[go: up one dir, main page]

WO2021185213A1 - 一种开关电源、电源适配器及充电器 - Google Patents

一种开关电源、电源适配器及充电器 Download PDF

Info

Publication number
WO2021185213A1
WO2021185213A1 PCT/CN2021/080861 CN2021080861W WO2021185213A1 WO 2021185213 A1 WO2021185213 A1 WO 2021185213A1 CN 2021080861 W CN2021080861 W CN 2021080861W WO 2021185213 A1 WO2021185213 A1 WO 2021185213A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
auxiliary
output
circuit
Prior art date
Application number
PCT/CN2021/080861
Other languages
English (en)
French (fr)
Inventor
肖民利
Original Assignee
深圳市航嘉驰源电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市航嘉驰源电气股份有限公司 filed Critical 深圳市航嘉驰源电气股份有限公司
Priority to EP21771740.4A priority Critical patent/EP3972107A4/en
Priority to US17/607,026 priority patent/US11955893B2/en
Publication of WO2021185213A1 publication Critical patent/WO2021185213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • This application relates to the field of power supplies, in particular to a switching power supply, a power adapter and a charger.
  • Switching power supplies with transformers are widely used in electronic products, such as power adapters or chargers.
  • the output current of the switching power supply may exceed the rated range, which may cause safety hazards.
  • the International Electrotechnical Commission has stipulated the tests that the limited power supply (LPS) needs to meet.
  • LPS limited power supply
  • the output open circuit voltage does not exceed 30Vdc
  • the maximum output short-circuit current cannot exceed 8A.
  • the maximum power does not exceed 100VA.
  • a current sampling resistor is connected in series with the output loop of the secondary winding of the switching power supply, and additional peripheral devices such as comparators are added for second-level overcurrent protection, but this is not conducive to product miniaturization and will increase costs.
  • Chinese patent document CN101783595B discloses a flyback power supply overpower compensation method.
  • the background technology embodiments respectively introduce the following two solutions: 1. As shown in Figure 3 of the patent document It shows that by introducing the compensation level from the input voltage of the transformer primary winding to the current detection pin CS of the PWM chip, the power compensation of the PWM chip is realized; but this power compensation has been continued. 2. As shown in FIG. 4 of the patent document, when an increase in the output voltage Vout is detected, the power compensation circuit is turned on.
  • the main purpose of this application is to provide a switching power supply, a power adapter and a charger, so that even if a short circuit or other fault occurs when the output voltage is low, the output current will not be too large, thereby improving the safety performance of the product, and at the same time It can also output the rated maximum limited power when outputting a higher voltage.
  • a switching power supply includes a current-type PWM control unit and a transformer.
  • the current-type PWM control unit includes a current detection terminal Is; the current detection terminal Is is used to detect the primary winding current of the transformer, thereby controlling power transmission;
  • the switching power supply further includes a DC power supply circuit and a power compensation auxiliary circuit connected in series in sequence. The input terminal of the DC power supply circuit is connected to an auxiliary voltage output terminal.
  • the output terminal of the power compensation auxiliary circuit is connected to the current detection terminal Is; the power compensation auxiliary circuit is used to determine the output voltage of the DC power supply circuit, that is, when the current output voltage of the switching power supply V0 When it is not greater than the threshold voltage, the power compensation auxiliary circuit generates a DC voltage to provide a compensation level to the current detection terminal Is; when the current output voltage V0 of the switching power supply is greater than the threshold voltage, the power compensation auxiliary circuit The DC voltage is not generated, so that no compensation level is provided to the current detection terminal Is; wherein, the threshold voltage is within the output voltage range of the switching power supply.
  • the transformer further includes a first auxiliary winding and a second auxiliary winding; the first auxiliary winding has a first auxiliary voltage output terminal for generating a first auxiliary voltage VL associated with the output voltage V0; a second auxiliary winding The winding has a second auxiliary voltage output terminal for generating a second auxiliary voltage VH associated with the output voltage V0, the first auxiliary voltage VL is less than the second auxiliary voltage VH; the power compensation auxiliary circuit includes a switch K, A comparator A1 and a level generating circuit; the DC power supply circuit includes a first circuit, a second circuit, and a third circuit; the input terminal of the first circuit is connected to the first auxiliary voltage output terminal or the second auxiliary voltage output terminal, The output terminal of the first straight circuit, the switch and the level generating circuit, and the current detection terminal Is are sequentially connected; the input terminal of the third circuit is connected to the first auxiliary voltage output terminal, and the output terminal is connected to the first auxiliary voltage output terminal of the comparator A1.
  • the input terminal of the second circuit is connected to the second auxiliary voltage output terminal, and the output terminal is connected to the second input terminal of the comparator A1; the comparator A1 is used to output the voltage of the third circuit Compared with the voltage output by the second circuit, when the current output voltage of the switching power supply is not greater than the threshold voltage, the output control signal controls the switch K to be turned on, and the level generating circuit generates an output voltage to the The current detection terminal provides a compensation level; when the current output voltage of the switching power supply is greater than the threshold voltage, the output control signal controls the switch K to turn off, and the level generation circuit generates no output voltage, so that the current detection terminal Provide compensation level.
  • the power compensation auxiliary circuit includes a P-type semiconductor switch tube, and the DC power supply circuit respectively provides a second voltage VA and a first voltage VB to the current inflow terminal and the control terminal of the P-type semiconductor switch tube.
  • At least one of the second voltage VA and the first voltage VB is related to the current output voltage V0 of the switching power supply; when the current output voltage V0 of the switching power supply is not greater than the threshold voltage, the second voltage VA and the first voltage
  • the difference of VB is greater than the conduction voltage between the current inflow end and the control end of the P-type semiconductor switch tube, the P-type semiconductor switch tube is turned on, and the power compensation auxiliary circuit generates a DC voltage to The current detection terminal provides a compensation level; when the current output voltage V0 of the switching power supply is greater than the threshold voltage, the difference between the second voltage VA and the first voltage VB is less than the current inflow terminal and the P-type semiconductor switch tube Controlling the conduction voltage between the terminals, the P-type semiconductor switch tube is turned off, and the
  • the P-type semiconductor switch tube includes a PNP transistor or a P-channel field effect tube; the current inflow terminal and the control terminal of the PNP transistor are the emitter and the base respectively; the current inflow terminal of the P-channel field effect tube The control terminals are the source and the gate respectively.
  • the power compensation auxiliary circuit further includes a resistance voltage divider module, the resistance voltage divider module includes a first resistor R1 and a second resistor R2, and the collector of the PNP transistor passes through the second resistor and the current
  • the detection terminal Is is connected, and the current detection terminal Is is connected to the sampling resistor Rs of the primary winding of the transformer through the first resistor; when the PNP transistor Q2 is turned on, the second voltage VA passes through the first resistor.
  • a voltage is applied to the resistor R1 and the second resistor R2 to provide a compensation level to the current detection terminal.
  • the transformer further includes a first auxiliary winding and a second auxiliary winding.
  • the first auxiliary winding is used to generate a first auxiliary voltage VL associated with the output voltage; and the second auxiliary winding is used to generate a first auxiliary voltage VL associated with the output voltage.
  • the DC power supply circuit includes a first DC power supply circuit and a second DC power supply circuit, the first DC power supply circuit A first voltage VB is output according to the input first auxiliary voltage VL; the second DC power supply circuit is used to output a second voltage VA according to the input second auxiliary voltage VH.
  • the second DC power supply circuit includes a third resistor R3, an N-channel MOS transistor Q3, a first Zener diode ZD1, and a capacitor C1.
  • the first DC power supply circuit includes a second Zener diode ZD2;
  • the two auxiliary voltages VH are grounded through the third resistor R3 and the first Zener diode ZD1, and the anode of the first Zener diode ZD1 is grounded;
  • the drain, gate, and source of the N-channel MOS transistor Q3 are connected to the The second auxiliary voltage VH, the cathode of the first Zener diode ZD1, and the emitter of the PNP transistor Q2 are connected, wherein the emitter of the PNP transistor Q2 outputs the second voltage VA;
  • the first auxiliary The voltage VL is connected to the base of the PNP transistor Q2 through the second Zener diode ZD2, and the anode of the second Zener diode ZD2 is connected to the first auxiliary voltage VL, wherein the P
  • the second DC power supply circuit includes a voltage stabilizing chip
  • the first DC power supply circuit includes a second voltage stabilizing diode ZD2
  • the voltage stabilizing chip outputs the second voltage VA according to the input second auxiliary voltage VH
  • the second voltage VA is a set voltage value or a voltage value associated with the second auxiliary voltage VH
  • the first auxiliary voltage VL passes through the second Zener diode ZD2 and the base of the PNP transistor Q2 Connected, and the cathode of the second Zener diode ZD2 is connected to the base of the PNP transistor Q2, wherein the voltage of the base of the PNP transistor Q2 is the first voltage VB.
  • the transformer further includes an auxiliary winding for generating an auxiliary voltage Vi associated with the output voltage of the switching power supply;
  • the DC power supply circuit includes a first DC power supply circuit and a second DC power supply circuit.
  • a power supply circuit, the first DC power supply circuit is configured to output a first voltage VB according to the input auxiliary voltage Vi; the second DC power supply circuit is configured to output a second voltage VA according to the input auxiliary voltage Vi.
  • the voltage stabilization value of the second zener diode ZD2 is determined according to the threshold voltage.
  • the switching power supply further includes a third zener diode ZD3 and a fourth zener diode ZD4; the second voltage VA is connected to the power terminal VCC of the PWM control unit through the third zener diode ZD3,
  • the first auxiliary voltage VL is connected to the power terminal VCC of the PWM control unit through the fourth Zener diode ZD4, and the cathodes of the third Zener diode ZD3 and the fourth Zener diode ZD4 are connected to the PWM control unit.
  • the power supply terminal VCC; the voltage stabilization value of the first zener diode ZD1 is determined by the power supply range of the power supply terminal VCC of the PWM control unit.
  • the output voltage range of the switching power supply is 5-24V, or at least partially overlaps the voltage range of 5-24V.
  • the application also provides a power adapter or charger, including any one of the aforementioned switching power supplies.
  • the power compensation auxiliary circuit By setting the above threshold voltage, when the current output voltage V0 of the switching power supply is not greater than the threshold voltage, the power compensation auxiliary circuit generates an output voltage to provide a compensation level to the current detection terminal Is, which is equal to The superimposition of the voltage on the current sampling resistor makes the level detected by the PWM control unit through the current detection terminal Is larger, so that the duty cycle of the PWM signal is reduced when a certain small power below the maximum limit output power is reached, and finally The power of the primary winding is maintained at the lower power, that is, the output power is maintained at a lower power, so that the output current is maintained at a lower value, which is easier to meet the requirements of LPS testing, or to reduce safety risks in practical applications.
  • the power compensation auxiliary circuit stops providing the compensation level to the current detection terminal Is when the output voltage V0 is greater than the threshold voltage, it will not reduce the actual output power of the switching power supply in this output voltage range (for example, the output of the switching power supply can reach The maximum limit of output power) to improve charging efficiency is especially important for fast charging source adapters. At the same time, stopping to provide compensation levels can reduce power consumption and improve the energy efficiency of switching power supplies.
  • the output voltage ripple is smaller and the audible noise is smaller.
  • the P-type semiconductor switch tube (such as PNP transistor) is used as a device that compares the output voltage V0 and the threshold voltage by comparing the magnitude between the first voltage VB and the second voltage VA, and also serves as a control DC
  • the switch of the power supply circuit to the power supply channel of the power compensation auxiliary circuit has a simple circuit structure, relatively small volume and power consumption.
  • FIG. 1 is a schematic diagram of a switching power supply according to a preferred embodiment of the present application
  • FIG. 2 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Fig. 3 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Fig. 4 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • FIG. 5 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Fig. 6 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Fig. 7 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Fig. 8 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Figure 9 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • FIG. 10 is a schematic diagram of a switching power supply according to another preferred embodiment of the present application.
  • Figure 11 is a waveform diagram of the output current and output voltage without using the switching power supply of the present application
  • Figure 12 is the output voltage ripple without using the switching power supply of this application
  • FIG. 13 is a waveform diagram of output current and output voltage of an embodiment of the switching power supply of the present application
  • Figure 14 is the output voltage ripple of an embodiment of the switching power supply of the present application
  • FIG. 1 is a schematic diagram of a switching power supply according to an embodiment of the present application.
  • the switching power supply has a wide output voltage, that is, a wide output voltage range, such as 2-30V, or 5-24V, or output variable voltage (5V-9V/ 5V-11V/5V-12V/5V-15V/5V-20V), or its output voltage range V min -V max overlaps with the voltage range of 5-24V at least partially.
  • This switching power supply is especially suitable for high power density and wide output Voltage fast charging source adapter or charger.
  • the switching power supply includes a current type PWM control unit (such as a current type PWM control chip), a transformer T, a power switch tube Q1, a current sampling resistor Rs, a DC power supply circuit, a power compensation auxiliary circuit, a clamp circuit, a filter circuit, and a voltage feedback circuit ( Not shown in the figure).
  • the primary winding NP of the transformer T inputs the rectified DC voltage Vbulk (the DC voltage Vbulk is obtained by AC rectification and filtering), the clamping circuit is connected in parallel with the primary winding to provide clamping protection, and the secondary winding NS outputs the voltage V0 through the filtering circuit.
  • the primary winding is grounded through the power switch Q1 and the current sampling resistor Rs connected in series.
  • the current-type PWM control unit also includes a voltage detection terminal (not shown in the figure) and a current detection terminal Is.
  • the voltage feedback signal obtained by the output voltage V0 through the voltage feedback circuit is input to the voltage detection terminal, and the PWM control unit participates in generating the corresponding PWM control signal according to the voltage feedback signal, thereby maintaining the output voltage control at the required output voltage V0.
  • the current detection terminal Is is used to detect the primary winding current of the transformer T by detecting the voltage on the current sampling resistor Rs.
  • Controlling the primary winding current that is, controlling the power of the primary winding, and then controlling the power transmission of the transformer T, also controls the output power.
  • the DC power supply circuit, the power compensation auxiliary circuit, and the current detection terminal Is are sequentially connected in series, the input terminal of the DC power supply circuit is connected to the auxiliary voltage output terminal, and the auxiliary voltage output terminal outputs the auxiliary voltage Vi associated with the output voltage V0 of the switching power supply; power compensation The output terminal of the auxiliary circuit is connected to the current detection terminal Is.
  • the voltage Vi can be the output voltage VH or VL of the auxiliary winding.
  • the threshold voltage is preset in the output voltage range (V min -V max ) of the switching power supply, and the threshold voltage is greater than V min and less than V max .
  • the threshold voltage may be approximately equal to V max /2.
  • the PWM control unit actually controls the output power by controlling the power of the primary winding, the PWM control unit only limits the maximum output power. For switching power supplies with wide output voltages, when the output voltage is at a smaller value If the load is overloaded or short-circuited, the output current will become very large, which may exceed the range specified in the LPS test, or this large current will cause safety hazards in practical applications. For example, the output range of the switching power supply is 5-20V, and the maximum limited power is 60W. When the output voltage is 5V, if the load is short-circuited, the output current can reach 12A at this time to trigger the power protection action of the PWM control unit to reduce the PWM duty cycle.
  • the present application sets the above threshold voltage, when the current output voltage V0 of the switching power supply is not greater than the threshold voltage, the power compensation auxiliary circuit generates a DC voltage to provide a compensation level to the current detection terminal Is.
  • the level detected by the PWM control unit through the current detection terminal Is becomes larger, so that the duty cycle of the PWM signal is reduced when a certain small power is below the maximum limit output power.
  • the power of the primary winding is maintained at the lower power, that is, the output power is maintained at a lower power, so that the output current is maintained at a smaller value, which is easier to meet the needs of LPS testing, or reduce safety in practical applications risk.
  • the power compensation auxiliary circuit when the output voltage V0 is greater than the threshold voltage, the power compensation auxiliary circuit does not generate a DC voltage, so that it stops providing a compensation level to the current detection terminal Is, and therefore does not reduce the actual output power of the switching power supply in this output voltage range ( For example, the output of the switching power supply can reach its maximum output power of 60W.
  • the switching power supply can output 60W, but when the output voltage V0 is less than the threshold voltage, the switching power supply can output power less than 60W )
  • stopping to provide compensation levels can reduce power consumption and improve the energy efficiency of switching power supplies.
  • V RS is the voltage on the sampling resistor Rs when the switching power supply outputs the maximum limit output power without the power compensation auxiliary circuit
  • V min is the minimum value of the switching power supply output voltage range
  • I max is the maximum limit output current.
  • V RS 1V
  • P max 60W
  • I max 8A
  • the compensation level can be taken as 330mV. In some specific applications, the compensation level can be between 50mV-700mV.
  • FIG. 2 is a more preferred embodiment of the switching power supply of the present application.
  • the power compensation auxiliary circuit includes a PNP transistor Q2 and a resistor divider module.
  • the DC power supply circuit provides a second voltage VA and a first voltage VB to the emitter and base of the PNP transistor Q2 according to the input voltage Vi.
  • the input terminal of the resistor divider module The collector of the PNP transistor Q2 is connected, and the output is connected to the current detection terminal Is.
  • At least one of the second voltage VA and the first voltage VB is related to the current output voltage V0 of the switching power supply.
  • the difference between the second voltage VA and the first voltage VB is greater than the turn-on voltage between the emitter and base of the PNP transistor Q2 (the turn-on voltage is usually 0.7 V), the PNP transistor Q2 is turned on, and the power compensation auxiliary circuit generates an output voltage, thereby providing a compensation level to the current detection terminal Is through the resistor divider module; when the current output voltage V0 of the switching power supply is greater than the threshold voltage, the second voltage The difference between VA and the first voltage VB is less than the conduction voltage V EB between the emitter and base of the PNP transistor Q2, the PNP transistor Q2 is turned off, and the power compensation auxiliary circuit does not generate an output voltage, so that it does not send to the current detection terminal Is Provide compensation level.
  • the PNP transistor Q2 serves as a device that compares the output voltage V0 and the threshold voltage by comparing the magnitude between the first voltage VB and the second voltage VA, and also serves as a switch for controlling the DC power supply circuit to the power compensation auxiliary circuit power supply channel,
  • the circuit structure is simple, and the volume and power consumption are relatively small.
  • the second voltage VA is a fixed value
  • the first voltage VB is a voltage positively related to the output voltage V0, such as a multiple of the output voltage V0;
  • the first voltage VB is a fixed value
  • the second voltage VA is a voltage related to the output voltage V0.
  • the power compensation auxiliary circuit also includes a resistor divider module.
  • the resistor divider module includes a first resistor R1 and a second resistor R2.
  • the collector of the PNP transistor Q2 is connected to the current detection terminal Is through the second resistor R2, and the current detection terminal Is passes through the second resistor R2.
  • a resistor R1 is connected to the sampling resistor Rs of the primary winding of the transformer T; when the PNP transistor Q2 is turned on, the second voltage VA provides compensation to the current detection terminal Is by applying a voltage on the first resistor R1 and the second resistor R2 Level, the compensation level is:
  • the transformer T also includes a first auxiliary winding and a second auxiliary winding.
  • the first auxiliary winding has a first auxiliary voltage output terminal for generating a first auxiliary voltage VL (for example, a magnitude equal to V0) associated with the output voltage (first The induced electromotive force generated on the auxiliary winding generates the first auxiliary voltage VL) through the first diode D1 and the capacitor C1;
  • the second auxiliary winding has a second auxiliary voltage output terminal for generating a second auxiliary voltage associated with the output voltage
  • the auxiliary voltage VH, the first auxiliary voltage VL is less than the second auxiliary voltage VH (for example, the magnitude is equal to 3V0) (the induced electromotive force generated on the second auxiliary winding passes through the second diode D2 and the capacitor C2 to generate the second auxiliary voltage VH);
  • the DC power supply circuit includes a first DC power supply circuit and a second DC power supply circuit.
  • the first DC power supply circuit is used for outputting a first voltage VB according to the input first auxiliary voltage VL; the second DC power supply circuit is used for outputting a first voltage VB according to the input first auxiliary voltage VL;
  • the second auxiliary voltage VH outputs the second voltage VA.
  • the second DC power supply circuit includes a third resistor R3, an N-channel MOS transistor Q3, a first Zener diode ZD1, and a capacitor C3.
  • the first DC power supply circuit includes a second Zener diode ZD2; the second auxiliary voltage VH passes through the third The resistor R3 and the first Zener diode ZD1 are grounded, and the anode of the first Zener diode ZD1 is grounded; the drain, gate and source of the N-channel MOS transistor Q3 are connected to the second auxiliary voltage VH and the first Zener diode respectively.
  • the cathode of ZD1 and the emitter of PNP transistor Q2 are connected.
  • the emitter of PNP transistor Q2 outputs the second voltage VA; the first auxiliary voltage VL is connected to the base of PNP transistor Q2 through the second Zener diode ZD2, and the second The anode of the Zener diode ZD2 is connected to the first auxiliary voltage VL, wherein the voltage of the base of the PNP transistor Q2 is the first voltage VB.
  • V EB is the conduction voltage between the emitter and collector of the PNP transistor Q2
  • V ZD2 is the reverse breakdown voltage of the second Zener diode ZD2).
  • VA 16-Vth
  • VB V ZD2 +V0
  • the threshold voltage is: 15.3-Vth-V ZD2 ;
  • V ZD2 is set to 5v and Vth is 2.5v
  • the threshold voltage is 7.8v, that is, when the output voltage is between 5.3v and 7.8v, power compensation is required, and when the output voltage is greater than 7.8v, power compensation is not required.
  • VA 3V0-Vth
  • VB V ZD2 +V0
  • V ZD2 is set to 5v
  • Vth is 2.5v
  • (Vth+0.7+V ZD2 )/2 4.4v
  • the minimum value of the output voltage is 5v, so when the output voltage is between 5v-5.3v, you need to Power compensation, when the output voltage is less than 5v, it will not work normally.
  • the designed threshold voltage determines how much reverse breakdown voltage V ZD2 the second Zener diode ZD2 is selected.
  • FIG. 7 is a more preferred embodiment of the switching power supply of the present application.
  • the switching power supply is basically similar to that of Figure 6.
  • the main difference includes the difference of the second DC power supply circuit.
  • the current supply circuit includes a second Zener diode ZD2; the voltage regulator chip outputs a stable second voltage VA according to the input second auxiliary voltage VH, where the second voltage VA is the set voltage value (for example, 15-17V); the first auxiliary The voltage VL is connected to the base of the PNP transistor Q2 through the second zener diode ZD2, and the cathode of the second zener diode ZD2 is connected to the base of the PNP transistor Q2, wherein the voltage of the base of the PNP transistor Q2 is the first voltage VB.
  • FIG. 8 is a more preferred embodiment of the switching power supply of the present application.
  • the switching power supply is substantially similar to the switching power supply of FIG. 6, and the main differences include the difference between the auxiliary winding and the DC power supply circuit.
  • the transformer T also includes an auxiliary winding, which is used to generate an auxiliary voltage Vi associated with the output voltage of the switching power supply;
  • the DC power supply circuit includes a first DC power supply circuit and a second DC power supply circuit, and the first DC power supply circuit is used for The first voltage VB is output according to the input auxiliary voltage Vi;
  • the second DC power supply circuit is used to output the second voltage VA according to the input auxiliary voltage Vi.
  • the second DC power supply circuit of this embodiment may use a voltage stabilizing chip to output the second voltage VA of a fixed voltage value, and the first DC power supply circuit may use the first DC power supply circuit as shown in FIG. 7.
  • FIG. 9 is a more preferred embodiment of the switching power supply of the present application.
  • the switching power supply further includes a third zener diode ZD3, a fourth zener diode ZD4, and a fourth resistor R4; the second voltage VA is connected to the third zener diode ZD3 through The power terminal VCC of the PWM control unit is connected, the first auxiliary voltage VL is connected to the power terminal VCC through the fourth zener diode ZD4, and the cathodes of the third zener diode ZD3 and the fourth zener diode ZD4 are connected to the power terminal VCC of the PWM control unit ,
  • the voltage stabilization value of the first zener diode ZD1 is determined by the power supply range of the power supply terminal VCC of the PWM control unit.
  • the first auxiliary voltage VL is grounded through the fourth resistor R4.
  • the voltage stabilization value of the first zener diode ZD1 is determined by the power supply range of the power supply terminal VCC of the PWM control unit, where V ZD3 is the forward voltage of the third zener diode ZD3, usually about 0.7V;
  • V ZD4 is the forward conduction voltage of the fourth Zener diode ZD4, usually about 0.7V).
  • V0 5V
  • VL 5V
  • V0 20V
  • VL 20V
  • FIG. 3 is a more preferred embodiment of the switching power supply of the present application.
  • the transformer T further includes a first auxiliary winding and a second auxiliary winding; the first auxiliary winding has a first auxiliary voltage output terminal for generating a voltage associated with the output voltage The first auxiliary voltage VL; the second auxiliary winding has a second auxiliary voltage output terminal, used to generate a second auxiliary voltage VH associated with the output voltage, the first auxiliary voltage VL is less than the second auxiliary voltage VH; power compensation auxiliary circuit It includes a switch K, a comparator A1 and a level generating circuit; the DC power supply circuit includes a first DC power supply circuit, a second DC power supply circuit, and a third DC power supply circuit; the input end of the first DC power supply circuit is connected to the first auxiliary voltage The output terminal or the second auxiliary voltage output terminal, the output terminal of the first DC power supply circuit, the switch K, the level generating circuit and the current detection terminal Is are sequentially connected; the input terminal of the third DC power
  • the comparator A1 is used to compare the voltage output by the third DC power supply circuit with the voltage output by the second DC power supply circuit, so that when the current output voltage V0 of the switching power supply is not greater than the threshold voltage ,
  • the output control signal controls the switch K to turn on, and the level generating circuit generates an output voltage, thereby providing a compensation level to the current detection terminal Is; when the current output voltage V0 of the switching power supply is greater than the threshold voltage, the output control signal controls the switch K to turn off ,
  • the level generating circuit generates no output voltage, so that it does not provide a compensation level to the current detection terminal Is.
  • the above-mentioned second DC power supply circuit may adopt the second DC power supply circuit in FIG.
  • the magnitude of the voltage input to the non-inverting input terminal is the second voltage VA.
  • the above-mentioned first DC power supply circuit may use a resistor, therefore, the magnitude of the voltage input to the inverting input terminal is VL.
  • This level generation circuit can use the resistor divider module in Figure 4.
  • FIG. 10 is a more preferred embodiment of the switching power supply of the present application. This embodiment is substantially the same as the switching power supply of FIG. 4, with the main difference including the P-channel field effect transistor Q4 instead of the PNP transistor Q2. As shown in FIG. 10, the power compensation auxiliary circuit includes a P-channel field effect transistor Q4.
  • the DC power supply circuit respectively provides a second voltage VA and a first voltage VB to the source and gate of the P-channel field effect transistor Q4, and the second voltage VA At least one of the first voltage VB is related to the current output voltage V0 of the switching power supply; when the current output voltage V0 of the switching power supply is not greater than the threshold voltage, the difference between the second voltage VA and the first voltage VB is greater than the P-channel field effect transistor The conduction voltage between the source and gate of Q4, the P-channel FET Q4 is turned on, and the power compensation auxiliary circuit generates an output voltage, thereby providing a compensation level to the current detection terminal; when the current output voltage V0 of the switching power supply is greater than At the threshold voltage, the difference between the second voltage VA and the first voltage VB is less than the turn-on voltage between the source and gate of the P-channel field effect transistor Q4, the P-channel field effect transistor Q4 is turned off, and the power compensation auxiliary circuit does not The output voltage is generated so that no compensation level is provided to the current detection terminal.
  • Figure 11 is a waveform diagram of the output current and output voltage of the switching power supply without the application of this application.
  • Curve 2 and curve 1 in the figure are the output current and output voltage of the switching power supply. It can be seen that the maximum output current reaches 9.54A before entering the current limit. Protection, does not meet the requirements of LPS test less than 8A.
  • Fig. 12 shows the output voltage ripple without the switching power supply of the present application. It can be seen from the figure that the output voltage ripple reaches 184mV.
  • Figure 13 is a waveform diagram of the output current and output voltage of an embodiment of the switching power supply of the present application.
  • Curve 2 and curve 1 in the figure are the output current and output voltage of the switching power supply. It can be seen that the output current reaches 6.6A and enters Current-limiting protection meets the requirements of LPS test to be less than 8A.
  • Figure 14 shows the output voltage ripple of the switching power supply of the present application. It can be seen from the figure that the output voltage ripple is only 124mV. It can be seen that the present application can also reduce the output voltage ripple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供一种开关电源、电源适配器及充电器,该开关电源包括电流型PWM控制单元、变压器、以及依次串联的直流供电电路和功率补偿辅助电路,电流型PWM控制单元包括电流检测端;直流供电电路的输入端连接辅助电压输出端,辅助电压输出端输出与开关电源的输出电压相关联的辅助电压,辅助电压用于判断输出电压与阈值电压的大小关系;当开关电源当前的输出电压不大于阈值电压时,功率补偿辅助电路产生直流电压,从而向电流检测端提供补偿电平;否则不向电流检测端提供补偿电平。本申请使得在输出较低电压时,保证即使出现短路等故障,输出电流也不会过大,同时在输出较高电压时也能输出额定的最大限制功率。

Description

一种开关电源、电源适配器及充电器 技术领域
本申请涉及电源领域,具体涉及一种开关电源、电源适配器及充电器。
背景技术
带有变压器的开关电源广泛应用于电子产品中,例如电源适配器或充电器。在一些情况下,当开关电源的负载过载或者短路的情况下,有可能会导致开关电源输出电流超出额定范围,从而可能造成安全隐患。
为了解决上述安全问题,国际电工委员会(IEC)规定了限功率电源(LPS)需要满足的测试,例如,对于某类电源而言:输出开路电压不超过30Vdc,输出最大短路电流不能超过8A,输出最大功率不超过100VA。
现有技术中,通常有以下几种方式以满足LPS测试,或者以应对与该LPS测试相应场景的安全问题:
(1)在开关电源次级绕组输出回路上串联PTC电阻。但是,功率回路串联PTC电阻会降低电源转换器的效率,这将使得电源转换器无法满足六级能效率要求。
(2)在开关电源次级绕组输出回路上串联熔断保险丝。但是,由于是熔断后的保险丝不可恢复,使得产品可靠性降低,影响电源转换器的售后品质。
(3)采用两级过流保护电路。在开关电源次级绕组的输出回路串联电流 采样电阻,另外增加比较器等外围器件以进行第二级的过流保护,但是这样不利于产品小型化设计,同时会增成本。
为了提高安全性以及满足LPS测试,中国专利文献CN101783595B公开了一种反激式电源过功率补偿的方法,其背景技术的实施例分别介绍了以下两个方案:1、如该专利文献图3所示,通过从变压器初级绕组的输入电压引入补偿电平到PWM芯片的电流检测引脚CS,从而实现对PWM芯片的功率补偿;但是这种功率补偿一直持续。2、如该专利文献图4所示,当检测到输出电压Vout增大时,打开功率补偿电路。
随着消费电子发展,5G与大容量电池的应用,高功率密度的超级快充开关电源的市场需求越来越大,例如宽输出电压(5V-24V)且输出功率大于50W的快充充电器或适配器。然而,对于这些宽输出范围的开关电源而言,这种功率补偿方法并不合适。
发明内容
基于上述现状,本申请的主要目的在于提供一种开关电源、电源适配器及充电器,使得在输出较低电压时即使出现短路等故障,输出电流也不会过大,从而提高产品安全性能,同时在输出较高电压时也能输出额定的最大限制功率。
为实现上述目的,本申请采用的技术方案如下:
一种开关电源,包括电流型PWM控制单元和变压器,所述电流型PWM控制单元包括电流检测端Is;所述电流检测端Is用于检测所述变压器的初级绕组电流,从而控制功率传输;所述开关电源还包括依次串联的直流供电电路和功 率补偿辅助电路,所述直流供电电路的输入端连接辅助电压输出端,所述辅助电压输出端输出与所述开关电源的输出电压v0相关联的辅助电压Vi;所述功率补偿辅助电路的输出端与电流检测端Is连接;所述功率补偿辅助电路,用于判断所述直流供电电路的输出电压,即当所述开关电源当前的输出电压V0不大于阈值电压时,所述功率补偿辅助电路产生直流电压,从而向所述电流检测端Is提供补偿电平;当所述开关电源当前的输出电压V0大于阈值电压时,所述功率补偿辅助电路不产生所述直流电压,从而不向所述电流检测端Is提供补偿电平;其中,所述阈值电压在所述开关电源的输出电压范围内。
优选的,所述变压器还包括第一辅助绕组和第二辅助绕组;第一辅助绕组,具有第一辅助电压输出端,用于产生与输出电压V0相关联的第一辅助电压VL;第二辅助绕组,具有第二辅助电压输出端,用于产生与输出电压V0相关联的第二辅助电压VH,所述第一辅助电压VL小于第二辅助电压VH;所述功率补偿辅助电路包括开关K、比较器A1和电平产生电路;所述直流供电电路包括第一电路、第二电路和第三电路;所述第一电路的输入端连接第一辅助电压输出端或第二辅助电压输出端,所述第一直电路的输出端、开关和电平产生电路和电流检测端Is依次连接;所述第三电路的输入端连接第一辅助电压输出端,输出端连接所述比较器A1的第一输入端;所述第二电路的输入端连接第二辅助电压输出端,输出端连接所述比较器A1的第二输入端;所述比较器A1用于对所述第三电路输出的电压和所述第二电路输出的电压进行比较,当所述开关电源当前的输出电压不大于阈值电压时,输出控制信号控制开关K导通,所述电平产生电路产生输出电压,从而向所述电流检测端提供补偿电平;当所述开关电源当前的输出电压大于阈值电压时,输出控制信号控制开关K断开,所述 电平产生电路产生不输出电压,从而不向所述电流检测端提供补偿电平。
优选的,所述功率补偿辅助电路包括P型半导体开关管,所述直流供电电路分别向所述P型半导体开关管的电流流入端和控制端提供第二电压VA和第一电压VB,所述第二电压VA和第一电压VB至少一者与所述开关电源当前的输出电压V0相关;当所述开关电源当前的输出电压V0不大于阈值电压时,所述第二电压VA与第一电压VB的差值大于所述P型半导体开关管的电流流入端和控制端之间的导通电压,所述P型半导体开关管导通,所述功率补偿辅助电路产生直流电压,从而向所述电流检测端提供补偿电平;当所述开关电源当前的输出电压V0大于阈值电压时,所述第二电压VA与第一电压VB的差值小于所述P型半导体开关管的电流流入端和控制端之间的导通电压,所述P型半导体开关管关断,所述功率补偿辅助电路不产生直流电压,从而不向所述电流检测端提供补偿电平。
优选的,所述P型半导体开关管包括PNP三极管或P沟道场效应管;所述PNP三极管的电流流入端、控制端分别为发射极和基极;所述P沟道场效应管的电流流入端、控制端分别为源极和栅极。
优选的,所述功率补偿辅助电路还包括电阻分压模块,所述电阻分压模块包括第一电阻R1和第二电阻R2,所述PNP三极管的集电极通过所述第二电阻与所述电流检测端Is连接,所述电流检测端Is通过所述第一电阻与所述变压器的初级绕组的采样电阻Rs连接;当所述PNP三极管Q2导通时,第二电压VA通过在所述第一电阻R1、第二电阻R2上施加电压而对向所述电流检测端提供补偿电平。
优选的,所述变压器还包括第一辅助绕组和第二辅助绕组,第一辅助绕组, 用于产生与输出电压相关联的第一辅助电压VL;第二辅助绕组,用于产生与输出电压相关联的第二辅助电压VH,所述第一辅助电压VL小于第二辅助电压VH;所述直流供电电路包括第一直流供电电路和第二直流供电电路,所述第一直流供电电路用于根据输入的所述第一辅助电压VL输出第一电压VB;所述第二直流供电电路用于根据输入的第二辅助电压VH输出第二电压VA。
优选的,所述第二直流供电电路包括第三电阻R3、N沟道MOS管Q3、第一稳压二极管ZD1、电容C1,第一直流供电电路包括第二稳压二极管ZD2;所述第二辅助电压VH通过第三电阻R3和第一稳压二极管ZD1接地,且所述第一稳压二极管ZD1的阳极接地;N沟道MOS管Q3的漏极、栅极和源极分别与所述第二辅助电压VH、所述第一稳压二极管ZD1的阴极、所述PNP三极管Q2的发射极连接,其中,所述PNP三极管Q2的发射极输出所述第二电压VA;所述第一辅助电压VL通过所述第二稳压二极管ZD2与所述PNP三极管Q2的基极连接,且所述第二稳压二极管ZD2的阳极与所述第一辅助电压VL连接,其中,所述PNP三极管Q2的基极的电压为所述第一电压VB。
优选的,所述第二直流供电电路包括稳压芯片,第一直流供电电路包括第二稳压二极管ZD2;所述稳压芯片根据输入的第二辅助电压VH输出所述第二电压VA,其中所述第二电压VA为设定电压值或与第二辅助电压VH相关联的电压值;所述第一辅助电压VL通过所述第二稳压二极管ZD2与所述PNP三极管Q2的基极连接,且所述第二稳压二极管ZD2的阴极与所述PNP三极管Q2的基极连接,其中,所述PNP三极管Q2的基极的电压为所述第一电压VB。
优选的,所述变压器还包括辅助绕组,所述辅助绕组,用于产生与所述开关电源的输出电压相关联的辅助电压Vi;所述直流供电电路包括第一直流供 电电路和第二直流供电电路,所述第一直流供电电路用于根据输入的所述辅助电压Vi输出第一电压VB;所述第二直流供电电路用于根据输入的辅助电压Vi输出第二电压VA。
优选的,所述第二稳压二极管ZD2的稳压值,根据所述阈值电压确定。
优选的,所述开关电源还包括第三稳压二极管ZD3和第四稳压二极管ZD4;所述第二电压VA通过所述第三稳压二极管ZD3与所述PWM控制单元的电源端VCC连接,所述第一辅助电压VL通过所述第四稳压二极管ZD4与所述PWM控制单元的电源端VCC连接,第三稳压二极管ZD3和第四稳压二极管ZD4的阴极连接所述PWM控制单元的电源端VCC;所述第一稳压二极管ZD1的稳压值由所述PWM控制单元的电源端VCC的供电范围确定。
优选的,所述开关电源的输出电压范围为5-24V,或者与5-24V的电压范围至少部分重叠。
本申请还提供了一种电源适配器或充电器,包括前述任一所述的开关电源。
【有益效果】
通过设置上述阈值电压,当所述开关电源当前的输出电压V0不大于阈值电压时,所述功率补偿辅助电路产生输出电压,从而向所述电流检测端Is提供补偿电平,该补偿电平与电流采样电阻上的电压叠加,使得PWM控制单元通过电流检测端Is检测到的电平变大,从而在最大限制输出功率以下的某一较小功率时即降低PWM信号的占空比,最终使初级绕组的功率维持在该较小功率上,即将输出功率维持在一更小功率上,进而使输出电流维持在较小值,更容易满足LPS测试的需求,或者在实际应用中降低安全风险。另外,由于功率补 偿辅助电路在输出电压V0大于阈值电压时停止向电流检测端Is提供补偿电平,因此不会降低开关电源在这个输出电压段的实际输出功率(例如,开关电源的输出能够达到其最大限制输出功率),提高充电效率,对于快充电源适配器而言尤其重要,同时停止提供补偿电平可以降低功耗,提高开关电源的能效。
在一些实施例中,相比于没有采用本申请功率补偿辅助电路的开关电源,输出电压纹波更小,可闻噪声更小。
在优选方案中,P型半导体开关管(例如PNP三极管)既作为通过比较第一电压VB和第二电压VA之间的大小进而比较输出电压V0与阈值电压之间大小的器件,又作为控制直流供电电路向功率补偿辅助电路供电通道的开关,电路结构简单、体积和功耗相对较小。
本申请的其他有益效果,将在具体实施方式中通过具体技术特征和技术方案的介绍来阐述,本领域技术人员通过这些技术特征和技术方案的介绍,应能理解所述技术特征和技术方案带来的有益技术效果。
附图说明
以下将参照附图对根据本申请的优选实施方式进行描述。图中:
图1为根据本申请的一种优选实施方式的开关电源的示意图
图2为根据本申请的另一种优选实施方式的开关电源的示意图
图3为根据本申请的另一种优选实施方式的开关电源的示意图
图4为根据本申请的另一种优选实施方式的开关电源的示意图
图5为根据本申请的另一种优选实施方式的开关电源的示意图
图6为根据本申请的另一种优选实施方式的开关电源的示意图
图7为根据本申请的另一种优选实施方式的开关电源的示意图
图8为根据本申请的另一种优选实施方式的开关电源的示意图
图9为根据本申请的另一种优选实施方式的开关电源的示意图
图10为根据本申请的另一种优选实施方式的开关电源的示意图
图11是没有采用本申请开关电源的输出电流和输出电压的波形图
图12是没有采用本申请开关电源的输出电压纹波
图13是采用本申请开关电源一种实施例的输出电流和输出电压的波形图
图14是采用本申请开关电源一种实施例的输出电压纹波
具体实施方式
图1是本申请一种实施例的开关电源的示意图,该开关电源具有宽输出电压,即输出电压范围较宽,例如2-30V,或者5-24V,或者输出可变电压(5V-9V/5V-11V/5V-12V/5V-15V/5V-20V),或者其输出电压范围V min-V max与5-24V的电压范围至少部分重叠,本开关电源尤其适用在高功率密度、宽输出电压的快充电源适配器或充电器中。
开关电源包括电流型PWM控制单元(例如电流型PWM控制芯片)、变压器T、功率开关管Q1、电流采样电阻Rs、直流供电电路、功率补偿辅助电路、钳位电路、滤波电路和电压反馈电路(图中未示出)。变压器T的初级绕组NP输入经过整流后的直流电压Vbulk(直流电压Vbulk经过交流电整流、滤波得到),钳位电路与初级绕组并联以提供钳位保护,次级绕组NS经过滤波电路输出电压V0。初级绕组通过依次串联的功率开关管Q1和电流采样电阻Rs接地。电流型PWM控制单元还包括电压检测端(图中未示出)和电流检测端Is。输 出电压V0经过电压反馈电路获得的电压反馈信号输入到电压检测端,PWM控制单元根据该电压反馈信号参与生成对应的PWM控制信号,从而将输出电压控制维持在需要输出的电压V0上。电流检测端Is用于通过检测电流采样电阻Rs上的电压检测变压器T的初级绕组电流,当检测得到的电压大于设定电压时,通过降低控制功率开关管Q1的PWM信号的占空比,以控制初级绕组电流,即控制初级绕组的功率,进而控制变压器T的功率传输,也就控制了输出功率。
直流供电电路、功率补偿辅助电路和电流检测端Is依次串联,直流供电电路的输入端输入连接辅助电压输出端,辅助电压输出端输出与开关电源的输出电压V0相关联的辅助电压Vi;功率补偿辅助电路的输出端与电流检测端Is连接。如图3所示,电压Vi可以是辅助绕组的输出电压VH或VL。
在开关电源的输出电压范围(V min-V max)内预先设置阈值电压,该阈值电压大于V min且小于V max,例如阈值电压可以大约等于V max/2。
由于PWM控制单元实际上通过控制初级绕组的功率实现对输出功率的控制,PWM控制单元只是限制了输出的最大功率,对于宽输出电压的开关电源而言,当输出电压在较小值的情况下,如果负载过载或者短路,输出电流将变得很大,可能超出LPS测试规定的范围,或者在实际应用中这个大电流会造成安全隐患。例如,开关电源输出范围为5-20V,最大限制功率为60W,当输出电压为5V时,如果负载短路,此时输出电流能达到12A才触发PWM控制单元降低PWM占空比的功率保护动作,但12A的电流大于LPS测试要求的8A从而导致无法通过LPS测试,或者给实际应用带来很大安全风险。由于输出电压为20V时,即使负载短路,最大输出电流一旦达到60W/20V=3A时即触发了PWM控制单元的功率保护动作,该最大电流也不会超过LPS测试要求,在实际应用 中的风险也较低。可见,在宽输出电压的此类开关电源中,当输出较小电压时,输出电流更容易超出安全范围,只要控制了较小电压时输出电流不超过安全范围,较高电压时的输出电流就不会超过安全范围。
本申请为了解决上述问题,通过设置上述阈值电压,当开关电源当前的输出电压V0不大于阈值电压时,功率补偿辅助电路产生直流电压,从而向电流检测端Is提供补偿电平,该补偿电平与电流采样电阻Rs上的电压叠加,使得PWM控制单元通过电流检测端Is检测到的电平变大,从而在最大限制输出功率以下的某一较小功率时即降低PWM信号的占空比,最终使初级绕组的功率维持在该较小功率上,即将输出功率维持在一更小功率上,进而使输出电流维持在较小值,更容易满足LPS测试的需求,或者在实际应用中降低安全风险。另外,当输出电压V0大于阈值电压时,所述功率补偿辅助电路不产生直流电压,从而停止向电流检测端Is提供补偿电平,因此不会降低开关电源在这个输出电压段的实际输出功率(例如,开关电源的输出能够达到其最大限制输出功率为60W,当输出电压V0大于阈值电压时,开关电源能够输出60W,但是,当输出电压V0小于阈值电压时,开关电源能输出的功率小于60W),提高充电效率,对于快充电源适配器或充电器而言尤其重要,另外,停止提供补偿电平可以降低功耗,提高开关电源的能效。
补偿电平的大小可以为
Figure PCTCN2021080861-appb-000001
其中,V RS是在没有功率补偿辅助电路情况下,开关电源输出最大限制输出功率时采样电阻Rs上的电压,V min是开关电源输出电压范围的最小值,I max是最大限制输出电流。
例如,输出范围为5-20V,V RS=1V,P max=60W,I max=8A时:
V min·I max=5v*8A=40W,
Figure PCTCN2021080861-appb-000002
则补偿电平大小可以取为330mV。在一些具体应用中,补偿电平大小可以50mV-700mV之间。
图2是本申请开关电源一种更优选的实施例。功率补偿辅助电路包括PNP三极管Q2和电阻分压模块,直流供电电路根据输入电压Vi分别向PNP三极管Q2的发射极和基极提供第二电压VA和第一电压VB,电阻分压模块的输入端连接PNP三极管Q2的集电极,输出连接电流检测端Is,第二电压VA和第一电压VB至少一者与开关电源当前的输出电压V0相关。当开关电源当前的输出电压V0不大于阈值电压时,第二电压VA与第一电压VB的差值大于PNP三极管Q2的发射极和基极之间的导通电压(该导通电压通常在0.7V左右),PNP三极管Q2导通,功率补偿辅助电路产生输出电压,从而通过电阻分压模块向电流检测端Is提供补偿电平;当开关电源当前的输出电压V0大于阈值电压时,第二电压VA与第一电压VB的差值小于PNP三极管Q2的发射极和基极之间的导通电压V EB,PNP三极管Q2关断,功率补偿辅助电路不产生输出电压,从而不向电流检测端Is提供补偿电平。PNP三极管Q2既作为通过比较第一电压VB和第二电压VA之间的大小进而比较输出电压V0与阈值电压之间大小的器件,又作为控制直流供电电路向功率补偿辅助电路供电通道的开关,电路结构简单、体积和功耗相对较小。
在一些实施例中,第二电压VA是固定值,而第一电压VB则是与输出电压V0正相关的电压,如输出电压V0的倍数;
在另一些实施例中,第一电压VB是固定值,而第二电压VA则是与输出电压V0相关的电压。
图4是本申请开关电源一种更优选的实施例。功率补偿辅助电路还包括电阻分压模块,电阻分压模块包括第一电阻R1和第二电阻R2,PNP三极管Q2的集电极通过第二电阻R2与电流检测端Is连接,电流检测端Is通过第一电阻R1与变压器T的初级绕组的采样电阻Rs连接;当PNP三极管Q2导通时,第二电压VA通过在第一电阻R1、第二电阻R2上施加电压而对向电流检测端Is提供补偿电平,补偿电平大小为:
Figure PCTCN2021080861-appb-000003
图5是本申请开关电源一种更优选的实施例。变压器T还包括第一辅助绕组和第二辅助绕组,第一辅助绕组,具有第一辅助电压输出端,用于产生与输出电压相关联的第一辅助电压VL(例如大小等于V0)(第一辅助绕组上生成的感应电动势经过第一二极管D1和电容C1而产生第一辅助电压VL);第二辅助绕组,具有第二辅助电压输出端,用于产生与输出电压相关联的第二辅助电压VH,第一辅助电压VL小于第二辅助电压VH(例如大小等于3V0)(第二辅助绕组上生成的感应电动势经过第二二极管D2和电容C2而产生第二辅助电压VH);直流供电电路包括第一直流供电电路和第二直流供电电路,第一直流供电电路用于根据输入的第一辅助电压VL输出第一电压VB;第二直流供电电路用于根据输入的第二辅助电压VH输出第二电压VA。
图6是本申请开关电源一种更优选的实施例。第二直流供电电路包括第三电阻R3、N沟道MOS管Q3、第一稳压二极管ZD1、电容C3,第一直流供电电路包括第二稳压二极管ZD2;第二辅助电压VH通过第三电阻R3和第一稳压二极管ZD1接地,且第一稳压二极管ZD1的阳极接地;N沟道MOS管Q3的漏极、栅极和源极分别与第二辅助电压VH、第一稳压二极管ZD1的阴极、PNP三极管 Q2的发射极连接,其中,PNP三极管Q2的发射极输出第二电压VA;第一辅助电压VL通过第二稳压二极管ZD2与PNP三极管Q2的基极连接,且第二稳压二极管ZD2的阳极与第一辅助电压VL连接,其中,PNP三极管Q2的基极的电压为第一电压VB。当VH≥V ZD1,第一稳压二极管ZD1被反向击穿,Q3的栅极电压被钳位在V ZD1,且Q3被导通,VH开始向电容C3充电,直至电容C3的电压达到V ZD1-Vth时(Vth为Q3栅源极导通阈值电压),Q3管关断,第一电压VA大小被维持在V ZD1-Vth。当VH<V ZD1,第一稳压二极管ZD1无法被击穿,Q3栅极电压维持在VH,Q3保持导通,第一电压VA大小被维持在VH-Vth。当:
VA-V EB-VL≥V ZD2时,
PNP三极管Q2导通,反之则关断,其中,V EB是PNP三极管Q2发射极和集电极之间的导通电压,V ZD2是第二稳压二极管ZD2的反向击穿电压)。
在一个实施例中,若:VH=3V0,VL=V0,第一稳压二极管ZD1的反向击穿电压为16V;
(1)当VH≥16V(即V0≥16/3V=5.3v)时,
PNP三极管Q2导通时有如下关系:VA-VB≥0.7,
而VA=16-Vth,VB=V ZD2+V0,
即:(16-Vth)-(V ZD2+V0)≥0.7,
16-Vth-0.7-V0≥V ZD2,因此,V0≤15.3-Vth-V ZD2
即,阈值电压为:15.3-Vth-V ZD2
如设定V ZD2为5v,Vth为2.5v,则阈值电压为7.8v,即输出电压处于5.3v-7.8v时,需要进行功率补偿,输出电压大于7.8v时,不需要进行功率补偿。
(2)当VH<16V时(即V0<16/3V=5.3),
PNP三极管Q2导通的情形有如下关系:VA-VB≥0.7,
而VA=3V0-Vth,VB=V ZD2+V0,
(3V0-Vth)-(V ZD2+V0)≥0.7,即:2V0-Vth-0.7≥V ZD2,因此,
(Vth+0.7+V ZD2)/2≤V0。
如设定V ZD2为5v,Vth为2.5v,(Vth+0.7+V ZD2)/2=4.4v,而输出电压的最小值是5v,所以,在输出电压处于5v-5.3v时,需要进行功率补偿,输出电压小于5v时,不会正常工作。
综上所述,在输出电压处于5v-7.8v时,需要进行功率补偿;输出电压大于7.8v时,不需要进行功率补偿。因此在输出电压V0不大于阈值电压(15.3-Vth-V ZD2)时,使得PNP三极管Q2导通,需要进行功率补偿。
可见,对于确定大小的VA、第一辅助电压VL,设计的阈值电压大小决定了选用多大反向击穿电压V ZD2的第二稳压二极管ZD2。
图7是本申请开关电源一种更优选的实施例,该开关电源与图6的基本相似,主要的差别包括第二直流供电电路的差异,第二直流供电电路包括稳压芯片,第一直流供电电路包括第二稳压二极管ZD2;稳压芯片根据输入的第二辅助电压VH输出稳定的第二电压VA,其中第二电压VA为设定电压值(例如15-17V);第一辅助电压VL通过第二稳压二极管ZD2与PNP三极管Q2的基极连接,且第二稳压二极管ZD2的阴极与PNP三极管Q2的基极连接,其中,PNP三极管Q2的基极的电压为第一电压VB。
图8是本申请开关电源一种更优选的实施例,该开关电源与图6的开关电源大体相似,主要区别包括辅助绕组和直流供电电路的差异。变压器T还包括辅助绕组,辅助绕组用于产生与开关电源的输出电压相关联的辅助电压Vi; 直流供电电路包括第一直流供电电路和第二直流供电电路,第一直流供电电路用于根据输入的辅助电压Vi输出第一电压VB;第二直流供电电路用于根据输入的辅助电压Vi输出第二电压VA。例如,本实施例的第二直流供电电路可以采用稳压芯片以输出固定电压值的第二电压VA,第一直流供电电路可以采用如图7所示的第一直流供电电路。
图9是本申请开关电源一种更优选的实施例,开关电源还包括第三稳压二极管ZD3、第四稳压二极管ZD4和第四电阻R4;第二电压VA通过第三稳压二极管ZD3与PWM控制单元的电源端VCC连接,第一辅助电压VL通过第四稳压二极管ZD4与电源端VCC连接,第三稳压二极管ZD3和第四稳压二极管ZD4的阴极连接PWM控制单元的电源端VCC,第一稳压二极管ZD1的稳压值由PWM控制单元的电源端VCC的供电范围确定。另外,第一辅助电压VL通过第四电阻R4接地。
根据图6实施例可知,当VH≥V ZD1,第二电压VA的电压维持在V ZD1-Vth,当VH<V ZD1,第二电压VA的电压维持在VH-Vth。
(1)当:VA>VL时,VCC=VA-V ZD3=V ZD1-Vth-V ZD3
可见,第一稳压二极管ZD1的稳压值由PWM控制单元的电源端VCC的供电范围确定,其中,V ZD3为第三稳压二极管ZD3的正向导通电压,通常为0.7V左右;
(2)当:VA≤VL时,VCC=VL-V ZD4(V ZD4为第四稳压二极管ZD4的正向导通电压,通常为0.7V左右)。
具体举例如下:若VH=3V0,VL=V0,Vth=2.5V,
(1)当V0=5V时,VA=15V-2.5V=12.5V,VL=5V,
因此,VCC=VA-V ZD3=12.5V-0.7V=11.8V;
(2)当V0=20V时,VA=16V-2.5V=13.5V,VL=20V,
因此,VCC=VL-V ZD4=12V-0.7V=11.3V。
图3是本申请开关电源一种更优选的实施例,变压器T还包括第一辅助绕组和第二辅助绕组;第一辅助绕组,具有第一辅助电压输出端,用于产生与输出电压相关联的第一辅助电压VL;第二辅助绕组具有第二辅助电压输出端,用于产生与输出电压相关联的第二辅助电压VH,第一辅助电压VL小于第二辅助电压VH;功率补偿辅助电路包括开关K、比较器A1和电平产生电路;直流供电电路包括第一直流供电电路、第二直流供电电路和第三直流供电电路;第一直流供电电路的输入端连接第一辅助电压输出端或第二辅助电压输出端,第一直流供电电路的输出端、开关K和电平产生电路和电流检测端Is依次连接;第三直流供电电路的输入端连接第一辅助电压输出端,输出端连接比较器A1的第一输入端(例如反相输入端)输入第一辅助电压VL;第二直流供电电路的输入端连接第二辅助电压输出端,输出端连接比较器A1的第二输入端(例如同相输入端);比较器A1用于对第三直流供电电路输出的电压和第二直流供电电路输出的电压进行比较,使得当开关电源当前的输出电压V0不大于阈值电压时,输出控制信号控制开关K导通,电平产生电路产生输出电压,从而向电流检测端Is提供补偿电平;当开关电源当前的输出电压V0大于阈值电压时,输出控制信号控制开关K断开,电平产生电路产生不输出电压,从而不向电流检测端Is提供补偿电平。上述第二直流供电电路可以采用图6中的第二直流供电电路,因此,输入同相输入端的电压大小为第二电压VA。上述第一直流供电电路可以采用电阻,因此,输入反相输入端的电压大小为VL。该电平产 生电路可以采用图4中的电阻分压模块。
图10是本申请开关电源一种更优选的实施例,本实施例与图4开关电源大体相同,主要区别包括用P沟道场效应管Q4替代了PNP三极管Q2。如图10所示,功率补偿辅助电路包括P沟道场效应管Q4,直流供电电路分别向P沟道场效应管Q4的源极和栅极提供第二电压VA和第一电压VB,第二电压VA和第一电压VB至少一者与开关电源当前的输出电压V0相关;当开关电源当前的输出电压V0不大于阈值电压时,第二电压VA与第一电压VB的差值大于P沟道场效应管Q4的源极和栅极之间的导通电压,P沟道场效应管Q4导通,功率补偿辅助电路产生输出电压,从而向电流检测端提供补偿电平;当开关电源当前的输出电压V0大于阈值电压时,第二电压VA与第一电压VB的差值小于P沟道场效应管Q4的源极和栅极之间的导通电压,P沟道场效应管Q4关断,功率补偿辅助电路不产生输出电压,从而不向电流检测端提供补偿电平。
图11是没有采用本申请开关电源的输出电流和输出电压的波形图,图中曲线2和曲线1分别是该开关电源输出电流和输出电压,可以看出输出电流最大达到9.54A才进入限流保护,不符合LPS测试要求小于8A的规定。图12是没有采用本申请开关电源的输出电压纹波,从图中可以看出输出电压纹波达到了184mV。
图13是采用本申请开关电源一种实施例的输出电流和输出电压的波形图,图中曲线2和曲线1分别是该开关电源输出电流和输出电压,可以看出输出电流达到6.6A即进入限流保护,符合LPS测试要求小于8A的规定。图14是采用本申请开关电源的输出电压纹波,从图中可以看出输出电压纹波只有124mV,可见,本申请还可以降低输出电压纹波。
本领域的技术人员能够理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本申请的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本申请的权利要求范围内。

Claims (13)

  1. 一种开关电源,包括电流型PWM控制单元和变压器,所述电流型PWM控制单元包括电流检测端;所述电流检测端用于检测所述变压器的初级绕组电流,从而控制功率传输;其特征在于,
    所述开关电源还包括依次串联的直流供电电路和功率补偿辅助电路,所述直流供电电路的输入端连接辅助电压输出端,所述辅助电压输出端输出与所述开关电源的输出电压相关联的辅助电压,所述功率补偿辅助电路的输出端与电流检测端连接;
    所述功率补偿辅助电路,用于判断所述直流供电电路的输出电压,即当所述开关电源当前的输出电压不大于阈值电压时,所述功率补偿辅助电路产生直流电压,从而向所述电流检测端提供补偿电平;当所述开关电源当前的输出电压大于阈值电压时,所述功率补偿辅助电路不产生所述直流电压,从而不向所述电流检测端提供补偿电平;
    其中,所述阈值电压在所述开关电源的输出电压范围内。
  2. 根据权利要求1所述的开关电源,其特征在于,
    所述变压器还包括第一辅助绕组和第二辅助绕组;第一辅助绕组,具有第一辅助电压输出端,用于产生与输出电压相关联的第一辅助电压;第二辅助绕组,具有第二辅助电压输出端,用于产生与输出电压相关联的第二辅助电压,所述第一辅助电压小于第二辅助电压;
    所述功率补偿辅助电路包括开关、比较器和电平产生电路;所述直流供电电路包括第一电路、第二电路和第三电路;所述第一电路的输入端连接第一辅助电压输出端或第二辅助电压输出端,所述第一直电路的输出端、开关和电平 产生电路和电流检测端依次连接;所述第三电路的输入端连接第一辅助电压输出端,输出端连接所述比较器的第一输入端;所述第二电路的输入端连接第二辅助电压输出端,输出端连接所述比较器的第二输入端;所述比较器用于对所述第三电路输出的电压和所述第二电路输出的电压进行比较,当所述开关电源当前的输出电压不大于阈值电压时,输出控制信号控制开关导通,所述电平产生电路产生输出电压,从而向所述电流检测端提供补偿电平;当所述开关电源当前的输出电压大于阈值电压时,输出控制信号控制开关断开,所述电平产生电路产生不输出电压,从而不向所述电流检测端提供补偿电平。
  3. 根据权利要求1所述的开关电源,其特征在于,
    所述功率补偿辅助电路包括P型半导体开关管,所述直流供电电路分别向所述P型半导体开关管的电流流入端和控制端提供第二电压和第一电压,所述第二电压和第一电压至少一者与所述开关电源当前的输出电压相关;
    当所述开关电源当前的输出电压不大于阈值电压时,所述第二电压与第一电压的差值大于所述P型半导体开关管的电流流入端和控制端之间的导通电压,所述P型半导体开关管导通,所述功率补偿辅助电路产生直流电压,从而向所述电流检测端提供补偿电平;
    当所述开关电源当前的输出电压大于阈值电压时,所述第二电压与第一电压的差值小于所述P型半导体开关管的电流流入端和控制端之间的导通电压,所述P型半导体开关管关断,所述功率补偿辅助电路不产生直流电压,从而不向所述电流检测端提供补偿电平。
  4. 根据权利要求3所述的开关电源,其特征在于,
    所述P型半导体开关管包括PNP三极管或P沟道场效应管;
    所述PNP三极管的电流流入端、控制端分别为发射极和基极;
    所述P沟道场效应管的电流流入端、控制端分别为源极和栅极。
  5. 根据权利要求3所述的开关电源,其特征在于,
    所述功率补偿辅助电路还包括电阻分压模块,所述电阻分压模块包括第一电阻和第二电阻,所述PNP三极管的集电极通过所述第二电阻与所述电流检测端连接,所述电流检测端通过所述第一电阻与所述变压器的初级绕组的采样电阻连接;
    当所述PNP三极管导通时,第二电压通过在所述第一电阻、第二电阻上施加电压而对向所述电流检测端提供补偿电平。
  6. 根据权利要求3所述的开关电源,其特征在于,
    所述变压器还包括第一辅助绕组和第二辅助绕组,第一辅助绕组,用于产生与输出电压相关联的第一辅助电压;第二辅助绕组,用于产生与输出电压相关联的第二辅助电压,所述第一辅助电压小于第二辅助电压;
    所述直流供电电路包括第一直流供电电路和第二直流供电电路,所述第一直流供电电路用于根据输入的所述第一辅助电压输出第一电压;所述第二直流供电电路用于根据输入的第二辅助电压输出第二电压。
  7. 根据权利要求6所述的开关电源,其特征在于,
    所述第二直流供电电路包括第三电阻、N沟道MOS管、第一稳压二极管、电容,第一直流供电电路包括第二稳压二极管;
    所述第二辅助电压通过第三电阻和第一稳压二极管接地,且所述第一稳压二极管的阳极接地;N沟道MOS管的漏极、栅极和源极分别与所述第二辅助电压、所述第一稳压二极管的阴极、所述PNP三极管的发射极连接,其中,所述PNP三极管的发射极输出所述第二电压;
    所述第一辅助电压通过所述第二稳压二极管与所述PNP三极管的基极连 接,且所述第二稳压二极管的阳极与所述第一辅助电压连接,其中,所述PNP三极管的基极的电压为所述第一电压。
  8. 根据权利要求6所述的开关电源,其特征在于,
    所述第二直流供电电路包括稳压芯片,第一直流供电电路包括第二稳压二极管;
    所述稳压芯片根据输入的第二辅助电压输出所述第二电压,其中所述第二电压为设定电压值或与第二辅助电压相关联的电压值;
    所述第一辅助电压通过所述第二稳压二极管与所述PNP三极管的基极连接,且所述第二稳压二极管的阴极与所述PNP三极管的基极连接,其中,所述PNP三极管的基极的电压为所述第一电压。
  9. 根据权利要求3所述的开关电源,其特征在于,
    所述变压器还包括辅助绕组,所述辅助绕组,用于产生与所述开关电源的输出电压相关联的辅助电压;
    所述直流供电电路包括第一直流供电电路和第二直流供电电路,所述第一直流供电电路用于根据输入的所述辅助电压输出第一电压;所述第二直流供电电路用于根据输入的辅助电压输出第二电压。
  10. 根据权利要求7或8所述的开关电源,其特征在于,
    所述第二稳压二极管的稳压值,根据所述阈值电压确定。
  11. 根据权利要求7所述的开关电源,其特征在于,
    所述开关电源还包括第三稳压二极管和第四稳压二极管;
    所述第二电压通过所述第三稳压二极管与所述PWM控制单元的电源端连接,所述第一辅助电压通过所述第四稳压二极管与所述PWM控制单元的电源端连接,第三稳压二极管和第四稳压二极管的阴极连接所述PWM控制单元的电源 端;
    所述第一稳压二极管的稳压值由所述PWM控制单元的电源端的供电范围确定。
  12. 根据权利要求1-11任一所述的开关电源,其特征在于,
    所述开关电源的输出电压范围为5-24V,或者与5-24V的电压范围至少部分重叠。
  13. 一种电源适配器或充电器,其特征在于,包括如权利要求1-12任一所述的开关电源。
PCT/CN2021/080861 2020-03-18 2021-03-15 一种开关电源、电源适配器及充电器 WO2021185213A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21771740.4A EP3972107A4 (en) 2020-03-18 2021-03-15 SWITCHING POWER SUPPLY, POWER SOURCE ADAPTER AND CHARGER
US17/607,026 US11955893B2 (en) 2020-03-18 2021-03-15 Switching power supply, power adapter and charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010193533.1 2020-03-18
CN202010193533.1A CN111884512A (zh) 2020-03-18 2020-03-18 一种开关电源、电源适配器及充电器

Publications (1)

Publication Number Publication Date
WO2021185213A1 true WO2021185213A1 (zh) 2021-09-23

Family

ID=73153941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080861 WO2021185213A1 (zh) 2020-03-18 2021-03-15 一种开关电源、电源适配器及充电器

Country Status (4)

Country Link
US (1) US11955893B2 (zh)
EP (1) EP3972107A4 (zh)
CN (1) CN111884512A (zh)
WO (1) WO2021185213A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243642A (zh) * 2021-12-31 2022-03-25 东莞欧陆通电子有限公司 欠压保护电路及其开关电源
CN114325473A (zh) * 2021-12-24 2022-04-12 广州星际悦动股份有限公司 短路检测电路、方法、装置、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884512A (zh) * 2020-03-18 2020-11-03 深圳市航嘉驰源电气股份有限公司 一种开关电源、电源适配器及充电器
TWI761902B (zh) * 2020-08-10 2022-04-21 大陸商艾科微電子(深圳)有限公司 提供有短路保護之電源控制器以及相關之控制方法
CN115912936B (zh) * 2023-01-03 2023-06-06 成都智融微电子有限公司 反激开关电源电路、反激开关电源控制方法及电源设备
CN115800977B (zh) * 2023-02-08 2023-04-14 成都世源频控技术股份有限公司 基于pmos大电流高速上下电电路及其供电的开关滤波电路
TWI849842B (zh) * 2023-04-13 2024-07-21 財團法人工業技術研究院 應用於電源轉換設備的控制裝置
CN118425602B (zh) * 2024-06-28 2024-11-19 杰华特微电子股份有限公司 一种电流采样电路及应用其的开关电源系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061257A (en) * 1998-09-28 2000-05-09 Stmicroelectronics S.R.L. Wholly integrated protection from the effects of a short circuit of the output of a flyback converter
CN1520016A (zh) * 2003-02-06 2004-08-11 三洋电机株式会社 开关电源电路
CN101783595A (zh) 2010-03-05 2010-07-21 福建捷联电子有限公司 宽电压输入的反激式电源过功率补偿的方法及装置
TW201032454A (en) * 2009-02-19 2010-09-01 Leadtrend Tech Corp Power converter and method thereof
CN202009331U (zh) * 2011-05-05 2011-10-12 上海新进半导体制造有限公司 一种开关电源中控制恒流输出的电路
CN111884512A (zh) * 2020-03-18 2020-11-03 深圳市航嘉驰源电气股份有限公司 一种开关电源、电源适配器及充电器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI390378B (zh) * 2008-05-14 2013-03-21 Richtek Technology Corp Control circuit and method of Chi - back power converter
CN101964589A (zh) * 2009-07-22 2011-02-02 Bcd半导体制造有限公司 一种控制变换器输出电流的方法及装置
CN201608638U (zh) * 2010-03-05 2010-10-13 福建捷联电子有限公司 宽电压输入的反激式电源过功率补偿装置
JP5545839B2 (ja) * 2010-05-11 2014-07-09 ニチコン株式会社 スイッチング電源装置
TWI443946B (zh) * 2010-07-29 2014-07-01 Tpv Electronics Fujian Co Ltd 過功率保護補償電路及返馳式電源
CN103078478B (zh) * 2013-01-23 2015-06-03 成都启臣微电子有限公司 一种开关电源控制器及开关电源
CN205336140U (zh) * 2015-12-31 2016-06-22 Tcl通力电子(惠州)有限公司 低功耗功率补偿电源电路
CN206353760U (zh) * 2016-09-14 2017-07-25 北京市九州风神科技有限公司 一种关断抽取互感耦合式供电系统
CN207994932U (zh) * 2018-01-04 2018-10-19 大连连顺电子有限公司 一种恒定功率控制电路及应用其的开关电源
TWI711264B (zh) * 2019-07-12 2020-11-21 通嘉科技股份有限公司 應用於電源轉換器的一次側的初級控制器及其操作方法
CN212231336U (zh) * 2020-03-18 2020-12-25 深圳市航嘉驰源电气股份有限公司 一种开关电源、电源适配器及充电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061257A (en) * 1998-09-28 2000-05-09 Stmicroelectronics S.R.L. Wholly integrated protection from the effects of a short circuit of the output of a flyback converter
CN1520016A (zh) * 2003-02-06 2004-08-11 三洋电机株式会社 开关电源电路
TW201032454A (en) * 2009-02-19 2010-09-01 Leadtrend Tech Corp Power converter and method thereof
CN101783595A (zh) 2010-03-05 2010-07-21 福建捷联电子有限公司 宽电压输入的反激式电源过功率补偿的方法及装置
CN202009331U (zh) * 2011-05-05 2011-10-12 上海新进半导体制造有限公司 一种开关电源中控制恒流输出的电路
CN111884512A (zh) * 2020-03-18 2020-11-03 深圳市航嘉驰源电气股份有限公司 一种开关电源、电源适配器及充电器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325473A (zh) * 2021-12-24 2022-04-12 广州星际悦动股份有限公司 短路检测电路、方法、装置、电子设备及存储介质
CN114325473B (zh) * 2021-12-24 2024-03-08 广州星际悦动股份有限公司 短路检测电路、方法、装置、电子设备及存储介质
CN114243642A (zh) * 2021-12-31 2022-03-25 东莞欧陆通电子有限公司 欠压保护电路及其开关电源

Also Published As

Publication number Publication date
US11955893B2 (en) 2024-04-09
CN111884512A (zh) 2020-11-03
US20220216796A1 (en) 2022-07-07
EP3972107A1 (en) 2022-03-23
EP3972107A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
WO2021185213A1 (zh) 一种开关电源、电源适配器及充电器
US8953347B2 (en) Capacitor discharging circuit and power converter
US10193451B2 (en) Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
TWI475786B (zh) System controller and method for power conversion system
US8698474B2 (en) Start-up circuit with low standby power loss for power converters
US20150207420A1 (en) Switching mode power supplies with primary side regulation and associated methods of control
US20060209581A1 (en) Terminal for multiple functions in a power supply
US9997994B1 (en) Totem-pole power factor corrector and current-sampling unit thereof
CN217445265U (zh) 一种电流极限控制电路
WO2019076012A1 (zh) 一种充电装置及终端
CN105245112A (zh) 一种自适应高精度恒流电路及开关电源
US20230378882A1 (en) Systems and methods for detection and control related to charging
TWI678605B (zh) 電源適配器
TW202349837A (zh) 快速放電之電源供應器
CN212231336U (zh) 一种开关电源、电源适配器及充电器
CN117013495A (zh) 过流保护电路和相关的电源适配器及电子设备
CN209571962U (zh) 一种双绕组副边反馈开关电源
TW202119741A (zh) 返馳式電源轉換器及其主動箝位緩衝器與過充保護電路
US20230124433A1 (en) Power supply circuit
CN113206494B (zh) 一种输入电压的检测电路和充电器
US9467055B2 (en) Method of forming a power supply controller and structure therefor
CN216530712U (zh) 低压直流电力设备冗余供电控制电路
CN213817222U (zh) 一种过压保护电路、开关电源及电器设备
CN220773159U (zh) 一种电压检测电路及系统
CN214900684U (zh) 反激式交流-直流电压转换电路及其控制芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021771740

Country of ref document: EP

Effective date: 20211216

NENP Non-entry into the national phase

Ref country code: DE