[go: up one dir, main page]

WO2021142727A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2021142727A1
WO2021142727A1 PCT/CN2020/072534 CN2020072534W WO2021142727A1 WO 2021142727 A1 WO2021142727 A1 WO 2021142727A1 CN 2020072534 W CN2020072534 W CN 2020072534W WO 2021142727 A1 WO2021142727 A1 WO 2021142727A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission
line
rsrp
path loss
Prior art date
Application number
PCT/CN2020/072534
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/072534 priority Critical patent/WO2021142727A1/zh
Priority to CN202080068940.8A priority patent/CN114451000B/zh
Publication of WO2021142727A1 publication Critical patent/WO2021142727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • the side-travel power control mechanism is introduced. If the terminal performs power control based on the side-travel link path loss, the terminal needs to estimate the side-travel chain Road loss.
  • the side link path loss estimated by the transmitting end terminal is estimated based on the received power (Reference Signal Received Power, RSRP) fed back by the receiving end terminal.
  • RSRP Reference Signal Received Power
  • the sideline RSRP fed back by the receiving end terminal is measured by the receiving end terminal according to the sideline reference signal sent by the transmitting end terminal.
  • the embodiments of the present application provide a data transmission method and device.
  • an embodiment of the present application provides a data transmission method, which is applied to a first terminal device, and the method includes:
  • the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmission of the first terminal device Power, and when the priority of the uplink transmission is higher than the priority of the side-line transmission, reduce the transmit power of the side-line transmission, and send instruction information to the second terminal device, and the instruction information is used
  • the instruction information is used For determining not to use the sideline reference signal of the first time unit for RSRP measurement, or for determining not to perform layer 3 filtering on the sideline RSRP obtained by performing the RSRP measurement on the sideline reference signal of the first time unit.
  • an embodiment of the present application provides a data transmission method, which is applied to a second terminal device, and the method includes:
  • the side-line RSRP obtained by the RSRP measurement of the signal is subjected to layer 3 filtering;
  • the sending end terminal sends indication information to the receiving end terminal for the receiving end terminal to determine not to perform RSRP measurement, or to determine not to perform layer 3 filtering, which prevents the receiving end terminal from sending to the sending end terminal that cannot accurately estimate the sideline chain The side-line RSRP of the path loss, thereby avoiding the inaccurate side-link path loss estimated by the transmitting end terminal, and finally avoiding the inaccurate power control of the transmitting end terminal.
  • an embodiment of the present application provides a data transmission method, which is applied to a terminal device, and the method includes:
  • the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmit power of the terminal device, and In the case where the priority of the uplink transmission is higher than the priority of the side row transmission, the side row transmission is abandoned on the first time unit, and the uplink transmission is performed.
  • the sending end terminal abandons the sideline transmission, so that the receiving end terminal cannot receive the sideline reference signal, and the receiving end terminal does not have the sideline reference signal for RSRP.
  • the measurement prevents the receiving end terminal from sending the side uplink RSRP that cannot accurately estimate the side uplink path loss to the transmitting end terminal, thereby avoiding the inaccurate side uplink path loss estimation by the transmitting end terminal, and finally avoiding the sending end terminal from performing Inaccurate power control.
  • an embodiment of the present application provides a data transmission method, which is applied to a first terminal device, and the method includes:
  • the first terminal device needs to perform power control according to the side-line link path loss and the downlink path loss, and when the second terminal device measures the side-line RSRP, the first terminal device Second, the layer 3 filter coefficient of the terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value, which means that layer 3 filtering is not performed.
  • an embodiment of the present application provides a data transmission method, which is applied to a second terminal device, and the method includes:
  • the side-line RSRP is sent to the first terminal device.
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value, which means that no layering is performed. 3 Filtering.
  • the side line RSRP sent by the receiving end terminal to the transmitting end terminal is not filtered by layer 3 to avoid In this way, the receiving end terminal sends the side uplink RSRP that cannot accurately estimate the side uplink path loss to the transmitting end terminal, thereby avoiding the inaccurate side uplink path loss estimation by the transmitting end terminal, and finally avoiding the inaccurate side uplink path loss of the transmitting end terminal. Power Control.
  • an embodiment of the present application provides a data transmission device, which is applied to a first terminal device, and the device includes:
  • the power adjustment unit is configured to, when the side-line transmission and the uplink transmission of the first terminal device overlap in the first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the first time unit
  • the maximum transmit power of a terminal device and in the case where the priority of the uplink transmission is higher than the priority of the side-line transmission, reduce the transmit power of the side-line transmission;
  • the communication unit is configured to send instruction information to the second terminal device, where the instruction information is used to determine not to use the sideline reference signal of the first time unit for RSRP measurement, or to determine not to use the first time unit
  • the sideline RSRP obtained by performing the RSRP measurement on the sideline reference signal is subjected to layer 3 filtering.
  • an embodiment of the present application provides a data transmission device, which is applied to a second terminal device, and the device includes:
  • the communication unit is configured to receive instruction information sent by the first terminal device, where the instruction information is used to determine not to use the sideline reference signal of the first time unit for RSRP measurement, or to determine not to use the first time Layer 3 filtering is performed on the side-line RSRP obtained by performing RSRP measurement on the side-line reference signal of the unit;
  • the measurement unit is configured to abandon using the sideline reference signal of the first time unit to perform RSRP measurement based on the indication information, or use the sideline reference signal of the first time unit to perform RSRP measurement to obtain a sideline RSRP,
  • the side row RSRP does not perform layer 3 filtering.
  • an embodiment of the present application provides a data transmission device, which is applied to a terminal device, and the device includes:
  • the communication unit is configured to, when the side-line transmission and the uplink transmission of the terminal device overlap in the first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum of the terminal device If the transmission power and the priority of the uplink transmission are higher than the priority of the side row transmission, the side row transmission is abandoned on the first time unit and the uplink transmission is performed.
  • an embodiment of the present application provides a data transmission device, which is applied to a first terminal device, and the device includes:
  • the communication unit is configured to receive the side-line RSRP sent by the second terminal device, the first terminal device needs to perform power control according to the side-line link path loss and the downlink path loss, and the second terminal device measures the side-line RSRP
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value, it means that layer 3 filtering is not performed.
  • an embodiment of the present application provides a data transmission device, which is applied to a second terminal device, and the device includes:
  • the communication unit is configured to send the sideline RSRP to the first terminal device.
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is fixed The value indicates that no layer 3 filtering is performed.
  • an embodiment of the present application provides a terminal device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are configured by the above Executed by a processor, and the foregoing program includes instructions for executing steps in the method described in any one of the first aspect to the fifth aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the above-mentioned computer-readable storage medium stores a computer program for electronic data exchange.
  • the above-mentioned computer program causes the computer to execute part or all of the steps described in the method described in any one of the first aspect to the fifth aspect of the embodiments of the present application.
  • the embodiments of the present application provide a computer program product, wherein the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the above-mentioned computer program is operable to cause a computer to execute the computer program as described in this application. Part or all of the steps described in the method described in any one of the first aspect to the fifth aspect of the embodiment.
  • the computer program product may be a software installation package.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another network architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a unicast transmission provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a multicast transmission provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a broadcast transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of data transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the terminal device in this application is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed on In the air (e.g. airplanes, balloons, satellites, etc.).
  • the terminal device can be a mobile phone, a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control) terminal device.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the terminal device may also be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a computer device, or other processing device connected to a wireless modem.
  • terminal equipment can be called different names, such as: terminal equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Device, user agent or user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA), Terminal equipment in 5G network or future evolution network, etc.
  • terminal equipment access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Device, user agent or user device, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA), Terminal equipment in 5G network or future evolution network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in this application is a device deployed on a wireless access network to provide wireless communication functions.
  • the network device may be a radio access network (Radio Access Network, RAN) device on the access network side of a cellular network.
  • the so-called RAN device is a device that connects terminal devices to the wireless network, including but not limited to: Evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (Base Station Controller, BSC), base transceiver station (Base Transceiver) Station, BTS), home base station (for example, Home evolved Node B, or Home Node B, HNB), base band unit (BBU), management entity (Mobility Management Entity, MME); for another example, network equipment can also be It is a node device in a wireless local area network (Wireless Local Area Network, WLAN), such as an access controller (AC), a gateway, or a WIFI access point (Access Point,
  • the first time unit in this application is a time slot, one or a group of time domain coincidences, and so on.
  • Device-to-device communication is based on a device-to-device (D2D) side link (Sidelink, SL) transmission technology, which has higher spectrum efficiency and lower transmission delay.
  • D2D device-to-device
  • Sidelink, SL side link
  • the Internet of Vehicles system adopts terminal-to-terminal direct communication, and two transmission modes are defined in 3GPP:
  • the first mode As shown in Figure 1, the transmission resources of the terminal are allocated by the network equipment, and the terminal transmits data on the side link according to the resources allocated by the network equipment; the network equipment can allocate a single transmission resource for the terminal , It can also allocate semi-static transmission resources to the terminal.
  • the second mode As shown in Figure 2, the terminal selects a resource in the resource pool to transmit data on the side link.
  • LTE-V2X Long Term Evaluation (LTE)-V2X
  • NR-V2X unicast and multicast transmission methods are introduced.
  • unicast transmission there is only one terminal at the receiving end. As shown in Fig. 3, unicast transmission is performed between terminal 1 and terminal 2.
  • the receiving end terminal is all terminals in a communication group, or all terminals within a certain transmission distance, as shown in Figure 4, terminal 1, terminal 2, terminal 3, and terminal 4 form a communication group, where The terminal 1 sends data, and the other terminals in the group are all receiving end terminals.
  • the receiving end terminal is any terminal, as shown in Fig. 5, where terminal 1 is the transmitting end terminal, and the other surrounding terminals are all receiving end terminals.
  • a side-line feedback channel is introduced.
  • the sender terminal sends sideline data to the receiver terminal (such as Physical Sidelink Control Channel (PSCCH), Physical Sidelink Shared Channel (PSSCH), etc.),
  • the receiving end terminal sends Hybrid Automatic Repeat reQuest (HARQ) feedback information to the sending end terminal, and the sending end terminal determines whether retransmission is required according to the feedback information of the receiving end terminal.
  • HARQ feedback information is carried in a side-line feedback channel, such as a physical side-link feedback channel (PSFCH).
  • PSFCH physical side-link feedback channel
  • the side-line feedback can be activated or deactivated through pre-configuration information or network configuration information. If the side-line feedback is activated, the receiving end terminal receives the side line data sent by the sending end terminal, and feeds back HARQ ACK or NACK to the sending end according to the detection result , The sending end terminal decides to send retransmission data or new data according to the feedback information of the receiving end; if the sideline feedback is deactivated, the receiving end terminal does not need to send feedback information.
  • the sending end terminal usually sends data by blind retransmission, for example, The sending end terminal repeatedly sends K times for each side row data, K ⁇ 1.
  • a side-travel power control mechanism is introduced.
  • the terminal When the terminal is located outside the coverage area of the cell, the terminal needs to perform power control based on the side-travel link path loss.
  • the terminal When the terminal is located within the coverage area of the cell, the terminal needs to perform power control based on the side-travel Link path loss and downlink path loss perform power control.
  • the terminal In the cell, the terminal needs to perform power control based on the downlink path loss and the side-link path loss when sending side-line data, specifically:
  • P PSSCH min(P CMAX , P MAX, CBR , min(P PSSCH, D , P PSSCH, SL )) [dBm]
  • P PSSCH represents the transmission power of the side link after power control
  • P CMAX represents the maximum transmission power of the terminal
  • P MAX represents the maximum transmission power of the terminal
  • CBR represents the maximum channel busy ratio (CBR) configured by the network equipment based on measurement P PSSCH
  • D represents the transmission power determined based on the downlink path loss
  • P PSSCH SL represents the transmission power determined based on the side link path loss.
  • the network device can configure the terminal to perform power control based on only the downlink path loss, or only perform power control based on the side link path loss, or perform power control based on the side link path loss and the downlink path loss.
  • the terminal performs power control based on the side-link path loss, the terminal needs to estimate the side-link path loss.
  • Ways to estimate the side-line link path loss are: the transmitting terminal sends the side-line data and the side-line reference signal; the receiving-end terminal measures according to the side-line reference signal to obtain the side-line RSRP; the receiving-end terminal feeds back the side-line RSRP to the transmitter
  • the end terminal or the receiving end terminal performs layer 3 filtering on the measured RSRP, and feeds the filtered RSRP back to the transmitting end terminal; the transmitting end terminal estimates the side uplink path loss based on the transmission power and the side RSRP fed back by the receiving end .
  • the receiving end terminal performs layer 3 filtering according to the first formula:
  • M n represents the RSRP obtained by the latest measurement
  • F n represents the RSRP obtained after layer 3 filtering
  • F n-1 represents the RSRP obtained after the last layer 3 filtering
  • k is the layer 3 filter coefficient.
  • the transmitting end terminal estimates the side uplink path loss according to the side line RSRP fed back by the receiving end terminal. If the transmitting power of the transmitting end terminal remains unchanged, the side line RSRP fed back by the receiving end terminal is equal to the transmitting power of the transmitting end terminal minus the side Link path loss. It can be seen that filtering the RSRP is actually smoothing filtering the path loss of the side link. Since the transmit power of the transmitter terminal is unchanged, when the receiver terminal feeds back the sideline RSRP, the transmitter terminal can accurately determine the size of the sideline link path loss based on the transmit power and the sideline RSRP fed back by the receiver terminal.
  • the receiving end terminal will filter the side line RSRP, which cannot reflect the change of the side line link path loss. In this case, the receiving end terminal will feed back the side line RSRP to the transmitting end terminal, and the transmitting end The terminal cannot accurately determine the path loss of the side link.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the application, including the following steps:
  • Step 601 When the side-line transmission and the uplink transmission of the terminal device overlap in the first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmit power of the terminal device, and In a case where the priority of the uplink transmission is higher than the priority of the side row transmission, the terminal device abandons the side row transmission on the first time unit and performs the uplink transmission.
  • the overlapping of side-line transmission and uplink transmission of the terminal device on the first time unit includes that the terminal device needs to perform uplink transmission and side-line transmission on the first time unit.
  • the transmit power of the side line transmission of the terminal device in the first time unit is zero.
  • the transmitting terminal uses transmission power P1 to transmit PSSCH1, PSSCH2, and PSSCH3, the receiving terminal sends PSSCH10 to feed back the side RSRP, and the transmitting terminal receives the side RSRP feedback from the receiving terminal.
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4, PSSCH5, PSSCH6, and the receiving end terminal sends PSSCH11
  • the transmitting end terminal uses the transmit power P2 to send PSSCH4,
  • the priority of PUSCH is higher than the priority of PSSCH8, and the sender terminal simultaneously sends the transmission power of PUSCH and PSSCH8. It is greater than the maximum transmission power of the transmitting end terminal. In this case, the transmitting end terminal does not send PSSCH8 but only PUSCH. At this time, it will not cause the transmit power of the side line transmission of the transmitting end terminal to change. Therefore, the receiving end terminal is receiving PSSCH7 In the case of PSSCH9, it is still possible to measure RSRP according to the Demodulation Reference Signal (DMRS) on the PSSCH, and perform layer 3 filtering on the measured RSRP, which prevents the receiving terminal from sending inaccurate RSRP to the transmitting terminal.
  • DMRS Demodulation Reference Signal
  • the sending end terminal abandons the sideline transmission, so that the receiving end terminal cannot receive the sideline reference signal, and the receiving end terminal does not have the sideline reference signal for RSRP.
  • the measurement prevents the receiving end terminal from sending the side uplink RSRP that cannot accurately estimate the side uplink path loss to the transmitting end terminal, thereby avoiding the inaccurate side uplink path loss estimation by the transmitting end terminal, and finally avoiding the sending end terminal from performing Inaccurate power control.
  • FIG. 8 is a schematic flowchart of a data transmission method provided by an embodiment of the application, including the following steps:
  • Step 801 When the side-line transmission and the uplink transmission of the first terminal device overlap in the first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmit power of the terminal device , And in the case that the priority of the uplink transmission is higher than the priority of the side-line transmission, the first terminal device reduces the transmit power of the side-line transmission.
  • Step 802 The first terminal device sends instruction information to the second terminal device, where the instruction information is used to determine not to use the sideline reference signal of the first time unit for RSRP measurement, or to determine not to use the first time unit.
  • the side-line RSRP obtained by performing the RSRP measurement on the side-line reference signal of the time unit is subjected to layer 3 filtering.
  • the second terminal device receives the instruction information sent by the first terminal device.
  • Step 803 The second terminal device abandons using the sideline reference signal of the first time unit to perform RSRP measurement, or uses the sideline reference signal of the first time unit to perform RSRP measurement to obtain a sideline RSRP.
  • RSRP does not perform layer 3 filtering.
  • reducing the transmit power of the side-line transmission by the first terminal device and sending the instruction information from the first terminal device to the second terminal device may be executed in parallel or serially.
  • the overlapping of side-line transmission and uplink transmission of the terminal device on the first time unit includes that the terminal device needs to perform uplink transmission and side-line transmission on the first time unit.
  • the indication information is carried in Sidelink Control Information (SCI).
  • SCI Sidelink Control Information
  • two-level SCI transmission is supported, the first-level SCI is carried in the PSCCH, the second-order SCI is in the resources of the PSSCH, and the indication information is carried in the first-order SCI or the second-order SCI.
  • the indication information is carried in a Media Access Control (MAC) control element (CE), and the MAC CE is carried in the side row data carried by the PSSCH.
  • MAC Media Access Control
  • CE Media Access Control
  • the indication information is used to indicate at least one of the following:
  • the indication information is used to indicate that the transmit power of the side-line transmission performed by the first terminal device on the first time unit has changed, the indication information is used to determine not to use the first time unit.
  • RSRP measurement is performed on the side line reference signal of the unit, or the indication information is used to determine not to perform layer 3 filtering on the side line RSRP obtained by performing the RSRP measurement on the side line reference signal of the first time unit;
  • the indication information is used to indicate that the side-line reference signal of the first time unit is not used for RSRP measurement, the indication information is used to determine that the side-line reference signal that uses the first time unit is not to be subjected to RSRP measurement.
  • the side row RSRP performs layer 3 filtering.
  • the indication information includes a first indication bit and/or a second indication bit.
  • the value of the first indicator bit is used to indicate that the transmit power of the sideline transmission performed by the first terminal device on the first time unit has changed.
  • the number of bits occupied by the first indicator bit may be one or more. For example, the first indicator bit occupies 1 bit, and the value of this bit is 1 indicating that the transmission power of the side line transmission changes.
  • the value of the second indicator bit is used to indicate whether to use the sideline reference signal of the first time unit for RSRP measurement.
  • the number of bits occupied by the second indicator bit may be one or more. For example, the second indicator bit occupies 1 bit, the value of this bit is 1 indicates that the sideline reference information is not used for RSRP measurement, and the value of this bit is 0 indicates that the sideline reference information is used for RSRP measurement.
  • the sum of the transmit power of the uplink transmission and the adjusted transmit power of the side line transmission is less than or equal to the maximum transmit power of the terminal device.
  • the sending end terminal when the sending end terminal wants to send PSSCH8, the sending end terminal also needs to send uplink data PUSCH.
  • the priority of PUSCH is higher than that of PSSCH8, and the sending end terminal sends both PUSCH and PSSCH8.
  • the transmission power is greater than the maximum transmission power of the transmitting terminal.
  • the transmitting terminal reduces the transmission power of PSSCH8 until the sum of the transmitting power of the uplink transmission of the transmitting terminal and the transmission power of the sideline transmission is less than or equal to the transmitting power of the transmitting terminal.
  • the transmitting terminal uses the adjusted transmission power of the side-line transmission to transmit PSSCH8 and the upstream transmission power to transmit the PUSCH, and sends instruction information to the receiving terminal, for example, the information field is included in the second-order SCI, The information field is 1 bit and has a value of 1, indicating that the receiving end terminal does not use the sideline reference signal transmitted by the time unit to measure RSRP, which prevents the receiving end terminal from sending inaccurate RSRP to the sending end terminal.
  • the sending end terminal sends indication information to the receiving end terminal for the receiving end terminal to determine not to perform RSRP measurement, or to determine not to perform layer 3 filtering, which prevents the receiving end terminal from sending to the sending end terminal that cannot accurately estimate the sideline chain The side-line RSRP of the path loss, thereby avoiding the inaccurate side-link path loss estimated by the transmitting end terminal, and finally avoiding the inaccurate power control of the transmitting end terminal.
  • FIG. 9 is a schematic flowchart of a data transmission method provided by an embodiment of the application, including the following steps:
  • Step 901 The second terminal device sends the sideline RSRP to the first terminal device.
  • the layer 3 filter coefficient of the second terminal device is a fixed value
  • the layer 3 filter coefficient A fixed value means that no layer 3 filtering is performed.
  • the first terminal device receives the sideline RSRP sent by the second terminal device.
  • the first terminal device needs to perform power control based on the side link path loss and the downlink path loss.
  • each time the second terminal device obtains the side-line RSRP through measurement it sends the measured side-line RSRP to the first terminal device.
  • the fixed value may be 0 or other values, for example.
  • the side transmission and the uplink transmission of the first terminal device share a carrier.
  • the method further includes:
  • the second terminal device determines that the first terminal device needs to perform power control according to the side link path loss and the downlink path loss.
  • the determining that the first terminal device needs to perform power control according to the side link path loss and the downlink path loss includes: determining, according to the indication information, that the first terminal device needs to perform power control according to the side link path loss. Loss and downlink path loss for power control.
  • the indication information is sent by the first terminal device, or is carried in configuration information sent by the network device, and the indication information is used to indicate that the first terminal device needs to follow the side link path. Loss and downlink path loss for power control.
  • the indication information is sent by the first terminal device, the indication information is carried in the SCI sent by the first terminal device to the second terminal device, or the indication information is carried In the MAC CE sent by the first terminal device to the second terminal device, the MAC CE is carried in side row data, or the indication information is carried by the first terminal device to the second terminal.
  • PC5-Radio Resource Control (RRC) information sent by the device.
  • NR-V2X two-level SCI transmission is supported, the first-order SCI is carried in the PSCCH, the second-order SCI is in the resources of the PSSCH, and the indication information is carried in the first-order SCI or the second-order SCI.
  • the layer 3 filter coefficients are specified by the protocol, configured by the network device, or customized by the second terminal device.
  • the side line RSRP sent by the receiving end terminal to the transmitting end terminal is not filtered by layer 3 to avoid In this way, the receiving end terminal sends the side uplink RSRP that cannot accurately estimate the side uplink path loss to the transmitting end terminal, thereby avoiding the inaccurate side uplink path loss estimation by the transmitting end terminal, and finally avoiding the inaccurate side uplink path loss of the transmitting end terminal. Power Control.
  • the terminal device includes: one or more processors, one or more memories, one or more communication interfaces, and one or more Programs; the one or more programs are stored in the memory and are configured to be executed by the one or more processors.
  • the program includes instructions for performing the following steps:
  • the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmit power of the terminal device, and In a case where the priority of the uplink transmission is higher than the priority of the side row transmission, the side row transmission is abandoned on the first time unit, and the uplink transmission is performed.
  • the terminal device shown in FIG. 10 is the first terminal device, and the program includes instructions for executing the following steps:
  • the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the maximum transmission of the first terminal device Power, and when the priority of the uplink transmission is higher than the priority of the side-line transmission, reduce the transmit power of the side-line transmission, and send instruction information to the second terminal device, and the instruction information is used
  • the instruction information is used For determining not to use the sideline reference signal of the first time unit for RSRP measurement, or for determining not to perform layer 3 filtering on the sideline RSRP obtained by performing the RSRP measurement on the sideline reference signal of the first time unit.
  • the indication information is used to indicate at least one of the following:
  • the sum of the transmit power of the uplink transmission and the adjusted transmit power of the side line transmission is less than or equal to the maximum transmit power of the terminal device.
  • the terminal device shown in FIG. 10 is the second terminal device, and the program includes instructions for executing the following steps:
  • the side-line RSRP obtained by the RSRP measurement of the signal is subjected to layer 3 filtering;
  • the indication information is used to indicate at least one of the following:
  • the terminal device shown in FIG. 10 is the first terminal device, and the program includes instructions for executing the following steps:
  • the first terminal device needs to perform power control according to the side-line link path loss and the downlink path loss, and when the second terminal device measures the side-line RSRP, the first terminal device Second, the layer 3 filter coefficient of the terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value, which means that layer 3 filtering is not performed.
  • the side transmission and the uplink transmission of the first terminal device share a carrier.
  • the program includes instructions that are further used to perform the following steps:
  • the program in terms of sending instruction information to the second terminal device, includes instructions specifically for executing the following steps:
  • the terminal device shown in FIG. 10 is the second terminal device, and the program includes instructions for executing the following steps:
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value Indicates that no layer 3 filtering is performed.
  • the side transmission and the uplink transmission of the first terminal device share a carrier.
  • the program includes instructions that are further used to perform the following steps:
  • the first terminal device needs to perform power control according to the side link path loss and the downlink path loss.
  • the program in terms of determining that the first terminal device needs to perform power control based on the side link path loss and the downlink path loss, includes instructions specifically configured to perform the following steps:
  • the instruction information is sent by the first terminal device or carried in the configuration information sent by the network device, and the instruction information is used to indicate that the first terminal device needs to follow the side link Power control for path loss and downlink path loss.
  • the layer 3 filter coefficient is specified by the protocol, configured by the network device, or customized by the second terminal device.
  • FIG. 11 is a data transmission device provided by an embodiment of the present application, which is applied to the terminal device in method embodiment 1.
  • the device includes:
  • the communication unit 1101 is configured to, when the side-line transmission and the uplink transmission of the terminal device overlap in the first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than that of the terminal device In the case where the maximum transmission power and the priority of the uplink transmission are higher than the priority of the side row transmission, the side row transmission is abandoned on the first time unit and the uplink transmission is performed.
  • the communication unit 1101 may be implemented through a communication interface.
  • FIG. 12 is a data transmission device provided by an embodiment of the present application, which is applied to the first terminal device in method embodiment 2.
  • the device includes:
  • the power adjustment unit 1201 is configured to, when the side-line transmission and the uplink transmission of the first terminal device overlap in a first time unit, the sum of the transmit power of the side-line transmission and the transmit power of the uplink transmission is greater than the The maximum transmit power of the first terminal device, and in the case where the priority of the uplink transmission is higher than the priority of the sideline transmission, lower the transmit power of the sideline transmission;
  • the communication unit 1202 is configured to send instruction information to the second terminal device, where the instruction information is used to determine not to use the sideline reference signal of the first time unit for reference signal received power RSRP measurement, or to determine not to use the reference signal.
  • the side-line RSRP obtained by performing the RSRP measurement on the side-line reference signal of the first time unit is subjected to layer 3 filtering.
  • the indication information is used to indicate at least one of the following:
  • the sum of the transmit power of the uplink transmission and the adjusted transmit power of the side line transmission is less than or equal to the maximum transmit power of the terminal device.
  • the power adjustment unit 1201 may be implemented by a processor, and the communication unit 1202 may be implemented by a communication interface.
  • FIG. 13 is a data transmission device provided by an embodiment of the present application, which is applied to the second terminal device in method embodiment 2.
  • the device includes:
  • the communication unit 1301 is configured to receive instruction information sent by the first terminal device, where the instruction information is used to determine not to use the sideline reference signal of the first time unit for reference signal received power RSRP measurement, or to determine that the sideline reference signal of the first time unit is not used. Layer 3 filtering is performed on the side-line RSRP obtained by performing the RSRP measurement on the side-line reference signal of the first time unit;
  • the measuring unit 1302 is configured to, based on the indication information, abandon using the sideline reference signal of the first time unit to perform RSRP measurement, or use the sideline reference signal of the first time unit to perform RSRP measurement to obtain a sideline RSRP ,
  • the side row RSRP does not perform layer 3 filtering.
  • the indication information is used to indicate at least one of the following:
  • the measurement unit 1302 may be implemented by a processor, and the communication unit 1301 may be implemented by a communication interface.
  • FIG. 14 is a data transmission device provided by an embodiment of the present application, which is applied to the first terminal device in method embodiment 3.
  • the device includes:
  • the communication unit 1401 is configured to receive the side-line RSRP sent by the second terminal device.
  • the first terminal device needs to perform power control according to the side-line link path loss and the downlink path loss, and the second terminal device measures the side-line path loss.
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is a fixed value, which means that layer 3 filtering is not performed.
  • the side transmission and the uplink transmission of the first terminal device share a carrier.
  • the communication unit 1401 is further configured to send instruction information to the second terminal device, where the instruction information is used to indicate that the first terminal device needs to be based on the side link path loss and downlink path loss.
  • the path loss is used for power control.
  • the communication unit 1401 is specifically configured to:
  • the communication unit 1401 may be implemented through a communication interface.
  • FIG. 15 is a data transmission device provided by an embodiment of the present application, which is applied to the second terminal device in method embodiment 3.
  • the device includes:
  • the communication unit 1501 is configured to send a sideline RSRP to a first terminal device.
  • the layer 3 filter coefficient of the second terminal device is a fixed value, and the layer 3 filter coefficient is The fixed value indicates that no layer 3 filtering is performed.
  • the side transmission and the uplink transmission of the first terminal device share a carrier.
  • the device further includes:
  • the determining unit 1502 is configured to determine that the first terminal device needs to perform power control according to the side link path loss and the downlink path loss.
  • the determining unit 1502 is specifically configured to:
  • the instruction information is sent by the first terminal device or carried in the configuration information sent by the network device, and the instruction information is used to indicate that the first terminal device needs to follow the side link Power control for path loss and downlink path loss.
  • the layer 3 filter coefficient is specified by the protocol, configured by the network device, or customized by the second terminal device.
  • the determining unit 1502 may be implemented by a processor, and the communication unit 1501 may be implemented by a communication interface.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute any method as described in the above method embodiments, and the above computer includes a user equipment.
  • An embodiment of the present application further provides a computer program product, wherein the above-mentioned computer program product includes computer program instructions, and the computer program instructions cause a computer to execute any method as recorded in the above-mentioned method embodiment.
  • the computer program product may be a software installation package, and the above-mentioned computer includes user equipment.
  • An embodiment of the present application further provides a chip, where the chip includes computer program instructions that cause a computer to execute any method as described in the foregoing method embodiments, and the foregoing computer includes user equipment.
  • An embodiment of the present application further provides a computer program, wherein the computer program causes a computer to execute any method as described in the above method embodiments, and the above computer includes user equipment.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the foregoing methods of the various embodiments of the present application.
  • the aforementioned memory includes: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disc, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法及装置,在侧行传输和上行传输重叠的情况下发送端终端向接收端终端发送指示信息,用于接收端终端确定不进行RSRP测量,或者确定不进行层3滤波;或者在侧行传输和上行传输重叠的情况下,发送端终端放弃侧行传输;或者在发送端终端需要根据侧行链路路损和下行链路路损进行功率控制的情况下,接收端终端给发送端终端发送的侧行RSRP是未经过层3滤波的。采用本申请实施例避免了接收端终端给发送端终端发送不准确的RSRP,进而避免了发送端终端估计不准确的侧行链路路损。

Description

数据传输方法及装置 技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法及装置。
背景技术
在新空口(New Radio,NR)-车辆到其他设备(Vehicle to Everything,V2X)中,引入了侧行功率控制机制,如果终端根据侧行链路路损进行功率控制,终端需要估计侧行链路路损。发送端终端估计侧行链路路损是根据接收端终端反馈的侧行参考信号接收功率(Reference Signal Received Power,RSRP)估计的。接收端终端反馈的侧行RSRP是接收端终端根据发送端终端发送的侧行参考信号进行测量得到的。
发明内容
本申请实施例提供了一种数据传输方法及装置。
第一方面,本申请实施例提供一种数据传输方法,应用于第一终端设备,方法包括:
当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率,以及向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
第二方面,本申请实施例提供一种数据传输方法,应用于第二终端设备,方法包括:
接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
可以看出,发送端终端向接收端终端发送指示信息,用于接收端终端确定不进行RSRP测量,或者确定不进行层3滤波,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
第三方面,本申请实施例提供一种数据传输方法,应用于终端设备,方法包括:
当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
可以看出,在侧行传输和上行传输重叠的情况下,发送端终端放弃侧行传输,以使得接收端终端接收不到侧行参考信号,进而使得接收端终端没有侧行参考信号用于RSRP测量,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
第四方面,本申请实施例提供一种数据传输方法,应用于第一终端设备,方法包括:
接收第二终端设备发送的侧行RSRP,所述第一终端设备需要根据侧行链路路损和下行 链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
第五方面,本申请实施例提供一种数据传输方法,应用于第二终端设备,方法包括:
向第一终端设备发送侧行RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
可以看出,在发送端终端需要根据侧行链路路损和下行链路路损进行功率控制的情况下,接收端终端给发送端终端发送的侧行RSRP是未经过层3滤波的,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
第六方面,本申请实施例提供一种数据传输装置,应用于第一终端设备,所述装置包括:
功率调整单元,用于当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率;
通信单元,用于向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
第七方面,本申请实施例提供一种数据传输装置,应用于第二终端设备,所述装置包括:
通信单元,用于接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
测量单元,用于基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
第八方面,本申请实施例提供一种数据传输装置,应用于终端设备,所述装置包括:
通信单元,用于当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
第九方面,本申请实施例提供一种数据传输装置,应用于第一终端设备,所述装置包括:
通信单元,用于接收第二终端设备发送的侧行RSRP,所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
第十方面,本申请实施例提供一种数据传输装置,应用于第二终端设备,所述装置包括:
通信单元,用于向第一终端设备发送侧行RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
第十一方面,本申请实施例提供一种终端设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面至第五方面任一方面所述的方 法中的步骤的指令。
第十二方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序。其中,上述计算机程序使得计算机执行如本申请实施例第一方面至第五方面任一方面所述的方法中所描述的部分或全部步骤。
第十三方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面至第五方面任一方面所述的方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种网络构架的示意图;
图2是本申请实施例提供的另一种网络构架的示意图;
图3是本申请实施例提供的一种单播传输的示意图;
图4是本申请实施例提供的一种组播传输的示意图;
图5是本申请实施例提供的一种广播传输的示意图;
图6是本申请实施例提供的一种数据传输方法的流程示意图;
图7是本申请实施例提供的一种数据传输的示意图;
图8是本申请实施例提供的另一种数据传输方法的流程示意图;
图9是本申请实施例提供的另一种数据传输方法的流程示意图;
图10是本申请实施例提供的一种终端设备的结构示意图;
图11是本申请实施例提供的一种数据传输装置的结构示意图;
图12是本申请实施例提供的另一种数据传输装置的结构示意图;
图13是本申请实施例提供的另一种数据传输装置的结构示意图;
图14是本申请实施例提供的另一种数据传输装置的结构示意图;
图15是本申请实施例提供的另一种数据传输装置的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本申请中的终端设备是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持、可穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球、卫星上等)。该终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、智能家庭(smart home)中的无线终端等。终端设备也可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算机设备或连接到无线调制解调器的其他处理设备等。在不同的网络中终端设备可以叫做不同的名称,例如:终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通 信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G网络或未来演进网络中的终端设备等。
本申请中的网络设备是一种部署在无线接入网用以提供无线通信功能的设备。例如,网络设备可以是蜂窝网络中接入网侧的无线接入网(Radio Access Network,RAN)设备,所谓RAN设备即是一种将终端设备接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved Node B,或Home Node B,HNB)、基带单元(Base Band Unit,BBU)、管理实体(Mobility Management Entity,MME);再例如,网络设备也可以是无线局域网(Wireless Local Area Network,WLAN)中的节点设备,例如接入控制器(access controller,AC),网关,或WIFI接入点(Access Point,AP);再例如,网络设备也可以是NR系统中的传输节点或收发点(transmission reception point,TRP或TP)等。
本申请中的第一时间单元为时隙、一个或一组时域符合等。
设备到设备通信是基于终端到终端(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,具有更高的频谱效率以及更低的传输时延。车联网系统采用终端到终端直接通信的方式,在3GPP定义了两种传输模式:
第一模式:如图1所示,终端的传输资源是由网络设备分配的,终端根据网络设备分配的资源在侧行链路上进行数据的传输;网络设备可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
第二模式:如图2所示,终端在资源池中选取一个资源在侧行链路上进行数据的传输。
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在长期演进(Long Term Evaluation,LTE)-V2X中,支持广播传输方式。在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端,如图3中,终端1、终端2之间进行单播传输。对于组播传输,其接收端终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图4,终端1、终端2、终端3和终端4构成一个通信组,其中终端1发送数据,该组内的其他终端都是接收端终端。对于广播传输方式,其接收端终端是任意一个终端,如图5,其中终端1是发送端终端,其周围的其他终端都是接收端终端。
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。例如,对于单播传输,发送端终端向接收端终端发送侧行数据(如物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)、物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)等),接收端终端向发送端终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息,发送端终端根据接收端终端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)。
可以通过预配置信息或者网络配置信息激活或者去激活侧行反馈,如果侧行反馈被激活,则接收端终端接收发送端终端发送的侧行数据,并且根据检测结果向发送端反馈HARQ ACK或者NACK,发送端终端根据接收端的反馈信息决定发送重传数据或者新数据;如果侧行反馈被去激活,接收端终端不需要发送反馈信息,发送端终端通常采用盲重传的方式发送数据,例如,发送端终端对每个侧行数据重复发送K次,K≥1。
在NR-V2X中,引入了侧行功率控制机制,当终端位于小区覆盖范围外时,终端需要 根据侧行链路路损进行功率控制,当终端位于小区覆盖范围内时,终端需要根据侧行链路路损和下行链路路损进行功率控制。终端在小区内,在发送侧行数据时,需要根据下行链路路损和侧行链路路损进行功率控制,具体有:
P PSSCH=min(P CMAX,P MAX,CBR,min(P PSSCH,D,P PSSCH,SL))[dBm]
其中,P PSSCH表示功率控制后的侧行链路的发送功率,P CMAX表示终端的最大发送功率,P MAX,CBR表示网络设备配置的基于测量的信道繁忙率(Channel Busy Ratio,CBR)的最大的发送功率,P PSSCH,D表示基于下行链路路损确定的发送功率,P PSSCH,SL表示基于侧行链路路损确定的发送功率。
网络设备可以配置终端只基于下行链路路损进行功率控制,或者只基于侧行链路路损进行功率控制,或者基于侧行链路路损和下行链路路损进行功率控制。
如果终端基于侧行链路路损进行功率控制,终端需要估计侧行链路路损。估计侧行链路路损的方式有:发送端终端发送侧行数据和侧行参考信号;接收端终端根据侧行参考信号进行测量,得到侧行RSRP;接收端终端将侧行RSRP反馈给发送端终端,或者接收端终端对测量得到的RSRP进行层3滤波处理,将滤波后的RSRP反馈给发送端终端;发送端终端根据发送功率和接收端反馈的侧行RSRP估计侧行链路路损。
接收端终端根据第一公式进行层3滤波:
第一公式:F n=(1-a)×F n-1+aM n
其中,M n表示最新测量得到的RSRP,F n表示经过层3滤波后得到的RSRP,F n-1表示上一次经过层3滤波后得到的RSRP,a与层3滤波系数相关,例如a=1/2 (k/4)),k为层3滤波系数。
发送端终端根据接收端终端反馈的侧行RSRP估计侧行链路路损,如果发送端终端的发送功率保持不变,那么接收端终端反馈的侧行RSRP等于发送端终端的发送功率减去侧行链路路损。可见,对RSRP进行滤波,实际上是对侧行链路路损进行平滑滤波。由于发送端终端的发送功率不变,因此当接收端终端反馈侧行RSRP时,发送端终端根据发送功率和接收端终端反馈的侧行RSRP即可准确判断侧行链路路损大小。如果发送端终端的发送功率发送变化,接收端终端对侧行RSRP滤波,不能反映侧行链路路损的变化情况,该种情况下接收端终端将侧行RSRP反馈给发送端终端,发送端终端不能准确判断侧行链路路损大小。
方法实施例1
请参见图6,图6为本申请实施例提供的一种数据传输方法的流程示意图,包括以下步骤:
步骤601:当在第一时间单元上终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,所述终端设备在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
其中,在第一时间单元上终端设备的侧行传输和上行传输重叠包括在第一时间单元上终端设备需要进行上行传输和侧行传输。
其中,在第一时间单元上所述终端设备的侧行传输的发送功率为0。
举例来说,如图7所示,发送端终端使用发送功率P1发送PSSCH1、PSSCH2和PSSCH3,接收端终端向发送PSSCH10以反馈侧行RSRP,发送端终端接收到接收端终端反馈的侧行 RSRP后,根据侧行RSRP估计侧行链路路损,进而调整侧行链路的发送功率,如从P1调整到P2,发送端终端使用发送功率P2发送PSSCH4、PSSCH5、PSSCH6,接收端终端向发送PSSCH11以反馈侧行RSRP,发送端终端接收到接收端终端反馈的侧行RSRP后,根据侧行RSRP估计侧行链路路损,进而调整侧行链路的发送功率,如从P2调整到P3,发送端终端使用P3发送PSSCH7,当发送端终端要发送PSSCH8时,发送端终端还需要发送上行数据PUSCH,PUSCH的优先级高于PSSCH8的优先级,并且发送端终端同时发送PUSCH和PSSCH8的发送功率大于发送端终端的最大发送功率,该种情况下发送端终端不发送PSSCH8,只发送PUSCH,此时不会导致发送端终端的侧行传输的发送功率发生变化,因此接收端终端在接收到PSSCH7和PSSCH9时,依然可以根据PSSCH上的解调参考信号(Demodulation Reference Signal,DMRS)测量RSRP,以及对测量得到的RSRP进行层3滤波,避免了接收端终端给发送端终端发送不准确的RSRP。
可以看出,在侧行传输和上行传输重叠的情况下,发送端终端放弃侧行传输,以使得接收端终端接收不到侧行参考信号,进而使得接收端终端没有侧行参考信号用于RSRP测量,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
方法实施例2
请参见图8,图8为本申请实施例提供的一种数据传输方法的流程示意图,包括以下步骤:
步骤801:当在第一时间单元上第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,第一终端设备调低所述侧行传输的发送功率。
步骤802:第一终端设备向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
相应地,第二终端设备接收第一终端设备发送的所述指示信息。
步骤803:第二终端设备放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
需要说明的是,第一终端设备调低所述侧行传输的发送功率与第一终端设备向第二终端设备发送指示信息可以是并行执行的,也可以是串行执行的。
其中,在第一时间单元上终端设备的侧行传输和上行传输重叠包括在第一时间单元上终端设备需要进行上行传输和侧行传输。
其中,所述指示信息携带在侧行链路控制信息(Sidelink Control Information,SCI)中。在NR-V2X中,支持两阶SCI传输,第一阶SCI承载在PSCCH中,第二阶SCI在PSSCH的资源中,所述指示信息承载在第一阶SCI或者第二阶SCI中。
所述指示信息携带在媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)中,所述MAC CE承载在PSSCH承载的侧行数据中。
可选的,所述指示信息用于指示以下至少之一:
所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
其中,若所述指示信息用于指示所述第一终端设备在所述第一时间单元上进行的侧行 传输的发送功率发生变化,则所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者所述指示信息用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
若所述指示信息用于指示不使用所述第一时间单元的侧行参考信号进行RSRP测量,则所述指示信息用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
其中,所述指示信息包括第一指示位和/或第二指示位。所述第一指示位的值用于指示所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化。所述第一指示位占用的比特可以是1个或多个。例如,第一指示位占用1个比特,该比特的值为1表示侧行传输的发送功率发送变化。
所述第二指示位的值用于指示是否使用所述第一时间单元的侧行参考信号进行RSRP测量。所述第二指示位占用的比特可以是1个或多个。例如,第二指示位占用1个比特,该比特的值为1表示不使用侧行参考信息进行RSRP测量,该比特的值为0表示使用侧行参考信息进行RSRP测量。
可选的,所述上行传输的发送功率和调整后的所述侧行传输的发送功率的和小于或等于所述终端设备的最大发送功率。
举例来说,如图7所示,当发送端终端要发送PSSCH8时,发送端终端还需要发送上行数据PUSCH,PUSCH的优先级高于PSSCH8的优先级,并且发送端终端同时发送PUSCH和PSSCH8的发送功率大于发送端终端的最大发送功率,该种情况下发送端终端降低PSSCH8的发送功率,直至发送端终端的上行传输的发送功率和侧行传输的发送功率的和小于或等于发送端终端的最大发送功率,发送端终端以调整后的侧行传输的发送功率发送PSSCH8和以上行传输的发送功率发送PUSCH,以及向接收端终端发送指示信息,例如,在第二阶SCI中包括信息域,该信息域为1比特,取值为1,指示接收端终端不利用该时间单元传输的侧行参考信号测量RSRP,避免了接收端终端给发送端终端发送不准确的RSRP。
可以看出,发送端终端向接收端终端发送指示信息,用于接收端终端确定不进行RSRP测量,或者确定不进行层3滤波,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
方法实施例3
请参见图9,图9为本申请实施例提供的一种数据传输方法的流程示意图,包括以下步骤:
步骤901:第二终端设备向第一终端设备发送侧行RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
相应地,第一终端设备接收第二终端设备发送的所述侧行RSRP。第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
需要说明的是,在本申请实施例中,第二终端设备每次测量得到侧行RSRP后,都将测量得到的侧行RSRP发送给第一终端设备。
其中,该固定值例如可以是0或是其他值。
可选的,第一终端设备的侧行传输和上行传输共享载波。
可选的,在步骤901之前,所述方法还包括:
第二终端设备确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率 控制。
可选的,所述确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,包括:根据指示信息确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
可选的,所述指示信息是所述第一终端设备发送的,或者是网络设备发送的配置信息中携带的,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
可选的,若所述指示信息是所述第一终端设备发送的,则所述指示信息承载在所述第一终端设备向所述第二终端设备发送的SCI中,或者所述指示信息承载在所述第一终端设备向所述第二终端设备发送的MAC CE中,所述MAC CE携带在侧行数据中,或者所述指示信息承载在所述第一终端设备向所述第二终端设备发送的直连通信接口(PC5)-无线资源控制(Radio Resource Control,RRC)信息中。
其中,在NR-V2X中,支持两阶SCI传输,第一阶SCI承载在PSCCH中,第二阶SCI在PSSCH的资源中,所述指示信息承载在第一阶SCI或者第二阶SCI中。
可选的,所述层3滤波系数是协议规定的、网络设备配置的、或者所述第二终端设备自定义的。
可以看出,在发送端终端需要根据侧行链路路损和下行链路路损进行功率控制的情况下,接收端终端给发送端终端发送的侧行RSRP是未经过层3滤波的,避免了接收端终端给发送端终端发送不能准确估计侧行链路路损的侧行RSRP,进而避免了发送端终端估计不准确的侧行链路路损,最终避免了发送端终端进行不准确的功率控制。
请参见图10,图10是本申请实施例提供的一种终端设备,所述终端设备包括:一个或多个处理器、一个或多个存储器、一个或多个通信接口,以及一个或多个程序;所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行。
与方法实施例1对应的设备实施例1
所述程序包括用于执行以下步骤的指令:
当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例1所述的具体实现过程,在此不再叙述。
与方法实施例2对应的设备实施例2
图10所示的终端设备为第一终端设备,所述程序包括用于执行以下步骤的指令:
当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率,以及向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
在一个实现中,所述指示信息用于指示以下至少之一:
所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
在一个实现中,所述上行传输的发送功率和调整后的所述侧行传输的发送功率的和小于或等于所述终端设备的最大发送功率。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例2所述的具体实现过程,在此不再叙述。
与方法实施例2对应的设备实施例3
图10所示的终端设备为第二终端设备,所述程序包括用于执行以下步骤的指令:
接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
在一个实现中,所述指示信息用于指示以下至少之一:
所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发送变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例2所述的具体实现过程,在此不再叙述。
与方法实施例3对应的设备实施例4
图10所示的终端设备为第一终端设备,所述程序包括用于执行以下步骤的指令:
接收第二终端设备发送的侧行RSRP,所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
在一个实现中,所述第一终端设备的侧行传输和上行传输共享载波。
在一个实现中,所述程序包括还用于执行以下步骤的指令:
向所述第二终端设备发送指示信息,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,在向所述第二终端设备发送指示信息方面,所述程序包括具体用于执行以下步骤的指令:
向所述第二终端设备发送SCI,所述SCI中携带所述指示信息;
或者,向所述第二终端设备发送侧行数据,所述侧行数据的MAC CE中携带所述指示信息;
或者,向所述第二终端设备发送PC5-RRC信息,所述PC5-RRC信息中携带所述指示信息。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例3所述的具体实现过程,在此不再叙述。
与方法实施例3对应的设备实施例5
图10所示的终端设备为第二终端设备,所述程序包括用于执行以下步骤的指令:
向第一终端设备发送侧行参考信号接收功率RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
在一个实现中,所述第一终端设备的侧行传输和上行传输共享载波。
在一个实现中,所述程序包括还用于执行以下步骤的指令:
确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,在确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制方面,所述程序包括具体用于执行以下步骤的指令:
根据指示信息确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,所述指示信息是所述第一终端设备发送的,或者是网络设备发送的配置信息中携带的,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,所述层3滤波系数是协议规定的、网络设备配置的、或者所述第二终端设备自定义的。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例3所述的具体实现过程,在此不再叙述。
请参见图11,图11是本申请实施例提供的一种数据传输装置,应用于方法实施例1中的终端设备,所述装置包括:
通信单元1101,用于当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
需要说明的是,通信单元1101可通过通信接口来实现。
请参见图12,图12是本申请实施例提供的一种数据传输装置,应用于方法实施例2中的第一终端设备,所述装置包括:
功率调整单元1201,用于当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率;
通信单元1202,用于向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
在一个实现中,所述指示信息用于指示以下至少之一:
所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
在一个实现中,所述上行传输的发送功率和调整后的所述侧行传输的发送功率的和小于或等于所述终端设备的最大发送功率。
需要说明的是,功率调整单元1201可通过处理器来实现,通信单元1202可通过通信接口来实现。
请参见图13,图13是本申请实施例提供的一种数据传输装置,应用于方法实施例2中的第二终端设备,所述装置包括:
通信单元1301,用于接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
测量单元1302,用于基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
在一个实现中,所述指示信息用于指示以下至少之一:
所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发送变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
需要说明的是,测量单元1302可通过处理器来实现,通信单元1301可通过通信接口来实现。
请参见图14,图14是本申请实施例提供的一种数据传输装置,应用于方法实施例3中的第一终端设备,所述装置包括:
通信单元1401,用于接收第二终端设备发送的侧行RSRP,所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
在一个实现中,所述第一终端设备的侧行传输和上行传输共享载波。
在一个实现中,所述通信单元1401,还用于向所述第二终端设备发送指示信息,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,在向所述第二终端设备发送指示信息方面,所述通信单元1401具体用于:
向所述第二终端设备发送SCI,所述SCI中携带所述指示信息;
或者,向所述第二终端设备发送侧行数据,所述侧行数据的MAC CE中携带所述指示信息;
或者,向所述第二终端设备发送PC5-RRC信息,所述PC5-RRC信息中携带所述指示信息。
需要说明的是,通信单元1401可通过通信接口来实现。
请参见图15,图15是本申请实施例提供的一种数据传输装置,应用于方法实施例3中的第二终端设备,所述装置包括:
通信单元1501,用于向第一终端设备发送侧行RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
在一个实现中,所述第一终端设备的侧行传输和上行传输共享载波。
在一个实现中,所述装置还包括:
确定单元1502,用于确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,在确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制方面,所述确定单元1502具体用于:
根据指示信息确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,所述指示信息是所述第一终端设备发送的,或者是网络设备发送的配置信息中携带的,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
在一个实现中,所述层3滤波系数是协议规定的、网络设备配置的、或者所述第二终端设备自定义的。
需要说明的是,确定单元1502可通过处理器来实现,通信单元1501可通过通信接口来实现。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法,上述计算机包括用户设备。
本申请实施例还提供一种计算机程序产品,其中,上述计算机程序产品包括计算机程序指令,该计算机程序指令使得计算机执行如上述方法实施例中记载的任一方法。该计算机程序产品可以为一个软件安装包,上述计算机包括用户设备。
本申请实施例还提供一种芯片,其中,该芯片包括计算机程序指令,该计算机程序指令使得计算机执行如上述方法实施例中记载的任一方法,上述计算机包括用户设备。
本申请实施例还提供一种计算机程序,其中,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法,上述计算机包括用户设备。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英 文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (34)

  1. 一种数据传输方法,其特征在于,应用于第一终端设备,所述方法包括:
    当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率,以及向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息用于指示以下至少之一:所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述上行传输的发送功率和调整后的所述侧行传输的发送功率的和小于或等于所述终端设备的最大发送功率。
  4. 一种数据传输方法,其特征在于,应用于第二终端设备,所述方法包括:
    接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
    基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
  5. 根据权利要求4所述的方法,其特征在于,所述指示信息用于指示以下至少之一:
    所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发送变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
  6. 一种数据传输方法,其特征在于,应用于终端设备,所述方法包括:
    当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
  7. 一种数据传输方法,其特征在于,应用于第一终端设备,所述方法包括:
    接收第二终端设备发送的侧行参考信号接收功率RSRP,所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备的侧行传输和上行传输共享载波。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    向所述第二终端设备发送指示信息,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  10. 根据权利要求9所述的方法,其特征在于,所述向所述第二终端设备发送指示信息,包括:
    向所述第二终端设备发送侧行链路控制信息SCI,所述SCI中携带所述指示信息;
    或者,向所述第二终端设备发送侧行数据,所述侧行数据的媒体接入控制MAC控制单元CE中携带所述指示信息;
    或者,向所述第二终端设备发送直连通信接口PC5-无线资源控制RRC信息,所述PC5-RRC信息中携带所述指示信息。
  11. 一种数据传输方法,其特征在于,应用于第二终端设备,所述方法包括:
    向第一终端设备发送侧行参考信号接收功率RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端设备的侧行传输和上行传输共享载波。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  14. 根据权利要求13所述的方法,其特征在于,所述确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,包括:
    根据指示信息确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息是所述第一终端设备发送的,或者是网络设备发送的配置信息中携带的,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述层3滤波系数是协议规定的、网络设备配置的、或者所述第二终端设备自定义的。
  17. 一种数据传输装置,其特征在于,应用于第一终端设备,所述装置包括:
    功率调整单元,用于当在第一时间单元上所述第一终端设备的侧行传输和上行传输重叠,所述侧行传输的发送功率和所述上行传输的发送功率的和大于所述第一终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,调低所述侧行传输的发送功率;
    通信单元,用于向第二终端设备发送指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波。
  18. 根据要求17所述的装置,其特征在于,所述指示信息用于指示以下至少之一:
    所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发生变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
  19. 根据要求17或18所述的装置,其特征在于,所述上行传输的发送功率和调整后的所述侧行传输的发送功率的和小于或等于所述终端设备的最大发送功率。
  20. 一种数据传输装置,其特征在于,应用于第二终端设备,所述装置包括:
    通信单元,用于接收第一终端设备发送的指示信息,所述指示信息用于确定不使用所述第一时间单元的侧行参考信号进行参考信号接收功率RSRP测量,或者用于确定不对使用所述第一时间单元的侧行参考信号进行RSRP测量得到的侧行RSRP进行层3滤波;
    测量单元,用于基于所述指示信息,放弃使用所述第一时间单元的侧行参考信号进行RSRP测量,或者使用所述第一时间单元的侧行参考信号进行RSRP测量,得到侧行RSRP,所述侧行RSRP不进行层3滤波。
  21. 根据权利要求20所述的装置,其特征在于,所述指示信息用于指示以下至少之一:
    所述第一终端设备在所述第一时间单元上进行的侧行传输的发送功率发送变化、是否使用所述第一时间单元的侧行参考信号进行RSRP测量中的至少一种。
  22. 一种数据传输装置,其特征在于,应用于终端设备,所述装置包括:
    通信单元,用于当在第一时间单元上所述终端设备的侧行传输和上行传输重叠,所述 侧行传输的发送功率和所述上行传输的发送功率的和大于所述终端设备的最大发送功率,以及所述上行传输的优先级高于所述侧行传输的优先级的情况下,在所述第一时间单元上放弃所述侧行传输,进行所述上行传输。
  23. 一种数据传输装置,其特征在于,应用于第一终端设备,所述装置包括:
    通信单元,用于接收第二终端设备发送的侧行参考信号接收功率RSRP,所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
  24. 根据权利要求23所述的装置,其特征在于,所述第一终端设备的侧行传输和上行传输共享载波。
  25. 根据权利要求23或24所述的装置,其特征在于,所述通信单元,还用于向所述第二终端设备发送指示信息,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  26. 根据权利要求25所述的装置,其特征在于,在向所述第二终端设备发送指示信息方面,所述通信单元具体用于:
    向所述第二终端设备发送侧行链路控制信息SCI,所述SCI中携带所述指示信息;
    或者,向所述第二终端设备发送侧行数据,所述侧行数据的媒体接入控制MAC控制单元CE中携带所述指示信息;
    或者,向所述第二终端设备发送直连通信接口PC5-无线资源控制RRC信息,所述PC5-RRC信息中携带所述指示信息。
  27. 一种数据传输装置,其特征在于,应用于第二终端设备,所述装置包括:
    通信单元,用于向第一终端设备发送侧行参考信号接收功率RSRP,所述第二终端设备测量侧行RSRP时,所述第二终端设备的层3滤波系数为固定值,所述层3滤波系数为固定值表示不进行层3滤波。
  28. 根据权利要求27所述的装置,其特征在于,所述第一终端设备的侧行传输和上行传输共享载波。
  29. 根据权利要求27或28所述的装置,其特征在于,所述装置还包括:
    确定单元,用于确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  30. 根据权利要求29所述的装置,其特征在于,在确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制方面,所述确定单元具体用于:
    根据指示信息确定所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  31. 根据权利要求30所述的装置,其特征在于,所述指示信息是所述第一终端设备发送的,或者是网络设备发送的配置信息中携带的,所述指示信息用于指示所述第一终端设备需要根据侧行链路路损和下行链路路损进行功率控制。
  32. 根据权利要求27-31任一项所述的装置,其特征在于,所述层3滤波系数是协议规定的、网络设备配置的、或者所述第二终端设备自定义的。
  33. 一种终端设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-16任一项所述的方法中的步骤的指令。
  34. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-13任一项所述的方法。
PCT/CN2020/072534 2020-01-16 2020-01-16 数据传输方法及装置 WO2021142727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072534 WO2021142727A1 (zh) 2020-01-16 2020-01-16 数据传输方法及装置
CN202080068940.8A CN114451000B (zh) 2020-01-16 2020-01-16 数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072534 WO2021142727A1 (zh) 2020-01-16 2020-01-16 数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021142727A1 true WO2021142727A1 (zh) 2021-07-22

Family

ID=76863358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072534 WO2021142727A1 (zh) 2020-01-16 2020-01-16 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN114451000B (zh)
WO (1) WO2021142727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835156A (zh) * 2021-09-16 2023-03-21 宸芯科技有限公司 一种数据发送方法、装置、车联网设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925493A (zh) * 2015-07-28 2018-04-17 夏普株式会社 终端装置以及方法
WO2018219436A1 (en) * 2017-05-30 2018-12-06 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925493A (zh) * 2015-07-28 2018-04-17 夏普株式会社 终端装置以及方法
WO2018219436A1 (en) * 2017-05-30 2018-12-06 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer procedures for NR sidelink", 3GPP TSG RAN WG1 MEETING #99 R1-1913237, 22 November 2019 (2019-11-22), XP051824916 *
NEC: "Physical layer procedures for NR sidelink", 3GPP TSG RAN WG1 #99 R1-1912619, 22 November 2019 (2019-11-22), XP051820130 *
SPREADTRUM COMMUNICATIONS: "Discussion on physical layer procedures for sidelink", 3GPP TSG RAN WG1 #98BIS R1-1910009, 22 November 2019 (2019-11-22), XP051788816 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835156A (zh) * 2021-09-16 2023-03-21 宸芯科技有限公司 一种数据发送方法、装置、车联网设备及存储介质

Also Published As

Publication number Publication date
CN114451000A (zh) 2022-05-06
CN114451000B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN108605362B (zh) 用于确定资源选择技术的系统与方法
CN113784428B (zh) 无线通信的方法和设备
CN113038422B (zh) 传输侧行链路数据的方法和终端设备
WO2020143065A1 (zh) 侧行通信的方法、终端设备和网络设备
WO2021026715A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
JP7383161B2 (ja) データフレームの受信状況を決定するための方法および通信装置
US20210410080A1 (en) Power Control Method and Power Control Apparatus
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
WO2020177027A1 (zh) 传输侧行链路数据的方法和终端设备
CN113615279A (zh) 无线链路管理方法及相关设备
WO2018053808A1 (zh) 功率控制方法、装置以及通信系统
WO2021003620A1 (zh) 下行信号传输的方法和设备
WO2021088089A1 (zh) 链路质量监测方法及相关产品
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
TWI827673B (zh) 一種訊息傳輸方法及設備
WO2022082687A1 (zh) 数据传输方法、装置、可读存储介质和系统
WO2020191761A1 (zh) 数据的传输方法、装置、设备及存储介质
WO2016197379A1 (zh) 控制功率的方法和相关设备
WO2021142727A1 (zh) 数据传输方法及装置
WO2020077745A1 (zh) 一种连接配置方法、设备及存储介质
WO2020124534A1 (zh) 数据传输的方法和设备
CN114070508B (zh) 辅链路的资源信息发送方法及相关产品
US20210258961A1 (en) Data transmission method and device
CN115038117B (zh) 数据传输方法及相关设备
WO2021088082A1 (zh) 传输方法及其相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913915

Country of ref document: EP

Kind code of ref document: A1