 103. Will be done. Further, the reaction gas is supplied as a supply gas from the reaction gas introduction port 114a to the space near the backing plate 105B of the vacuum chamber 103. In this state, a sputtering voltage is applied from the power supply 112B to the cathode electrode 105B. Further, a predetermined magnetic field may be formed on the target 104B by the magnetron magnetic circuit of the magnet plate 109B.
 真空槽103内のカソード電極105Bの付近の空間に発生したプラズマにより励起されたスパッタリングガスのイオンは、カソード電極105Bのターゲット104Bに衝突して成膜材料の粒子を飛び出させる。そして、飛び出した粒子と反応ガスとが結合した後、ガラス基板11に付着する。これにより、ガラス基板11の表面に所定の組成を有する反射防止層13が形成される。 The ions of the sputtering gas excited by the plasma generated in the space near the cathode electrode 105B in the vacuum chamber 103 collide with the target 104B of the cathode electrode 105B and eject the particles of the film-forming material. Then, after the ejected particles and the reaction gas are combined, they adhere to the glass substrate 11. As a result, the antireflection layer 13 having a predetermined composition is formed on the surface of the glass substrate 11.
 また、反射防止層13の成膜では、不活性ガス導入口114b及び反応ガス導入口114aから、所定の分圧が得られるように窒素ガス、酸素含有ガス等が真空槽103内に供給される。その分圧を制御するようにガス導入機構の動作を切り替えて、反射防止層13の組成を設定した範囲内にする。 Further, in the film formation of the antireflection layer 13, nitrogen gas, oxygen-containing gas and the like are supplied into the vacuum chamber 103 from the inert gas introduction port 114b and the reaction gas introduction port 114a so that a predetermined partial pressure can be obtained. .. The operation of the gas introduction mechanism is switched so as to control the partial pressure, and the composition of the antireflection layer 13 is set within the set range.
 ここで、酸素含有ガスとしては、CO(二酸化炭素)、O(酸素)、NO(一酸化二窒素)、NO(一酸化窒素)、CO(一酸化炭素)等を挙げることができる。
 また、炭素含有ガスとしては、CO(二酸化炭素)、CH(メタン)、C(エタン)、CO(一酸化炭素)等を挙げることができる。
Here, examples of the oxygen-containing gas include CO 2 (carbon dioxide), O 2 (oxygen), N 2 O (nitric oxide), NO (nitric oxide), CO (carbon monoxide) and the like. can.
Examples of the carbon-containing gas include CO 2 (carbon dioxide), CH 4 (methane), C 2 H 6 (ethane), and CO (carbon monoxide).
 さらに、上述した位相シフト層12及び反射防止層13の成膜に加え、他の膜をマスク層に積層してもよい。この場合には、例えば、他の膜の材料に対応するターゲットを準備し、ガス等のスパッタリング条件に基づいてスパッタリングにより成膜する方法が採用される。また、スパッタリング以外の成膜方法によって膜をマスク層に積層し、レジスト層15のないマスクブランクス10Aを製造してもよい。なお、枚葉の成膜をおこなう製造装置100に替えて、インターバック式やインライン式の成膜装置等を用いることもできる。 Further, in addition to the film formation of the phase shift layer 12 and the antireflection layer 13 described above, another film may be laminated on the mask layer. In this case, for example, a method of preparing a target corresponding to another film material and forming a film by sputtering based on sputtering conditions such as gas is adopted. Further, the mask blanks 10A without the resist layer 15 may be manufactured by laminating the film on the mask layer by a film forming method other than sputtering. In addition, instead of the manufacturing apparatus 100 for forming a single-wafer film, an interback type or an in-line type film forming apparatus can be used.
 図1に示すレジスト形成工程S13においては、マスク層の形成されたマスクブランクス10Aの最外面上に、レジスト層15を形成する。レジスト層15は、ポジ型でもよいしネガ型でもよい。レジスト層15としては、いわゆるクロム系材料へのエッチングおよびシリコン系材料へのエッチングに対応可能なレジスト層が採用される。レジスト層15としては、液状レジストが用いられる。レジスト液は、化学増幅型のレジストが用いられてもよい。 In the resist forming step S13 shown in FIG. 1, the resist layer 15 is formed on the outermost surface of the mask blanks 10A on which the mask layer is formed. The resist layer 15 may be a positive type or a negative type. As the resist layer 15, a resist layer capable of etching a so-called chromium-based material and etching a silicon-based material is adopted. A liquid resist is used as the resist layer 15. As the resist liquid, a chemically amplified resist may be used.
 本実施形態におけるレジスト形成工程S13において、マスクブランクス10Aに対するレジスト層15の塗布は、公知のスピンコータ等の塗布装置を用いておこなわれる。塗布装置は、フォトレジスト膜付のマスクブランクの製造において使用することができ、マスクブランクス10Aにレジスト液を塗布する。 In the resist forming step S13 in the present embodiment, the resist layer 15 is applied to the mask blanks 10A by using a known application device such as a spin coater. The coating device can be used in the production of a mask blank with a photoresist film, and a resist solution is applied to the mask blanks 10A.
 レジスト形成工程S13では、マスクブランクス10Aの最表面にレジスト層15を塗布して形成した後、ベーク処理等を施してレジスト形成工程S13を終了し、図5に示すように、マスクブランクス10Bが製造される。 In the resist forming step S13, the resist layer 15 is applied to the outermost surface of the mask blanks 10A to form the resist layer 15, and then a bake treatment or the like is applied to complete the resist forming step S13. As shown in FIG. 5, the mask blanks 10B are manufactured. Will be done.
 なお、マスクブランクスの製造方法においては、位相シフト層12と反射防止層13とレジスト層15以外に、マスク層として、密着層、保護層、遮光層、耐薬層、エッチングストッパー層、等をガラス基板11上に積層してもよい。この場合には、レジスト層15の形成前に、これらの層をガラス基板11上に積層する工程を有することができる。 In the method for manufacturing mask blanks, in addition to the phase shift layer 12, the antireflection layer 13, and the resist layer 15, as a mask layer, an adhesion layer, a protective layer, a light-shielding layer, a chemical resistant layer, an etching stopper layer, and the like are provided on a glass substrate. It may be laminated on 11. In this case, it is possible to have a step of laminating these layers on the glass substrate 11 before forming the resist layer 15.
 図9は、本実施形態におけるマスクブランクスを用いたフォトマスクの製造方法を示すフローチャートである。図10~図12は、本実施形態におけるマスクブランクスを用いたフォトマスクの製造方法における工程を説明するための断面図である。
 本実施形態における位相シフトマスク(フォトマスク)10は、図12に示すように、積層された位相シフト層12と反射防止層13とレジスト層15とを有するマスクブランクス10Bに露光パターンを形成することによって得られている。
FIG. 9 is a flowchart showing a method of manufacturing a photomask using mask blanks in the present embodiment. 10 to 12 are cross-sectional views for explaining a process in a method for manufacturing a photomask using mask blanks in the present embodiment.
As shown in FIG. 12, the phase shift mask (photomask) 10 in the present embodiment forms an exposure pattern on a mask blank 10B having a laminated phase shift layer 12, an antireflection layer 13, and a resist layer 15. Obtained by.
 以下、本実施形態のマスクブランクス10Bから位相シフトマスク10を製造する製造方法について説明する。
 本実施形態におけるマスクブランクスを用いたフォトマスクの製造方法は、図9に示すように、レジストパターン形成工程S21と、マスクパターン形成工程S22と、を有する。
Hereinafter, a manufacturing method for manufacturing the phase shift mask 10 from the mask blanks 10B of the present embodiment will be described.
As shown in FIG. 9, the method for manufacturing a photomask using mask blanks in the present embodiment includes a resist pattern forming step S21 and a mask pattern forming step S22.
 図9に示すレジストパターン形成工程S21において、図10に示すように、レジスト層15を露光及び現像することで、マスク層よりも外側にレジストパターン15Pが形成される。レジストパターン15Pは、位相シフト層12と反射防止層13とのエッチングマスクとして機能する。 In the resist pattern forming step S21 shown in FIG. 9, as shown in FIG. 10, the resist layer 15 is exposed and developed to form the resist pattern 15P on the outer side of the mask layer. The resist pattern 15P functions as an etching mask between the phase shift layer 12 and the antireflection layer 13.
 レジストパターン形成工程S21においては、化学増幅型のレジスト層15に対して、選択的に露光処理を行い、潜像を形成する。この露光処理は、活性線を照射することによっておこなうことができる。
 ここで、露光処理の活性線は、レーザー、電子ビームを採用することができる。
In the resist pattern forming step S21, the chemically amplified resist layer 15 is selectively exposed to form a latent image. This exposure process can be performed by irradiating with active rays.
Here, a laser or an electron beam can be adopted as the active ray of the exposure process.
 次に、光照射により潜像が形成されたレジスト層15をPEB処理する。このPEB処理は、通常70~150℃程度の温度で30秒ないし150秒間おこなわれる。
 次に、現像処理として、露光後に加熱したレジスト層15をリソグラフィー用現像液と接触させ、潜像に対応するレジストパターン15Pを顕出させる。
Next, the resist layer 15 on which the latent image is formed by light irradiation is subjected to PEB treatment. This PEB treatment is usually performed at a temperature of about 70 to 150 ° C. for 30 seconds to 150 seconds.
Next, as a developing process, the resist layer 15 heated after exposure is brought into contact with a developer for lithography to reveal a resist pattern 15P corresponding to a latent image.
 レジストパターン15Pは、位相シフト層12と反射防止層13とのエッチングパターンに応じて適宜形状が定められる。一例として、位相シフト領域においては、形成する位相シフトパターンの開口幅に対応した開口幅を有する形状に設定される。 The shape of the resist pattern 15P is appropriately determined according to the etching pattern of the phase shift layer 12 and the antireflection layer 13. As an example, in the phase shift region, a shape having an opening width corresponding to the opening width of the phase shift pattern to be formed is set.
 次いで、マスクパターン形成工程S22における最初の工程として、反射防止パターン形成工程がおこなわれる。この工程では、レジストパターン15Pを介してドライエッチングをおこない、反射防止層13をエッチングして、反射防止パターン13Pを形成する。 Next, as the first step in the mask pattern forming step S22, an antireflection pattern forming step is performed. In this step, dry etching is performed via the resist pattern 15P, and the antireflection layer 13 is etched to form the antireflection pattern 13P.
 反射防止パターン形成工程におけるエッチングとしては、酸素を含有する塩素系ドライエッチングを用いることができる。 As the etching in the antireflection pattern forming step, chlorine-based dry etching containing oxygen can be used.
 次いで、マスクパターン形成工程S22における2つ目の工程として、位相シフトパターン形成工程がおこなわれる。この工程では、パターニングされた反射防止パターン13Pとレジストパターン15Pとを介して位相シフト層12をドライエッチングする。これにより、図12に示すように、位相シフトパターン12Pを形成する。 Next, as the second step in the mask pattern forming step S22, a phase shift pattern forming step is performed. In this step, the phase shift layer 12 is dry-etched via the patterned antireflection pattern 13P and the resist pattern 15P. As a result, as shown in FIG. 12, the phase shift pattern 12P is formed.
 位相シフトパターン形成工程におけるエッチングとしては、フッ素系ドライエッチングを用いることができる。 Fluorine-based dry etching can be used as the etching in the phase shift pattern forming step.
 本実施形態において、位相シフト層12を形成する際に用いられるターゲット104Aは、シリコンに比抵抗を減少させるドーパントを含有する。ボロン濃度が上記の範囲内に設定されることで、ターゲット104Aにおける比抵抗を上記の範囲内に設定することができる。これにより、プラズマを形成するための電力が安定化し、成膜状態でのプラズマが安定し、位相シフト層12を形成することが可能となる。この結果、成膜特性を向上することができる。さらに、位相シフト層12内にドーパントを含有させることができ、位相シフト層12を含むマスク層における膜特性を向上することができる。 In the present embodiment, the target 104A used when forming the phase shift layer 12 contains a dopant that reduces the specific resistance in silicon. By setting the boron concentration within the above range, the specific resistance at the target 104A can be set within the above range. As a result, the electric power for forming the plasma is stabilized, the plasma in the film-forming state is stabilized, and the phase shift layer 12 can be formed. As a result, the film forming characteristics can be improved. Further, the dopant can be contained in the phase shift layer 12, and the film characteristics in the mask layer including the phase shift layer 12 can be improved.
 また、マスク層に対するエッチングレートを増大させて、マスク層に対するパターン形成時におけるエッチング時間を減少させることができる。さらに、ガラス基板に対するマスク層のエッチング速度比が大きくなるため、エッチングの終了を判断するためのエンドポイントの判定に基づき、エッチング工程を容易に制御することができる。このため、ガラス基板11が過剰にエッチングされてしまう深さを最小限に抑制できる。 Further, the etching rate for the mask layer can be increased, and the etching time at the time of pattern formation for the mask layer can be reduced. Further, since the etching rate ratio of the mask layer to the glass substrate becomes large, the etching process can be easily controlled based on the determination of the endpoint for determining the end of etching. Therefore, the depth at which the glass substrate 11 is excessively etched can be minimized.
 さらに、ターゲット104Aは、シリコン単結晶もしくはシリコン多結晶であり、FZ法、CZ法またはキャスト法により形成される。ターゲット104A内におけるドーパントの含有状態の均一性を保ち、プラズマが発生した雰囲気においてもドーパント濃度の均一性を維持し、成膜されたマスク層内におけるドーパント濃度の均一性を維持することができる。 Further, the target 104A is a silicon single crystal or a silicon polycrystal, and is formed by an FZ method, a CZ method, or a casting method. It is possible to maintain the uniformity of the dopant content in the target 104A, maintain the uniformity of the dopant concentration even in the atmosphere where plasma is generated, and maintain the uniformity of the dopant concentration in the film-formed mask layer.
 また、本実施形態のマスクブランクスの製造方法では、マスク層形成工程S12でのスパッタリングがDCスパッタリングを用いることにより、RFスパッタリングによってマスク層を形成した場合に比べて、膜特性の再現性を向上することができる。 Further, in the method for manufacturing mask blanks of the present embodiment, by using DC sputtering for the sputtering in the mask layer forming step S12, the reproducibility of the film characteristics is improved as compared with the case where the mask layer is formed by RF sputtering. be able to.
 これにより、本実施形態のマスクブランクス10Bにおいては、SiNあるいはSiONとされる位相シフト層12が、例えば、B(ボロン)を含む。さらに、ボロン濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる。これにより、ドライエッチングにおけるエッチングレートを、ノンドープのターゲットを用いて成膜した層のエッチングレートに対して、1.05~1.5倍に向上させることができる。 As a result, in the mask blanks 10B of the present embodiment, the phase shift layer 12 represented by SiN or SiON contains, for example, B (boron). Further, the boron concentration is set to be in the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3. As a result, the etching rate in dry etching can be improved by 1.05 to 1.5 times with respect to the etching rate of the layer formed by using the non-doped target.
 これにより、ドーパントを含まない場合に比べて、速いエッチング速度により、エッチング時間を短縮して、パターニングにおける形状の正確性を向上し、より一層の高精細なパターニングに適用することが可能となる。
 これにより、マスク層に対するパターン形成時におけるエッチング時間を減少させ、レジスト層15の表面に対するダメージを抑制し、エッチングにおける形状の正確性を維持して、高精細なパターニングに適用することが可能な位相シフトマスク10を製造することができる。
This makes it possible to shorten the etching time, improve the accuracy of the shape in patterning, and apply it to even higher-definition patterning due to the faster etching rate as compared with the case where the dopant is not contained.
This reduces the etching time during pattern formation on the mask layer, suppresses damage to the surface of the resist layer 15, maintains shape accuracy in etching, and can be applied to high-definition patterning. The shift mask 10 can be manufactured.
 本実施形態において、ドーパントとしてボロンを用いた場合を説明したが、ドーパントとしてリン又はヒ素を用いた場合にも、エッチング速度を向上させることが可能である。 In the present embodiment, the case where boron is used as the dopant has been described, but the etching rate can be improved even when phosphorus or arsenic is used as the dopant.
 さらに、上記の実施形態において説明した複数の構成を個別にあるいは組み合わせて、用いることもできる。 Further, the plurality of configurations described in the above embodiment can be used individually or in combination.
 以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.
 まず、本発明におけるマスクブランクスの具体例として、DCスパッタリング試験について説明する。 First, a DC sputtering test will be described as a specific example of the mask blanks in the present invention.
<実験例1>
 ドーパントがドープされたシリコンからなるターゲットを用いて、反応性スパッタリングをおこない、マスク層を透明基板上に成膜した。また、電源からターゲットに供給するスパッタリング電圧として、DC電圧を印加してDCスパッタリング成膜をおこなった。
 このとき、成膜条件、膜厚を次のように最適化した。
<Experimental Example 1>
Reactive sputtering was performed using a target made of silicon doped with a dopant to form a mask layer on a transparent substrate. Further, a DC voltage was applied as a sputtering voltage supplied from the power source to the target to perform DC sputtering film formation.
At this time, the film forming conditions and the film thickness were optimized as follows.
 波長193nmでの位相差:180deg
 透過率:5.8%
Phase difference at wavelength 193 nm: 180 deg
Transmittance: 5.8%
 スパッタリングにおける諸元を示す。
 基板:石英
 スパッタリング電力:DC 1.5kW
 ターゲット:シリコン
 ドーパント:ボロン(B)
 ドーパント濃度:1×1019atm/cm
 成膜ガス:Ar:10sccm,N:8sccm
The specifications in sputtering are shown.
Substrate: Quartz Sputtering power: DC 1.5kW
Target: Silicon Dopant: Boron (B)
Dopant concentration: 1 × 10 19 atm / cm 3
Film formation gas: Ar: 10 sccm, N 2 : 8 sccm
<実験例2>
 実験例1と同様にボロン等をドープしていないノンドープシリコンからなるターゲットを用いて、反応性スパッタリングをおこない、マスク層を透明基板上に成膜した。
 このとき、成膜条件、膜厚を次のように最適化した。
<Experimental Example 2>
Similar to Experimental Example 1, reactive sputtering was performed using a target made of non-doped silicon not doped with boron or the like, and a mask layer was formed on a transparent substrate.
At this time, the film forming conditions and the film thickness were optimized as follows.
 波長193nmでの位相差:180deg
 透過率:5.8%
Phase difference at wavelength 193 nm: 180 deg
Transmittance: 5.8%
 スパッタリングにおける諸元を示す。
 基板:石英
 スパッタリング電力:DC 1.5kW
 ターゲット:シリコン
 ドーパント:なし
 ドーパント濃度:0atm/cm
 成膜ガス:Ar:10sccm,N:7sccm
The specifications in sputtering are shown.
Substrate: Quartz Sputtering power: DC 1.5kW
Target: Silicon Dopant: None Dopant concentration: 0 atm / cm 3
Film formation gas: Ar: 10 sccm, N 2 : 7 sccm
<実験例3>
 実験例2と同様にボロン等をドープしていないノンドープシリコンからなるターゲットを用いて、反応性スパッタリングをおこない、マスク層を透明基板上に成膜した。
 このとき、成膜条件、膜厚を次のように最適化した。
<Experimental example 3>
Similar to Experimental Example 2, reactive sputtering was performed using a target made of non-doped silicon not doped with boron or the like, and a mask layer was formed on a transparent substrate.
At this time, the film forming conditions and the film thickness were optimized as follows.
 波長193nmでの位相差:180deg
 透過率:5.8%
Phase difference at wavelength 193 nm: 180 deg
Transmittance: 5.8%
 スパッタリングにおける諸元を示す。
 基板:石英
 スパッタリングRF周波数13.56MHz
 スパッタリング電力:1.5kW
 ターゲット:シリコン
 ドーパント:なし
 ドーパント濃度:0atm/cm
 成膜ガス:Ar:10sccm,N:5sccm
The specifications in sputtering are shown.
Substrate: Quartz sputtering RF frequency 13.56MHz
Sputtering power: 1.5kW
Target: Silicon Dopant: None Dopant concentration: 0 atm / cm 3
Film formation gas: Ar: 10 sccm, N 2 : 5 sccm
 実験例1~3において、所定の膜厚が得られるまで成膜するのにかかった時間(成膜時間)と、単位面積当たりで膜表面において観測された0.5μm以上の欠陥数と、10枚連続で成膜した場合の位相差再現性(deg)を測定した。
 ここで、位相差再現性(deg)とは、各基板の平均位相差をモニター値とした場合において、モニター値の最大値と最小値の差を意味する。
 位相差再現性(deg)は、膜厚および光学定数の安定性を示す指標である。
 その結果を表1に示す。
In Experimental Examples 1 to 3, the time required to form a film until a predetermined film thickness was obtained (deposition time), the number of defects of 0.5 μm or more observed on the film surface per unit area, and 10 The phase difference reproducibility (deg) when the film was continuously formed was measured.
Here, the phase difference reproducibility (deg) means the difference between the maximum value and the minimum value of the monitor value when the average phase difference of each substrate is used as the monitor value.
The phase difference reproducibility (deg) is an index showing the stability of the film thickness and the optical constant.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、反応性スパッタリングを行う場合、ターゲットの表面に電圧を誘起する必要があるため、DCスパッタリングするためにはターゲットの抵抗を下げる必要がある。しかし、ノンドープシリコンのような高抵抗のターゲットをスパッタリングするためには、高周波を印加してRFスパッタリングする必要があった。
 上記の結果から、Siにドーパントを添加することでDCスパッタリングが可能になり、成膜時間、欠陥、再現性が改善したことがわかる。
Here, when performing reactive sputtering, it is necessary to induce a voltage on the surface of the target, so that it is necessary to reduce the resistance of the target in order to perform DC sputtering. However, in order to sputter a high resistance target such as non-doped silicon, it was necessary to apply high frequency to perform RF sputtering.
From the above results, it can be seen that by adding a dopant to Si, DC sputtering becomes possible, and the film formation time, defects, and reproducibility are improved.
 特に、実験例3において高濃度にBドープしたシリコンターゲットを用いてDCスパッタリングを行った場合には、実験例2のようにノンドープのシリコンターゲットを用いてDCスパッタリングした場合に比べて、位相差の再現性がよく、また、欠陥が極めて少ない状態で成膜をおこなうことが可能である。
 また、実験例3において高濃度にBドープしたシリコンターゲットを用いてDCスパッタリングした場合には、実験例1のようにノンドープのシリコンターゲットを用いてRFスパッタリングした場合に比べて、位相差の再現性が極めてよく、また、欠陥が少ないことがわかる。
In particular, when DC sputtering was performed using a high-concentration B-doped silicon target in Experimental Example 3, the phase difference was higher than that in the case of DC sputtering using a non-doped silicon target as in Experimental Example 2. It is possible to form a film with good reproducibility and with extremely few defects.
Further, in the case of DC sputtering using a high-concentration B-doped silicon target in Experimental Example 3, the reproducibility of the phase difference is as compared with the case of RF sputtering using a non-doped silicon target as in Experimental Example 1. Is extremely good, and it can be seen that there are few defects.
<実験例4>
 実験例1で得られたマスク層と、マスク層の成膜された石英基板とをドライエッチング処理して、それぞれのエッチング速度(Etching Rate)を評価した。また、その際の、選択比(selectivity)を測定した。
 この結果を図13に示す。
<Experimental Example 4>
The mask layer obtained in Experimental Example 1 and the quartz substrate on which the mask layer was formed were dry-etched, and their respective etching rates (Etching Rate) were evaluated. In addition, the selection ratio (selectivity) at that time was measured.
The result is shown in FIG.
 ドライエッチングにおける諸元を示す。
 プラズマ源:ICP(Inductively Coupled Plasma:誘導結合プラズマ)
 アンテナ電力:1.5kW
 バイアスパワー:0~200W
 ドライエッチング雰囲気の圧力:1.36Pa
 供給ガス:CF:150sccm,O:8sccm
The specifications in dry etching are shown.
Plasma source: ICP (Inductively Coupled Plasma)
Antenna power: 1.5kW
Bias power: 0-200W
Pressure of dry etching atmosphere: 1.36 Pa
Supply gas: CF 4 : 150 sccm, O 2 : 8 sccm
<実験例5>
 実験例4と同様に、実験例3で得られたマスク層と、マスク層の成膜された石英基板とをドライエッチング処理して、それぞれのエッチング速度(Etching Rate)を評価した。また、その際の、選択比(selectivity)を測定した。
 この結果を図13に示す。
<Experimental Example 5>
Similar to Experimental Example 4, the mask layer obtained in Experimental Example 3 and the quartz substrate on which the mask layer was formed were dry-etched, and their respective etching rates (Etching Rate) were evaluated. In addition, the selection ratio (selectivity) at that time was measured.
The result is shown in FIG.
 図13に示す結果から、ボロンがドープ(B-dope)されたターゲットを用いて成膜を行った実験例4においては、ノンドープの実験例5に比べて同じバイアス量でEtching速度が速かったことがわかる。また、選択比に関しても、ボロンがドープ(B-dope)されたターゲットにおいて改善していることがわかる。 From the results shown in FIG. 13, in Experimental Example 4 in which the film was formed using the target doped with boron (B-dope), the Etching speed was faster with the same bias amount as in Experimental Example 5 without doping. I understand. It can also be seen that the selectivity is also improved in the boron-doped target.
<実験例6>
 実験例1で得られたマスク層にCrを主成分とする遮光層と反射防止層とを積層し、さらに、反射防止層にレジスト層を成膜した。
 次いで、これらの積層体を実験例4,5と同様の条件でドライエッチングした。その後、積層体の断面形状を観測した。
 ここで、バイアスパワーを100Wとした。
 実験例6におけるSEM画像を図14に示す。なお、図14において、パターンが形成されたマスク層の付近における石英基板の表面を実線で示している。
<Experimental Example 6>
A light-shielding layer containing Cr as a main component and an antireflection layer were laminated on the mask layer obtained in Experimental Example 1, and a resist layer was further formed on the antireflection layer.
Next, these laminates were dry-etched under the same conditions as in Experimental Examples 4 and 5. After that, the cross-sectional shape of the laminated body was observed.
Here, the bias power was set to 100 W.
The SEM image in Experimental Example 6 is shown in FIG. In FIG. 14, the surface of the quartz substrate in the vicinity of the mask layer on which the pattern is formed is shown by a solid line.
<実験例7>
 実験例6と同様に、実験例3で得られたマスク層にCrを主成分とする遮光層と反射防止層とを積層し、さらに、反射防止層にレジスト層を成膜した。
 次いで、これらの積層体を実験例4,5と同様の条件でドライエッチングした。その後、積層体の断面形状を観測した。
 ここで、バイアスパワーを100Wとした。
 実験例7におけるSEM画像を図15に示す。なお、図15において、パターンが形成されたマスク層の付近における石英基板の表面を実線で示している。
<Experimental Example 7>
Similar to Experimental Example 6, a light-shielding layer containing Cr as a main component and an antireflection layer were laminated on the mask layer obtained in Experimental Example 3, and a resist layer was further formed on the antireflection layer.
Next, these laminates were dry-etched under the same conditions as in Experimental Examples 4 and 5. After that, the cross-sectional shape of the laminated body was observed.
Here, the bias power was set to 100 W.
The SEM image in Experimental Example 7 is shown in FIG. In FIG. 15, the surface of the quartz substrate in the vicinity of the mask layer on which the pattern is formed is shown by a solid line.
 図15に示す結果から、ノンドープのターゲットを用いて成膜を行った実験例7では、選択比が小さいため、石英基板のオーバーエッチが大きくなることがわかる。これにより、実験例7では、位相差にズレが生じるため、フォトマスクとしての光学特性が劣化することがわかる。 From the results shown in FIG. 15, it can be seen that in Experimental Example 7 in which the film was formed using a non-doped target, the overetching of the quartz substrate was large because the selection ratio was small. As a result, in Experimental Example 7, it can be seen that the optical characteristics of the photomask are deteriorated because the phase difference is deviated.
 これに対して、図15に示す結果から、ボロンがドープ(B-dope)されたターゲットを用いて成膜を行った実験例6では、選択比が大きいため、石英基板のオーバーエッチが小さくなることがわかる。これにより、実験例6では、位相差のズレが低減されて、フォトマスクとしての光学特性が改善することがわかる。 On the other hand, from the results shown in FIG. 15, in Experimental Example 6 in which the film was formed using a target doped with boron (B-dope), the selectivity was large, so that the overetch of the quartz substrate was small. You can see that. As a result, in Experimental Example 6, it can be seen that the phase difference shift is reduced and the optical characteristics of the photomask are improved.
 本発明のマスクブランクスの製造方法においては、DC投入パワーを0.1~0.2~4.0kWに設定し、かつ、成膜圧力を0.05~0.6~0.7Paに設定した条件で、前記スパッタリングが実施されてもよい。
 これにより、放電を安定化することができる。
In the method for producing mask blanks of the present invention, the DC input power was set to 0.1 to 0.2 to 4.0 kW, and the film forming pressure was set to 0.05 to 0.6 to 0.7 Pa. The sputtering may be carried out under the conditions.
This makes it possible to stabilize the discharge.
 本発明のフォトマスクの製造方法においては、前記マスクパターン形成工程におけるドライエッチングの条件として、プラズマ形成Powerを0.2~1.0kWに設定し、Bias Powerを10~80Wに設定し、CFを100~200sccmに設定することができる。
 これにより、マスク層に対するパターン形成時におけるエッチング時間を減少させ、レジスト層表面に対するダメージを抑制し、エッチングにおける形状の正確性を維持して、高精細なパターニングに適用することが可能なフォトマスクを製造することができる。
In the method for manufacturing a photomask of the present invention, the plasma forming power is set to 0.2 to 1.0 kW, the Bias power is set to 10 to 80 W, and CF 4 is set as the dry etching conditions in the mask pattern forming step. Can be set to 100 to 200 sccm.
This reduces the etching time during pattern formation on the mask layer, suppresses damage to the resist layer surface, maintains shape accuracy in etching, and makes a photomask that can be applied to high-definition patterning. Can be manufactured.
 10…位相シフトマスク(フォトマスク)
 10A、10B…マスクブランクス
 11…ガラス基板(透明基板)
 12…位相シフト層(マスク層)
 12P…位相シフトパターン(マスクパターン)
 13…反射防止層(マスク層)
 13P…反射防止パターン(マスクパターン)
 15…レジスト層(フォトレジスト層)
 15P…レジストパターン
 100…製造装置
 104A,104B…ターゲット
10 ... Phase shift mask (photomask)
10A, 10B ... Mask blanks 11 ... Glass substrate (transparent substrate)
12 ... Phase shift layer (mask layer)
12P ... Phase shift pattern (mask pattern)
13 ... Antireflection layer (mask layer)
13P ... Anti-reflection pattern (mask pattern)
15 ... Resist layer (photoresist layer)
15P ... Resist pattern 100 ... Manufacturing equipment 104A, 104B ... Target

Claims (15)

  1.  シリコンを含有するマスク層を透明基板に積層したマスクブランクスの製造方法であって、
     比抵抗を減少させるドーパントを含むターゲットを用いて前記マスク層をスパッタリングにより形成する、
     マスクブランクスの製造方法。
    A method for manufacturing mask blanks in which a mask layer containing silicon is laminated on a transparent substrate.
    The mask layer is formed by sputtering using a target containing a dopant that reduces resistivity.
    Manufacturing method of mask blanks.
  2.  前記ターゲットの比抵抗が0.001Ωcm~0.1Ωcmである、
     請求項1に記載のマスクブランクスの製造方法。
    The specific resistance of the target is 0.001 Ωcm to 0.1 Ωcm.
    The method for manufacturing a mask blank according to claim 1.
  3.  前記ドーパントが、ボロン、リン、及びヒ素からなる群より選ばれる1種類以上である、
     請求項1又は請求項2に記載のマスクブランクスの製造方法。
    The dopant is at least one selected from the group consisting of boron, phosphorus, and arsenic.
    The method for manufacturing a mask blank according to claim 1 or 2.
  4.  前記ターゲットは、前記ドーパントがボロンであり、
     ドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる、
     請求項3に記載のマスクブランクスの製造方法。
    In the target, the dopant is boron.
    The dopant concentration is in the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3 .
    The method for manufacturing a mask blank according to claim 3.
  5.  前記ターゲットが、シリコン単結晶もしくはシリコン多結晶である、
     請求項4に記載のマスクブランクスの製造方法。
    The target is a silicon single crystal or a silicon polycrystal.
    The method for manufacturing a mask blank according to claim 4.
  6.  前記スパッタリングに用いられる雰囲気ガスが窒素を含む、
     請求項1から請求項5のいずれか一項に記載のマスクブランクスの製造方法。
    The atmospheric gas used for the sputtering contains nitrogen,
    The method for manufacturing a mask blank according to any one of claims 1 to 5.
  7.  前記スパッタリングに用いられる雰囲気ガスが酸素を含む、
     請求項1から請求項5のいずれか一項に記載のマスクブランクスの製造方法。
    The atmospheric gas used for the sputtering contains oxygen.
    The method for manufacturing a mask blank according to any one of claims 1 to 5.
  8.  前記スパッタリングがDCスパッタリングとされる、
     請求項1から請求項7のいずれか一項に記載のマスクブランクスの製造方法。
    The sputtering is referred to as DC sputtering.
    The method for manufacturing a mask blank according to any one of claims 1 to 7.
  9.  請求項1から請求項8のいずれか一項に記載の製造方法によって製造されたマスクブランクスであって、
     前記マスク層が前記ドーパントとしてボロンを含み、
     前記マスク層のドーパント濃度が、1×1018atm/cm~1×1020atm/cmの範囲内とされる、
     マスクブランクス。
    A mask blank manufactured by the manufacturing method according to any one of claims 1 to 8.
    The mask layer contains boron as the dopant and
    The dopant concentration of the mask layer is in the range of 1 × 10 18 atm / cm 3 to 1 × 10 20 atm / cm 3 .
    Mask blanks.
  10.  前記マスク層のドライエッチングにおけるエッチングレートが、ノンドープのターゲットを用いて成膜した層のエッチングレートに対して1.05~1.5倍である、
     請求項9に記載のマスクブランクス。
    The etching rate in the dry etching of the mask layer is 1.05 to 1.5 times the etching rate of the layer formed by using the non-doped target.
    The mask blanks according to claim 9.
  11.  前記マスク層が窒素または酸素を含む、
     請求項9又は請求項10に記載のマスクブランクス。
    The mask layer contains nitrogen or oxygen,
    The mask blanks according to claim 9 or 10.
  12.  前記マスク層における窒素または酸素の組成比が、膜厚方向において変化している、
     請求項11に記載のマスクブランクス。
    The composition ratio of nitrogen or oxygen in the mask layer changes in the film thickness direction.
    The mask blanks according to claim 11.
  13.  前記マスク層が位相シフト層を含む、
     請求項9から請求項12のいずれか一項に記載のマスクブランクス。
    The mask layer includes a phase shift layer.
    The mask blank according to any one of claims 9 to 12.
  14.  請求項9から請求項13のいずれか一項に記載のマスクブランクスからフォトマスクを製造する方法であって、
     前記マスク層の表面にレジストパターンを形成し、
     前記レジストパターンをマスクとして用いて前記マスク層をパターニングすることでマスクパターンを形成し、
     前記マスクパターンを形成する際には、前記マスク層をドライエッチングする、
     フォトマスクの製造方法。
    A method for manufacturing a photomask from the mask blanks according to any one of claims 9 to 13.
    A resist pattern is formed on the surface of the mask layer to form a resist pattern.
    A mask pattern is formed by patterning the mask layer using the resist pattern as a mask.
    When forming the mask pattern, the mask layer is dry-etched.
    How to make a photomask.
  15.  請求項14に記載の製造方法によって製造された、
     フォトマスク。
    A product manufactured by the production method according to claim 14.
    Photomask.
PCT/JP2021/023360 2020-06-30 2021-06-21 Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask WO2022004456A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022533874A JPWO2022004456A1 (en) 2020-06-30 2021-06-21
CN202180041394.3A CN115698849A (en) 2020-06-30 2021-06-21 Manufacturing method of mask blank, mask blank, manufacturing method of photomask, and photomask
KR1020227043117A KR20230007511A (en) 2020-06-30 2021-06-21 Method for manufacturing mask blanks, method for manufacturing mask blanks, photomask, and photomask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020113378 2020-06-30
JP2020-113378 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004456A1 true WO2022004456A1 (en) 2022-01-06

Family

ID=79316161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023360 WO2022004456A1 (en) 2020-06-30 2021-06-21 Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask

Country Status (4)

Country Link
JP (1) JPWO2022004456A1 (en)
KR (1) KR20230007511A (en)
CN (1) CN115698849A (en)
WO (1) WO2022004456A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431281A (en) * 1977-08-12 1979-03-08 Nec Corp Optical exposure mask
JPH0695363A (en) * 1992-09-11 1994-04-08 Toppan Printing Co Ltd Photomask blank, manufacturing method thereof, and photomask
JP2014222352A (en) * 2014-06-27 2014-11-27 信越化学工業株式会社 Method of producing photomask blank
JP2018194830A (en) * 2017-05-18 2018-12-06 エスアンドエス テック カンパニー リミテッド Phase-shift blankmask and method for fabricating the same
JP2018194829A (en) * 2017-05-18 2018-12-06 エスアンドエス テック カンパニー リミテッド Phase reversal blank mask and photomask

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606264B2 (en) * 2010-10-22 2014-10-15 信越化学工業株式会社 Photomask blank
JP6264238B2 (en) 2013-11-06 2018-01-24 信越化学工業株式会社 Halftone phase shift photomask blank, halftone phase shift photomask, and pattern exposure method
JP6418035B2 (en) 2015-03-31 2018-11-07 信越化学工業株式会社 Phase shift mask blanks and phase shift masks
JP6579219B2 (en) 2018-05-07 2019-09-25 信越化学工業株式会社 Halftone phase shift mask blank and halftone phase shift mask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431281A (en) * 1977-08-12 1979-03-08 Nec Corp Optical exposure mask
JPH0695363A (en) * 1992-09-11 1994-04-08 Toppan Printing Co Ltd Photomask blank, manufacturing method thereof, and photomask
JP2014222352A (en) * 2014-06-27 2014-11-27 信越化学工業株式会社 Method of producing photomask blank
JP2018194830A (en) * 2017-05-18 2018-12-06 エスアンドエス テック カンパニー リミテッド Phase-shift blankmask and method for fabricating the same
JP2018194829A (en) * 2017-05-18 2018-12-06 エスアンドエス テック カンパニー リミテッド Phase reversal blank mask and photomask

Also Published As

Publication number Publication date
CN115698849A (en) 2023-02-03
KR20230007511A (en) 2023-01-12
JPWO2022004456A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US10942442B2 (en) Mask blank, phase-shift mask, and method of manufacturing semiconductor device
US6740208B2 (en) Photo mask blank and method of manufacturing the same
CN111025840B (en) Mask blank, halftone mask, method for manufacturing mask blank, and method for manufacturing halftone mask
JP7110022B2 (en) Photomask and its manufacturing method
WO2022004456A1 (en) Mask blank manufacturing method, mask blank, photomask manufacturing method, and photomask
JP7356857B2 (en) Mask blanks and photomasks
JP2019090910A (en) Mask blank, phase shift mask, and method of manufacturing the same
TWI761942B (en) Photomask substrate, method for manufacturing photomask substrate, photomask, and method for manufacturing photomask
JP7506114B2 (en) MANUFACTURING METHOD OF MASK BLANKS, MASK BLANKS, AND PHOTOMASK
CN113406856B (en) Mask blank, phase shift mask, method for manufacturing mask blank, and method for manufacturing phase shift mask
KR20200136832A (en) Mask blanks, half-tone mask, manufacturing method, and manufacturing apparatus
US20240210813A1 (en) Reflective Mask Blank, Reflective Mask, and Manufacturing Method Thereof
JP7254599B2 (en) Method for manufacturing mask blanks and method for manufacturing phase shift mask
JP7381374B2 (en) Mask blanks, phase shift masks, manufacturing methods
JP7402002B2 (en) Mask blanks, phase shift masks, manufacturing methods
JP7417578B2 (en) Mask blanks and their manufacturing method
JP2023099947A (en) Phase shift mask blank, phase shift mask, production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043117

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832176

Country of ref document: EP

Kind code of ref document: A1