WO2021114441A1 - 一种基于铁富集植物的磁性生物炭及其制备方法和应用 - Google Patents
一种基于铁富集植物的磁性生物炭及其制备方法和应用 Download PDFInfo
- Publication number
- WO2021114441A1 WO2021114441A1 PCT/CN2020/070200 CN2020070200W WO2021114441A1 WO 2021114441 A1 WO2021114441 A1 WO 2021114441A1 CN 2020070200 W CN2020070200 W CN 2020070200W WO 2021114441 A1 WO2021114441 A1 WO 2021114441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- biochar
- carbonization
- pyrolysis
- magnetic biochar
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 252
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 110
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000000197 pyrolysis Methods 0.000 claims abstract description 106
- 238000003763 carbonization Methods 0.000 claims abstract description 91
- 241000196324 Embryophyta Species 0.000 claims abstract description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 5
- 240000007171 Imperata cylindrica Species 0.000 claims abstract description 3
- 239000002028 Biomass Substances 0.000 claims description 73
- 239000000843 powder Substances 0.000 claims description 55
- 239000008367 deionised water Substances 0.000 claims description 52
- 229910021641 deionized water Inorganic materials 0.000 claims description 52
- 239000003673 groundwater Substances 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 13
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 11
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 7
- 244000052363 Cynodon dactylon Species 0.000 claims description 6
- 240000003826 Eichhornia crassipes Species 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 abstract description 9
- 239000003795 chemical substances by application Substances 0.000 abstract description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000003344 environmental pollutant Substances 0.000 abstract description 5
- 231100000719 pollutant Toxicity 0.000 abstract description 5
- 241001598107 Imperata Species 0.000 description 24
- 239000012299 nitrogen atmosphere Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 18
- 239000010802 sludge Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 5
- 150000002505 iron Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000003608 fece Anatomy 0.000 description 4
- 239000010871 livestock manure Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 3
- 235000011613 Pinus brutia Nutrition 0.000 description 3
- 241000018646 Pinus brutia Species 0.000 description 3
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 3
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052595 hematite Inorganic materials 0.000 description 3
- 239000011019 hematite Substances 0.000 description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 3
- 229910052935 jarosite Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000008857 Ferritin Human genes 0.000 description 2
- 238000008416 Ferritin Methods 0.000 description 2
- 108050000784 Ferritin Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 238000001754 furnace pyrolysis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 235000010204 pine bark Nutrition 0.000 description 1
- 230000001863 plant nutrition Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940082787 spirulina Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the invention belongs to the technical field of biochar, and specifically relates to a magnetic biochar based on iron-enriched plants, and a preparation method and application thereof.
- biochar As an environmentally friendly material, biochar has been widely used in the fields of waste recycling, soil quality control, and environmental pollution remediation. In recent years, in order to overcome the shortcomings of biochar in the actual utilization process, such as difficulty in recovery, difficulty in regeneration, and small adsorption capacity, the preparation and application of magnetic biochar have attracted widespread attention.
- the methods of preparing magnetic biochar are usually divided into the following categories:
- Impregnating biomass or biochar with a magnetizing agent such as iron salt and then directly pyrolyzing the impregnated biomass or biochar to obtain magnetic biochar.
- a magnetizing agent such as iron salt
- Chinese patent (201811621104.9) uses ferric chloride solution to impregnate peanut shell biomass and then pyrolyze to obtain magnetic biochar.
- the Chinese patent (201910064397.3) puts a mixed solution of rice straw-based biochar and iron acetylacetonate in a hydrothermal reaction kettle to obtain magnetic biochar after hydrothermal treatment.
- the Chinese patent (201810692857.2) mixes the magnetic Fe 3 O 4 nano-powder coated with a single layer of silica with chicken manure biochar, bentonite, poplar powder and cetyltrimethylammonium bromide to obtain a suspension, and then suspend it The liquid is mixed with polyvinyl alcohol and dried to obtain magnetic biochar.
- the Chinese patent (ZL201611024652.4) adds a mixed solution of Fe 3+ and Fe 2+ with a pH value of 11-12 to plant straw biomass, stirs, and mixes the obtained solid with calcium carbonate powder after anoxic pyrolysis, and obtains magnetic properties after anoxic pyrolysis bio-charcoal.
- the Chinese patent (201711449364.8) mixes Fe 3+ and Fe 2+ solutions with pig manure biochar, adjusts the pH to 10-11, the solution is continuously stirred and boiled, and the obtained solid is dried to obtain magnetic pig manure biochar.
- the Chinese patent (201710303621.0) uses sodium carbonate-treated traditional Chinese medicine residue powder to mix with iron salt solution to adjust the pH to 10-11, and the solid is pyrolyzed to obtain magnetic biochar.
- the Chinese patent (201711363407.0) mixes Fe 3+ and Fe 2+ solutions with steam-activated biomass charcoal, and adds lye to generate Fe 3 O 4 and load it on the surface of the biochar to obtain magnetic biochar.
- the Chinese patent (201810657102.9) mixes sulfuric acid-treated camellia shell biochar with Fe 3+ and Fe 2+ solutions, adds urea to adjust the pH to 10-12, and after the reaction, the solid is dried to obtain magnetic biochar.
- the Chinese patent (201910058205.8) mixes Fe 3+ and Fe 2+ solutions with mulberry stalk biochar after hydrochloric acid treatment, and then adds a strong base to cause a co-precipitation reaction. After the product is dried, a magnetic biochar adsorbent is obtained.
- the Chinese patent (201910230934.7) disperses spirulina into a ferric nitrate solution, adds sodium hydroxide solution to cause precipitation reaction, and then further pyrolysis carbonization to obtain magnetic biochar.
- the common feature of the above preparation methods is the need to add exogenous magnetizing substances. For example, adding iron salt, cobalt salt and other compounds to form ferrite, Fe 3 O 4 or ⁇ -Fe 2 O 3 and other magnetic substances, adding iron-containing minerals (such as hematite) to transform into magnetic substances, or directly adding magnetic substances Such as zero-valent iron, Fe 3 O 4 or ⁇ -Fe 2 O 3 and so on.
- iron-containing minerals such as hematite
- directly adding magnetic substances Such as zero-valent iron, Fe 3 O 4 or ⁇ -Fe 2 O 3 and so on.
- the disadvantage of the above method is that the additional introduction of the magnetizer causes the preparation process to be cumbersome and increases the cost. At the same time, some toxic chemical reagents are used in the preparation process, which may cause secondary pollution.
- the Chinese patent uses the surplus sludge in the municipal sewage treatment plant as a raw material, and directly high-temperature (400-900°C) pyrolysis carbonization, obtains the magnetic sludge biochar. Since the sewage treatment plant added polyferric sulfate in the process of flocculation and dewatering, the remaining sludge does not need to be added with a magnetizing agent, and the magnetic sludge biochar can be formed by pyrolysis.
- Chinese patent (201910004100.4) utilizes the direct high temperature (680-900°C) pyrolysis carbonization of sewage treatment plant sludge (also containing iron salt flocculant) to obtain magnetic sludge biochar, which is used in water with fluoroquinolone antibiotics such as ciprofloxacin ⁇ sorption.
- the magnetizing agent in the above patent is an artificially added iron-containing flocculant in the early stage, which is retained in the sludge, and the sludge is pyrolyzed to obtain the magnetic sludge biochar. Since the sludge itself contains some toxic and harmful substances, the obtained magnetic sludge biochar may contain harmful substances, which limits its practical application. In contrast, biomass resources are very abundant. Biochar produced by biomass pyrolysis is not only conducive to the resource utilization of biomass, and the further application of the obtained biochar will not bring secondary risks. Therefore, biomass pyrolysis The preparation of biochar is a widely recognized method of preparing biochar.
- Iron-accumulating plants are a common plant in nature, and typical iron-accumulating plants include Imperata cylindrica and bermudagrass. It has been reported in the literature that a large amount of iron accumulates in the form of jarosite [KFe 3 (SO 4 ) 2 (OH) 6 ], ferrihydrite, hematite, ferritin, etc., in the rhizomes and leaves.
- the iron content can reach 23450mg/kg dry weight and 10663mg/kg dry weight respectively (New Phytologist, 2005, 165, 781-789; Plant Physiology and Biochemistry, 2007, 45, 335-340; Acta Histochemica, 2012, 114, 232-236; Journal of Structural Biology, 2016, 193, 23-32.).
- Another iron-rich plant bermudagrass (Journal of Plant Nutrition and Soil Science, 2013, 176, 836-842.), the iron content in its roots, rhizomes and leaves can reach 63,972 mg/kg dry weight, 1603 mg/kg dry weight and 3111mg/kg dry weight.
- iron-enriched plants to produce magnetic biochar by direct pyrolysis has not been reported yet.
- the present invention provides a magnetic biochar based on iron-enriched plants.
- the present invention uses iron-enriched plants to contain a large amount of iron.
- the iron-containing material is directly converted into the magnetic material, and the carbonization and magnetization occur synchronously, and the magnetic biochar is prepared.
- the invention also provides a preparation method and application of magnetic biochar based on iron-enriched plants.
- the iron-enriched plants include one or more of natural iron-enriched plants or plants that are artificially induced to have iron-enrichment ability.
- the natural iron-enriched plant is Imperata cylindrica (L.) P. Beauv. or Cynodon dactylon (L.) Pers.), which is artificially induced to have iron-enrichment ability
- the plant is water hyacinth (Eichhornia crassipes (Mart.) Solms)).
- the method for preparing magnetic biochar based on iron-enriched plants of the present invention includes the following steps:
- step (2) Put the biomass powder prepared in step (1) into a carbonization device, perform carbonization under oxygen isolation, cool to room temperature, take out, wash, and dry to obtain magnetic biochar.
- step (1) is dried at 80°C for 15 hours, crushed and passed through an 80-mesh sieve.
- the carbonization device described in step (2) is an electric furnace high temperature pyrolysis carbonization device, the pyrolysis temperature is 300-700°C, the heating rate is 5-15°C/min, and the pyrolysis time is 1-4 hours. Generally, the pyrolysis is carried out at 500°C, the heating rate is 10°C/min, and the pyrolysis time is 3 hours for magnetization and carbonization.
- the carbonization device described in step (2) is a microwave pyrolysis carbonization device, the power of the microwave pyrolysis carbonization is 600-1800 W, and the pyrolysis time is 5-40 minutes. Under normal circumstances, under 800W power, the pyrolysis time is 30 minutes for magnetization and carbonization.
- the carbonization device described in step (2) is a hydrothermal carbonization device
- the hydrothermal reaction temperature is 200-450°C
- the hydrothermal reaction time is 30-300 minutes
- the pressure is 4-5 MPa.
- the hydrothermal reaction temperature is 300°C
- the hydrothermal reaction time is 40 minutes
- the pressure is 4.5MPa for magnetization and carbonization.
- the carbonization under oxygen isolation in step (2) is to pass nitrogen or argon to isolate the oxygen, that is, carbonization is performed in an atmosphere of nitrogen or argon.
- the washing in step (2) is carried out using deionized water and absolute ethanol successively, and the drying temperature is 50-80°C. Usually, drying at 60°C is sufficient.
- the magnetic biochar based on iron-enriched plants of the present invention is used for adsorbing heavy metal ions lead and cadmium in groundwater; and for removing nitrogen and phosphorus from water.
- the amount of the iron-enriched plant-based magnetic biochar is 0.5 ⁇ 5.0g/L, used for lead concentration not exceeding 600mg/L, or hexavalent chromium concentration not exceeding 500mg/L, or cadmium ion concentration not exceeding 100mg/L of groundwater.
- the present invention uses iron-enriched plants to accumulate a large amount of iron, and the typical iron-enriched plants such as Imperata cylindrica are subjected to high-temperature pyrolysis carbonization or hydrothermal carbonization processes to obtain biochar; at the same time, during the carbonization process, the biochar is enriched in Other forms of iron in the plant body are converted into magnetic iron oxide, so the obtained biochar is a magnetic biochar, and the magnetization and carbonization can be completed simultaneously without adding additional magnetizers.
- the typical iron-enriched plants such as Imperata cylindrica are subjected to high-temperature pyrolysis carbonization or hydrothermal carbonization processes to obtain biochar; at the same time, during the carbonization process, the biochar is enriched in Other forms of iron in the plant body are converted into magnetic iron oxide, so the obtained biochar is a magnetic biochar, and the magnetization and carbonization can be completed simultaneously without adding additional magnetizers.
- the invention directly uses iron-enriched plants as biomass, and directly pyrolysis realizes the simultaneous progress of carbonization and magnetization processes without the need for external magnetizing agents such as iron salts, and obtains magnetic biochar.
- the main principle of this process is: iron-enriched plants accumulate a large amount of iron in the form of jarosite, ferrihydrite, hematite, ferritin, etc. These forms of iron can be transformed into biomass during pyrolysis. Magnetic substances such as ferrite, Fe 3 O 4 ⁇ -Fe 2 O 3, etc., therefore make the obtained biochar magnetic.
- the adsorption capacity of lead and cadmium pollutants in groundwater can reach 370mg/L. g and 152mg/g; it can also remove nitrogen and phosphorus pollutants in water, such as aqueous solutions containing nitrate nitrogen, ammonium nitrogen and phosphorus.
- the present invention has the following advantages:
- the iron-enriched plant used in the present invention is a ubiquitous plant in nature, rich in resources, cheap and easy to obtain. In addition to being rich in iron, it does not contain additional toxic and harmful substances, and other reported sludge Compared with livestock and poultry manure, iron-enriched plants are used as biomass to prepare magnetic biochar, and there is no risk of secondary pollution during the process of preparation and application.
- the iron-enriched plant of the present invention prepares biochar without the need for additional magnetizing agents such as iron salts, and no reagents such as strong alkalis. It is carbonized through direct high-temperature pyrolysis, microwave pyrolysis or hydrothermal pyrolysis. Magnetic biochar can be obtained, no chemical reagent is required compared with the existing method, the preparation process is environmentally friendly, the preparation steps are simple, and the industrial production is easy.
- the biochar prepared by the iron-enriched plant of the present invention shows a good application prospect in the field of adsorption of groundwater lead and cadmium pollutants, and nitrogen and phosphorus pollutants.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 50°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 105°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out.
- the magnetic biochar is obtained by washing with deionized water and absolute ethanol, and drying at 50°C.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 12 hours, crushed and passed through an 80-mesh sieve to obtain a biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 80°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 24 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through a 50-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 80°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through a 100-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 70°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 15°C/min
- the pyrolysis time is 1 hour.
- it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 5°C/min
- the pyrolysis time is 4 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 300°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 700°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours.
- Deionized water and absolute ethanol are washed, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the microwave power is 800W
- the pyrolysis time is 40 minutes.
- it is cooled to room temperature and taken out, and washed with deionized water and absolute ethanol successively. , 60 °C drying, that is to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
- the hydrothermal reaction temperature is 200° C.
- the hydrothermal reaction time is 40 minutes
- the pressure is 4.5 MPa.
- it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
- the hydrothermal reaction temperature is 450° C.
- the hydrothermal reaction time is 40 minutes
- the pressure is 4.5 MPa.
- it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
- the hydrothermal reaction temperature is 300° C.
- the hydrothermal reaction time is 30 minutes
- the pressure is 4.5 MPa.
- it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is performed under a nitrogen atmosphere.
- the hydrothermal reaction temperature is 300° C.
- the hydrothermal reaction time is 300 minutes
- the pressure is 4.5 MPa.
- it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder was put into a hydrothermal carbonization device, and hydrothermal carbonization was carried out in a nitrogen atmosphere.
- the hydrothermal reaction temperature was 300°C
- the hydrothermal reaction time was 40 minutes
- the pressure was 4MPa. Then it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the above-mentioned biomass powder is put into a hydrothermal carbonization device, and hydrothermal carbonization is carried out in a nitrogen atmosphere.
- the hydrothermal reaction temperature is 300° C.
- the hydrothermal reaction time is 40 minutes
- the pressure is 5 MPa.
- it is cooled to room temperature and taken out, washed successively with deionized water and absolute ethanol, and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant bermudagrass is collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- the iron-enriched plant Imperata cylindrica was collected from the field, washed with deionized water, air-dried naturally at room temperature, dried in an oven at 80°C for 15 hours, crushed and passed through an 80-mesh sieve to obtain the biomass powder of the iron-enriched plant.
- the pyrolysis temperature is 500°C
- the heating rate is 10°C/min
- the pyrolysis time is 3 hours. Then it is cooled to room temperature and taken out. It is washed with deionized water and absolute ethanol and dried at 60°C to obtain magnetic biochar.
- Example 23 Add the magnetic biochar obtained in Example 23 to the filtered groundwater containing lead ions, cadmium ions, and both lead ions and cadmium ions at 0.5-5.0g/L.
- the magnetic biochar obtained in Example 23 was shaken and adsorbed for 8 hours. The magnet separates the magnetic biochar from water in solid and liquid, which can remove the heavy metals of lead and cadmium in groundwater.
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 5.0 can reach 80%;
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 5.0 can reach 94%;
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 7.0 can reach 88%;
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 7.0 can reach 97%;
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 9.0 can reach 95%;
- the removal rate of groundwater with a lead ion concentration of 600mg/L at pH 9.0 can reach 100%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 82%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 90%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 78%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 85%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500mg/L can reach 68%;
- the removal rate of chromium (VI) in groundwater with a concentration of 500 mg/L can reach 76%;
- the removal rate of cadmium ion concentration in groundwater of 100mg/L can reach 75%;
- the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 5.0 can reach 79%;
- the removal rate of groundwater with cadmium ion concentration of 100mg/L can reach 82%;
- the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 7.0 can reach 88%;
- the removal rate of cadmium ion concentration of 100mg/L in groundwater can reach 93%;
- the removal rate of groundwater with a cadmium ion concentration of 100mg/L at pH 9.0 can reach 100%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims (10)
- 一种基于铁富集植物的磁性生物炭,其特征在于,由铁富集植物直接经高温热解炭化或水热炭化得到磁性生物炭。
- 根据权利要求1所述的基于铁富集植物的磁性生物炭,其特征在于,所述铁富集植物包括天然的铁富集植物或者经人工诱导而具备铁富集能力的植物中的一种或者几种。
- 根据权利要求1所述的基于铁富集植物制备的磁性生物炭,其特征在于,所述天然的铁富集植物为白茅(Imperata cylindrica(L.)P.Beauv.)或者狗牙根(Cynodon dactylon(L.)Pers.),所述经人工诱导而具备铁富集能力的植物为凤眼莲(Eichhornia crassipes(Mart.)Solms))。
- 一种如权利要求1所述的基于铁富集植物的磁性生物炭的制备方法,其特征在于,包括如下步骤:(1)用去离子水对铁富集植物进行清洗,于室温下自然风干,在烘箱中于50-105℃干燥12-24小时,粉碎并过50-100目筛,得到铁富集植物的生物质粉末;(2)将步骤(1)中制得的生物质粉末放入炭化装置,于隔绝氧气下进行炭化,冷却至室温取出,洗涤,干燥,即得到磁性生物炭。
- 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为电炉高温热解炭化装置,热解温度为300-700℃,升温速率5-15℃/分钟,热解时间1-4小时。
- 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为微波热解炭化装置,微波热解碳化的功率600-1800W,热解时间5-40分钟。
- 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的炭化装置为水热炭化装置,水热反应温度200-450℃,水热反应时间30-300分钟,压强4-5MPa。
- 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述的洗涤,先后采用去离子水和无水乙醇进行,所述的干燥温度为50-80℃。
- 一种如权利要求1所述的基于铁富集植物的磁性生物炭在吸附地下水中重金属离子铅和镉;以及去除水中氮和磷的中的应用。
- 根据权利要求9所述的应用,其特征在于,所述基于铁富集植物的磁性生物炭的用量为0.5~5.0g/L,用于铅浓度不超过600mg/L,或六价铬浓度不超过500mg/L,或镉离子浓度不超过100mg/L的地下水中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911290956.9A CN111036174B (zh) | 2019-12-13 | 2019-12-13 | 一种基于铁富集植物的磁性生物炭及其制备方法和应用 |
CN201911290956.9 | 2019-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114441A1 true WO2021114441A1 (zh) | 2021-06-17 |
Family
ID=70236570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/070200 WO2021114441A1 (zh) | 2019-12-13 | 2020-01-03 | 一种基于铁富集植物的磁性生物炭及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111036174B (zh) |
WO (1) | WO2021114441A1 (zh) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113617333A (zh) * | 2021-09-16 | 2021-11-09 | 茅台学院 | 利用高粱秸秆制备的磁性生物炭吸附剂及制备方法与应用 |
CN113753890A (zh) * | 2021-08-23 | 2021-12-07 | 河海大学 | 一种处理含2-氯苯酚废水的生物炭及其制备方法、装置 |
CN113926423A (zh) * | 2021-09-08 | 2022-01-14 | 广东工业大学 | 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法 |
CN114230005A (zh) * | 2021-12-30 | 2022-03-25 | 中建安装集团有限公司 | 一种磁性生物炭的制备方法及应用 |
CN114229983A (zh) * | 2021-11-29 | 2022-03-25 | 哈尔滨工业大学(深圳) | 利用含铁剩余污泥制备催化活性生物炭及抗生素去除方法 |
CN114560542A (zh) * | 2022-02-28 | 2022-05-31 | 安徽工业大学 | 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用 |
CN114682216A (zh) * | 2022-04-06 | 2022-07-01 | 中国科学院沈阳应用生态研究所 | 冻融环境同步处理镉砷的富铁磁性生物炭的制备方法及应用 |
CN114768761A (zh) * | 2022-04-15 | 2022-07-22 | 广东省科学院生态环境与土壤研究所 | 一种含高持久性自由基生物炭的制备及对重金属的去除应用 |
CN115025789A (zh) * | 2022-06-14 | 2022-09-09 | 三峡大学 | 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用 |
CN115069216A (zh) * | 2022-07-08 | 2022-09-20 | 江苏里下河地区农业科学研究所 | 一种磁性活性生物炭的制备方法及应用 |
CN115138336A (zh) * | 2022-06-29 | 2022-10-04 | 北京科技大学 | 用于酸性含磷污水处理的赤泥-花生壳基复合材料的制备方法 |
CN115178227A (zh) * | 2022-07-18 | 2022-10-14 | 陕西科技大学 | 一种煤气化渣磁性吸附材料及其制备方法 |
CN115259151A (zh) * | 2022-06-20 | 2022-11-01 | 中国建筑第八工程局有限公司 | 高碱性生物炭及其制备方法和应用 |
CN115353104A (zh) * | 2022-09-05 | 2022-11-18 | 山西顺福祥环保科技有限责任公司 | 一种利用中药渣制备柱状活性炭的方法及产品 |
CN115554979A (zh) * | 2022-10-12 | 2023-01-03 | 云南中烟工业有限责任公司 | 一种生物炭材料对烟用香精吸附的方法 |
CN115584135A (zh) * | 2022-09-27 | 2023-01-10 | 合肥工业大学 | 软磁固废复合的生物质基高电阻率自损耗电磁屏蔽材料的制备 |
CN115845900A (zh) * | 2022-12-05 | 2023-03-28 | 中国科学院东北地理与农业生态研究所 | 一种活化过硫酸盐降解有机污染物的磁性水热炭的制备方法及其应用 |
CN115999509A (zh) * | 2023-02-09 | 2023-04-25 | 新疆天山莲药业有限公司 | 一种雪莲药渣生物炭改良方法、产品及应用 |
CN116020396A (zh) * | 2022-10-25 | 2023-04-28 | 湖南大学 | 一种铁渣生物炭复合材料及其制备方法与应用 |
CN116173905A (zh) * | 2023-03-21 | 2023-05-30 | 西安建筑科技大学 | 一种热解生物炭/地聚物复合材料的制备及其应用 |
CN116351390A (zh) * | 2021-12-21 | 2023-06-30 | 天津大学 | 一种基于镉吸附水热炭热解提质再生的生物炭及其制备方法和应用 |
CN116637590A (zh) * | 2023-04-11 | 2023-08-25 | 内蒙古工业大学 | 一种改性磁性生物炭、制备方法及其在吸附堆肥重金属中的应用 |
CN116786082A (zh) * | 2023-07-27 | 2023-09-22 | 大同同星抗生素有限责任公司 | 一种土霉素的特异性吸附剂及其制备方法 |
CN116920795A (zh) * | 2023-06-14 | 2023-10-24 | 华南理工大学 | 一种基于废棉布热解炭复合材料矿化四环素类抗生素的方法 |
CN116984355A (zh) * | 2023-07-27 | 2023-11-03 | 昆明理工大学 | 一种利用固体废弃物制备生物炭的方法、产品及应用 |
CN117123221A (zh) * | 2023-09-18 | 2023-11-28 | 华南农业大学 | 一种生物质铁碳复合材料及其制备与应用方法 |
CN117402624A (zh) * | 2023-10-18 | 2024-01-16 | 中国农业科学院农业环境与可持续发展研究所 | 一种用于土壤保水的铁基生物炭微生物改性方法 |
CN117866648A (zh) * | 2023-02-15 | 2024-04-12 | 生态环境部南京环境科学研究所 | 一种含油污泥和农林废弃物协同热解制备生物炭的方法 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111530478A (zh) * | 2020-05-10 | 2020-08-14 | 中南林业科技大学 | 一种杂化富镉生物炭复合材料的制备方法及用途 |
CN113694881B (zh) * | 2020-05-22 | 2022-12-30 | 中国环境科学研究院 | 一种废弃生物质制备零价铁负载生物炭材料的方法 |
CN113695375B (zh) * | 2020-05-22 | 2022-11-01 | 中国环境科学研究院 | 一种土壤污染修复的方法与装置 |
CN113694882B (zh) * | 2020-05-22 | 2023-03-10 | 中国环境科学研究院 | 一种体相负载零价铁生物炭材料的制备方法 |
CN113692798B (zh) * | 2020-05-22 | 2022-12-20 | 中国环境科学研究院 | 一种土壤养分优化调控技术方法 |
CN113695384B (zh) * | 2020-05-23 | 2022-10-25 | 中国环境科学研究院 | 一种土壤重金属元素污染的植物修复装置和修复方法 |
CN113695385B (zh) * | 2020-05-23 | 2022-11-01 | 中国环境科学研究院 | 一种农业活动区土壤层重金属的微生物修复方法 |
CN113695382B (zh) * | 2020-05-23 | 2023-08-15 | 中国环境科学研究院 | 一种微生物土壤层弥散混合接种方法 |
CN113714273B (zh) * | 2020-05-24 | 2022-10-25 | 中国环境科学研究院 | 一种土壤石油烃污染的快速修复装置和修复方法 |
CN113714276B (zh) * | 2020-05-24 | 2022-10-21 | 中国环境科学研究院 | 一种土壤石油烃污染的修复装置和修复方法 |
CN113714269A (zh) * | 2020-05-24 | 2021-11-30 | 中国环境科学研究院 | 一种土壤养分优化调控技术方法 |
CN111672469B (zh) * | 2020-06-17 | 2022-09-13 | 西南科技大学 | 一种负载Fe-Ti双金属纳米颗粒的蜂蜜炭材料及其制备方法、应用 |
CN111760550B (zh) * | 2020-06-24 | 2022-04-08 | 生态环境部南京环境科学研究所 | 一种制备多孔级活性生物炭吸附材料的装置及方法 |
CN111841539B (zh) * | 2020-07-23 | 2023-01-20 | 中国矿业大学 | 一种赤铁矿尾矿资源化利用制备非均相催化剂的方法及非均相催化剂的应用 |
CN112108118B (zh) * | 2020-09-21 | 2023-04-25 | 黄河水利职业技术学院 | 一种基于芬顿污泥和纤维素的磁性生物质炭及其制备方法和应用 |
CN112403451B (zh) * | 2020-11-11 | 2022-08-05 | 湖南长重机器股份有限公司 | 一种多孔污泥染料吸附剂及其制备方法 |
CN114804972B (zh) * | 2021-01-27 | 2023-08-01 | 中国环境科学研究院 | 生物炭协同土壤腐殖质调控重金属活性的方法 |
CN114804932A (zh) * | 2021-01-27 | 2022-07-29 | 中国环境科学研究院 | 水生植物制备富铁生物炭的方法 |
CN112872009B (zh) * | 2021-03-31 | 2022-04-19 | 郑州大学 | 一种贫化土壤的修复方法 |
CN113200542A (zh) * | 2021-04-06 | 2021-08-03 | 西安理工大学 | 一种利用槐叶萍制备多孔生物质基电极材料的方法 |
CN113750917B (zh) * | 2021-09-10 | 2024-05-03 | 刘建浩 | 一种高弹性耐高温气凝胶及其制备方法 |
CN115920896A (zh) * | 2022-11-16 | 2023-04-07 | 昆明理工大学 | 一种降解环丙沙星的催化剂及其制备方法和应用 |
CN116393113A (zh) * | 2023-04-20 | 2023-07-07 | 西藏大学 | 一种用于修复高原尾矿重金属生物炭的制备方法及其应用 |
CN117065722A (zh) * | 2023-09-04 | 2023-11-17 | 诚邦生态环境股份有限公司 | 一种磁性ldh生物炭及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109850887A (zh) * | 2019-01-17 | 2019-06-07 | 三峡大学 | 蜈蚣草富集铜元素的生物炭的制备方法及其应用 |
KR20190102896A (ko) * | 2018-02-27 | 2019-09-04 | 한국해양대학교 산학협력단 | 중금속 제거용 마그네틱 바이오차 제조방법, 이에 따라 제조된 중금속 제거용 바이오차 및 이를 포함하는 중금속 제거용 흡착제 |
CN110449127A (zh) * | 2019-09-12 | 2019-11-15 | 湖南科技大学 | 一种生物炭基载铁复合材料制备方法及其应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106423051A (zh) * | 2016-07-29 | 2017-02-22 | 辽宁石油化工大学 | 一种磁性活化水热生物炭微球的制备方法与应用 |
CN106732350B (zh) * | 2016-11-18 | 2019-07-16 | 浙江大学 | 对砷镉复合污染修复的磁性生物炭吸附材料的制备方法 |
CN106694541A (zh) * | 2016-12-29 | 2017-05-24 | 中冶华天工程技术有限公司 | 生物炭基缓释肥协同白茅修复重金属污染尾矿的方法 |
CN109675564B (zh) * | 2019-01-17 | 2022-06-03 | 三峡大学 | 水葫芦铁生物炭的制备方法及其应用 |
-
2019
- 2019-12-13 CN CN201911290956.9A patent/CN111036174B/zh active Active
-
2020
- 2020-01-03 WO PCT/CN2020/070200 patent/WO2021114441A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190102896A (ko) * | 2018-02-27 | 2019-09-04 | 한국해양대학교 산학협력단 | 중금속 제거용 마그네틱 바이오차 제조방법, 이에 따라 제조된 중금속 제거용 바이오차 및 이를 포함하는 중금속 제거용 흡착제 |
CN109850887A (zh) * | 2019-01-17 | 2019-06-07 | 三峡大学 | 蜈蚣草富集铜元素的生物炭的制备方法及其应用 |
CN110449127A (zh) * | 2019-09-12 | 2019-11-15 | 湖南科技大学 | 一种生物炭基载铁复合材料制备方法及其应用 |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113753890A (zh) * | 2021-08-23 | 2021-12-07 | 河海大学 | 一种处理含2-氯苯酚废水的生物炭及其制备方法、装置 |
CN113926423A (zh) * | 2021-09-08 | 2022-01-14 | 广东工业大学 | 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法 |
CN113926423B (zh) * | 2021-09-08 | 2023-12-05 | 广东工业大学 | 一种利用水葫芦改性生物炭及其制备方法和有机污染物的处理方法 |
CN113617333A (zh) * | 2021-09-16 | 2021-11-09 | 茅台学院 | 利用高粱秸秆制备的磁性生物炭吸附剂及制备方法与应用 |
CN114229983A (zh) * | 2021-11-29 | 2022-03-25 | 哈尔滨工业大学(深圳) | 利用含铁剩余污泥制备催化活性生物炭及抗生素去除方法 |
CN116351390A (zh) * | 2021-12-21 | 2023-06-30 | 天津大学 | 一种基于镉吸附水热炭热解提质再生的生物炭及其制备方法和应用 |
CN114230005A (zh) * | 2021-12-30 | 2022-03-25 | 中建安装集团有限公司 | 一种磁性生物炭的制备方法及应用 |
CN114560542B (zh) * | 2022-02-28 | 2023-03-14 | 安徽工业大学 | 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用 |
CN114560542A (zh) * | 2022-02-28 | 2022-05-31 | 安徽工业大学 | 一种基于磁混凝含藻絮体热裂解制备原位载铁生物炭的方法及其应用 |
CN114682216A (zh) * | 2022-04-06 | 2022-07-01 | 中国科学院沈阳应用生态研究所 | 冻融环境同步处理镉砷的富铁磁性生物炭的制备方法及应用 |
CN114768761A (zh) * | 2022-04-15 | 2022-07-22 | 广东省科学院生态环境与土壤研究所 | 一种含高持久性自由基生物炭的制备及对重金属的去除应用 |
CN115025789A (zh) * | 2022-06-14 | 2022-09-09 | 三峡大学 | 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用 |
CN115025789B (zh) * | 2022-06-14 | 2024-03-12 | 三峡大学 | 高活性硫化铜生物炭催化剂CuSx@BC原位制备方法及其应用 |
CN115259151A (zh) * | 2022-06-20 | 2022-11-01 | 中国建筑第八工程局有限公司 | 高碱性生物炭及其制备方法和应用 |
CN115138336A (zh) * | 2022-06-29 | 2022-10-04 | 北京科技大学 | 用于酸性含磷污水处理的赤泥-花生壳基复合材料的制备方法 |
CN115069216A (zh) * | 2022-07-08 | 2022-09-20 | 江苏里下河地区农业科学研究所 | 一种磁性活性生物炭的制备方法及应用 |
CN115069216B (zh) * | 2022-07-08 | 2023-09-22 | 江苏里下河地区农业科学研究所 | 一种磁性活性生物炭的制备方法及应用 |
CN115178227A (zh) * | 2022-07-18 | 2022-10-14 | 陕西科技大学 | 一种煤气化渣磁性吸附材料及其制备方法 |
CN115353104A (zh) * | 2022-09-05 | 2022-11-18 | 山西顺福祥环保科技有限责任公司 | 一种利用中药渣制备柱状活性炭的方法及产品 |
CN115584135A (zh) * | 2022-09-27 | 2023-01-10 | 合肥工业大学 | 软磁固废复合的生物质基高电阻率自损耗电磁屏蔽材料的制备 |
CN115554979A (zh) * | 2022-10-12 | 2023-01-03 | 云南中烟工业有限责任公司 | 一种生物炭材料对烟用香精吸附的方法 |
CN116020396A (zh) * | 2022-10-25 | 2023-04-28 | 湖南大学 | 一种铁渣生物炭复合材料及其制备方法与应用 |
CN115845900A (zh) * | 2022-12-05 | 2023-03-28 | 中国科学院东北地理与农业生态研究所 | 一种活化过硫酸盐降解有机污染物的磁性水热炭的制备方法及其应用 |
CN115999509A (zh) * | 2023-02-09 | 2023-04-25 | 新疆天山莲药业有限公司 | 一种雪莲药渣生物炭改良方法、产品及应用 |
CN117866648A (zh) * | 2023-02-15 | 2024-04-12 | 生态环境部南京环境科学研究所 | 一种含油污泥和农林废弃物协同热解制备生物炭的方法 |
CN116173905A (zh) * | 2023-03-21 | 2023-05-30 | 西安建筑科技大学 | 一种热解生物炭/地聚物复合材料的制备及其应用 |
CN116637590A (zh) * | 2023-04-11 | 2023-08-25 | 内蒙古工业大学 | 一种改性磁性生物炭、制备方法及其在吸附堆肥重金属中的应用 |
CN116920795A (zh) * | 2023-06-14 | 2023-10-24 | 华南理工大学 | 一种基于废棉布热解炭复合材料矿化四环素类抗生素的方法 |
CN116984355A (zh) * | 2023-07-27 | 2023-11-03 | 昆明理工大学 | 一种利用固体废弃物制备生物炭的方法、产品及应用 |
CN116786082A (zh) * | 2023-07-27 | 2023-09-22 | 大同同星抗生素有限责任公司 | 一种土霉素的特异性吸附剂及其制备方法 |
CN116786082B (zh) * | 2023-07-27 | 2024-05-28 | 大同同星抗生素有限责任公司 | 一种土霉素的特异性吸附剂及其制备方法 |
CN116984355B (zh) * | 2023-07-27 | 2024-06-07 | 昆明理工大学 | 一种利用固体废弃物制备生物炭的方法、产品及应用 |
CN117123221A (zh) * | 2023-09-18 | 2023-11-28 | 华南农业大学 | 一种生物质铁碳复合材料及其制备与应用方法 |
CN117123221B (zh) * | 2023-09-18 | 2024-05-07 | 华南农业大学 | 一种生物质铁碳复合材料及其制备与应用方法 |
CN117402624A (zh) * | 2023-10-18 | 2024-01-16 | 中国农业科学院农业环境与可持续发展研究所 | 一种用于土壤保水的铁基生物炭微生物改性方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111036174A (zh) | 2020-04-21 |
CN111036174B (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111036174B (zh) | 一种基于铁富集植物的磁性生物炭及其制备方法和应用 | |
CN104941583B (zh) | 一种镉砷吸附材料、制备方法及用途 | |
CN111744459A (zh) | 一种去除水体中四环素的水稻秸秆改性生物炭的制备方法 | |
CN106362690A (zh) | 一种磁性生物炭吸附材料及其制备方法 | |
CN106362685A (zh) | 一种用于除砷的改性生物炭材料、其制备及应用 | |
CN103058314A (zh) | 一种去除水中六价铬的方法 | |
CN101642699A (zh) | 一种磁性生物碳吸附材料的制备方法及其用途 | |
CN108126657B (zh) | 磁性猪粪生物炭及其制备方法 | |
CN106423051A (zh) | 一种磁性活化水热生物炭微球的制备方法与应用 | |
CN101224412A (zh) | 一种吸附重金属的生物吸附剂及其制备方法 | |
CN106179216A (zh) | 一种磁性活化水热生物炭的制备方法与应用 | |
CN109534432A (zh) | 一种去除富营养化水体中磷的生物炭改性材料的制备方法 | |
CN116474720B (zh) | 一种基于赤泥增强磁性秸秆生物炭材料的制备方法与应用 | |
CN110142032A (zh) | 壳聚糖生物炭复合材料及其制备方法和应用 | |
CN112774625B (zh) | 氧化锆掺杂磁性高表面活性炭复合材料、制备方法及应用 | |
CN110665466A (zh) | 一种吸附水中Cd的磁性复合材料及其制备方法 | |
CN110368900B (zh) | 一种竹炭改性材料及其制备方法和用途 | |
CN106064836A (zh) | 一种改性绿色合成纳米氧化铁及其制备方法和应用 | |
CN114505054B (zh) | 一种负载高含量零价铁磁性生物炭的制备方法及其应用 | |
CN114890492A (zh) | 一种利用蟹壳粉生物炭氧化处理地下水中三价砷的方法 | |
CN111530419B (zh) | 一种菹草制备磁性生物质炭的方法及其应用 | |
CN113184921A (zh) | 基于含镍污泥的ldh基复合材料及其制备方法 | |
CN117384647B (zh) | 一种富里酸复合氮掺杂磁性碳亚微米球及其制备方法和应用 | |
CN116850946B (zh) | 一种炭基负载型纳米铁吸附材料的绿色制备方法 | |
CN118083973A (zh) | 一种花生壳生物炭的制备及其对电镀废水中铜离子和镍离子的吸附方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900225 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900225 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900225 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900225 Country of ref document: EP Kind code of ref document: A1 |