[go: up one dir, main page]

WO2021204210A9 - 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺 - Google Patents

以水泥和"三废"为原料的微纳米材料系列产品及合成工艺 Download PDF

Info

Publication number
WO2021204210A9
WO2021204210A9 PCT/CN2021/085992 CN2021085992W WO2021204210A9 WO 2021204210 A9 WO2021204210 A9 WO 2021204210A9 CN 2021085992 W CN2021085992 W CN 2021085992W WO 2021204210 A9 WO2021204210 A9 WO 2021204210A9
Authority
WO
WIPO (PCT)
Prior art keywords
micro
reaction
calcium
nano composite
nano
Prior art date
Application number
PCT/CN2021/085992
Other languages
English (en)
French (fr)
Other versions
WO2021204210A1 (zh
WO2021204210A8 (zh
Inventor
尹应武
谷传涛
赵升云
赵玉芬
孙韬
师雪琴
Original Assignee
厦门大学
北京紫光英力化工技术有限公司
武夷学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010267749.8A external-priority patent/CN113511665B/zh
Priority claimed from CN202010271486.8A external-priority patent/CN113511834B/zh
Priority claimed from CN202010271488.7A external-priority patent/CN113511666B/zh
Application filed by 厦门大学, 北京紫光英力化工技术有限公司, 武夷学院 filed Critical 厦门大学
Publication of WO2021204210A1 publication Critical patent/WO2021204210A1/zh
Publication of WO2021204210A8 publication Critical patent/WO2021204210A8/zh
Publication of WO2021204210A9 publication Critical patent/WO2021204210A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates

Definitions

  • the invention creates a raw material library of low-cost micro-nano new materials, and creates a new method for large-scale and low-cost production of cost-effective micro-nano composite new products and composite materials using cement and "three wastes" as basic raw materials. field of new materials.
  • Micro-nano materials refer to materials whose size is between the micro-scale and nano-scale, and is a general term for micro-materials and nano-materials. It is generally accepted internationally that the size of micron materials is in the range of 1 ⁇ m to 100 ⁇ m; the size of submicron materials is in the range of 100 nm to 1 ⁇ m; In recent years, micro-nano materials have shown great application potential in improving the performance of composite materials, and various high-performance plastics, rubber and other composite materials are being developed continuously.
  • Natural cement is formed by volcanic eruptions and was first discovered 12 million years ago. Synthetic cement began in the Industrial Revolution (around 1800), and the most commonly used Portland cement is also known as Portland Cement.
  • the industrial production process is to use limestone (calcium carbonate) and sand (silicon dioxide, aluminate) and other raw materials rich in silicon and calcium components and coal in a kiln at 1450 ° C to calcine and melt to form tricalcium silicate as the main component, and contains A molten mass of other components such as aluminates and ferric aluminates, known as "clinker", agglomerated clinker obtained by cooling the molten mass with 15-30% limestone or granulated blast furnace slag and 5% gypsum Mixing and grinding to obtain gray or white powder cement products, the high-temperature flue gas heat generated during the cement melting and combustion process is used for power generation, and the flue gas after dust removal and purification can be discharged up to the standard.
  • limestone calcium carbonate
  • sand
  • the main components of Portland cement clinker are tricalcium silicate (Ca 3 SiO 5 ) and dicalcium silicate (Ca 2 SiO 4 ), which are soluble components with strong alkalinity and reactivity.
  • the hydration and condensation reaction of strong acid and strong acid generate a cross-linked inorganic network polymer, which is the chemical bonding basis for it to become the key bonding component of concrete.
  • the direct application of cement as a filler in synthetic materials has the problems of difficult dispersion, easy agglomeration, poor stability, and easy moisture absorption and agglomeration, which also affects its application expansion.
  • Calcium silicate is an important class of silicates.
  • the structure of calcium silicate can be written as mCaO ⁇ nSiO 2 , which is composed of a combination of silicon-oxygen tetrahedra and calcium ions. It is similar to other silicate structures.
  • the oxygen tetrahedron forms the basic framework, and calcium ions are filled into the voids of the framework to form various calcium silicate crystal structures.
  • calcium silicate exists in the form of siliceous sedimentary rocks in limestone and limestone in nature. In minerals such as diatomaceous earth.
  • calcium silicate is mainly used for fire and heat insulation materials, and is usually used as a safe substitute for high-temperature heat insulation material asbestos.
  • Manufacturing method (CN05271963A), calcium silicate AK thermal fireproof material and its manufacturing method (CN1204678A), calcium silicate heat-resistant material and its manufacturing method (CN1323756A), etc.;
  • Agents such as patented active calcium silicate/rubber composite material and preparation method thereof (CN103131066A), lime bamboo pulp fiber reinforced calcium silicate board (CN101863650A), a preparation method of calcium silicate masterbatch (CN103333369A), nano-silica Calcium silicate fiber and corn gluten composite material and its preparation method and application (CN105664247A), a special calcium silicate fiber for stone paper and its preparation method (CN104448388A), and a preparation method of calcium silicate/polyolefin composite material (CN104403198A) , a water-based polyurethane coating agent (CN105902467A) containing ultra-fine down fiber
  • Its preparation and application patents include a manufacturing method of nano calcium silicate hydrate with silica fume as siliceous raw material (CN102718228A), a preparation method of one-dimensional calcium silicate nanomaterials (CN103449459A), a liquid-phase dynamic hydrothermal A method for preparing calcium silicate powder by a synthetic method (CN107696118A), a porous calcium silicate filter material for water treatment (CN101015755A), a preparation method for a calcium silicate friction material (CN102259876A), silicon carbide with ultra-high specific surface area Calcium acid ultrathin nanosheets and preparation method thereof (CN102923725A) and the like.
  • the nano-calcium silicate uses soluble silicon and calcium such as sodium silicate and calcium chloride.
  • the raw materials are thermally synthesized in a solvent, therefore, the production cost is high, the equipment investment is large, and the production capacity is low. So far, no one has used cement or cement clinker as raw materials to synthesize hydrated calcium silicate nanomaterials, especially three-dimensional micro-nano hydrated calcium silicate or silica nano-products, in a normal pressure water system.
  • Calcium carbonate is an extremely important natural mineral in the earth's crust.
  • the main components of limestone and marble are calcium carbonate; Chemical and other industries have a large number of applications.
  • Powdered calcite calcium carbonate is the most inexpensive and readily available inorganic filler and is widely used.
  • Nanocalcite calcium carbonate also has a production capacity of hundreds of thousands of tons, and has shown good application performance in the fields of synthetic materials, building materials, and papermaking.
  • Aragonite is orthorhombic with a whisker-like morphology.
  • Whisker refers to a single crystal fibrous material with a certain aspect ratio (generally greater than 10) and a cross-sectional area of less than 52 ⁇ 10 -5 cm 2 , with a complete crystal structure, strength and modulus close to complete crystal materials, and excellent mechanical properties .
  • Whisker products have a reinforcing and toughening effect in composite materials. Since the raw material cost of aragonite whisker is low, if the production cost can be further reduced, it will be a powerful substitute for SiC and potassium titanate whiskers with expensive raw materials and production costs, and has great application potential.
  • the preparation of calcium carbonate whiskers has the following methods: (1) soluble calcium salt plus soluble carbonate method; (2) heating Ca(HCO 3 ) 2 solution method; (3) calcium salt in urea hydrolysis method; (4) Ca (OH) 2 -CO 2 gas-liquid-solid three-phase reaction method.
  • Japan Maruo Calcium Co., Ltd. realized the industrial production of calcium carbonate whiskers in 1995.
  • the product can enhance the internal isotropy of the product and the surface is smooth; it has good heat resistance, and the refractive index is close to resin (1.53-1.68). It has been applied in many fields such as medicine and cosmetics (JP19870331453, CN105347362A, CN101033076, CN106048709A). It is valuable to develop a cheaper and simpler production process for aragonite-type calcium carbonate.
  • Calcium sulfate can be divided into whisker-like, flake-like, spindle-like and other crystalline forms according to its morphology, and most of them exist in nature in the form of gypsum ore. Industrial gypsum is not well utilized.
  • Calcium sulfate usually contains two molecules of crystal water (CaSO 4 2H 2 O), commonly known as gypsum, in which Ca 2+ and SO 4 2- form a double-layer structure, in which water molecules combine with Ca 2+ to form crystalline hydrate, gypsum Low hardness, low strength, poor heat resistance, and low use value; calcium sulfate hemihydrate CaSO 4 0.5H 2 O generated by gypsum losing part of its crystal water at 128 °C, commonly known as "plaster of paris” or “calcined gypsum", has relatively Good application value; Gypsum can completely lose water and become anhydrous CaSO 4 only when it is above 163 °C, commonly known as “anhydrite”. °C.
  • Gypsum or calcium sulfate have limited uses, except as a raw material for gypsum board and a cement retarder.
  • the synthesis process of calcium sulfate whiskers mainly uses natural gypsum to prepare semi-aqueous or anhydrous calcium sulfate by hydrothermal method.
  • the R&D team has invented a new process for preparing modified and unmodified calcium sulfate whiskers in an alcohol-water system (application number 201910256421.3).
  • Phosphate fertilizer plants, titanium dioxide plants, citric acid plants, coal-fired power plants flue gas desulfurization, fluorination plants, saline-alkali plants, seawater salt-making enterprises, etc. will by-produce a large amount of gypsum or waste sulfuric acid or mirabilite and other sulfides.
  • Using "three wastes" resources such as sulfuric acid and sulfate and cheap cement as raw materials, it will be very valuable to develop high-quality nano-calcium sulfate or calcium sulfate whiskers.
  • the use of the characteristics of good product fineness, strong alkalinity, calcium-rich, and silicon-rich has the characteristics of solubility, making full use of cement raw materials can occur hydration, carbonization, acid-base neutralization and precipitation, metathesis and other reactions, combined with the "three wastes" resources, it is very valuable to develop a series of micro-nano materials with stable performance, low cost, and various morphologies suitable for different application scenarios and a wide range of fields. It is of great significance to promote the upgrading and structural optimization of products in the material industry as a leading industrial group and a library of micro-nano materials.
  • the invention utilizes large and cheap Portland cement or its clinker for the first time, through direct hydration, dehydration condensation, or adding three waste raw materials such as flue gas, carbon dioxide, sulfur dioxide, dilute sulfuric acid, and ammonium sulfate to carry out metathesis, neutralization, and precipitation.
  • Dehydration condensation and other reactions control different optimized process conditions to synthesize new products with various morphologies covering zero-dimensional nanoparticles, one-dimensional nanowires, two-dimensional nanosheets, and three-dimensional nanonet composites.
  • the present invention is based on large and cheap Portland cement, and hopes to produce micro-nano materials with stable performance, good dispersibility and high cost performance through reactions such as hydration, metathesis, neutralization, precipitation, dehydration and condensation.
  • the present invention provides a micro-nano composite product with three-dimensional network calcium silicate hydrate as the main component, wherein the calcium silicate micro-nano composite product contains micro-nano calcium silicate hydrate, hydroxide Calcium, nano-silica and calcium carbonate, the preparation steps include: mixing cement or cement clinker in an aqueous system at 25-100 ° C by stirring and mixing, and reacting for 3-20 hours (h), during which hydration, Condensation and crystallization molding process, thereby preparing the calcium silicate micro-nano composite product.
  • the calcium silicate micro-nano composite product prepared by the method comprises calcium silicate hydrate three-dimensional network nanorods and calcium hydroxide mixture, adding glycine or other inorganic acids to dissolve calcium hydroxide to obtain hydrated silicic acid Calcium three-dimensional network nanorod products.
  • the present invention provides a two-dimensional sheet and/or one-dimensional linear calcium silicate hydrate micro-nano composite product as the main component, wherein the product contains two-dimensional sheet and one-dimensional linear hydration
  • the preparation steps include: using cement and cement clinker as raw materials, and at the same time, glycine can be added to adjust the ratio of silicon to calcium according to product requirements, and in the water-containing system, Standing reaction, the reaction temperature is 25-80°C, and the reaction time is 1-16h, preferably, the reaction temperature is 80°C, and the reaction time for producing two-dimensional sheet calcium silicate hydrate is 1h; producing one-dimensional linear silicon hydrate Calcium acid reaction time is 4-16h.
  • the invention provides a calcium carbonate-based micro-nano composite product
  • the micro-nano composite product comprises: a composite of modified or unmodified calcite-type nano-calcium carbonate/nano silica and calcium silicate hydrate, Or a composite comprising aragonite calcium carbonate whiskers/nano silica and calcium silicate hydrate
  • the preparation steps of the micro-nano composite product include: mixing cement, cement clinker or lime with lime in an aqueous system, Under the temperature of 25-100 °C, carbon dioxide or flue gas or soluble carbonate is added.
  • a modifier needs to be added at the same time for in-situ modification.
  • the micro-nano composite product is synthesized through hydration to generate silica gel, neutralization precipitation, metathesis and dehydration condensation reactions.
  • the present invention provides a calcium sulfate-based micro-nano composite product, wherein the calcium sulfate-based micro-nano composite product comprises: a composite of calcium sulfate blocks/sheets/rods/whiskers and nano-silica, and the preparation steps include: Put cement and/or cement clinker and its mixture with lime in an aqueous system at 0-100°C, add sulfur compound raw materials, stir and mix, and undergo metathesis, hydration, neutralization, dehydration and condensation reactions for 0.5-10h, Synthesize the calcium sulfate-based micro-nano composite product; the sulfur compound raw material is selected from one or more of sulfuric acid, ammonium sulfate, ammonium sulfite, flue gas to be desulfurized, sulfur dioxide, sulfur trioxide or waste sulfuric acid .
  • the cement is selected from Portland cement and aluminosilicate cement
  • the cement clinker is selected from Portland cement clinker.
  • the reaction temperature is 50-100°C, and the reaction time is 3-20h; preferably, the reaction temperature is 70-100°C, and the reaction time is 5-15h ;
  • the quality of the water in the reaction is at least twice that of the solid raw material, preferably 2-5 times.
  • the composite of synthetic aragonite calcium carbonate whisker/nano silica and calcium silicate hydrate preferably has a reaction temperature of 70-100°C and a reaction time of 4-15h;
  • the reaction temperature is 70-100°C, and the reaction time is 4-10 h;
  • the endpoint pH of the neutralization reaction is 6-8, or the reaction can be stopped at any stage when the pH is greater than 7.
  • the synthesis reaction temperature is 0-100°C, and the reaction time is 0.5-10h; preferably, the one-dimensional product synthesis time is 2-10h; preferably, the reaction temperature is 25-60°C , the reaction time is 1-6h; preferably, the endpoint pH of the neutralization reaction is 6-8, or the reaction is stopped at any stage when the pH is greater than 7.
  • the micro-nano composite product is an aragonite-type calcium carbonate micro-nano composite product, wherein the preparation method is as follows: adding Portland cement or silicic acid not higher than half the amount of water to the metered water under stirring The mixture of salt or quicklime, the product that needs to be modified can be added with modifier at the same time, and the temperature is raised to 50°C-100°C, carbon dioxide gas or flue gas is continuously introduced, and the pH change of the solution is monitored.
  • the pH reaches about 7 as the reaction end point , stop the ventilation, continue to maintain the temperature reaction for more than 2h to ensure the formation of crystals, filter the mixed slurry, wash and dry to obtain the micro-nano composite or its modified product with aragonite-type calcium carbonate whiskers as the main component.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier; preferably, the organic solvent is selected from C1-C4
  • the volume ratio of water and organic solvent is 0.2-5.0:1; the modifier is solid or liquid, and the mass ratio of cement raw material and modifier is 10-1000:1; more preferably, the modifier is It is a small molecule modifier or a polymer modifier; preferably, the small molecule modifier is stearic acid and stearate, and the polymer modifier is a water-soluble polymer modifier or a high molecular weight modifier that can form an emulsion.
  • Molecular modifier preferably in styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea-formaldehyde resin, phenolic resin, bio-based sulfonate One or more of the above; the step also includes, after the reaction is completed, the steps of filtering, washing and drying the reaction mixture.
  • the present invention provides the application of the micro-nano composite product, which is used for cost reduction and quality improvement of synthetic materials, natural materials, and composite materials; preferably, the synthetic materials, natural materials, and composite materials are plastics, rubbers, coatings, Cement, asphalt, sealants, inks, adhesives, concrete or paper.
  • the micro-nano composite product is added to the synthetic, natural or composite material alone, or the micro-nano composite product is added to the synthetic, natural or composite material in combination with other nanomaterials middle.
  • the micro-nano composite product is used in plastics and rubbers to improve tensile strength, impact toughness and processability, for concrete to improve early strength performance, for adhesives to improve bonding strength and water resistance, or Improves softening point, penetration and rutting resistance in asphalt.
  • the present invention provides a reinforcing material, which comprises the micro-nano composite product and any one of synthetic materials, natural materials and composite materials.
  • the invention provides a preparation method of a three-dimensional network calcium silicate micro-nano composite product with calcium silicate hydrate as the main component, wherein the calcium silicate micro-nano composite product contains micro-nano silicon hydrate Calcium acid, calcium hydroxide, nano-silica and calcium carbonate, including steps:
  • the calcium silicate micro-nano composite is prepared by mixing cement or cement clinker in a water-containing system at 25-100 ° C by stirring and mixing for 3-20 hours, during which hydration, condensation and crystallization are carried out. product.
  • the calcium silicate micro-nano composite product prepared by the method comprises calcium silicate hydrate three-dimensional network nanorods and calcium hydroxide mixture, adding glycine or other inorganic acids to dissolve calcium hydroxide to obtain hydrated silicic acid Calcium three-dimensional network nanorod products.
  • the present invention provides a method for preparing a micro-nano composite product with two-dimensional sheet and/or one-dimensional linear calcium silicate hydrate as the main component, wherein the product contains two-dimensional sheet and one-dimensional thread One or two kinds of calcium silicate hydrate, as well as white carbon black and aluminum oxide, including the steps:
  • the reaction temperature is 25-80 ° C
  • the reaction time is 1-16 hours, preferably, the reaction temperature At 80° C.
  • the reaction time for producing two-dimensional flaky calcium silicate hydrate is 1 hour
  • the reaction time for producing one-dimensional linear calcium silicate hydrate is 4-16 hours.
  • the invention provides a preparation method of a calcium carbonate-based micro-nano composite product
  • the micro-nano composite product comprises: modified or unmodified calcite-type nano-calcium carbonate/nano silica, calcium silicate hydrate
  • the composite, or the composite containing aragonite calcium carbonate whisker/nano silica, calcium silicate hydrate, the preparation steps of the micro-nano composite product include:
  • the micro-nano composite product is synthesized by chemical formation into silica gel, neutralization precipitation, metathesis and dehydration condensation reaction.
  • the invention provides a preparation method of a calcium sulfate-based micro-nano composite product, wherein the calcium sulfate-based micro-nano composite product comprises: a composite of calcium sulfate blocks/sheets/rods/whiskers and nano-silica , and its preparation steps include:
  • the sulfur compound raw material is selected from one or more of sulfuric acid, ammonium sulfate, ammonium sulfite, flue gas to be desulfurized, sulfur dioxide, sulfur trioxide or waste sulfuric acid.
  • the cement is selected from Portland cement and aluminosilicate cement, and the cement clinker is preferably Portland cement clinker.
  • the reaction temperature is 50-100° C., and the reaction time is 3-20 hours; preferably, the reaction temperature is 70-100° C. 100 ° C, the reaction time is 5-15 hours; preferably, the quality of the water in the reaction is at least twice that of the solid raw material, preferably 2-5 times;
  • the preferred reaction temperature for synthesizing the composite of aragonite calcium carbonate whiskers/nano silica and calcium silicate hydrate is 70-100 °C, and the reaction time is 4-15 hours; preferably, the reaction temperature is 70-100 °C, and the reaction time is 70-100 °C 4-10 hours; the neutralization reaction has an endpoint pH of 6-8, or stops the reaction at any stage where the pH is greater than 7.
  • the synthesis reaction temperature is 0-100 ° C, and the reaction time is 0.5-10 hours; preferably, the time for synthesizing the product is 2-10 hours; preferably, the reaction temperature 25-60°C, the reaction time is 1-6 hours; preferably, the endpoint pH of the neutralization reaction is 6-8, or the reaction is stopped at any stage when the pH is greater than 7.
  • the preparation method for the aragonite-type calcium carbonate micro-nano composite product is as follows, adding Portland cement or Portland salt or quicklime with a solid-liquid mass ratio in the range of 1/4-1/2 to the metered water under stirring
  • the product that needs to be modified can be added with modifier at the same time, the temperature is raised to 70 °C - 100 °C, carbon dioxide gas or flue gas is continuously introduced, and the pH change of the solution is monitored.
  • the temperature reaction for more than 2 hours to ensure crystal formation, filter the mixed slurry, wash and dry to obtain a micro-nano composite or its modified product with aragonite-type calcium carbonate whiskers as the main component.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier; preferably, the organic solvent Selected from C1-C4 alcohol, DMF; the volume ratio of water and organic solvent is 0.2-5.0:1; the modifier is solid or liquid, and the mass ratio of cement raw material and modifier is 10-1000:1; more preferably
  • the modifier is a small molecule modifier or a polymer modifier; preferably, the small molecule modifier is stearic acid or stearate, and the polymer modifier is a water-soluble polymer modifier or Polymer modifiers that can form emulsions, preferably styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea-formaldeh
  • the invention provides a method for regenerating ammonia-co-produced calcium sulfate-based micro-nano composite products, the method comprises the following steps: in the method for preparing the calcium sulfate-based micro-nano composite products, calcium-based raw materials containing cement
  • the neutralization reaction is carried out, and the industrial by-product ammonium sulfate is used as the raw material for neutralization.
  • the pH value of the end point of the neutralization reaction is controlled to be greater than or equal to 7.
  • heating is performed and ammonia is recovered simultaneously.
  • Portland cement will be hydrated into calcium silicate hydrate with strong bonding effect to stone and sand under the condition of adding water at room temperature to form concrete. Due to the strength, the amount of water added cannot be too much, and the concrete mortar system is very viscous and water The hydration and dehydration process is slow, and it takes about 20 days of long-term hydration and curing to form a dense hydrated calcium silicate-bonded concrete structure. Due to the cross-linking of silica and oxygen through tetrahedra, the concrete material has high strength. This process effectively improves the efficiency of hydration and condensation reactions by increasing the amount of water, mixing and stirring, and increasing the reaction temperature.
  • the first reaction is to absorb water on the surface of the raw material particles, and the reaction generates silica gel.
  • the silica gel will be dehydrated when heated to form a network of macromolecules covering the surface of the raw material, which inhibits the hydrolysis and dissolution of the internal raw material, and needs to rely on the slow penetration and diffusion of water.
  • the action is slow and the reaction is slow, and it also requires calcium ions and hydroxide ions to migrate and update the surface, and it requires a longer time and higher temperature.
  • This three-dimensional network calcium silicate composite product has a large specific surface and good application performance.
  • the optimized process conditions were obtained, which can facilitate the synthesis of calcium silicate hydrate with stable performance, and also contain hydroxide.
  • this cement hydrate product with three-dimensional network "bamboo fungus" structure has excellent use effect, and its comprehensive performance is no less than that of nano-calcium carbonate, white carbon black, titanium dioxide, calcium sulfate whisker and other products:
  • nano-calcium carbonate, white carbon black, titanium dioxide, calcium sulfate whisker and other products In the case of adding a large proportion, it can still be evenly dispersed into plastics, rubber, asphalt, etc., and maintain or significantly improve the tensile strength, impact toughness or flexural strength of composite plastics; it can also significantly improve the bonding strength of adhesives , showing a huge cost-effectiveness advantage in quality improvement and cost reduction and a huge potential for development and application.
  • the present invention creates a new way of producing micro-nano products with three-dimensional network structure characteristics through a simple hydration molding process on a large scale and at low cost through a simple hydration molding process as a raw material, which is of great significance for the development of cost-effective composite materials.
  • the present invention provides a micro-nano composite product with three-dimensional network calcium silicate hydrate as the main component (also called three-dimensional network calcium silicate micro-nano composite product), preparation method and application.
  • the present invention first provides a micro-nano composite product with three-dimensional network calcium silicate hydrate as the main component, wherein the calcium silicate micro-nano composite product contains micro-nano calcium silicate hydrate, hydroxide Calcium, nano-silica and calcium carbonate, its preparation steps include:
  • the calcium silicate micro-nano composite product is prepared by mixing cement or cement clinker in a water-containing system at 25-100 ° C by stirring and mixing for 3-20 hours, during which hydration, condensation and crystallization are carried out. .
  • the calcium silicate micro-nano composite product prepared by the method comprises calcium silicate hydrate three-dimensional network nanorods and calcium hydroxide mixture, adding glycine or other inorganic acids to dissolve calcium hydroxide to obtain hydrated silicic acid Calcium three-dimensional network nanorod products.
  • the cement is selected from Portland cement, aluminosilicate cement.
  • the cement clinker is preferably Portland cement clinker.
  • the reaction temperature is 50-100° C. and the reaction time is 3-20 h for the calcium silicate micro-nano composite product with three-dimensional network calcium silicate hydrate as the main component.
  • the reaction temperature is 70-100°C, and the reaction time is 5-15h; further preferably, the reaction temperature is 70-100°C, and the reaction time is 5-10h.
  • the quality of the water in the reaction is at least twice that of the solid raw material to ensure a better flow and mixing state, preferably 2-5 times.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier.
  • the organic solvent is selected from C1-C4 alcohols, DMF.
  • the volume ratio of water and organic solvent is 0.2-5.0:1.
  • the modifier is solid or liquid, and the mass ratio of cement raw material and modifier is 10-1000:1.
  • the modifier is a small molecule modifier or a polymer modifier.
  • the small molecule modifier is stearic acid, stearate.
  • the polymer modifier is a water-soluble polymer modifier or a polymer modifier that can form an emulsion, preferably styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol , one or more of polyethylene glycol, urea-formaldehyde resin, phenolic resin, and bio-based sulfonate; preferably, the bio-based sulfonate is lignosulfonate or cellulose sulfonate.
  • the steps of filtering, washing and drying the reaction mixture are also included.
  • the washing solvent is water or ethanol
  • the drying temperature is 100°C-200°C
  • the drying time is 0.5h-24h.
  • the present invention provides the application of the calcium silicate micro-nano composite product, which is used for cost reduction and quality improvement of synthetic materials, natural materials and composite materials.
  • the synthetic material, natural material, composite material is plastic, rubber, paint, cement, asphalt, sealant, ink, adhesive or paper.
  • the calcium silicate micro-nano composite product is used in concrete to improve early strength properties, for plastics and rubber to improve tensile strength and impact toughness, or for asphalt to improve softening point and penetration and Rutting resistance.
  • the calcium silicate micro-nano composite product is added to the synthetic material, natural material or composite material alone, or the calcium silicate micro-nano composite product is added to the synthetic material, natural material or composite material in combination with other nanomaterials. in composite materials.
  • the three-dimensional network of calcium silicate hydrate as the main component of the micro-nano composite product can be about 10% heavier than the raw material.
  • Calcium acid, nano-silica, calcium hydroxide, calcium carbonate and a small amount of alumina, iron oxide, etc., the content of calcium, silicon, oxygen, aluminum and iron in the product is close to the content of the hydrate obtained by the complete hydration of the input raw materials.
  • the mixture of cement hydration products obtained from the new product can be used directly without separation, or it can be used after removing calcium hydroxide through a 200-mesh sieve, and it can also be used after purifying glycine to obtain a single three-dimensional network of calcium silicate hydrate.
  • the preparation process for obtaining the three-dimensional network calcium silicate micro-nano composite product of the present invention includes the following steps:
  • the basic cement raw materials are mixed and stirred evenly in a water-containing system with more than 2 times the amount, and the reaction is carried out at about 70 °C to 100 °C for 4-8 hours. Drying can obtain a three-dimensional network calcium silicate micro-nano composite product with calcium silicate hydrate as the main component.
  • the present invention also provides a reinforcing material, which comprises the above-mentioned three-dimensional network calcium silicate micro-nano composite product and any one of synthetic materials, natural materials and composite materials.
  • the synthetic or natural material is plastic, rubber, paint, sealant, ink, adhesive or paper.
  • the present invention also provides a method for producing amorphous nano-silica particles (white carbon black), which is to add acid and continue the reaction after preparing the calcium silicate micro-nano composite product using the above method,
  • the amorphous nano-silica particles are prepared; or, an acid is added to the raw material for preparing the calcium silicate micro-nano composite product using the above method to prepare the amorphous nano-silica particles.
  • Cement clinker can be used to produce white carbon black by treating with acid such as hydrochloric acid in the early or late stage of the hydration reaction, and compounding to obtain a three-dimensional network calcium silicate hydrate/amorphous nano-silica composite product.
  • the mass ratio of hydrogen chloride and raw materials is 1:10-7:10, and the reaction temperature is -10°C-100°C.
  • the acid is preferably hydrochloric acid.
  • reaction principle and process reaction formula of obtaining the above-mentioned three-dimensional network calcium silicate micro-nano composite product are as follows:
  • ordinary Portland cement or aluminosilicate cement is reacted with an optimized amount of water or a water-organic solvent mixed solution at a certain temperature, which can be directly heated for hydration, and a modifier can also be added at the same time for crystal formation. and morphology control, after heat preservation, mixing reaction for a suitable time, filtering, washing and drying according to conventional methods to obtain a series of micro-nano inorganic composite materials.
  • water/alcohol mixed solvents and modifiers can be used for in-situ modification to prepare modified and unmodified three-dimensional network structure micro-nano product series.
  • the results show that the reaction temperature can be from room temperature (25 °C) Slowly rising to 100 °C, calcium silicate hydrate and calcium hydroxide are mainly produced in the reaction process.
  • the product morphology and crystal form will change with the increase of temperature and time. It can be obtained at 80 °C and above 8h.
  • the calcium silicate micro-nano composite product with three-dimensional network "bamboo fungus" morphology, the mass yield of the crude product is about 1.1 times that of the raw cement (see Table 4 and Figures 1-14).
  • two-dimensional sheet calcium silicate composite products Like three-dimensional products, two-dimensional sheet calcium silicate composite products also have large specific surface area and good application performance. After application evaluation, it is proved that this cement hydrate product with two-dimensional sheet structure has excellent covering and filling effects, and its comprehensive performance is no less than that of nano-calcium carbonate, silica, titanium dioxide, calcium sulfate whiskers and other products; especially It shows a huge cost-effective advantage of quality improvement and cost reduction and a huge development and application potential in improving the coating coverage rate, the early strength performance of cement, and the bonding strength of adhesives.
  • the present invention also provides a method for producing micro-nano composites with two-dimensional sheet-like and one-dimensional linear calcium silicate hydrate as main components, the method comprising using cement and cement clinker as raw materials, any
  • glycine can be added to adjust the silicon-calcium ratio according to the product requirements, in the aqueous system, the reaction is allowed to stand, the reaction temperature is 25-100 ° C, and the reaction time is 0.5-16 hours, preferably, the reaction temperature is 70-90 ° C, and the production
  • the reaction time of two-dimensional sheet calcium silicate hydrate is 1-2 hours; the reaction time of producing one-dimensional linear calcium silicate hydrate is 4-16 hours.
  • the cement is selected from Portland cement and aluminosilicate cement
  • the cement clinker is preferably Portland cement clinker.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier; preferably, the organic solvent is selected from C1-C4
  • the volume ratio of water and organic solvent is 0.2-5.0:1; the modifier is solid or liquid, and the mass ratio of cement raw material and modifier is 10-1000:1; more preferably, the modifier is It is a small molecule modifier or a polymer modifier; preferably, the small molecule modifier is stearic acid and stearate, and the polymer modifier is a water-soluble polymer modifier or a high molecular weight modifier that can form an emulsion.
  • Molecular modifier preferably in styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea-formaldehyde resin, phenolic resin, bio-based sulfonate One or more of the above; the method also includes, after the reaction, the steps of filtering, washing and drying the reaction mixture.
  • the present invention also proposes to develop large-scale, low-cost production by using large and cheap cement and flue gas as raw materials to generate silica gel through hydration, neutralization and precipitation, metathesis, dehydration and condensation and other reactions.
  • Cost-effective nano-calcium carbonate/silica micro-nano composite products and new processes have enriched the micro-nano raw material library.
  • the clinker components such as dicalcium silicate and tricalcium silicate in the cement mixture are alkaline, they can be hydrolyzed to form a mixture of calcium silicate hydrate and calcium hydroxide.
  • Soluble carbonate can promote the reaction of hydration to form silica gel, metathesis and neutralization of precipitation to form calcium carbonate, and dehydration and condensation to form silica.
  • the aragonite-type calcium carbonate crystals which are usually difficult to obtain, are unexpectedly obtained at a reaction temperature of about 70 °C and a relatively low amount of water. must.
  • the silica gel polymer can be dehydrated on the crystal surface to form a film or granular silica, so the product has a large specific surface area.
  • the better application effect of carbon black and titanium dioxide can significantly improve the early strength performance of concrete, greatly increase its addition in plastics, rubber, asphalt, etc., improve the tensile strength and impact toughness of materials, and improve the softening point, Penetration, rutting resistance, outstanding performance in enhancing the adhesive force of adhesives, etc., have significant cost-effective advantages of quality improvement and cost reduction and huge development potential.
  • the present invention opens up a new way for large-scale, low-cost and simple production of high-performance calcium carbonate-based micro-nano materials using cement as a raw material, which is of great significance for the development of cost-effective composite new materials.
  • the present invention provides a calcium carbonate-based micro-nano composite product
  • the micro-nano composite product comprises: modified or unmodified calcite-type nano-calcium carbonate/nano silica, hydrated polymeric silicic acid Calcium complex, or a complex comprising aragonite calcium carbonate whisker/nano silica, hydrated polymeric calcium silicate
  • the preparation steps of the micro/nano composite product include:
  • cement clinker or its water-containing system with lime at a temperature of 25-100 °C introduce carbon dioxide or flue gas or add soluble carbonate.
  • modify it is necessary to add modifiers for in-situ modification.
  • the reaction is carried out for 0.5-15 h under stirring and mixing conditions, and the micro-nano composite product is synthesized by hydration, neutralization, metathesis, and dehydration condensation reactions.
  • the cement is selected from Portland cement and aluminosilicate cement; preferably, the cement clinker is preferably Portland cement clinker.
  • the reaction temperature is 50-100°C, and the reaction time is 3-15h; preferably, the reaction temperature is 70-100°C, and the reaction time is 4-10h; 90°C, 100°C.
  • the reaction time was 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h.
  • the neutralization reaction has an endpoint pH of 6-8, or the reaction can be stopped at any stage where the pH is greater than 7.
  • the quality of water in the reaction is at least twice that of the solid raw material, preferably 2-5 times.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier; preferably, the organic solvent is selected from C1-C4
  • the volume ratio of water and organic solvent is 0.2-5.0:1; the modifier is solid or liquid, and the mass ratio of cement raw material and modifier is 10-1000:1.
  • the modifier is a small molecule modifier or a polymer modifier; preferably, the small molecule modifier is stearic acid and stearate, and the polymer modifier is a water-soluble polymer modifier agent or polymer modifier that can form emulsion, preferably styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea-formaldehyde resin, phenolic resin , one or more of bio-based sulfonates; preferably, the bio-based sulfonates are lignosulfonates or cellulose sulfonates.
  • the method further includes, after the reaction is completed, the steps of filtering, washing and drying the reaction mixture.
  • the washing solvent is water or ethanol
  • the drying temperature is 100°C-200°C
  • the drying time is 0.5h-24h.
  • the present invention provides the application of the micro-nano composite product, which is used for cost reduction and quality improvement of synthetic materials, natural materials and composite materials; preferably, the synthetic materials, natural materials and composite materials are plastics, rubbers, coatings , cement, asphalt, sealants, inks, adhesives or paper.
  • the micro-nano composite product is added to the synthetic material, natural material or composite material alone, or the calcium carbonate-based micro-nano composite product is added to the synthetic material, natural material or composite material in combination with other nanomaterials in the material.
  • the calcium carbonate-based micro-nano composite product is used in plastics and rubber to improve tensile strength, impact toughness and processability, for concrete to improve early strength performance, and for adhesives to improve bonding strength and water resistance , or used in asphalt to improve softening point, penetration and rutting resistance.
  • the present invention provides a reinforcing material, which comprises the calcium carbonate-based micro-nano composite product, and any one of synthetic materials, natural materials, and composite materials.
  • the synthetic method of the micro-nano composite product of aragonite-type calcium carbonate whisker and silica is as follows:
  • a series of zero-dimensional nanoparticle and one-dimensional nanowhisker composite products or in combination with other synthetic materials, natural materials, and composite materials can develop more cost-effective composite materials.
  • the results of product characterization showed that aragonite-type and calcite-structured calcium carbonate and silica were formed in the early stage of the reaction, and the aragonite-type/silica composite could be converted to an aragonite-type/silica compound by prolonging the reaction time. After drying, the product increases by about 30% relative to the cement raw material. At the same time, we also found that a small amount of polymer styrene-acrylic emulsion can promote the formation of aragonite, while a large amount has an inhibitory effect, and the mixed solvent containing alcohol also has an inhibitory effect.
  • the aragonite-type calcium carbonate prepared under the optimized process conditions is whisker-like, the aspect ratio can reach 30, the calcite calcium carbonate is block-like, and the silica is block-like (see Figure 16-28 and the elemental analysis results in Table 13). ).
  • the present invention also successfully develops the production of calcium sulfate-based micro-nano composite products by using cement as raw material and utilizing "three wastes" and sulfide resources, and expands the library of micro-nano raw materials.
  • Whiskers are attached to nano-silica and a small amount of iron oxide, alumina micro-nano composite new product, product characterization and application performance evaluation results show that calcium sulfate / nano-silica composite has better than common nano-calcium carbonate, silica , titanium dioxide, calcium sulfate whiskers have better dispersion and application effects, significantly improve the early strength of concrete, and add a large proportion to composite materials such as plastics can still basically maintain or improve the tensile strength, flexural strength and impact toughness of composite materials , which can significantly enhance the peel strength of polyurethane artificial leather and the adhesive force of the adhesive, and the cost-effective advantage of improving quality and reducing cost is significant.
  • ordinary Portland or Portland cement clinker and an optimized amount of water or a water-organic solvent mixed solution are heated and hydrated at a certain temperature, while the flue gas containing sulfur dioxide is introduced into flue gas or sulfuric acid is added, or sulfuric acid is added.
  • flue gas containing sulfur dioxide is introduced into flue gas or sulfuric acid is added, or sulfuric acid is added.
  • ammonium is neutralized, ammonia is recovered at the same time, and modifier or polymer modifier can also be added to control the crystal form and morphology.
  • filter according to conventional methods filter according to conventional methods. Wash and dry at higher temperature to obtain a series of micro-nano inorganic composite products.
  • the present invention has created a new way of using cement as raw material to produce high-performance micro-nano new materials on a large scale and at a low cost. , is of great significance for the large-scale development of cost-effective composite new materials.
  • the present invention provides a calcium sulfate-based micro-nano composite product, wherein the calcium sulfate-based micro-nano composite product comprises: a composite of calcium sulfate blocks/sheets/rods/whiskers and nano-silica , and its preparation steps include:
  • the calcium sulfate-based micro-nano composite product is synthesized.
  • the preferred product form is a one-dimensional calcium sulfate whisker/silica composite.
  • the sulfur compound raw material is selected from one or more of sulfuric acid, ammonium sulfate, ammonium sulfite, flue gas to be desulfurized, sulfur dioxide, sulfur trioxide or waste sulfuric acid.
  • the cement is selected from Portland cement and aluminosilicate cement; the cement clinker is preferably Portland cement clinker.
  • the reaction temperature is 25-80°C, and the reaction time is 2-8h; preferably, the reaction temperature is 25-60°C, and the reaction time is 2-6h.
  • the reaction time is 4-8h.
  • the neutralization reaction has an endpoint pH of 6-8, or the reaction can be stopped at any stage where the pH is greater than 7.
  • the quality of water in the reaction is at least twice that of the solid raw material, preferably 2-5 times.
  • the water-containing system is selected from water, a mixed system of water and an organic solvent, an aqueous solution added with a modifier, or a mixed system of water and an organic solvent added with a modifier; for one-dimensional calcium sulfate whisker/nano white Carbon black product, preferably, the organic solvent is selected from C1-C4 alcohol and DMF; the volume ratio of water and organic solvent is 0.2-5.0:1; the modifier is solid or liquid, and the mass ratio of cement raw material and modifier 10-1000:1.
  • the modifier is a small molecule modifier or a polymer modifier; preferably, the small molecule modifier is stearic acid or stearate, and the polymer modifier is a water-soluble polymer modifier Or a polymer modifier that can form an emulsion, preferably styrene-acrylic emulsion, sodium lignin, pure acrylic emulsion, silicon pure acrylic emulsion, fluorine pure acrylic emulsion, polyvinyl alcohol, polyethylene glycol, urea-formaldehyde resin, phenolic resin, One or more of bio-based sulfonates; preferably, the bio-based sulfonates are lignosulfonates or cellulose sulfonates.
  • the steps of filtering, washing and drying the reaction mixture are also included.
  • the washing solvent is water or ethanol
  • the drying temperature is 100°C-200°C
  • the drying time is 0.5h-24h.
  • the present invention provides the application field of the calcium sulfate-based micro-nano composite product, wherein it is used for cost reduction and quality improvement of synthetic materials, natural materials and composite materials; preferably, the synthetic materials, natural materials , the composite material is plastic, rubber, paint, cement, asphalt, sealant, ink, adhesive or paper; more preferably, calcium sulfate-based micro-nano composite product is added to the synthetic material, natural material or composite material separately , or the calcium sulfate-based micro-nano composite product is combined with other nano-materials and added to the synthetic material, natural material or composite material.
  • the calcium sulfate-based micro-nano composite product is used in plastics and rubber to improve tensile strength, impact toughness and processability, for polyurethane leather to improve peel strength, and for adhesives to improve bonding strength and water resistance , or used in asphalt to improve softening point, penetration and rutting resistance.
  • the present invention also provides a reinforcing material, which comprises the above-mentioned micro-nano composite product, and any one of synthetic materials, natural materials, and composite materials.
  • the present invention also provides a new method for regenerating ammonia, which comprises the following steps:
  • the calcium-based raw material containing cement is used for neutralization reaction, and the industrial by-product ammonium sulfate is used as the raw material for neutralization.
  • the process also recovers ammonia gas.
  • reaction equation in the preparation method of the above-mentioned micro-nano composite product is as follows:
  • the process tracking shows that: as the reaction proceeds, calcium sulfate dihydrate and hemihydrate and amorphous nano-silica can be detected, and the prepared calcium sulfate can be whisker, flake or block structure, and the temperature is 100-200°C.
  • the crystal form of the product after being completely dried is mainly calcium sulfate hemihydrate. After the product is completely dried, the increase is about 40% relative to the cement raw material (see Figures 29-35 and Table 18 for elemental analysis results).
  • the product of the present invention is carried out according to the conventional plastic filler detection and evaluation method, and the steps are as follows:
  • Step (1) take by weight 100 parts of plastics and add the micro-nano composite products of different parts to fully mix;
  • Step (2) adding the mixture obtained in step (1) into an internal mixer, and after melt extrusion, dicing, cooling and drying to obtain a finished composite material.
  • the extruder barrel temperature is 180-200°C
  • the screw speed is 30-40 rpm
  • the melt mixing and stirring time is 15 minutes.
  • the product of the present invention is carried out by conventional concrete detection and evaluation methods, and the steps are as follows:
  • Step (1) weigh a total of 100 parts of cement clinker and micro-nano composite products according to different proportions and mix;
  • Step (2) take by weighing different quality water according to a certain water-cement ratio, join in the gained mixture of step (1), carry out full mixing by planetary mixer;
  • Step (3) put the mixture obtained in step (2) into a 20mm ⁇ 20mm ⁇ 20mm trial mold, standardize for 24h, disassemble the mold, and continue standard curing to obtain the finished composite material;
  • the water-cement ratio is 0.27-0.31
  • the standard curing conditions refer to curing the test block in an environment with a temperature of 20 ⁇ 3°C and a relative humidity of more than 90%, and the age is 3 days, 7 days and 28 days.
  • the product of the present invention is carried out according to the conventional modified asphalt detection and evaluation method, and the steps are as follows:
  • Step (1) weigh a total of 100 parts of asphalt and micro-nano composite products according to different proportions
  • Step (2) put the asphalt into the kneader, heat it to a certain temperature to melt the asphalt, add the micro-nano composite product weighed in step (1) under the mixing conditions, and continue to mix for a certain period of time at this temperature to obtain modified asphalt;
  • the asphalt models are National Standard No. 70 and No. 90, the heating temperature is 130-140°C, and the mixing time is 25-35 minutes.
  • the product of the present invention is carried out by conventional binder detection and evaluation methods, and the steps are as follows:
  • Step (1) grinding the micro-nano composite product, passing through a 200-mesh sieve, and configuring it with the styrene-acrylic emulsion into a composite glue with a mass fraction of 5%, 10%, and 30%;
  • Step (2) cut the bamboo strips into sections (length 10cm), wash them with water, and dry them in a 63°C oven for 24h after natural air-drying;
  • Step (3) take a thin bamboo sheet and apply glue, dry it in an oven at 63°C for 2min (slightly cured), hot-press, and place for one day;
  • Step (4) Utilize universal chemistry testing machine to test the tensile strength of the specimens, and test 5 samples (the results are averaged);
  • Step (5) respectively carry out the water resistance test in a 63°C water bath for 3 hours and a 100°C water bath for 8 hours. After the test, observe and record the change in the bonding of the splines, and test 4 samples in each group;
  • the hot pressing temperature is 100-180° C.
  • the pressure is 10-25 MPa
  • the time is 5-10 min.
  • the zero-dimensional and one-dimensional micro-nano composite products prepared by the invention have many advantages such as cheap and easy-to-obtain raw materials, simple production process, good product performance, wide application range, large-scale, low-cost, clean production, etc.
  • One of the highlights of the present invention is that through repeated exploration and process optimization, a simple, economical, fast and convenient new method that can directly hydrate a large amount of cheap ordinary Portland cement to produce three-dimensional network micro-nano products is innovated.
  • the second highlight of the present invention is that a new modified and unmodified micro-nano composite material with whisker-like aragonite calcium carbonate as the main component was accidentally obtained by using cheap Portland cement, and a better enhanced toughness was found. can.
  • the third highlight of the present invention is to use cheap Portland cement and "three wastes" as raw materials to produce high-performance calcium sulfate whiskers as the main component of modified and non-modified new micro-nano composite products at low cost to enhance toughness. better.
  • a series of micro-nano composite products can be used alone or further compounded as fillers, additives or modifiers for plastics, rubber, coatings, cement, asphalt, sealants, inks, adhesives, paper or composite materials. Play the role of strengthening and toughening, increase adhesion and reduce costs, and promote the development of various composite materials with higher cost performance.
  • Fig. 1 and Fig. 2 are the XRD and SEM traces of the synthesized calcium silicate micro-nano composite products using Portland cement at different temperatures in Example 1.
  • Example 3 and 4 are XRD and SEM trace diagrams of the formation process of calcium silicate hydrate using Portland cement as raw material in Example 2.
  • FIG. 5 is a SEM trace diagram of the analysis of the influence of different time on the quality of calcium silicate micro-nano composite products using Portland cement clinker as raw material in Example 3.
  • FIG. 5 is a SEM trace diagram of the analysis of the influence of different time on the quality of calcium silicate micro-nano composite products using Portland cement clinker as raw material in Example 3.
  • FIG. 6 is the XRD and SEM trace diagrams of analyzing the influence of different water amounts on the quality of calcium silicate micro-nano composite products using Portland cement raw materials in Example 4.
  • FIG. 6 is the XRD and SEM trace diagrams of analyzing the influence of different water amounts on the quality of calcium silicate micro-nano composite products using Portland cement raw materials in Example 4.
  • FIG. 7 is the XRD and SEM trace diagrams of the stability of the calcium silicate micro-nano composite product synthesized from Portland cement as raw material in Example 5 at different drying temperatures.
  • FIG. 8 is the XRD and SEM trace diagrams of the calcium silicate micro-nano composite product synthesized by using cement and cement clinker in Example 6.
  • FIG. 8 is the XRD and SEM trace diagrams of the calcium silicate micro-nano composite product synthesized by using cement and cement clinker in Example 6.
  • Fig. 9, Fig. 10, Fig. 11 are that the product d obtained in Example 6 is sieved with a 200-mesh sieve, and the characterization results of XRD, SEM, and EDS of the sieved and sieved residues, among which Fig. 10, Fig. 11 The EDS elemental analysis of the oversize product and the undersize product after the clinker hydration product is screened, respectively.
  • FIG. 12 is the XRD characterization result of the three-dimensional network calcium silicate hydrate material prepared by purification of glycine in Example 7.
  • FIG. 12 is the XRD characterization result of the three-dimensional network calcium silicate hydrate material prepared by purification of glycine in Example 7.
  • Example 13 is the XRD and SEM images of the three-dimensional network calcium silicate micro/nano composite product synthesized in Example 8 treated with different amounts of acid.
  • Figure 14 is a schematic diagram of the reaction process for preparing micro-nano materials by the reaction of Portland cement and water.
  • Figures 15-1 and 15-2 are the SEM and XRD characterization results of the two-dimensional sheet calcium silicate material synthesized by using cement clinker under standing conditions in Example 9.
  • FIG. 16 is the XRD and SEM images of the aragonite-type calcium carbonate composite products prepared at different temperatures in Example 10.
  • FIG. 16 is the XRD and SEM images of the aragonite-type calcium carbonate composite products prepared at different temperatures in Example 10.
  • FIG. 17 is the XRD and SEM images of the aragonite-type calcium carbonate composite product prepared at different reaction times in Example 11.
  • FIG. 17 is the XRD and SEM images of the aragonite-type calcium carbonate composite product prepared at different reaction times in Example 11.
  • FIG. 18 is a time tracking SEM image of carbonization of Portland cement clinker to generate aragonite calcium carbonate composite in Example 12.
  • FIG. 18 is a time tracking SEM image of carbonization of Portland cement clinker to generate aragonite calcium carbonate composite in Example 12.
  • FIG. 19 is the XRD and SEM images of the aragonite-type calcium carbonate composite products prepared with different solid-to-liquid ratios in Example 13.
  • FIG. 19 is the XRD and SEM images of the aragonite-type calcium carbonate composite products prepared with different solid-to-liquid ratios in Example 13.
  • Example 20 is the XRD and SEM images of the aragonite-type calcium carbonate composite products prepared under different ventilation speeds in Example 14.
  • FIG. 21 is the XRD pattern and the SEM pattern of Example 15 under different stirring speeds of the shale-type calcium carbonate composite product.
  • FIG. 22 is the XRD and SEM images of the aragonite-type calcium carbonate composite product processed under different drying conditions in Example 16.
  • FIG. 22 is the XRD and SEM images of the aragonite-type calcium carbonate composite product processed under different drying conditions in Example 16.
  • Example 23 is the XRD and SEM images of the synthesized calcite-type calcium carbonate composite product in the alcohol-water mixed solvent of Example 17.
  • Figure 24 is the XRD and SEM images of the calcite-type calcium carbonate composite product obtained after adding sodium lignin polymer modifier in Example 18.
  • Figure 25 is the XRD and SEM images of the composite products of aragonite-type calcium carbonate and calcite-type calcium carbonate that can be synthesized by adding polymer styrene-acrylic emulsion in Example 19.
  • Figure 26-1, Figure 26-2, Figure 27 are the XRD and SEM images of the composite product prepared in Example 20.
  • Figure 28 is a schematic diagram of the reaction process of the reaction between Portland cement and carbon dioxide to generate micro-nano materials.
  • Figures 29 and 30 are the XRD and SEM tracking results in the process of preparing calcium sulfate with cement under different conditions in Example 21.
  • Figure 31 shows the XRD and SEM tracking results of the calcium sulfate micro-nano composite product prepared in the alcohol/water mixed solvent in Example 22.
  • Figure 32 shows the XRD and SEM characterization results of calcium sulfate micro-nano composite products prepared by adding different modification additives in Example 23.
  • Figure 33 shows the XRD and SEM tracking results of the calcium sulfate micro-nano composite product prepared by using Portland cement and ammonium sulfate as raw materials in Example 24.
  • Figure 34-1 and Figure 34-2 are the XRD and SEM tracking analysis results of the calcium sulfate micro-nano composite product prepared from cement clinker in Example 25 under different drying conditions.
  • Figure 35 is a schematic diagram of the reaction process of the reaction of Portland cement and sulfate to generate micro-nano materials.
  • Calcium silicate hydrate synthesized by the precipitation method of sodium silicate and calcium chloride
  • Carbon dioxide gas Linde gas, purity ⁇ 99.9%;
  • Polypropylene resin Ningbo Fude Energy Co., Ltd.;
  • Polypropylene resin Formosa Plastics Group
  • Circulating water vacuum pump Gongyi Yuhua Co., Ltd., SHZ-(III);
  • Vacuum drying oven Gongyi Yuhua Co., Ltd., DZF-6020;
  • Microcomputer-controlled electronic universal testing machine AGS-X, 10N-10kN+250mm;
  • Computer-controlled automatic cement pressure testing machine Jinan Meites Testing Technology Co., Ltd., YAW-300C;
  • Asphalt Penetration Meter Cangzhou Xinke Construction Instrument Co., Ltd., SYD-2801F;
  • Asphalt softening point tester Cangzhou Xinke Construction Instrument Co., Ltd., SYD-2806;
  • Asphalt extensometer Cangzhou Xinke Construction Instrument Co., Ltd., LYY-7A;
  • Elemental analysis Shimadzu EDX-7000 energy dispersive X-ray fluorescence analyzer.
  • Example 1 Preparation of calcium silicate micro-nano composite products by following different reaction temperatures using Portland cement as raw material
  • Fig. 1 and Fig. 2 are the XRD and SEM tracking of the synthesized calcium silicate micro-nano composite products using Portland cement at different temperatures in Example 1.
  • the formation of calcium silicate hydrate is closely related to temperature. The reaction is slow at room temperature, and the reaction speed of cement clinker is significantly lower than that under heating conditions. Calcium silicate hydrate with a network structure needs to be formed slowly at higher temperatures.
  • the results of full pore analysis in Table 1 further show that with the increase of the reaction temperature, the wire mesh structure formed brings about a significant increase in the specific surface area and pore volume of the product, but when the temperature is higher than 80 °C, the increase is small and the morphology tends to be stable. .
  • Example 2 Preparation of calcium silicate micro-nano composite products with different reaction times using Portland cement as raw material
  • Fig. 3 and Fig. 4 are the XRD and SEM traces of the formation process of calcium silicate hydrate using Portland cement as raw material in Example 2.
  • the results show that the formation process of three-dimensional network calcium silicate hydrate is from the outside to the inside.
  • the mesh structure can be observed on the surface of the raw material after the reaction for 2h, and the interior of the raw material can be observed with the prolongation of the reaction time.
  • the results of full pore analysis in Table 2 also show that the specific surface area and pore volume of the product increase significantly with the extension of time, and the growth rate slows down from 8h to 16h, indicating that the reaction has been carried out more thoroughly at this time.
  • Example 3 Using Portland cement clinker as raw material, preparation of calcium silicate micro-nano composite products with different reaction times
  • Fig. 5 is the SEM tracking diagram of the hydrated calcium silicate production process using Portland cement clinker as raw material in Example 3. The results show that the clinker hydration process is similar to that of the cement in Example 2. As the reaction time prolongs the raw material More fine mesh structure is continuously generated inside, and finally a new product with calcium silicate hydrate with perfect three-dimensional network structure as the main component can be obtained.
  • Example 4 Preparation of calcium silicate micro-nano composite products with different solid-liquid ratios using Portland cement as raw material
  • Fig. 6 is the XRD and SEM trace diagrams that utilizes Portland cement raw material to analyze the influence of water amount on the quality of calcium silicate micro-nano composite products in Example 4, through the intensity of the diffraction peak of calcium hydroxide in the hydration product and the hydration Calcium silicate electron microscope analysis shows that with the decrease of solid-liquid ratio, the amount of water in the system increases, the crystal structure of calcium hydroxide in the hydration product grows more complete, and the porosity of calcium silicate hydrate in the product is higher, which is conducive to the hollow network.
  • the formation of the structure when the liquid-solid ratio is greater than 4:1, the three-dimensional network calcium silicate hydrate with complete structure and stable performance can be synthesized.
  • Example 5 Using Portland cement as raw material, stability analysis of calcium silicate micro-nano composite products under the conditions of different drying temperatures
  • FIG. 7 is the XRD and SEM traces of the stability of the calcium silicate micro-nano composite product synthesized from cement in Example 5 at different drying temperatures. It can be seen that the three drying conditions have little effect on the crystal form and morphology of the calcium silicate hydrate product. The product has good stability at a higher drying temperature, and a high-temperature rapid drying process can be adopted to improve production. efficiency.
  • Example 6 Preparation of calcium silicate micro-nano composite products with different hydration conditions using Portland cement and cement clinker as raw materials
  • Figure 8 shows the XRD and SEM tracking results of the calcium silicate micro-nano composite product synthesized by using composite Portland cement and cement clinker in Example 6. It shows that direct hydration of cement and cement clinker can obtain a three-dimensional network structure.
  • the new product with calcium silicate hydrate and calcium hydroxide as the main components shows that the auxiliary components of cement, such as calcium carbonate and calcium sulfate, have little effect on the molding process.
  • the calcium silicate hydrate and calcium hydroxide obtained in this reaction come from the clinker. Hydrolytic decomposition of tricalcium silicate and dicalcium silicate.
  • the hydration process is that water participates in the hydrolysis and condensation cross-linking reaction of calcium silicate, which promotes the formation of silica gel and the formation of inorganic polymers by mutual combination, which is further crystallized into three-dimensional network calcium silicate hydrate and by-product Calcium hydroxide.
  • the analysis results show that two main products can be obtained from the heating and hydration of cement clinker, one is a large particle crystal product (a sample on the sieve), which can be basically judged as calcium hydroxide crystals by XRD, SEM and EDS analysis, and the morphology is hexagonal.
  • This kind of calcium hydroxide has large crystal grains, high crystallinity, and the particle size can reach hundreds of ⁇ m.
  • the products that pass through the 200-mesh sieve are mainly calcium silicate hydrate with three-dimensional network structure, which is mainly formed by the gradual hydration and polymerization of tricalcium silicate in clinker. EDS analysis proves that its main elements are silicon, oxygen and calcium. It is calcium silicate hydrate.
  • Example 7 Preparation of three-dimensional network calcium silicate hydrate material by purification of micro-nano composite product glycine obtained in Example 6
  • Example 8 Acidification of the three-dimensional network calcium silicate hydrate material obtained in Example 6 to prepare a micro-nano composite product
  • Figure 13 is the XRD and SEM analysis results of the three-dimensional network calcium silicate micro-nano composite products synthesized in Example 8 treated with different acids.
  • the three-dimensional network calcium silicate hydrate reacts directly with hydrochloric acid even at low temperature. Amorphous silica particles are generated, and as the amount of acid increases, the network structure gradually decomposes from the outside to the inside to generate uniform amorphous nano-silica particles, which proves that the product of this three-dimensional network structure is indeed a water Calcium silicate, not silica-wrapped or silica-formed bones. Therefore, cement can be used as a raw material, and white carbon black can be produced by acid treatment in the early or late stage of the hydration reaction, and compounded to obtain a three-dimensional network calcium silicate hydrate/amorphous nano-silica composite product.
  • the basic reaction process of Portland cement hydration to prepare micro-nano materials is: the di/tricalcium silicate in the cement is rapidly decomposed in high temperature water to generate calcium ions, hydroxides and silicon-oxygen tetrahedra , calcium ions and hydroxides form large hexagonal crystalline calcium hydroxide precipitates in high-temperature water, while silicon-oxygen tetrahedra gradually aggregate in hot water and introduce remaining calcium ions to form a three-dimensional network of porous silicon hydrate Calcium acid material.
  • Figures 15-1 and 15-2 are the SEM photos and XRD patterns of the two-dimensional sheet-like and one-dimensional linear calcium silicate hydrate materials synthesized by mixing Portland cement clinker and water and standing to grow in Example 9 , the above results show that the tobermorite-like layered calcium silicate hydrate was formed in the reaction at 80 °C for about 1 h, and with the progress of the reaction, the layered calcium silicate hydrate was formed at 4 h. Sea urchin-like burrs appeared on the surface, and the surface of layered calcium silicate hydrate was almost completely covered at about 8 h. After standing at room temperature, the products produced by the reaction at high temperature for about 1h are almost the same, but there are still many unhydrated tricalcium silicates.
  • rod-like hydrated calcium silicates similar to tobermullite appeared. structure.
  • the formation mechanism may be that the Ca(OH) 2 released in the early stage of hydration reacts with the silicon-rich layer on the surface to form layered calcium silicate hydrate, because there is no obvious Ca(OH) in the xrd spectrum of about 1h. 2 peaks, the content of calcium ions increased in the later stage, the ratio of Ca/Si increased, and it gradually grew to a rod-like structure with a larger aspect ratio.
  • Example 10 Using Portland cement and carbon dioxide as raw materials, carbonization at different temperatures to prepare micro-nano composite products
  • Figure 16 and Table 7 are the XRD and SEM traces of the aragonite-type calcium carbonate composite products prepared at different temperatures in Example 10 and the results of the full-pore analysis.
  • the results show that when the solid-liquid ratio is 1/2, at different temperatures Aragonite structure was formed in the lower part, indicating that high solid-liquid ratio, viscous system and poor mass transfer conditions are favorable for the formation of aragonite structure, and the amount of water is one of the key factors.
  • the aragonite structure formed at a temperature above 60 °C is more uniform, indicating that increasing the temperature is beneficial to the formation of the aragonite structure.
  • the results of full pore analysis also show that the specific surface and pore volume of the products at different temperatures are not significantly different. Compared with Conch PC 32.5R cement, it can be seen from Table 7 that the specific surface area of the composite product is increased by more than 10 times, and the pore volume and pore diameter are also greatly improved.
  • Example 11 Using Portland cement and carbon dioxide as raw materials, micro-nano composite products synthesized with different reaction times
  • Figure 17 and Table 8 are the XRD and SEM tracking conditions and full-pore analysis results of the preparation of aragonite-type calcium carbonate composite products with different reaction times in Example 11. According to XRD and SEM analysis, it can be seen that in the first 0.5h gas adsorption on the cement surface reacted to produce calcite-type calcium carbonate block structure, and with the continued extension of the reaction time in 1-8h, rod-shaped or filamentous particles gradually began to appear on the surface of the particles. For stone-type calcium carbonate, after 4 hours, aragonite calcium carbonate nanorods are completely formed on the surface of the product, and they are stacked into a spherical shape.
  • the reaction process shows that it is more favorable for the formation of aragonite structure products with the prolongation of time.
  • the results of full pore analysis show that with the prolongation of the reaction time, the specific surface area and pore volume of the product will also increase significantly, and it is basically stable after 4h-6h, the specific surface of the cement is 3m 2 /g, and the specific surface of the product can reach nearly 50m 2 /g. It can be seen from Table 8 that the specific surface area of the composite product increases rapidly with the prolongation of time, and the reaction 8h is still improving, and it has increased by more than 15 times, and the pore volume and pore diameter are also greatly improved.
  • Example 12 Using Portland cement clinker and carbon dioxide as raw materials, micro-nano composite products synthesized at different reaction times
  • FIG. 18 is the SEM tracking of the preparation of aragonite-type calcium carbonate composite products with different reaction times in Example 12.
  • FIG. 18 According to the SEM analysis, it can be seen that, like cement, Portland cement clinker can also form micro-spheres formed by the accumulation of aragonite whiskers, and the aragonite whiskers gradually grow over time, and most of the whiskers grow.
  • the aspect ratio can reach 20.
  • Example 13 Preparation of micro-nano composite products with different solid-liquid ratios using Portland cement and carbon dioxide as raw materials
  • 100g PC32.5R Portland cement was added to 100g, 200g, 300g, 400g, 500g of water respectively, the temperature of the system was raised to 70°C, the mechanical stirring was uniform, and carbon dioxide gas was introduced at a flow rate of 0.5L/min. Filter, wash with water, and dry at 180° C. for 1 h to obtain 119 g, 129 g, 128 g, 128 g, and 130 g of products.
  • FIG. 19 is the XRD pattern and SEM pattern of the aragonite-type calcium carbonate composite product prepared with different solid-liquid ratios in Example 13.
  • FIG. The results show that the aragonite structure does not form when the solid-liquid ratio is 1:1 and 1:5 at 70°C, which indicates that the formation of the aragonite structure requires the system to have a moderate solid-liquid ratio.
  • the formation of the general aragonite structure All have to go through a process from a system that is not viscous (favorable for gas mass transfer dispersion) to viscous (unfavorable for mass transfer dispersion).
  • Example 14 Using Portland cement and carbon dioxide as raw materials, carbonization at different ventilation rates to prepare micro-nano composite products
  • Figure 20 is the XRD and SEM tracking results of the preparation of aragonite-type calcium carbonate composite products under different ventilation rates in Example 14. It can be seen that when the solid-liquid ratio is 1:3, the ventilation rate below 70°C is changed from 0.1-0.6L The change of /min has little effect on the morphology of the product, and a micro-spherical structure wrapped by aragonite calcium carbonate whiskers with relatively uniform particles is obtained.
  • Example 15 Using Portland cement and carbon dioxide as raw materials, carbonization at different stirring speeds to prepare micro-nano composite products
  • Figure 21 is the XRD pattern and SEM pattern of the shale-type calcium carbonate composite product of Example 15 at different stirring speeds. It can be seen from the results that when the solid-liquid ratio is 1/3, the stirring speed below 70°C affects the crystal form and morphology of the product. At 300 rpm and 400 rpm, the obtained micro-particles have aragonite whiskers on the surface, but they are not completely wrapped, and the surface of the obtained micro-spherical particles is not smooth; at 500 rpm and 600 rpm, the aragonite calcium carbonate whiskers with relatively uniform particles are obtained.
  • Micro-spherical structure when the rotation speed is increased to 700rpm, the mass transfer effect of the system is improved, which is conducive to the formation of calcite-type calcium carbonate, and the aragonite whisker structure does not appear. It shows that the concentration of reactants and the mass transfer effect are very important, the mass transfer effect is poor, the low carbon dioxide concentration is conducive to the formation of aragonite-type products, the mass transfer effect is good, and the high carbon dioxide concentration is conducive to the production of calcite-type calcium carbonate.
  • Example 16 Using Portland cement and carbon dioxide as raw materials, preparation of micro-nano composite products under different drying conditions
  • Figure 22 shows the XRD and SEM analysis results of the aragonite-type calcium carbonate composite products processed under different drying conditions in Example 16. It can be seen that the three drying temperatures have no effect on the crystal form and morphology of the aragonite whisker products. The final result is a spherical structure stacked on the surface of the whiskers, and the crystal forms are aragonite and calcite. Therefore, a high-temperature rapid drying process can be adopted to improve the production efficiency.
  • Example 17 Preparation of micro-nano composite products with Portland cement and carbon dioxide as raw materials and alcohol-water solvent system
  • 100g PC32.5R Portland cement was added to a mixed solvent containing 150mL ethanol and 150mL water, and the system was stirred at room temperature of 25°C, 40°C, 50°C, 60°C, and 70°C for 4 hours by introducing carbon dioxide and mechanically stirring. , the ventilation speed is 0.3L/min, and the stirring speed is 500rpm; after the reaction is completed, suction filtration, no washing, and drying at 180°C for 1h, respectively, to obtain 109g, 111g, 115g, 113g, and 114g of products.
  • Figure 23 and Table 9 are the XRD and SEM tracking conditions of the synthetic calcite-type calcium carbonate composite product in the alcohol-water mixed solvent of Example 17 and the full-pore analysis results of the representative product. It can be seen that in the alcohol-water mixed solvent system, the carbonation and decomposition rate of Portland cement introduced into carbon dioxide is slower than that in water. The diffraction peaks of tricalcium silicate and dicalcium silicate indicate that the presence of alcohol inhibits the hydration and carbonation reactions of cement. Different from the carbonization results of the water system in Examples 8-14, in the alcohol-water mixed solvent system, the carbonized product is basically calcite calcium carbonate.
  • Example 18 Using Portland cement and carbon dioxide as raw materials, and sodium lignin as polymer modifier, preparing modified micro-nano composite products in water system
  • Figure 24 and Table 10 are the XRD pattern and SEM pattern of the calcite-type calcium carbonate composite product obtained after adding the sodium lignin polymer modifier in Example 18 and the full-pore analysis results of the product. It can be seen that after adding different amounts of sodium lignin modifier, no aragonite calcium carbonate whiskers are formed, but massive calcite calcium carbonate is formed, which indicates that sodium lignin is in the Portland cement carbonization system. It is more inclined to induce the formation of calcite calcium carbonate, which can be used as a product crystal control agent and modifier.
  • Example 19 Using Portland cement and carbon dioxide as raw materials, styrene-acrylic emulsion as polymer modifier, and preparing modified micro-nano composite products in water system
  • Figure 25 and Table 11 show that in Example 19, adding polymer styrene-acrylic emulsion can synthesize aragonite-type calcium carbonate and calcite-type calcium carbonate composite products, XRD and SEM tracking and product full-pore analysis results show that compared with Example 11 , adding 1-5g of styrene-acrylic emulsion can promote the growth of aragonite calcium carbonate crystals in the process of carbon dioxide carbonization of Portland cement. enhancement. However, when the addition amount is increased to 7g and 10g, there are no more aragonite whiskers in the product, but mainly massive calcite calcium carbonate is generated, which shows that adjusting the amount of styrene-acrylic emulsion can adjust the crystal form of the product.
  • the specific surface area, pore volume and pore diameter of the emulsion-modified composite product are close to the non-modified water system and the composite product modified by sodium lignin, but what the styrene-acrylic emulsion obtains is aragonite-type carbonic acid. Calcium whiskers.
  • the specific surface and pore volume of the product are not much different from those of the product without the addition of styrene-acrylic emulsion (Table 7).
  • Example 20 Analysis of micro-nano composite products prepared by carbon dioxide carbon dioxide under the same conditions of various raw materials and exploration of the formation mechanism of aragonite calcium carbonate whiskers
  • Figure 26-1, Figure 26-2, Figure 27, and Table 12 are the XRD and SEM analysis of the composite product prepared in Example 20 and the full-pore analysis results representing the raw materials and products.
  • the obtained products were characterized by XRD and SEM, and the comparative analysis It is shown that under the same conditions, only Portland cement and cement clinker can generate aragonite calcium carbonate fibers, and both calcium oxide and hydrated calcium silicate can only generate massive calcite calcium carbonate, which further proves that hydrated calcium silicate and calcium silicate
  • the coexistence of calcium hydroxide may be a key factor for the formation of aragonite-type calcium carbonate, because in this method, calcium silicate in cement or cement clinker will generate hydrated calcium silicate and calcium hydroxide during the hydration process.
  • the charged macromolecular silica gel has a larger The viscosity and steric hindrance effect can control the concentration of the crystal growth area, prevent the raw material from rapidly approaching the crystal surface and inter-crystal coalescence, make the dominant crystal face grow better, and induce the formation of aragonite-type calcium carbonate whiskers.
  • the elemental analysis data in Table 13 also proves that the calcium element is almost completely converted into calcium carbonate, and the silicon element in the form of silica gel will cause some loss during the washing process.
  • calcite calcium carbonate is first formed, and with the generation of silica gel, aragonite-type calcium carbonate whiskers are gradually formed on the surface of calcite calcium carbonate.
  • Carbonization in the hydrated calcium silicate and calcium oxide systems cannot produce aragonite-type calcium carbonate, because neither the hydrated calcium silicate nor the calcium oxide system has a slow hydration and decomposition process, which further proves that the slow release of tricalcium silicate and Low calcium ion concentration is favorable for the formation of aragonite crystals.
  • the carbonization of Portland cement to generate aragonite calcium carbonate structure must meet two unique conditions: 1) The calcium ion concentration in the cement raw material is low and it is slowly released; 2) The silica gel macromolecules produced by hydration increase The viscosity of the system and the steric hindrance and negative charge repulsion near the crystal region lead to low calcium carbonate supersaturation near the crystal nucleus, which satisfies the requirement of slow growth of the dominant crystal plane.
  • the results of full pore analysis also prove that the specific surface and pore volume of Portland cement clinker and PO42.5 ordinary Portland cement carbonized composite products are also greatly improved, which is more conducive to enhancing their dispersibility and increasing the amount of water in the composite material. usage to enhance the use effect.
  • Example 21 Using composite Portland cement and sulfuric acid as raw materials, preparation of micro-nano composite products under different conditions
  • Figure 29, Figure 30 and Table 14 are the XRD and SEM tracking results in the process of preparing calcium sulfate with cement under different conditions in Example 21. It can be seen that with the increase in the amount of sulfuric acid added, the cement gradually hydrates and decomposes and interacts with sulfuric acid. The neutralization reaction generates calcium sulfate.
  • the reaction was carried out at room temperature of 25°C for 2 hours, and there were still a small amount of unreacted tricalcium silicate and dicalcium silicate in the product.
  • the reaction of tricalcium silicate and dicalcium silicate was basically complete for more than 4 hours.
  • Example 22 Preparation of micro-nano composite products in alcohol/water solvent system using Portland cement and sulfuric acid as raw materials
  • Figure 31 and Table 15 are the XRD and SEM tracking results of the calcium sulfate micro-nano composite product prepared in the alcohol/water mixed solvent of Example 22 and the full-pore analysis results of the product.
  • the reaction with sulfuric acid tends to produce micron rod-shaped calcium sulfate. After drying, the main component is calcium sulfate hemihydrate.
  • the amount of sulfuric acid has a significant impact on the product morphology. When 0.175mol sulfuric acid is added, a rod-shaped structure with a large length and diameter is obtained. After measuring, a relatively thick short rod is formed.
  • the results of full pore analysis showed that the specific surface and pore volume of the product after reacting with sulfuric acid increased significantly compared to the raw material.
  • Example 23 Using Portland cement and sulfuric acid as raw materials, adding different modifiers to prepare micro-nano composite products
  • the emulsion is E01 styrene-acrylic emulsion
  • Figure 32 and Table 16 are the XRD and SEM characterization results of calcium sulfate micro-nano composite products prepared by adding different modifying additives in Example 23. It is found that the addition of emulsion and stearic acid has little effect on product morphology and crystal form, and water The system mainly generates massive calcium sulfate, and the alcohol-water system generates rod-shaped calcium sulfate.
  • Example 24 Preparation of micro-nano composite products with Portland cement and ammonium sulfate as raw materials and mixed solvent system
  • Figure 33 and Table 17 are the XRD and SEM results of calcium sulfate micro-nano composite products prepared by using Portland cement and ammonium sulfate as raw materials in Example 24 and the full-pore analysis results of the materials.
  • the analysis results show that in the water solvent system, ammonium sulfate and cement mainly generate massive calcium sulfate, while in ethanol/water and DMF/water systems, ammonium sulfate and cement mainly generate calcium sulfate whiskers, indicating that the product obtained by using ammonium sulfate as a raw material is very similar to the product obtained by using sulfuric acid as a raw material.
  • the specific surface and pore volume obtained by full-pore analysis are also relatively close.
  • Example 25 Preparation of micro-nano composite products using Portland cement clinker and sulfuric acid as raw materials under different drying conditions
  • Figures 34-1 and 34-2 are the results of XRD and SEM tracking analysis of calcium sulfate micro-nano composite products prepared from cement clinker in Example 25 under different drying conditions. It can be seen that the reaction between cement clinker and sulfuric acid at room temperature The product is flaky calcium sulfate dihydrate. At 105 °C, with the extension of drying time, calcium sulfate dihydrate is gradually dehydrated to form calcium sulfate hemihydrate, which is basically completely converted into calcium sulfate hemihydrate in 8 hours, and the flaky structure is gradually pulverized into a block. As the drying temperature increases, the conversion time shortens.
  • the quality of the obtained products is 35.65g (105 °C/8h), 34.87g (125°C/4h), 34.94g (145°C/2h), 35.07g (185°C/1h), the products are completely converted into calcium sulfate hemihydrate.
  • the quality of the product that can be obtained from 100g of cement is basically maintained at 140g, which is quite impressive. It can be seen that the temperature and time range for the conversion of calcium sulfate dihydrate into calcium sulfate hemihydrate is large, and it is recommended in the industry that a higher temperature and a shorter time can be used for drying.
  • the macromolecular silica gel has a large viscosity and steric hindrance effect, which is not enough to control the concentration of the crystal growth area and prevent the raw materials from quickly approaching the crystal surface and crystal.
  • the inter-merging makes the dominant crystal face grow better and induces the formation of calcium sulfate whiskers. It is also necessary to add an organic solvent to further reduce the supersaturation of calcium sulfate to promote the formation of calcium sulfate whiskers.
  • an organic solvent to further reduce the supersaturation of calcium sulfate to promote the formation of calcium sulfate whiskers.
  • Figure 35 for the specific process, please refer to Figure 35.
  • calcium sulfate and silica gel in the product after reacting with sulfuric acid are both in the process of suction filtration. Due to the large solubility, there is more loss relative to the reaction with carbon dioxide.
  • the calcium silicate micro-nano composite products (products 1-4) prepared by this method can better maintain the tensile strength and impact toughness enhancement in the case of adding a large proportion.
  • the coral-like and three-dimensional network calcium silicate hydrate mixture products have good effects in toughening and enhancing processing performance.
  • Ethanol and sodium lignin modification have a certain improvement in the toughening and processing performance of the product. Effect.
  • the difference between the products before and after sieving is not obvious, indicating that a small amount of calcium hydroxide crystals has little effect on the overall performance of the product.
  • the series of calcium carbonate micro-nano composite products (products 5-10) prepared by this method all have a certain effect of strengthening and toughening. Adding within 30% has a good effect on maintaining various properties of the material. After exceeding 30%, various properties will be reduced. has declined; calcium carbonate micro-nano composite products are better in reinforcement, especially in bending strength. At the same time, the synthesis of alcohol-water method and the modification of sodium lignin and emulsion have certain effects on improving the toughness and processing performance of the composites.
  • the improvement of impact toughness is similar to that of calcite calcium carbonate, after polymer modification, especially adding a certain amount of The composite resin modified with sodium lignin has a more superior effect on the improvement of impact toughness; in addition, similar to calcium carbonate, the addition of the product prepared by this method will also improve the flexural strength of the PP resin and better maintain the melt index; this The results show that the inorganic composite product prepared by this method can increase the addition amount, and at the same time toughen and strengthen through the compounding of calcium carbonate and silicon oxide, and has low cost and great application potential.
  • the comparative analysis of the PP resin filling data of the calcium sulfate micro-nano composite products (products 11-17) prepared by this method shows that the calcium sulfate/silica composite products synthesized by the sulfuric acid method or the ammonium sulfate method can improve the strength and impact.
  • the toughness is the most obvious, especially for improving the toughness and processing performance of composite materials.
  • the micro-nano composite product prepared by this method has a good effect on maintaining the tensile strength of the resin when it is not modified, but the impact toughness and melt index will decrease with the increase of the addition amount.
  • the impact toughness and melt index are improved to a certain extent, and the flexural strength of the resin will increase with the increase of the addition amount regardless of whether it is modified or not.
  • the micro-nano composite product prepared by this method after being modified by stearic acid or sodium lignin, can be added in a large amount to improve the tensile strength and flexural strength of the product, but the impact toughness and melting The index will decrease as the amount added increases.
  • the test results show that the calcium silicate micro-nano composite products (1-4) prepared by this method can greatly improve the bonding strength of the adhesive regardless of whether it is modified or not, and all of them can pass the national plywood standard 63 °C and 100. °C water resistance test. And there is little difference in product performance before and after sieving, and a small amount of calcium hydroxide crystals has little effect on the overall performance of the product.
  • the addition of calcium carbonate micro-nano composite products (5-9) can greatly improve the bonding strength, and with the increase of the addition amount, it continues to increase, all of which have passed the 100 °C water resistance test in the national plywood standard.
  • the addition of the calcium sulfate composite product (10-16) prepared by the method can greatly improve the bonding strength of the green adhesive, and the addition amount of 5%-30% has little effect on the bonding strength.
  • the bonding strength can be increased by 70%-80%, and the products can all pass the 63 °C water resistance test in the national plywood standard and the 100 °C water resistance test in the national plywood standard.
  • the three micro-nano composite products prepared by this method were compounded with cement clinker, then cured and formed, and the anti-stress performance was tested. The test results were averaged.
  • the preliminary evaluation results are shown in the table. twenty four.
  • the three products are: calcium carbonate micro-nano composite product 1 (product of Example 11, solid-liquid ratio 1/2, 80 ° C reaction 6h); calcium sulfate micro-nano composite product 2 (Example 22 added 0.225mol sulfuric acid product); calcium sulfate micro-nano composite product 3 (ethanol/water system product in Example 24).
  • Example 18 According to the preparation and evaluation method of modified asphalt, the calcium carbonate micro-nano composite product in Example 18 was compounded with asphalt, and a standard sample was made to test the performance of the three major indexes of asphalt. The test results were averaged, and the results are shown in Table 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种以水泥和"三废"为原料,大规模、低成本生产微纳米复合物产品的产品、制备方法及应用,微纳米复合物产品包括:三维网状及二维片状水化硅酸钙为主要成分的微纳米复合物产品,文石型碳酸钙晶须/纳米白炭黑复合物或方解石型纳米碳酸钙/纳米白炭黑复合物产品,硫酸钙颗粒或晶须/纳米白炭黑微纳米复合物产品。利用水泥类胶凝材料的水化反应,合成了多种微纳米复合物产品,产品形貌涵盖零维纳米颗粒、一维纳米线、二维纳米片、三维纳米网,扩展了微纳米材料库。

Description

以水泥和“三废”为原料的微纳米材料系列产品及合成工艺 技术领域
本发明开创了低成本的微纳米新材料的原料库,创立了以水泥和“三废”为基本原料,大规模、低成本生产高性价比的微纳米复合物新产品及复合材料的新途径,属于新材料领域。
背景技术
微纳米材料指尺寸处于微米量级和纳米量级之间的材料,是微米材料和纳米材料的统称。一般国际上公认,微米材料的尺寸处于1μm至100μm;亚微米级材料的尺寸处于100nm至1μm;纳米材料是指在空间三维的任何一个维度上尺寸小于100nm的材料。近年来,微纳米材料在复合材料性能提升方面显示巨大的应用潜力,各类高性能塑料、橡胶等复合材料正在不断开发出来。
天然水泥是由火山喷发形成,最早在一千二百万年前被发现。合成水泥始于工业革命(1800年前后),最常用的硅酸盐水泥又称为波特兰水泥(Portland Cement)。工业生产工艺是采用石灰石(碳酸钙)与沙土(二氧化硅、铝酸盐)等富含硅钙成分的原料及煤炭在1450℃的窑内煅烧熔融生成硅酸三钙为主要成分,并含铝酸盐及铁铝酸盐等其它成分的熔融体,被称为“熟料”,将熔融体冷却得到的成块熟料与15-30%的石灰石或粒化高炉矿渣及5%的石膏混合磨细得到灰色或白色粉体水泥产品,水泥熔融燃烧过程中产生的高温烟道气热量用于发电,经过除尘和净化后的烟道气可以达标排放。由于水泥原料简单易得,生产工艺先进,能量得到了充分利用,所以水泥的生产成本仅200元/吨左右,售价一直徘徊在400元/吨左右,巨大的市场需求和高性价比,推动了水泥行业的快速发展,使水泥成为了产能最大的工业品,其全球产量接近40亿吨,中国水泥产量占全球60%。
硅酸盐水泥熟料的主要成分是硅酸三钙(Ca 3SiO 5)和硅酸二钙(Ca 2SiO 4),是具有很强的碱性和反应性的可溶性成分,与水、弱酸及强酸发生水化及缩合反应生成交链型无机网状高分子,是其成为混凝土关键粘结成分的化学成键基础。但水泥作为填料直接应用于合成材料中存在难分散,容易结块,稳定性差的问题,容易吸潮结块也影响了其应用拓展。因此,作为混凝土中的粘结剂便成了水泥目前唯一的用途,硅酸盐水泥仅用于与骨料(砂石和沙子)和水生产混凝土建筑材料。二百多年来人们一直利用水泥的水化缩合反应产生交链型无机网状高分子的水硬性胶凝粘结作用发展建筑材料,但尚未能解决好混凝土砂浆的和易性和强度提升。
每吨水泥会副产1吨二氧化碳,而且粉尘及污染物排放量较大,中国的不少小水泥厂 已被强制关停。推动烟道气中污染物的超低排放,同时利用廉价丰富的水泥、水为基础原料,充分开发硅酸钙、白炭黑等系列微纳米材料的大规模、低成本生产工艺及合成装备系统,进一步发展绿色高性价比的复合材料,符合全球可持续发展的战略要求。
硅酸钙是一类重要的硅酸盐,硅酸钙结构可以写成mCaO·nSiO 2,是由硅氧四面体和钙离子组合构成,同其他硅酸盐结构类似,硅酸钙结构中,硅氧四面体形成基本骨架,钙离子填充到骨架空隙中形成各类硅酸钙晶体结构。除了作为硅酸盐水泥的主要成分,即硅酸二钙(Ca 2SiO 4)、硅酸三钙(Ca 3SiO 5)之外,自然界中硅酸钙以硅质沉积岩形式大量存在于石灰岩和硅藻土等矿物中。此外,硅酸钙主要用于防火隔热材料,通常用作高温隔热材料石棉的安全替代品,如专利一种高强度硅酸钙保温材料的制备方法(CN107500668A)、硅酸钙板及其制造方法(CN05271963A)、硅酸钙AK热防火材料及其制造方法(CN1204678A)、硅酸钙耐热材料及其制作方法(CN1323756A)等中都有涉及;硅酸钙还常用于复合材料填充改性剂,如专利活性硅酸钙/橡胶复合材料及其制备方法(CN103131066A)、石灰竹桨纤维增强硅酸钙板(CN101863650A)、一种硅酸钙母粒的制备方法(CN103333369A)、纳米硅酸钙纤维玉米蛋白复合材料及其制备方法和应用(CN105664247A)、一种石头纸专用硅酸钙纤维及其制备方法(CN104448388A)、一种硅酸钙/聚烯烃复合材料的制备方法(CN104403198A)、一种含超细羽绒纤维一硅酸钙多孔微球的水性聚氨酯涂层剂(CN105902467A)等中都有相关硅酸钙材料的合成及应用方面的内容;纳米硅酸钙由于生产成本高和合成工艺难以控制,更多被做高价值的吸附剂或药物载体。其制备和应用专利包括以硅灰为硅质原料的纳米水化硅酸钙的制造方法(CN102718228A)、一种一维硅酸钙纳米材料的制备方法(CN103449459A)、一种液相动态水热合成法制备硅酸钙粉体的方法(CN107696118A)、一种水处理用多孔硅酸钙滤材(CN101015755A)、一种硅酸钙摩擦材料的制备方法(CN102259876A)、具有超高比表面积的硅酸钙超薄纳米片及其制备方法(CN102923725A)等。然而上述专利中的硅酸钙产品大都是通过固相高压合成,工业条件苛刻,反应时间长,产品质量可控性差,纳米硅酸钙都是使用硅酸钠与氯化钙等可溶性硅和钙原料在溶剂中进行热合成,因此,生产成本高,设备投资大,产能低。至今未见有人用水泥或水泥熟料为原料在常压水体系中合成水合硅酸钙纳米材料特别是三维状微纳米水合硅酸钙或白炭黑纳米产品。
碳酸钙是地壳中一种极为重要的天然矿物,石灰石和大理石的主要成分都是碳酸钙;另外,碳酸钙也是一种应用极为广泛的无机化工原料,在造纸、塑料、橡胶、建筑、日用化工等行业都有大量应用。碳酸钙有6种形态:无定形碳酸钙、方解石、文石、球霰石、单水合碳酸钙、六水合碳酸钙。粉状方解石碳酸钙是最为价廉易得的无机填料,应用广泛。纳米方解石碳酸钙也具有了数十万吨的生产能力,在合成材料、建材、造纸等领域显示出 了较好的应用性能。
文石是晶须状形貌的斜方晶系。晶须指具有一定长径比(一般大于10)和截面积小于52×10 -5cm 2的单晶纤维状材料,具有完整的晶体结构,强度和模量接近于完整晶体材料,力学性能优异。晶须产品在复合材料中具有补强增韧作用。由于文石晶须原料成本低廉,如果能进一步降低生产成本,将会是原料和生产成本昂贵的SiC、钛酸钾晶须的有力替代品,具有巨大应用潜力。
制备碳酸钙晶须有以下方法:(1)可溶性钙盐加可溶性碳酸盐法;(2)加热Ca(HCO 3) 2溶液法;(3)钙盐在尿素中水解法;(4)Ca(OH) 2-CO 2气液固三相反应法。日本丸尾钙株式会社于1995年实现了碳酸钙晶须的工业化生产,产品可以增强制品内部各向同性且表面平滑;耐热性好,折射率接近树脂(1.53-1.68),在塑料、橡胶、医学、化妆品等许多领域(JP19870331453、CN105347362A、CN101033076、CN106048709A)得到了应用。研发更廉价简单的文石型碳酸钙生产工艺很有价值。
我们团队多年来一直致力于“三废”资源化研究,先后发明了(1)以电石渣、生石灰或熟石灰为原料,甘氨酸作为提钙、缚酸、改性及晶形调节剂碳化法生产球形超微细碳酸钙的新方法;(2)创立了无定形碳酸钙工业合成及转化工艺;(3)开发了液-液碳化反应新工艺及碳酸钙-高分子材料原位改性新工艺,产品在塑料、沥青、粘胶剂等复合材料中应用效果良好(CN101993104A、CN101293663A、CN106745161A)。
硫酸钙根据其形貌可分为晶须状、片状、纺锤状等晶形,多以石膏矿的形式存在于自然界中,磷肥生产、烟道气脱硫、废硫酸中和、氟化氢生产产生的大量工业石膏并未得到很好利用。
硫酸钙通常含有两分子结晶水(CaSO 4·2H 2O),俗称石膏,其中Ca 2+和SO 4 2-形成了双层结构,水分子在其间与Ca 2+结合形成结晶水合物,石膏硬度小、强度低、耐热性差,使用价值不高;石膏在128℃失去部分结晶水生成的半水合硫酸钙CaSO 4·0.5H 2O,俗称“熟石膏”或“烧石膏”,具有较好的应用价值;石膏只有在163℃以上才能完全失水变成无水CaSO 4,俗称“硬石膏”,其内部原子间距离较短、连接紧密,稳定性更优,耐高温,熔点高达1450℃。
除作为石膏板原料及水泥缓凝剂外,石膏或者硫酸钙的用途有限。研究发现硫酸钙可以形成纤维状晶体(晶须),长径比可达10~1000,具有直径小、长径比大,高模量,高强度,高伸长率,热稳定性好,耐化学腐蚀性以及与塑料等良好的相容性等诸多特点,硫酸钙晶须抗张强度为玻璃纤维的5~10倍,是很有发展潜力的补强材料。
目前硫酸钙晶须合成工艺主要是用天然石膏通过水热法制备半水或无水硫酸钙。本研发团队曾经发明了醇水体系中制备改性及不改性硫酸钙晶须的新工艺(申请号 201910256421.3)。由于磷肥厂、钛白粉厂、柠檬酸厂、燃煤电厂烟气脱硫、氟化工厂、盐碱工厂、海水制盐企业等都会副产大量石膏或废硫酸或芒硝等硫化物,如能利用废硫酸和硫酸盐等“三废”资源及价廉的水泥为原料,开发出高品质纳米硫酸钙或硫酸钙晶须将很有应用价值。
因此,基于水泥产能大,原料有保障及低成本优势,利用产品细度好、强碱性、富钙、富硅具有可溶性的特点,充分利用水泥原料可以发生水化、碳化、酸碱中和及沉淀、复分解等反应,再结合“三废弃物”资源,开发性能稳定、成本低廉、适用于不同应用场景及广泛领域的各种形貌的微纳米材料系列很有价值,同时这对于构建水泥为龙头的产业群及微纳米材料库,促进材料行业产品升级换代和结构优化意义重大。
本发明首次利用了量大廉价的硅酸盐水泥或其熟料,通过直接水化、脱水缩合,或加入烟道气、二氧化碳、二氧化硫、稀硫酸、硫酸铵等三废原料进行复分解中和沉淀、脱水缩合等反应,控制不同的优化工艺条件合成了多种形貌涵盖零维纳米颗粒、一维纳米线、二维纳米片、三维纳米网复合物新产品。
发明内容
本发明正是以量大价廉的硅酸盐水泥为基础原料,希望通过水化、复分解中和沉淀、脱水缩合等反应生产出性能稳定,分散性好,具有很高性价比的微纳米材料。
具体地,本发明提供一种以三维网状水化硅酸钙为主要成分的微纳米复合物产品,其中,所述硅酸钙微纳米复合物产品含有微纳米水化硅酸钙、氢氧化钙、纳米白炭黑和碳酸钙,其制备步骤包括:将水泥或水泥熟料在含水体系中,于25-100℃,通过搅拌混合,反应3-20小时(h),期间进行水化、缩合及结晶成型过程,从而制备得到所述硅酸钙微纳米复合物产品。
优选地,所述方法制备得到的硅酸钙微纳米复合物产品包含水化硅酸钙三维网状纳米棒及氢氧化钙混合物,加入甘氨酸或其它无机酸溶解氢氧化钙,得到水化硅酸钙三维网状纳米棒产品。
本发明提供一种二维片状和/或一维线状的水化硅酸钙为主要成分的微纳米复合物产品,其中,所述产品含有二维片状和一维线状的水化硅酸钙的一种或两种,以及白炭黑、氧化铝,其制备步骤包括:利用水泥、水泥熟料作为原料,同时可根据产品要求可以加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-80℃,反应时间1-16h,优选地,反应温度为80℃,生产二维片状水化硅酸钙反应时间为1h;生产一维线状水化硅酸钙反应时间为4-16h。
本发明提供一种碳酸钙基微纳米复合物产品,所述微纳米复合物产品包含:改性或未 改性的方解石型纳米碳酸钙/纳米白炭黑、水化硅酸钙的复合物,或者包含文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物,所述微纳米复合物产品的制备步骤包括:将水泥、水泥熟料或其与石灰在含水体系中,于25-100℃温度条件下,通入二氧化碳或烟道气或加入可溶性碳酸盐,任选地,改性时需要同时加入改性剂进行原位改性,通过搅拌混合,0.5-15h的水化生成硅凝胶、中和沉淀、复分解及脱水缩合反应合成了所述微纳米复合物产品。
本发明提供硫酸钙基微纳米复合物产品,其中,所述硫酸钙基微纳米复合物产品包含:硫酸钙块/片/棒/晶须与纳米白炭黑的复合物,其制备步骤包括:将水泥和/或水泥熟料及其与石灰的混合物在含水体系中,于0-100℃,加入硫化合物原料,通过搅拌混合,经过复分解、水化、中和、脱水缩合反应0.5-10h,合成所述硫酸钙基微纳米复合物产品;所述硫化合物原料选自硫酸、硫酸铵、亚硫酸铵、需要脱硫的烟道气、二氧化硫、三氧化硫或废硫酸中的一种或多种。
优选地,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料选自硅酸盐水泥熟料。
优选地,对于三维网状硅酸钙微纳米复合物产品,其中,反应温度为50-100℃,反应时间为3-20h;优选地,反应温度为70-100℃,反应时间为5-15h;优选地,反应中的水的质量至少是固体原料的二倍以上,优选2-5倍。
优选地,对于碳酸钙基微纳米复合物产品,其中,合成文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物优选反应温度70-100℃,反应时间4-15h;优选地,反应温度70-100℃,反应时间4-10h;中和反应的终点pH为6-8,或者可在pH大于7的任何阶段停止反应。
优选地,对于硫酸钙基微纳米复合物产品,其中,合成反应温度0-100℃,反应时间0.5-10h;优选地,合成一维产品时间2~10h;优选地,反应温度25-60℃,反应时间1-6h;优选地,中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
优选地,所述微纳米复合物产品为文石型碳酸钙微纳米复合物产品,其中,制备方法如下:搅拌下向计量水中加入不高于二分之一水量的硅酸盐水泥或硅酸盐或与生石灰的混合物,需要改性的产品可以同时加入改性剂,混合升温到50℃-100℃,持续通入二氧化碳气体或者烟道气,监测溶液pH变化,pH达到7左右为反应终点,停止通气,继续保持温度反应2h以上,以保证结晶成型,将混合浆液抽滤,洗涤、烘干可得文石型碳酸钙晶须为主要成分的微纳米复合物或其改性产品。
优选地,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性 剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;所述步骤还包括,在反应结束后,将反应混合物过滤、洗涤、烘干的步骤。
本发明提供所述微纳米复合物产品的应用,将其用于合成材料、天然材料、复合材料降本提质;优选地,所述合成材料、天然材料、复合材料为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂、混凝土或纸张。
优选地,将所述微纳米复合物产品单独加入所述合成材料、天然材料或复合材料中,或者将所述微纳米复合物产品与其他纳米材料组合加入所述合成材料、天然材料或复合材料中。
优选地,将所述微纳米复合物产品用于塑料、橡胶提高拉伸强度和冲击韧性及加工性能,用于混凝土提升早强性能,用于粘结剂提高粘结强度和耐水性,或者用于沥青提高软化点、针入度和耐车辙性。
本发明提供一种增强材料,所述材料包含所述的微纳米复合物产品,以及合成材料、天然材料、复合材料中的任意一种。
本发明提供了一种三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品的制备方法,其中,所述硅酸钙微纳米复合物产品含有微纳米水化硅酸钙、氢氧化钙、纳米白炭黑和碳酸钙,包括步骤:
将水泥或水泥熟料在含水体系中,于25-100℃,通过搅拌混合,反应3-20小时,期间进行水化、缩合及结晶成型过程,从而制备得到所述硅酸钙微纳米复合物产品。
优选地,所述方法制备得到的硅酸钙微纳米复合物产品包含水化硅酸钙三维网状纳米棒及氢氧化钙混合物,加入甘氨酸或其它无机酸溶解氢氧化钙,得到水化硅酸钙三维网状纳米棒产品。
本发明提供了一种二维片状和/或一维线状的水化硅酸钙为主要成分的微纳米复合物产品的制备方法,其中,所述产品含有二维片状和一维线状的水化硅酸钙的一种或两种,以及白炭黑、氧化铝,包括步骤:
利用水泥、水泥熟料作为原料,任选根据产品要求加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-80℃,反应时间1-16小时,优选地,反应温度为80℃,生产二维片状水化硅酸钙反应时间为1小时;生产一维线状水化硅酸钙反应时间为4-16小时。
本发明提供了一种碳酸钙基微纳米复合物产品的制备方法,所述微纳米复合物产品包含:改性或未改性的方解石型纳米碳酸钙/纳米白炭黑、水化硅酸钙的复合物,或者包含文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物,所述微纳米复合物产品的制备步骤包括:
将水泥和/或水泥熟料或其与石灰在含水体系中,于25-100℃温度条件下,通入二氧化碳或烟道气或加入可溶性碳酸盐,通过搅拌混合,0.5-15小时的水化生成硅凝胶、中和沉淀、复分解及脱水缩合反应合成了所述微纳米复合物产品。
本发明提供了一种硫酸钙基微纳米复合物产品的制备方法,其中,所述硫酸钙基微纳米复合物产品包含:硫酸钙块/片/棒/晶须与纳米白炭黑的复合物,其制备步骤包括:
将水泥和/或水泥熟料或其与石灰的混合物在含水体系中,于0-100℃,加入硫化合物原料,通过搅拌混合,经过复分解、水化、中和、脱水缩合反应0.5-10小时,合成硫酸钙基微纳米复合物产品;
所述硫化合物原料选自硫酸、硫酸铵、亚硫酸铵、需要脱硫的烟道气、二氧化硫、三氧化硫或废硫酸中的一种或多种。
优选地,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料优选硅酸盐水泥熟料。
其中,对于三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品,反应温度为50-100℃,反应时间为3-20小时;优选地,反应温度为70-100℃,反应时间为5-15小时;优选地,反应中的水的质量至少是固体原料的二倍以上,优选2-5倍;
其中,合成文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物优选反应温度70-100℃,反应时间4-15小时;优选地,反应温度70-100℃,反应时间4-10小时;中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
优选地,对于硫酸钙基微纳米复合物产品的制备方法,其中,合成反应温度0-100℃,反应时间0.5-10小时;优选地,合成产品的时间2~10小时;优选地,反应温度25-60℃,反应时间1-6小时;优选地,中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
优选地,对于文石型碳酸钙微纳米复合物产品的制备方法如下,搅拌下向计量水中加入固液质量比在1/4-1/2范围的硅酸盐水泥或硅酸盐或与生石灰的混合物,需要改性的产品可以同时加入改性剂,混合升温到70℃-100℃,持续通入二氧化碳气体或者烟道气,监测溶液pH变化,pH达到7左右为反应终点,停止通气,继续保持温度反应2小时以上,以保证结晶成型,将混合浆液抽滤,洗涤、烘干可得文石型碳酸钙晶须为主要成分的微纳米复合物或其改性产品。
优选地,对于上述制备方法,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形 成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;所述步骤还包括,在反应结束后,将反应混合物过滤、洗涤、烘干的步骤。
本发明提供一种再生氨联产硫酸钙基微纳米复合物产品的方法,所述方法包括如下步骤:在制备所述的硫酸钙基微纳米复合物产品的方法中,含水泥的钙基原料进行中和反应,应用工业副产硫酸铵为原料进行中和,中和反应的终点控制pH为大于等于7,中和反应过程中加热同时回收氨。
下面,对本发明做详细说明。
第一方面,根据硅酸二钙和硅酸三钙易水化生成硅凝胶,硅凝胶在加热情况下容易脱水缩合生长的特性,开发了直接用最廉价的水泥或水泥熟料在常压水体系中混合加热合成具有三维网状结构的水化硅酸钙微纳米复合物产品及生产新工艺。同时,在上述工艺基础上,加入甘氨酸或其他酸,将氢氧化钙溶去,就可以得到纯的三维网状纳米棒结构的水化硅酸钙。
众所周知,硅酸盐水泥在常温加水的条件下会水化为具有很强粘结石头沙子作用的水化硅酸钙形成混凝土,受制于强度添加水量不能太多,混凝土沙浆体系很粘稠,水化和脱水过程缓慢,最终需经过二十天左右的长时间水化养护才能形成致密水化硅酸钙粘结的混凝土结构,由于硅氧通过四面体相互交联因此混凝土材料具有较高强度。本工艺通过加大水量,混合搅拌,提高反应温度,有效提高了水化和缩合反应效率,但由于水泥或熟料的主要成分硅酸二钙和硅酸三钙,其水溶性较差,并不会大量进入溶液,生成的副产物氢氧化钙溶解度也不大。因此反应首先是原料颗粒表面吸附水,反应生成硅凝胶,硅凝胶在受热情况下会脱水生成网状大分子覆盖在原料表面抑制了内部原料的水解和溶出,需要依靠水的缓慢渗透扩散作用缓慢反应,同时也需要钙离子及氢氧根离子迁移更新表面,更需要较长的时间和较高的温度,正是因为用氢氧化钙的迁出使得其形成了镂空结构,而具有较大的比表面、孔径、孔容。由于颗粒间相互接近脱水连接,慢慢重组成形成结构比较稳定的三维网状结构(类似竹荪),因此,反应和成型过程需要比较长的时间。主反应方程式如下:
3CaO·SiO 2+(3-m+n)H 2O→mCaO·SiO 2·nH 2O+(3-m)Ca(OH) 2
我们通过X射线-衍射仪和X射线荧光光谱跟踪研究水泥熟料的水化过程发现:水泥熟料水解的前期主要是发生水合反应生成聚硅酸钙、氢氧化钙及白炭黑、氧化铝、氧化铁混合物,在80℃左右温度下硅凝胶高分子会在晶体表面慢慢脱水成膜状或颗粒状白炭黑,经过8h结晶成型可以生成在水中和加热条件下性能都很稳定的具有“竹荪”形貌的三维网 状结构的水化硅酸钙为主要成分的产品,对比试验表明,用硅酸钙或石灰在同样条件下得不到水泥或水泥原料合成的这种“竹荪”奇特结构的产品。
这种三维网状硅酸钙复合物产品具有较大的比表面和很好的应用性能。在深入研究掌握了硅酸盐水泥的水化、聚合及硅凝胶的脱水缩合规律后,得到了优化的工艺条件,可以方便合成性能稳定的以水化硅酸钙为主,同时含氢氧化钙、白炭黑及少量氧化铝、氧化铁的微纳米复合新材料。通过应用评价,证明这种具有三维网状“竹荪”结构的水泥水化物产品具有出色的使用效果,综合性能不亚于纳米碳酸钙、白炭黑、钛白粉、硫酸钙晶须等产品:在大比例添加的情况下,仍可均匀分散到塑料、橡胶、沥青等中,并且保持或显著提升复合塑料的拉伸强度、冲击韧性或弯曲强度;同样可以显著提高胶黏剂的粘接强度,显示了巨大的提质降本的性价比优势和巨大的开发应用潜力。
因此,本发明开创了水泥为原料通过简单水化成型工艺大规模、低成本简单生产具有三维网状结构特征的微纳米产品的新途径,对于发展高性价比复合新材料意义重大。
具体的,本发明提供了一种以三维网状的水化硅酸钙为主要成分的微纳米复合物产品(也称三维网状硅酸钙微纳米复合物产品)、制备方法以及应用。
本发明首先提供了一种以三维网状的水化硅酸钙为主要成分的微纳米复合物产品,其中,所述硅酸钙微纳米复合物产品含有微纳米水化硅酸钙、氢氧化钙、纳米白炭黑和碳酸钙,其制备步骤包括:
将水泥或水泥熟料在含水体系中,于25-100℃,通过搅拌混合,反应3-20h,期间进行水化、缩合及结晶成型过程,从而制备得到所述硅酸钙微纳米复合物产品。
优选地,所述方法制备得到的硅酸钙微纳米复合物产品包含水化硅酸钙三维网状纳米棒及氢氧化钙混合物,加入甘氨酸或其它无机酸溶解氢氧化钙,得到水化硅酸钙三维网状纳米棒产品。
优选地,所述水泥选自硅酸盐水泥、硅铝酸盐水泥。优选地,水泥熟料优选硅酸盐水泥熟料。
优选地,对于以三维网状的水化硅酸钙为主要成分的硅酸钙微纳米复合物产品反应温度为50-100℃,反应时间为3-20h。优选地,反应温度为70-100℃,反应时间为5-15h;进一步优选地,反应温度为70-100℃,反应时间为5-10h。
优选地,反应中的水的质量至少是固体原料的二倍以上,以保证较好的流动混合状态,优选2-5倍。
优选地,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系。优选地,有机溶剂选自C1-C4的醇、DMF。水和有机溶剂的体积比为0.2-5.0:1。改性剂为固体或液体,水泥原料和改性剂的质量比为 10-1000:1。
优选地,改性剂为小分子改性剂或者高分子改性剂。优选地,小分子改性剂为硬脂酸、硬脂酸盐。高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;优选地,生物基磺酸盐为木质素磺酸盐或纤维素磺酸盐。
优选地,在反应结束后,还包括将反应混合物过滤、洗涤、烘干的步骤。洗涤溶剂为水或乙醇,烘干温度100℃-200℃,烘干时间0.5h-24h。
本发明提供了所述的硅酸钙微纳米复合物产品的应用,所述应用是将其用于合成材料、天然材料、复合材料降本提质。优选地,所述合成材料、天然材料、复合材料为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂或纸张。
优选地,将所述硅酸钙微纳米复合物产品用于混凝土以提升早强性能,用于塑料、橡胶以提高拉伸强度和冲击韧性,或者用于沥青以提高软化点和针入度和耐车辙性。
优选地,将硅酸钙微纳米复合物产品单独加入所述合成材料、天然材料或复合材料中,或者将硅酸钙微纳米复合物产品与其他纳米材料组合加入所述合成材料、天然材料或复合材料中。
三维网状的水化硅酸钙为主要成分的微纳米复合物产品,可以比原料约增重10%,产品的成分通过X-射线衍射仪X-射线荧光元素分析仪可以证明含有水化硅酸钙、纳米白炭黑、氢氧化钙、碳酸钙及少量氧化铝、氧化铁等,产品中的钙、硅、氧、铝、铁含量接近投入原料完全水化得到的水合物的含量。新产品得到的水泥水化产物的混合物可以不经过分离直接使用,也可以过200目筛除去氢氧化钙后使用,还可以通过甘氨酸纯化得到单一的三维网状的水化硅酸钙后使用。
具体地,获得本发明三维网状硅酸钙微纳米复合物产品的制备工艺,包括如下步骤:
将水泥基础原料在2倍量以上的含水体系中混合搅拌均匀,70℃-100℃左右搅拌下反应4-8h,经历水化反应、缩合反应及三维网状结晶成型过程,经过过滤、洗涤、烘干可得到三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品。
本发明还提供了一种增强材料,所述材料包含上述的三维网状硅酸钙微纳米复合物产品和合成材料、天然材料、复合材料中的任意一种。
优选的,所述合成材料或天然材料为塑料、橡胶、涂料、密封剂、油墨、胶黏剂或纸张。
本发明还提供了一种生产无定形纳米二氧化硅颗粒(白炭黑)的方法,其是在使用上述方法制备得到所述的硅酸钙微纳米复合物产品后,加入酸,继续反应,制备得到所述无 定形纳米二氧化硅颗粒;或者,在使用上述方法制备硅酸钙微纳米复合物产品的原料中加入酸,制备所述无定形纳米二氧化硅颗粒。可用水泥熟料,在水化反应前期或后期用酸例如盐酸处理生产白碳黑,复配得到三维网状水化硅酸钙/无定形纳米二氧化硅复合产品。此过程氯化氢和原料的质量比1:10-7:10,反应温度-10℃-100℃。所述酸优选盐酸。
获得上述三维网状硅酸钙微纳米复合物产品反应原理及过程反应式如下:
3CaO·SiO 2+(3-m+n)H 2O→mCaO·SiO 2·nH 2O+(3-m)Ca(OH) 2
2CaO·SiO 2+(2-m+n)H 2O→mCaO·SiO 2·nH 2O+(2-m)Ca(OH) 2
3CaO·Al 2O 3+6H 2O→3CaO·Al 2O 3·6H 2O
4CaO·Al 2O 3·Fe 2O 3+7H 2O→3CaO·Al 2O 3·Fe 2O 3·6H 2O+Ca(OH) 2
本发明将普通硅酸盐水泥或硅铝酸盐水泥与优化量的水或水-有机溶剂混合溶液,在一定温度下进行反应,可直接加热水化,也可同时加入改性剂进行晶型和形貌控制,在保温,混合反应合适时间后,按常规方法过滤、洗涤、干燥即得到系列微纳米无机复合材料。根据不同应用场合要求可以采用水/醇混合溶剂及使用改性剂进行原位改性制备改性及未改性的高性价比三维网状结构微纳米产品系列。
利用X射线衍射仪(XRD)、场发射电子扫描电镜(SEM)、X射线荧光光谱(XRF)对上述方法所制备的微纳米复合产品进行表征的结果表明:反应温度可从室温(25℃)慢慢升高到100℃,反应过程中主要产生了水化硅酸钙、氢氧化钙,产品形貌和晶型会随温度升高和时间的延长而变化,在80℃和8h以上可以获得的具有三维网状“竹荪”形貌的硅酸钙微纳米复合材料产品,粗产品的质量得率为原料水泥的1.1倍左右(参见表4和图1-14)。
另外,如果在水泥水化过程中,如果不搅拌,静置使其发生水化反应,一般认为水泥会发生水化聚集长大,不会生成微纳米材料。然而,通过实验发现,如果加入水的质量达到水泥质量的3倍及以上,让其在水中静置水化,水泥也可生成分散性较好的微纳米材料,特别是提高反应温度后,产品分散性会更好,而反应速度大大加快。且反应产品和搅拌条件下有明显区别,高温下静置1h左右生成了类托贝莫来石型的层状水化硅酸钙,且随着反应的进行,在4h时层状水化硅酸钙表面出现了海胆般的毛刺,在8h左右几乎层状水化硅酸钙表面几乎被完全覆盖。常温下上述毛刺将会生长成更加粗大的晶须状,只是反应速度太慢。其形成机理可能是水化初期释放的Ca(OH) 2与表面的富硅层进行反应生成了层状水化硅酸钙,因为在1h左右的XRD图谱中并未有明显的Ca(OH) 2峰,后期钙离子含量增多,Ca/Si比增大,逐渐往长径比更大的棒状结构生长。利用甘氨酸去中和Ca(OH) 2,也还会生成无定形片状硅酸钙聚集体,并且在不同的时间内发现了长纤维状的晶须产物,可得 到无定形纳米片和纳米线的组合产品。
主反应方程式如下:
3CaO·SiO 2+(3-m+n)H 2O→mCaO·SiO 2·nH 2O+(3-m)Ca(OH) 2
和三维产品一样,二维片状硅酸钙复合物产品同样具有较大的比表面和很好的应用性能。经过应用评价,证明这种具有二维片状结构的水泥水化物产品具有出色的遮盖和填充效果,综合性能不亚于纳米碳酸钙、白炭黑、钛白粉、硫酸钙晶须等产品;特别是在提升涂料遮盖率,水泥早强性能,和胶黏剂的粘接强度方面,显示了巨大的提质降本的性价比优势和巨大的开发应用潜力。
因此,本发明还提供了一种二维片状和一维线状的水化硅酸钙为主要成分的微纳米复合物的生产方法,所述方法包括利用水泥、水泥熟料作为原料,任选的,可根据产品要求加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-100℃,反应时间0.5-16小时,优选地,反应温度为70-90℃,生产二维片状水化硅酸钙反应时间为1-2小时;生产一维线状水化硅酸钙反应时间为4-16小时。优选的,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料优选硅酸盐水泥熟料。优选地,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;所述方法还包括,在反应结束后,将反应混合物过滤、洗涤、烘干的步骤。
第二方面,本发明还提出了以量大价廉的水泥和烟道气为原料,通过水化生成硅凝胶、中和沉淀、复分解、脱水缩合等反应,开发了大规模、低成本生产高性价比纳米碳酸钙/白炭黑微纳米复合物新产品及其新工艺,丰富了微纳米原料库。
因为水泥混合物中的硅酸二钙及硅酸三钙等熟料成分呈碱性,同时可以水解生成水化硅酸钙和氢氧化钙混合物,因此,在水泥悬浊液中通入二氧化碳或加入可溶性碳酸盐可以促进水化生成硅凝胶、复分解和中和沉淀生成碳酸钙、脱水缩合生成白炭黑的反应。我们在用X-射线衍射技术跟踪分析水泥碳化过程,证明通入二氧化碳更容易发生反应,在温度70℃左右反应温度和较低水量条件下意外得到了平常很难得到的文石型碳酸钙晶须。这可能是硅酸二钙及硅酸三钙水解反应产生的硅凝胶高分子吸附及空间阻挡及表面电荷阻隔或抑制了反应及离子迁移速度,减小了溶液中的离子浓度,为优势晶体的缓慢及定向生长 创造了条件,形成了文石型碳酸钙晶须。在仅用氢氧化钙作原料进行碳化时,同样条件下只得到方解石型碳酸钙,但加入水泥和水泥熟料就可以形成文石型碳酸钙晶须的试验证明了这一推测。在80℃左右温度下硅凝胶高分子可在晶体表面脱水成膜状或颗粒状白炭黑,因此产品具有较大的比表面积。在深入研究和掌握了硅酸盐水泥熟料的水化、中和、复分解及硅凝胶脱水缩合反应规律的基础上,我们得到了优化的工艺条件,合成了性能稳定、性价比高的系列方解石型纳米碳酸钙、或/和文石碳酸钙晶须、或/及改性物的微纳米复合物新产品,并进行了产品表征及应用性能评价,证明了系列产品具有比常见纳米碳酸钙、白炭黑、钛白粉更好的应用效果,可以显著提升混凝土早强性能,大幅增加其在塑料、橡胶、沥青等中的添加量及提高材料的拉伸强度和冲击韧性,提高沥青的软化点、针入度、耐车辙性能,在增强胶黏剂的粘接力等方面表现突出,具有显著的提质降本的性价比优势和巨大的开发潜力。
因此,本发明开创了水泥为原料大规模、低成本简单生产高性能碳酸钙基微纳米材料的新途径,对于发展高性价比复合新材料意义重大。
具体的,本发明提供了一种碳酸钙基微纳米复合物产品,所述微纳米复合物产品包含:改性或未改性的方解石型纳米碳酸钙/纳米白炭黑、水化聚合硅酸钙的复合物,或者包含文石碳酸钙晶须/纳米白炭黑、水化聚合硅酸钙的复合物,所述微纳米复合物产品的制备步骤包括:
向水泥、水泥熟料或其与石灰含水体系在25-100℃温度条件下,通入二氧化碳或烟道气或加入可溶性碳酸盐,改性时需要同时加入改性剂进行原位改性,在搅拌混合条件下反应0.5-15h,进行水化、中和、复分解、脱水缩合反应合成所述微纳米复合物产品。
优选地,所述水泥选自硅酸盐水泥、硅铝酸盐水泥;优选地,水泥熟料优选硅酸盐水泥熟料。
优选地,反应温度50-100℃,反应时间3-15h;优选地,反应温度70-100℃,反应时间4-10h;优选地,反应温度为50℃,60℃,70℃,80℃,90℃,100℃。反应时间为3h,4h,5h,6h,7h,8h,9h,10h。优选地,中和反应的终点pH为6-8,或者可在pH大于7的任何阶段停止反应。
优选地,反应中的水质量至少是固体原料的二倍以上,优选2-5倍。
优选地,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1。更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性 剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;优选地,生物基磺酸盐为木质素磺酸盐或纤维素磺酸盐。进一步优选地,所述方法还包括,在反应结束后,将反应混合物过滤、洗涤、烘干的步骤。洗涤溶剂为水或乙醇,烘干温度100℃-200℃,烘干时间0.5h-24h。
本发明提供了所述微纳米复合物产品的应用,将其用于合成材料、天然材料、复合材料降本提质;优选地,所述合成材料、天然材料、复合材料为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂或纸张。
优选地,将所述微纳米复合物产品单独加入所述合成材料、天然材料或复合材料中,或者将碳酸钙基微纳米复合物产品与其他纳米材料组合加入所述合成材料、天然材料或复合材料中。
优选地,将所述碳酸钙基微纳米复合物产品用于塑料、橡胶提高拉伸强度和冲击韧性及加工性能,用于混凝土提升早强性能,用于粘结剂提高粘结强度和耐水性,或者用于沥青提高软化点、针入度和耐车辙性。
进一步地,本发明提供了一种增强材料,所述材料包含所述的碳酸钙基微纳米复合物产品,以及合成材料、天然材料、复合材料中的任意一种。
特别地,文石型碳酸钙晶须和白炭黑的微纳米复合物产品的合成方法如下:
在适当的混合搅拌状态下向计量水中加入接近二分之一水量的硅酸盐水泥或硅酸盐与生石灰的混合物,保持体系适当流动性和较差的传质能力,需要改性的产品可以同时加入改性剂,混合升温到50℃-100℃,持续通入二氧化碳气体或者烟道气,保持温度,监测pH变化,pH达到7左右为反应终点,停止通气后,再继续保持温度反应2h以上,以保证结晶成型,将混合浆液抽滤,洗涤、烘干可得文石型碳酸钙晶须为主要成分的微纳米复合物或其改性产品。
系列零维纳米颗粒及一维纳米晶须复合物产品或与其它合成材料、天然材料、复合材料中组合可以开发出性价比更高的复合材料。
反应原理及方程式如下:
3CaO·SiO 2+(3-m+n)H 2O→mCaO·SiO 2·nH 2O+(3-m)Ca(OH) 2
2CaO·SiO 2+(2-m+n)H 2O→mCaO·SiO 2·nH 2O+(2-m)Ca(OH) 2
3CaO·Al 2O 3+6H 2O→3CaO·Al 2O 3·6H 2O
4CaO·Al 2O 3·Fe 2O 3+7H 2O→3CaO·Al 2O 3·Fe 2O 3·6H 2O+Ca(OH) 2
xCaO·SiO 2·nH 2O+xCO 2→xCaCO 3+SiO 2·nH 2O
Ca(OH) 2+CO 2→CaCO 3+H 2O
产品表征结果表明:反应前期生成了文石型、方解石结构的碳酸钙以及二氧化硅,延长反应时间可以转化为文石型/白炭黑的复合物。产品干燥后相对水泥原料约增量30%。同时我们还发现少量高分子苯丙乳液有促进文石生成作用,量大则有抑制作用,含醇的混合溶剂同样有抑制作用。优化的工艺条件下制备的文石型碳酸钙为晶须状,长径比可达30,方解石碳酸钙为块状,二氧化硅为块状(参见图16-28及表13的元素分析结果)。
第三方面,本发明还成功开发了以水泥为原料,利用“三废”及硫化物资源生产硫酸钙基微纳米复合物产品,拓展了微纳米原料库。
我们通过X-射线衍射仪跟踪水泥熟料的水化和中和过程发现:水泥熟料中的硅酸钙均可以直接发生中和与水化反应,生成硫酸钙和水化硅酸钙及氢氧化钙混合物,原料及水化物很容易与二氧化硫、硫酸、硫酸铵等路易斯酸发生中和及沉淀反应生成硅凝胶及硫酸钙复合物,在80℃左右温度下硅凝胶高分子会在石膏晶体表面迅速脱水形成膜状或颗粒状白炭黑,产品具有较大的比表面积和很好的使用性能。通过对硅酸盐水泥的复分解、水化、中和及硅凝胶脱水缩合规律的研究,我们开发了优化的合成工艺条件,成功合成了性能稳定、性价比高的硫酸钙块/片/棒/晶须附着纳米白炭黑及少量氧化铁、氧化铝的微纳米复合物新产品,产品表征及应用性能评价结果证明:硫酸钙/纳米白炭黑复合物具有比常见纳米碳酸钙、白炭黑、钛白粉、硫酸钙晶须更好的分散及应用效果,在显著提升混凝土早强性能,大比例添加到塑料等复合材料中仍可基本保持或提高复合材料拉伸强度、弯曲强度和冲击韧性,可显著增强聚氨酯人造革剥离强度和胶黏剂的粘接力,提质降本的性价比优势显著。
本发明将普通硅酸盐或硅酸盐水泥熟料与优化量的水或水-有机溶剂混合溶液,在一定温度下加热水化同时通入含有二氧化硫的烟道气或加硫酸,或加硫酸铵中和的同时回收氨,也可同时加入改性剂或者高分子改性剂进行晶型和形貌控制,在优化的配比、反应及结晶温度、时间和溶剂体系中,按常规方法过滤洗涤,较高温度下干燥即得到系列微纳米无机复合物产品。
综上所述,本发明开创了以水泥为原料,大规模、低成本生产高性能微纳米新材料的新途径,对于烟道气、废硫酸及废石膏等“三废”资源的高附加值利用,对于大规模发展高性价比的复合新材料意义重大。
具体的,本发明提供了一种硫酸钙基微纳米复合物产品,其中,所述硫酸钙基微纳米复合物产品包含:硫酸钙块/片/棒/晶须与纳米白炭黑的复合物,其制备步骤包括:
将水泥和/或水泥熟料及其与石灰的混合物在含水体系中,于0-100℃,加入硫化合物原料,通过搅拌混合,经过复分解、水化、中和、脱水缩合反应0.5-10h,合成所述硫酸钙基微纳米复合物产品。优选地产品形式为一维硫酸钙晶须/白炭黑复合物。
所述硫化合物原料选自硫酸、硫酸铵、亚硫酸铵、需要脱硫的烟道气、二氧化硫、三氧化硫或废硫酸中的一种或多种。
优选地,所述水泥选自硅酸盐水泥、硅铝酸盐水泥;水泥熟料优选硅酸盐水泥熟料。
优选地,反应温度25-80℃,反应时间2-8h;优选地,反应温度25-60℃,反应时间2-6h。对于一维硫酸钙晶须/纳米白炭黑产品,优选地,反应时间4-8h。优选地,中和反应的终点pH为6-8,或者可在pH大于7的任何阶段停止反应。
优选地,反应中的水质量至少是固体原料的二倍以上,优选2-5倍。
优选地,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;对于一维硫酸钙晶须/纳米白炭黑产品,优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1。
优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;优选地,生物基磺酸盐为木质素磺酸盐或纤维素磺酸盐。
优选地,在反应结束后,还包括将反应混合物过滤、洗涤、烘干的步骤。洗涤溶剂为水或乙醇,烘干温度100℃-200℃,烘干时间0.5h-24h。
进一步地,本发明提供了所述硫酸钙基微纳米复合物产品的应用领域,其中,将其用于合成材料、天然材料、复合材料降本提质;优选地,所述合成材料、天然材料、复合材料为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂或纸张;更优选地,将硫酸钙基微纳米复合物产品单独加入所述合成材料、天然材料或复合材料中,或者将硫酸钙基微纳米复合物产品与其他纳米材料组合加入所述合成材料、天然材料或复合材料中。
优选地,将所述硫酸钙基微纳米复合物产品用于塑料、橡胶提高拉伸强度和冲击韧性 及加工性能,用于聚氨酯皮革提升剥离强度,用于粘结剂提高粘结强度和耐水性,或者用于沥青提高软化点、针入度和耐车辙性。
本发明还提供了一种增强材料,所述材料包含上述的微纳米复合物产品,和合成材料、天然材料、复合材料中的任意一种。
本发明还提供了一种再生氨新方法,所述方法包括如下步骤:
在上述微纳米复合物产品的制备方法中,含水泥的钙基原料进行中和反应,应用工业副产硫酸铵为原料进行中和,中和反应的终点控制pH为大于等于7,中和反应过程同时回收氨气。
上述微纳米复合物产品的制备方法中的反应方程式如下:
3CaO·SiO 2+(3-m+n)H 2O→mCaO·SiO 2·nH 2O+(3-m)Ca(OH) 2
2CaO·SiO 2+(2-m+n)H 2O→mCaO·SiO 2·nH 2O+(2-m)Ca(OH) 2
3CaO·Al 2O 3+6H 2O→3CaO·Al 2O 3·6H 2O
4CaO·Al 2O 3·Fe 2O 3+7H 2O→3CaO·Al 2O 3·Fe 2O 3·6H 2O+Ca(OH) 2
Ca(OH) 2+SO 4 2-+yH 2O→CaSO 4·yH 2O+2OH -
CaO·SiO 2+H 2SO 4+(x+y)H 2O→H 2SiO 3·xH 2O+CaSO 4·yH 2O
CaO·SiO 2+(NH 4) 2SO 4+(x+y)H 2O→SiO 2·(x+1)H 2O+CaSO 4·yH 2O+NH 3
SiO 2·xH 2O→SiO 2+xH 2O
过程跟踪表明:随着反应的进行,可以检测到二水和半水合硫酸钙以及无定形纳米白炭黑,所制备的硫酸钙可以为晶须、片状或块状结构,100-200℃条件下完全干燥后产品晶型主要为半水硫酸钙。产品完全干燥后相对水泥原料约增量40%(参见图29-35和表18元素分析结果)。
本发明的产品按常规的塑料填料检测及评价方法进行,步骤如下:
步骤(1):按重量百分比称取塑料100份和加入不同份数的微纳米复合物产品进行充分混合;
步骤(2):将步骤(1)得到的混合物料加入密炼机中,经熔融挤出后切粒、冷却、干燥得到复合材料成品。
挤出机料筒温度180-200℃,螺杆转速30-40转/分钟,熔融混合搅拌时间15min。
本发明的产品按常规的混凝土检测及评价方法进行,步骤如下:
步骤(1):根据不同配比称取水泥熟料和微纳米复合物产品共100份进行混合;
步骤(2):按照一定的水灰比称取不同质量水,加入到步骤(1)所得混合物中,通 过行星搅拌机进行充分混合;
步骤(3):将步骤(2)所得混合料放入20mm×20mm×20mm试模中,标准养护24h,拆卸模具,继续标准养护到龄期得到复合材料成品;
上述制备复合材料的方法中,水灰比为0.27-0.31,标准养护条件指试块在温度为20±3℃、相对湿度在90%以上的环境中养护,龄期为3天、7天和28天。
本发明的产品按常规改性沥青检测及评价方法进行,步骤如下:
步骤(1):根据不同配比称取沥青和微纳米复合物产品共100份;
步骤(2):将沥青置入捏合机,加热到一定温度,使沥青熔融,拌合条件下加入步骤(1)所称量微纳米复合物产品,在该温度下继续拌合一定时间,得到改性沥青;
优选的,上述改性沥青中,沥青型号为国标70号和90号,加热温度为130-140℃,拌合时间为25-35分钟。
本发明的产品按常规粘结剂检测及评价方法进行,步骤如下:
步骤(1):将微纳米复合物产品研磨,过200目筛,与苯丙乳液配置为质量分数占5%、10%、30%的复合胶;
配比计算:
Figure PCTCN2021085992-appb-000001
(x为钙粉质量,y为乳液质量,z为乳液固含量,n为5%、10%、30%);
步骤(2):竹条切段(长10cm),水洗净,自然风干后放入63℃烘箱干燥24h;
步骤(3):取薄竹片涂胶,63℃烘箱干燥2min(稍微固化),热压,放置一天;
步骤(4):利用万能力学试验机测试样条拉伸强度,测试5个样(结果取平均值);
步骤(5):分别进行63℃水浴3h和100℃水浴8h耐水性测试,测试完成后观察并记录样条胶结情况变化,每组测试4个样;
优选的,上述制备复合材料的方法中,热压温度为100-180℃,压力为10-25MPa,时间5-10min。
本发明具有如下有益效果:
本发明制备的零维及一维微纳米复合物产品具有原料廉价易得、生产工艺简单、产品使用性能好,应用范围广,可大规模、低成本、清洁生产等诸多优点,开辟了大量利用廉价硅酸盐水泥及烟道气中的二氧化碳及热能大规模、低成本生产微纳米复合物产品的途径,丰富了无机微纳米产品库。
本发明的亮点之一是通过反复摸索和工艺优化,创新了简单经济、快速方便、可大量利用廉价普通硅酸盐水泥直接水化生产三维网状微纳米产品的新方法。
本发明的亮点之二是用廉价的硅酸盐水泥意外得到了晶须状文石型碳酸钙为主要成 分的改性及不改性微纳米复合新材料,发现了其更佳的增强增韧性能。
本发明的亮点之三是用廉价的硅酸盐水泥和“三废”为原料低成本生产高性能硫酸钙晶须为主要成分的改性及不改性微纳米复合物新产品,增强增韧性能更佳。
系列微纳米复合物产品可以单独及进一步复配可作为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂、纸张或复合材料的填料、添加剂或改性剂,提高添加比例,发挥增强增韧、增加粘结力及降低成本的作用,促进性价比更高的各种复合材料的开发。
附图说明
图1、图2为实施例1利用硅酸盐水泥在不同温度下,合成硅酸钙微纳米复合物产品的XRD和SEM跟踪图。
图3、图4为实施例2以硅酸盐水泥为原料的水化硅酸钙生成过程的XRD和SEM跟踪图。
图5为实施例3利用硅酸盐水泥熟料为原料,分析不同时间对硅酸钙微纳米复合物产品品质的影响的SEM跟踪图。
图6为实施例4利用硅酸盐水泥原料,分析不同水量对硅酸钙微纳米复合物产品品质的影响的XRD和SEM跟踪图。
图7为实施例5为以硅酸盐水泥为原料合成得到的硅酸钙微纳米复合物产品在不同干燥温度下的稳定性的XRD和SEM跟踪图。
图8为实施例6利用水泥和水泥熟料合成硅酸钙微纳米复合物产品的XRD、SEM跟踪图。
图9、图10、图11是对实施例6中得到的产物d用200目筛子进行了筛分,对过筛和筛余物的XRD、SEM、EDS的表征结果,其中图10、图11分别是熟料水化产品过筛后筛上产物和筛下产物的EDS元素分析。
图12为实施例7甘氨酸纯化制备三维网状水化硅酸钙材料XRD的表征结果。
图13为实施例8合成的三维网状硅酸钙微纳米复合物产品用不同酸量处理的XRD、SEM图。
图14为硅酸盐水泥和水反应制备微纳米材料的反应过程简图。
图15-1、15-2为实施例9中利用水泥熟料在静置条件下合成的二维片状硅酸钙材料的SEM和XRD表征结果。
图16为实施例10中不同温度下制备文石型碳酸钙复合物产品的XRD和SEM图。
图17为实施例11不同反应时间制备文石型碳酸钙复合物产品的XRD和SEM图。
图18为实施例12硅酸盐水泥熟料碳化生成文石碳酸钙复合物时间跟踪SEM图。
图19为实施例13不同固液比制备文石型碳酸钙复合物产品的XRD和SEM图。
图20为实施例14不同通气速度下制备文石型碳酸钙复合物产品的XRD和SEM图。
图21为实施例15在不同搅拌转速下文石型碳酸钙复合物产品的XRD图和SEM图。
图22为实施例16在不同干燥条件下处理文石型碳酸钙复合物产品的XRD和SEM图。
图23为实施例17醇-水混合溶剂中合成方解石型碳酸钙复合物产品的XRD和SEM图。
图24为实施例18加入木质素钠高分子改性剂后得到的方解石型碳酸钙复合物产品的XRD和SEM图。
图25为实施例19加入高分子苯丙乳液可合成文石型碳酸钙及方解石型碳酸钙复合物产品的XRD和SEM图。
图26-1、图26-2、图27为实施例20制备复合物产品的XRD和SEM图。
图28为硅酸盐水泥和二氧化碳反应生成微纳米材料的反应过程示意简图。
图29、30为实施例21不同条件下用水泥制备硫酸钙过程中的XRD和SEM跟踪结果。
图31为实施例22为醇/水混合溶剂中制备硫酸钙微纳米复合物产品的XRD和SEM跟踪结果。
图32为实施例23加入不同改性助剂制备硫酸钙微纳米复合物产品的XRD和SEM表征结果。
图33为实施例24用硅酸盐水泥与硫酸铵为原料制备硫酸钙微纳米复合物产品的XRD和SEM跟踪结果。
图34-1、图34-2为实施例25用水泥熟料制备硫酸钙微纳米复合物产品在不同干燥条件下的XRD和SEM跟踪分析结果。
图35为硅酸盐水泥和硫酸根反应化生成微纳米材料的反应过程示意简图。
具体实施方式
下面结合具体实施例对本发明进一步说明。实施例中所用到的原料及设备为:
PC32.5R水泥,PO42.5R水泥,水泥熟料:安徽海螺水泥股份有限公司;
氧化钙、硅酸钠、氯化钙:麦克林试剂;
水化硅酸钙:通过硅酸钠和氯化钙沉淀法合成;
E01苯丙乳液,北京紫光英力化工技术有限公司,50%水乳液;
木质素钠固体:北京紫光英力化工技术有限公司,制浆副产品;
二氧化碳气体:林德气体,纯度≥99.9%;
聚丙烯树脂:宁波富德能源有限公司;
聚丙烯树脂:台塑集团;
70#,90#沥青:中国石油化工股份有限公司的镇海炼化分公司;
循环水式真空泵:巩义市予华有限责任公司,SHZ-(III);
集热式恒温加热磁力搅拌器:巩义市予华有限责任公司,DF-101S;
电子天平:赛多利斯科学仪器有限公司,BS224S;
真空干燥箱:巩义市予华有限责任公司,DZF-6020;
上海科创密炼机:LH200;
宁波海天注塑成型机:SA600/150;
微机控制电子万能实验机:AGS-X,10N-10kN+250mm;
美特斯摆锤式冲击试验机:ZBC7251-B;
美特斯熔体流动速率试验机:ZRZ1452;
贴膜打样机:浙江鑫业皮革机械有限公司,XY-23;
水泥净浆搅拌机:无锡建仪仪器机械有限公司,NJ-160;
微机控制全自动水泥压力试验机:济南美特斯测试技术有限公司,YAW-300C;
沥青针入度仪:沧州鑫科建筑仪器有限公司,SYD-2801F;
沥青软化点测定仪:沧州鑫科建筑仪器有限公司,SYD-2806;
沥青延伸仪:沧州鑫科建筑仪器有限公司,LYY-7A;
捏合机:莱州格瑞机械有限公司,电加热型;
全孔分析:美国麦克仪器公司的TriStar Ⅱ 3020型全自动比表面和孔隙分析仪;
X射线衍射仪:日本理学MiniFlex 600;
扫描电镜:德国蔡司SIGMA 300;
元素分析:岛津EDX-7000能量色散型X射线荧光分析仪。
下面结合具体实施例,进一步阐述本发明的技术方案。这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:以硅酸盐水泥为原料,跟踪不同反应温度制备硅酸钙微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到500g水中(固液比为1/5),机械搅拌均匀,分别在25℃、50℃、60℃、70℃、80℃、100℃、120℃,反应8h后,抽滤,乙醇洗涤,100℃干燥8h得到102g、104g、107g、109g、110g、109g、109g水化产品。
图1、图2为实施例1利用硅酸盐水泥在不同温度下,合成硅酸钙微纳米复合物产品的XRD和SEM跟踪,通过不同温度水泥水化过程影响的分析同样发现,三维网状水化硅酸钙的形成与温度密切相关,常温下反应慢,水泥熟料反应速度明显低于加热条件;其次,常温下熟料表面未形成丝网结构,而是形成片状结构,证明三维网状结构的水化硅酸钙需 要在较高温度下才慢慢形成。表1全孔分析结果进一步说明随着反应温度提高,形成的丝网结构带来产品的比表面积和孔体积都明显增加,但温度高于80℃后,增加幅度很小,形貌趋于稳定。
表1 原料及产品全孔分析结果
Figure PCTCN2021085992-appb-000002
实施例2:以硅酸盐水泥为原料,不同反应时间制备硅酸钙微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到500g水中(固液比为1:5),机械搅拌均匀,在80℃分别反应1h、2h、3h、4h、5h、6h、7h、8h、12h、16h后,抽滤,水洗涤,100℃干燥8h得到100g、101g、102g、104g、106g、108g、110g、110g、110g、111g产品。
图3、图4为实施例2以硅酸盐水泥为原料的水化硅酸钙生成过程的XRD和SEM跟踪图,结果显示,三维网状水化硅酸钙的生成过程是由外及里伴随着水泥活性成分熟料的水解、缩合及结晶成型过程,反应1h,并没出现网状形貌,反应2h后在原料表面可以观察到网丝结构,随着反应时间延长可观察到原料内部持续生成更多精细网丝结构,最终可得到具有完美三维网状结构的水化硅酸钙为主要成分的新产品。表2全孔分析结果也说明,随着时间的延长,产品的比表面积和孔体积都明显增加,且在8h-16h时增速变缓,说明此时反应已经进行的比较彻底。
表2 原料及产品全孔分析结果
Figure PCTCN2021085992-appb-000003
实施例3:以硅酸盐水泥熟料为原料,不同反应时间制备硅酸钙微纳米复合物产品
将100g PC硅酸盐水泥熟料,加入到500g水中(固液比为1:5),机械搅拌均匀,在80℃分别反应1h、2h、3h、4h、5h、6h、7h、8h后,抽滤,水洗涤,100℃干燥8h得到101g、102g、104g、105g、107g、109g、111g、110g产品。
图5为实施例3以硅酸盐水泥熟料为原料的水化硅酸钙生成过程的SEM跟踪图,结果显示,熟料水化过程同实施例2中水泥相似,随着反应时间延长原料内部持续生成更多精细网丝结构,最终可得到具有完美三维网状结构的水化硅酸钙为主要成分的新产品。
实施例4:以硅酸盐水泥为原料,不同固液比制备硅酸钙微纳米复合物产品
将100g PC32.5R硅酸盐水泥分别加入到100g、200g、300g、400g、500g水中(固液比为1:1-1:5),机械搅拌均匀,在80℃反应8h后,抽滤,水洗涤,100℃干燥8h得到107g、106g、108g、108g、109g水化产品。
图6为实施例4利用硅酸盐水泥原料分析水量对硅酸钙微纳米复合物产品品质的影响的XRD和SEM跟踪图,通过水化产品中的氢氧化钙的衍射峰的强度及水化硅酸钙电镜分析,随着固液比降低,体系中水量增加,水化生成产物中的氢氧化钙晶体结构生长更完整,产物中水化硅酸钙空隙率更高,有利于镂空网状结构的形成,当液固比大于4:1时可以合成结构完整和性能稳定的三维网状水化硅酸钙。
实施例5:以硅酸盐水泥为原料,不同干燥温度的条件下硅酸钙微纳米复合物产品的稳定性分析
将100g PC32.5R硅酸盐水泥,加入到500g水中(固液比为1:5),机械搅拌均匀,在80℃反应8h后,不洗涤,抽滤,分别在100℃干燥8h、140℃干燥4h、180℃干燥1h得到110g、109g、109g产品。
图7为实施例5为以水泥为原料合成得到的硅酸钙微纳米复合物产品在不同干燥温度下的稳定性的XRD和SEM跟踪图。可以看出三种干燥条件对水化硅酸钙产品的晶型和形貌影响不大,在较高烘干温度下产品具有很好的稳定性,可以采取高温快速干燥的流程,以提高生产效率。
实施例6:以硅酸盐水泥和水泥熟料为原料,不同水化条件制备硅酸钙微纳米复合物产品
将100g硅酸盐水泥或水泥熟料,加入到500g水或500mL醇-水混合溶剂中(固液比为1:5),按照表3条件加入所需助剂,机械搅拌均匀,在80℃,分别反应8h后,抽滤,180℃干燥1h得到产品,具体条件见表3,其中产品a、b、c的原料为硅酸盐水泥,产品d、 e、f的原料为硅酸盐水泥熟料。
表3 水泥熟料水化制备微纳米复合物产品反应条件
Figure PCTCN2021085992-appb-000004
图8为实施例6利用复合硅酸盐水泥和水泥熟料合成硅酸钙微纳米复合物产品的XRD、SEM跟踪结果表明,用水泥和水泥熟料直接水化都可以得到具有三维网状结构水化硅酸钙和氢氧化钙为主要成分的新产品,说明水泥的辅助成分碳酸钙、硫酸钙等对成型过程影响不大,本反应所得水化硅酸钙和氢氧化钙来自熟料中硅酸三钙和硅酸二钙的水化分解。进一步研究结果表明,在反应体系引入木质素钠等表面改性剂对产物形貌及晶型影响不大;然而,当采用50%的乙醇水溶液后,水化过程延缓,仅在表面仅生成珊瑚状的水化硅酸钙,原料内部仍是密实的块状结构,难以完全反应。因此,醇可作为反应速度调节剂,为保证反应完全或最佳的改性效果可在反应后期加入。
对实施例6中产物a和产物d进行了全面系统的XRF元素分析,并对产物d用200目筛子进行了筛分,对过筛和筛余物分别进行了XRD、SEM、XRF、EDS的表征,结果如表4、图9、图10、图11所示。元素分析结果表明,硅酸盐水泥熟料的基本成分主要是由60%-70%的氧化钙、20%的氧化硅,5%-7%的氧化铝,3%-4%的氧化铁组成,经过加热水化8h反应后,烘干的产品增重10%,与组成的变化基本吻合。证明水化过程是水参与了硅酸钙的水解和缩合交联反应,促进了硅凝胶的生成及互相结合生成无机聚合物,并进一步结晶成型为三维网状水化硅酸钙并副产氢氧化钙。分析结果表明,水泥熟料加热水化可得到两种主要产物,一种大颗粒晶体产物(筛上样品),经过XRD、SEM和EDS分析可以基本判断为氢氧化钙结晶体,形貌为六边形片状结构,再堆积成块状结构,这种氢氧化钙晶粒较大,结晶度高,粒径可达数百μm,后经过筛分可以比较容易的同样品中其他粉体分开。筛分后筛下的部分,XRD图中氢氧化钙衍射峰(18°附近)明显降低,说明结晶度好的氢氧化钙样品大部分被留在筛上。过200目筛的产品主要为三维网状结构的水化 硅酸钙,它主要就是由熟料中硅酸三钙逐渐水化聚合而成,EDS分析证明其主要元素为硅、氧、钙,为水化硅酸钙。
表4 产品收率及XRF元素分析结果
Figure PCTCN2021085992-appb-000005
说明:表中所有数据均为质量百分比,其中产品得量=100g水泥或熟料水化反应完毕干燥后所得产物总量。
实施例7:实施例6所得微纳米复合物产品甘氨酸纯化制备三维网状水化硅酸钙材料
准确称取8份5g实施例6中产物d于250ml烧杯中,依次加入不同质量比的甘氨酸,加入100mL超纯水,并加入磁力搅拌子,贴好标签。将8个烧杯置于恒温加热磁力搅拌器上,温度为常温,打开磁力搅拌,设置合适的转速,反应2h。反应结束后,取下烧杯,将溶液抽滤,并用去离子水清洗3遍,将所得固体产品用玻璃皿盛装,放入60℃的精密鼓风干燥箱干燥10h取出,密封保存。各反应原料比及产品得量列入表中,最后将样品通过Ultima-IV X射线衍射仪表征物质结构。
表5 纯化反应中原料比及产品得量分析结果
Figure PCTCN2021085992-appb-000006
从表5中得率及图12中的XRD图谱中可以看出,在水化熟料:甘氨酸=1:0.73(质量比)的时候反应已经基本完全,因此可以得出在水化熟料中Ca(OH) 2的含量约占36%;另外通过0.5mol/L的盐酸溶液盐酸滴定水化熟料1g,消耗盐酸0.0123mol,除去滴定混合物中其余微量的金属氧化物,氯离子与钙离子2:1(摩尔比)配比,预测钙离子浓度接近0.00486mol,进一步验证了水化熟料(80℃,8h)中氢氧化钙的质量分数约为36%。因此 通过对水化熟料(80℃,8h)按照[水化熟料:甘氨酸=1:0.73(质量比)]处理除去氢氧化钙,就可以得到纯的三维网状水化硅酸钙材料。
实施例8:实施例6所得三维网状水化硅酸钙材料酸化制备微纳米复合物产品
将实施例6中10g三维网状产品d,过200目筛后,加入到100g水中,分别滴加不同质量的盐酸,冰浴搅拌反应2h,抽滤,乙醇洗涤一次,100℃干燥8h得到产品,得到产品,具体反应条件和结果见表6。
表6 三维网状多孔水化硅酸钙微纳米复合物产品酸处理样品分析
原料量/g 加酸量/g 处理结束pH 剩余固体质量/g 固体残存率/%
10.0 2.8 13.0 8.88 88.8
10.0 5.6 12.7 7.98 79.8
10.0 8.4 12.2 6.92 69.2
10.0 11.2 11.3 5.93 59.3
10.0 14.0 4.8 4.19 41.9
图13为实施例8合成的三维网状硅酸钙微纳米复合物产品用不同酸处理的XRD、SEM分析结果,这种三维网状水化硅酸钙与盐酸反应即使在低温下反应也是直接生成无定形二氧化硅颗粒,而且随着酸量的增加,网状结构从外向里逐渐分解,生成均匀的无定形纳米二氧化硅颗粒,证明这种三维网状结构的产品确实是一种水化硅酸钙,而不是硅胶包裹或二氧化硅形成的骨骼。因此,可用水泥为原料,在水化反应前期或后期用酸处理生产白碳黑,复配得到三维网状水化硅酸钙/无定形纳米二氧化硅复合产品。
通过以上实施例可以看出,硅酸盐水泥水化制备微纳米材料的基本反应过程为:水泥中的硅酸二/三钙在高温水中快速分解生成钙离子、氢氧根和硅氧四面体,钙离子和氢氧根在高温水中生成大块六边形结晶氢氧化钙沉淀,而硅氧四面体在热水中逐渐聚合并引入剩余的钙离子生成一种三维网状的多孔水化硅酸钙材料。其中提升温度加速原料分解,持续搅拌防止原料凝结,两者都是快速制备此类三维网状的多孔水化硅酸钙材料的必要条件。具体过程可参看图14。
实施例9:静置条件下二维纳米片状微纳米硅酸钙复合物的合成
准确称取100g熟料于500ml圆底烧瓶中,加入300ml去离子水,摇匀,将样品完全湿润得悬浊体系,室温25℃,静置16h,1h、16h取样。将上述悬浊体系水浴加热至80℃, 静置8h,1h、4h、8h进行取样。在上述悬浊体系中再加入73g甘氨酸,摇匀,水浴加热至80℃,静置8h,1h、4h、8h进行取样。将取得样品抽滤,180℃干燥1h得到产品。
图15-1、15-2为实施例9中利用硅酸盐水泥熟料和水混合,静置生长合成的二维片状和一维线状水化硅酸钙材料的SEM照片和XRD图谱,以上结果表明在80℃反应下静置反应,1h左右生成了类托贝莫来石型的层状水化硅酸钙,且随着反应的进行,在4h时层状水化硅酸钙表面出现了海胆般的毛刺,在8h左右几乎层状水化硅酸钙表面几乎被完全覆盖。在常温下静置反应,1h左右与高温下反应生成产物几乎相同,但仍存在较多未水化的硅酸三钙,在16h时出现了类托贝莫来石的棒状水化硅酸钙结构。其形成机理可能是水化初期释放的Ca(OH) 2与表面的富硅层进行反应生成了层状水化硅酸钙,因为在1h左右的xrd图谱中并未有明显的Ca(OH) 2峰,后期钙离子含量增多,Ca/Si比增大,逐渐往长径比更大的棒状结构生长。
在80℃,初期加甘氨酸的条件下,熟料的水化过程并没有生成预期的白炭黑,而是生成了一种片状聚集体,并且在不同的时间内发现了长纤维状的晶须产物。而从XRD分析中可知,只有硅酸三钙的峰,说明产物是一种无定型,没有特定晶型的纳米片和纳米线的组合产品。
实施例10:以硅酸盐水泥和二氧化碳为原料,不同温度下碳化制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到200g水中,体系分别在室温(25℃)、50℃、60℃、70℃、80℃,机械搅拌均匀,以0.5L/min流量通入二氧化碳气体,分别反应4h后,抽滤,乙醇洗涤,180℃干燥1h,得到产品。
表7 实施例10中原料及材料的全孔分析结果
Figure PCTCN2021085992-appb-000007
图16、表7为实施例10中不同温度下制备文石型碳酸钙复合物产品的XRD和SEM的跟踪图及全孔分析结果,结果显示在固液比为1/2时,在不同温度下都生成了文石结构,说明高固液比和粘稠体系及较差的传质条件有利于文石结构的形成,水量是关键影响因素之一。同时在60℃以上时生成的文石结构更均匀,说明提升温度有利于文石结构的生成。全孔分析结果也显示不同温度产品的比表面和孔体积相差不大。相对于海螺PC 32.5R水泥,由表7可以看出复合物产品的比表面积提高了10倍以上,孔体积及孔径也有大幅提高。
实施例11:以硅酸盐水泥和二氧化碳为原料,不同反应时间合成的微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到200g水中,体系升温至80℃,机械搅拌均匀,以0.5L/min流量通入二氧化碳气体,分别反应0.5h、1h、2h、4h、6h、8h后,抽滤,水洗涤,180℃干燥1h,得到产品。
表8 实施例中原料及不同时间复合物产品的全孔分析结果
Figure PCTCN2021085992-appb-000008
图17、表8为实施例11不同反应时间制备文石型碳酸钙复合物产品的XRD和SEM跟踪情况及全孔分析结果。根据XRD和SEM分析可以看到:在前0.5h气体吸附在水泥表面反应生产方解石型碳酸钙块状结构,1-8h随着反应时间的继续延长,颗粒表面逐渐开始出现棒状或丝状的文石型碳酸钙,到4h后,产品表面完全生成文石碳酸钙纳米棒,并堆积成球状。反应过程显示随着时间延长更有利于文石结构产品的生成。全孔分析结果显示随着反应时间的延长,产品的比表面积和孔体积也会明显增加,且4h-6h后基本稳定,水泥的比表面为3m 2/g,而产品比表面可达近50m 2/g。由表8可以看出复合物产品的比表面积随着时间的延长迅速提高,反应8h仍在提高,且提高了15倍以上,孔体积及孔径也有大幅提高。
实施例12:以硅酸盐水泥熟料和二氧化碳为原料,不同反应时间合成的微纳米复合物产品
将100g硅酸盐水泥熟料,加入到200g水中,体系升温至80℃,机械搅拌均匀,以0.5L/min流量通入二氧化碳气体,分别反应1h、2h、3h、4h、5h、6h、7h、8h后,抽滤,水洗涤,180℃干燥1h,得到产品。
图18为实施例12不同反应时间制备文石型碳酸钙复合物产品的SEM跟踪情况。根据SEM分析可以看到:同水泥一样,硅酸盐水泥熟料同样可以生成由文石晶须堆积而成的微米球体,且随着时间的延长文石晶须逐渐长大,大部分晶须长径比可达20。
实施例13:以硅酸盐水泥和二氧化碳为原料,不同固液比制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,分别加入到100g、200g、300g、400g、500g水中,体系升温至70℃,机械搅拌均匀,以0.5L/min流量通入二氧化碳气体,反应4h后,抽滤, 水洗涤,180℃干燥1h,得到119g、129g、128g、128g、130g产品。
图19为实施例13不同固液比制备文石型碳酸钙复合物产品的XRD图和SEM图。结果显示70℃固液比1:1时和1:5时都没有生成文石结构,这说明文石结构的形成要求体系有适中的固液比,结合反应过程观察,发现一般文石结构的形成都要历经一个体系不粘稠(有利于气体传质分散)到粘稠(不利于传质分散)的过程。而固液比1:1时,体系粘稠度一直都很大,不利于初期的气体分散反应;固液比1:5时体系粘稠度一直都不大,气体传质一直比较顺畅,但不利于后期文石碳酸钙的形成。
实施例14:以硅酸盐水泥和二氧化碳为原料,不同通气速度碳化制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到300g水中,在70℃机械搅拌均匀,搅拌速度500rpm,通入二氧化碳气体速度0.1L/min、0.2L/min、0.3L/min、0.4L/min、0.5L/min、0.6L/min,分别反应4h后,抽滤,水洗涤,180℃干燥1h,得到127g、128g、129g、131g、129g、128g产品。
图20为实施例14不同通气速度下制备文石型碳酸钙复合物产品的XRD和SEM跟踪结果图,可以看出,在固液比1:3时,70℃以下通气速度由0.1-0.6L/min变化,对产品形貌影响不大,都得到了颗粒较均匀的文石碳酸钙晶须包裹的微米球形结构。
实施例15:以硅酸盐水泥和二氧化碳为原料,不同搅拌速度碳化制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到300g水中,在70℃机械搅拌均匀,搅拌速度300rpm、400rpm、500rpm、600rpm、700rpm,以0.3L/min流量通入二氧化碳气体,分别反应4h后,抽滤,水洗涤,180℃干燥1h,得到128g、127g、129g、128g、129g产品。
图21为实施例15在不同搅拌转速下文石型碳酸钙复合物产品的XRD图和SEM图,由结果可知,固液比1/3时,70℃以下搅拌速度对产品晶型和形貌影响很大,300rpm和400rpm时,所得微米颗粒表面有文石晶须,但没有包裹完全,得到微米球形颗粒表面不圆滑;500rpm和600rpm时,得到了颗粒较均匀的文石碳酸钙晶须包裹的微米球形结构;转动速度增加到700rpm体系传质效果改善时有利于方解石型碳酸钙生成,没有出现文石晶须结构。说明反应物浓度及传质效果至关重要,传质效果差,二氧化碳浓度较低时有利于文石型产品生成,传质效果好,二氧化碳浓度较高时有利于生成方解石型碳酸钙。
实施例16:以硅酸盐水泥和二氧化碳为原料,不同干燥条件制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到300g水中,在70℃机械搅拌均匀,搅拌速度500rpm,以0.3L/min流量通入二氧化碳气体,分别反应4h后,抽滤,不洗涤,得到滤饼分别在烘箱中105℃干燥8h,140℃干燥4h,180℃干燥1h得到129g、128g、128g产品。
图22为实施例16在不同干燥条件下处理文石型碳酸钙复合物产品的XRD和SEM分析结果,可以看出,三种干燥温度下对文石晶须产品的晶型和形貌影响不大,最终得到的都是晶须表面堆积的球状结构,晶型有文石和方解石,因此可以采取高温快速干燥流程提高生产效率。
实施例17:以硅酸盐水泥和二氧化碳为原料、醇-水溶剂体系制备微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到含有150mL乙醇和150mL水的混和溶剂中,体系分别在室温25℃、40℃、50℃、60℃和70℃下,通入二氧化碳机械搅拌反应4h,通气速度0.3L/min,搅拌速度500rpm;反应完成后,抽滤,不洗涤,180℃干燥1h,分别得到109g、111g、115g、113g、114g产品。
表9 实施例17中原料及复合物产品的全孔分析结果
Figure PCTCN2021085992-appb-000009
图23、表9为实施例17醇-水混合溶剂中合成方解石型碳酸钙复合物产品的XRD和SEM跟踪情况及代表产品的全孔分析结果。可以看出,醇-水混合溶剂体系中,硅酸盐水泥通入二氧化碳的碳化分解的速度要比水中缓慢,从室温到70℃,反应4h后,均可在XRD图中明显看到未分解的硅酸三钙、硅酸二钙的衍射峰,说明醇的存在抑制了水泥的水化和碳化反应。和实施例8-14水体系碳化结果不同,在醇-水混合溶剂体系中碳化产品基本为方解石碳酸钙,即使升高反应温度后,也只能在SEM图发现极少数的文石碳酸钙纤维。全孔分析结果也表明70℃反应4h后产品的比表面和孔体积也都明显小于水体系相同条件产品(表7)。因此,醇水体系并不适合文石型碳酸钙的合成。
实施例18:以硅酸盐水泥和二氧化碳为原料、木质素钠为高分子改性剂,水体系中制备改性微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到含有300mL水中,然后再向该体系中加入ng(n=1、3、5、7、10)木质素钠,然后在70℃下,通入二氧化碳机械搅拌反应4h,通气速度0.3L/min,搅拌速度500rpm;反应完成后,抽滤,不洗涤,180℃干燥1h,得到128g、128g、131g、132g、132g改性产品。
表10 实施例18中原料及产品的全孔分析结果
Figure PCTCN2021085992-appb-000010
Figure PCTCN2021085992-appb-000011
图24、表10为实施例18加入木质素钠高分子改性剂后得到的方解石型碳酸钙复合物产品的XRD图和SEM图及产品的全孔分析结果。可以看到,在加入了不同量木质素钠改性剂后,并没有生成文石碳酸钙晶须,而是生成了块状方解石碳酸钙,这说明木质素钠在硅酸盐水泥碳化体系中更倾向于诱导生成方解石碳酸钙,可作为产品晶型控制剂和改性剂。可以看出木质素钠改性的复合物产品的比表面积及孔体积增加了十多倍,其孔径也有大幅提高,接近不改性水体系的结果。全孔分析结果产品的比表面和孔体积同未加入木质素钠的产品(表7)相差不大。
实施例19:以硅酸盐水泥和二氧化碳为原料、苯丙乳液为高分子改性剂,水体系中制备改性微纳米复合物产品
将100g PC32.5R硅酸盐水泥,加入到含有300mL水中,然后再向该体系中加入n克(n=1、3、5、7、10)苯丙乳液,然后在70℃下,通入二氧化碳机械搅拌反应4h,通气速度0.3L/min,搅拌速度500rpm;反应完成后,抽滤,不洗涤,180℃干燥1h,分别得到129g、128g、131g、130g、131g改性产品。
表11 实施例19中原料及复合物产品的全孔分析结果
Figure PCTCN2021085992-appb-000012
图25、表11为实施例19表明加入高分子苯丙乳液可合成文石型碳酸钙及方解石型碳酸钙复合物产品,XRD和SEM跟踪及产品全孔分析结果表明,同实施例11相比,加入1-5g的苯丙乳液可促进硅酸盐水泥通入二氧化碳碳化过程中文石碳酸钙晶体的生长,XRD图中衍射峰的明显增强,SEM图中更多的晶棒结构都验证了上述促进作用。但是当添加量增加到7g、10g后产品的中不再有文石晶须,而主要是而是生成了块状方解石碳酸钙,这说明调节苯丙乳液用量可以调节产品的晶型。由表10可以看出乳液改性的复合物产品的比表面积、孔体积和孔径,接近不改性水体系和木质素钠改性的复合物产品,但苯丙乳液得到的是文石型碳酸钙晶须。全孔分析结果产品的比表面和孔体积同未加入苯丙乳液的产品(表7)相差不大。
实施例20:多种原料相同条件下和二氧化碳进行碳化反应制备得到的微纳米复合物产品分析及文石碳酸钙晶须的生成机理探索
为探明文石碳酸钙晶须的生成机理更好指导合成,我们设计如下对比试验:分别取海 螺复合硅酸盐水泥(PC 32.5R)、海螺普通硅酸盐水泥(PO 42.5)、水泥熟料、氧化钙(麦克林试剂)、水化硅酸钙(通过硅酸钠和氯化钙沉淀法合成)各100g,各加入200mL水,0.3L/min通入二氧化碳,80℃搅拌碳化反应8h,抽滤,乙醇洗涤,180℃干燥1h,得到产品。
表12 实施例20中原料及复合物产品的全孔分析结果
Figure PCTCN2021085992-appb-000013
表13 产品收率及XRF元素分析结果
Figure PCTCN2021085992-appb-000014
说明:表中所有数据均为质量百分比,其中得量=干燥后所得产品质量。
图26-1、图26-2、图27、表12为实施例20制备复合物产品的XRD和SEM分析及代表原料和产品的全孔分析结果,所得产品通过XRD和SEM表征结果,对比分析表明,在同样条件下,只有硅酸盐水泥和水泥熟料可生成文石碳酸钙纤维,氧化钙和水化硅酸钙都只能生成块状方解石碳酸钙,进一步证明水化硅酸钙和氢氧化钙的共存可能是形成文石型碳酸钙的关键因素,因为本方法中水泥或水泥熟料中硅酸钙在水化过程中都会生成水化硅酸钙和氢氧化钙。结合实施例10、11、13、15及本实施例,可判断水泥中的硅酸二/三钙在高温水中快速分解生成钙离子、氢氧根和硅氧四面体,当体系中通入过量二氧化碳时,钙离子都会转化为碳酸钙,而硅氧四面体生成了硅凝胶,这些硅凝胶会吸附在新生成碳酸钙结晶区的表面,带电荷的大分子硅凝胶具有较大的粘度和空间位阻效应,可以控制晶体生长区的浓度,阻止原料快速接近晶体表面及晶体间聚并,使优势晶面更好生长,诱导生成文石型碳酸钙晶须。表13的元素分析数据也证明了钙元素几乎全部转化为了碳酸钙,而以硅胶形式存在的硅元素会在洗涤过程中造成部分流失。在固液1:3的反应体系中首先生成方解石碳酸钙,随着硅凝胶的产生,方解石碳酸钙表面慢慢生成了文石型碳酸钙晶须。当水量增加、搅拌速度增加、通气量加大都会促进传质效率高,更有利于方解石碳酸钙的生成;而当体系粘度大,气体传质受阻,二氧化碳浓度不足,体系传质效果不佳,容易建立浓度梯度更有利于文石晶体的生成。在水化硅酸钙和氧化钙体系中碳化并不能产生文石型碳酸钙,因为水化硅酸钙和氧化钙体系都没有缓慢水化分解的过程,进一步证明硅 酸三钙的缓慢释放及低钙离子浓度对文石晶体的生成是有利的。因此,硅酸盐水泥碳化生成文石碳酸钙结构必须具备两个独特条件:1)、水泥原料中钙离子浓度低,是缓慢释放的;2)、水化产生的硅凝胶大分子增加了体系粘度和晶区附近的空间位阻及负电荷排斥作用,导致晶核附近碳酸钙过饱和度低,满足了优势晶面缓慢生长的要求,参考示意图28。全孔分析结果也证明了硅酸盐水泥熟料和PO42.5普通硅酸盐水泥碳化复合物产品的比表面和孔体积也大幅提升,这更有利于增强其分散性,增加在复合材料中的使用量,提升使用效果。
实施例21:以复合硅酸盐水泥和硫酸为原料,不同条件制备微纳米复合物产品
将10g PC32.5R水泥,加入到100mL水中,分别滴入0.01mol、0.03mol、0.05mol、0.07mol、0.09mol硫酸,在表14所述条件下反应完毕后,抽滤,乙醇洗涤,105℃干燥8h,得到产品。
表14 不同条件硫酸处理水泥实验结果
Figure PCTCN2021085992-appb-000015
图29、图30和表14为实施例21不同条件下用水泥制备硫酸钙过程中的XRD和SEM跟踪结果,可以看出,随着硫酸加入量增加,水泥逐渐水化分解并与硫酸发生了中和反应生成硫酸钙,酸量不足时,产物中仍有水化硅酸钙和碳酸钙;当体系pH值降到5-6时,主要生成二水硫酸钙产品和白炭黑,而生成的二水硫酸钙在105℃干燥8h以上时脱水生成表面布满沟壑(粉化)的半水硫酸钙(干燥过程的晶型变化可参见下面的实施例25),粉化的半水硫酸钙粒径可达到纳米级。升高反应温度,产品晶型形貌变化不大。室温25℃反 应2h,产品中还有少量未反应的硅酸三钙和硅酸二钙,反应4h以上硅酸三钙和硅酸二钙基本反应完全。
实施例22:以硅酸盐水泥和硫酸为原料,在醇/水溶剂体系中制备微纳米复合物产品
将25g PC32.5R硅酸盐水泥,加入到含有100mL乙醇溶剂中,机械搅拌均匀;将n mol(n=0.150、0.175、0.200、0.225、0.250)硫酸在100mL水中,配置为硫酸溶液,将此溶液缓慢加入前一步所得硅酸盐水泥悬浊液中,室温搅拌反应4h后,抽滤,水洗涤,180℃干燥1h,得到34.7g、35.4g、35.7g、35.9g、36.3g产品。
表15 实施例22中原料及产品的全孔分析结果
Figure PCTCN2021085992-appb-000016
图31和表15为实施例22醇/水混合溶剂中制备硫酸钙微纳米复合物产品的XRD和SEM跟踪及产物的全孔分析结果,可以看出,醇/水混合体系中硅酸盐水泥和硫酸反应倾向于生成微米级棒状硫酸钙,经干燥后主要成分是半水硫酸钙,硫酸的用量对产品形貌有明显影响,加入0.175mol硫酸时得到长径比较大的棒状结构,增加硫酸量后生成比较粗的短棒。全孔分析结果显示和硫酸反应后产品的比表面和孔体积比原料大幅增加。
实施例23:以硅酸盐水泥和硫酸为原料,加入不同改性助剂制备微纳米复合物产品
将25g PC32.5R水泥,加入到100mL水或乙醇中,然后滴入含0.225mol(水溶剂)或0.175mol(醇水溶剂)硫酸的水溶液100mL,加入表16所述助剂,25℃搅拌反应4h后,抽滤,水洗涤,180℃干燥1h,得到产品。
表16 不同条件硫酸处理水泥实验结果
Figure PCTCN2021085992-appb-000017
(注:其中,乳液为E01苯丙乳液)
图32和表16为实施例23加入不同改性助剂制备硫酸钙微纳米复合物产品的XRD和SEM表征结果,发现乳液和硬脂酸的加入对产品形貌和晶型影响不大,水体系主要生成块状硫酸钙,醇水体系生成棒状硫酸钙。
实施例24:以硅酸盐水泥和硫酸铵为原料、混合溶剂体系制备微纳米复合物产品
将24g PC32.5R硅酸盐水泥三份,分别加入到100mL水、100mL乙醇溶剂、100mLDMF溶剂中,机械搅拌均匀;将三份26.4g硫酸铵溶解在100mL水中,配置为硫酸铵溶液,缓慢加入三种硅酸盐水泥悬浊液中,室温搅拌反应4h,反应最终pH为7.2-7.4,抽滤,水洗涤,180℃干燥1h,得到33.8g、33.4g、34.1g产品。
表17 实施例24中原料及产品的全孔分析结果
Figure PCTCN2021085992-appb-000018
图33和表17为实施例24用硅酸盐水泥与硫酸铵为原料制备硫酸钙微纳米复合物产品的XRD和SEM及材料的全孔分析结果,分析结果表明,在水溶剂体系中硫酸铵和水泥主要生成块状硫酸钙,而在乙醇/水、DMF/水体系中硫酸铵和水泥主要生成硫酸钙晶须,表明用硫酸铵作为原料反应得到的产物与硫酸作为原料的产物非常类似,全孔分析得到的比表面和孔体积也比较接近。
实施例25:以硅酸盐水泥熟料和硫酸为原料、不同干燥条件制备微纳米复合物产品
将25g硅酸盐水泥熟料,加入到含有100mL水中,机械搅拌均匀;将0.225mol硫酸稀释在100mL水中,配置为稀硫酸溶液,将此溶液缓慢加入前一步所得水泥熟料悬浊液中,室温搅拌反应4h后,不洗涤,抽滤,得到滤饼。将在室温(25℃)、105℃、125℃、145℃、185℃条件下干燥不同时间得到的产品进行分析。
图34-1、34-2为实施例25用水泥熟料制备硫酸钙微纳米复合物产品在不同干燥条件下的XRD和SEM跟踪分析结果,可以看出,水泥熟料与硫酸室温下的反应产物是片状的二水硫酸钙,105℃下随着干燥时间延长二水硫酸钙逐渐脱水生成半水硫酸钙,8h基本上完全转化为半水硫酸钙,片状结构也逐渐粉化成块状结构,随着干燥温度提高转化时间缩短,在125℃下4h基本完全转化,145℃2h后基本完全转化,185℃1h后基本完全转化,所得产品质量分别为35.65g(105℃/8h)、34.87g(125℃/4h)、34.94g(145℃/2h)、35.07g(185℃/1h),产品完全转化为半水硫酸钙。100g水泥可得产品质量基本保持在140g,比较可观。可见,二水硫酸钙转化为半水硫酸钙的温度和时间范围较大,工业上建议可采取较高温度较短时间进行干燥。
表18 实施例21和25硅酸盐水泥和熟料和硫酸反应产品收率及XRF元素分析结果(25g水泥或熟料加入0.225mol硫酸)
Figure PCTCN2021085992-appb-000019
Figure PCTCN2021085992-appb-000020
通过实施例21-25,以及表18元素分析结果可知硅酸盐水泥或熟料中的硅酸二/三钙在高温水中快速分解生成钙离子、氢氧根和硅氧四面体,当体系中通入过量硫酸根时,钙离子都会转化为硫酸钙,而硅氧四面体则生成了硅凝胶,而与通入二氧化碳不同的是,在水体系中硅凝胶没有诱导晶须硫酸钙生成,而需要进一步加入其他水溶性有机溶剂,才有晶须生成,大分子硅凝胶具有较大的粘度和空间位阻效应对不足以控制晶体生长区的浓度,阻止原料快速接近晶体表面及晶体间聚并,使优势晶面更好生长,诱导生成硫酸钙晶须,还需要加入有机溶剂进一步降低硫酸钙过饱和度,以促进硫酸钙晶须生成。具体过程可参看图35。另外,通过元素分析同样可以发现,和硫酸反应后的产品中硫酸钙和硅胶都在抽滤过程中,由于溶解度较大,相对和二氧化碳反应有更多的损失。
实施例26:
表19 不同制备方法所得代表性产品
Figure PCTCN2021085992-appb-000021
按照表19中指代的产品种类,选取了17种本方法制备的微纳米复合物产品,分别与富德能源聚丙烯(PP)在密炼机上进行挤出造粒,然后通过注塑机进行注塑成五根以上标准样条进行一系列性能测试,测试结果取平均值。并和纳米方解石型碳酸钙、晶须硫酸钙的添加应用效果数据进行了对比,添加百分比分别为10%-50%。
表20 代表性微纳米复合物产品与不同纳米产品填充PP的性能测试结果比较(添加量10%-50%)
Figure PCTCN2021085992-appb-000022
Figure PCTCN2021085992-appb-000023
Figure PCTCN2021085992-appb-000024
根据PP树脂添加效果评价数据对比分析结果表明,本方法制备的硅酸钙微纳米复合物产品(产品1-4)在大比例添加的情况下可以较好地保持拉伸强度和冲击韧性增强,显著增加弯曲强度,珊瑚状和三维网状水化硅酸钙混合物产品在增韧增强,提升加工性能方面都有不错效果,乙醇和木质素钠改性对产品的增韧和加工性能有一定提升效果。且过筛前后产品差别不明显,说明少量的氢氧化钙晶粒对产品总体性能影响不大。
本方法制备的系列碳酸钙微纳米复合物产品(产品5-10)均具有一定的增强增韧效果,在30%以内添加对材料各项性能的保持效果良好,超过30%以后各项性能会有所下降;碳酸钙微纳米复合物产品在增强方面较好,特别是弯曲强度提升较好。同时,醇水法合成和木质素钠、乳液改性对提升复合材料的韧性和加工性能有一定作用。另外,同单一的碳酸钙产品相比,在提升和保持拉伸强度方面有更为明显的效果;对于冲击韧性的改善和方解石碳酸钙效果类似,通过高分子改性后,特别是添加一定量的木质素钠改性后复合树脂对 冲击韧性的提升具有更为优越的效果;另外,和碳酸钙类似,本方法制备产品的添加也会提升PP树脂的弯曲强度和较好保持熔融指数;此结果说明本方法制备的无机复合物产品通过碳酸钙和氧化硅的复合可以达到增加添加量,同时增韧、增强的效果,且成本低,具有很大的应用潜力。
而本方法制备的硫酸钙微纳米复合物产品(产品11-17)PP树脂填充数据对比分析表明,无论是硫酸法还是硫酸铵法合成的硫酸钙/白炭黑复合物产品在提升强度和冲击韧性方面都最为明显,特别对提升复合材料的韧性和加工性能应用效果显著,硬脂酸改性后产品上述效果更佳。
实施例27:
将100g硅酸盐水泥熟料,加入到500g水中(固液比为1:5),分别加入0g、1g、3g、5g、7g硬脂酸,机械搅拌均匀,在80℃,分别反应8h后,抽滤,180℃干燥1h分别得到110g、109g、111g、111g、112g产品。然后将上述制备的产品及前面部分实施例中的代表产品与聚丙烯(台塑高韧性PP)在密炼机上进行挤出造粒,接着通过注塑机进行注塑成五根标准样条并进行一系列性能测试,测试结果取平均值。添加百分比分别为10%-50%,结果见表21。
表21 部分微纳米复合物产品填充台塑PP的性能测试结果比较(添加量10%-50%)
Figure PCTCN2021085992-appb-000025
Figure PCTCN2021085992-appb-000026
根据台塑PP树脂添加效果测试数据分析表明,本方法制备的微纳米复合物产品,未改性时对树脂的拉伸强度有良好的保持效果,但冲击韧性和熔融指数会随添加量增加下降,通过硬脂酸改性后,冲击韧性和熔融指数有一定改善,且不论改性与否,树脂的弯曲强度都会随添加量的增加而提升。
实施例28:
然后将上述部分实施例中的代表产品与低密度聚乙烯(LDPE)在密炼机上进行挤出造粒,接着通过注塑机进行注塑成五根标准样条并进行一系列性能测试,测试结果取平均值。添加百分比分别为30%-50%,结果见表22。
表22 部分微纳米复合物产品填充LDPE的性能测试结果比较(添加量30%-50%)
Figure PCTCN2021085992-appb-000027
Figure PCTCN2021085992-appb-000028
根据LDPE树脂添加效果测试数据分析表明,本方法制备的微纳米复合物产品,经过硬脂酸或木质素钠改性后,大量添加可提升产品的拉伸强度和弯曲强度,但冲击韧性和熔融指数会随添加量增加下降。
实施例29:
表23 不同制备方法所得代表性产品
产品编号 产品制备方法
1 实施例6中d产品(不过筛)
2 实施例6中d产品(过筛)
3 实施例6中f产品(过筛)
4 实施例6中e产品(过筛)
5 实施例17中室温产品
6 实施例17中40℃产品
7 实施例17中50℃产品
8 实施例17中60℃产品
9 实施例17中70℃产品
10 实施例21中加0.09mol硫酸产品8
11 实施例22中加0.175mol硫酸产品
12 实施例23产品a
13 实施例23产品b
14 实施例23产品c
15 实施例23产品d
16 实施例24中乙醇/水体系产品
按照上述微纳米复合物产品和苯丙乳液制备复合无醛绿色粘胶剂的步骤,按照表23指代的产品种类,选取了16种本方法制备的微纳米复合物产品与苯丙乳液复合,粘接竹条后进行了粘接和耐水性能测试,测试结果取平均值,具体数据见表24。
表24 代表性微纳米复合物产品在粘胶剂中的使用效果
Figure PCTCN2021085992-appb-000029
Figure PCTCN2021085992-appb-000030
测试结果显示,本方法制备的硅酸钙微纳米复合物产品(1-4)无论改性与否都可以大幅提高粘胶剂的粘接强度,全部都可以通过国家胶合板标准中63℃和100℃的耐水性测试。且过筛前后产品性能差别不大,少量的氢氧化钙晶粒对产品总体性能影响不大。而碳酸钙 微纳米复合物产品(5-9)的加入可大幅提升粘接强度,且随着添加量的增加,持续增加,全部通过国家胶合板标准中100℃耐水性测试。本方法制得硫酸钙复合物产品(10-16)的加入可大幅提升绿色粘胶剂的粘接强度,添加量5%-30%对粘结强度的影响不大,添加量30%时粘接强度可以提升70%-80%,产品可全部通过国家胶合板标准中63℃耐水性测试和国家胶合板标准中100℃耐水性测试。
实施例30:
按照水泥制备混凝土步骤及评价方法,将三种本方法制备的微纳米复合物产品与水泥熟料复配,然后养护成型,进行抗压力学性能测试,测试结果取平均值,初步评价结果见表24。三种产品分别是:碳酸钙微纳米复合物产品1(实施例11产品,固液比1/2,80℃反应6h);硫酸钙微纳米复合物产品2(实施例22中加0.225mol硫酸产品);硫酸钙微纳米复合物产品3(实施例24中乙醇/水体系产品)。
表25 微纳米复合物产品和水泥熟料制备复合水泥抗压测试结果
Figure PCTCN2021085992-appb-000031
实验结果显示同样实验条件下,水泥净浆加入碳酸钙复合物产品后3天抗压强度都有明显增加,抗压强度翻了一倍;同时产品的7天、28天抗压强度也都有显著提升,说明其可作为熟料中的早强剂和增强增韧添加剂使用。另外,水泥净浆加入两种硫酸钙微纳米复合物产品后3天抗压强度都有明显增加,复合物产品3效果更优;但试块的7天、28天抗压强度提升不明显,说明此材料可作为熟料中的早强剂和增强增韧剂。
实施例31:
按照改性沥青制备及评价方法,将实施例18中的碳酸钙微纳米复合物产品与沥青复配,制成标准样进行沥青三大指标性能测试,测试结果取平均值,结果见表26。
表26 碳酸钙微纳米复合物产品进行沥青改性的三大指标测试结果
Figure PCTCN2021085992-appb-000032
实验结果显示,此材料的加入在保持沥青较高延度数值的情况下,可大幅提高添加量和明显提升软化点。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (29)

  1. 一种三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品,其中,所述硅酸钙微纳米复合物产品含有微纳米水化硅酸钙、氢氧化钙、纳米白炭黑和碳酸钙,其制备步骤包括:
    将水泥或水泥熟料在含水体系中,于25-100℃,通过搅拌混合,反应3-20小时,期间进行水化、缩合及结晶成型过程,从而制备得到所述硅酸钙微纳米复合物产品。
  2. 一种二维片状和/或一维线状的水化硅酸钙为主要成分的微纳米复合物产品,其中,所述产品含有二维片状和一维线状的水化硅酸钙的一种或两种,以及白炭黑、氧化铝,其制备步骤包括:
    利用水泥、水泥熟料作为原料,任选根据产品要求加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-100℃,反应时间0.5-16小时,优选地,反应温度为70-90℃,生产二维片状水化硅酸钙反应时间为1-2小时;生产一维线状水化硅酸钙反应时间为4-16小时。
  3. 一种碳酸钙基微纳米复合物产品,所述微纳米复合物产品包含:改性或未改性的方解石型纳米碳酸钙/纳米白炭黑、水化硅酸钙的复合物,或者包含文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物,所述微纳米复合物产品的制备步骤包括:
    将水泥和/或水泥熟料或其与石灰在含水体系中,于25-100℃温度条件下,通入二氧化碳或烟道气或加入可溶性碳酸盐,通过搅拌混合,0.5-15小时的水化生成硅凝胶、中和沉淀、复分解及脱水缩合反应合成了所述微纳米复合物产品。
  4. 根据权利要求1所述的硅酸钙微纳米复合物产品,其中,所述方法制备得到的硅酸钙微纳米复合物产品包含水化硅酸钙三维网状纳米棒及氢氧化钙混合物,加入甘氨酸或其它无机酸溶解氢氧化钙,得到水化硅酸钙三维网状纳米棒产品。
  5. 一种硫酸钙基微纳米复合物产品,其中,所述硫酸钙基微纳米复合物产品包含:硫酸钙块/片/棒/晶须与纳米白炭黑的复合物,其制备步骤包括:
    将水泥和/或水泥熟料或其与石灰的混合物在含水体系中,于0-100℃,加入硫化合物原料,通过搅拌混合,经过复分解、水化、中和、脱水缩合反应0.5-10小时,合成硫酸钙基微纳米复合物产品;
    所述硫化合物原料选自硫酸、硫酸铵、亚硫酸铵、需要脱硫的烟道气、二氧化硫、三氧化硫或废硫酸中的一种或多种。
  6. 根据权利要求1-5任一项所述的微纳米复合物产品,其中,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料优选硅酸盐水泥熟料。
  7. 根据权利要求1或6所述的硅酸钙微纳米复合物产品,其中对于三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品,反应温度为50-100℃,反应时间为3-20小时;优选地,反应温度为70-100℃,反应时间为5-15小时;优选地,反应中的水的质量至少是固体原料的二倍以上,优选2-5倍。
  8. 根据权利要求3或6所述的碳酸钙基微纳米复合物产品,其中,合成文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物优选反应温度70-100℃,反应时间4-15小时;优选地,反应温度70-100℃,反应时间4-10小时;中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
  9. 根据权利要求5或6所述的硫酸钙基微纳米复合物产品,其中,合成反应温度0-100℃,反应时间0.5-10小时;优选地,合成产品的时间2~10小时;优选地,反应温度25-60℃,反应时间1-6小时;优选地,中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
  10. 根据权利要求3或8所述的微纳米复合物产品,所述微纳米复合物产品为文石型碳酸钙微纳米复合物产品,其中,制备方法如下:搅拌下向计量水中加入固液质量比在1/4-1/2范围的硅酸盐水泥或硅酸盐或与生石灰的混合物,需要改性的产品可以同时加入改性剂,混合升温到70℃-100℃,持续通入二氧化碳气体或者烟道气,监测溶液pH变化,pH达到7左右为反应终点,停止通气,继续保持温度反应2小时以上,以保证结晶成型,将混合浆液抽滤,洗涤、烘干可得文石型碳酸钙晶须为主要成分的微纳米复合物或其改性产品。
  11. 根据权利要求1-10任一项所述的微纳米复合物产品,其中,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;所述步骤还包括,在反应结束后,将反应混合物过滤、洗涤、烘干的步骤。
  12. 权利要求1-11任一项所述的微纳米复合物产品的应用,其特征在于,将其用于合成材料、天然材料、复合材料降本提质;优选地,所述合成材料、天然材料、复合材料为塑料、橡胶、涂料、水泥、沥青、密封剂、油墨、胶黏剂、混凝土或纸张。
  13. 根据权利要求12所述的应用,其中,将所述微纳米复合物产品单独加入所述合成 材料、天然材料或复合材料中,或者将所述微纳米复合物产品与其他纳米材料组合加入所述合成材料、天然材料或复合材料中。
  14. 根据权利要求12所述的应用,其中,将所述微纳米复合物产品用于塑料、橡胶提高拉伸强度和冲击韧性及加工性能,用于混凝土提升早强性能,用于胶黏剂高粘结强度和耐水性,或者用于沥青提高软化点、针入度和耐车辙性。
  15. 一种增强材料,所述材料包含权利要求1-11任一项所述的微纳米复合物产品,以及合成材料、天然材料、复合材料中的任意一种。
  16. 一种三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品的制备方法,其中,所述硅酸钙微纳米复合物产品含有微纳米水化硅酸钙、氢氧化钙、纳米白炭黑和碳酸钙,包括步骤:
    将水泥或水泥熟料在含水体系中,于25-100℃,通过搅拌混合,反应3-20小时,期间进行水化、缩合及结晶成型过程,从而制备得到所述硅酸钙微纳米复合物产品;
    优选地,上述方法制备得到的硅酸钙微纳米复合物产品包含水化硅酸钙三维网状纳米棒及氢氧化钙混合物,加入甘氨酸或其它无机酸溶解氢氧化钙,得到水化硅酸钙三维网状纳米棒产品。
  17. 一种二维片状和/或一维线状的水化硅酸钙为主要成分的微纳米复合物产品的制备方法,其中,所述产品含有二维片状和一维线状的水化硅酸钙的一种或两种,以及白炭黑、氧化铝,包括步骤:
    利用水泥、水泥熟料作为原料,任选根据产品要求加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-100℃,反应时间0.5-16小时,优选地,反应温度为70-90℃,生产二维片状水化硅酸钙反应时间为1-2小时;生产一维线状水化硅酸钙反应时间为4-16小时。
  18. 一种碳酸钙基微纳米复合物产品的制备方法,所述微纳米复合物产品包含:改性或未改性的方解石型纳米碳酸钙/纳米白炭黑、水化硅酸钙的复合物,或者包含文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物,所述微纳米复合物产品的制备步骤包括:
    将水泥和/或水泥熟料或其与石灰在含水体系中,于25-100℃温度条件下,通入二氧化碳或烟道气或加入可溶性碳酸盐,通过搅拌混合,0.5-15小时的水化生成硅凝胶、中和沉淀、复分解及脱水缩合反应合成了所述微纳米复合物产品。
  19. 一种硫酸钙基微纳米复合物产品的制备方法,其中,所述硫酸钙基微纳米复合物产品包含:硫酸钙块/片/棒/晶须与纳米白炭黑的复合物,其制备步骤包括:
    将水泥和/或水泥熟料或其与石灰的混合物在含水体系中,于0-100℃,加入硫化合物原料,通过搅拌混合,经过复分解、水化、中和、脱水缩合反应0.5-10小时,合成硫酸钙 基微纳米复合物产品;
    所述硫化合物原料选自硫酸、硫酸铵、亚硫酸铵、需要脱硫的烟道气、二氧化硫、三氧化硫或废硫酸中的一种或多种。
  20. 根据权利要求16-19任一项所述的微纳米复合物产品的制备方法,其中,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料优选硅酸盐水泥熟料。
  21. 根据权利要求16或20所述的硅酸钙微纳米复合物产品的制备方法,其中对于三维网状的以水化硅酸钙为主要成分的硅酸钙微纳米复合物产品,反应温度为50-100℃,反应时间为3-20小时;优选地,反应温度为70-100℃,反应时间为5-15小时;优选地,反应中的水的质量至少是固体原料的二倍以上,优选2-5倍;
  22. 根据权利要求18或20所述的碳酸钙基微纳米复合物产品的制备方法,其中,合成文石碳酸钙晶须/纳米白炭黑、水化硅酸钙的复合物优选反应温度70-100℃,反应时间4-15小时;优选地,反应温度70-100℃,反应时间4-10小时;中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
  23. 根据权利要求19或20所述的硫酸钙基微纳米复合物产品的制备方法,其中,合成反应温度0-100℃,反应时间0.5-10小时;优选地,合成产品的时间2~10小时;优选地,反应温度25-60℃,反应时间1-6小时;优选地,中和反应的终点pH为6-8,或者在pH大于7的任何阶段停止反应。
  24. 根据权利要求18或22所述的微纳米复合物产品的制备方法,所述微纳米复合物产品为文石型碳酸钙微纳米复合物产品,其中,制备方法如下:搅拌下向计量水中加入固液质量比在1/4-1/2范围的硅酸盐水泥或硅酸盐或与生石灰的混合物,需要改性的产品可以同时加入改性剂,混合升温到70℃-100℃,持续通入二氧化碳气体或者烟道气,监测溶液pH变化,pH达到7左右为反应终点,停止通气,继续保持温度反应2小时以上,以保证结晶成型,将混合浆液抽滤,洗涤、烘干可得文石型碳酸钙晶须为主要成分的微纳米复合物或其改性产品。
  25. 根据权利要求16-24任一项所述的微纳米复合物产品的制备方法,其中,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种;所述步骤还包括,在反应结束后,将反应混合物过 滤、洗涤、烘干的步骤。
  26. 一种生产无定形纳米二氧化硅颗粒的方法,其特征在于,在使用如权利要求1中的方法制备得到所述的硅酸钙微纳米复合物产品后,加入酸,继续反应,制备得到所述无定形纳米二氧化硅颗粒;或者,在根据权利要求1中使用的方法制备硅酸钙微纳米复合物产品的原料中加入酸,制备所述无定形纳米二氧化硅颗粒。
  27. 一种二维片状和一维线状的水化硅酸钙为主要成分的微纳米复合物的生产方法,其特征在于利用水泥、水泥熟料作为原料,任选的,可根据产品要求加入甘氨酸调整硅钙比,在含水体系中,静置反应,反应温度在25-80℃,反应时间1-16小时。优选地,反应温度为80℃,生产二维片状水化硅酸钙反应时间为1小时;生产一维线状水化硅酸钙反应时间为4-16小时;
    优选地,所述方法进一步包括步骤:在反应结束后,将反应混合物过滤、洗涤、烘干,得到产品。
  28. 根据权利要求27所述的方法,其中,所述水泥选自硅酸盐水泥、硅铝酸盐水泥,水泥熟料优选硅酸盐水泥熟料,所述含水体系选自水,水与有机溶剂的混合体系,加入改性剂的水溶液,或者加入改性剂的水与有机溶剂的混合体系;优选地,有机溶剂选自C1-C4的醇、DMF;水和有机溶剂的体积比为0.2-5.0:1;改性剂为固体或液体,水泥原料和改性剂的质量比为10-1000:1;更优选地,改性剂为小分子改性剂或者高分子改性剂;优选地,小分子改性剂为硬脂酸、硬脂酸盐,高分子改性剂为水溶性高分子改性剂或可形成乳液的高分子改性剂,优选苯丙乳液、木质素钠、纯丙乳液、硅纯丙乳液、氟纯丙乳液、聚乙烯醇、聚乙二醇、尿醛树脂、酚醛树脂、生物基磺酸盐中的一种或多种。
  29. 一种再生氨联产硫酸钙基微纳米复合物产品的方法,所述方法包括如下步骤:在制备权利要求5所述的硫酸钙基微纳米复合物产品的方法中,含水泥的钙基原料进行中和反应,应用工业副产硫酸铵为原料进行中和,中和反应的终点控制pH为大于等于7,中和反应过程中加热同时回收氨。
PCT/CN2021/085992 2020-04-09 2021-04-08 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺 WO2021204210A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010271486.8 2020-04-09
CN202010267749.8A CN113511665B (zh) 2020-04-09 2020-04-09 以水泥和“三废”为原料的零维和一维碳酸钙微纳米复合物产品及复合材料与合成工艺
CN202010271486.8A CN113511834B (zh) 2020-04-09 2020-04-09 以水泥和“三废”为原料的硅酸钙微纳米材料库及合成工艺
CN202010271488.7 2020-04-09
CN202010271488.7A CN113511666B (zh) 2020-04-09 2020-04-09 以水泥和“三废”为原料的零维和一维硫酸钙基微纳米复合物产品及复合材料与合成工艺
CN202010267749.8 2020-04-09

Publications (3)

Publication Number Publication Date
WO2021204210A1 WO2021204210A1 (zh) 2021-10-14
WO2021204210A8 WO2021204210A8 (zh) 2022-03-10
WO2021204210A9 true WO2021204210A9 (zh) 2022-04-21

Family

ID=78022761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085992 WO2021204210A1 (zh) 2020-04-09 2021-04-08 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺

Country Status (1)

Country Link
WO (1) WO2021204210A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317129B (zh) * 2021-12-29 2024-02-09 云南森博混凝土外加剂有限公司 一种水泥清洗剂及其制备和应用方法
CN115304091B (zh) * 2022-07-12 2024-08-06 西安建筑科技大学 一种文石相碳酸钙的制备方法
CN115180645B (zh) * 2022-07-19 2023-04-25 中国科学院广州地球化学研究所 一种硅基无定形碳酸钙及其制备方法和应用
CN115572454B (zh) * 2022-08-24 2024-04-05 鄂尔多斯市西金矿冶有限责任公司 一种复合粘结剂及其在电石渣球团的应用
CN116289298B (zh) * 2022-09-09 2024-08-16 天津科技大学 一种造纸用复合填料的制备方法
CN115650741B (zh) * 2022-10-21 2023-12-01 济南邦德激光股份有限公司 一种用于激光切割设备的耐高温材料及其制备方法
CN115537185B (zh) * 2022-10-26 2024-06-25 北京建筑大学 固体废旧料固碳复合储热材料的制备系统及方法
CN115594467B (zh) * 2022-11-21 2023-05-26 湖南大学 一种自流平自密实耐磨地面材料及其制备方法
CN116535187A (zh) * 2023-04-20 2023-08-04 东南大学 水化硅酸钙基复合保温隔热材料及其制备方法
CN117205733B (zh) * 2023-08-03 2024-09-24 南京工业大学 利用微界面强化技术快速处理钢渣并捕集co2的方法
CN117925249B (zh) * 2024-01-22 2024-07-02 西藏泰晟环保工程有限公司 一种用于盐碱地土壤的改良材料及其制备方法
CN118724555B (zh) * 2024-08-20 2025-02-14 山东中兴建安建工有限公司 一种聚合物改性碳化胶凝材料基注浆料的制备工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993104A (zh) * 2009-08-21 2011-03-30 北京紫光英力化工技术有限公司 一种以电石渣为原料生产超微细碳酸钙的新方法
US10442696B2 (en) * 2014-05-06 2019-10-15 William Marsh Rice University Shape-controlled cement hydrate synthesis and self-assembly
CN108069451B (zh) * 2016-11-17 2020-02-07 厦门大学 一种在醇-水混合体系中制备超微细无定形碳酸钙的方法
CN106745161B (zh) * 2017-01-17 2019-01-18 厦门大学 一种醇-水混合体系中制备纳米硫酸钙以及硫酸钙晶须的方法
CN108658114B (zh) * 2017-03-30 2020-07-24 北京紫光英力化工技术有限公司 一种改性钙盐的制备方法

Also Published As

Publication number Publication date
WO2021204210A1 (zh) 2021-10-14
WO2021204210A8 (zh) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2021204210A9 (zh) 以水泥和"三废"为原料的微纳米材料系列产品及合成工艺
Ma et al. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum
CN103523814B (zh) 一种常压开放体系中石膏异形粉体制备与改性一体化方法
CN101311355A (zh) 一种磷石膏制备硫酸钙晶须的方法
Guan et al. Performance of magnesium hydroxide gel at different alkali concentrations and its effect on properties of magnesium oxysulfate cement
CN113511834B (zh) 以水泥和“三废”为原料的硅酸钙微纳米材料库及合成工艺
CN114685077B (zh) 一种缓释型促凝复合材料及其制备方法和其在水泥基材料中的应用
CN103924301A (zh) 一种采用脱硫石膏制备超细硫酸钙晶须的方法
CN109867986A (zh) 一种高分子改性的纳米碳酸钙新产品系列
CN106745161A (zh) 一种醇‑水混合体系中制备纳米硫酸钙以及硫酸钙晶须的方法
CN111362606A (zh) 精炼渣碳酸化优化的地质聚合物及其制备方法
Mi et al. Utilization of phosphogypsum for the preparation of α‐calcium sulfate hemihydrate in chloride‐free solution under atmospheric pressure
CN106587097A (zh) 一种利用微硅粉合成ssz‑13沸石分子筛的方法
Hua et al. Preparation and properties of II-anhydrite calcined from phosphogypsum
CN108314345A (zh) 一种矿物掺合料表面原位生长水化硅酸钙的方法
Chen et al. Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate
CN107399755A (zh) 一种脱硫石膏制备高白度短柱状α‑半水石膏的方法
WO2010037903A1 (en) Structured binding agent composition
Zeng et al. Dehydration behaviors and properties of anhydrite II prepared by phosphogypsum with low-temperature calcination
US2698256A (en) Siliceous composition and method for manufacturing the same
Zeng et al. Effect of pre-hydrated CAC suspensions on the hydration behavior of CAC pastes
CN114875494B (zh) 一种超支三维结构碳酸钙晶须及其制备方法及应用
CN111847956A (zh) 一种磷石膏基水泥缓凝剂及其制备方法和应用
CN108314074B (zh) 一种石膏微球材料的制备方法
He et al. Facile preparation of vaterite dominated incineration fly ash (IFA) by slurry carbonation and its performance as supplementary cementitious material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785308

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21785308

Country of ref document: EP

Kind code of ref document: A1