[go: up one dir, main page]

WO2021114441A1 - 一种基于铁富集植物的磁性生物炭及其制备方法和应用 - Google Patents

一种基于铁富集植物的磁性生物炭及其制备方法和应用 Download PDF

Info

Publication number
WO2021114441A1
WO2021114441A1 PCT/CN2020/070200 CN2020070200W WO2021114441A1 WO 2021114441 A1 WO2021114441 A1 WO 2021114441A1 CN 2020070200 W CN2020070200 W CN 2020070200W WO 2021114441 A1 WO2021114441 A1 WO 2021114441A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
biochar
carbonization
pyrolysis
magnetic biochar
Prior art date
Application number
PCT/CN2020/070200
Other languages
English (en)
French (fr)
Inventor
魏巍
韩睿明
李时银
王国祥
Original Assignee
南京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京师范大学 filed Critical 南京师范大学
Publication of WO2021114441A1 publication Critical patent/WO2021114441A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention belongs to the technical field of biochar, and specifically relates to a magnetic biochar based on iron-enriched plants, and a preparation method and application thereof.
  • biochar As an environmentally friendly material, biochar has been widely used in the fields of waste recycling, soil quality control, and environmental pollution remediation. In recent years, in order to overcome the shortcomings of biochar in the actual utilization process, such as difficulty in recovery, difficulty in regeneration, and small adsorption capacity, the preparation and application of magnetic biochar have attracted widespread attention.
  • the methods of preparing magnetic biochar are usually divided into the following categories:
  • Impregnating biomass or biochar with a magnetizing agent such as iron salt and then directly pyrolyzing the impregnated biomass or biochar to obtain magnetic biochar.
  • a magnetizing agent such as iron salt
  • Chinese patent (201811621104.9) uses ferric chloride solution to impregnate peanut shell biomass and then pyrolyze to obtain magnetic biochar.
  • the Chinese patent (201910064397.3) puts a mixed solution of rice straw-based biochar and iron acetylacetonate in a hydrothermal reaction kettle to obtain magnetic biochar after hydrothermal treatment.
  • the Chinese patent (201810692857.2) mixes the magnetic Fe 3 O 4 nano-powder coated with a single layer of silica with chicken manure biochar, bentonite, poplar powder and cetyltrimethylammonium bromide to obtain a suspension, and then suspend it The liquid is mixed with polyvinyl alcohol and dried to obtain magnetic biochar.
  • the Chinese patent (ZL201611024652.4) adds a mixed solution of Fe 3+ and Fe 2+ with a pH value of 11-12 to plant straw biomass, stirs, and mixes the obtained solid with calcium carbonate powder after anoxic pyrolysis, and obtains magnetic properties after anoxic pyrolysis bio-charcoal.
  • the Chinese patent (201711449364.8) mixes Fe 3+ and Fe 2+ solutions with pig manure biochar, adjusts the pH to 10-11, the solution is continuously stirred and boiled, and the obtained solid is dried to obtain magnetic pig manure biochar.
  • the Chinese patent (201710303621.0) uses sodium carbonate-treated traditional Chinese medicine residue powder to mix with iron salt solution to adjust the pH to 10-11, and the solid is pyrolyzed to obtain magnetic biochar.
  • the Chinese patent (201711363407.0) mixes Fe 3+ and Fe 2+ solutions with steam-activated biomass charcoal, and adds lye to generate Fe 3 O 4 and load it on the surface of the biochar to obtain magnetic biochar.
  • the Chinese patent (201810657102.9) mixes sulfuric acid-treated camellia shell biochar with Fe 3+ and Fe 2+ solutions, adds urea to adjust the pH to 10-12, and after the reaction, the solid is dried to obtain magnetic biochar.
  • the Chinese patent (201910058205.8) mixes Fe 3+ and Fe 2+ solutions with mulberry stalk biochar after hydrochloric acid treatment, and then adds a strong base to cause a co-precipitation reaction. After the product is dried, a magnetic biochar adsorbent is obtained.
  • the Chinese patent (201910230934.7) disperses spirulina into a ferric nitrate solution, adds sodium hydroxide solution to cause precipitation reaction, and then further pyrolysis carbonization to obtain magnetic biochar.
  • the common feature of the above preparation methods is the need to add exogenous magnetizing substances. For example, adding iron salt, cobalt salt and other compounds to form ferrite, Fe 3 O 4 or ⁇ -Fe 2 O 3 and other magnetic substances, adding iron-containing minerals (such as hematite) to transform into magnetic substances, or directly adding magnetic substances Such as zero-valent iron, Fe 3 O 4 or ⁇ -Fe 2 O 3 and so on.
  • iron-containing minerals such as hematite
  • directly adding magnetic substances Such as zero-valent iron, Fe 3 O 4 or ⁇ -Fe 2 O 3 and so on.
  • the disadvantage of the above method is that the additional introduction of the magnetizer causes the preparation process to be cumbersome and increases the cost. At the same time, some toxic chemical reagents are used in the preparation process, which may cause secondary pollution.
  • the Chinese patent uses the surplus sludge in the municipal sewage treatment plant as a raw material, and directly high-temperature (400-900°C) pyrolysis carbonization, obtains the magnetic sludge biochar. Since the sewage treatment plant added polyferric sulfate in the process of flocculation and dewatering, the remaining sludge does not need to be added with a magnetizing agent, and the magnetic sludge biochar can be formed by pyrolysis.
  • Chinese patent (201910004100.4) utilizes the direct high temperature (680-900°C) pyrolysis carbonization of sewage treatment plant sludge (also containing iron salt flocculant) to obtain magnetic sludge biochar, which is used in water with fluoroquinolone antibiotics such as ciprofloxacin ⁇ sorption.
  • the magnetizing agent in the above patent is an artificially added iron-containing flocculant in the early stage, which is retained in the sludge, and the sludge is pyrolyzed to obtain the magnetic sludge biochar. Since the sludge itself contains some toxic and harmful substances, the obtained magnetic sludge biochar may contain harmful substances, which limits its practical application. In contrast, biomass resources are very abundant. Biochar produced by biomass pyrolysis is not only conducive to the resource utilization of biomass, and the further application of the obtained biochar will not bring secondary risks. Therefore, biomass pyrolysis The preparation of biochar is a widely recognized method of preparing biochar.
  • Iron-accumulating plants are a common plant in nature, and typical iron-accumulating plants include Imperata cylindrica and bermudagrass. It has been reported in the literature that a large amount of iron accumulates in the form of jarosite [KFe 3 (SO 4 ) 2 (OH) 6 ], ferrihydrite, hematite, ferritin, etc., in the rhizomes and leaves.
  • the iron content can reach 23450mg/kg dry weight and 10663mg/kg dry weight respectively (New Phytologist, 2005, 165, 781-789; Plant Physiology and Biochemistry, 2007, 45, 335-340; Acta Histochemica, 2012, 114, 232-236; Journal of Structural Biology, 2016, 193, 23-32.).
  • Another iron-rich plant bermudagrass (Journal of Plant Nutrition and Soil Science, 2013, 176, 836-842.), the iron content in its roots, rhizomes and leaves can reach 63,972 mg/kg dry weight, 1603 mg/kg dry weight and 3111mg/kg dry weight.
  • iron-enriched plants to produce magnetic biochar by direct pyrolysis has not been reported yet.
  • the present invention provides a magnetic biochar based on iron-enriched plants.
  • the present invention uses iron-enriched plants to contain a large amount of iron.
  • the iron-containing material is directly converted into the magnetic material, and the carbonization and magnetization occur synchronously, and the magnetic biochar is prepared.
  • the invention also provides a preparation method and application of magnetic biochar based on iron-enriched plants.
  • the iron-enriched plants include one or more of natural iron-enriched plants or plants that are artificially induced to have iron-enrichment ability.
  • the natural iron-enriched plant is Imperata cylindrica (L.) P. Beauv. or Cynodon dactylon (L.) Pers.), which is artificially induced to have iron-enrichment ability
  • the plant is water hyacinth (Eichhornia crassipes (Mart.) Solms)).
  • the method for preparing magnetic biochar based on iron-enriched plants of the present invention includes the following steps:
  • step (2) Put the biomass powder prepared in step (1) into a carbonization device, perform carbonization under oxygen isolation, cool to room temperature, take out, wash, and dry to obtain magnetic biochar.
  • step (1) is dried at 80°C for 15 hours, crushed and passed through an 80-mesh sieve.
  • the carbonization device described in step (2) is an electric furnace high temperature pyrolysis carbonization device, the pyrolysis temperature is 300-700°C, the heating rate is 5-15°C/min, and the pyrolysis time is 1-4 hours. Generally, the pyrolysis is carried out at 500°C, the heating rate is 10°C/min, and the pyrolysis time is 3 hours for magnetization and carbonization.
  • the carbonization device described in step (2) is a microwave pyrolysis carbonization device, the power of the microwave pyrolysis carbonization is 600-1800 W, and the pyrolysis time is 5-40 minutes. Under normal circumstances, under 800W power, the pyrolysis time is 30 minutes for magnetization and carbonization.
  • the carbonization device described in step (2) is a hydrothermal carbonization device
  • the hydrothermal reaction temperature is 200-450°C
  • the hydrothermal reaction time is 30-300 minutes
  • the pressure is 4-5 MPa.
  • the hydrothermal reaction temperature is 300°C
  • the hydrothermal reaction time is 40 minutes
  • the pressure is 4.5MPa for magnetization and carbonization.
  • the carbonization under oxygen isolation in step (2) is to pass nitrogen or argon to isolate the oxygen, that is, carbonization is performed in an atmosphere of nitrogen or argon.
  • the washing in step (2) is carried out using deionized water and absolute ethanol successively, and the drying temperature is 50-80°C. Usually, drying at 60°C is sufficient.
  • the magnetic biochar based on iron-enriched plants of the present invention is used for adsorbing heavy metal ions lead and cadmium in groundwater; and for removing nitrogen and phosphorus from water.
  • the amount of the iron-enriched plant-based magnetic biochar is 0.5 ⁇ 5.0g/L, used for lead concentration not exceeding 600mg/L, or hexavalent chromium concentration not exceeding 500mg/L, or cadmium ion concentration not exceeding 100mg/L of groundwater.
  • the present invention uses iron-enriched plants to accumulate a large amount of iron, and the typical iron-enriched plants such as Imperata cylindrica are subjected to high-temperature pyrolysis carbonization or hydrothermal carbonization processes to obtain biochar; at the same time, during the carbonization process, the biochar is enriched in Other forms of iron in the plant body are converted into magnetic iron oxide, so the obtained biochar is a magnetic biochar, and the magnetization and carbonization can be completed simultaneously without adding additional magnetizers.
  • the typical iron-enriched plants such as Imperata cylindrica are subjected to high-temperature pyrolysis carbonization or hydrothermal carbonization processes to obtain biochar; at the same time, during the carbonization process, the biochar is enriched in Other forms of iron in the plant body are converted into magnetic iron oxide, so the obtained biochar is a magnetic biochar, and the magnetization and carbonization can be completed simultaneously without adding additional magnetizers.
  • the invention directly uses iron-enriched plants as biomass, and directly pyrolysis realizes the simultaneous progress of carbonization and magnetization processes without the need for external magnetizing agents such as iron salts, and obtains magnetic biochar.
  • the main principle of this process is: iron-enriched plants accumulate a large amount of iron in the form of jarosite, ferrihydrite, hematite, ferritin, etc. These forms of iron can be transformed into biomass during pyrolysis. Magnetic substances such as ferrite, Fe 3 O 4 ⁇ -Fe 2 O 3, etc., therefore make the obtained biochar magnetic.
  • the adsorption capacity of lead and cadmium pollutants in groundwater can reach 370mg/L. g and 152mg/g; it can also remove nitrogen and phosphorus pollutants in water, such as aqueous solutions containing nitrate nitrogen, ammonium nitrogen and phosphorus.
  • the present invention has the following advantages:
  • the iron-enriched plant used in the present invention is a ubiquitous plant in nature, rich in resources, cheap and easy to obtain. In addition to being rich in iron, it does not contain additional toxic and harmful substances, and other reported sludge Compared with livestock and poultry manure, iron-enriched plants are used as biomass to prepare magnetic biochar, and there is no risk of secondary pollution during the process of preparation and application.
  • the iron-enriched plant of the present invention prepares biochar without the need for additional magnetizing agents such as iron salts, and no reagents such as strong alkalis. It is carbonized through direct high-temperature pyrolysis, microwave pyrolysis or hydrothermal pyrolysis. Magnetic biochar can be obtained, no chemical reagent is required compared with the existing method, the preparation process is environmentally friendly, the preparation steps are simple, and the industrial production is easy.
  • the biochar prepared by the iron-enriched plant of the present invention shows a good application prospect in the field of adsorption of groundwater lead and cadmium pollutants, and nitrogen and phosphorus pollutants.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 50°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 105°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out.
  • the magnetic biochar is obtained by washing with deionized water and absolute ethanol, and drying at 50°C.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 12 hours, crushed and passed through an 80-mesh sieve to obtain a biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 80°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 24 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through a 50-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 80°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through a 100-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 70°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 15°C/min
  • the pyrolysis time is 1 hour.
  • it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 5°C/min
  • the pyrolysis time is 4 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 300°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 700°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours.
  • Deionized water and absolute ethanol are washed, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the microwave power is 800W
  • the pyrolysis time is 40 minutes.
  • it is cooled to room temperature and taken out, and washed with deionized water and absolute ethanol successively. , 60 °C drying, that is to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
  • the hydrothermal reaction temperature is 200° C.
  • the hydrothermal reaction time is 40 minutes
  • the pressure is 4.5 MPa.
  • it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
  • the hydrothermal reaction temperature is 450° C.
  • the hydrothermal reaction time is 40 minutes
  • the pressure is 4.5 MPa.
  • it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
  • the hydrothermal reaction temperature is 300° C.
  • the hydrothermal reaction time is 30 minutes
  • the pressure is 4.5 MPa.
  • it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
  • the hydrothermal reaction temperature is 300° C.
  • the hydrothermal reaction time is 300 minutes
  • the pressure is 4.5 MPa.
  • it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder was put into a hydrothermal carbonization device, and hydrothermal carbonization was carried out in a nitrogen atmosphere.
  • the hydrothermal reaction temperature was 300°C
  • the hydrothermal reaction time was 40 minutes
  • the pressure was 4MPa. Then it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is carried out in a nitrogen atmosphere.
  • the hydrothermal reaction temperature is 300° C.
  • the hydrothermal reaction time is 40 minutes
  • the pressure is 5 MPa.
  • it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant bermudagrass is collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
  • the pyrolysis temperature is 500°C
  • the heating rate is 10°C/min
  • the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
  • Example 23 Add the magnetic biochar obtained in Example 23 to the filtered groundwater containing lead ions, cadmium ions, and both lead ions and cadmium ions at 0.5-5.0g/L.
  • the magnetic biochar obtained in Example 23 was shaken and adsorbed for 8 hours. The magnet separates the magnetic biochar from water in solid and liquid, which can remove the heavy metals of lead and cadmium in groundwater.
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 5.0 can reach 80%;
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 5.0 can reach 94%;
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 7.0 can reach 88%;
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 7.0 can reach 97%;
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 9.0 can reach 95%;
  • the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 9.0 can reach 100%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 82%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 90%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 78%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 85%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 68%;
  • the removal rate of chromium (VI) in groundwater with a concentration of 500 mg/L can reach 76%;
  • the removal rate of cadmium ion concentration in groundwater of 100mg/L can reach 75%;
  • the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 5.0 can reach 79%;
  • the removal rate of groundwater with cadmium ion concentration of 100mg/L can reach 82%;
  • the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 7.0 can reach 88%;
  • the removal rate of cadmium ion concentration of 100mg/L in groundwater can reach 93%;
  • the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 9.0 can reach 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种基于铁富集植物的磁性生物炭及其制备方法和应用,该基于铁富集植物磁性生物炭由铁富集植物直接经高温热解炭化或水热炭化得到磁性生物炭。本发明利用铁富集植物体内积累了大量的铁,将典型的铁富集植物如白茅,经过高温热解炭化或水热炭化过程,即得到生物炭;同时,在炭化过程中,富集在植物体内其他形态的铁转化为磁性氧化铁,因此所获得的生物炭为磁性生物炭,并且无需额外添加赋磁剂即可实现磁化与炭化同步完成,制备过程不产生二次污染,操作简单。本发明的磁性生物炭能够有效去除地下水中的重金属污染物以及氮、磷,在地下水重金属和氮、磷污染治理领域应用前景广阔。

Description

一种基于铁富集植物的磁性生物炭及其制备方法和应用 技术领域
本发明属于生物炭技术领域,具体涉及一种基于铁富集植物的磁性生物炭及其制备方法和应用。
背景技术
生物炭作为一种环境友好型材料,在废弃物资源化、土壤质量调控、环境污染修复领域的应用日益广泛。近年来,为了克服生物炭在实际利用过程中回收困难、难以再生、吸附容量小等缺点,磁性生物炭(Magnetic biochar)的制备及应用引起了广泛重视。
制备磁性生物炭的方法通常分为以下几种:
(1)利用铁盐等赋磁剂浸渍生物质或生物炭,再直接热解浸渍后的生物质或生物炭获得磁性生物炭。例如,Mubarak等(Biomass and Bioenergy,2014,6,265-275.)报道了利用微波热解(900W,20分钟)处理FeCl 3浸渍的棕榈油空果壳,制备了磁性生物炭并用于高效去除水溶液中的亚甲基蓝;Reddy等利用Co 2+和Fe 3+溶液浸渍松树皮生物质(Colloids and Surfaces A,2014,454,96-103.),然后进行热解获得磁性生物炭并应用于水溶液中铅和镉的吸附;Wang等(RSC Adv.,2015,5,67971-67978)利用Mn 2+和Fe 3+浸渍松木生物质,然后热解获得了磁性生物炭。Yan等(ACS Sustainable Chemistry&Engineering,2015,3(1),125-132.)利用乙酰丙酮铁浸渍稻壳生物炭,进一步热解得到磁性生物炭。中国专利(201811621104.9)利用三氯化铁溶液浸渍花生壳生物质,然后热解获得磁性生物炭。中国专利(201910064397.3)将稻草基生物炭与乙酰丙酮铁混合溶液,置于水热反应釜内,经水热处理获得磁性生物炭。
(2)将含铁矿物或零价铁直接与生物质或生物炭混合,并进行热解或干燥制备磁性生物炭。例如,Wang等(Bioresource Technology,2015,175,391-395.)利用天然的α-Fe 2O 3与松木生物质混合,并在600℃条件下电炉热解1小时成功制备了磁性生物炭并应用于吸附水中的As(V)。中国专利(201811622260.7)利用硝酸改性花生壳生物炭与纳米Fe 3O 4混合,然后加入乙醇搅拌,最后将固体冷冻干燥获得磁性生物炭。Devi等(Bioresource Technology,2014,169,525-531.)和Chandraiah(Alexandria Engineering Journal,2016,55,619-625.)分别报道了将Fe 2+和Fe 3+还原为零价铁并结合在生物炭表面,干燥后获得磁性生物炭。中国专利(201810855860.1)将污泥与零价铁和过硫酸盐混合,然后高温热解获得磁性污泥生物炭。中国专利(201810692857.2)将包裹单层二氧化硅的磁性Fe 3O 4纳 米粉与鸡粪生物炭、膨润土、杨木粉及十六烷基三甲基溴化铵混合得到悬浮液,再将悬浮液与聚乙烯醇混合,干燥后得到磁性生物炭。
(3)利用共沉淀反应制备磁性生物炭,即在生物质或生物炭存在下,加入铁盐等赋磁剂,同时调节溶液至碱性发生沉淀反应,进一步干燥或热解制得磁性生物炭。例如,Chen等(Bioresource Technology,2011,102,716-723.)利用Fe 3+和Fe 2+溶液与橙皮生物质混合,调节至碱性发生沉淀反应,并进一步热解获得了磁性生物炭;Zhang等(Environmental Pollution,2016,216,575-583)利用凤眼莲生物质与Fe 3+和Fe 2+溶液混合,并加入强碱溶液发生沉淀反应,进一步热解获得了磁性生物炭;类似地,Mohan等(Chemical Engineering Journal,2014,236,513-528.)首先制备了橡木生物炭,再将Fe 2+和Fe 3+溶液与生物炭混合,并加入氢氧化钠发生共沉淀反应,产物干燥后即得磁性生物炭;Zhang等(Water Science and Technology,2016,74(8):1971-1979.)首先制备了污泥基生物炭,再利用Sr 2+和Fe 3+溶液与生物炭在碱性条件下混合发生共沉淀反应,将产物于800℃烧结得到磁性生物炭;Lai等(Chemosphere,2019,224,910-921)首先制备了松针生物炭,再利用Mn 2+和Fe 3+溶液与生物炭混合,并加入氨水发生共沉淀反应,干燥后制得磁性生物炭。中国专利(ZL201611024652.4)将pH值为11~12的Fe 3+和Fe 2+混合溶液加入植物秸秆生物质,搅拌,静置后所得固体与碳酸钙粉末混合,缺氧热解后获得磁性生物炭。中国专利(201711449364.8)将Fe 3+和Fe 2+溶液与猪粪生物炭混合,调节pH至10~11,溶液不断搅拌并煮沸,所得固体干燥后获得磁性猪粪生物炭。中国专利(201710303621.0)利用经过碳酸钠处理的中药渣粉末与铁盐溶液混合,调节pH至10~11,所的固体经热解获得磁性生物炭。中国专利(201711363407.0)将Fe 3+和Fe 2+溶液与水蒸气活化的生物质炭混合,并加入碱液,生成Fe 3O 4负载在生物炭表面获得磁性生物炭。中国专利(201810657102.9)将硫酸处理的油茶壳生物炭与Fe 3+和Fe 2+溶液混合,加入尿素调节pH至10~12,反应后固体干燥即得磁性生物炭。中国专利(201910058205.8)将Fe 3+和Fe 2+溶液与盐酸处理后的桑树杆生物炭混合,再加入强碱发生共沉淀反应,产物干燥后获得磁性生物炭吸附剂。中国专利(201910230934.7)将螺旋藻分散到硝酸铁盐溶液中,并加入氢氧化钠溶液发生沉淀反应,然后进一步热解炭化获得磁性生物炭。
上述制备方法的共同特点是需要添加外源性赋磁物质。例如添加铁盐、钴盐等化合物形成铁氧体、Fe 3O 4或γ-Fe 2O 3等磁性物质、添加含铁矿物(如赤铁矿)转化为磁性物质,或者直接添加磁性物质如零价铁、Fe 3O 4或γ-Fe 2O 3等。但是上述方法的缺点是,额外引入赋磁剂导致制备过程繁琐,并且增加了成本,同时 制备过程中还会用到一些有毒化学试剂,有可能造成二次污染。
最近,中国专利(ZL201710389611.3)利用城市污水处理厂中的剩余污泥为原料,直接高温(400-900℃)热解炭化,获得了磁性污泥生物炭。由于污水处理厂在絮凝脱水过程中投加了聚合硫酸铁,因此剩余污泥无需外加赋磁剂,经热解即可形成磁性污泥生物炭。中国专利(201910004100.4)利用污水处理厂污泥(同样含有铁盐絮凝剂)直接高温(680-900℃)热解炭化获得了磁性污泥生物炭,并用于水中氟喹诺酮类抗生素如环丙沙星的吸附。上述专利中赋磁剂是前期人为添加的含铁絮凝剂,保留在污泥中,并热解污泥获得了磁性污泥生物炭。鉴于污泥本身包含有一些有毒、有害物质,所获得的磁性污泥生物炭可能包含有害物质,限制了其实际应用。相比之下,生物质资源非常丰富,生物质热解制备生物炭不仅有利于生物质的资源化利用,所获得生物炭的进一步应用也不会带来二次风险,因此,生物质热解制备生物炭是一种广泛认可的生物炭制备方法。
铁富集植物是自然界常见的一种植物,典型的铁富集植物包括白茅和狗牙根等。已有文献报道白茅体内以黄钾铁矾[KFe 3(SO 4) 2(OH) 6]、水铁矿、赤铁矿、铁蛋白等形式积累有大量的铁,在根状茎和叶片中的铁含量分别可达23450mg/kg干重和10663mg/kg干重(New Phytologist,2005,165,781-789;Plant Physiology and Biochemistry,2007,45,335-340;Acta Histochemica,2012,114,232-236;Journal of Structural Biology,2016,193,23-32.)。另一种铁富集植物狗牙根(Journal of Plant Nutrition and Soil Science,2013,176,836-842.),其根系、根状茎和叶片中铁含量可达63972mg/kg干重、1603mg/kg干重和3111mg/kg干重。但是,利用铁富集植物,直接热解制备磁性生物炭还未见报道。
发明内容
发明目的:针对现有技术制备磁性生物炭需要额外添加赋磁剂的缺陷的问题,本发明提供一种基于铁富集植物的磁性生物炭,本发明通过铁富集植物体内含有大量的铁,在热解过程含铁物质直接转化为磁性物质,炭化与磁化同步发生,制得磁性生物炭。
本发明还提供基于铁富集植物的磁性生物炭的制备方法及其应用。
技术方案:为了实现上述目的,如本发明所述一种基于铁富集植物的磁性生物炭,由铁富集植物直接经高温热解炭化或水热炭化得到磁性生物炭。
在此过程中富集在植物体内其他形态的铁转化为磁性氧化铁,无需额外添加赋磁剂即可实现高温下磁化与炭化同步完成,从而制得了磁性生物炭。
其中,所述铁富集植物包括天然的铁富集植物或者经人工诱导而具备铁富集能力的植物中的一种或者几种。
作为优选,所述天然的铁富集植物为白茅(Imperata cylindrica(L.)P.Beauv.)或者狗牙根(Cynodon dactylon(L.)Pers.),所述经人工诱导而具备铁富集能力的植物为凤眼莲(Eichhornia crassipes(Mart.)Solms))。
本发明所述的基于铁富集植物的磁性生物炭的制备方法,包括如下步骤:
(1)用去离子水对铁富集植物进行清洗,于室温下自然风干,在烘箱中于50-105℃干燥12-24小时,粉碎并过50-100目筛,得到铁富集植物的生物质粉末;
(2)将步骤(1)中制得的生物质粉末放入炭化装置,于隔绝氧气下进行炭化,冷却至室温取出,洗涤,干燥,即得到磁性生物炭。
作为优选,步骤(1)在80℃干燥15小时,粉碎并过80目筛。
作为优选,步骤(2)所述的炭化装置为电炉高温热解炭化装置,热解温度为300-700℃,升温速率5-15℃/分钟,热解时间1-4小时。一般情况下在500℃进行热解,升温速率10℃/分钟,热解时间3小时进行磁化和碳化。
作为另一种优选,步骤(2)所述的炭化装置为微波热解炭化装置,微波热解碳化的功率600-1800W,热解时间5-40分钟。一般情况下在800W功率下,热解时间30分钟进行磁化和碳化。
作为另一种优选,步骤(2)所述的炭化装置为水热炭化装置,水热反应温度200-450℃,水热反应时间30-300分钟,压强4-5MPa。一般情况下水热反应温度300℃,水热反应时间40分钟,压强4.5MPa进行磁化和碳化。
作为优选,步骤(2)所述的隔绝氧气下进行炭化为采用通入氮气或氩气来隔绝氧气,即在氮气或氩气的气氛下进行碳化。作为优选,步骤(2)所述的洗涤,先后采用去离子水和无水乙醇进行,所述的干燥温度为50-80℃。通常60℃干燥即可。
本发明所述的基于铁富集植物的磁性生物炭在吸附地下水中重金属离子铅和镉;以及去除水中氮和磷中的应用。
其中,所述基于铁富集植物的磁性生物炭的用量为0.5~5.0g/L,用于铅浓度不超过600mg/L,或六价铬浓度不超过500mg/L,或镉离子浓度不超过100mg/L的地下水中。
本发明利用铁富集植物体内积累了大量的铁,将典型的铁富集植物如白茅,经过高温热解炭化或水热炭化过程,即得到生物炭;同时,在炭化过程中,富集在植物体内其他形态的铁转化为磁性氧化铁,因此所获得的生物炭为磁性生物炭,并且无需额外添加赋磁剂即可实现磁化与炭化同步完成。
本发明直接利用铁富集植物作为生物质,在无需外加铁盐等赋磁剂等情况下,直接热解实现炭化和磁化过程的同步进行,获得了磁性生物炭。该过程的主 要原理为:铁富集植物体内以黄钾铁矾、水铁矿、赤铁矿、铁蛋白等形式积累有大量的铁,这些形态的铁在生物质热解过程中能够转化为磁性物质如铁氧体、Fe 3O 4γ-Fe 2O 3等,因此使所获得的生物炭具有磁性。所获得的磁性生物炭,在0.5~5.0g/L用量条件下,应用于铅、镉浓度不超过600mg/L的地下水中时,对地下水中铅、镉污染物的吸附容量分别可达370mg/g和152mg/g;同时还可以去除水中氮和磷污染物,如含硝态氮、铵态氮和磷的水溶液。
有益效果:与现有技术相比,本发明具有如下优点:
(1)本发明所用的铁富集植物是自然界普遍存在的植物,资源丰富、廉价易得,其体内除了富含铁之外,不含额外的有毒、有害物质,与其他已报道的污泥、畜禽粪便相比,铁富集植物作为生物质制备磁性生物炭,制备及应用过程中不会带来二次污染的风险。
(2)本发明的铁富集植物制备生物炭,不需要额外添加铁盐等赋磁剂,不需要强碱等试剂,通过直接高温热解、微波热解或水热热解炭化过程,即可获得磁性生物炭,与现有方法相比不需要涉及化学试剂,制备过程环境友好,制备步骤简单,易于工业化生产。
(3)本发明的铁富集植物制备的生物炭,在地下水铅、镉污染物,以及氮和磷污染物的吸附领域表现出良好的应用前景。
具体实施方式
为了更好地理解本发明,下面结合实例进一步阐明本发明的内容,但本发明内容不仅仅局限于下面的实例。
实施例1
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于50℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例2
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于105℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氩气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,50℃干燥,即得到磁性生物炭。
实施例3
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥12小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,80℃干燥,即得到磁性生物炭。
实施例4
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥24小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例5
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过50目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,80℃干燥,即得到磁性生物炭。
实施例6
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过100目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,70℃干燥,即得到磁性生物炭。
实施例7
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率15℃/分钟,热解时间1小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例8
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭 化,热解温度500℃,升温速率5℃/分钟,热解时间4小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例9
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度300℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例10
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度700℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例11
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入微波热解炭化装置,于氮气气氛下进行微波热解炭化,微波功率600W,热解时间30分钟,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例12
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入微波热解炭化装置,于氮气气氛下进行微波热解炭化,微波功率1800W,热解时间30分钟,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例13
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入微波热解炭化装置,于氮气气氛下进行微波热解炭化,微波功率800W,热解时间5分钟,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例14
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入微波热解炭化装置,于氮气气氛下进行微波热解炭化,微波功率800W,热解时间40分钟,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例15
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温度200℃,水热反应时间40分钟,压强4.5MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例16
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温度450℃,水热反应时间40分钟,压强4.5MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例17
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温度300℃,水热反应时间30分钟,压强4.5MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例18
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温度300℃,水热反应时间300分钟,压强4.5MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例19
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温 度300℃,水热反应时间40分钟,压强4MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例20
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入水热炭化装置,于氮气气氛下进行水热炭化,水热反应温度300℃,水热反应时间40分钟,压强5MPa。然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例21
自野外采集铁富集植物狗牙根,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例22
自野外采集铁富集植物白茅和狗牙根,任意比例混合,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例23
自野外采集铁富集植物白茅,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
实施例24
按文献方法[AU J.Technol.2002,6,55-60;Trends Appl.Sci.Res.,2014,9,485-493.]收集富集了铁的凤眼莲生物质,用去离子水清洗后,于室温下自然风干,在烘箱中于80℃干燥15小时,粉碎并过80目筛,得到铁富集植物的生物质粉末。将上述生物质粉末放入电炉高温热解炭化装置,于氮气气氛下进行高温热解炭化,热解温度500℃,升温速率10℃/分钟,热解时间3小时,然后冷却至室 温取出,先后采用去离子水和无水乙醇进行洗涤,60℃干燥,即得到磁性生物炭。
试验例1
向过滤后的含铅离子、含镉离子、及同时含铅离子与镉离子的地下水中按照0.5-5.0g/L加入上述实施例23获得的磁性生物炭,振荡吸附8小时,吸附后用强磁铁将磁性生物炭和水进行固液分离,即可实现对地下水中重金属铅、镉的去除。
1、含铅离子的地下水中,所述磁性生物炭对铅离子的吸附量如下:
按照0.5g/L的磁性生物炭用量,在pH5.0时,铅离子浓度600mg/L的地下水中,去除率可达80%;
按照5.0g/L的磁性生物炭用量,在pH5.0时,铅离子浓度600mg/L的地下水中,去除率可达94%;
按照0.5g/L的磁性生物炭用量,在pH7.0时,铅离子浓度600mg/L的地下水中,去除率可达88%;
按照5.0g/L的磁性生物炭用量,在pH7.0时,铅离子浓度600mg/L的地下水中,去除率可达97%;
按照0.5g/L的磁性生物炭用量,在pH9.0时,铅离子浓度600mg/L的地下水中,去除率可达95%;
按照5.0g/L的磁性生物炭用量,在pH9.0时,铅离子浓度600mg/L的地下水中,去除率可达100%;
2、含六价铬的地下水中,所述磁性生物炭对铅离子的吸附量如下:
按照0.5g/L的磁性生物炭用量,在pH5.0时,铬(VI)浓度500mg/L的地下水中,去除率可达82%;
按照5.0g/L的磁性生物炭用量,在pH5.0时,铬(VI)浓度500mg/L的地下水中,去除率可达90%;
按照0.5g/L的磁性生物炭用量,在pH7.0时,铬(VI)浓度500mg/L的地下水中,去除率可达78%;
按照5.0g/L的磁性生物炭用量,在pH7.0时,铬(VI)浓度500mg/L的地下水中,去除率可达85%;
按照0.5g/L的磁性生物炭用量,在pH9.0时,铬(VI)浓度500mg/L的地下水中,去除率可达68%;
按照5.0g/L的磁性生物炭用量,在pH9.0时,铬(VI)浓度500mg/L的地下水中,去除率可达76%;
3、含镉离子的地下水中,所述磁性生物炭对铅离子的吸附量如下:
按照0.5g/L的磁性生物炭用量,在pH5.0时,镉离子浓度100mg/L的地下 水中,去除率可达75%;
按照5.0g/L的磁性生物炭用量,在pH5.0时,镉离子浓度100mg/L的地下水中,去除率可达79%;
按照0.5g/L的磁性生物炭用量,在pH7.0时,镉离子浓度100mg/L的地下水中,去除率可达82%;
按照5.0g/L的磁性生物炭用量,在pH7.0时,镉离子浓度100mg/L的地下水中,去除率可达88%;
按照0.5g/L的磁性生物炭用量,在pH9.0时,镉离子浓度100mg/L的地下水中,去除率可达93%;
按照5.0g/L的磁性生物炭用量,在pH9.0时,镉离子浓度100mg/L的地下水中,去除率可达100%。
其他实施例制备的磁性生物炭上述效果与实施例23基本一致。
试验例2
向一定浓度范围的硝态氮、铵态氮和磷溶液中,加入上述实施例23获得的磁性生物炭终浓度为5.0g/L,振荡吸附8小时,吸附后用强磁铁将磁性生物炭和水进行固液分离,即可实现对水中氮、磷的去除。含硝态氮250mg/L的水中,去除率90%以上;含总磷10mg/L的水中,去除率98%以上;含铵态氮100mg/L的水中,去除率90%以上。
其他实施例制备的磁性生物炭上述效果与实施例23基本一致。

Claims (10)

  1. 一种基于铁富集植物的磁性生物炭,其特征在于,由铁富集植物直接经高温热解炭化或水热炭化得到磁性生物炭。
  2. 根据权利要求1所述的基于铁富集植物的磁性生物炭,其特征在于,所述铁富集植物包括天然的铁富集植物或者经人工诱导而具备铁富集能力的植物中的一种或者几种。
  3. 根据权利要求1所述的基于铁富集植物制备的磁性生物炭,其特征在于,所述天然的铁富集植物为白茅(Imperata cylindrica(L.)P.Beauv.)或者狗牙根(Cynodon dactylon(L.)Pers.),所述经人工诱导而具备铁富集能力的植物为凤眼莲(Eichhornia crassipes(Mart.)Solms))。
  4. 一种如权利要求1所述的基于铁富集植物的磁性生物炭的制备方法,其特征在于,包括如下步骤:
    (1)用去离子水对铁富集植物进行清洗,于室温下自然风干,在烘箱中于50-105℃干燥12-24小时,粉碎并过50-100目筛,得到铁富集植物的生物质粉末;
    (2)将步骤(1)中制得的生物质粉末放入炭化装置,于隔绝氧气下进行炭化,冷却至室温取出,洗涤,干燥,即得到磁性生物炭。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为电炉高温热解炭化装置,热解温度为300-700℃,升温速率5-15℃/分钟,热解时间1-4小时。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为微波热解炭化装置,微波热解碳化的功率600-1800W,热解时间5-40分钟。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为水热炭化装置,水热反应温度200-450℃,水热反应时间30-300分钟,压强4-5MPa。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的洗涤,先后采用去离子水和无水乙醇进行,所述的干燥温度为50-80℃。
  9. 一种如权利要求1所述的基于铁富集植物的磁性生物炭在吸附地下水中重金属离子铅和镉;以及去除水中氮和磷的中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述基于铁富集植物的磁性生物炭的用量为0.5~5.0g/L,用于铅浓度不超过600mg/L,或六价铬浓度不超过500mg/L,或镉离子浓度不超过100mg/L的地下水中。
PCT/CN2020/070200 2019-12-13 2020-01-03 一种基于铁富集植物的磁性生物炭及其制备方法和应用 WO2021114441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911290956.9A CN111036174B (zh) 2019-12-13 2019-12-13 一种基于铁富集植物的磁性生物炭及其制备方法和应用
CN201911290956.9 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114441A1 true WO2021114441A1 (zh) 2021-06-17

Family

ID=70236570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070200 WO2021114441A1 (zh) 2019-12-13 2020-01-03 一种基于铁富集植物的磁性生物炭及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111036174B (zh)
WO (1) WO2021114441A1 (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617333A (zh) * 2021-09-16 2021-11-09 茅台学院 利用高粱秸秆制备的磁性生物炭吸附剂及制备方法与应用
CN113753890A (zh) * 2021-08-23 2021-12-07 河海大学 一种处理含2-氯苯酚废水的生物炭及其制备方法、装置
CN113926423A (zh) * 2021-09-08 2022-01-14 广东工业大学 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法
CN114230005A (zh) * 2021-12-30 2022-03-25 中建安装集团有限公司 一种磁性生物炭的制备方法及应用
CN114229983A (zh) * 2021-11-29 2022-03-25 哈尔滨工业大学(深圳) 利用含铁剩余污泥制备催化活性生物炭及抗生素去除方法
CN114560542A (zh) * 2022-02-28 2022-05-31 安徽工业大学 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用
CN114682216A (zh) * 2022-04-06 2022-07-01 中国科学院沈阳应用生态研究所 冻融环境同步处理镉砷的富铁磁性生物炭的制备方法及应用
CN114768761A (zh) * 2022-04-15 2022-07-22 广东省科学院生态环境与土壤研究所 一种含高持久性自由基生物炭的制备及对重金属的去除应用
CN115025789A (zh) * 2022-06-14 2022-09-09 三峡大学 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用
CN115069216A (zh) * 2022-07-08 2022-09-20 江苏里下河地区农业科学研究所 一种磁性活性生物炭的制备方法及应用
CN115138336A (zh) * 2022-06-29 2022-10-04 北京科技大学 用于酸性含磷污水处理的赤泥-花生壳基复合材料的制备方法
CN115178227A (zh) * 2022-07-18 2022-10-14 陕西科技大学 一种煤气化渣磁性吸附材料及其制备方法
CN115259151A (zh) * 2022-06-20 2022-11-01 中国建筑第八工程局有限公司 高碱性生物炭及其制备方法和应用
CN115353104A (zh) * 2022-09-05 2022-11-18 山西顺福祥环保科技有限责任公司 一种利用中药渣制备柱状活性炭的方法及产品
CN115554979A (zh) * 2022-10-12 2023-01-03 云南中烟工业有限责任公司 一种生物炭材料对烟用香精吸附的方法
CN115584135A (zh) * 2022-09-27 2023-01-10 合肥工业大学 软磁固废复合的生物质基高电阻率自损耗电磁屏蔽材料的制备
CN115845900A (zh) * 2022-12-05 2023-03-28 中国科学院东北地理与农业生态研究所 一种活化过硫酸盐降解有机污染物的磁性水热炭的制备方法及其应用
CN115999509A (zh) * 2023-02-09 2023-04-25 新疆天山莲药业有限公司 一种雪莲药渣生物炭改良方法、产品及应用
CN116020396A (zh) * 2022-10-25 2023-04-28 湖南大学 一种铁渣生物炭复合材料及其制备方法与应用
CN116173905A (zh) * 2023-03-21 2023-05-30 西安建筑科技大学 一种热解生物炭/地聚物复合材料的制备及其应用
CN116351390A (zh) * 2021-12-21 2023-06-30 天津大学 一种基于镉吸附水热炭热解提质再生的生物炭及其制备方法和应用
CN116637590A (zh) * 2023-04-11 2023-08-25 内蒙古工业大学 一种改性磁性生物炭、制备方法及其在吸附堆肥重金属中的应用
CN116786082A (zh) * 2023-07-27 2023-09-22 大同同星抗生素有限责任公司 一种土霉素的特异性吸附剂及其制备方法
CN116920795A (zh) * 2023-06-14 2023-10-24 华南理工大学 一种基于废棉布热解炭复合材料矿化四环素类抗生素的方法
CN116984355A (zh) * 2023-07-27 2023-11-03 昆明理工大学 一种利用固体废弃物制备生物炭的方法、产品及应用
CN117123221A (zh) * 2023-09-18 2023-11-28 华南农业大学 一种生物质铁碳复合材料及其制备与应用方法
CN117402624A (zh) * 2023-10-18 2024-01-16 中国农业科学院农业环境与可持续发展研究所 一种用于土壤保水的铁基生物炭微生物改性方法
CN117866648A (zh) * 2023-02-15 2024-04-12 生态环境部南京环境科学研究所 一种含油污泥和农林废弃物协同热解制备生物炭的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111530478A (zh) * 2020-05-10 2020-08-14 中南林业科技大学 一种杂化富镉生物炭复合材料的制备方法及用途
CN113694881B (zh) * 2020-05-22 2022-12-30 中国环境科学研究院 一种废弃生物质制备零价铁负载生物炭材料的方法
CN113695375B (zh) * 2020-05-22 2022-11-01 中国环境科学研究院 一种土壤污染修复的方法与装置
CN113694882B (zh) * 2020-05-22 2023-03-10 中国环境科学研究院 一种体相负载零价铁生物炭材料的制备方法
CN113692798B (zh) * 2020-05-22 2022-12-20 中国环境科学研究院 一种土壤养分优化调控技术方法
CN113695384B (zh) * 2020-05-23 2022-10-25 中国环境科学研究院 一种土壤重金属元素污染的植物修复装置和修复方法
CN113695385B (zh) * 2020-05-23 2022-11-01 中国环境科学研究院 一种农业活动区土壤层重金属的微生物修复方法
CN113695382B (zh) * 2020-05-23 2023-08-15 中国环境科学研究院 一种微生物土壤层弥散混合接种方法
CN113714273B (zh) * 2020-05-24 2022-10-25 中国环境科学研究院 一种土壤石油烃污染的快速修复装置和修复方法
CN113714276B (zh) * 2020-05-24 2022-10-21 中国环境科学研究院 一种土壤石油烃污染的修复装置和修复方法
CN113714269A (zh) * 2020-05-24 2021-11-30 中国环境科学研究院 一种土壤养分优化调控技术方法
CN111672469B (zh) * 2020-06-17 2022-09-13 西南科技大学 一种负载Fe-Ti双金属纳米颗粒的蜂蜜炭材料及其制备方法、应用
CN111760550B (zh) * 2020-06-24 2022-04-08 生态环境部南京环境科学研究所 一种制备多孔级活性生物炭吸附材料的装置及方法
CN111841539B (zh) * 2020-07-23 2023-01-20 中国矿业大学 一种赤铁矿尾矿资源化利用制备非均相催化剂的方法及非均相催化剂的应用
CN112108118B (zh) * 2020-09-21 2023-04-25 黄河水利职业技术学院 一种基于芬顿污泥和纤维素的磁性生物质炭及其制备方法和应用
CN112403451B (zh) * 2020-11-11 2022-08-05 湖南长重机器股份有限公司 一种多孔污泥染料吸附剂及其制备方法
CN114804972B (zh) * 2021-01-27 2023-08-01 中国环境科学研究院 生物炭协同土壤腐殖质调控重金属活性的方法
CN114804932A (zh) * 2021-01-27 2022-07-29 中国环境科学研究院 水生植物制备富铁生物炭的方法
CN112872009B (zh) * 2021-03-31 2022-04-19 郑州大学 一种贫化土壤的修复方法
CN113200542A (zh) * 2021-04-06 2021-08-03 西安理工大学 一种利用槐叶萍制备多孔生物质基电极材料的方法
CN113750917B (zh) * 2021-09-10 2024-05-03 刘建浩 一种高弹性耐高温气凝胶及其制备方法
CN115920896A (zh) * 2022-11-16 2023-04-07 昆明理工大学 一种降解环丙沙星的催化剂及其制备方法和应用
CN116393113A (zh) * 2023-04-20 2023-07-07 西藏大学 一种用于修复高原尾矿重金属生物炭的制备方法及其应用
CN117065722A (zh) * 2023-09-04 2023-11-17 诚邦生态环境股份有限公司 一种磁性ldh生物炭及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850887A (zh) * 2019-01-17 2019-06-07 三峡大学 蜈蚣草富集铜元素的生物炭的制备方法及其应用
KR20190102896A (ko) * 2018-02-27 2019-09-04 한국해양대학교 산학협력단 중금속 제거용 마그네틱 바이오차 제조방법, 이에 따라 제조된 중금속 제거용 바이오차 및 이를 포함하는 중금속 제거용 흡착제
CN110449127A (zh) * 2019-09-12 2019-11-15 湖南科技大学 一种生物炭基载铁复合材料制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423051A (zh) * 2016-07-29 2017-02-22 辽宁石油化工大学 一种磁性活化水热生物炭微球的制备方法与应用
CN106732350B (zh) * 2016-11-18 2019-07-16 浙江大学 对砷镉复合污染修复的磁性生物炭吸附材料的制备方法
CN106694541A (zh) * 2016-12-29 2017-05-24 中冶华天工程技术有限公司 生物炭基缓释肥协同白茅修复重金属污染尾矿的方法
CN109675564B (zh) * 2019-01-17 2022-06-03 三峡大学 水葫芦铁生物炭的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102896A (ko) * 2018-02-27 2019-09-04 한국해양대학교 산학협력단 중금속 제거용 마그네틱 바이오차 제조방법, 이에 따라 제조된 중금속 제거용 바이오차 및 이를 포함하는 중금속 제거용 흡착제
CN109850887A (zh) * 2019-01-17 2019-06-07 三峡大学 蜈蚣草富集铜元素的生物炭的制备方法及其应用
CN110449127A (zh) * 2019-09-12 2019-11-15 湖南科技大学 一种生物炭基载铁复合材料制备方法及其应用

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753890A (zh) * 2021-08-23 2021-12-07 河海大学 一种处理含2-氯苯酚废水的生物炭及其制备方法、装置
CN113926423A (zh) * 2021-09-08 2022-01-14 广东工业大学 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法
CN113926423B (zh) * 2021-09-08 2023-12-05 广东工业大学 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法
CN113617333A (zh) * 2021-09-16 2021-11-09 茅台学院 利用高粱秸秆制备的磁性生物炭吸附剂及制备方法与应用
CN114229983A (zh) * 2021-11-29 2022-03-25 哈尔滨工业大学(深圳) 利用含铁剩余污泥制备催化活性生物炭及抗生素去除方法
CN116351390A (zh) * 2021-12-21 2023-06-30 天津大学 一种基于镉吸附水热炭热解提质再生的生物炭及其制备方法和应用
CN114230005A (zh) * 2021-12-30 2022-03-25 中建安装集团有限公司 一种磁性生物炭的制备方法及应用
CN114560542B (zh) * 2022-02-28 2023-03-14 安徽工业大学 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用
CN114560542A (zh) * 2022-02-28 2022-05-31 安徽工业大学 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用
CN114682216A (zh) * 2022-04-06 2022-07-01 中国科学院沈阳应用生态研究所 冻融环境同步处理镉砷的富铁磁性生物炭的制备方法及应用
CN114768761A (zh) * 2022-04-15 2022-07-22 广东省科学院生态环境与土壤研究所 一种含高持久性自由基生物炭的制备及对重金属的去除应用
CN115025789A (zh) * 2022-06-14 2022-09-09 三峡大学 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用
CN115025789B (zh) * 2022-06-14 2024-03-12 三峡大学 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用
CN115259151A (zh) * 2022-06-20 2022-11-01 中国建筑第八工程局有限公司 高碱性生物炭及其制备方法和应用
CN115138336A (zh) * 2022-06-29 2022-10-04 北京科技大学 用于酸性含磷污水处理的赤泥-花生壳基复合材料的制备方法
CN115069216A (zh) * 2022-07-08 2022-09-20 江苏里下河地区农业科学研究所 一种磁性活性生物炭的制备方法及应用
CN115069216B (zh) * 2022-07-08 2023-09-22 江苏里下河地区农业科学研究所 一种磁性活性生物炭的制备方法及应用
CN115178227A (zh) * 2022-07-18 2022-10-14 陕西科技大学 一种煤气化渣磁性吸附材料及其制备方法
CN115353104A (zh) * 2022-09-05 2022-11-18 山西顺福祥环保科技有限责任公司 一种利用中药渣制备柱状活性炭的方法及产品
CN115584135A (zh) * 2022-09-27 2023-01-10 合肥工业大学 软磁固废复合的生物质基高电阻率自损耗电磁屏蔽材料的制备
CN115554979A (zh) * 2022-10-12 2023-01-03 云南中烟工业有限责任公司 一种生物炭材料对烟用香精吸附的方法
CN116020396A (zh) * 2022-10-25 2023-04-28 湖南大学 一种铁渣生物炭复合材料及其制备方法与应用
CN115845900A (zh) * 2022-12-05 2023-03-28 中国科学院东北地理与农业生态研究所 一种活化过硫酸盐降解有机污染物的磁性水热炭的制备方法及其应用
CN115999509A (zh) * 2023-02-09 2023-04-25 新疆天山莲药业有限公司 一种雪莲药渣生物炭改良方法、产品及应用
CN117866648A (zh) * 2023-02-15 2024-04-12 生态环境部南京环境科学研究所 一种含油污泥和农林废弃物协同热解制备生物炭的方法
CN116173905A (zh) * 2023-03-21 2023-05-30 西安建筑科技大学 一种热解生物炭/地聚物复合材料的制备及其应用
CN116637590A (zh) * 2023-04-11 2023-08-25 内蒙古工业大学 一种改性磁性生物炭、制备方法及其在吸附堆肥重金属中的应用
CN116920795A (zh) * 2023-06-14 2023-10-24 华南理工大学 一种基于废棉布热解炭复合材料矿化四环素类抗生素的方法
CN116984355A (zh) * 2023-07-27 2023-11-03 昆明理工大学 一种利用固体废弃物制备生物炭的方法、产品及应用
CN116786082A (zh) * 2023-07-27 2023-09-22 大同同星抗生素有限责任公司 一种土霉素的特异性吸附剂及其制备方法
CN116786082B (zh) * 2023-07-27 2024-05-28 大同同星抗生素有限责任公司 一种土霉素的特异性吸附剂及其制备方法
CN116984355B (zh) * 2023-07-27 2024-06-07 昆明理工大学 一种利用固体废弃物制备生物炭的方法、产品及应用
CN117123221A (zh) * 2023-09-18 2023-11-28 华南农业大学 一种生物质铁碳复合材料及其制备与应用方法
CN117123221B (zh) * 2023-09-18 2024-05-07 华南农业大学 一种生物质铁碳复合材料及其制备与应用方法
CN117402624A (zh) * 2023-10-18 2024-01-16 中国农业科学院农业环境与可持续发展研究所 一种用于土壤保水的铁基生物炭微生物改性方法

Also Published As

Publication number Publication date
CN111036174A (zh) 2020-04-21
CN111036174B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN111036174B (zh) 一种基于铁富集植物的磁性生物炭及其制备方法和应用
CN104941583B (zh) 一种镉砷吸附材料、制备方法及用途
CN111744459A (zh) 一种去除水体中四环素的水稻秸秆改性生物炭的制备方法
CN106362690A (zh) 一种磁性生物炭吸附材料及其制备方法
CN106362685A (zh) 一种用于除砷的改性生物炭材料、其制备及应用
CN103058314A (zh) 一种去除水中六价铬的方法
CN101642699A (zh) 一种磁性生物碳吸附材料的制备方法及其用途
CN108126657B (zh) 磁性猪粪生物炭及其制备方法
CN106423051A (zh) 一种磁性活化水热生物炭微球的制备方法与应用
CN101224412A (zh) 一种吸附重金属的生物吸附剂及其制备方法
CN106179216A (zh) 一种磁性活化水热生物炭的制备方法与应用
CN109534432A (zh) 一种去除富营养化水体中磷的生物炭改性材料的制备方法
CN116474720B (zh) 一种基于赤泥增强磁性秸秆生物炭材料的制备方法与应用
CN110142032A (zh) 壳聚糖生物炭复合材料及其制备方法和应用
CN112774625B (zh) 氧化锆掺杂磁性高表面活性炭复合材料、制备方法及应用
CN110665466A (zh) 一种吸附水中Cd的磁性复合材料及其制备方法
CN110368900B (zh) 一种竹炭改性材料及其制备方法和用途
CN106064836A (zh) 一种改性绿色合成纳米氧化铁及其制备方法和应用
CN114505054B (zh) 一种负载高含量零价铁磁性生物炭的制备方法及其应用
CN114890492A (zh) 一种利用蟹壳粉生物炭氧化处理地下水中三价砷的方法
CN111530419B (zh) 一种菹草制备磁性生物质炭的方法及其应用
CN113184921A (zh) 基于含镍污泥的ldh基复合材料及其制备方法
CN117384647B (zh) 一种富里酸复合氮掺杂磁性碳亚微米球及其制备方法和应用
CN116850946B (zh) 一种炭基负载型纳米铁吸附材料的绿色制备方法
CN118083973A (zh) 一种花生壳生物炭的制备及其对电镀废水中铜离子和镍离子的吸附方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900225

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20900225

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20900225

Country of ref document: EP

Kind code of ref document: A1