WO2021085372A1 - Resin composition, compound (z), optical filter, and use thereof - Google Patents
Resin composition, compound (z), optical filter, and use thereof Download PDFInfo
- Publication number
- WO2021085372A1 WO2021085372A1 PCT/JP2020/040085 JP2020040085W WO2021085372A1 WO 2021085372 A1 WO2021085372 A1 WO 2021085372A1 JP 2020040085 W JP2020040085 W JP 2020040085W WO 2021085372 A1 WO2021085372 A1 WO 2021085372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- formula
- atom
- resin
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 519
- 230000003287 optical effect Effects 0.000 title claims abstract description 158
- 239000011342 resin composition Substances 0.000 title claims abstract description 33
- 229920005989 resin Polymers 0.000 claims abstract description 299
- 239000011347 resin Substances 0.000 claims abstract description 299
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 87
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 83
- 238000010521 absorption reaction Methods 0.000 claims abstract description 73
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 63
- 125000005843 halogen group Chemical group 0.000 claims abstract description 51
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 36
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 36
- 125000004434 sulfur atom Chemical group 0.000 claims abstract description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 34
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 29
- 125000003118 aryl group Chemical group 0.000 claims abstract description 21
- 150000001450 anions Chemical class 0.000 claims abstract description 9
- 125000004437 phosphorous atom Chemical group 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 150000001768 cations Chemical class 0.000 claims abstract description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 384
- 239000000463 material Substances 0.000 claims description 228
- 238000002834 transmittance Methods 0.000 claims description 125
- -1 mesityl group Chemical group 0.000 claims description 86
- 125000002723 alicyclic group Chemical group 0.000 claims description 66
- 239000000758 substrate Substances 0.000 claims description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 46
- 229910052727 yttrium Inorganic materials 0.000 claims description 38
- 125000001424 substituent group Chemical group 0.000 claims description 37
- 239000011521 glass Substances 0.000 claims description 32
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims description 27
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 27
- 238000000411 transmission spectrum Methods 0.000 claims description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 19
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 18
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 17
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 17
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 17
- 125000001931 aliphatic group Chemical group 0.000 claims description 16
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 16
- 229920001721 polyimide Polymers 0.000 claims description 16
- 125000001072 heteroaryl group Chemical group 0.000 claims description 15
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 13
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 13
- 229910052801 chlorine Inorganic materials 0.000 claims description 12
- 125000001153 fluoro group Chemical group F* 0.000 claims description 12
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- 125000000623 heterocyclic group Chemical group 0.000 claims description 10
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 10
- 238000001228 spectrum Methods 0.000 claims description 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 125000002252 acyl group Chemical group 0.000 claims description 7
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 7
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 7
- 150000001721 carbon Chemical group 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 7
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 claims description 7
- 229920000570 polyether Polymers 0.000 claims description 7
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims description 7
- 125000006017 1-propenyl group Chemical group 0.000 claims description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 125000003368 amide group Chemical group 0.000 claims description 6
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 6
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 6
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 6
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 125000005462 imide group Chemical group 0.000 claims description 6
- 229920001225 polyester resin Polymers 0.000 claims description 6
- 229920005672 polyolefin resin Polymers 0.000 claims description 6
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 6
- 125000005023 xylyl group Chemical group 0.000 claims description 6
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 claims description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 5
- 125000001246 bromo group Chemical group Br* 0.000 claims description 5
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 claims description 5
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 5
- 125000002346 iodo group Chemical group I* 0.000 claims description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 5
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 claims description 5
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 claims description 5
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 claims description 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 5
- 239000009719 polyimide resin Substances 0.000 claims description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 5
- 229910052714 tellurium Inorganic materials 0.000 claims description 5
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- 229920006393 polyether sulfone Polymers 0.000 claims description 4
- 239000002952 polymeric resin Substances 0.000 claims description 4
- 229920003002 synthetic resin Polymers 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- 239000004962 Polyamide-imide Substances 0.000 claims description 3
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002312 polyamide-imide Polymers 0.000 claims description 3
- 229920001230 polyarylate Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 313
- 239000002585 base Substances 0.000 description 191
- 239000010408 film Substances 0.000 description 186
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 135
- 239000000243 solution Substances 0.000 description 125
- 239000000203 mixture Substances 0.000 description 118
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 105
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 99
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 84
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 78
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 78
- 239000002904 solvent Substances 0.000 description 77
- 229910010413 TiO 2 Inorganic materials 0.000 description 66
- 238000005160 1H NMR spectroscopy Methods 0.000 description 65
- 230000003595 spectral effect Effects 0.000 description 65
- 238000013461 design Methods 0.000 description 64
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 63
- 230000015572 biosynthetic process Effects 0.000 description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 60
- 238000003786 synthesis reaction Methods 0.000 description 59
- 238000000746 purification Methods 0.000 description 48
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 42
- 238000010030 laminating Methods 0.000 description 42
- 239000011248 coating agent Substances 0.000 description 38
- 239000000975 dye Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 37
- 238000010898 silica gel chromatography Methods 0.000 description 37
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 34
- 239000010936 titanium Substances 0.000 description 34
- 229910052719 titanium Inorganic materials 0.000 description 34
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 32
- 238000005481 NMR spectroscopy Methods 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 30
- 238000000576 coating method Methods 0.000 description 30
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- LWNGJAHMBMVCJR-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenoxy)boronic acid Chemical compound OB(O)OC1=C(F)C(F)=C(F)C(F)=C1F LWNGJAHMBMVCJR-UHFFFAOYSA-N 0.000 description 26
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 24
- 238000001035 drying Methods 0.000 description 24
- 229910052938 sodium sulfate Inorganic materials 0.000 description 24
- 235000011152 sodium sulphate Nutrition 0.000 description 24
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 23
- 229910052744 lithium Inorganic materials 0.000 description 23
- 239000000741 silica gel Substances 0.000 description 22
- 229910002027 silica gel Inorganic materials 0.000 description 22
- 238000001816 cooling Methods 0.000 description 21
- 238000000465 moulding Methods 0.000 description 21
- 238000004587 chromatography analysis Methods 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 20
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 19
- 239000012790 adhesive layer Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 19
- 238000005406 washing Methods 0.000 description 19
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 18
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 15
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 12
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000004642 Polyimide Substances 0.000 description 11
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 11
- GNLJBJNONOOOQC-UHFFFAOYSA-N $l^{3}-carbane;magnesium Chemical compound [Mg]C GNLJBJNONOOOQC-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 239000012188 paraffin wax Substances 0.000 description 9
- 239000012312 sodium hydride Substances 0.000 description 9
- 229910000104 sodium hydride Inorganic materials 0.000 description 9
- 239000005457 ice water Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000003505 polymerization initiator Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 0 C*(C1*C2*=C)*=CC3=C1C2=C*C3 Chemical compound C*(C1*C2*=C)*=CC3=C1C2=C*C3 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 239000001632 sodium acetate Substances 0.000 description 5
- 235000017281 sodium acetate Nutrition 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 4
- WDAXFOBOLVPGLV-UHFFFAOYSA-N ethyl isobutyrate Chemical compound CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 125000004915 dibutylamino group Chemical group C(CCC)N(CCCC)* 0.000 description 3
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- CEJINNSYZFLSCS-UHFFFAOYSA-N 2-hydroxy-1-(2-methylphenyl)ethanone Chemical compound CC1=CC=CC=C1C(=O)CO CEJINNSYZFLSCS-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 2
- YNPDFBFVMJNGKZ-UHFFFAOYSA-N BTB10270 Natural products CC(=O)C1=CC(C)=CC=C1O YNPDFBFVMJNGKZ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- HCRBXQFHJMCTLF-ZCFIWIBFSA-N ethyl (2r)-2-methylbutanoate Chemical compound CCOC(=O)[C@H](C)CC HCRBXQFHJMCTLF-ZCFIWIBFSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- WFSXUTWNNVIIIG-ZPUQHVIOSA-N glutaconaldehyde Chemical compound O\C=C\C=C\C=O WFSXUTWNNVIIIG-ZPUQHVIOSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 2
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- LPKATDGGXXEZFL-UHFFFAOYSA-N 2,2,6,6-tetramethylheptan-4-one Chemical compound CC(C)(C)CC(=O)CC(C)(C)C LPKATDGGXXEZFL-UHFFFAOYSA-N 0.000 description 1
- BNBRIFIJRKJGEI-UHFFFAOYSA-N 2,6-difluorobenzonitrile Chemical compound FC1=CC=CC(F)=C1C#N BNBRIFIJRKJGEI-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- DIQZGCCQHMIOLR-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O DIQZGCCQHMIOLR-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006020 2-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- WLTSXAIICPDFKI-UHFFFAOYSA-N 3-dodecene Chemical compound CCCCCCCCC=CCC WLTSXAIICPDFKI-UHFFFAOYSA-N 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- HYDATEKARGDBKU-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]phenoxy]aniline Chemical group C1=CC(N)=CC=C1OC1=CC=C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 HYDATEKARGDBKU-UHFFFAOYSA-N 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- YWFPGFJLYRKYJZ-UHFFFAOYSA-N 9,9-bis(4-hydroxyphenyl)fluorene Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YWFPGFJLYRKYJZ-UHFFFAOYSA-N 0.000 description 1
- PGDIJTMOHORACQ-UHFFFAOYSA-N 9-prop-2-enoyloxynonyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCCCCOC(=O)C=C PGDIJTMOHORACQ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- RVMCQUFHNZATCE-UHFFFAOYSA-N CC(C)(C)C1S(C)(C)=C(C(C)(C)C)C=C(C)C1 Chemical compound CC(C)(C)C1S(C)(C)=C(C(C)(C)C)C=C(C)C1 RVMCQUFHNZATCE-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004419 Panlite Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- BDAHDQGVJHDLHQ-UHFFFAOYSA-N [2-(1-hydroxycyclohexyl)phenyl]-phenylmethanone Chemical compound C=1C=CC=C(C(=O)C=2C=CC=CC=2)C=1C1(O)CCCCC1 BDAHDQGVJHDLHQ-UHFFFAOYSA-N 0.000 description 1
- HFKJQIJFRMRSKM-UHFFFAOYSA-N [3,5-bis(trifluoromethyl)phenoxy]boronic acid Chemical compound OB(O)OC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 HFKJQIJFRMRSKM-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- MIBQYWIOHFTKHD-UHFFFAOYSA-N adamantane-1-carbonyl chloride Chemical compound C1C(C2)CC3CC2CC1(C(=O)Cl)C3 MIBQYWIOHFTKHD-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminum chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 125000002592 cumenyl group Chemical group C1(=C(C=CC=C1)*)C(C)C 0.000 description 1
- JMVIPXWCEHBYAH-UHFFFAOYSA-N cyclohexanone;ethyl acetate Chemical compound CCOC(C)=O.O=C1CCCCC1 JMVIPXWCEHBYAH-UHFFFAOYSA-N 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- URSLCTBXQMKCFE-UHFFFAOYSA-N dihydrogenborate Chemical compound OB(O)[O-] URSLCTBXQMKCFE-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CVDUUPMTIHXQKC-UHFFFAOYSA-N ethene 1,3,5-triazinane-2,4,6-trione Chemical group C=C.O=C1NC(=O)NC(=O)N1 CVDUUPMTIHXQKC-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 239000001813 ethyl (2R)-2-methylbutanoate Substances 0.000 description 1
- 229940090910 ethyl 2-methylbutyrate Drugs 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- DRDBNKYFCOLNQO-UHFFFAOYSA-N ethyl n-phenylmethanimidate Chemical compound CCOC=NC1=CC=CC=C1 DRDBNKYFCOLNQO-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000006343 heptafluoro propyl group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- APPXAPLOULWUGO-UHFFFAOYSA-H hexasodium hexafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] APPXAPLOULWUGO-UHFFFAOYSA-H 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N methyl cyclohexan-4-ol Natural products CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- YULMNMJFAZWLLN-UHFFFAOYSA-N methylenecyclohexane Chemical compound C=C1CCCCC1 YULMNMJFAZWLLN-UHFFFAOYSA-N 0.000 description 1
- WPHGSKGZRAQSGP-UHFFFAOYSA-N methylenecyclohexane Natural products C1CCCC2CC21 WPHGSKGZRAQSGP-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 125000006126 n-butyl sulfonyl group Chemical group 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical class Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
- C08K5/3447—Five-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/08—Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/90—Benzo [c, d] indoles; Hydrogenated benzo [c, d] indoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/34—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D335/00—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
- C07D335/02—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3437—Six-membered rings condensed with carbocyclic rings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
Definitions
- a near-infrared cut filter those manufactured by various methods have been conventionally used.
- a near-infrared cut filter in which a resin is used as a base material and a near-infrared absorbing dye is contained in the resin is known (see, for example, Patent Document 1).
- the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
- R g and R h are each independently a hydrogen atom, an ⁇ C (O) R i group or any of the following L b to L f
- Q 1 is any of the following L b to L g
- Q 2 is a hydrogen atom or any of the following L b to L f
- Q 3 is either a hydroxyl group or the following L b to L f
- R i is any of the following L b to L f.
- Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other.
- the compound (Z) used in one embodiment of the present invention not only has sharp absorption in a wavelength region of 850 nm or more, but also has excellent durability. Therefore, according to one embodiment of the present invention. , Not only a near-infrared cut filter (NIR-CF) but also an optical filter such as DBPF or IRPF can be easily manufactured.
- NIR-CF near-infrared cut filter
- DBPF DBPF
- IRPF optical filter
- a 5- to 6-membered alicyclic group which may contain at least one nitrogen atom, oxygen atom or sulfur atom; or a heteroaromatic group having 3 to 14 carbon atoms which contains at least one nitrogen atom, oxygen atom or sulfur atom.
- Groups; may be formed, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
- R g and R h are each independently a hydrogen atom, an ⁇ C (O) R i group, or any of the above L b to L f , and Q 1 is any of the above L b to L g .
- Q 2 is a hydrogen atom or any of the L b to L f
- Q 3 is either a hydroxyl group or the L b to L f
- R i is any of the L b to L f. is there.
- each R 5 and R 6 independently represents a monovalent organic group having 1 to 12 carbon atoms
- Z is a single bond, -O -, - S -, - SO 2 -, - It represents CO-, -CONH-, -COO- or a divalent organic group having 1 to 12 carbon atoms, where e and f independently represent an integer of 0 to 4, and n represents 0 or 1.
- antioxidants examples include 2,6-di-tert-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-tert-butyl-5,5'-dimethyldiphenylmethane, and the like. Tetrakiss [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane can be mentioned.
- a resin layer (1) having a thickness of 0.1 mm, a length of 210 mm and a width of 210 mm.
- Example 1 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
- Example 9 In Example 4, 0.06 parts by mass of the following compound (z-273) (absorption maximum wavelength in dichloromethane) was used instead of 0.05 parts by mass of compound (z-191). A substrate was obtained in the same manner as in Example 4. In the same manner as in Example 4, the spectral characteristics of compound (z-273) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
- Example 1 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
- Example 15-2 In Example 1, 0.04 parts by mass of the following compound (z-363) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1. In the same manner as in Example 1, the spectral characteristics of compound (z-363) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
- Example 15-5 Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-366) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-25).
- a substrate was obtained in the same manner as in Example 1.
- the spectral characteristics of compound (z-366) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
- Example 1 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
- Example 16 In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.56 parts by mass of the compound (x-1), 0.68 parts by mass of the compound (x-2), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 ⁇ m to obtain a resin solution (E16-1). Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-128) (maximum absorption wavelength in dichloromethane: 942 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 ⁇ m to obtain a resin solution (E16-2).
- Example 2 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
- Example 20 In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.57 parts by mass of the compound (x-3), 0.68 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 ⁇ m to obtain a resin solution (E20-1). Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-72) (maximum absorption wavelength in dichloromethane: 937 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 ⁇ m to obtain a resin solution (E20-2).
- the resin composition (2) is applied to both sides of a transparent glass support "OA-10G" (thickness 200 ⁇ m) manufactured by Nippon Electric Glass Co., Ltd., which is cut to a size of 200 mm ⁇ 200 mm, and the thickness after drying is about. After applying with spin coating so as to be 1 ⁇ m, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes to form a glass support and a coating resin layer (1) and a coating resin layer (2) described later. An adhesive layer that functions as an adhesive layer was formed.
- OA-10G thickness 200 ⁇ m
- a resin solution (E21-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 ⁇ m, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E21-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 ⁇ m, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1).
- Example 2 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
- Example 2 a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
- the design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1. The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Filters (AREA)
Abstract
An embodiment of the present invention pertains to a resin composition, a compound (Z), an optical filter, or a solid-state imaging device and optical sensor device using the optical filter. The resin composition contains a resin, and a compound (Z) represented by formula (I) and having a maximum absorption wavelength that falls within the wavelength range of 850-1100 nm. (I): Cn+An- [Cn+ represents a monovalent cation represented by formula (II), and An- represents a monovalent anion.] [YA and YD each independently represent a hydrogen atom, a halogen atom, or a group having at least one selected from a carbon atom, a sulfur atom, an oxygen atom, a nitrogen atom, and a phosphorus atom, ZA-ZC and YB-YC each independently represent a hydrogen atom, a halogen atom, or a group having at least one selected from a carbon atom, a sulfur atom, an oxygen atom, a nitrogen atom, a phosphorus atom, and a silicon atom, or two adjacent ones of ZA-ZC may be linked together to form a ring, YB and YC are optionally linked together to form a ring, units A and B each independently represent a group having a complex aromatic ring, some groups in unit A may be linked to YA to form a ring, and some groups in unit B may be linked to YD to form a ring.]
Description
本発明の一実施形態は、樹脂組成物、化合物(Z)、光学フィルター、または、該光学フィルターを用いた固体撮像装置および光学センサー装置に関する。
One embodiment of the present invention relates to a resin composition, compound (Z), an optical filter, or a solid-state image sensor and an optical sensor device using the optical filter.
ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されている。これら固体撮像素子では、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。また、光学センサー装置でも、シリコンフォトダイオードなどが使用されている。例えば、固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過またはカットする光学フィルター(例えば、近赤外線カットフィルター)を用いることが多い。
A CCD or CMOS image sensor, which is a solid-state image sensor for color images, is used in solid-state image sensors such as video cameras, digital still cameras, and mobile phones with camera functions. In these solid-state image sensors, a silicon photodiode having sensitivity to near infrared rays, which cannot be perceived by the human eye, is used in the light receiving portion. Silicon photodiodes and the like are also used in optical sensor devices. For example, in a solid-state image sensor, it is necessary to perform luminosity factor correction that makes the color tone natural to the human eye, and an optical filter that selectively transmits or cuts light rays in a specific wavelength region (for example, near infrared rays). Cut filter) is often used.
このような近赤外線カットフィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、基材として樹脂を用い、樹脂中に近赤外線吸収色素を含有させた近赤外線カットフィルターが知られている(例えば特許文献1参照)。しかしながら、特許文献1に記載された近赤外線カットフィルターは、近赤外線吸収特性が必ずしも充分ではない場合があった。
As such a near-infrared cut filter, those manufactured by various methods have been conventionally used. For example, a near-infrared cut filter in which a resin is used as a base material and a near-infrared absorbing dye is contained in the resin is known (see, for example, Patent Document 1). However, the near-infrared cut filter described in Patent Document 1 may not always have sufficient near-infrared absorption characteristics.
また、近年のモバイル機器等では、波長800~1000nm付近の近赤外線を用いたセキュリティ認証機能(例:虹彩認証、顔認証)を搭載するものが多く登場しており、この認証に用いる近赤外線が、カメラ画像にフレアやゴーストなどの悪影響を与える場合があった。このため、近赤外線のうち、比較的長波長領域の光線をカットする特性が必要となっている。
In addition, many mobile devices in recent years are equipped with a security authentication function (eg, iris authentication, face authentication) that uses near infrared rays with a wavelength of around 800 to 1000 nm, and the near infrared rays used for this authentication have appeared. In some cases, the camera image may be adversely affected by flare or ghost. For this reason, it is necessary to have a characteristic of cutting light rays in a relatively long wavelength region among near infrared rays.
さらに、レーザーを用いた距離測定技術等では、不要な光はノイズの原因となるためカットする必要があるが、レーザーの光源波長の長波長化に伴い、可視~近赤外領域までの広い波長域をカットする必要性が高まっている。
Furthermore, in distance measurement technology using a laser, it is necessary to cut unnecessary light because it causes noise. However, as the wavelength of the light source of the laser becomes longer, a wide wavelength from the visible to the near infrared region is used. There is an increasing need to cut the area.
前記近赤外線吸収色素としては、従来、ポリメチン系、スクアリリウム系、ポルフィリン系、ジチオール金属錯体系、フタロシアニン系、ジイモニウム系などの色素が使用されているが、中でもジイモニウム系色素は波長900nm以上の近赤外線の吸収能が高く、可視光領域での透明性が高いことから多用されている。
Conventionally, as the near-infrared absorbing dye, dyes such as polymethine-based, squarylium-based, porphyrin-based, dithiol metal complex-based, phthalocyanine-based, and diimonium-based dyes have been used. It is often used because of its high absorption capacity and high transparency in the visible light region.
また、例えば特許文献2に記載のジイモニウム系化合物は、近赤外線領域で広くて均一な吸光効率を示し、可視光領域では優れた透過特性を示す。
Further, for example, the diimonium-based compound described in Patent Document 2 exhibits a wide and uniform absorption efficiency in the near-infrared region, and exhibits excellent transmission characteristics in the visible light region.
しかしながら、ジイモニウム系色素を用いて、カットしたい近赤外線領域の波長の光を十分にカットしようとした場合、可視光透過率が低下してしまうことが分かった。また、ジイモニウム系色素の吸収波形はなだらかであり、吸収帯域が広いため、近赤外領域において特定の波長の光を選択的にカットするには不向きであった。
一方で、急峻な波形を持ち、波長850nm以上の近赤外領域の光を選択的にカットする色素としては、シアニンなどのポリメチン系色素またはクロコニウム色素が適しているが、これらの色素は熱や紫外線に十分な耐性を有していなかった。 However, it has been found that when an attempt is made to sufficiently cut light having a wavelength in the near-infrared region to be cut by using a diimonium-based dye, the visible light transmittance is lowered. Further, since the absorption waveform of the diimonium-based dye is gentle and the absorption band is wide, it is not suitable for selectively cutting light of a specific wavelength in the near infrared region.
On the other hand, as a dye having a steep waveform and selectively cutting light in the near infrared region having a wavelength of 850 nm or more, a polymethine dye such as cyanine or a croconium dye is suitable, but these dyes are heat or It did not have sufficient resistance to ultraviolet rays.
一方で、急峻な波形を持ち、波長850nm以上の近赤外領域の光を選択的にカットする色素としては、シアニンなどのポリメチン系色素またはクロコニウム色素が適しているが、これらの色素は熱や紫外線に十分な耐性を有していなかった。 However, it has been found that when an attempt is made to sufficiently cut light having a wavelength in the near-infrared region to be cut by using a diimonium-based dye, the visible light transmittance is lowered. Further, since the absorption waveform of the diimonium-based dye is gentle and the absorption band is wide, it is not suitable for selectively cutting light of a specific wavelength in the near infrared region.
On the other hand, as a dye having a steep waveform and selectively cutting light in the near infrared region having a wavelength of 850 nm or more, a polymethine dye such as cyanine or a croconium dye is suitable, but these dyes are heat or It did not have sufficient resistance to ultraviolet rays.
本発明は、波長850nm以上のカットしたい近赤外線領域の波長の光を、鋭い吸収波形で十分にカットしながらも、可視光透過率の低下を抑制でき、熱や紫外線に対して十分な耐性を有する樹脂組成物を提供する。
According to the present invention, it is possible to suppress a decrease in visible light transmittance while sufficiently cutting light having a wavelength in the near infrared region to be cut with a wavelength of 850 nm or more with a sharp absorption waveform, and to have sufficient resistance to heat and ultraviolet rays. Provided is a resin composition having.
本発明者らは、前記課題を解決するために鋭意検討した。本発明の構成例を以下に示す。
なお、本発明において、数値範囲を表す「A~B」等の記載は、「A以上、B以下」と同義であり、AおよびBをその数値範囲内に含む。また、本発明において、波長A~Bnmとは、波長Anm以上、波長Bnm以下の波長領域における波長分解能1nmにおける特性を表す。 The present inventors have diligently studied to solve the above-mentioned problems. A configuration example of the present invention is shown below.
In the present invention, the description of "A to B" or the like representing a numerical range is synonymous with "A or more and B or less", and A and B are included in the numerical range. Further, in the present invention, the wavelengths A to Bnm represent the characteristics at a wavelength resolution of 1 nm in a wavelength region having a wavelength of Anm or more and a wavelength of Bnm or less.
なお、本発明において、数値範囲を表す「A~B」等の記載は、「A以上、B以下」と同義であり、AおよびBをその数値範囲内に含む。また、本発明において、波長A~Bnmとは、波長Anm以上、波長Bnm以下の波長領域における波長分解能1nmにおける特性を表す。 The present inventors have diligently studied to solve the above-mentioned problems. A configuration example of the present invention is shown below.
In the present invention, the description of "A to B" or the like representing a numerical range is synonymous with "A or more and B or less", and A and B are included in the numerical range. Further, in the present invention, the wavelengths A to Bnm represent the characteristics at a wavelength resolution of 1 nm in a wavelength region having a wavelength of Anm or more and a wavelength of Bnm or less.
[1] 樹脂と、
下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物(Z)と
を含有する樹脂組成物。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] [1] Resin and
A resin composition represented by the following formula (I) and containing a compound (Z) having a maximum absorption wavelength in the wavelength range of 850 to 1100 nm.
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物(Z)と
を含有する樹脂組成物。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] [1] Resin and
A resin composition represented by the following formula (I) and containing a compound (Z) having a maximum absorption wavelength in the wavelength range of 850 to 1100 nm.
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
ZA~ZCおよびYB~YCはそれぞれ独立に、炭素原子、硫黄原子、酸素原子、窒素原子、リン原子およびケイ素原子から選ばれる少なくとも1つを有する基、水素原子もしくはハロゲン原子、または、ZA~ZCのうち隣接した二つが相互に結合して環を形成していてもよく、YBおよびYCが相互に結合して環を形成していてもよく、
ユニットAおよびユニットBはそれぞれ独立に、複素芳香環を有する基であり、
ユニットA中の一部の基は、YAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、ユニットB中の一部の基は、YDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
ZBが、ハロゲン原子、または、下記式(A-1)~(A-2)のいずれかで表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-3)で表される基ではなく、かつ、ユニットBは下記式(A-4)で表される基ではなく、
ZBが、塩素原子であり、かつ、YBおよびYC同士が相互に結合して形成された6員の脂環式炭化水素基であり、かつ、該6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-5)で表される基ではなく、かつ、ユニットBは下記式(A-6)で表される基ではなく、
ZBが、下記式(A-7)で表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-8)で表される基ではなく、かつ、ユニットBは下記式(A-9)で表される基ではない。]
Z A to Z C and Y B to Y C are independently groups having at least one selected from a carbon atom, a sulfur atom, an oxygen atom, a nitrogen atom, a phosphorus atom and a silicon atom, a hydrogen atom or a halogen atom, or a halogen atom. , Z A to Z C may be joined to each other to form a ring, or Y B and Y C may be joined to each other to form a ring.
Unit A and unit B are independent groups having a heteroaromatic ring.
Some groups in unit A may be bonded to Y A to form a cyclic hydrocarbon group having 5 or 6 carbon atoms, and some groups in unit B may be bonded to Y D. It may form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other. When the 5-membered alicyclic hydrocarbon group is a 5-membered alicyclic hydrocarbon group and all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is represented by the following formula (A-3). It is not a group represented, and unit B is not a group represented by the following formula (A-4).
Z B is a chlorine atom and is a 6-membered alicyclic hydrocarbon group formed by mutual bonding of Y B and Y C, and the 6-membered alicyclic hydrocarbon group. When all the substituents other than Z B are hydrogen atoms, the unit A is not a group represented by the following formula (A-5), and the unit B is a group represented by the following formula (A-6). not,
Z B is a group represented by the following formula (A-7), and is a 5-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, and When all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is not a group represented by the following formula (A-8), and the unit B is represented by the following formula. It is not a group represented by (A-9). ]
[2] 前記ユニットAが、下記式(A-I)~(A-III)のいずれかで表される基であり、
前記ユニットBが、下記式(B-I)~(B-III)のいずれかで表される基であり、
前記YAおよびYDがそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、
前記ZA~ZCおよびYB~YCがそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、または、-SO2Q3であり、
ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、Q1は、下記Lb~Lgのいずれかであり、Q2は、水素原子または下記Lb~Lfのいずれかであり、Q3は、水酸基または下記Lb~Lfのいずれかであり、Riは下記Lb~Lfのいずれかである、
[1]に記載の樹脂組成物。 [2] The unit A is a group represented by any of the following formulas (AI) to (A-III).
The unit B is a group represented by any of the following formulas (BI) to (B-III).
Y A and Y D are independently hydrogen atoms, halogen atoms, or hydrocarbon groups having 1 to 8 carbon atoms.
Z A to Z C and Y B to Y C are independently hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , or -SO 2 Q 3 ,
A 5- to 6-membered fat that may contain at least one aromatic hydrocarbon group, nitrogen atom, oxygen atom or sulfur atom having 6 to 14 carbon atoms, in which two adjacent two of Z A to Z C are bonded to each other. It may form a ring group or a complex aromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and complex. The aromatic group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
A 5- to 6-membered alicyclic group in which Y B and Y C are bonded to each other and may contain at least one aromatic hydrocarbon group having 6 to 14 carbon atoms, a nitrogen atom, an oxygen atom or a sulfur atom, or It may form a heteroaromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may form. It may have an aliphatic hydrocarbon group or a halogen atom having 1 to 9 carbon atoms.
R g and R h are each independently a hydrogen atom, an −C (O) R i group or any of the following L b to L f , and Q 1 is any of the following L b to L g. Q 2 is a hydrogen atom or any of the following L b to L f , Q 3 is either a hydroxyl group or the following L b to L f , and R i is any of the following L b to L f. is there,
The resin composition according to [1].
前記ユニットBが、下記式(B-I)~(B-III)のいずれかで表される基であり、
前記YAおよびYDがそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、
前記ZA~ZCおよびYB~YCがそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、または、-SO2Q3であり、
ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、Q1は、下記Lb~Lgのいずれかであり、Q2は、水素原子または下記Lb~Lfのいずれかであり、Q3は、水酸基または下記Lb~Lfのいずれかであり、Riは下記Lb~Lfのいずれかである、
[1]に記載の樹脂組成物。 [2] The unit A is a group represented by any of the following formulas (AI) to (A-III).
The unit B is a group represented by any of the following formulas (BI) to (B-III).
Y A and Y D are independently hydrogen atoms, halogen atoms, or hydrocarbon groups having 1 to 8 carbon atoms.
Z A to Z C and Y B to Y C are independently hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , or -SO 2 Q 3 ,
A 5- to 6-membered fat that may contain at least one aromatic hydrocarbon group, nitrogen atom, oxygen atom or sulfur atom having 6 to 14 carbon atoms, in which two adjacent two of Z A to Z C are bonded to each other. It may form a ring group or a complex aromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and complex. The aromatic group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
A 5- to 6-membered alicyclic group in which Y B and Y C are bonded to each other and may contain at least one aromatic hydrocarbon group having 6 to 14 carbon atoms, a nitrogen atom, an oxygen atom or a sulfur atom, or It may form a heteroaromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may form. It may have an aliphatic hydrocarbon group or a halogen atom having 1 to 9 carbon atoms.
R g and R h are each independently a hydrogen atom, an −C (O) R i group or any of the following L b to L f , and Q 1 is any of the following L b to L g. Q 2 is a hydrogen atom or any of the following L b to L f , Q 3 is either a hydroxyl group or the following L b to L f , and R i is any of the following L b to L f. is there,
The resin composition according to [1].
式(B-I)~(B-III)中の=**は、前記式(II)のYDが結合する炭素と二重結合することを示し、
式(A-I)~(B-III)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または-N(R8)-であり、
R1~R6はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgRh基、-SRi基、-SO2Ri基、-OSO2Ri基、-C(O)Ri基または下記Lb~Liのいずれかであり、
R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(A-III)中のR1またはR4は、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(B-III)中のR1またはR4は、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
R8は水素原子、ハロゲン原子、-C(O)Ri基、下記Lb~Liのいずれかであり、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、
Riは下記Lb~Lfのいずれかであり、
(Lb):炭素数1~15の脂肪族炭化水素基
(Lc):ハロゲン置換アルキル基
(Ld):脂環式炭化水素基
(Le):芳香族炭化水素基
(Lf):複素環基
(Lg):-OR(Rは炭化水素基)
(Lh):置換基Lを有してもよいアシル基
(Li):置換基Lを有してもよいアルコキシカルボニル基
前記置換基Lは、前記Lb~Lfより選ばれる少なくとも一種である。]
= ** in formulas (BI) to (B-III) indicate that Y D of the formula (II) is double bonded to the carbon to which it is bonded.
In formulas (AI)-(B-III), X is independently an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or -N (R 8 )-.
R 1 to R 6 are independently hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphate group, -NR g R h group, -SR i group, -SO 2 R. It is either an i group, an -OSO 2 R i group, an -C (O) R i group, or the following L b to L i.
Adjacent two of R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 1 or R 4 in the formula (A-III), the formula in combination with Y A in (II) may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
R 1 or R 4 in the formula (B-III) may be bonded to Y D in the formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 8 is a hydrogen atom, a halogen atom, an −C (O) R i group, or any of the following L b to Li i.
R g and R h are independently either a hydrogen atom, an −C (O) R i group, or L b to L f below.
R i is one of the following L b to L f ,
(L b ): aliphatic hydrocarbon group having 1 to 15 carbon atoms (L c ): halogen-substituted alkyl group (L d ): alicyclic hydrocarbon group (L e ): aromatic hydrocarbon group (L f ) : Heterocyclic group (L g ): -OR (R is a hydrocarbon group)
(L h ): Acyl group which may have a substituent L ( Li ): An alkoxycarbonyl group which may have a substituent L The substituent L is at least one selected from the above L b to L f. Is. ]
[3] 前記化合物(Z)が下記要件(A)を満たす、[1]または[2]に記載の樹脂組成物。
要件(A):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長430~580nmにおける光の透過率の平均値が70%以上である [3] The resin composition according to [1] or [2], wherein the compound (Z) satisfies the following requirement (A).
Requirement (A): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). The average value of the light transmittance at a wavelength of 430 to 580 nm is 70% or more.
要件(A):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長430~580nmにおける光の透過率の平均値が70%以上である [3] The resin composition according to [1] or [2], wherein the compound (Z) satisfies the following requirement (A).
Requirement (A): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). The average value of the light transmittance at a wavelength of 430 to 580 nm is 70% or more.
[4] 前記化合物(Z)が下記要件(C)および(D)を満たす、[1]~[3]のいずれかに記載の樹脂組成物。
要件(C):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長950~1150nmの範囲に、透過率が85%となる波長を有する
要件(D):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)の吸収極大波長より長波長において、透過率が20%となる最も短波長側の波長(Wa)と、透過率が70%となる最も短波長側の波長(Wb)との差の絶対値が10~60nmである [4] The resin composition according to any one of [1] to [3], wherein the compound (Z) satisfies the following requirements (C) and (D).
Requirement (C): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). Having a wavelength in the wavelength range of 950 to 1150 nm and having a transmittance of 85% Requirement (D): A transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is It is a spectrum in which the transmittance at the absorption maximum wavelength is 10%.) At a wavelength longer than the absorption maximum wavelength, the wavelength on the shortest wavelength side (Wa) at which the transmittance is 20% and the transmittance are 70%. The absolute value of the difference from the wavelength (Wb) on the shortest wavelength side is 10 to 60 nm.
要件(C):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長950~1150nmの範囲に、透過率が85%となる波長を有する
要件(D):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)の吸収極大波長より長波長において、透過率が20%となる最も短波長側の波長(Wa)と、透過率が70%となる最も短波長側の波長(Wb)との差の絶対値が10~60nmである [4] The resin composition according to any one of [1] to [3], wherein the compound (Z) satisfies the following requirements (C) and (D).
Requirement (C): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). Having a wavelength in the wavelength range of 950 to 1150 nm and having a transmittance of 85% Requirement (D): A transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is It is a spectrum in which the transmittance at the absorption maximum wavelength is 10%.) At a wavelength longer than the absorption maximum wavelength, the wavelength on the shortest wavelength side (Wa) at which the transmittance is 20% and the transmittance are 70%. The absolute value of the difference from the wavelength (Wb) on the shortest wavelength side is 10 to 60 nm.
[5] 前記樹脂が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂である、[1]~[4]のいずれかに記載の樹脂組成物。
[5] The resin is a cyclic (poly) olefin resin, an aromatic polyether resin, a polyimide resin, a polyester resin, a polycarbonate resin, a polyamide resin, a polyarylate resin, a polysulfone resin, or a polyether monkey. Hong resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester curable resin, silsesquioki The resin composition according to any one of [1] to [4], which is at least one resin selected from the group consisting of a sun-based ultraviolet curable resin, an acrylic-based ultraviolet curable resin, and a vinyl-based ultraviolet curable resin. ..
[6] [1]~[5]のいずれかに記載の樹脂組成物から形成された化合物(Z)を含有する樹脂層を含む基材(i)と、誘電体多層膜とを有する、光学フィルター。
[7] 前記基材(i)が、
前記化合物(Z)を含有する樹脂層からなる基材、
2層以上の樹脂層を含む基材であって、該2層以上の樹脂層のうち少なくとも1つが前記化合物(Z)を含有する樹脂層である基材、または、
ガラス支持体と前記化合物(Z)を含有する樹脂層とを含む基材
である、[6]に記載の光学フィルター。 [6] Optical having a base material (i) containing a resin layer containing the compound (Z) formed from the resin composition according to any one of [1] to [5], and a dielectric multilayer film. filter.
[7] The base material (i) is
A substrate composed of a resin layer containing the compound (Z),
A base material containing two or more resin layers, wherein at least one of the two or more resin layers is a resin layer containing the compound (Z), or a base material.
The optical filter according to [6], which is a base material containing a glass support and a resin layer containing the compound (Z).
[7] 前記基材(i)が、
前記化合物(Z)を含有する樹脂層からなる基材、
2層以上の樹脂層を含む基材であって、該2層以上の樹脂層のうち少なくとも1つが前記化合物(Z)を含有する樹脂層である基材、または、
ガラス支持体と前記化合物(Z)を含有する樹脂層とを含む基材
である、[6]に記載の光学フィルター。 [6] Optical having a base material (i) containing a resin layer containing the compound (Z) formed from the resin composition according to any one of [1] to [5], and a dielectric multilayer film. filter.
[7] The base material (i) is
A substrate composed of a resin layer containing the compound (Z),
A base material containing two or more resin layers, wherein at least one of the two or more resin layers is a resin layer containing the compound (Z), or a base material.
The optical filter according to [6], which is a base material containing a glass support and a resin layer containing the compound (Z).
[8] 前記光学フィルターが、下記特性(a)および(b)を満たす近赤外線カットフィルターである、[6]または[7]に記載の光学フィルター。
特性(a):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(b):波長850~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下 [8] The optical filter according to [6] or [7], wherein the optical filter is a near-infrared ray cut filter satisfying the following characteristics (a) and (b).
Characteristic (a): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the wavelength region of 430 to 580 nm. Characteristic (b): The vertical direction of the optical filter in the wavelength region of 850 to 1200 nm. The average value of transmittance measured from 5% or less
特性(a):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(b):波長850~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下 [8] The optical filter according to [6] or [7], wherein the optical filter is a near-infrared ray cut filter satisfying the following characteristics (a) and (b).
Characteristic (a): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the wavelength region of 430 to 580 nm. Characteristic (b): The vertical direction of the optical filter in the wavelength region of 850 to 1200 nm. The average value of transmittance measured from 5% or less
[9] 前記光学フィルターが、下記特性(c)および(d)を満たす可視光-近赤外線選択透過フィルターである、[6]または[7]に記載の光学フィルター。
特性(c):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(d):波長650nm以上の領域に、光線阻止帯域Za、光線透過帯域Zbおよび光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ15%以下であり、
前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である [9] The optical filter according to [6] or [7], wherein the optical filter is a visible light-near infrared selective transmission filter satisfying the following characteristics (c) and (d).
Characteristic (c): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the region of wavelength 430 to 580 nm. Characteristic (d): Light ray blocking band Za and light rays in the region of wavelength 650 nm or more. It has a transmission band Zb and a light blocking band Zc, and the center wavelength of each band is Za <Zb <Zc.
The minimum transmittances of Za and Zc measured from the vertical direction of the optical filter are 15% or less, respectively.
The maximum transmittance measured from the vertical direction of the optical filter in Zb is 55% or more.
特性(c):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(d):波長650nm以上の領域に、光線阻止帯域Za、光線透過帯域Zbおよび光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ15%以下であり、
前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である [9] The optical filter according to [6] or [7], wherein the optical filter is a visible light-near infrared selective transmission filter satisfying the following characteristics (c) and (d).
Characteristic (c): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the region of wavelength 430 to 580 nm. Characteristic (d): Light ray blocking band Za and light rays in the region of wavelength 650 nm or more. It has a transmission band Zb and a light blocking band Zc, and the center wavelength of each band is Za <Zb <Zc.
The minimum transmittances of Za and Zc measured from the vertical direction of the optical filter are 15% or less, respectively.
The maximum transmittance measured from the vertical direction of the optical filter in Zb is 55% or more.
[10] 前記光学フィルターが、下記特性(e)および(f)を満たす近赤外線透過フィルターである、[6]または[7]に記載の光学フィルター。
特性(e):波長380~700nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が10%以下
特性(f):波長750nm以上の領域に、光線透過帯Yaを有し、前記光線透過帯Yaにおいて、光学フィルターの垂直方向から測定した場合の最大透過率(TIR)が45%以上である [10] The optical filter according to [6] or [7], wherein the optical filter is a near-infrared ray transmitting filter satisfying the following characteristics (e) and (f).
Characteristic (e): The average value of the transmittance measured from the vertical direction of the optical filter is 10% or less in the region of wavelength 380 to 700 nm. Characteristic (f): The light transmission band Ya is provided in the region of wavelength 750 nm or more. However, in the light transmittance band Ya, the maximum transmittance ( TIR ) measured from the vertical direction of the optical filter is 45% or more.
特性(e):波長380~700nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が10%以下
特性(f):波長750nm以上の領域に、光線透過帯Yaを有し、前記光線透過帯Yaにおいて、光学フィルターの垂直方向から測定した場合の最大透過率(TIR)が45%以上である [10] The optical filter according to [6] or [7], wherein the optical filter is a near-infrared ray transmitting filter satisfying the following characteristics (e) and (f).
Characteristic (e): The average value of the transmittance measured from the vertical direction of the optical filter is 10% or less in the region of wavelength 380 to 700 nm. Characteristic (f): The light transmission band Ya is provided in the region of wavelength 750 nm or more. However, in the light transmittance band Ya, the maximum transmittance ( TIR ) measured from the vertical direction of the optical filter is 45% or more.
[11] 固体撮像装置用である、[6]~[10]のいずれかに記載の光学フィルター。
[12] 光学センサー装置用である、[6]~[10]のいずれかに記載の光学フィルター。 [11] The optical filter according to any one of [6] to [10], which is used for a solid-state image sensor.
[12] The optical filter according to any one of [6] to [10], which is used for an optical sensor device.
[12] 光学センサー装置用である、[6]~[10]のいずれかに記載の光学フィルター。 [11] The optical filter according to any one of [6] to [10], which is used for a solid-state image sensor.
[12] The optical filter according to any one of [6] to [10], which is used for an optical sensor device.
[13] [6]~[10]のいずれかに記載の光学フィルターを具備する固体撮像装置。
[14] [6]~[10]のいずれかに記載の光学フィルターを具備する光学センサー装置。 [13] A solid-state image sensor provided with the optical filter according to any one of [6] to [10].
[14] An optical sensor device including the optical filter according to any one of [6] to [10].
[14] [6]~[10]のいずれかに記載の光学フィルターを具備する光学センサー装置。 [13] A solid-state image sensor provided with the optical filter according to any one of [6] to [10].
[14] An optical sensor device including the optical filter according to any one of [6] to [10].
[15] 下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物(Z)。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] [15] A compound (Z) represented by the following formula (I) and having an absorption maximum wavelength in the wavelength range of 850 to 1100 nm.
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] [15] A compound (Z) represented by the following formula (I) and having an absorption maximum wavelength in the wavelength range of 850 to 1100 nm.
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
ユニットBは、下記式(B-I)~(B-III)のいずれかで表される基であり、
YAおよびYDはそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、
ZA~ZCおよびYB~YCはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、または、-SO2Q3であり、
ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、Q1は、下記Lb~Lgのいずれかであり、Q2は、水素原子または下記Lb~Lfのいずれかであり、Q3は、水酸基または下記Lb~Lfのいずれかであり、Riは下記Lb~Lfのいずれかであり、
ZBが、ハロゲン原子、または、下記式(A-1)~(A-2)のいずれかで表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-3)で表される基ではなく、かつ、ユニットBは下記式(A-4)で表される基ではなく、
ZBが、塩素原子であり、かつ、YBおよびYC同士が相互に結合して形成された6員の脂環式炭化水素基であり、かつ、該6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-5)で表される基ではなく、かつ、ユニットBは下記式(A-6)で表される基ではなく、
ZBが、下記式(A-7)で表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-8)で表される基ではなく、かつ、ユニットBは下記式(A-9)で表される基ではない。]
Unit B is a group represented by any of the following formulas (BI) to (B-III).
Y A and Y D are independently hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 8 carbon atoms.
Z A to Z C and Y B to Y C are independently hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group,- Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , or -SO 2 Q 3 ,
A 5- to 6-membered fat that may contain at least one aromatic hydrocarbon group, nitrogen atom, oxygen atom or sulfur atom having 6 to 14 carbon atoms, in which two adjacent two of Z A to Z C are bonded to each other. It may form a ring group or a complex aromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and complex. The aromatic group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
A 5- to 6-membered alicyclic group in which Y B and Y C are bonded to each other and may contain at least one aromatic hydrocarbon group having 6 to 14 carbon atoms, a nitrogen atom, an oxygen atom or a sulfur atom, or It may form a heteroaromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may form. It may have an aliphatic hydrocarbon group or a halogen atom having 1 to 9 carbon atoms.
R g and R h are each independently a hydrogen atom, an −C (O) R i group or any of the following L b to L f , and Q 1 is any of the following L b to L g. Q 2 is a hydrogen atom or any of the following L b to L f , Q 3 is either a hydroxyl group or the following L b to L f , and R i is any of the following L b to L f. Yes,
Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other. When the 5-membered alicyclic hydrocarbon group is a 5-membered alicyclic hydrocarbon group and all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is represented by the following formula (A-3). It is not a group represented, and unit B is not a group represented by the following formula (A-4).
Z B is a chlorine atom and is a 6-membered alicyclic hydrocarbon group formed by mutual bonding of Y B and Y C, and the 6-membered alicyclic hydrocarbon group. When all the substituents other than Z B are hydrogen atoms, the unit A is not a group represented by the following formula (A-5), and the unit B is a group represented by the following formula (A-6). not,
Z B is a group represented by the following formula (A-7), and is a 5-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, and When all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is not a group represented by the following formula (A-8), and the unit B is represented by the following formula. It is not a group represented by (A-9). ]
式(B-I)~(B-III)中の=**は、前記式(II)のYDが結合する炭素と二重結合することを示し、
式(A-I)~(B-III)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または-N(R8)-であり、
R1~R6はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgRh基、-SRi基、-SO2Ri基、-OSO2Ri基、-C(O)Ri基または下記Lb~Liのいずれかであり、
R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(A-III)中のR1またはR4は、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(B-III)中のR1またはR4は、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
R8は水素原子、ハロゲン原子、-C(O)Ri基、下記Lb~Liのいずれかであり、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、
Riは下記Lb~Lfのいずれかであり、
(Lb):炭素数1~15の脂肪族炭化水素基
(Lc):ハロゲン置換アルキル基
(Ld):脂環式炭化水素基
(Le):芳香族炭化水素基
(Lf):複素環基
(Lg):-OR(Rは炭化水素基)
(Lh):置換基Lを有してもよいアシル基
(Li):置換基Lを有してもよいアルコキシカルボニル基
前記置換基Lは、前記Lb~Lfより選ばれる少なくとも一種である。]
= ** in formulas (BI) to (B-III) indicate that Y D of the formula (II) is double bonded to the carbon to which it is bonded.
In formulas (AI)-(B-III), X is independently an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or -N (R 8 )-.
R 1 to R 6 are independently hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphate group, -NR g R h group, -SR i group, -SO 2 R. It is either an i group, an -OSO 2 R i group, an -C (O) R i group, or the following L b to L i.
Adjacent two of R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 1 or R 4 in the formula (A-III), the formula in combination with Y A in (II) may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
R 1 or R 4 in the formula (B-III) may be bonded to Y D in the formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 8 is a hydrogen atom, a halogen atom, an −C (O) R i group, or any of the following L b to Li i.
R g and R h are independently either a hydrogen atom, an −C (O) R i group, or L b to L f below.
R i is one of the following L b to L f ,
(L b ): aliphatic hydrocarbon group having 1 to 15 carbon atoms (L c ): halogen-substituted alkyl group (L d ): alicyclic hydrocarbon group (L e ): aromatic hydrocarbon group (L f ) : Heterocyclic group (L g ): -OR (R is a hydrocarbon group)
(L h ): Acyl group which may have a substituent L ( Li ): An alkoxycarbonyl group which may have a substituent L The substituent L is at least one selected from the above L b to L f. Is. ]
本発明の一実施形態によれば、波長850nm以上のカットしたい近赤外線領域の波長の光を、鋭い吸収波形で十分にカットしながらも可視光透過率の低下を抑制でき、熱や紫外線に対して十分な耐性(耐久性)を有する樹脂組成物を提供することができる。さらに、本発明の一実施形態によれば、これらの特性を有する光学フィルターを提供することができる。
なお、本発明において、熱や紫外線に対して十分な耐性を有するとは、熱をかけたり、紫外線を照射した前後において、光学特性が大きく変化しないことをいう。 According to one embodiment of the present invention, it is possible to suppress a decrease in visible light transmittance while sufficiently cutting light having a wavelength in the near infrared region to be cut with a wavelength of 850 nm or more with a sharp absorption waveform, and with respect to heat and ultraviolet rays. It is possible to provide a resin composition having sufficient resistance (durability). Further, according to one embodiment of the present invention, it is possible to provide an optical filter having these characteristics.
In the present invention, having sufficient resistance to heat and ultraviolet rays means that the optical characteristics do not change significantly before and after applying heat or irradiating with ultraviolet rays.
なお、本発明において、熱や紫外線に対して十分な耐性を有するとは、熱をかけたり、紫外線を照射した前後において、光学特性が大きく変化しないことをいう。 According to one embodiment of the present invention, it is possible to suppress a decrease in visible light transmittance while sufficiently cutting light having a wavelength in the near infrared region to be cut with a wavelength of 850 nm or more with a sharp absorption waveform, and with respect to heat and ultraviolet rays. It is possible to provide a resin composition having sufficient resistance (durability). Further, according to one embodiment of the present invention, it is possible to provide an optical filter having these characteristics.
In the present invention, having sufficient resistance to heat and ultraviolet rays means that the optical characteristics do not change significantly before and after applying heat or irradiating with ultraviolet rays.
また、特許文献2に記載のように、ジイモニウム系色素は、近赤外線領域で幅広い吸光特性を示すため、ジイモニウム系色素を用いて、例えば、可視光-近赤外線選択透過フィルター(DBPF)や近赤外線透過フィルター(IRPF)を形成しようとする場合、透過したい所望の波長の近赤外線のみを透過させることは容易ではなかった。
さらに、例えばポリメチン系色素は、近赤外線領域の吸収ピークがシャープである(鋭い)が、従来のこれらの色素は、耐久性が悪いため、使用が制限されていた。 Further, as described inPatent Document 2, since the diimonium dye exhibits a wide range of absorption characteristics in the near infrared region, the diimonium dye is used, for example, a visible light-near infrared selective transmission filter (DBPF) or near infrared. When trying to form a transmission filter (IRPF), it has not been easy to transmit only near infrared rays having a desired wavelength to be transmitted.
Further, for example, polymethine-based dyes have a sharp absorption peak in the near-infrared region (sharp), but the use of these conventional dyes has been restricted due to their poor durability.
さらに、例えばポリメチン系色素は、近赤外線領域の吸収ピークがシャープである(鋭い)が、従来のこれらの色素は、耐久性が悪いため、使用が制限されていた。 Further, as described in
Further, for example, polymethine-based dyes have a sharp absorption peak in the near-infrared region (sharp), but the use of these conventional dyes has been restricted due to their poor durability.
一方、本発明の一実施形態で用いる化合物(Z)は、波長850nm以上の波長領域にシャープな吸収を有するだけでなく、耐久性にも優れているため、本発明の一実施形態によれば、近赤外線カットフィルター(NIR-CF)のみならず、DBPFやIRPFなどの光学フィルターをも容易に作製することができる。
On the other hand, the compound (Z) used in one embodiment of the present invention not only has sharp absorption in a wavelength region of 850 nm or more, but also has excellent durability. Therefore, according to one embodiment of the present invention. , Not only a near-infrared cut filter (NIR-CF) but also an optical filter such as DBPF or IRPF can be easily manufactured.
≪樹脂組成物≫
本発明の一実施形態に係る樹脂組成物(以下「本組成物」ともいう。)は、樹脂と前記化合物(Z)を含んでいれば特に制限されない。
このような樹脂組成物の形態としては、例えば、化合物(Z)を含む樹脂製フィルム(樹脂層、樹脂製基板);支持体(例:樹脂製支持体、ガラス支持体)上に形成された化合物(Z)を含む樹脂膜(樹脂層);樹脂、化合物(Z)および溶剤を含む液状組成物が挙げられる。
本組成物は、2種以上の樹脂を含んでいてもよく、2種以上の化合物(Z)を含んでいてもよい。 ≪Resin composition≫
The resin composition according to one embodiment of the present invention (hereinafter, also referred to as “the present composition”) is not particularly limited as long as it contains the resin and the compound (Z).
As a form of such a resin composition, for example, it is formed on a resin film (resin layer, resin substrate) containing the compound (Z); a support (eg, a resin support, a glass support). A resin film (resin layer) containing the compound (Z); a liquid composition containing a resin, the compound (Z) and a solvent can be mentioned.
The present composition may contain two or more kinds of resins, and may contain two or more kinds of compounds (Z).
本発明の一実施形態に係る樹脂組成物(以下「本組成物」ともいう。)は、樹脂と前記化合物(Z)を含んでいれば特に制限されない。
このような樹脂組成物の形態としては、例えば、化合物(Z)を含む樹脂製フィルム(樹脂層、樹脂製基板);支持体(例:樹脂製支持体、ガラス支持体)上に形成された化合物(Z)を含む樹脂膜(樹脂層);樹脂、化合物(Z)および溶剤を含む液状組成物が挙げられる。
本組成物は、2種以上の樹脂を含んでいてもよく、2種以上の化合物(Z)を含んでいてもよい。 ≪Resin composition≫
The resin composition according to one embodiment of the present invention (hereinafter, also referred to as “the present composition”) is not particularly limited as long as it contains the resin and the compound (Z).
As a form of such a resin composition, for example, it is formed on a resin film (resin layer, resin substrate) containing the compound (Z); a support (eg, a resin support, a glass support). A resin film (resin layer) containing the compound (Z); a liquid composition containing a resin, the compound (Z) and a solvent can be mentioned.
The present composition may contain two or more kinds of resins, and may contain two or more kinds of compounds (Z).
<化合物(Z)>
本組成物に含まれる化合物(Z)および本発明の一態様に係る化合物(Z)は、下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物である。
このような化合物(Z)は、波長850nm以上における吸収極大付近での高い近赤外線カット性能と高い可視光透過性能とを有し、熱や紫外線に対して、十分な耐性を有する。また、該化合物(Z)は、シャープな吸収ピーク(鋭い吸収波形)を有する。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] <Compound (Z)>
The compound (Z) contained in the present composition and the compound (Z) according to one aspect of the present invention are represented by the following formula (I) and have a maximum absorption wavelength in the wavelength range of 850 to 1100 nm.
Such a compound (Z) has high near-infrared ray cutting performance and high visible light transmission performance in the vicinity of the absorption maximum at a wavelength of 850 nm or more, and has sufficient resistance to heat and ultraviolet rays. In addition, the compound (Z) has a sharp absorption peak (sharp absorption waveform).
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
本組成物に含まれる化合物(Z)および本発明の一態様に係る化合物(Z)は、下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物である。
このような化合物(Z)は、波長850nm以上における吸収極大付近での高い近赤外線カット性能と高い可視光透過性能とを有し、熱や紫外線に対して、十分な耐性を有する。また、該化合物(Z)は、シャープな吸収ピーク(鋭い吸収波形)を有する。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。] <Compound (Z)>
The compound (Z) contained in the present composition and the compound (Z) according to one aspect of the present invention are represented by the following formula (I) and have a maximum absorption wavelength in the wavelength range of 850 to 1100 nm.
Such a compound (Z) has high near-infrared ray cutting performance and high visible light transmission performance in the vicinity of the absorption maximum at a wavelength of 850 nm or more, and has sufficient resistance to heat and ultraviolet rays. In addition, the compound (Z) has a sharp absorption peak (sharp absorption waveform).
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
ZA~ZCおよびYB~YCはそれぞれ独立に、炭素原子、硫黄原子、酸素原子、窒素原子、リン原子およびケイ素原子から選ばれる少なくとも1つを有する基、水素原子もしくはハロゲン原子、または、ZA~ZCのうち隣接した二つが相互に結合して環を形成していてもよく、YBおよびYCが相互に結合して環を形成していてもよく、
ユニットAおよびユニットBはそれぞれ独立に、複素芳香環を有する基であり、
ユニットA中の一部の基は、YAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、ユニットB中の一部の基は、YDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
ZBが、ハロゲン原子、または、下記式(A-1)~(A-2)のいずれかで表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-3)で表される基ではなく、かつ、ユニットBは下記式(A-4)で表される基ではなく、
ZBが、塩素原子であり、かつ、YBおよびYC同士が相互に結合して形成された6員の脂環式炭化水素基であり、かつ、該6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-5)で表される基ではなく、かつ、ユニットBは下記式(A-6)で表される基ではなく、
ZBが、下記式(A-7)で表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-8)で表される基ではなく、かつ、ユニットBは下記式(A-9)で表される基ではない。]
Z A to Z C and Y B to Y C are independently groups having at least one selected from a carbon atom, a sulfur atom, an oxygen atom, a nitrogen atom, a phosphorus atom and a silicon atom, a hydrogen atom or a halogen atom, or a halogen atom. , Z A to Z C may be joined to each other to form a ring, or Y B and Y C may be joined to each other to form a ring.
Unit A and unit B are independent groups having a heteroaromatic ring.
Some groups in unit A may be bonded to Y A to form a cyclic hydrocarbon group having 5 or 6 carbon atoms, and some groups in unit B may be bonded to Y D. It may form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other. When the 5-membered alicyclic hydrocarbon group is a 5-membered alicyclic hydrocarbon group and all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is represented by the following formula (A-3). It is not a group represented, and unit B is not a group represented by the following formula (A-4).
Z B is a chlorine atom and is a 6-membered alicyclic hydrocarbon group formed by mutual bonding of Y B and Y C, and the 6-membered alicyclic hydrocarbon group. When all the substituents other than Z B are hydrogen atoms, the unit A is not a group represented by the following formula (A-5), and the unit B is a group represented by the following formula (A-6). not,
Z B is a group represented by the following formula (A-7), and is a 5-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, and When all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is not a group represented by the following formula (A-8), and the unit B is represented by the following formula. It is not a group represented by (A-9). ]
前記ユニットAは、下記式(A-I)~(A-III)のいずれかで表される基であることが好ましく、前記ユニットBは、下記式(B-I)~(B-III)のいずれかで表される基であることが好ましい。
The unit A is preferably a group represented by any of the following formulas (AI) to (A-III), and the unit B is preferably a group represented by the following formulas (BI) to (B-III). It is preferable that the group is represented by any of.
式(B-I)~(B-III)中の=**は、前記式(II)のYDが結合する炭素と二重結合することを示し、
式(A-I)~(B-III)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または-N(R8)-であり、
R1~R6はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgRh基、-SRi基、-SO2Ri基、-OSO2Ri基、-C(O)Ri基または下記Lb~Liのいずれかであり、
R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(A-III)中のR1またはR4は、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(B-III)中のR1またはR4は、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
R8は水素原子、ハロゲン原子、-C(O)Ri基、下記Lb~Liのいずれかであり、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、
Riは下記Lb~Lfのいずれかであり、
(Lb):炭素数1~15の脂肪族炭化水素基
(Lc):ハロゲン置換アルキル基
(Ld):脂環式炭化水素基
(Le):芳香族炭化水素基
(Lf):複素環基
(Lg):-OR(Rは炭化水素基)
(Lh):置換基Lを有してもよいアシル基
(Li):置換基Lを有してもよいアルコキシカルボニル基
前記置換基Lは、前記Lb~Lfより選ばれる少なくとも一種である。]
= ** in formulas (BI) to (B-III) indicate that Y D of the formula (II) is double bonded to the carbon to which it is bonded.
In formulas (AI)-(B-III), X is independently an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or -N (R 8 )-.
R 1 to R 6 are independently hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphate group, -NR g R h group, -SR i group, -SO 2 R. It is either an i group, an -OSO 2 R i group, an -C (O) R i group, or the following L b to L i.
Adjacent two of R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 1 or R 4 in the formula (A-III), the formula in combination with Y A in (II) may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
R 1 or R 4 in the formula (B-III) may be bonded to Y D in the formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 8 is a hydrogen atom, a halogen atom, an −C (O) R i group, or any of the following L b to Li i.
R g and R h are independently either a hydrogen atom, an −C (O) R i group, or L b to L f below.
R i is one of the following L b to L f ,
(L b ): aliphatic hydrocarbon group having 1 to 15 carbon atoms (L c ): halogen-substituted alkyl group (L d ): alicyclic hydrocarbon group (L e ): aromatic hydrocarbon group (L f ) : Heterocyclic group (L g ): -OR (R is a hydrocarbon group)
(L h ): Acyl group which may have a substituent L ( Li ): An alkoxycarbonyl group which may have a substituent L The substituent L is at least one selected from the above L b to L f. Is. ]
なお、前記-N(R8)-は下記式(a)で表される基であり、前記-NRgRh基は下記式(b)で表される基であり、前記-SRi基は下記式(c)で表される基であり、前記-SO2Ri基は下記式(d)で表される基であり、前記-OSO2Ri基は下記式(e)で表される基であり、前記-C(O)Ri基は下記式(f)で表される基である。
The -N (R 8 )-is a group represented by the following formula (a), the -NR g R h group is a group represented by the following formula (b), and the -SR i group is described. Table is a group represented by the following formula (c), the -SO 2 R i groups are groups represented by the following formula (d), the -OSO 2 R i groups by the following formula (e) The —C (O) R i group is a group represented by the following formula (f).
なお、前記ユニットAが前記式(A-I)であり、前記ユニットBが前記式(B-I)である場合、Cn+は下記式(II-1)で表される。つまり、前記式(A-I)~(A-III)における「*-」の単結合(-)は、前記式(II)中のYAが結合している炭素原子とユニットAとの間の単結合に相当し、前記式(B-I)~(B-III)における「**=」の二重結合(=)は、前記式(II)中のYDが結合している炭素原子とユニットBとの間の二重結合に相当する。
When the unit A has the formula (AI) and the unit B has the formula (BI), Cn + is represented by the following formula (II-1). That is, in Formula (A-I) ~ (A-III) - single bond "*" (-) is between the carbon atoms and the unit A Y A in the formula (II) are attached the equivalent to a single bond, a double bond of the "** =" in the formula (B-I) ~ (B -III) (=) , the carbon to Y D in the formula (II) are attached It corresponds to a double bond between an atom and unit B.
前記「ユニットA中の一部の基は、YAと結合して炭素数5または6の環状炭化水素基を形成していてもよい」とは、好ましくは、式(A-III)中のR1またはR4が、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよいことを示し、
前記「ユニットB中の一部の基は、YDと結合して炭素数5または6の環状炭化水素基を形成していてもよい」とは、好ましくは、式(B-III)中のR1またはR4が、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよいことを示す。 The "part of the groups in the unit A is combined with Y A may form a cyclic hydrocarbon group having 5 or 6 carbon atoms" and, preferably, Formula (A-III) in the R 1 or R 4, combine with Y a in the formula (II) indicates that may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
The above-mentioned "some groups in the unit B may be bonded to Y D to form a cyclic hydrocarbon group having 5 or 6 carbon atoms" is preferably expressed in the formula (B-III). It is shown that R 1 or R 4 may be bonded to Y D in the above formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
前記「ユニットB中の一部の基は、YDと結合して炭素数5または6の環状炭化水素基を形成していてもよい」とは、好ましくは、式(B-III)中のR1またはR4が、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよいことを示す。 The "part of the groups in the unit A is combined with Y A may form a cyclic hydrocarbon group having 5 or 6 carbon atoms" and, preferably, Formula (A-III) in the R 1 or R 4, combine with Y a in the formula (II) indicates that may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
The above-mentioned "some groups in the unit B may be bonded to Y D to form a cyclic hydrocarbon group having 5 or 6 carbon atoms" is preferably expressed in the formula (B-III). It is shown that R 1 or R 4 may be bonded to Y D in the above formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
前記YAおよびYDはそれぞれ独立に、好ましくは、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、より好ましくは、水素原子、塩素原子、フッ素原子、臭素原子、メチル基(Me)、エチル基(Et)、n-プロピル基(n-Pr)、イソプロピル基(i-Pr)、n-ブチル基(n-Bu)、sec-ブチル基、tert-ブチル基(t-Bu)、シクロヘキシル基、フェニル基(Ph)であり、さらに好ましくは水素原子、塩素原子、フッ素原子、臭素原子、メチル基、エチル基、n-プロピル基、イソプロピル基であり、特に好ましくは、水素原子、塩素原子、フッ素原子、臭素原子、メチル基、エチル基である。
Y A and Y D are independent of each other, preferably a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and more preferably a hydrogen atom, a chlorine atom, a fluorine atom, a bromine atom and a methyl group. (Me), ethyl group (Et), n-propyl group (n-Pr), isopropyl group (i-Pr), n-butyl group (n-Bu), sec-butyl group, tert-butyl group (t-) Bu), cyclohexyl group, phenyl group (Ph), more preferably hydrogen atom, chlorine atom, fluorine atom, bromine atom, methyl group, ethyl group, n-propyl group, isopropyl group, and particularly preferably hydrogen. It is an atom, a chlorine atom, a fluorine atom, a bromine atom, a methyl group, and an ethyl group.
前記YBおよびYCはそれぞれ独立に、好ましくは、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、-SO2Q3、または、YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基;窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基;もしくは、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基;を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または前記Lb~Lfのいずれかであり、Q1は、前記Lb~Lgのいずれかであり、Q2は、水素原子または前記Lb~Lfのいずれかであり、Q3は、水酸基または前記Lb~Lfのいずれかであり、Riは前記Lb~Lfのいずれかである。 Y B and Y C are independent of each other, preferably hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , -SO 2 Q 3 , or Y B and Y C are bonded to each other to form an aromatic hydrocarbon group having 6 to 14 carbon atoms. A 5- to 6-membered alicyclic group which may contain at least one nitrogen atom, oxygen atom or sulfur atom; or a heteroaromatic group having 3 to 14 carbon atoms which contains at least one nitrogen atom, oxygen atom or sulfur atom. Groups; may be formed, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
R g and R h are each independently a hydrogen atom, an −C (O) R i group, or any of the above L b to L f , and Q 1 is any of the above L b to L g . Q 2 is a hydrogen atom or any of the L b to L f , Q 3 is either a hydroxyl group or the L b to L f , and R i is any of the L b to L f. is there.
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または前記Lb~Lfのいずれかであり、Q1は、前記Lb~Lgのいずれかであり、Q2は、水素原子または前記Lb~Lfのいずれかであり、Q3は、水酸基または前記Lb~Lfのいずれかであり、Riは前記Lb~Lfのいずれかである。 Y B and Y C are independent of each other, preferably hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , -SO 2 Q 3 , or Y B and Y C are bonded to each other to form an aromatic hydrocarbon group having 6 to 14 carbon atoms. A 5- to 6-membered alicyclic group which may contain at least one nitrogen atom, oxygen atom or sulfur atom; or a heteroaromatic group having 3 to 14 carbon atoms which contains at least one nitrogen atom, oxygen atom or sulfur atom. Groups; may be formed, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
R g and R h are each independently a hydrogen atom, an −C (O) R i group, or any of the above L b to L f , and Q 1 is any of the above L b to L g . Q 2 is a hydrogen atom or any of the L b to L f , Q 3 is either a hydroxyl group or the L b to L f , and R i is any of the L b to L f. is there.
前記-SSQ2は-S-S-Q2で表される基であり、前記-SO2Q3は前記式(d)で表される基において、RiをQ3に置き換えた基である。
The -SSQ 2 is a group represented by -S-S-Q 2, wherein -SO 2 Q 3 in the group represented by the formula (d), is a group obtained by replacing the R i to Q 3 ..
前記YBおよびYCはそれぞれ独立に、より好ましくは、水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、YBおよびYC同士が相互に結合して形成された5または6員の脂環式炭化水素基(該脂環式炭化水素基は、水素原子、炭素数1~9の脂肪族炭化水素基およびハロゲン原子から選ばれる置換基R9を有していてもよい。)であり、特に好ましくは、水素原子、メチル基、tert-ブチル基、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基、YBおよびYC同士が相互に結合して形成された置換基R9を有する6員の脂環式炭化水素基である。
なお、YBおよびYC同士が相互に結合して形成された5または6員の脂環式炭化水素基である場合、式(II)は、好ましくは、下記式(C-I)、(C-II)で表すことができる。YBおよびYC同士が相互に結合して、下記式(C-I)で表される構造を有する場合、下記表1~7では、YBの欄にC-Iと記載する。YBおよびYC同士が相互に結合して、下記式(C-II)で表される構造を有する場合も同様である。
なお、前記「5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合」とは、下記式(C-II)で表される場合のことをいい、前記「6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合」とは、下記式(C-I)において、R9が水素原子で表される場合のことをいう。 The Y B and Y C are independently, more preferably, hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-. A 5- or 6-membered alicyclic hydrocarbon group formed by mutual bonding of butyl groups, Y B and Y C (the alicyclic hydrocarbon group is an aliphatic group having a hydrogen atom and 1 to 9 carbon atoms. It may have a substituent R 9 selected from a hydrocarbon group and a halogen atom), and particularly preferably, a hydrogen atom, a methyl group, a tert-butyl group, Y B and Y C are bonded to each other. It is a 5-membered alicyclic hydrocarbon group formed in the above manner, and a 6-membered alicyclic hydrocarbon group having a substituent R 9 formed by bonding Y B and Y C to each other.
In the case of a 5- or 6-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, the formula (II) is preferably the following formulas (CI), ( It can be represented by C-II). When Y B and Y C are connected to each other and have a structure represented by the following formula (CI), in Tables 1 to 7 below, CI is described in the column of Y B. The same applies to the case where Y B and Y C are bonded to each other and have a structure represented by the following formula (C-II).
The above-mentioned "case where all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms" means the case represented by the following formula (C-II), and the above-mentioned "case". The case where all the substituents other than Z B in the 6-membered alicyclic hydrocarbon group are hydrogen atoms ”means the case where R 9 is represented by a hydrogen atom in the following formula (CI). ..
なお、YBおよびYC同士が相互に結合して形成された5または6員の脂環式炭化水素基である場合、式(II)は、好ましくは、下記式(C-I)、(C-II)で表すことができる。YBおよびYC同士が相互に結合して、下記式(C-I)で表される構造を有する場合、下記表1~7では、YBの欄にC-Iと記載する。YBおよびYC同士が相互に結合して、下記式(C-II)で表される構造を有する場合も同様である。
なお、前記「5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合」とは、下記式(C-II)で表される場合のことをいい、前記「6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合」とは、下記式(C-I)において、R9が水素原子で表される場合のことをいう。 The Y B and Y C are independently, more preferably, hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-. A 5- or 6-membered alicyclic hydrocarbon group formed by mutual bonding of butyl groups, Y B and Y C (the alicyclic hydrocarbon group is an aliphatic group having a hydrogen atom and 1 to 9 carbon atoms. It may have a substituent R 9 selected from a hydrocarbon group and a halogen atom), and particularly preferably, a hydrogen atom, a methyl group, a tert-butyl group, Y B and Y C are bonded to each other. It is a 5-membered alicyclic hydrocarbon group formed in the above manner, and a 6-membered alicyclic hydrocarbon group having a substituent R 9 formed by bonding Y B and Y C to each other.
In the case of a 5- or 6-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, the formula (II) is preferably the following formulas (CI), ( It can be represented by C-II). When Y B and Y C are connected to each other and have a structure represented by the following formula (CI), in Tables 1 to 7 below, CI is described in the column of Y B. The same applies to the case where Y B and Y C are bonded to each other and have a structure represented by the following formula (C-II).
The above-mentioned "case where all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms" means the case represented by the following formula (C-II), and the above-mentioned "case". The case where all the substituents other than Z B in the 6-membered alicyclic hydrocarbon group are hydrogen atoms ”means the case where R 9 is represented by a hydrogen atom in the following formula (CI). ..
式(C-I)において、R9は、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基が好ましく、水素原子、メチル基、エチル基、tert-ブチル基がより好ましい。
In the formula (CI), R 9 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, or a cyclohexyl group, preferably hydrogen. Atomic, methyl, ethyl, and tert-butyl groups are more preferred.
前記ZA~ZCはそれぞれ独立に、好ましくは、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、-SO2Q3、または、ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基;窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基;もしくは、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基;を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または前記Lb~Lfのいずれかであり、Q1は、前記Lb~Lgのいずれかであり、Q2は、水素原子または前記Lb~Lfのいずれかであり、Q3は、水酸基または前記Lb~Lfのいずれかであり、Riは前記Lb~Lfのいずれかである。 Z A to Z C are independent of each other, preferably hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1, -S-Q 2, -SSQ 2, -SO 2 Q 3, or bonded to two mutual adjacent of Z a ~ Z C, 6 to 14 carbon atoms Aromatic hydrocarbon group; 5- to 6-membered alicyclic group which may contain at least one nitrogen atom, oxygen atom or sulfur atom; or 3 to 3 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom. 14 heteroaromatic groups; may be formed, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom. May
R g and R h are each independently a hydrogen atom, an −C (O) R i group, or any of the above L b to L f , and Q 1 is any of the above L b to L g . Q 2 is a hydrogen atom or any of the L b to L f , Q 3 is either a hydroxyl group or the L b to L f , and R i is any of the L b to L f. is there.
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または前記Lb~Lfのいずれかであり、Q1は、前記Lb~Lgのいずれかであり、Q2は、水素原子または前記Lb~Lfのいずれかであり、Q3は、水酸基または前記Lb~Lfのいずれかであり、Riは前記Lb~Lfのいずれかである。 Z A to Z C are independent of each other, preferably hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1, -
R g and R h are each independently a hydrogen atom, an −C (O) R i group, or any of the above L b to L f , and Q 1 is any of the above L b to L g . Q 2 is a hydrogen atom or any of the L b to L f , Q 3 is either a hydroxyl group or the L b to L f , and R i is any of the L b to L f. is there.
前記ZAおよびZCはそれぞれ独立に、より好ましくは水素原子である。
前記ZBは、より好ましくは、水素原子、塩素原子、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基(NPh2)、メチルフェニルアミノ基、メチル基、フェニル基、4-メチルフェノキシ基(O-(4-tolyl))、-S-(4-tolyl)基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基である。 The Z A and Z C are independent, more preferably hydrogen atoms.
The Z B is more preferably a hydrogen atom, a chlorine atom, a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group (NPh2), a methylphenylamino group, a methyl group, a phenyl group, a 4-methylphenoxy group ( O- (4-tolyl)), -S- (4-tolyl) group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-furyl group, 3-furyl group, 2-thienyl group, 3 -It is a thienyl group.
前記ZBは、より好ましくは、水素原子、塩素原子、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基(NPh2)、メチルフェニルアミノ基、メチル基、フェニル基、4-メチルフェノキシ基(O-(4-tolyl))、-S-(4-tolyl)基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基である。 The Z A and Z C are independent, more preferably hydrogen atoms.
The Z B is more preferably a hydrogen atom, a chlorine atom, a dimethylamino group, a diethylamino group, a dibutylamino group, a diphenylamino group (NPh2), a methylphenylamino group, a methyl group, a phenyl group, a 4-methylphenoxy group ( O- (4-tolyl)), -S- (4-tolyl) group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-furyl group, 3-furyl group, 2-thienyl group, 3 -It is a thienyl group.
前記Lbは、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基(Pent)、ヘキシル基(Hex)、1,1-ジメチルブチル基、オクチル基(Oct)、ノニル基、デシル基、ドデシル基であり、より好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、1,1-ジメチルブチル基、オクチル基である。
The L b is preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group (Pent), hexyl group (Hex), 1 , 1-Dimethylbutyl group, Octyl group (Oct), Nonyl group, Decyl group, Dodecyl group, more preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl Group, tert-butyl group, pentyl group, hexyl group, 1,1-dimethylbutyl group, octyl group.
前記Lbは、ビニル基、1-プロペニル基、2-プロペニル基、ブテニル基、1,3-ブタジエニル基、2-メチル-1-プロペニル基、2-ペンテニル基、ヘキセニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基、2-メチル-1-プロピニル基、ヘキシニル基等のアルキニル基であってもよい。
The L b is an alkenyl group such as a vinyl group, a 1-propenyl group, a 2-propenyl group, a butenyl group, a 1,3-butadienyl group, a 2-methyl-1-propenyl group, a 2-pentenyl group, a hexenyl group; ethynyl. It may be an alkynyl group such as a group, a propynyl group, a butynyl group, a 2-methyl-1-propynyl group, or a hexynyl group.
前記Lcにおけるハロゲン置換アルキル基としては、例えば、炭素数1~15のアルキル基の少なくとも1つの水素原子がハロゲン原子で置換された基が挙げられ、好ましくは、トリクロロメチル基、トリフルオロメチル基、1,1-ジクロロエチル基、ペンタクロロエチル基、ペンタフルオロエチル基、ヘプタクロロプロピル基、ヘプタフルオロプロピル基である。
Examples of the halogen-substituted alkyl group in L c, for example, include groups in which at least one hydrogen atom is substituted with a halogen atom an alkyl group having 1 to 15 carbon atoms, preferably, trichloromethyl group, trifluoromethyl group , 1,1-dichloroethyl group, pentachloroethyl group, pentafluoroethyl group, heptachloropropyl group, heptafluoropropyl group.
前記Ldにおける脂環式炭化水素基としては、例えば、炭素数3~14の脂環式炭化水素基が挙げられ、好ましくは、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-ペンチルシクロへキシル基、シクロヘプチル基およびシクロオクチル基等のシクロアルキル基;ノルボルナン基、アダマンチル基、1-アダマンチルメチル基等の多環脂環式基が挙げられる。
Examples of the alicyclic hydrocarbon group in L d include an alicyclic hydrocarbon group having 3 to 14 carbon atoms, preferably a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a 4-pentylcyclohexyl group. , Cycloalkyl groups such as cycloheptyl group and cyclooctyl group; polycyclic alicyclic groups such as norbornan group, adamantyl group, 1-adamantylmethyl group and the like.
前記Leにおける芳香族炭化水素基としては、例えば、炭素数6~14の芳香族炭化水素基が挙げられ、好ましくは、フェニル基、トリル基、キシリル基、メシチル基、クメニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントリル基、ベンジル基(CH2Ph)である。
Examples of the aromatic hydrocarbon group for L e, for example, include an aromatic hydrocarbon group having 6 to 14 carbon atoms, preferably a phenyl group, a tolyl group, a xylyl group, mesityl group, cumenyl group, 1-naphthyl Group, 2-naphthyl group, anthracenyl group, phenanthryl group, benzyl group (CH 2 Ph).
前記Lfにおける複素環基としては、例えば、炭素数3~14の複素環基が挙げられ、好ましくは、フラン、チオフェン、ピロール、インドール、インドリン、インドレニン、ベンゾフラン、ベンゾチオフェン、モルホリン、ピリジンである。
Examples of the heterocyclic group in L f include a heterocyclic group having 3 to 14 carbon atoms, preferably furan, thiophene, pyrrole, indole, indoline, indoline, benzofuran, benzothiophene, morpholine, and pyridine. is there.
前記Lgにおける炭化水素基(R)としては、例えば、炭素数1~12の炭化水素基が挙げられ、-ORとしては、好ましくは、メトキシ基(OMe)、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基(OBu)、メトキシメチル基、メトキシエチル基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、フェノキシ基、4-メチルフェノキシ基、シクロヘキシルオキシ基である。
Examples of the hydrocarbon group (R) in L g include a hydrocarbon group having 1 to 12 carbon atoms, and —OR is preferably a methoxy group (OMe), an ethoxy group, a propoxy group and an isopropoxy. Group, butoxy group (OBu), methoxymethyl group, methoxyethyl group, pentyloxy group, hexyloxy group, octyloxy group, phenoxy group, 4-methylphenoxy group, cyclohexyloxy group.
前記Lhにおける置換基Lを有してもよいアシル基としては、例えば、炭素数1~9のアシル基が挙げられ、好ましくは、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、4-プロピルベンゾイル基、トリフルオロメチルカルボニル基である。
Examples of the acyl group that may have the substituent L at L h include an acyl group having 1 to 9 carbon atoms, preferably an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a benzoyl group, and the like. It is a 4-propylbenzoyl group and a trifluoromethylcarbonyl group.
前記Liにおける置換基Lを有してもよいアルコキシカルボニル基としては、例えば、炭素数1~9のアルコキシカルボニル基が挙げられ、好ましくは、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、2-トリフルオロメチルエトキシカルボニル基、2-フェニルエトキシカルボニル基である。
As the alkoxycarbonyl group which may have a substituent L in L i, for example, include alkoxycarbonyl groups having 1-9 carbon atoms, preferably a methoxycarbonyl group, an ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl It is a propoxycarbonyl group, a butoxycarbonyl group, a 2-trifluoromethylethoxycarbonyl group, and a 2-phenylethoxycarbonyl group.
前記Xは、好ましくは、酸素原子、硫黄原子、-N(R8)-であり、ユニットAやBが、式(A-I)、(A-III)、(B-I)、(B-III)である場合、特に好ましくは、酸素原子、硫黄原子であり、ユニットAやBが、式(A-II)、(B-II)である場合、特に好ましくは、-N(R8)-である。
The X is preferably an oxygen atom, a sulfur atom, —N (R 8 ) −, and the units A and B are of the formulas (AI), (A-III), (BI), (B). In the case of −III), it is particularly preferably an oxygen atom or a sulfur atom, and when the units A and B are of the formulas (A-II) and (B-II), it is particularly preferably −N (R 8). )-.
式(II)において、左右のユニットAおよびBは同一であっても異なってもよいが、同一であることが合成上容易であるため好ましい。
なお、ここで、ユニットAおよびBが同一である組み合わせは、式(A-I)と式(B-I)、式(A-II)と式(B-II)、式(A-III)と式(B-III)である。 In the formula (II), the left and right units A and B may be the same or different, but it is preferable that they are the same because it is easy to synthesize.
Here, the combinations in which the units A and B are the same are the formula (AI) and the formula (BI), the formula (A-II) and the formula (B-II), and the formula (A-III). And equation (B-III).
なお、ここで、ユニットAおよびBが同一である組み合わせは、式(A-I)と式(B-I)、式(A-II)と式(B-II)、式(A-III)と式(B-III)である。 In the formula (II), the left and right units A and B may be the same or different, but it is preferable that they are the same because it is easy to synthesize.
Here, the combinations in which the units A and B are the same are the formula (AI) and the formula (BI), the formula (A-II) and the formula (B-II), and the formula (A-III). And equation (B-III).
前記R1~R6はそれぞれ独立に、好ましくは、水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、1,1-ジメチルブチル基、1-アダマンチル基、1-アダマンチルメチル基、4-ペンチルシクロヘキシル基、フェニル基、水酸基、アミノ基、ジメチルアミノ基、ジエチルアミノ基(NEt2)、ジブチルアミノ基(NBu2)、シアノ基、ニトロ基、アセチルアミノ基、プロピオニルアミノ基、N-メチルアセチルアミノ基、トリフルオロメタノイルアミノ基、ペンタフルオロエタノイルアミノ基、tert-ブタノイルアミノ基、シクロヘキシノイルアミノ基、n-ブチルスルホニル基、ベンジル基、ジフェニルメチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシ基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基であり、より好ましくは、水素原子、塩素原子、フッ素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロヘキシル基、1,1-ジメチルブチル基、1-アダマンチル基、1-アダマンチルメチル基、4-ペンチルシクロヘキシル基、フェニル基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ベンジル基、ジフェニルメチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシ基、ブトキシ基である。
また、R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよい。 R 1 to R 6 are independent of each other, preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-butyl. Group, cyclohexyl group, 1,1-dimethylbutyl group, 1-adamantyl group, 1-adamantylmethyl group, 4-pentylcyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, diethylamino group (NET 2 ), dibutyl Amino group (NBu 2 ), cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexyl Sinoylamino group, n-butylsulfonyl group, benzyl group, diphenylmethyl group, trifluoromethyl group, difluoromethyl group, methoxy group, methoxy group, ethoxy group, propoxy group, butoxy group, more preferably hydrogen atom. , Chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, 1,1-dimethylbutyl group, 1-adamantyl Group, 1-adamantylmethyl group, 4-pentylcyclohexyl group, phenyl group, amino group, dimethylamino group, diethylamino group, dibutylamino group, benzyl group, diphenylmethyl group, trifluoromethyl group, difluoromethyl group, methoxy group, It is a butyl group.
Further, two adjacent R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
また、R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよい。 R 1 to R 6 are independent of each other, preferably hydrogen atom, chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group and tert-butyl. Group, cyclohexyl group, 1,1-dimethylbutyl group, 1-adamantyl group, 1-adamantylmethyl group, 4-pentylcyclohexyl group, phenyl group, hydroxyl group, amino group, dimethylamino group, diethylamino group (NET 2 ), dibutyl Amino group (NBu 2 ), cyano group, nitro group, acetylamino group, propionylamino group, N-methylacetylamino group, trifluoromethanoylamino group, pentafluoroethanoylamino group, tert-butanoylamino group, cyclohexyl Sinoylamino group, n-butylsulfonyl group, benzyl group, diphenylmethyl group, trifluoromethyl group, difluoromethyl group, methoxy group, methoxy group, ethoxy group, propoxy group, butoxy group, more preferably hydrogen atom. , Chlorine atom, fluorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclohexyl group, 1,1-dimethylbutyl group, 1-adamantyl Group, 1-adamantylmethyl group, 4-pentylcyclohexyl group, phenyl group, amino group, dimethylamino group, diethylamino group, dibutylamino group, benzyl group, diphenylmethyl group, trifluoromethyl group, difluoromethyl group, methoxy group, It is a butyl group.
Further, two adjacent R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
前記R8としては、好ましくは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、ベンジル基、n-ペンチル基、n-ヘキシル基、tert-ブチル基であり、より好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、n-ヘキシル基、ベンジル基である。
The R 8 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-octyl group, a benzyl group, an n-pentyl group, an n-hexyl group, or a tert. -Butyl group, more preferably hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-octyl group, n-hexyl group and benzyl group.
前記An-としては、一価のアニオンであれば特に制限されないが、好ましくは、塩素イオン、臭素イオン、ヨウ素イオン、PF4
-、過塩素酸アニオン、トリストリフルオロメタンスルホニルメチドアニオン、テトラフルオロボレートアニオン、ヘキサフルオロリン酸アニオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、トリフルオロメタンスルホン酸アニオン、テトラキス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(3,5-ビス(トリフルオロメチル)フェニル)ボレートアニオンなどが挙げられ、より好ましくは、ビス(トリフルオロメタンスルホニル)イミドアニオン、トリフルオロメタンスルホン酸アニオン、トリストリフルオロメタンスルホニルメチドアニオン、テトラキス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(3,5-ビス(トリフルオロメチル)フェニル)ボレートアニオンであり、耐熱性により優れる化合物(Z)を容易に得ることができる等の点から、さらに好ましくは、ビス(トリフルオロメタンスルホニル)イミドアニオン、トリストリフルオロメタンスルホニルメチドアニオン、テトラキス(ペンタフルオロフェニル)ボレートアニオン、テトラキス(3,5-ビス(トリフルオロメチル)フェニル)ボレートアニオンであり、特に好ましくはテトラキス(ペンタフルオロフェニル)ボレートアニオンである。
Wherein An - as it is not particularly limited as long as it is a monovalent anion, preferably chlorine ion, bromine ion, iodine ion, PF 4 -, perchlorate anion, tris trifluoromethanesulfonyl methide anion, tetrafluoroborate Anions, hexafluorophosphate anions, bis (trifluoromethanesulfonyl) imide anions, trifluoromethanesulfonic acid anions, tetrakis (pentafluorophenyl) borate anions, tetrakis (3,5-bis (trifluoromethyl) phenyl) borate anions, etc. More preferably, bis (trifluoromethanesulfonyl) imide anion, trifluoromethanesulfonic acid anion, tristrifluoromethanesulfonylmethide anion, tetrakis (pentafluorophenyl) borate anion, tetrakis (3,5-bis (trifluoromethyl)). ) Phenyl) Borate anion, more preferably bis (trifluoromethanesulfonyl) imide anion, tristrifluoromethanesulfonylmethide anion, tetrakis, from the viewpoint that compound (Z), which is superior in heat resistance, can be easily obtained. It is a (pentafluorophenyl) borate anion, a tetrakis (3,5-bis (trifluoromethyl) phenyl) borate anion, and particularly preferably a tetrakis (pentafluorophenyl) borate anion.
式(I)で表される化合物の具体例としては、例えば、下記表1~7に記載の化合物(z-1)~(z-368)が挙げられる。
これらの化合物(Z)は、具体的には、例えば、下記実施例に記載の方法で合成することができる。 Specific examples of the compound represented by the formula (I) include compounds (z-1) to (z-368) shown in Tables 1 to 7 below.
Specifically, these compounds (Z) can be synthesized, for example, by the method described in the following Examples.
これらの化合物(Z)は、具体的には、例えば、下記実施例に記載の方法で合成することができる。 Specific examples of the compound represented by the formula (I) include compounds (z-1) to (z-368) shown in Tables 1 to 7 below.
Specifically, these compounds (Z) can be synthesized, for example, by the method described in the following Examples.
化合物(Z)は、有機溶剤可溶の化合物であることが好ましく、特にジクロロメタン可溶の化合物であることが好ましい。
ここで、有機溶剤可溶とは、25℃の有機溶剤100gに対し、化合物(Z)が0.1g以上溶解する場合のことをいう。 The compound (Z) is preferably a compound soluble in an organic solvent, and particularly preferably a compound soluble in dichloromethane.
Here, the term "soluble in an organic solvent" means a case where 0.1 g or more of the compound (Z) is dissolved in 100 g of an organic solvent at 25 ° C.
ここで、有機溶剤可溶とは、25℃の有機溶剤100gに対し、化合物(Z)が0.1g以上溶解する場合のことをいう。 The compound (Z) is preferably a compound soluble in an organic solvent, and particularly preferably a compound soluble in dichloromethane.
Here, the term "soluble in an organic solvent" means a case where 0.1 g or more of the compound (Z) is dissolved in 100 g of an organic solvent at 25 ° C.
化合物(Z)は、下記要件(A)を満たす化合物であることが好ましい。
要件(A):化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。以下この透過スペクトルを「化合物(Z)の透過スペクトル」ともいう。)において、波長430~580nmにおける光の透過率の平均値が、好ましくは70%以上、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは93.0%以上である。該透過率の平均値は高い方が好ましいため、その上限は特に制限されず、100%であってもよい。
化合物(Z)がこの要件(A)を満たすことで、カットしたい近赤外線領域の波長の光を十分にカットしながらも可視光透過率の低下をより抑制できる。 The compound (Z) is preferably a compound that satisfies the following requirement (A).
Requirement (A): Transmission spectrum measured using a solution of compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%. Hereinafter, this transmission spectrum. Is also referred to as “transmission spectrum of compound (Z)”), the average value of the transmittance of light at a wavelength of 430 to 580 nm is preferably 70% or more, more preferably 85% or more, still more preferably 90% or more. Especially preferably, it is 93.0% or more. Since it is preferable that the average value of the transmittance is high, the upper limit thereof is not particularly limited and may be 100%.
When the compound (Z) satisfies this requirement (A), it is possible to further suppress a decrease in the visible light transmittance while sufficiently cutting the light having a wavelength in the near infrared region to be cut.
要件(A):化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。以下この透過スペクトルを「化合物(Z)の透過スペクトル」ともいう。)において、波長430~580nmにおける光の透過率の平均値が、好ましくは70%以上、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは93.0%以上である。該透過率の平均値は高い方が好ましいため、その上限は特に制限されず、100%であってもよい。
化合物(Z)がこの要件(A)を満たすことで、カットしたい近赤外線領域の波長の光を十分にカットしながらも可視光透過率の低下をより抑制できる。 The compound (Z) is preferably a compound that satisfies the following requirement (A).
Requirement (A): Transmission spectrum measured using a solution of compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%. Hereinafter, this transmission spectrum. Is also referred to as “transmission spectrum of compound (Z)”), the average value of the transmittance of light at a wavelength of 430 to 580 nm is preferably 70% or more, more preferably 85% or more, still more preferably 90% or more. Especially preferably, it is 93.0% or more. Since it is preferable that the average value of the transmittance is high, the upper limit thereof is not particularly limited and may be 100%.
When the compound (Z) satisfies this requirement (A), it is possible to further suppress a decrease in the visible light transmittance while sufficiently cutting the light having a wavelength in the near infrared region to be cut.
なお、本発明において、波長A~Bnmの平均透過率は、Anm以上Bnm以下の、1nm刻みの各波長における透過率を測定し、その透過率の合計を、測定した透過率の数(波長範囲、B-A+1)で除すことで算出した値である。
In the present invention, the average transmittance of wavelengths A to Bnm is obtained by measuring the transmittance at each wavelength of Annm or more and Bnm or less in 1 nm increments, and the total transmittance is the number of measured transmittances (wavelength range). , BA + 1), which is the value calculated by dividing by.
化合物(Z)は、下記要件(B)を満たすことを特徴とする。
要件(B):吸収極大波長が、波長850~1100nmの範囲にある
化合物(Z)の吸収極大波長は、好ましくは855~1095nm、より好ましくは波長860~1090nmである。
該吸収極大波長は、化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトルにおいて、透過率の値が最も小さくなる時の波長のことをいう。
化合物(Z)の吸収極大波長が前記範囲にあることで、近赤外線のうち、比較的長波長領域(波長850nm以上の領域)においても高い光線カット能を有する光学フィルターを容易に得ることができる。特に、波長900nm以上の領域、具体的には、波長940nmにおいて、光学濃度(OD値)が4程度以上である光学フィルターを容易に得ることができる。 Compound (Z) is characterized by satisfying the following requirement (B).
Requirement (B): Absorption maximum wavelength is in the wavelength range of 850 to 1100 nm The absorption maximum wavelength of compound (Z) is preferably 855 to 1095 nm, more preferably 860 to 1090 nm.
The absorption maximum wavelength refers to the wavelength at which the value of the transmittance is the smallest in the transmission spectrum measured by using a solution of compound (Z) in dichloromethane.
When the absorption maximum wavelength of the compound (Z) is in the above range, it is possible to easily obtain an optical filter having a high light ray-cutting ability even in a relatively long wavelength region (a region having a wavelength of 850 nm or more) in the near infrared rays. .. In particular, an optical filter having an optical density (OD value) of about 4 or more can be easily obtained in a wavelength region of 900 nm or more, specifically, a wavelength of 940 nm.
要件(B):吸収極大波長が、波長850~1100nmの範囲にある
化合物(Z)の吸収極大波長は、好ましくは855~1095nm、より好ましくは波長860~1090nmである。
該吸収極大波長は、化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトルにおいて、透過率の値が最も小さくなる時の波長のことをいう。
化合物(Z)の吸収極大波長が前記範囲にあることで、近赤外線のうち、比較的長波長領域(波長850nm以上の領域)においても高い光線カット能を有する光学フィルターを容易に得ることができる。特に、波長900nm以上の領域、具体的には、波長940nmにおいて、光学濃度(OD値)が4程度以上である光学フィルターを容易に得ることができる。 Compound (Z) is characterized by satisfying the following requirement (B).
Requirement (B): Absorption maximum wavelength is in the wavelength range of 850 to 1100 nm The absorption maximum wavelength of compound (Z) is preferably 855 to 1095 nm, more preferably 860 to 1090 nm.
The absorption maximum wavelength refers to the wavelength at which the value of the transmittance is the smallest in the transmission spectrum measured by using a solution of compound (Z) in dichloromethane.
When the absorption maximum wavelength of the compound (Z) is in the above range, it is possible to easily obtain an optical filter having a high light ray-cutting ability even in a relatively long wavelength region (a region having a wavelength of 850 nm or more) in the near infrared rays. .. In particular, an optical filter having an optical density (OD value) of about 4 or more can be easily obtained in a wavelength region of 900 nm or more, specifically, a wavelength of 940 nm.
化合物(Z)は、下記要件(C)を満たす化合物であることが好ましい。
要件(C):化合物(Z)の透過スペクトルにおいて、波長950~1150nmの範囲に、透過率が85%となる波長を有することが好ましく、透過率が90%となる波長を有することがより好ましい。
前記範囲に吸収極大波長を有し、かつ、この要件(C)を満たす化合物(Z)は、吸収ピークがシャープであるため、このような化合物(Z)を用いることで、カットしたい近赤外線領域の波長の光を十分にカットできるNIR-CFのみならず、透過したい所望の波長の近赤外線を透過させるDBPFやIRPFなどの光学フィルターをも容易に作製することができる。 The compound (Z) is preferably a compound that satisfies the following requirement (C).
Requirement (C): In the transmission spectrum of compound (Z), it is preferable to have a wavelength having a transmittance of 85%, and more preferably to have a wavelength having a transmittance of 90% in the wavelength range of 950 to 1150 nm. ..
A compound (Z) having an absorption maximum wavelength in the above range and satisfying this requirement (C) has a sharp absorption peak. Therefore, by using such a compound (Z), a near-infrared region to be cut is desired. It is possible to easily manufacture not only NIR-CF that can sufficiently cut light of the wavelength of the above, but also an optical filter such as DBPF or IRPF that transmits near infrared rays of a desired wavelength to be transmitted.
要件(C):化合物(Z)の透過スペクトルにおいて、波長950~1150nmの範囲に、透過率が85%となる波長を有することが好ましく、透過率が90%となる波長を有することがより好ましい。
前記範囲に吸収極大波長を有し、かつ、この要件(C)を満たす化合物(Z)は、吸収ピークがシャープであるため、このような化合物(Z)を用いることで、カットしたい近赤外線領域の波長の光を十分にカットできるNIR-CFのみならず、透過したい所望の波長の近赤外線を透過させるDBPFやIRPFなどの光学フィルターをも容易に作製することができる。 The compound (Z) is preferably a compound that satisfies the following requirement (C).
Requirement (C): In the transmission spectrum of compound (Z), it is preferable to have a wavelength having a transmittance of 85%, and more preferably to have a wavelength having a transmittance of 90% in the wavelength range of 950 to 1150 nm. ..
A compound (Z) having an absorption maximum wavelength in the above range and satisfying this requirement (C) has a sharp absorption peak. Therefore, by using such a compound (Z), a near-infrared region to be cut is desired. It is possible to easily manufacture not only NIR-CF that can sufficiently cut light of the wavelength of the above, but also an optical filter such as DBPF or IRPF that transmits near infrared rays of a desired wavelength to be transmitted.
化合物(Z)は、下記要件(D)を満たす化合物であることが好ましい。
要件(D):化合物(Z)の透過スペクトルの吸収極大波長より長波長において、透過率が20%となる最も短波長側の波長(Wa)と、透過率が70%となる最も短波長側の波長(Wb)との差の絶対値が、好ましくは10~60nm、より好ましくは15~58nm、特に好ましくは20~56nmである。
化合物(Z)がこの要件(D)を満たすということは、化合物(Z)の吸収ピークがシャープであることを示す。この要件(D)を満たす化合物(Z)を用いることで、カットしたい近赤外線領域の波長の光を十分にカットできるNIR-CFのみならず、透過したい所望の波長の近赤外線を透過させるDBPFやIRPFなどの光学フィルターをも容易に作製することができる。 The compound (Z) is preferably a compound that satisfies the following requirement (D).
Requirement (D): At a wavelength longer than the absorption maximum wavelength of the transmission spectrum of the compound (Z), the shortest wavelength side wavelength (Wa) having a transmittance of 20% and the shortest wavelength side having a transmittance of 70%. The absolute value of the difference from the wavelength (Wb) of is preferably 10 to 60 nm, more preferably 15 to 58 nm, and particularly preferably 20 to 56 nm.
The fact that compound (Z) satisfies this requirement (D) indicates that the absorption peak of compound (Z) is sharp. By using the compound (Z) that satisfies this requirement (D), not only NIR-CF that can sufficiently cut light having a wavelength in the near-infrared region to be cut, but also DBPF that transmits near-infrared rays having a desired wavelength to be transmitted can be used. An optical filter such as IRPF can also be easily manufactured.
要件(D):化合物(Z)の透過スペクトルの吸収極大波長より長波長において、透過率が20%となる最も短波長側の波長(Wa)と、透過率が70%となる最も短波長側の波長(Wb)との差の絶対値が、好ましくは10~60nm、より好ましくは15~58nm、特に好ましくは20~56nmである。
化合物(Z)がこの要件(D)を満たすということは、化合物(Z)の吸収ピークがシャープであることを示す。この要件(D)を満たす化合物(Z)を用いることで、カットしたい近赤外線領域の波長の光を十分にカットできるNIR-CFのみならず、透過したい所望の波長の近赤外線を透過させるDBPFやIRPFなどの光学フィルターをも容易に作製することができる。 The compound (Z) is preferably a compound that satisfies the following requirement (D).
Requirement (D): At a wavelength longer than the absorption maximum wavelength of the transmission spectrum of the compound (Z), the shortest wavelength side wavelength (Wa) having a transmittance of 20% and the shortest wavelength side having a transmittance of 70%. The absolute value of the difference from the wavelength (Wb) of is preferably 10 to 60 nm, more preferably 15 to 58 nm, and particularly preferably 20 to 56 nm.
The fact that compound (Z) satisfies this requirement (D) indicates that the absorption peak of compound (Z) is sharp. By using the compound (Z) that satisfies this requirement (D), not only NIR-CF that can sufficiently cut light having a wavelength in the near-infrared region to be cut, but also DBPF that transmits near-infrared rays having a desired wavelength to be transmitted can be used. An optical filter such as IRPF can also be easily manufactured.
本組成物中の化合物(Z)の含有量は、樹脂100質量部に対して、好ましくは0.02~1.0質量部、より好ましくは0.02~0.80質量部、特に好ましくは0.03~0.60質量部である。
化合物(Z)の含有量が前記範囲にあると、波長850~1100nmの範囲の近赤外線を効率よくカットできるほか、可視光透過性により優れる組成物を容易に得ることができる。 The content of the compound (Z) in the present composition is preferably 0.02 to 1.0 parts by mass, more preferably 0.02 to 0.80 parts by mass, and particularly preferably 0.02 to 0.80 parts by mass with respect to 100 parts by mass of the resin. It is 0.03 to 0.60 parts by mass.
When the content of the compound (Z) is in the above range, near infrared rays in the wavelength range of 850 to 1100 nm can be efficiently cut, and a composition having more excellent visible light transmittance can be easily obtained.
化合物(Z)の含有量が前記範囲にあると、波長850~1100nmの範囲の近赤外線を効率よくカットできるほか、可視光透過性により優れる組成物を容易に得ることができる。 The content of the compound (Z) in the present composition is preferably 0.02 to 1.0 parts by mass, more preferably 0.02 to 0.80 parts by mass, and particularly preferably 0.02 to 0.80 parts by mass with respect to 100 parts by mass of the resin. It is 0.03 to 0.60 parts by mass.
When the content of the compound (Z) is in the above range, near infrared rays in the wavelength range of 850 to 1100 nm can be efficiently cut, and a composition having more excellent visible light transmittance can be easily obtained.
<樹脂>
本組成物に用いる樹脂としては特に制限されず、従来公知の樹脂を用いることができる。
本組成物に用いられる樹脂は、1種単独でもよく、2種以上でもよい。 <Resin>
The resin used in this composition is not particularly limited, and conventionally known resins can be used.
The resin used in this composition may be one kind alone or two or more kinds.
本組成物に用いる樹脂としては特に制限されず、従来公知の樹脂を用いることができる。
本組成物に用いられる樹脂は、1種単独でもよく、2種以上でもよい。 <Resin>
The resin used in this composition is not particularly limited, and conventionally known resins can be used.
The resin used in this composition may be one kind alone or two or more kinds.
前記樹脂としては、本発明の効果を損なわない限り特に制限されないが、例えば、熱安定性およびフィルム(板)形状への成形性等に優れ、かつ、100℃以上程度の蒸着温度で行う高温蒸着で誘電体多層膜を形成し得るフィルムを容易に得ることができる等の点から、ガラス転移温度(Tg)が、好ましくは110~380℃、より好ましくは110~370℃、特に好ましくは120~360℃である樹脂が挙げられる。また、前記樹脂のTgが140℃以上であると、誘電体多層膜をより高温で蒸着形成し得るフィルムが得られるため、特に好ましい。
The resin is not particularly limited as long as the effects of the present invention are not impaired, but for example, it is excellent in thermal stability and formability into a film (plate) shape, and is subjected to high-temperature vapor deposition at a vapor deposition temperature of about 100 ° C. or higher. The glass transition temperature (Tg) is preferably 110 to 380 ° C., more preferably 110 to 370 ° C., and particularly preferably 120 to 120 ° C. from the viewpoint that a film capable of forming a dielectric multilayer film can be easily obtained. Examples thereof include a resin having a temperature of 360 ° C. Further, when the Tg of the resin is 140 ° C. or higher, a film capable of forming a dielectric multilayer film by vapor deposition at a higher temperature can be obtained, which is particularly preferable.
前記樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板の全光線透過率(JIS K 7375:2008)が、好ましくは75~95%、さらに好ましくは78~95%、特に好ましくは80~95%となる樹脂を用いることができる。
全光線透過率が前記範囲にある樹脂を用いると、透明性に優れる樹脂組成物や光学フィルターを容易に得ることができる。 As the resin, the total light transmittance (JIS K 7375: 2008) of a resin plate having a thickness of 0.1 mm made of the resin is preferably 75 to 95%, more preferably 78 to 95%, and particularly preferably 80. A resin having a value of up to 95% can be used.
When a resin having a total light transmittance in the above range is used, a resin composition or an optical filter having excellent transparency can be easily obtained.
全光線透過率が前記範囲にある樹脂を用いると、透明性に優れる樹脂組成物や光学フィルターを容易に得ることができる。 As the resin, the total light transmittance (JIS K 7375: 2008) of a resin plate having a thickness of 0.1 mm made of the resin is preferably 75 to 95%, more preferably 78 to 95%, and particularly preferably 80. A resin having a value of up to 95% can be used.
When a resin having a total light transmittance in the above range is used, a resin composition or an optical filter having excellent transparency can be easily obtained.
前記樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000~350,000、好ましくは30,000~250,000であり、数平均分子量(Mn)は、通常10,000~150,000、好ましくは20,000~100,000である。
The polystyrene-equivalent weight average molecular weight (Mw) measured by the gel permeation chromatography (GPC) method of the resin is usually 15,000 to 350,000, preferably 30,000 to 250,000, and is a number. The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.
前記樹脂としては、例えば、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂、ビニル系紫外線硬化型樹脂が挙げられる。
Examples of the resin include cyclic (poly) olefin-based resin, aromatic polyether-based resin, polyimide-based resin, polyester-based resin, polycarbonate-based resin, polyamide (aramid) -based resin, polyarylate-based resin, and polysulfone-based resin. Polyether sulfone-based resin, polyparaphenylene-based resin, polyamideimide-based resin, polyethylene naphthalate (PEN) -based resin, fluorinated aromatic polymer-based resin, (modified) acrylic-based resin, epoxy-based resin, allyl ester-based curing Examples thereof include mold resins, silsesquioxane-based UV curable resins, acrylic UV curable resins, and vinyl UV curable resins.
[環状(ポリ)オレフィン系樹脂]
環状(ポリ)オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体を用いて得られる樹脂、および、当該樹脂を水素添加することで得られる樹脂が好ましい。 [Cyclic (poly) olefin resin]
As the cyclic (poly) olefin resin, at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0). The resin obtained by using the above and the resin obtained by hydrogenating the resin are preferable.
環状(ポリ)オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体を用いて得られる樹脂、および、当該樹脂を水素添加することで得られる樹脂が好ましい。 [Cyclic (poly) olefin resin]
As the cyclic (poly) olefin resin, at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0). The resin obtained by using the above and the resin obtained by hydrogenating the resin are preferable.
式(X0)中、Rx1~Rx4はそれぞれ独立に、下記(i')~(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0~4の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(ii')および(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。) Wherein (X 0), in each of R x1 ~ R x4 independently represents an atom or a group selected from the following (i ') ~ (ix' ), k x, m x and p x are each independently 0 Represents an integer of ~ 4.
(I') Hydrogen atom (ii') Halogen atom (iii') Trialkylsilyl group (iv') Substituent or unsubstituted carbon number 1 having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom. Hydrocarbon group (v') substituted or unsubstituted hydrocarbon group (vi') polar group having 1 to 30 carbon atoms (excluding (ii') and (iv')).
(Vii') Alkylidene groups formed by mutual bonding of R x1 and R x2 or R x3 and R x4 (however, R x1 to R x4 not involved in the bond are independently described in (i'). )-(Vi') represents an atom or group selected.)
(Viii') R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocycle (however, R x1 to R not involved in the bond). x4 represents an atom or group independently selected from the above (i') to (vi').)
(Ix') A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (however, R x1 and R x4 not involved in the bond are independently described in (i). Represents an atom or group selected from') to (vi').)
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、置換または非置換の炭素数1~30の炭化水素基
(v')置換または非置換の炭素数1~30の炭化水素基
(vi')極性基(但し、(ii')および(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1~Rx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')~(vi')より選ばれる原子または基を表す。) Wherein (X 0), in each of R x1 ~ R x4 independently represents an atom or a group selected from the following (i ') ~ (ix' ), k x, m x and p x are each independently 0 Represents an integer of ~ 4.
(I') Hydrogen atom (ii') Halogen atom (iii') Trialkylsilyl group (iv') Substituent or unsubstituted carbon number 1 having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom. Hydrocarbon group (v') substituted or unsubstituted hydrocarbon group (vi') polar group having 1 to 30 carbon atoms (excluding (ii') and (iv')).
(Vii') Alkylidene groups formed by mutual bonding of R x1 and R x2 or R x3 and R x4 (however, R x1 to R x4 not involved in the bond are independently described in (i'). )-(Vi') represents an atom or group selected.)
(Viii') R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocycle (however, R x1 to R not involved in the bond). x4 represents an atom or group independently selected from the above (i') to (vi').)
(Ix') A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (however, R x1 and R x4 not involved in the bond are independently described in (i). Represents an atom or group selected from') to (vi').)
式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')~(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0~4の整数を表す。
In the formula (Y 0 ), R y1 and R y2 each independently represent an atom or group selected from the above (i') to (vi'), or R y1 and R y2 are bonded to each other. It represents a monocyclic or polycyclic alicyclic hydrocarbon, aromatic hydrocarbon or heterocycle formed, and ky and py each independently represent an integer of 0 to 4.
[芳香族ポリエーテル系樹脂]
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 [Aromatic polyether resin]
The aromatic polyether resin preferably has at least one structural unit selected from the group consisting of the structural unit represented by the following formula (1) and the structural unit represented by the following formula (2).
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。 [Aromatic polyether resin]
The aromatic polyether resin preferably has at least one structural unit selected from the group consisting of the structural unit represented by the following formula (1) and the structural unit represented by the following formula (2).
式(1)中、R1~R4はそれぞれ独立に、炭素数1~12の1価の有機基を示し、a~dはそれぞれ独立に、0~4の整数を示す。
In the formula (1), R 1 to R 4 independently represent monovalent organic groups having 1 to 12 carbon atoms, and a to d independently represent integers of 0 to 4.
式(2)中、R1~R4およびa~dはそれぞれ独立に、前記式(1)中のR1~R4およびa~dと同義であり、Yは、単結合、-SO2-または-CO-を示し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1~12の1価の有機基またはニトロ基を示し、gおよびhはそれぞれ独立に、0~4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
In the formula (2), R 1 to R 4 and a to d are independently synonymous with R 1 to R 4 and a to d in the formula (1), and Y is a single bond, −SO 2 -Or -CO-, R 7 and R 8 independently represent a halogen atom, a monovalent organic group or a nitro group having 1 to 12 carbon atoms, and g and h independently represent 0 to 4, respectively. It indicates an integer, and m indicates 0 or 1. However, when m is 0, R 7 is not a cyano group.
また、前記芳香族ポリエーテル系樹脂は、さらに、下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有していてもよい。
Further, the aromatic polyether resin further has at least one structural unit selected from the group consisting of the structural unit represented by the following formula (3) and the structural unit represented by the following formula (4). You may be doing it.
式(3)中、R5およびR6はそれぞれ独立に、炭素数1~12の1価の有機基を示し、Zは、単結合、-O-、-S-、-SO2-、-CO-、-CONH-、-COO-または炭素数1~12の2価の有機基を示し、eおよびfはそれぞれ独立に、0~4の整数を示し、nは0または1を示す。
In the formula (3), are each R 5 and R 6 independently represents a monovalent organic group having 1 to 12 carbon atoms, Z is a single bond, -O -, - S -, - SO 2 -, - It represents CO-, -CONH-, -COO- or a divalent organic group having 1 to 12 carbon atoms, where e and f independently represent an integer of 0 to 4, and n represents 0 or 1.
式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
In the formula (4), R 7 , R 8 , Y, m, g and h are independently synonymous with R 7 , R 8 , Y, m, g and h in the formula (2), respectively, and R 5 , R 6 , Z, n, e and f are independently synonymous with R 5 , R 6 , Z, n, e and f in the above formula (3).
[ポリイミド系樹脂]
ポリイミド系樹脂としては特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。 [Polyimide resin]
The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in the repeating unit. For example, it is synthesized by the methods described in JP-A-2006-199945 and JP-A-2008-163107. can do.
ポリイミド系樹脂としては特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006-199945号公報や特開2008-163107号公報に記載されている方法で合成することができる。 [Polyimide resin]
The polyimide resin is not particularly limited as long as it is a polymer compound containing an imide bond in the repeating unit. For example, it is synthesized by the methods described in JP-A-2006-199945 and JP-A-2008-163107. can do.
[ポリエステル系樹脂]
ポリエステル系樹脂としては特に制限されず、例えば、特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。 [Polyester resin]
The polyester-based resin is not particularly limited, and for example, it can be synthesized by the methods described in JP-A-2010-285505 and JP-A-2011-197450.
ポリエステル系樹脂としては特に制限されず、例えば、特開2010-285505号公報や特開2011-197450号公報に記載されている方法で合成することができる。 [Polyester resin]
The polyester-based resin is not particularly limited, and for example, it can be synthesized by the methods described in JP-A-2010-285505 and JP-A-2011-197450.
[ポリカーボネート系樹脂]
ポリカーボネート系樹脂としては特に制限されず、例えば、特開2008-163194号公報に記載されている方法で合成することができる。 [Polycarbonate resin]
The polycarbonate-based resin is not particularly limited, and for example, it can be synthesized by the method described in JP-A-2008-163194.
ポリカーボネート系樹脂としては特に制限されず、例えば、特開2008-163194号公報に記載されている方法で合成することができる。 [Polycarbonate resin]
The polycarbonate-based resin is not particularly limited, and for example, it can be synthesized by the method described in JP-A-2008-163194.
[フッ素化芳香族ポリマー系樹脂]
フッ素化芳香族ポリマー系樹脂としては特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば、特開2008-181121号公報に記載されている方法で合成することができる。 [Fluorinated aromatic polymer resin]
The fluorinated aromatic polymer resin is not particularly limited, but at least selected from the group consisting of an aromatic ring having at least one fluorine atom and an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond and an ester bond. It is preferably a polymer containing a repeating unit containing one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
フッ素化芳香族ポリマー系樹脂としては特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば、特開2008-181121号公報に記載されている方法で合成することができる。 [Fluorinated aromatic polymer resin]
The fluorinated aromatic polymer resin is not particularly limited, but at least selected from the group consisting of an aromatic ring having at least one fluorine atom and an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond and an ester bond. It is preferably a polymer containing a repeating unit containing one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.
[アクリル系紫外線硬化型樹脂]
アクリル系紫外線硬化型樹脂としては特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。
アクリル系紫外線硬化型樹脂は、下記本樹脂層や下記オーバーコート層などの樹脂層を形成する際に用いられ得る硬化性樹脂として好適に使用することができる。 [Acrylic UV curable resin]
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic groups or methacrylic groups in the molecule and a compound that is decomposed by ultraviolet rays to generate active radicals. Can be mentioned.
The acrylic ultraviolet curable resin can be suitably used as a curable resin that can be used when forming a resin layer such as the following resin layer and the following overcoat layer.
アクリル系紫外線硬化型樹脂としては特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。
アクリル系紫外線硬化型樹脂は、下記本樹脂層や下記オーバーコート層などの樹脂層を形成する際に用いられ得る硬化性樹脂として好適に使用することができる。 [Acrylic UV curable resin]
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic groups or methacrylic groups in the molecule and a compound that is decomposed by ultraviolet rays to generate active radicals. Can be mentioned.
The acrylic ultraviolet curable resin can be suitably used as a curable resin that can be used when forming a resin layer such as the following resin layer and the following overcoat layer.
[市販品]
前記樹脂の市販品としては、以下の市販品等が挙げられる。環状(ポリ)オレフィン系樹脂の市販品としては、例えば、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASが挙げられる。ポリエーテルサルホン系樹脂の市販品としては、例えば、住友化学(株)製スミカエクセルPESが挙げられる。ポリイミド系樹脂の市販品としては、例えば、三菱ガス化学(株)製ネオプリムLが挙げられる。ポリカーボネート系樹脂の市販品としては、例えば、帝人(株)製ピュアエース、帝人(株)製パンライトSP-3810、三菱ガス化学(株)製ユピゼータEP-5000が挙げられる。フルオレンポリエステル系樹脂の市販品としては、例えば、大阪ガスケミカル(株)製OKP4HTが挙げられる。アクリル系樹脂の市販品としては、例えば、(株)日本触媒製アクリビュアが挙げられる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、例えば、日鉄ケミカル&マテリアル(株)製シルプラスが挙げられる。 [Commercial goods]
Examples of commercially available products of the resin include the following commercially available products. Examples of commercially available cyclic (poly) olefin resins include Arton manufactured by JSR Corporation, Zeonoa manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals Co., Ltd., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available products of the polyether sulfone-based resin include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Company, Inc. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited, Panlite SP-3810 manufactured by Teijin Limited, and Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Company. Examples of commercially available fluorene polyester-based resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available acrylic resins include Acryviewer manufactured by Nippon Shokubai Co., Ltd. Examples of commercially available products of the silsesquioxane-based ultraviolet curable resin include Silplus manufactured by Nippon Steel Chemical & Materials Co., Ltd.
前記樹脂の市販品としては、以下の市販品等が挙げられる。環状(ポリ)オレフィン系樹脂の市販品としては、例えば、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASが挙げられる。ポリエーテルサルホン系樹脂の市販品としては、例えば、住友化学(株)製スミカエクセルPESが挙げられる。ポリイミド系樹脂の市販品としては、例えば、三菱ガス化学(株)製ネオプリムLが挙げられる。ポリカーボネート系樹脂の市販品としては、例えば、帝人(株)製ピュアエース、帝人(株)製パンライトSP-3810、三菱ガス化学(株)製ユピゼータEP-5000が挙げられる。フルオレンポリエステル系樹脂の市販品としては、例えば、大阪ガスケミカル(株)製OKP4HTが挙げられる。アクリル系樹脂の市販品としては、例えば、(株)日本触媒製アクリビュアが挙げられる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、例えば、日鉄ケミカル&マテリアル(株)製シルプラスが挙げられる。 [Commercial goods]
Examples of commercially available products of the resin include the following commercially available products. Examples of commercially available cyclic (poly) olefin resins include Arton manufactured by JSR Corporation, Zeonoa manufactured by Zeon Corporation, APEL manufactured by Mitsui Chemicals Co., Ltd., and TOPAS manufactured by Polyplastics Corporation. Examples of commercially available products of the polyether sulfone-based resin include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Company, Inc. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited, Panlite SP-3810 manufactured by Teijin Limited, and Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Company. Examples of commercially available fluorene polyester-based resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available acrylic resins include Acryviewer manufactured by Nippon Shokubai Co., Ltd. Examples of commercially available products of the silsesquioxane-based ultraviolet curable resin include Silplus manufactured by Nippon Steel Chemical & Materials Co., Ltd.
<その他成分>
本組成物は、本発明の効果を損なわない範囲において、さらに、化合物(Z)以外の化合物(X)[紫外線吸収剤以外の吸収剤]、酸化防止剤、紫外線吸収剤、蛍光消光剤および金属錯体系化合物等のその他成分を含有してもよい。
これらその他成分はそれぞれ、1種単独で用いてもよく、2種以上を用いてもよい。 <Other ingredients>
The present composition further comprises a compound (X) other than the compound (Z) [absorbent other than the ultraviolet absorber], an antioxidant, an ultraviolet absorber, a fluorescent quencher and a metal, as long as the effects of the present invention are not impaired. It may contain other components such as a complex compound.
Each of these other components may be used alone or in combination of two or more.
本組成物は、本発明の効果を損なわない範囲において、さらに、化合物(Z)以外の化合物(X)[紫外線吸収剤以外の吸収剤]、酸化防止剤、紫外線吸収剤、蛍光消光剤および金属錯体系化合物等のその他成分を含有してもよい。
これらその他成分はそれぞれ、1種単独で用いてもよく、2種以上を用いてもよい。 <Other ingredients>
The present composition further comprises a compound (X) other than the compound (Z) [absorbent other than the ultraviolet absorber], an antioxidant, an ultraviolet absorber, a fluorescent quencher and a metal, as long as the effects of the present invention are not impaired. It may contain other components such as a complex compound.
Each of these other components may be used alone or in combination of two or more.
これらその他成分は、本組成物を調製する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性等に応じて適宜選択すればよいが、樹脂100質量部に対して、通常0.01~5.0質量部、好ましくは0.05~2.0質量部である。
These other components may be mixed with a resin or the like when preparing the present composition, or may be added when synthesizing the resin. The amount to be added may be appropriately selected according to desired characteristics and the like, but is usually 0.01 to 5.0 parts by mass, preferably 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the resin. Is.
[化合物(X)]
本組成物は、化合物(Z)以外の化合物(X)[紫外線吸収剤以外の吸収剤]を1種または2種以上含んでいてもよい。
該化合物(X)としては、例えば、スクアリリウム系化合物、フタロシアニン系化合物、ポリメチン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、オクタフィリン系化合物、ジイモニウム系化合物、ペリレン系化合物、金属ジチオラート系化合物が挙げられる。 [Compound (X)]
The present composition may contain one or more compounds (X) [absorbents other than ultraviolet absorbers] other than compound (Z).
Examples of the compound (X) include squarylium compounds, phthalocyanine compounds, polymethine compounds, naphthalocyanine compounds, croconium compounds, octaphyllin compounds, diimonium compounds, perylene compounds, and metal dithiolate compounds. Be done.
本組成物は、化合物(Z)以外の化合物(X)[紫外線吸収剤以外の吸収剤]を1種または2種以上含んでいてもよい。
該化合物(X)としては、例えば、スクアリリウム系化合物、フタロシアニン系化合物、ポリメチン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、オクタフィリン系化合物、ジイモニウム系化合物、ペリレン系化合物、金属ジチオラート系化合物が挙げられる。 [Compound (X)]
The present composition may contain one or more compounds (X) [absorbents other than ultraviolet absorbers] other than compound (Z).
Examples of the compound (X) include squarylium compounds, phthalocyanine compounds, polymethine compounds, naphthalocyanine compounds, croconium compounds, octaphyllin compounds, diimonium compounds, perylene compounds, and metal dithiolate compounds. Be done.
前記化合物(X)としては、スクアリリウム系化合物を含むことが好ましく、スクアリリウム系化合物とその他の化合物(X')とをそれぞれ1種以上含むことがさらに好ましく、該その他の化合物(X')としては、フタロシアニン系化合物およびポリメチン系化合物が特に好ましい。
The compound (X) preferably contains a squarylium-based compound, more preferably one or more of each of the squarylium-based compound and the other compound (X'), and the other compound (X'). , Phthalocyanine compounds and polymethine compounds are particularly preferred.
前記スクアリリウム系化合物は、吸収ピークがシャープであり、優れた可視光透過性および高いモル吸光係数を有するが、光線吸収時に散乱光の原因となる蛍光が発生する場合がある。この場合、スクアリリウム系化合物と前記化合物(X')とを組み合わせて使用することにより、散乱光を抑制することができる。このように散乱光が抑制されると、本組成物から得られた光学フィルターを撮像装置などに使用した場合、得られるカメラ画質がより良好となる。
The squarylium compound has a sharp absorption peak, excellent visible light transmittance and a high molar absorption coefficient, but may generate fluorescence that causes scattered light during light absorption. In this case, scattered light can be suppressed by using the squarylium compound and the compound (X') in combination. When the scattered light is suppressed in this way, when the optical filter obtained from the present composition is used in an image pickup device or the like, the obtained camera image quality becomes better.
前記化合物(X)の吸収極大波長は、好ましくは600~800nm、より好ましくは620~780nm、さらに好ましくは650~760nm、特に好ましくは660~750nmである。
前記範囲に吸収極大波長を有する化合物(X)を用いることで、赤色付近の色の入射角依存性が改良され、視感度補正により優れる光学フィルターを容易に得ることができる。 The absorption maximum wavelength of the compound (X) is preferably 600 to 800 nm, more preferably 620 to 780 nm, still more preferably 650 to 760 nm, and particularly preferably 660 to 750 nm.
By using the compound (X) having the maximum absorption wavelength in the above range, the dependence of the color near red on the incident angle is improved, and an excellent optical filter can be easily obtained by correcting the luminosity factor.
前記範囲に吸収極大波長を有する化合物(X)を用いることで、赤色付近の色の入射角依存性が改良され、視感度補正により優れる光学フィルターを容易に得ることができる。 The absorption maximum wavelength of the compound (X) is preferably 600 to 800 nm, more preferably 620 to 780 nm, still more preferably 650 to 760 nm, and particularly preferably 660 to 750 nm.
By using the compound (X) having the maximum absorption wavelength in the above range, the dependence of the color near red on the incident angle is improved, and an excellent optical filter can be easily obtained by correcting the luminosity factor.
[紫外線吸収剤]
前記紫外線吸収剤としては、例えば、アゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、アントラセン系化合物、特開2019-014707号公報等に記載の化合物が挙げられる。 [UV absorber]
Examples of the ultraviolet absorber include azomethine compounds, indol compounds, benzotriazole compounds, triazine compounds, anthracene compounds, and compounds described in JP-A-2019-014707.
前記紫外線吸収剤としては、例えば、アゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、アントラセン系化合物、特開2019-014707号公報等に記載の化合物が挙げられる。 [UV absorber]
Examples of the ultraviolet absorber include azomethine compounds, indol compounds, benzotriazole compounds, triazine compounds, anthracene compounds, and compounds described in JP-A-2019-014707.
[酸化防止剤]
前記酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-tert-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが挙げられる。 [Antioxidant]
Examples of the antioxidant include 2,6-di-tert-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-tert-butyl-5,5'-dimethyldiphenylmethane, and the like. Tetrakiss [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane can be mentioned.
前記酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-tert-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンが挙げられる。 [Antioxidant]
Examples of the antioxidant include 2,6-di-tert-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-tert-butyl-5,5'-dimethyldiphenylmethane, and the like. Tetrakiss [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane can be mentioned.
<添加剤>
本組成物は、本発明の効果を損なわない範囲において、さらに、有機溶剤、離型剤、界面活性剤、帯電防止剤、密着助剤、光拡散材等の添加剤を含有していてもよい。
これら添加剤はそれぞれ、1種単独で用いてもよく、2種以上を用いてもよい。 <Additives>
The composition may further contain additives such as an organic solvent, a mold release agent, a surfactant, an antistatic agent, an adhesion aid, and a light diffusing material as long as the effects of the present invention are not impaired. ..
Each of these additives may be used alone or in combination of two or more.
本組成物は、本発明の効果を損なわない範囲において、さらに、有機溶剤、離型剤、界面活性剤、帯電防止剤、密着助剤、光拡散材等の添加剤を含有していてもよい。
これら添加剤はそれぞれ、1種単独で用いてもよく、2種以上を用いてもよい。 <Additives>
The composition may further contain additives such as an organic solvent, a mold release agent, a surfactant, an antistatic agent, an adhesion aid, and a light diffusing material as long as the effects of the present invention are not impaired. ..
Each of these additives may be used alone or in combination of two or more.
特に、本組成物を液状組成物とする場合、有機溶剤を用いることが好ましい。該有機溶剤の例としては、樹脂を溶解できる溶剤であることが好ましく、具体的には、エステル類、ケトン類、芳香族炭化水素類、ハロゲン含有化合物類が挙げられる。
また、後述するキャスト成形により樹脂層を製造する場合には、レベリング剤や消泡剤を用いることで該樹脂層の製造を容易にすることができる。 In particular, when the present composition is a liquid composition, it is preferable to use an organic solvent. Examples of the organic solvent are preferably solvents that can dissolve resins, and specific examples thereof include esters, ketones, aromatic hydrocarbons, and halogen-containing compounds.
Further, when the resin layer is produced by cast molding described later, the production of the resin layer can be facilitated by using a leveling agent or an antifoaming agent.
また、後述するキャスト成形により樹脂層を製造する場合には、レベリング剤や消泡剤を用いることで該樹脂層の製造を容易にすることができる。 In particular, when the present composition is a liquid composition, it is preferable to use an organic solvent. Examples of the organic solvent are preferably solvents that can dissolve resins, and specific examples thereof include esters, ketones, aromatic hydrocarbons, and halogen-containing compounds.
Further, when the resin layer is produced by cast molding described later, the production of the resin layer can be facilitated by using a leveling agent or an antifoaming agent.
≪光学フィルター≫
本発明の一実施形態に係る光学フィルター(以下「本フィルター」ともいう。)は、本組成物から形成された前記化合物(Z)を含有する樹脂層(以下「本樹脂層」ともいう。)を含む基材(i)と、誘電体多層膜とを有する。
本発明の効果がより発揮される等の点から、このような本フィルターとしては、具体的には、近赤外線カットフィルター(NIR-CF)、可視光-近赤外線選択透過フィルター(DBPF)、近赤外線透過フィルター(IRPF)が挙げられる。これらのフィルターは、前記本樹脂層と誘電体多層膜とを有する以外は、従来公知の構成とすればよい。 ≪Optical filter≫
The optical filter according to an embodiment of the present invention (hereinafter, also referred to as “the present filter”) is a resin layer containing the compound (Z) formed from the present composition (hereinafter, also referred to as “the present resin layer”). It has a base material (i) containing the above and a dielectric multilayer film.
From the viewpoint that the effects of the present invention are more exhibited, specific examples of such a filter include a near-infrared cut filter (NIR-CF), a visible light-near infrared selective transmission filter (DBPF), and a near infrared filter. Infrared transmission filter (IRPF) can be mentioned. These filters may have a conventionally known configuration except that they have the present resin layer and a dielectric multilayer film.
本発明の一実施形態に係る光学フィルター(以下「本フィルター」ともいう。)は、本組成物から形成された前記化合物(Z)を含有する樹脂層(以下「本樹脂層」ともいう。)を含む基材(i)と、誘電体多層膜とを有する。
本発明の効果がより発揮される等の点から、このような本フィルターとしては、具体的には、近赤外線カットフィルター(NIR-CF)、可視光-近赤外線選択透過フィルター(DBPF)、近赤外線透過フィルター(IRPF)が挙げられる。これらのフィルターは、前記本樹脂層と誘電体多層膜とを有する以外は、従来公知の構成とすればよい。 ≪Optical filter≫
The optical filter according to an embodiment of the present invention (hereinafter, also referred to as “the present filter”) is a resin layer containing the compound (Z) formed from the present composition (hereinafter, also referred to as “the present resin layer”). It has a base material (i) containing the above and a dielectric multilayer film.
From the viewpoint that the effects of the present invention are more exhibited, specific examples of such a filter include a near-infrared cut filter (NIR-CF), a visible light-near infrared selective transmission filter (DBPF), and a near infrared filter. Infrared transmission filter (IRPF) can be mentioned. These filters may have a conventionally known configuration except that they have the present resin layer and a dielectric multilayer film.
本フィルターの厚みは、所望の用途に応じて適宜選択すればよいが、近年の固体撮像装置等の薄型化、軽量化等の流れによれば、該本フィルターの厚みも薄いことが好ましい。
本フィルターは、前記基材(i)を含むため、薄型化が可能である。 The thickness of the present filter may be appropriately selected according to the desired application, but according to the recent trend of thinning and weight reduction of solid-state image sensors and the like, it is preferable that the thickness of the present filter is also thin.
Since this filter contains the base material (i), it can be made thinner.
本フィルターは、前記基材(i)を含むため、薄型化が可能である。 The thickness of the present filter may be appropriately selected according to the desired application, but according to the recent trend of thinning and weight reduction of solid-state image sensors and the like, it is preferable that the thickness of the present filter is also thin.
Since this filter contains the base material (i), it can be made thinner.
本フィルターの厚みは、好ましくは300μm以下、より好ましくは250μm以下、さらに好ましくは200μm以下、特に好ましくは150μm以下であり、下限は特に制限されないが、例えば、20μmであることが望ましい。
The thickness of this filter is preferably 300 μm or less, more preferably 250 μm or less, further preferably 200 μm or less, particularly preferably 150 μm or less, and the lower limit is not particularly limited, but is preferably 20 μm, for example.
<NIR-CF>
前記NIR-CFは、波長850~1200nmの領域におけるカット性能に優れ、可視波長域での透過性に優れる光学フィルターであることが好ましい。
このNIR-CFで用いる前記誘電体多層膜は、近赤外線反射膜であることが好ましい。 <NIR-CF>
The NIR-CF is preferably an optical filter having excellent cutting performance in the wavelength region of 850 to 1200 nm and excellent transparency in the visible wavelength region.
The dielectric multilayer film used in this NIR-CF is preferably a near-infrared reflective film.
前記NIR-CFは、波長850~1200nmの領域におけるカット性能に優れ、可視波長域での透過性に優れる光学フィルターであることが好ましい。
このNIR-CFで用いる前記誘電体多層膜は、近赤外線反射膜であることが好ましい。 <NIR-CF>
The NIR-CF is preferably an optical filter having excellent cutting performance in the wavelength region of 850 to 1200 nm and excellent transparency in the visible wavelength region.
The dielectric multilayer film used in this NIR-CF is preferably a near-infrared reflective film.
NIR-CFを固体撮像素子などに使用する場合、近赤外波長域の透過率は低い方が好ましい。特に、波長850~1200nmの領域は固体撮像素子の受光感度が比較的高いことが知られており、この波長域の透過率を低減させることにより、カメラ画像と人間の目との視感度補正を効果的に行うことができ、優れた色再現性を達成することができる。また、さらに、波長850~1200nmの領域の透過率を低減させることで、セキュリティ認証機能に用いる近赤外光がイメージセンサー等に到達するのを効果的に防ぐことが可能になる。
When NIR-CF is used for a solid-state image sensor or the like, it is preferable that the transmittance in the near infrared wavelength region is low. In particular, it is known that the light receiving sensitivity of the solid-state image sensor is relatively high in the wavelength region of 850 to 1200 nm, and by reducing the transmittance in this wavelength region, the visual sensitivity correction between the camera image and the human eye can be performed. It can be done effectively and excellent color reproducibility can be achieved. Further, by reducing the transmittance in the wavelength region of 850 to 1200 nm, it is possible to effectively prevent the near-infrared light used for the security authentication function from reaching the image sensor or the like.
NIR-CFは、波長850~1200nmの領域において、該フィルターの垂直方向から測定した場合の平均透過率が、好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下である。
波長850~1200nmの平均透過率がこの範囲にあると、近赤外線を十分にカットすることができ、優れた色再現性を達成できるため好ましい。 NIR-CF has an average transmittance of preferably 5% or less, more preferably 4% or less, still more preferably 3% or less, particularly preferably 3% or less, when measured from the vertical direction of the filter in the wavelength region of 850 to 1200 nm. Is less than 2%.
When the average transmittance at a wavelength of 850 to 1200 nm is in this range, near infrared rays can be sufficiently cut and excellent color reproducibility can be achieved, which is preferable.
波長850~1200nmの平均透過率がこの範囲にあると、近赤外線を十分にカットすることができ、優れた色再現性を達成できるため好ましい。 NIR-CF has an average transmittance of preferably 5% or less, more preferably 4% or less, still more preferably 3% or less, particularly preferably 3% or less, when measured from the vertical direction of the filter in the wavelength region of 850 to 1200 nm. Is less than 2%.
When the average transmittance at a wavelength of 850 to 1200 nm is in this range, near infrared rays can be sufficiently cut and excellent color reproducibility can be achieved, which is preferable.
NIR-CFを固体撮像素子などに使用する場合、可視光透過率が高い方が好ましい。具体的には、波長430~580nmの領域において、該フィルターの垂直方向から測定した場合の平均透過率が、好ましくは75%以上、より好ましくは80%以上、さらに好ましくは83%以上、特に好ましくは85%以上である。
波長430~580nmの平均透過率がこの範囲にあると、優れた撮像感度を達成することができる。 When NIR-CF is used for a solid-state image sensor or the like, it is preferable that the visible light transmittance is high. Specifically, in the region of wavelength 430 to 580 nm, the average transmittance when measured from the vertical direction of the filter is preferably 75% or more, more preferably 80% or more, still more preferably 83% or more, particularly preferably. Is 85% or more.
When the average transmittance at a wavelength of 430 to 580 nm is in this range, excellent imaging sensitivity can be achieved.
波長430~580nmの平均透過率がこの範囲にあると、優れた撮像感度を達成することができる。 When NIR-CF is used for a solid-state image sensor or the like, it is preferable that the visible light transmittance is high. Specifically, in the region of wavelength 430 to 580 nm, the average transmittance when measured from the vertical direction of the filter is preferably 75% or more, more preferably 80% or more, still more preferably 83% or more, particularly preferably. Is 85% or more.
When the average transmittance at a wavelength of 430 to 580 nm is in this range, excellent imaging sensitivity can be achieved.
<DBPF>
前記DBPFは、可視光と、近赤外線のうち透過させたい波長の光とを透過し、近赤外線のうちカットしたい波長の光をカットする光学フィルターであれば特に制限されない。
このDBPFで用いる前記誘電体多層膜は、可視光と、近赤外線のうち透過させたい波長の光とを透過し、近赤外線のうちカットしたい波長の光をカットする膜であることが好ましい。 <DBPF>
The DBPF is not particularly limited as long as it is an optical filter that transmits visible light and light having a wavelength to be transmitted among near infrared rays and cuts light having a wavelength to be cut among near infrared rays.
The dielectric multilayer film used in the DBPF is preferably a film that transmits visible light and light having a wavelength that is desired to be transmitted among near infrared rays and cuts light having a wavelength that is desired to be cut among near infrared rays.
前記DBPFは、可視光と、近赤外線のうち透過させたい波長の光とを透過し、近赤外線のうちカットしたい波長の光をカットする光学フィルターであれば特に制限されない。
このDBPFで用いる前記誘電体多層膜は、可視光と、近赤外線のうち透過させたい波長の光とを透過し、近赤外線のうちカットしたい波長の光をカットする膜であることが好ましい。 <DBPF>
The DBPF is not particularly limited as long as it is an optical filter that transmits visible light and light having a wavelength to be transmitted among near infrared rays and cuts light having a wavelength to be cut among near infrared rays.
The dielectric multilayer film used in the DBPF is preferably a film that transmits visible light and light having a wavelength that is desired to be transmitted among near infrared rays and cuts light having a wavelength that is desired to be cut among near infrared rays.
DBPFもNIR-CFと同様に、固体撮像素子などに使用する場合、可視光透過率が高い方が好ましく、前記と同様の理由から、波長430~580nmの平均透過率が、NIR-CFの該平均透過率と同様の範囲にあることが好ましい。
Similar to NIR-CF, when DBPF is used for a solid-state imaging device or the like, it is preferable that the visible light transmittance is high, and for the same reason as described above, the average transmittance at a wavelength of 430 to 580 nm is that of NIR-CF. It is preferably in the same range as the average transmittance.
また、DBPFは、可視光と、近赤外線のうち透過させたい波長の光とを十分に透過でき、近赤外線のうちカットしたい波長の光を十分にカットすることができる等の点から、下記特性(d)を満たすことが好ましい。
特性(d):波長650nm以上の領域に、光線阻止帯域Za、光線透過帯域Zbおよび光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
前記ZaおよびZcにおける本フィルターの垂直方向から測定した場合の最小透過率がそれぞれ、好ましくは15%以下、より好ましくは5%以下であり、
前記Zbにおける本フィルターの垂直方向から測定した場合の最大透過率が、好ましくは55%以上、より好ましくは60%以上である。 In addition, DBPF has the following characteristics in that it can sufficiently transmit visible light and light having a wavelength of near infrared rays to be transmitted, and can sufficiently cut light of a wavelength of near infrared rays to be cut. It is preferable to satisfy (d).
Characteristic (d): A light blocking band Za, a light transmitting band Zb, and a light blocking band Zc are provided in a region having a wavelength of 650 nm or more, and the central wavelength of each band is Za <Zb <Zc.
The minimum transmittances of Za and Zc measured from the vertical direction of the filter are preferably 15% or less, more preferably 5% or less, respectively.
The maximum transmittance of the Zb measured from the vertical direction of the filter is preferably 55% or more, more preferably 60% or more.
特性(d):波長650nm以上の領域に、光線阻止帯域Za、光線透過帯域Zbおよび光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
前記ZaおよびZcにおける本フィルターの垂直方向から測定した場合の最小透過率がそれぞれ、好ましくは15%以下、より好ましくは5%以下であり、
前記Zbにおける本フィルターの垂直方向から測定した場合の最大透過率が、好ましくは55%以上、より好ましくは60%以上である。 In addition, DBPF has the following characteristics in that it can sufficiently transmit visible light and light having a wavelength of near infrared rays to be transmitted, and can sufficiently cut light of a wavelength of near infrared rays to be cut. It is preferable to satisfy (d).
Characteristic (d): A light blocking band Za, a light transmitting band Zb, and a light blocking band Zc are provided in a region having a wavelength of 650 nm or more, and the central wavelength of each band is Za <Zb <Zc.
The minimum transmittances of Za and Zc measured from the vertical direction of the filter are preferably 15% or less, more preferably 5% or less, respectively.
The maximum transmittance of the Zb measured from the vertical direction of the filter is preferably 55% or more, more preferably 60% or more.
Zaは波長650nm以上900nm以下において、本フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Za1から、20%未満から20%以上となる最も長い波長Za2までの波長帯域を指す。なお、Zaの中心波長は、(Za1+Za2)/2nmである。
Za has a wavelength of 650 nm or more and 900 nm or less, from the shortest wavelength Za1 in which the transmittance measured from the vertical direction of this filter is more than 20% to 20% or less, and the longest wavelength in which it is less than 20% to 20% or more. Refers to the wavelength band up to Za2. The central wavelength of Za is (Za1 + Za2) / 2 nm.
Zbは波長750nm以上1050nm以下において、本フィルターの垂直方向から測定した場合の透過率が、40%以下から40%超になる最も短い波長Zb1から、40%超から40%以下となる最も長い波長Zb2までの波長帯域を指す。なお、Zbの中心波長は、(Zb1+Zb2)/2nmである。
Zb has a wavelength of 750 nm or more and 1050 nm or less, from the shortest wavelength Zb1 in which the transmittance measured from the vertical direction of this filter is 40% or less to more than 40%, and the longest wavelength in which it is more than 40% to 40% or less. Refers to the wavelength band up to Zb2. The central wavelength of Zb is (Zb1 + Zb2) / 2 nm.
Zcは波長820nm以上において、本フィルターの垂直方向から測定した場合の透過率が、20%超から20%以下になる最も短い波長Zc1から、Zc1+200nmである波長Zc2までの波長帯域を指す。なお、Zcの中心波長は、(Zc1+Zc2)/2nmである。
Zc refers to the wavelength band from the shortest wavelength Zc1 in which the transmittance measured from the vertical direction of this filter is more than 20% to 20% or less at a wavelength of 820 nm or more to the wavelength Zc2 of Zc1 + 200 nm. The central wavelength of Zc is (Zc1 + Zc2) / 2 nm.
<IRPF>
前記IRPFは、可視光をカットし、近赤外線のうち透過させたい波長の光を透過する光学フィルターであれば特に制限されない。
このIRPFで用いる前記誘電体多層膜は、カットしたい波長の光(可視光および/または近赤外線のうちの一部)をカットする膜であることが好ましい。
また、IRPFは、可視光吸収剤を用いて可視光をカットしてもよい。 <IRPF>
The IRPF is not particularly limited as long as it is an optical filter that cuts visible light and transmits light having a wavelength to be transmitted among near infrared rays.
The dielectric multilayer film used in this IRPF is preferably a film that cuts light having a wavelength to be cut (a part of visible light and / or near infrared rays).
In addition, IRPF may cut visible light by using a visible light absorber.
前記IRPFは、可視光をカットし、近赤外線のうち透過させたい波長の光を透過する光学フィルターであれば特に制限されない。
このIRPFで用いる前記誘電体多層膜は、カットしたい波長の光(可視光および/または近赤外線のうちの一部)をカットする膜であることが好ましい。
また、IRPFは、可視光吸収剤を用いて可視光をカットしてもよい。 <IRPF>
The IRPF is not particularly limited as long as it is an optical filter that cuts visible light and transmits light having a wavelength to be transmitted among near infrared rays.
The dielectric multilayer film used in this IRPF is preferably a film that cuts light having a wavelength to be cut (a part of visible light and / or near infrared rays).
In addition, IRPF may cut visible light by using a visible light absorber.
IRPFは、赤外線監視カメラ、車載赤外線カメラ、赤外線通信、各種センシングシステム、赤外線警報機、暗視装置等の光学系に好適に使用でき、これらの用途に使用する場合、透過させたい近赤外線以外の波長の光の透過率は低い方が好ましい。
特に、波長380~700nmの領域において、本フィルターの垂直方向から測定した場合の透過率の平均値は、好ましくは10%以下、より好ましくは5%以下である。 IRPF can be suitably used for optical systems such as infrared surveillance cameras, in-vehicle infrared cameras, infrared communication, various sensing systems, infrared alarms, and night vision devices. It is preferable that the light transmittance of the wavelength is low.
In particular, in the region of wavelength 380 to 700 nm, the average value of the transmittance when measured from the vertical direction of this filter is preferably 10% or less, more preferably 5% or less.
特に、波長380~700nmの領域において、本フィルターの垂直方向から測定した場合の透過率の平均値は、好ましくは10%以下、より好ましくは5%以下である。 IRPF can be suitably used for optical systems such as infrared surveillance cameras, in-vehicle infrared cameras, infrared communication, various sensing systems, infrared alarms, and night vision devices. It is preferable that the light transmittance of the wavelength is low.
In particular, in the region of wavelength 380 to 700 nm, the average value of the transmittance when measured from the vertical direction of this filter is preferably 10% or less, more preferably 5% or less.
また、IRPFは、透過させたい近赤外線の透過率は高い方が好ましく、具体的には、波長750nm以上の領域に、光線透過帯Yaを有し、前記光線透過帯Yaにおいて、本フィルターの垂直方向から測定した場合の最大透過率(TIR)が、好ましくは45%以上、より好ましくは50%以上である。
Further, the IRPF preferably has a high transmittance of near-infrared rays to be transmitted. Specifically, the IRPF has a light transmitting band Ya in a region having a wavelength of 750 nm or more, and the IRPF has a light transmitting band Ya in the light transmitting band Ya, which is vertical to the filter. The maximum transmittance (TIR ) when measured from the direction is preferably 45% or more, more preferably 50% or more.
<基材(i)>
前記基材(i)は、単層であっても多層であってもよく、本樹脂層を有すればよい。前記基材(i)は、2層以上の本樹脂層を有していてもよく、この場合、2層以上の本樹脂層は、同一であっても、異なっていてもよい。
基材(i)が単層の場合は、該基材(i)は本樹脂層からなり、つまり、本樹脂層(樹脂製基板)が基材(i)である。
基材(i)が多層の場合は、該基材(i)としては、2層以上の樹脂層を含む基材であって、該2層以上の樹脂層のうち少なくとも1つが本樹脂層である基材や、本樹脂層とガラス支持体とを含む基材が挙げられ、例えば、ガラス支持体やベースとなる樹脂製支持体などの支持体上に本樹脂層が積層された積層体を含む基材(A)、本樹脂層上に、硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された積層体を含む基材(B)が挙げられる。
製造コストや光学特性調整の容易性、さらに、本樹脂層の傷消し効果を達成できることや、基材(i)の耐傷つき性向上等の点から、前記基材(i)としては、基材(B)が特に好ましい。 <Base material (i)>
The base material (i) may be a single layer or a multi-layer, and may have the present resin layer. The base material (i) may have two or more main resin layers, and in this case, the two or more main resin layers may be the same or different.
When the base material (i) is a single layer, the base material (i) is made of the present resin layer, that is, the present resin layer (resin substrate) is the base material (i).
When the base material (i) has multiple layers, the base material (i) is a base material containing two or more resin layers, and at least one of the two or more resin layers is the present resin layer. Examples thereof include a certain base material and a base material containing the present resin layer and a glass support. For example, a laminated body in which the present resin layer is laminated on a support such as a glass support or a resin support as a base. Examples thereof include a base material (A) containing the base material (A) and a base material (B) containing a laminate in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on the present resin layer.
The base material (i) is a base material because of the manufacturing cost, the ease of adjusting the optical characteristics, the ability to eliminate scratches on the resin layer, the improvement of the scratch resistance of the base material (i), and the like. (B) is particularly preferable.
前記基材(i)は、単層であっても多層であってもよく、本樹脂層を有すればよい。前記基材(i)は、2層以上の本樹脂層を有していてもよく、この場合、2層以上の本樹脂層は、同一であっても、異なっていてもよい。
基材(i)が単層の場合は、該基材(i)は本樹脂層からなり、つまり、本樹脂層(樹脂製基板)が基材(i)である。
基材(i)が多層の場合は、該基材(i)としては、2層以上の樹脂層を含む基材であって、該2層以上の樹脂層のうち少なくとも1つが本樹脂層である基材や、本樹脂層とガラス支持体とを含む基材が挙げられ、例えば、ガラス支持体やベースとなる樹脂製支持体などの支持体上に本樹脂層が積層された積層体を含む基材(A)、本樹脂層上に、硬化性樹脂等からなるオーバーコート層などの樹脂層が積層された積層体を含む基材(B)が挙げられる。
製造コストや光学特性調整の容易性、さらに、本樹脂層の傷消し効果を達成できることや、基材(i)の耐傷つき性向上等の点から、前記基材(i)としては、基材(B)が特に好ましい。 <Base material (i)>
The base material (i) may be a single layer or a multi-layer, and may have the present resin layer. The base material (i) may have two or more main resin layers, and in this case, the two or more main resin layers may be the same or different.
When the base material (i) is a single layer, the base material (i) is made of the present resin layer, that is, the present resin layer (resin substrate) is the base material (i).
When the base material (i) has multiple layers, the base material (i) is a base material containing two or more resin layers, and at least one of the two or more resin layers is the present resin layer. Examples thereof include a certain base material and a base material containing the present resin layer and a glass support. For example, a laminated body in which the present resin layer is laminated on a support such as a glass support or a resin support as a base. Examples thereof include a base material (A) containing the base material (A) and a base material (B) containing a laminate in which a resin layer such as an overcoat layer made of a curable resin or the like is laminated on the present resin layer.
The base material (i) is a base material because of the manufacturing cost, the ease of adjusting the optical characteristics, the ability to eliminate scratches on the resin layer, the improvement of the scratch resistance of the base material (i), and the like. (B) is particularly preferable.
なお、前記樹脂製支持体や基材(B)におけるオーバーコート層などの樹脂層は、化合物(Z)を含まない樹脂層のことをいう。該化合物(Z)を含まない樹脂層は、樹脂を含めば特に制限されず、該樹脂としては、前記本組成物の欄に記載の樹脂と同様の樹脂等が挙げられる。また、該化合物(Z)を含まない樹脂層は、下記その他の機能膜であってもよい。
The resin layer such as the overcoat layer in the resin support and the base material (B) refers to a resin layer that does not contain the compound (Z). The resin layer that does not contain the compound (Z) is not particularly limited as long as it contains a resin, and examples of the resin include resins similar to the resin described in the column of the present composition. Further, the resin layer containing no compound (Z) may be the following other functional film.
基材(i)の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、好ましくは10~250μm、さらに好ましくは15~230μm、特に好ましくは20~150μmである。
基材(i)の厚みが前記範囲にあると、該基材(i)を用いた本フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記単層の基材(i)をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。 The thickness of the base material (i) can be appropriately selected depending on the desired application and is not particularly limited, but is preferably 10 to 250 μm, more preferably 15 to 230 μm, and particularly preferably 20 to 150 μm.
When the thickness of the base material (i) is within the above range, the filter using the base material (i) can be made thinner and lighter, and can be suitably used for various applications such as a solid-state image sensor. it can. In particular, when the single-layer base material (i) is used for a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
基材(i)の厚みが前記範囲にあると、該基材(i)を用いた本フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。特に、前記単層の基材(i)をカメラモジュール等のレンズユニットに用いた場合には、レンズユニットの低背化、軽量化を実現することができるため好ましい。 The thickness of the base material (i) can be appropriately selected depending on the desired application and is not particularly limited, but is preferably 10 to 250 μm, more preferably 15 to 230 μm, and particularly preferably 20 to 150 μm.
When the thickness of the base material (i) is within the above range, the filter using the base material (i) can be made thinner and lighter, and can be suitably used for various applications such as a solid-state image sensor. it can. In particular, when the single-layer base material (i) is used for a lens unit such as a camera module, it is preferable because the lens unit can be reduced in height and weight.
波長850~1200nmの領域において、基材(i)の垂直方向から測定した最も低い透過率(Ta)は、好ましくは0.1~40%、さらに好ましくは0.5~35%、特に好ましくは1~30%である。
In the region of wavelength 850 to 1200 nm, the lowest transmittance (Ta) measured from the vertical direction of the base material (i) is preferably 0.1 to 40%, more preferably 0.5 to 35%, and particularly preferably. It is 1 to 30%.
波長430~580nmの領域において、基材(i)の垂直方向から測定した平均透過率(Tb)は、好ましくは80%以上、さらに好ましくは81.0%以上である。
In the wavelength region of 430 to 580 nm, the average transmittance (Tb) measured from the vertical direction of the base material (i) is preferably 80% or more, more preferably 81.0% or more.
基材(i)の(Ta)および(Tb)が前記範囲にあると、カットしたい近赤外線領域の波長の光を十分にカットしながらも高い可視光透過性を示す光学フィルターを容易に得ることができ、フレアやゴーストの少ない良好なカメラ画像を与える光学フィルターを容易に得ることができる。
When (Ta) and (Tb) of the base material (i) are in the above range, it is possible to easily obtain an optical filter exhibiting high visible light transmittance while sufficiently cutting light having a wavelength in the near infrared region to be cut. It is possible to easily obtain an optical filter that gives a good camera image with less flare and ghost.
[基材(i)の製造方法]
前記本樹脂層、前記樹脂製支持体および前記オーバーコート層などの樹脂層は、例えば、溶融成形またはキャスト成形により形成することができ、さらに、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングしてもよい。 [Manufacturing method of base material (i)]
The resin layer such as the present resin layer, the resin support, and the overcoat layer can be formed by, for example, melt molding or cast molding, and if necessary, an antistatic agent or a hard coating agent after molding. And / or a coating agent such as an antistatic agent may be coated.
前記本樹脂層、前記樹脂製支持体および前記オーバーコート層などの樹脂層は、例えば、溶融成形またはキャスト成形により形成することができ、さらに、必要により、成形後に、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングしてもよい。 [Manufacturing method of base material (i)]
The resin layer such as the present resin layer, the resin support, and the overcoat layer can be formed by, for example, melt molding or cast molding, and if necessary, an antistatic agent or a hard coating agent after molding. And / or a coating agent such as an antistatic agent may be coated.
前記基材(i)が、基材(A)である場合、例えば、前記支持体に、本組成物を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、支持体上に本樹脂層が形成された基材を製造することができる。
When the base material (i) is the base material (A), for example, by melt-molding or casting the present composition on the support, a method such as spin coating, slit coating, or inkjet is preferable. After coating, the solvent is dried and removed, and if necessary, further light irradiation or heating is performed to produce a base material having the present resin layer formed on the support.
・溶融成形
前記溶融成形としては、具体的には、本組成物を溶融混練りして得られたペレットを溶融成形する方法;本組成物を溶融成形する方法;溶剤を含む液状の本組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。 -Melting molding The melt molding specifically includes a method of melt-molding pellets obtained by melt-kneading the present composition; a method of melt-molding the present composition; a liquid present composition containing a solvent. Examples thereof include a method of melt-molding the pellets obtained by removing the solvent from the pellets. Examples of the melt molding method include injection molding, melt extrusion molding, blow molding and the like.
前記溶融成形としては、具体的には、本組成物を溶融混練りして得られたペレットを溶融成形する方法;本組成物を溶融成形する方法;溶剤を含む液状の本組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。 -Melting molding The melt molding specifically includes a method of melt-molding pellets obtained by melt-kneading the present composition; a method of melt-molding the present composition; a liquid present composition containing a solvent. Examples thereof include a method of melt-molding the pellets obtained by removing the solvent from the pellets. Examples of the melt molding method include injection molding, melt extrusion molding, blow molding and the like.
・キャスト成形
前記キャスト成形としては、溶剤を含む液状の本組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;前記樹脂として光硬化性樹脂および/または熱硬化性樹脂を含む、硬化性の本組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などが挙げられる。
前記基材(i)が、前記単層の基材(i)である場合には、該基材(i)は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材(i)が、前記基材(A)である場合には、該基材(i)は、キャスト成形後、塗膜を剥離しないことで得ることができる。 -Cast molding The cast molding is a method of casting a liquid composition containing a solvent on an appropriate support to remove the solvent; the resin includes a photocurable resin and / or a thermosetting resin. Examples thereof include a method in which the present curable composition is cast on an appropriate support to remove the solvent, and then cured by an appropriate method such as ultraviolet irradiation or heating.
When the base material (i) is the single-layer base material (i), the base material (i) can be obtained by peeling the coating film from the support after cast molding. When the base material (i) is the base material (A), the base material (i) can be obtained by casting and molding without peeling the coating film.
前記キャスト成形としては、溶剤を含む液状の本組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;前記樹脂として光硬化性樹脂および/または熱硬化性樹脂を含む、硬化性の本組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などが挙げられる。
前記基材(i)が、前記単層の基材(i)である場合には、該基材(i)は、キャスト成形後、支持体から塗膜を剥離することにより得ることができ、また、前記基材(i)が、前記基材(A)である場合には、該基材(i)は、キャスト成形後、塗膜を剥離しないことで得ることができる。 -Cast molding The cast molding is a method of casting a liquid composition containing a solvent on an appropriate support to remove the solvent; the resin includes a photocurable resin and / or a thermosetting resin. Examples thereof include a method in which the present curable composition is cast on an appropriate support to remove the solvent, and then cured by an appropriate method such as ultraviolet irradiation or heating.
When the base material (i) is the single-layer base material (i), the base material (i) can be obtained by peeling the coating film from the support after cast molding. When the base material (i) is the base material (A), the base material (i) can be obtained by casting and molding without peeling the coating film.
前記適当な支持体としては、例えば、ガラス板、スチールベルト、スチールドラムおよび樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)製支持体が挙げられる。
Examples of the suitable support include a glass plate, a steel belt, a steel drum, and a support made of a resin (for example, a polyester film or a cyclic olefin resin film).
さらに、ガラス板、石英またはプラスチック製等の光学部品に、前記液状の本組成物をコーティングして溶剤を乾燥させる方法、または、前記硬化性の本組成物をコーティングして硬化および乾燥させる方法などにより、光学部品上に本樹脂層を形成することもできる。
Further, a method of coating an optical component such as a glass plate, quartz or plastic with the liquid present composition to dry the solvent, a method of coating the curable present composition and curing and drying, and the like. Therefore, the present resin layer can be formed on the optical component.
前記樹脂製支持体およびオーバーコート層などの樹脂層を溶融成形またはキャスト成形により形成する場合には、前記溶融成形やキャスト成形の欄における本組成物の代わりに、樹脂を含む所望の組成物(但し、化合物(Z)を含まない)を用いればよい。
When the resin layer such as the resin support and the overcoat layer is formed by melt molding or cast molding, a desired composition containing a resin instead of the present composition in the column of melt molding or cast molding ( However, the compound (Z) is not included) may be used.
前記本樹脂層、前記樹脂製支持体および前記オーバーコート層などの樹脂層中の残留溶剤量は可能な限り少ない方がよい。具体的には、該残留溶剤量は、本樹脂層の重さに対して、好ましくは3質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。
残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる樹脂層が得られる。
基材(i)を光学フィルターに用いる場合は、前記本樹脂層、前記樹脂製支持体および前記オーバーコート層などの樹脂層中の溶剤含有量を100質量ppm以下に抑えることが好ましい。 The amount of residual solvent in the resin layer such as the present resin layer, the resin support, and the overcoat layer should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the weight of the resin layer.
When the amount of the residual solvent is within the above range, a resin layer that is less likely to be deformed or changed in characteristics and can easily exhibit a desired function can be obtained.
When the base material (i) is used as an optical filter, it is preferable to suppress the solvent content in the resin layer such as the present resin layer, the resin support and the overcoat layer to 100 mass ppm or less.
残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる樹脂層が得られる。
基材(i)を光学フィルターに用いる場合は、前記本樹脂層、前記樹脂製支持体および前記オーバーコート層などの樹脂層中の溶剤含有量を100質量ppm以下に抑えることが好ましい。 The amount of residual solvent in the resin layer such as the present resin layer, the resin support, and the overcoat layer should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the weight of the resin layer.
When the amount of the residual solvent is within the above range, a resin layer that is less likely to be deformed or changed in characteristics and can easily exhibit a desired function can be obtained.
When the base material (i) is used as an optical filter, it is preferable to suppress the solvent content in the resin layer such as the present resin layer, the resin support and the overcoat layer to 100 mass ppm or less.
<誘電体多層膜>
本フィルターは、前記基材(i)と誘電体多層膜とを有する。該誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層した積層体等が挙げられる。
該誘電体多層膜は、前記基材(i)の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りやねじれが生じにくい光学フィルターを得ることができる。本フィルターを固体撮像素子などに使用する場合、該フィルターの反りやねじれが小さい方が好ましいことから、誘電体多層膜を基材(i)の両面に設けることが好ましい。 <Dielectric multilayer film>
This filter has the base material (i) and a dielectric multilayer film. Examples of the dielectric multilayer film include a laminate in which high refractive index material layers and low refractive index material layers are alternately laminated.
The dielectric multilayer film may be provided on one side of the base material (i) or on both sides. When it is provided on one side, it is excellent in manufacturing cost and ease of manufacture, and when it is provided on both sides, it is possible to obtain an optical filter which has high strength and is less likely to warp or twist. When this filter is used for a solid-state image sensor or the like, it is preferable that the filter has a small warp or twist. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the base material (i).
本フィルターは、前記基材(i)と誘電体多層膜とを有する。該誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層した積層体等が挙げられる。
該誘電体多層膜は、前記基材(i)の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りやねじれが生じにくい光学フィルターを得ることができる。本フィルターを固体撮像素子などに使用する場合、該フィルターの反りやねじれが小さい方が好ましいことから、誘電体多層膜を基材(i)の両面に設けることが好ましい。 <Dielectric multilayer film>
This filter has the base material (i) and a dielectric multilayer film. Examples of the dielectric multilayer film include a laminate in which high refractive index material layers and low refractive index material layers are alternately laminated.
The dielectric multilayer film may be provided on one side of the base material (i) or on both sides. When it is provided on one side, it is excellent in manufacturing cost and ease of manufacture, and when it is provided on both sides, it is possible to obtain an optical filter which has high strength and is less likely to warp or twist. When this filter is used for a solid-state image sensor or the like, it is preferable that the filter has a small warp or twist. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the base material (i).
前記高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料が挙げられ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10質量%)含有させたものが挙げられる。
Examples of the material constituting the high refractive index material layer include a material having a refractive index of 1.7 or more, and a material having a refractive index of 1.7 to 2.5 is usually selected. Examples of such a material include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, indium oxide and the like as main components, and titanium oxide, tin oxide and /. Alternatively, those containing a small amount of cerium oxide or the like (for example, 0 to 10% by mass with respect to the main component) can be mentioned.
前記低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。
As the material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of 1.2 to 1.6 is usually selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride and sodium hexafluoride.
前記高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、基材(i)上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。
The method of laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a high refractive index material layer and a low refractive index material layer are alternately laminated directly on the base material (i) by a CVD method, a sputtering method, a vacuum vapor deposition method, an ion-assisted vapor deposition method, an ion plating method, or the like. A dielectric multilayer film can be formed.
前記高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ~0.5λの厚さが好ましい。λ(nm)の値としては、NIR-CFの場合、例えば700~1400nm、好ましくは750~1300nmである。高屈折率材料層および低屈折率材料層の各層の厚さがこの範囲にあると、屈折率(n)と膜厚(d)との積(n×d)である光学的膜厚が、λ/4とほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。
The thickness of each of the high refractive index material layer and the low refractive index material layer is usually preferably 0.1λ to 0.5λ, where λ (nm) is the near-infrared wavelength to be blocked. In the case of NIR-CF, the value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness of each layer of the high refractive index material layer and the low refractive index material layer is in this range, the optical film thickness, which is the product (n × d) of the refractive index (n) and the film thickness (d), becomes. The value is almost the same as λ / 4, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled due to the relationship between the optical characteristics of reflection / refraction.
誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、例えばNIR-CFの場合、光学フィルター全体として16~70層であることが好ましく、20~60層であることがより好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。
In the case of NIR-CF, for example, the total number of layers of the high-refractive index material layer and the low-refractive index material layer in the dielectric multilayer film is preferably 16 to 70 layers as a whole, and 20 to 60 layers. More preferably. When the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and warpage of the optical filter and cracks of the dielectric multilayer film are reduced. can do.
本フィルターでは、化合物(Z)の吸収特性等に合わせて、高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、透過したい波長域(例:可視域)に十分な光線透過率を確保した上で、カットしたい近赤外波長域に十分な光線カット特性を有し、かつ、斜め方向から近赤外線が入射した際の反射率を低減することができる。
In this filter, the material types constituting the high refractive index material layer and the low refractive index material layer, the thickness of each layer of the high refractive index material layer and the low refractive index material layer, according to the absorption characteristics of the compound (Z), etc. By appropriately selecting the stacking order and the number of stacks, sufficient light transmittance is secured in the wavelength range to be transmitted (example: visible range), and sufficient light ray cutting characteristics are provided in the near infrared wavelength range to be cut. In addition, it is possible to reduce the refractive index when near-infrared rays are incident from an oblique direction.
ここで、誘電体多層膜の条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、透過したい波長域(例:可視域)の反射防止効果と、カットしたい近赤外域の光線カット効果を両立できるようにパラメーターを設定すればよい。前記ソフトの場合、例えば、NIR-CFの誘電体多層膜を形成する場合には、波長400~700nmの目標透過率を100%、Target Toleranceの値を1とした上で、波長705~950nmの目標透過率を0%、Target Toleranceの値を0.5にするなどのパラメーター設定方法が挙げられる。
これらのパラメーターは基材(i)の各種特性などに合わせて波長範囲をさらに細かく区切ってTarget Toleranceの値を変えることもできる。 Here, in order to optimize the conditions of the dielectric multilayer film, for example, optical thin film design software (for example, Essential Macleod, manufactured by Thin Film Center) is used to prevent reflection in the wavelength range (eg, visible range) to be transmitted. The parameters may be set so that both the effect and the light ray cutting effect in the near infrared region to be cut can be achieved at the same time. In the case of the software, for example, when forming a NIR-CF dielectric multilayer film, the target transmittance at a wavelength of 400 to 700 nm is set to 100%, the target tolerance value is set to 1, and the wavelength is 705 to 950 nm. Parameter setting methods such as setting the target transmittance to 0% and the Target Tolerance value to 0.5 can be mentioned.
These parameters can also change the value of Target Tolerance by further dividing the wavelength range according to various characteristics of the base material (i) and the like.
これらのパラメーターは基材(i)の各種特性などに合わせて波長範囲をさらに細かく区切ってTarget Toleranceの値を変えることもできる。 Here, in order to optimize the conditions of the dielectric multilayer film, for example, optical thin film design software (for example, Essential Macleod, manufactured by Thin Film Center) is used to prevent reflection in the wavelength range (eg, visible range) to be transmitted. The parameters may be set so that both the effect and the light ray cutting effect in the near infrared region to be cut can be achieved at the same time. In the case of the software, for example, when forming a NIR-CF dielectric multilayer film, the target transmittance at a wavelength of 400 to 700 nm is set to 100%, the target tolerance value is set to 1, and the wavelength is 705 to 950 nm. Parameter setting methods such as setting the target transmittance to 0% and the Target Tolerance value to 0.5 can be mentioned.
These parameters can also change the value of Target Tolerance by further dividing the wavelength range according to various characteristics of the base material (i) and the like.
<その他の機能膜>
本フィルターは、本発明の効果を損なわない範囲において、基材(i)と誘電体多層膜との間、基材(i)の誘電体多層膜が設けられた面と反対側の面、または、誘電体多層膜の基材(i)が設けられた面と反対側の面に、基材(i)や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。 <Other functional membranes>
In the present filter, the surface between the base material (i) and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film of the base material (i) is provided, or the surface opposite to the surface provided with the dielectric multilayer film, or the surface opposite to the surface provided with the dielectric multilayer film, or On the surface opposite to the surface on which the base material (i) of the dielectric multilayer film is provided, the surface hardness of the base material (i) and the dielectric multilayer film is improved, the chemical resistance is improved, antistatic and scratch erasing are performed. For such purposes, functional films such as an antireflection film, a hard coat film, and an antistatic film can be appropriately provided.
本フィルターは、本発明の効果を損なわない範囲において、基材(i)と誘電体多層膜との間、基材(i)の誘電体多層膜が設けられた面と反対側の面、または、誘電体多層膜の基材(i)が設けられた面と反対側の面に、基材(i)や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止および傷消しなどの目的で、反射防止膜、ハードコート膜や帯電防止膜などの機能膜を適宜設けることができる。 <Other functional membranes>
In the present filter, the surface between the base material (i) and the dielectric multilayer film, the surface opposite to the surface on which the dielectric multilayer film of the base material (i) is provided, or the surface opposite to the surface provided with the dielectric multilayer film, or the surface opposite to the surface provided with the dielectric multilayer film, or On the surface opposite to the surface on which the base material (i) of the dielectric multilayer film is provided, the surface hardness of the base material (i) and the dielectric multilayer film is improved, the chemical resistance is improved, antistatic and scratch erasing are performed. For such purposes, functional films such as an antireflection film, a hard coat film, and an antistatic film can be appropriately provided.
本フィルターは、前記機能膜を1層含んでもよく、2層以上含んでもよい。本フィルターが、前記機能膜を2層以上含む場合には、同様の膜を2層以上含んでもよいし、異なる膜を2層以上含んでもよい。
This filter may contain one layer of the functional film or may contain two or more layers. When the present filter contains two or more layers of the functional film, the same film may be contained in two or more layers, or different films may be contained in two or more layers.
前記機能膜を積層する方法としては特に制限されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材(i)または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。
The method for laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melted on the base material (i) or the dielectric multilayer film in the same manner as described above. Examples thereof include a method of molding or cast molding.
また、前記コーティング剤などを含む硬化性組成物をバーコーター等で基材(i)または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。
It can also be produced by applying a curable composition containing the coating agent or the like on a base material (i) or a dielectric multilayer film with a bar coater or the like, and then curing by ultraviolet irradiation or the like.
前記コーティング剤としては、紫外線(UV)/電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。コーティング剤は、1種単独で用いてもよいし、2種以上を用いてもよい。
これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。 Examples of the coating agent include ultraviolet (UV) / electron beam (EB) curable resin and thermosetting resin, and specific examples thereof include vinyl compounds, urethane-based, urethane acrylate-based, acrylate-based, and epoxy. Examples include based and epoxy acrylate based resins. The coating agent may be used alone or in combination of two or more.
Examples of the curable composition containing these coating agents include vinyl-based, urethane-based, urethane acrylate-based, acrylate-based, epoxy-based and epoxy acrylate-based curable compositions.
これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。 Examples of the coating agent include ultraviolet (UV) / electron beam (EB) curable resin and thermosetting resin, and specific examples thereof include vinyl compounds, urethane-based, urethane acrylate-based, acrylate-based, and epoxy. Examples include based and epoxy acrylate based resins. The coating agent may be used alone or in combination of two or more.
Examples of the curable composition containing these coating agents include vinyl-based, urethane-based, urethane acrylate-based, acrylate-based, epoxy-based and epoxy acrylate-based curable compositions.
前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を用いてもよい。
The curable composition may contain a polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or thermal polymerization initiator can be used, and the photopolymerization initiator and the thermal polymerization initiator may be used in combination. The polymerization initiator may be used alone or in combination of two or more.
前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100質量%とした場合、好ましくは0.1~10質量%、より好ましくは0.5~10質量%、さらに好ましくは1~5質量%である。重合開始剤の配合割合が前記範囲にあると、硬化特性および取り扱い性等に優れる硬化性組成物を容易に得ることができ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を容易に得ることができる。
The proportion of the polymerization initiator in the curable composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, when the total amount of the curable composition is 100% by mass. More preferably, it is 1 to 5% by mass. When the blending ratio of the polymerization initiator is within the above range, a curable composition having excellent curable properties, handleability, etc. can be easily obtained, and an antireflection film, a hard coat film, an antistatic film, etc. having a desired hardness can be easily obtained. Functional film can be easily obtained.
さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知の溶剤を使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類が挙げられる。
これら溶剤は、1種単独で用いてもよいし、2種以上を用いてもよい。 Further, an organic solvent may be added to the curable composition as a solvent, and a known solvent can be used as the organic solvent. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone and propylene. Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; dimethylformamide, dimethylacetamide, N- Examples thereof include amides such as methylpyrrolidone.
These solvents may be used alone or in combination of two or more.
これら溶剤は、1種単独で用いてもよいし、2種以上を用いてもよい。 Further, an organic solvent may be added to the curable composition as a solvent, and a known solvent can be used as the organic solvent. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone and propylene. Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; aromatic hydrocarbons such as benzene, toluene and xylene; dimethylformamide, dimethylacetamide, N- Examples thereof include amides such as methylpyrrolidone.
These solvents may be used alone or in combination of two or more.
前記機能膜の厚さは、好ましくは0.1~20μm、より好ましくは0.5~10μm、特に好ましくは0.7~5μmである。
The thickness of the functional film is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm.
また、基材(i)と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材(i)、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。
Further, for the purpose of improving the adhesion between the base material (i) and the functional film and / or the dielectric multilayer film and the adhesion between the functional film and the dielectric multilayer film, the base material (i), the functional film or the dielectric material is used. The surface of the multilayer film may be subjected to surface treatment such as corona treatment or plasma treatment.
[光学フィルターの用途]
本フィルターは、例えば、カットしたい領域の波長の光のカット能と、透過したい波長の光の透過能に優れる。従って、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、赤外線カメラ、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー、各種センシングシステム、赤外線通信等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。 [Use of optical filter]
This filter is excellent, for example, in the ability to cut light having a wavelength in a region to be cut and the ability to transmit light having a wavelength to be transmitted. Therefore, it is useful for correcting the luminosity factor of a solid-state image sensor such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automobile cameras, infrared cameras, televisions, car navigation systems, mobile information terminals, video game machines, etc. It is useful for portable game machines, fingerprint authentication systems, digital music players, various sensing systems, infrared communications, etc. Further, it is also useful as a heat ray cut filter or the like attached to a glass plate or the like of an automobile or a building.
本フィルターは、例えば、カットしたい領域の波長の光のカット能と、透過したい波長の光の透過能に優れる。従って、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、赤外線カメラ、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー、各種センシングシステム、赤外線通信等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。 [Use of optical filter]
This filter is excellent, for example, in the ability to cut light having a wavelength in a region to be cut and the ability to transmit light having a wavelength to be transmitted. Therefore, it is useful for correcting the luminosity factor of a solid-state image sensor such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automobile cameras, infrared cameras, televisions, car navigation systems, mobile information terminals, video game machines, etc. It is useful for portable game machines, fingerprint authentication systems, digital music players, various sensing systems, infrared communications, etc. Further, it is also useful as a heat ray cut filter or the like attached to a glass plate or the like of an automobile or a building.
≪固体撮像装置≫
本発明の一実施形態に係る固体撮像装置は、本フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えた装置であり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等が挙げられる。 ≪Solid image sensor≫
The solid-state image sensor according to an embodiment of the present invention includes the present filter. Here, the solid-state image sensor is a device provided with a solid-state image sensor such as a CCD or a CMOS image sensor, and specifically, a digital still camera, a smartphone camera, a mobile phone camera, a wearable device camera, or a digital video. Examples include cameras.
本発明の一実施形態に係る固体撮像装置は、本フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えた装置であり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等が挙げられる。 ≪Solid image sensor≫
The solid-state image sensor according to an embodiment of the present invention includes the present filter. Here, the solid-state image sensor is a device provided with a solid-state image sensor such as a CCD or a CMOS image sensor, and specifically, a digital still camera, a smartphone camera, a mobile phone camera, a wearable device camera, or a digital video. Examples include cameras.
≪光学センサー装置≫
本発明の一実施形態に係る光学センサー装置は、本フィルターを具備すれば特に制限されず、従来公知の構成とすればよい。
例えば、受光素子と本フィルターとを有する装置が挙げられ、具体的には、受光素子(半導体基板)、保護膜、本フィルターおよび他のフィルター等を有する装置が挙げられる。 ≪Optical sensor device≫
The optical sensor device according to the embodiment of the present invention is not particularly limited as long as it includes the present filter, and may have a conventionally known configuration.
For example, an apparatus having a light receiving element and the present filter can be mentioned, and specific examples thereof include an apparatus having a light receiving element (semiconductor substrate), a protective film, the present filter, another filter and the like.
本発明の一実施形態に係る光学センサー装置は、本フィルターを具備すれば特に制限されず、従来公知の構成とすればよい。
例えば、受光素子と本フィルターとを有する装置が挙げられ、具体的には、受光素子(半導体基板)、保護膜、本フィルターおよび他のフィルター等を有する装置が挙げられる。 ≪Optical sensor device≫
The optical sensor device according to the embodiment of the present invention is not particularly limited as long as it includes the present filter, and may have a conventionally known configuration.
For example, an apparatus having a light receiving element and the present filter can be mentioned, and specific examples thereof include an apparatus having a light receiving element (semiconductor substrate), a protective film, the present filter, another filter and the like.
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
<分子量>
樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウォーターズ(WATERS)社製のゲルパーミエーションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー(株)製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー(株)製GPC装置(HLC-8220型、カラム:TSKgelα-M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。 <Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent and the like.
(A) Using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by Waters Corp., weight equivalent to standard polystyrene. The average molecular weight (Mw) and the number average molecular weight (Mn) were measured.
(B) Using a GPC apparatus manufactured by Tosoh Corporation (HLC-8220 type, column: TSKgelα-M, developing solvent: THF), the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of standard polystyrene were measured. ..
樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
(a)ウォーターズ(WATERS)社製のゲルパーミエーションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー(株)製Hタイプカラム、展開溶剤:o-ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。
(b)東ソー(株)製GPC装置(HLC-8220型、カラム:TSKgelα-M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。 <Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent and the like.
(A) Using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by Waters Corp., weight equivalent to standard polystyrene. The average molecular weight (Mw) and the number average molecular weight (Mn) were measured.
(B) Using a GPC apparatus manufactured by Tosoh Corporation (HLC-8220 type, column: TSKgelα-M, developing solvent: THF), the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of standard polystyrene were measured. ..
なお、後述する樹脂合成例3で合成した樹脂については、前記方法による分子量の測定ではなく、下記方法(c)による対数粘度の測定を行った。
(c)ポリイミド溶液の一部を無水メタノールに投入してポリイミドを析出させ、ろ過することで未反応単量体から分離した後、80℃で12時間真空乾燥した。得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解(希薄ポリイミド溶液)し、キャノン・フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
μ={ln(ts/t0)}/C
t0:溶媒(N-メチル-2-ピロリドン)の流下時間
ts:希薄ポリイミド溶液の流下時間
C:0.5g/dL For the resin synthesized in Resin Synthesis Example 3 described later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the above method.
(C) A part of the polyimide solution was put into anhydrous methanol to precipitate the polyimide, and the polyimide was separated from the unreacted monomer by filtration, and then vacuum dried at 80 ° C. for 12 hours. 0.1 g of the obtained polyimide was dissolved in 20 mL of N-methyl-2-pyrrolidone (dilute polyimide solution), and the logarithmic viscosity (μ) at 30 ° C. was determined by the following formula using a Canon Fenceke viscometer.
μ = {ln (ts / t0)} / C
t0: Flow time of solvent (N-methyl-2-pyrrolidone) ts: Flow time of dilute polyimide solution C: 0.5 g / dL
(c)ポリイミド溶液の一部を無水メタノールに投入してポリイミドを析出させ、ろ過することで未反応単量体から分離した後、80℃で12時間真空乾燥した。得られたポリイミド0.1gをN-メチル-2-ピロリドン20mLに溶解(希薄ポリイミド溶液)し、キャノン・フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
μ={ln(ts/t0)}/C
t0:溶媒(N-メチル-2-ピロリドン)の流下時間
ts:希薄ポリイミド溶液の流下時間
C:0.5g/dL For the resin synthesized in Resin Synthesis Example 3 described later, the logarithmic viscosity was measured by the following method (c) instead of the molecular weight measurement by the above method.
(C) A part of the polyimide solution was put into anhydrous methanol to precipitate the polyimide, and the polyimide was separated from the unreacted monomer by filtration, and then vacuum dried at 80 ° C. for 12 hours. 0.1 g of the obtained polyimide was dissolved in 20 mL of N-methyl-2-pyrrolidone (dilute polyimide solution), and the logarithmic viscosity (μ) at 30 ° C. was determined by the following formula using a Canon Fenceke viscometer.
μ = {ln (ts / t0)} / C
t0: Flow time of solvent (N-methyl-2-pyrrolidone) ts: Flow time of dilute polyimide solution C: 0.5 g / dL
<ガラス転移温度(Tg)>
樹脂のガラス転移温度は、(株)日立ハイテクサイエンス製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。 <Glass transition temperature (Tg)>
The glass transition temperature of the resin was measured using a differential scanning calorimeter (DSC6200) manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 20 ° C. per minute under a nitrogen stream.
樹脂のガラス転移温度は、(株)日立ハイテクサイエンス製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。 <Glass transition temperature (Tg)>
The glass transition temperature of the resin was measured using a differential scanning calorimeter (DSC6200) manufactured by Hitachi High-Tech Science Co., Ltd. at a heating rate of 20 ° C. per minute under a nitrogen stream.
<分光透過率>
基材および光学フィルターの、波長850~1200nmの近赤外領域の透過率、波長430~580nmの可視光透過率は、日本分光(株)製の分光光度計(V-7200)を用いて測定した。この透過率は、光が基材または光学フィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。本装置を用いて測定したパラメータは以下の通りである。 <Spectroscopic transmittance>
The transmittance of the base material and the optical filter in the near infrared region with a wavelength of 850 to 1200 nm and the visible light transmittance with a wavelength of 430 to 580 nm were measured using a spectrophotometer (V-7200) manufactured by Nippon Spectroscopy Co., Ltd. did. This transmittance is measured using the spectrophotometer under the condition that the light is vertically incident on the base material or the optical filter. The parameters measured using this device are as follows.
基材および光学フィルターの、波長850~1200nmの近赤外領域の透過率、波長430~580nmの可視光透過率は、日本分光(株)製の分光光度計(V-7200)を用いて測定した。この透過率は、光が基材または光学フィルターに対して垂直に入射する条件で、該分光光度計を使用して測定したものである。本装置を用いて測定したパラメータは以下の通りである。 <Spectroscopic transmittance>
The transmittance of the base material and the optical filter in the near infrared region with a wavelength of 850 to 1200 nm and the visible light transmittance with a wavelength of 430 to 580 nm were measured using a spectrophotometer (V-7200) manufactured by Nippon Spectroscopy Co., Ltd. did. This transmittance is measured using the spectrophotometer under the condition that the light is vertically incident on the base material or the optical filter. The parameters measured using this device are as follows.
Xa:波長850~1200nmにおいて、基材の垂直方向から測定した透過率が最も低い値となる光の波長
Ta:波長850~1200nmにおいて、基材の垂直方向から測定した最低透過率
Tb:基材の垂直方向から測定した、波長430~580nmの光の平均透過率
Tc:基材の垂直方向から測定した、加熱試験後の波長850~1200nmの光の最低透過率
Td:基材の垂直方向から測定した、加熱試験後の波長430~580nmの光の平均透過率
Te:基材の垂直方向から測定した、UV照射後の波長850~1200nmの光の最低透過率
Tf:基材の垂直方向から測定した、UV照射後の波長430~580nmの光の平均透過率
Tg:光学フィルターの垂直方向から測定した、波長850~1200nmの光の平均透過率
Th:光学フィルターの垂直方向から測定した、波長430~580nmの光の平均透過率 Xa: Wavelength of light having the lowest transmittance measured from the vertical direction of the base material at a wavelength of 850 to 1200 nm Ta: Minimum transmittance measured from the vertical direction of the base material at a wavelength of 850 to 1200 nm Tb: Base material Average transmittance of light with a wavelength of 430 to 580 nm measured from the vertical direction of Tc: Minimum transmittance of light with a wavelength of 850 to 1200 nm after the heating test measured from the vertical direction of the substrate Td: From the vertical direction of the substrate Measured average transmittance of light with a wavelength of 430 to 580 nm after the heating test Te: Minimum transmittance of light with a wavelength of 850 to 1200 nm after UV irradiation measured from the vertical direction of the substrate Tf: From the vertical direction of the substrate Measured average transmittance of light with a wavelength of 430 to 580 nm after UV irradiation Tg: Average transmittance of light with a wavelength of 850 to 1200 nm measured from the vertical direction of the optical filter Th: Wavelength measured from the vertical direction of the optical filter Average transmittance of light from 430 to 580 nm
Ta:波長850~1200nmにおいて、基材の垂直方向から測定した最低透過率
Tb:基材の垂直方向から測定した、波長430~580nmの光の平均透過率
Tc:基材の垂直方向から測定した、加熱試験後の波長850~1200nmの光の最低透過率
Td:基材の垂直方向から測定した、加熱試験後の波長430~580nmの光の平均透過率
Te:基材の垂直方向から測定した、UV照射後の波長850~1200nmの光の最低透過率
Tf:基材の垂直方向から測定した、UV照射後の波長430~580nmの光の平均透過率
Tg:光学フィルターの垂直方向から測定した、波長850~1200nmの光の平均透過率
Th:光学フィルターの垂直方向から測定した、波長430~580nmの光の平均透過率 Xa: Wavelength of light having the lowest transmittance measured from the vertical direction of the base material at a wavelength of 850 to 1200 nm Ta: Minimum transmittance measured from the vertical direction of the base material at a wavelength of 850 to 1200 nm Tb: Base material Average transmittance of light with a wavelength of 430 to 580 nm measured from the vertical direction of Tc: Minimum transmittance of light with a wavelength of 850 to 1200 nm after the heating test measured from the vertical direction of the substrate Td: From the vertical direction of the substrate Measured average transmittance of light with a wavelength of 430 to 580 nm after the heating test Te: Minimum transmittance of light with a wavelength of 850 to 1200 nm after UV irradiation measured from the vertical direction of the substrate Tf: From the vertical direction of the substrate Measured average transmittance of light with a wavelength of 430 to 580 nm after UV irradiation Tg: Average transmittance of light with a wavelength of 850 to 1200 nm measured from the vertical direction of the optical filter Th: Wavelength measured from the vertical direction of the optical filter Average transmittance of light from 430 to 580 nm
[化合物合成例]
下記実施例で用いた化合物(X)および(Z)は、一般的に知られている合成法に基づいて合成した。
化合物(X)は、例えば、特許第3366697号公報、特許第2846091号公報、特許第2864475号公報、特許第3703869号公報、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、特開昭63-124054号公報、「フタロシアニン -化学と機能-」(アイピーシー、1997年)、特開2007-169315号公報、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報に記載されている方法に基づいて合成できる。 [Example of compound synthesis]
The compounds (X) and (Z) used in the following examples were synthesized based on a generally known synthetic method.
Examples of the compound (X) include Japanese Patent No. 3366697, Japanese Patent No. 2846091, Japanese Patent No. 2864475, Japanese Patent No. 3703869, Japanese Patent Application Laid-Open No. 60-228448, Japanese Patent Application Laid-Open No. 1-146846, and Japanese Patent Application Laid-Open No. Kaihei 1-2289960, Japanese Patent No. 4081149, Japanese Patent Application Laid-Open No. 63-124054, "Futarusinin-Chemistry and Function-" (IPC, 1997), Japanese Patent Application Laid-Open No. 2007-169315, Japanese Patent Application Laid-Open No. 2007-1693- It can be synthesized based on the methods described in Japanese Patent Application Laid-Open No. 108267, Japanese Patent Application Laid-Open No. 2010-241873, Japanese Patent No. 3699464, and Japanese Patent No. 4740631.
下記実施例で用いた化合物(X)および(Z)は、一般的に知られている合成法に基づいて合成した。
化合物(X)は、例えば、特許第3366697号公報、特許第2846091号公報、特許第2864475号公報、特許第3703869号公報、特開昭60-228448号公報、特開平1-146846号公報、特開平1-228960号公報、特許第4081149号公報、特開昭63-124054号公報、「フタロシアニン -化学と機能-」(アイピーシー、1997年)、特開2007-169315号公報、特開2009-108267号公報、特開2010-241873号公報、特許第3699464号公報、特許第4740631号公報に記載されている方法に基づいて合成できる。 [Example of compound synthesis]
The compounds (X) and (Z) used in the following examples were synthesized based on a generally known synthetic method.
Examples of the compound (X) include Japanese Patent No. 3366697, Japanese Patent No. 2846091, Japanese Patent No. 2864475, Japanese Patent No. 3703869, Japanese Patent Application Laid-Open No. 60-228448, Japanese Patent Application Laid-Open No. 1-146846, and Japanese Patent Application Laid-Open No. Kaihei 1-2289960, Japanese Patent No. 4081149, Japanese Patent Application Laid-Open No. 63-124054, "Futarusinin-Chemistry and Function-" (IPC, 1997), Japanese Patent Application Laid-Open No. 2007-169315, Japanese Patent Application Laid-Open No. 2007-1693- It can be synthesized based on the methods described in Japanese Patent Application Laid-Open No. 108267, Japanese Patent Application Laid-Open No. 2010-241873, Japanese Patent No. 3699464, and Japanese Patent No. 4740631.
化合物(Z)は、例えば、特開2009-108267号公報、特開平5-59291号公報、特開2014-95007号公報、特開2011-52218号公報、国際公開第2007/114398号、特開2003-246940号公報、Chemistry of Heterocyclic Compounds: The Cyanine Dyes and Related Compounds, Volume 18(Wiley, 1964年)、Near-Infrared Dyes for High Technology Applications(Springer, 1997年)に記載されている方法に基づいて合成できるが、具体的には、以下の方法で合成することができる。
Examples of the compound (Z) include JP-A-2009-108267, JP-A-5-59291, JP-A-2014-95007, JP-A-2011-52218, International Publication No. 2007/114398, JP-A. 2003-246940, Chemistry of Heterocyclic Compounds: The Cyanine Days and Related Compounds, Volume 18 (Wiley, 1964), Near-Infre It can be synthesized, but specifically, it can be synthesized by the following method.
氷冷下で、DMF(250mL)中に塩化ホスホリル(66.4g)を滴下し、そのまま1時間撹拌した。次いで、シクロヘキサノン(25.0g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-1(37.4g)を得た。目的化合物の同定はNMRおよびLC-MS(液体クロマトグラフィー質量分析計)を用いた。
Phosphoryl chloride (66.4 g) was added dropwise to DMF (250 mL) under ice-cooling, and the mixture was stirred as it was for 1 hour. Then, cyclohexanone (25.0 g) was added, and the mixture was heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-1 (37.4 g). NMR and LC-MS (Liquid Chromatography Mass Spectrometer) were used to identify the target compound.
氷冷下で、シクロペンタノン(25.4g)のTHF(200mL)溶液に、フェニルマグネシウムブロミド(PhMgBr)・テトラヒドロフラン溶液(1mol/L、330mL)を滴下し、室温で1時間撹拌した。その後メタノール(10mL)をゆっくり加え、次いで濃塩酸(10mL)を加えた。テトラヒドロフランをエバポレーターにより除去後、酢酸エチル・水で分液し、硫酸ナトリウムで乾燥後、濃縮した。得られた溶液をシリカゲルカラムクロマトグラフィーで精製し、化合物c-2(29.6g)を得た。
氷冷下、DMF(200mL)中に塩化ホスホリル(54.7g)を滴下し、1時間撹拌した。次いで、化合物c-2(29.6g)を加え、80℃で3時間加熱した。室温で放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-3(35.7g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Under ice-cooling, a solution of phenylmagnesium bromide (PhMgBr) and tetrahydrofuran (1 mol / L, 330 mL) was added dropwise to a solution of cyclopentanone (25.4 g) in THF (200 mL), and the mixture was stirred at room temperature for 1 hour. Then methanol (10 mL) was added slowly, and then concentrated hydrochloric acid (10 mL) was added. Tetrahydrofuran was removed by an evaporator, separated by ethyl acetate and water, dried over sodium sulfate, and concentrated. The obtained solution was purified by silica gel column chromatography to obtain compound c-2 (29.6 g).
Phosphoryl chloride (54.7 g) was added dropwise to DMF (200 mL) under ice-cooling, and the mixture was stirred for 1 hour. Compound c-2 (29.6 g) was then added and heated at 80 ° C. for 3 hours. After allowing to cool at room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-3 (35.7 g). NMR and LC-MS were used to identify the target compound.
氷冷下、DMF(200mL)中に塩化ホスホリル(54.7g)を滴下し、1時間撹拌した。次いで、化合物c-2(29.6g)を加え、80℃で3時間加熱した。室温で放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-3(35.7g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Under ice-cooling, a solution of phenylmagnesium bromide (PhMgBr) and tetrahydrofuran (1 mol / L, 330 mL) was added dropwise to a solution of cyclopentanone (25.4 g) in THF (200 mL), and the mixture was stirred at room temperature for 1 hour. Then methanol (10 mL) was added slowly, and then concentrated hydrochloric acid (10 mL) was added. Tetrahydrofuran was removed by an evaporator, separated by ethyl acetate and water, dried over sodium sulfate, and concentrated. The obtained solution was purified by silica gel column chromatography to obtain compound c-2 (29.6 g).
Phosphoryl chloride (54.7 g) was added dropwise to DMF (200 mL) under ice-cooling, and the mixture was stirred for 1 hour. Compound c-2 (29.6 g) was then added and heated at 80 ° C. for 3 hours. After allowing to cool at room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-3 (35.7 g). NMR and LC-MS were used to identify the target compound.
氷冷下で、DMF(250mL)中に塩化ホスホリル(81.1g)を滴下し、そのまま1時間撹拌した。次いで、シクロペンタノン(25.0g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-4(41.9g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。
Phosphoryl chloride (81.1 g) was added dropwise to DMF (250 mL) under ice-cooling, and the mixture was stirred as it was for 1 hour. Then, cyclopentanone (25.0 g) was added, and the mixture was heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-4 (41.9 g). NMR and LC-MS were used to identify the target compound.
シクロペンタノン(25.0g)のアセトニトリル溶液(150mL)に、ジフェニルアミン(25.1g)とテトラフルオロホウ酸42%水溶液(46.6g)を加え、2時間還流し、その後放冷した。析出した固体をろ過し、冷メタノールで洗浄することで、化合物c-5(82.6g)を得た。
化合物c-5(82.6g)およびエチル N-フェニルホルムイミダート(80.1g)を、ブチロニトリル(250mL)中で2時間還流し、その後室温まで放冷した。ジエチルエーテル(1L)を加えることで析出した固体をろ過し、メタノール(200mL)に溶解させ、トルエンを(1L)加えたところ固体が析出した。この固体を、ろ過、乾燥することで目的化合物c-6(90.7g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Diphenylamine (25.1 g) and a 42% aqueous solution of tetrafluoroboric acid (46.6 g) were added to an acetonitrile solution (150 mL) of cyclopentanone (25.0 g), refluxed for 2 hours, and then allowed to cool. The precipitated solid was filtered and washed with cold methanol to obtain compound c-5 (82.6 g).
Compound c-5 (82.6 g) and ethyl N-phenylform imidate (80.1 g) were refluxed in butyronitrile (250 mL) for 2 hours and then allowed to cool to room temperature. The solid precipitated by adding diethyl ether (1 L) was filtered, dissolved in methanol (200 mL), and toluene was added (1 L) to precipitate the solid. This solid was filtered and dried to obtain the target compound c-6 (90.7 g). NMR and LC-MS were used to identify the target compound.
化合物c-5(82.6g)およびエチル N-フェニルホルムイミダート(80.1g)を、ブチロニトリル(250mL)中で2時間還流し、その後室温まで放冷した。ジエチルエーテル(1L)を加えることで析出した固体をろ過し、メタノール(200mL)に溶解させ、トルエンを(1L)加えたところ固体が析出した。この固体を、ろ過、乾燥することで目的化合物c-6(90.7g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Diphenylamine (25.1 g) and a 42% aqueous solution of tetrafluoroboric acid (46.6 g) were added to an acetonitrile solution (150 mL) of cyclopentanone (25.0 g), refluxed for 2 hours, and then allowed to cool. The precipitated solid was filtered and washed with cold methanol to obtain compound c-5 (82.6 g).
Compound c-5 (82.6 g) and ethyl N-phenylform imidate (80.1 g) were refluxed in butyronitrile (250 mL) for 2 hours and then allowed to cool to room temperature. The solid precipitated by adding diethyl ether (1 L) was filtered, dissolved in methanol (200 mL), and toluene was added (1 L) to precipitate the solid. This solid was filtered and dried to obtain the target compound c-6 (90.7 g). NMR and LC-MS were used to identify the target compound.
氷冷下で、4-メチルシクロヘキサノン(25.0g)のTHF(100mL)溶液に、フェニルマグネシウムブロミド・テトラヒドロフラン溶液(1mol/L、250mL)を滴下し、室温で1時間撹拌した。その後メタノール(10mL)をゆっくり加え、次いで濃塩酸(10mL)を加えた。テトラヒドロフランをエバポレーターにより除去後、酢酸エチル・水で分液し、硫酸ナトリウムで乾燥後、濃縮した。得られた溶液を、シリカゲルカラムクロマトグラフィーで精製し、化合物c-7(26.1g)を得た。
氷冷下で、DMF中に塩化ホスホリル(33.0g)を滴下し、1時間撹拌した。次いで化合物c-7(26.1g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-8(24.6g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Under ice-cooling, a solution of phenylmagnesium bromide and tetrahydrofuran (1 mol / L, 250 mL) was added dropwise to a solution of 4-methylcyclohexanone (25.0 g) in THF (100 mL), and the mixture was stirred at room temperature for 1 hour. Then methanol (10 mL) was added slowly, and then concentrated hydrochloric acid (10 mL) was added. Tetrahydrofuran was removed by an evaporator, separated by ethyl acetate and water, dried over sodium sulfate, and concentrated. The obtained solution was purified by silica gel column chromatography to obtain compound c-7 (26.1 g).
Phosphoryl chloride (33.0 g) was added dropwise to DMF under ice-cooling, and the mixture was stirred for 1 hour. Compound c-7 (26.1 g) was then added and heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-8 (24.6 g). NMR and LC-MS were used to identify the target compound.
氷冷下で、DMF中に塩化ホスホリル(33.0g)を滴下し、1時間撹拌した。次いで化合物c-7(26.1g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-8(24.6g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。 Under ice-cooling, a solution of phenylmagnesium bromide and tetrahydrofuran (1 mol / L, 250 mL) was added dropwise to a solution of 4-methylcyclohexanone (25.0 g) in THF (100 mL), and the mixture was stirred at room temperature for 1 hour. Then methanol (10 mL) was added slowly, and then concentrated hydrochloric acid (10 mL) was added. Tetrahydrofuran was removed by an evaporator, separated by ethyl acetate and water, dried over sodium sulfate, and concentrated. The obtained solution was purified by silica gel column chromatography to obtain compound c-7 (26.1 g).
Phosphoryl chloride (33.0 g) was added dropwise to DMF under ice-cooling, and the mixture was stirred for 1 hour. Compound c-7 (26.1 g) was then added and heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-8 (24.6 g). NMR and LC-MS were used to identify the target compound.
氷冷下で、DMF(250mL)中に塩化ホスホリル(89.0g)を滴下し、そのまま1時間撹拌した。次いで、3-ペンタノン(25.0g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-9(9.3g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。
Phosphoryl chloride (89.0 g) was added dropwise to DMF (250 mL) under ice-cooling, and the mixture was stirred as it was for 1 hour. Then 3-pentanone (25.0 g) was added and heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-9 (9.3 g). NMR and LC-MS were used to identify the target compound.
氷冷下で、DMF(250mL)中に塩化ホスホリル(45.0g)を滴下し、そのまま1時間撹拌した。次いで、2,2,6,6-テトラメチルヘプタン-4-オン(25.0g)を加え、80℃で3時間加熱した。室温まで放冷後、氷水を加え、一晩放置した。混合物をろ過し、淡黄色の目的化合物c-10(7.2g)を得た。目的化合物の同定はNMRおよびLC-MSを用いた。
Phosphoryl chloride (45.0 g) was added dropwise to DMF (250 mL) under ice-cooling, and the mixture was stirred as it was for 1 hour. Then, 2,2,6,6-tetramethylheptane-4-one (25.0 g) was added, and the mixture was heated at 80 ° C. for 3 hours. After allowing to cool to room temperature, ice water was added and the mixture was left overnight. The mixture was filtered to give the pale yellow target compound c-10 (7.2 g). NMR and LC-MS were used to identify the target compound.
Bioorganic and Medicinal Chemistry, 2013, vol.21, #11, p.2826-2831に記載の方法で合成した化合物e-1(20.0g)のt-BuOH(150mL)溶液に、ピバル酸エチル(52.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)9.6gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去することで、化合物e-2を得た。
その後、化合物e-2を精製せず、濃塩酸15mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-3(11.5g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-3(11.5g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-4(10.5g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (52) in a t-BuOH (150 mL) solution of compound e-1 (20.0 g) synthesized by the method according to Bioorganic and Medicinal Chemistry, 2013, vol.21, # 11, p.2826-2831. After adding 9.0 g) and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid), the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-2.
Then, without purifying compound e-2, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-3 (11.5 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-3 (11.5 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-4 (10.5 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-2を精製せず、濃塩酸15mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-3(11.5g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-3(11.5g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-4(10.5g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (52) in a t-BuOH (150 mL) solution of compound e-1 (20.0 g) synthesized by the method according to Bioorganic and Medicinal Chemistry, 2013, vol.21, # 11, p.2826-2831. After adding 9.0 g) and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid), the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-2.
Then, without purifying compound e-2, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-3 (11.5 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-3 (11.5 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-4 (10.5 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
Bioorganic and Medicinal Chemistry, 2013, vol.21, #11, p.2826-2831に記載の方法で合成した化合物e-1(20.0g)のt-BuOH(150mL)溶液に、イソ酪酸エチル(50.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)9.6gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去することで、化合物e-5を得た。
その後、化合物e-5を精製せず、濃塩酸15mLを追加し40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-6(10.4g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-6(10.4g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-7(8.3g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl isobutyrate (50) in a t-BuOH (150 mL) solution of compound e-1 (20.0 g) synthesized by the method according to Bioorganic and Medicinal Chemistry, 2013, vol.21, # 11, p.2826-2831. After adding 9.0 g) and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid), the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-5.
Then, the compound e-5 was not purified, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-6 (10.4 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-6 (10.4 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-7 (8.3 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-5を精製せず、濃塩酸15mLを追加し40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物をシリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-6(10.4g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-6(10.4g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-7(8.3g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl isobutyrate (50) in a t-BuOH (150 mL) solution of compound e-1 (20.0 g) synthesized by the method according to Bioorganic and Medicinal Chemistry, 2013, vol.21, # 11, p.2826-2831. After adding 9.0 g) and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid), the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-5.
Then, the compound e-5 was not purified, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-6 (10.4 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-6 (10.4 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-7 (8.3 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
化合物e-8はOrganic Letters, 2015, vol.17, #13, p.3306-3309に記載の方法を用いて合成することができる。
Compound e-8 can be synthesized by using the method described in Organic Letters, 2015, vol.17, # 13, p.3306-3309.
化合物e-9はEuropean Journal of Organic Chemistry, 2018, vol.2018, #2, p.240-246に記載の方法を用いて合成することができる。
Compound e-9 can be synthesized by using the method described in European Journal of Organic Chemistry, 2018, vol.2018, # 2, p.240-246.
化合物e-10はJournal of Organic Chemistry, 2000, vol.65, #7, p.2236-2238, PF6に記載の方法を用いて合成することができる。
Compound e-10 can be synthesized by using the method described in Journal of Organic Chemistry, 2000, vol.65, # 7, p.2236-2238, PF6.
化合物e-11(20.0g)のt-BuOH(150mL)溶液に、ピバル酸エチル(45.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)9.6gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去し、化合物e-12を得た。
その後、化合物e-12を精製せず、濃塩酸15mLを追加し40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)にて精製することにより、化合物e-13(19.1g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-13(19.1g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を30mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-14(16.8g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (45.0 g) was added to a t-BuOH (150 mL) solution of compound e-11 (20.0 g), and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-12.
Then, the compound e-12 was not purified, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography (hexane / ethyl acetate = 4/1) to obtain compound e-13 (19.1 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-13 (19.1 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 30 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-14 (16.8 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-12を精製せず、濃塩酸15mLを追加し40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)にて精製することにより、化合物e-13(19.1g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-13(19.1g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を30mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-14(16.8g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (45.0 g) was added to a t-BuOH (150 mL) solution of compound e-11 (20.0 g), and 9.6 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-12.
Then, the compound e-12 was not purified, 15 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography (hexane / ethyl acetate = 4/1) to obtain compound e-13 (19.1 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-13 (19.1 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 30 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-14 (16.8 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
化合物e-15はJournal of the American Chemical Society, 2015, vol.137, #14, p.4759-4765に記載の方法を用いて合成することができる。
Compound e-15 can be synthesized by using the method described in Journal of the American Chemical Society, 2015, vol.137, # 14, p.4759-4765.
化合物e-16はJournal of the Chemical Society. Perkin Transactions 1 (2001), 2000, #4, p.599-603に記載の方法を用いて合成することができる。
Compound e-16 can be synthesized by using the method described in Journal of the Chemical Society. Perkin Transactions 1 (2001), 2000, # 4, p.599-603.
ジクロロメタン(100mL)中で、化合物e-17(20.0g)、二塩化オキサリル(22.0g)、ピリジン(13.7g)およびDMF(1mL)を、室温下で1時間撹拌した。ジクロロメタンをエバポレーターにより除去し、化合物e-18を含む混合物を得た。
得られた混合物、アセトニトリル(200mL)、5-メチル-2-ヒドロキシアセトフェノン(21.3g)およびトリエチルアミン(15.1g)を加え、室温で撹拌した。アセトニトリルをエバポレーターで除去し、酢酸エチル・水で分液後、硫酸ナトリウムで有機層を乾燥させた。有機層の酢酸エチルをエバポレーターで除去し、化合物e-19を得た。
これを精製せずにt-BuOH(100mL)に溶解させ、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.3gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去することで、化合物e-20を得た。
その後、化合物e-20を精製せず、濃塩酸20mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-21(27.3g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-21(27.3g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-22(16.2g)を得た。化合物の同定は1H-NMR分析により行った。 In dichloromethane (100 mL), compound e-17 (20.0 g), oxalyl dichloride (22.0 g), pyridine (13.7 g) and DMF (1 mL) were stirred at room temperature for 1 hour. Dichloromethane was removed by an evaporator to give a mixture containing compound e-18.
The resulting mixture, acetonitrile (200 mL), 5-methyl-2-hydroxyacetophenone (21.3 g) and triethylamine (15.1 g) were added and stirred at room temperature. Acetonitrile was removed with an evaporator, the mixture was separated with ethyl acetate and water, and the organic layer was dried over sodium sulfate. Ethyl acetate in the organic layer was removed by an evaporator to obtain compound e-19.
This was dissolved in t-BuOH (100 mL) without purification, 6.3 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added, and the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-20.
Then, 20 mL of concentrated hydrochloric acid was added without purifying compound e-20, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-21 (27.3 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-21 (27.3 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-22 (16.2 g). Got Compounds were identified by 1 1 H-NMR analysis.
得られた混合物、アセトニトリル(200mL)、5-メチル-2-ヒドロキシアセトフェノン(21.3g)およびトリエチルアミン(15.1g)を加え、室温で撹拌した。アセトニトリルをエバポレーターで除去し、酢酸エチル・水で分液後、硫酸ナトリウムで有機層を乾燥させた。有機層の酢酸エチルをエバポレーターで除去し、化合物e-19を得た。
これを精製せずにt-BuOH(100mL)に溶解させ、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.3gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去することで、化合物e-20を得た。
その後、化合物e-20を精製せず、濃塩酸20mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-21(27.3g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-21(27.3g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-22(16.2g)を得た。化合物の同定は1H-NMR分析により行った。 In dichloromethane (100 mL), compound e-17 (20.0 g), oxalyl dichloride (22.0 g), pyridine (13.7 g) and DMF (1 mL) were stirred at room temperature for 1 hour. Dichloromethane was removed by an evaporator to give a mixture containing compound e-18.
The resulting mixture, acetonitrile (200 mL), 5-methyl-2-hydroxyacetophenone (21.3 g) and triethylamine (15.1 g) were added and stirred at room temperature. Acetonitrile was removed with an evaporator, the mixture was separated with ethyl acetate and water, and the organic layer was dried over sodium sulfate. Ethyl acetate in the organic layer was removed by an evaporator to obtain compound e-19.
This was dissolved in t-BuOH (100 mL) without purification, 6.3 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added, and the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-20.
Then, 20 mL of concentrated hydrochloric acid was added without purifying compound e-20, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-21 (27.3 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-21 (27.3 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-22 (16.2 g). Got Compounds were identified by 1 1 H-NMR analysis.
ジクロロメタン(100mL)中で、化合物e-23(20.0g)、二塩化オキサリル(21.4g)、ピリジン(13.4g)およびDMF(1mL)を、室温下で1時間撹拌した。ジクロロメタンをエバポレーターにより除去し、化合物e-24を含む混合物を得た。
得られた混合物、アセトニトリル(200mL)、5-メチル-2-ヒドロキシアセトフェノン(20.8g)およびトリエチルアミン(14.8g)を加え、室温で撹拌した。アセトニトリルをエバポレーターで除去し、酢酸エチル・水で分液後、硫酸ナトリウムで有機層を乾燥させた。有機層の酢酸エチルをエバポレーターで除去し、化合物e-25を得た。
これを精製せずにt-BuOH(100mL)に溶解させ、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.1gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させた。エバポレーターを用いて溶媒を留去し、化合物e-26を得た。
その後、化合物e-26を精製せず、濃塩酸30mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-27(27.0g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-27(27.0g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-28(15.9g)を得た。化合物の同定は1H-NMR分析により行った。 In dichloromethane (100 mL), compound e-23 (20.0 g), oxalyl dichloride (21.4 g), pyridine (13.4 g) and DMF (1 mL) were stirred at room temperature for 1 hour. Dichloromethane was removed by an evaporator to give a mixture containing compound e-24.
The resulting mixture, acetonitrile (200 mL), 5-methyl-2-hydroxyacetophenone (20.8 g) and triethylamine (14.8 g) were added and stirred at room temperature. Acetonitrile was removed with an evaporator, the mixture was separated with ethyl acetate and water, and the organic layer was dried over sodium sulfate. Ethyl acetate in the organic layer was removed by an evaporator to obtain compound e-25.
This was dissolved in t-BuOH (100 mL) without purification, 6.1 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added, and the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried. The solvent was distilled off using an evaporator to obtain compound e-26.
Then, compound e-26 was not purified, 30 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-27 (27.0 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-27 (27.0 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-28 (15.9 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
得られた混合物、アセトニトリル(200mL)、5-メチル-2-ヒドロキシアセトフェノン(20.8g)およびトリエチルアミン(14.8g)を加え、室温で撹拌した。アセトニトリルをエバポレーターで除去し、酢酸エチル・水で分液後、硫酸ナトリウムで有機層を乾燥させた。有機層の酢酸エチルをエバポレーターで除去し、化合物e-25を得た。
これを精製せずにt-BuOH(100mL)に溶解させ、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.1gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させた。エバポレーターを用いて溶媒を留去し、化合物e-26を得た。
その後、化合物e-26を精製せず、濃塩酸30mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-27(27.0g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-27(27.0g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-28(15.9g)を得た。化合物の同定は1H-NMR分析により行った。 In dichloromethane (100 mL), compound e-23 (20.0 g), oxalyl dichloride (21.4 g), pyridine (13.4 g) and DMF (1 mL) were stirred at room temperature for 1 hour. Dichloromethane was removed by an evaporator to give a mixture containing compound e-24.
The resulting mixture, acetonitrile (200 mL), 5-methyl-2-hydroxyacetophenone (20.8 g) and triethylamine (14.8 g) were added and stirred at room temperature. Acetonitrile was removed with an evaporator, the mixture was separated with ethyl acetate and water, and the organic layer was dried over sodium sulfate. Ethyl acetate in the organic layer was removed by an evaporator to obtain compound e-25.
This was dissolved in t-BuOH (100 mL) without purification, 6.1 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added, and the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried. The solvent was distilled off using an evaporator to obtain compound e-26.
Then, compound e-26 was not purified, 30 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-27 (27.0 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-27 (27.0 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-28 (15.9 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
化合物e-29(25.0g)のt-BuOH(150mL)溶液に、ピバル酸エチル(50.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.7gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸15mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去することで、化合物e-30を得た。
その後、化合物e-30を精製せず、濃塩酸30mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-31(16.2g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-31(16.2g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-32(12.9g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (50.0 g) was added to a t-BuOH (150 mL) solution of compound e-29 (25.0 g), and 6.7 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 15 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-30.
Then, 30 mL of concentrated hydrochloric acid was added without purifying compound e-30, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-31 (16.2 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-31 (16.2 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-32 (12.9 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-30を精製せず、濃塩酸30mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-31(16.2g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-31(16.2g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-32(12.9g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl pivalate (50.0 g) was added to a t-BuOH (150 mL) solution of compound e-29 (25.0 g), and 6.7 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 15 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-30.
Then, 30 mL of concentrated hydrochloric acid was added without purifying compound e-30, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-31 (16.2 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-31 (16.2 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-32 (12.9 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
化合物e-11(25.0g)のt-BuOH(150mL)溶液に、イソ酪酸エチル(52.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)7.3gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去し、化合物e-33を得た。
その後、化合物e-33を精製せず、濃塩酸20mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-34(17.1g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-34(17.1g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-35(14.6g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl isobutyrate (52.0 g) was added to a t-BuOH (150 mL) solution of compound e-11 (25.0 g), and 7.3 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-33.
Then, 20 mL of concentrated hydrochloric acid was added without purifying compound e-33, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-34 (17.1 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-34 (17.1 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-35 (14.6 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-33を精製せず、濃塩酸20mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-34(17.1g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-34(17.1g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで、化合物e-35(14.6g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl isobutyrate (52.0 g) was added to a t-BuOH (150 mL) solution of compound e-11 (25.0 g), and 7.3 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-33.
Then, 20 mL of concentrated hydrochloric acid was added without purifying compound e-33, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-34 (17.1 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-34 (17.1 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-35 (14.6 g). ) Was obtained. Compounds were identified by 1 1 H-NMR analysis.
化合物e-36(25.0g)のt-BuOH(150mL)溶液に、2-メチル酪酸エチル(55.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)6.0gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去し、化合物e-37を得た。
その後、化合物e-37を精製せず、濃塩酸60mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-38(15.9g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-38(15.9g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-39(13.8g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl 2-methylbutyrate (55.0 g) was added to a t-BuOH (150 mL) solution of compound e-36 (25.0 g), and 6.0 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. Then, the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-37.
Then, compound e-37 was not purified, 60 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-38 (15.9 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-38 (15.9 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-39 (13.8 g). Got Compounds were identified by 1 1 H-NMR analysis.
その後、化合物e-37を精製せず、濃塩酸60mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-38(15.9g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-38(15.9g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-39(13.8g)を得た。化合物の同定は1H-NMR分析により行った。 Ethyl 2-methylbutyrate (55.0 g) was added to a t-BuOH (150 mL) solution of compound e-36 (25.0 g), and 6.0 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. Then, the mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-37.
Then, compound e-37 was not purified, 60 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-38 (15.9 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-38 (15.9 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-39 (13.8 g). Got Compounds were identified by 1 1 H-NMR analysis.
Helvetica Chimica Acta, 1981, vol. 64, #5, p.1672-1681に記載の方法で合成された化合物e-40(25.0g)に、塩化アルミニウム無水物(29.1g)を加え、130℃で2時間加熱した。その後室温まで放冷し、氷冷下で氷水、酢酸エチル1Lを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物をシリカゲルカラムクロマトグラフィーにて精製することで、化合物e-41(20.0g)を得た。
化合物e-41(20.0g)のt-BuOH(150mL)溶液に、ピバル酸エチル(50.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)5.5gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去し、化合物e-42を得た。
その後、化合物e-42を精製せず、濃塩酸60mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-43(15.4g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-43(15.4g)、フェニルボロン酸(11.7g)、テトラキス(トリフェニルホスフィン)パラジウム(1.0g)、炭酸カリウム(60.0g)を、トルエン50mL、水50mLの混合溶液に溶解させ、激しく撹拌させながら110℃で12時間加熱した。室温まで放冷後、トルエン・水で分液洗浄し、有機層に硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-44(12.4g)を得た。
化合物e-44(12.4g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-45(10.4g)を得た。化合物の同定は1H-NMR分析により行った。 Aluminum chloride anhydride (29.1 g) was added to compound e-40 (25.0 g) synthesized by the method described in Helvetica Chimica Acta, 1981, vol. 64, # 5, p.1672-1681, and 130 It was heated at ° C. for 2 hours. Then, the mixture was allowed to cool to room temperature, and ice water and 1 L of ethyl acetate were added under ice cooling. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-41 (20.0 g).
Ethyl pivalate (50.0 g) was added to a solution of compound e-41 (20.0 g) in t-BuOH (150 mL), and 5.5 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-42.
Then, compound e-42 was not purified, 60 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-43 (15.4 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-43 (15.4 g), phenylboronic acid (11.7 g), tetrakis (triphenylphosphine) palladium (1.0 g), potassium carbonate (60.0 g) in a mixed solution of 50 mL of toluene and 50 mL of water. It was dissolved and heated at 110 ° C. for 12 hours with vigorous stirring. After allowing to cool to room temperature, the mixture was separated and washed with toluene and water, sodium sulfate was added to the organic layer and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-44 (12.4 g).
Compound e-44 (12.4 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-45 (10.4 g). Got Compounds were identified by 1 1 H-NMR analysis.
化合物e-41(20.0g)のt-BuOH(150mL)溶液に、ピバル酸エチル(50.0g)を加え、水素化ナトリウム(60%, dispersion in Paraffin Liquid)5.5gを加えた後、80℃にて3時間攪拌した。その後、室温まで冷却し、濃塩酸20mLを加えた。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去し、化合物e-42を得た。
その後、化合物e-42を精製せず、濃塩酸60mLを追加し、40℃で攪拌した。1時間後、反応溶液を氷冷し、1N水酸化ナトリウム水溶液を加え中和した。酢酸エチル・水で分液洗浄後、硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-43(15.4g)を得た。化合物の同定はLC-MSおよび1H-NMR分析により行った。
化合物e-43(15.4g)、フェニルボロン酸(11.7g)、テトラキス(トリフェニルホスフィン)パラジウム(1.0g)、炭酸カリウム(60.0g)を、トルエン50mL、水50mLの混合溶液に溶解させ、激しく撹拌させながら110℃で12時間加熱した。室温まで放冷後、トルエン・水で分液洗浄し、有機層に硫酸ナトリウムを加えて乾燥させ、エバポレーターを用いて溶媒を留去した。得られた混合物を、シリカゲルカラムクロマトグラフィーにて精製することにより、化合物e-44(12.4g)を得た。
化合物e-44(12.4g)およびテトラヒドロフラン90mLを攪拌しながら氷冷した。氷冷5分後に、メチルマグネシウムヨージド・ジエチルエーテル溶液(1mol/L、50mL)を滴下し、35℃に加熱して2時間攪拌した。次いで、反応溶液を氷冷し、20%過塩素酸水溶液を90mL加え、析出した固体を濾別し、水60mLで洗浄し、50℃で減圧乾燥することで化合物e-45(10.4g)を得た。化合物の同定は1H-NMR分析により行った。 Aluminum chloride anhydride (29.1 g) was added to compound e-40 (25.0 g) synthesized by the method described in Helvetica Chimica Acta, 1981, vol. 64, # 5, p.1672-1681, and 130 It was heated at ° C. for 2 hours. Then, the mixture was allowed to cool to room temperature, and ice water and 1 L of ethyl acetate were added under ice cooling. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-41 (20.0 g).
Ethyl pivalate (50.0 g) was added to a solution of compound e-41 (20.0 g) in t-BuOH (150 mL), and 5.5 g of sodium hydride (60%, dispersion in Paraffin Liquid) was added. The mixture was stirred at 80 ° C. for 3 hours. Then, the mixture was cooled to room temperature, and 20 mL of concentrated hydrochloric acid was added. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator to obtain compound e-42.
Then, compound e-42 was not purified, 60 mL of concentrated hydrochloric acid was added, and the mixture was stirred at 40 ° C. After 1 hour, the reaction solution was ice-cooled and neutralized by adding a 1N aqueous sodium hydroxide solution. After separating and washing with ethyl acetate and water, sodium sulfate was added and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-43 (15.4 g). Compounds were identified by LC-MS and 1 1 H-NMR analysis.
Compound e-43 (15.4 g), phenylboronic acid (11.7 g), tetrakis (triphenylphosphine) palladium (1.0 g), potassium carbonate (60.0 g) in a mixed solution of 50 mL of toluene and 50 mL of water. It was dissolved and heated at 110 ° C. for 12 hours with vigorous stirring. After allowing to cool to room temperature, the mixture was separated and washed with toluene and water, sodium sulfate was added to the organic layer and dried, and the solvent was distilled off using an evaporator. The obtained mixture was purified by silica gel column chromatography to obtain compound e-44 (12.4 g).
Compound e-44 (12.4 g) and 90 mL of tetrahydrofuran were ice-cooled with stirring. After 5 minutes of ice cooling, a methyl magnesium iodide-diethyl ether solution (1 mol / L, 50 mL) was added dropwise, and the mixture was heated to 35 ° C. and stirred for 2 hours. Next, the reaction solution was ice-cooled, 90 mL of a 20% aqueous perchloric acid solution was added, the precipitated solid was filtered off, washed with 60 mL of water, and dried under reduced pressure at 50 ° C. to obtain compound e-45 (10.4 g). Got Compounds were identified by 1 1 H-NMR analysis.
メチレンシクロヘキサン(5.2g)と1-アダマンタンカルボニルクロリド(Ad-COCl、22g)の混合溶液にトリフルオロメタンスルホン酸(10g)を0℃で加えた後、90℃で10分間加熱した。その後反応溶液を0℃に冷却し、ヘキサン150mL、エーテル50mL、水50mL加えて撹拌した。析出した固体を濾過してヘキサンで洗浄し、減圧乾燥を経て化合物e-46(4.2g)を得た。化合物の同定は1H-NMR分析により行った。
Trifluoromethanesulfonic acid (10 g) was added to a mixed solution of methylenecyclohexane (5.2 g) and 1-adamantane carbonyl chloride (Ad-COCl, 22 g) at 0 ° C., and then heated at 90 ° C. for 10 minutes. Then, the reaction solution was cooled to 0 ° C., 150 mL of hexane, 50 mL of ether and 50 mL of water were added and stirred. The precipitated solid was filtered, washed with hexane, and dried under reduced pressure to give compound e-46 (4.2 g). Compounds were identified by 1 1 H-NMR analysis.
化合物e-4(5.0g)および化合物c-1(1.0g)を、トルエン(20mL)/メタノール(20mL)中、70℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-1(2.7g)を得た。化合物d-1の同定は、1H-NMRおよびLC-MSで行った。
化合物d-1(2.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(3.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-25(4.4g)を得た。化合物z-25の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-4 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 70 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-1 (2.7 g). Identification of compound d-1 was performed by 1 1 H-NMR and LC-MS.
Compound d-1 (2.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (3.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-25 (4.4 g). Identification of compound z-25 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-1(2.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(3.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-25(4.4g)を得た。化合物z-25の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-4 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 70 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-1 (2.7 g). Identification of compound d-1 was performed by 1 1 H-NMR and LC-MS.
Compound d-1 (2.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (3.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-25 (4.4 g). Identification of compound z-25 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-7(5.0g)および化合物c-3(1.2g)を、トルエン(20mL)/メタノール(20mL)中、70℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-2(2.6g)を得た。化合物d-2の同定は、1H-NMRおよびLC-MSで行った。
化合物d-2(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(3.7 g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-130(4.2g)を得た。化合物z-130の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-7 (5.0 g) and compound c-3 (1.2 g) were heated in toluene (20 mL) / methanol (20 mL) at 70 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-2 (2.6 g). Identification of compound d-2 was performed by 1 1 H-NMR and LC-MS.
Compound d-2 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (3.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel is used. Purification by column chromatography (mobile phase: dichloromethane) gave compound z-130 (4.2 g). Identification of compound z-130 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-2(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(3.7 g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-130(4.2g)を得た。化合物z-130の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-7 (5.0 g) and compound c-3 (1.2 g) were heated in toluene (20 mL) / methanol (20 mL) at 70 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-2 (2.6 g). Identification of compound d-2 was performed by 1 1 H-NMR and LC-MS.
Compound d-2 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (3.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel is used. Purification by column chromatography (mobile phase: dichloromethane) gave compound z-130 (4.2 g). Identification of compound z-130 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-8(5.0g)および化合物c-4(1.1g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-3(2.6g)を得た。化合物d-3の同定は、1H-NMRおよびLC-MSで行った。
化合物d-3(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-184(4.5g)を得た。化合物z-184の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-8 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-3 (2.6 g). Identification of compound d-3 was performed by 1 1 H-NMR and LC-MS.
Compound d-3 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and are stirred on a silica gel column. Purification by chromatography (mobile phase: dichloromethane) gave compound z-184 (4.5 g). Identification of compound z-184 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-3(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-184(4.5g)を得た。化合物z-184の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-8 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-3 (2.6 g). Identification of compound d-3 was performed by 1 1 H-NMR and LC-MS.
Compound d-3 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and are stirred on a silica gel column. Purification by chromatography (mobile phase: dichloromethane) gave compound z-184 (4.5 g). Identification of compound z-184 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-9(5.0g)および化合物c-1(1.1g)を、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-4(3.2g)を得た。化合物d-4の同定は、1H-NMRおよびLC-MSで行った。
化合物d-4(3.2g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.9g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-191(4.9g)を得た。化合物z-191の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-9 (5.0 g) and compound c-1 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-4 (3.2 g). Identification of compound d-4 was performed by 1 1 H-NMR and LC-MS.
Compound d-4 (3.2 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.9 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-191 (4.9 g). Identification of compound z-191 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-4(3.2g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.9g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-191(4.9g)を得た。化合物z-191の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-9 (5.0 g) and compound c-1 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-4 (3.2 g). Identification of compound d-4 was performed by 1 1 H-NMR and LC-MS.
Compound d-4 (3.2 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.9 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-191 (4.9 g). Identification of compound z-191 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-10(5.0g)および化合物c-4(0.98g)を、トルエン(20mL)/メタノール(20mL)中、50℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-5(3.5g)を得た。化合物d-5の同定は、1H-NMRおよびLC-MSで行った。
化合物d-5(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-211(5.3g)を得た。化合物z-211の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-10 (5.0 g) and compound c-4 (0.98 g) were heated in toluene (20 mL) / methanol (20 mL) at 50 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-5 (3.5 g). Identification of compound d-5 was performed by 1 1 H-NMR and LC-MS.
Compound d-5 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z- 211 (5.3 g). Identification of compound z-211 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-5(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-211(5.3g)を得た。化合物z-211の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-10 (5.0 g) and compound c-4 (0.98 g) were heated in toluene (20 mL) / methanol (20 mL) at 50 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-5 (3.5 g). Identification of compound d-5 was performed by 1 1 H-NMR and LC-MS.
Compound d-5 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z- 211 (5.3 g). Identification of compound z-211 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-14(5.0g)、化合物c-6(3.5g)および酢酸ナトリウム(1.4g)を、無水酢酸(30mL)中、100℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:メタノール)で精製することで、化合物d-6(3.7g)を得た。化合物d-6の同定は、1H-NMRおよびLC-MSで行った。
化合物d-6(3.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.9g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-273(5.5g)を得た。化合物z-273の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-14 (5.0 g), compound c-6 (3.5 g) and sodium acetate (1.4 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-6 (3.7 g). Identification of compound d-6 was performed by 1 1 H-NMR and LC-MS.
Compound d-6 (3.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.9 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-273 (5.5 g). Identification of compound z-273 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-6(3.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.9g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-273(5.5g)を得た。化合物z-273の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-14 (5.0 g), compound c-6 (3.5 g) and sodium acetate (1.4 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-6 (3.7 g). Identification of compound d-6 was performed by 1 1 H-NMR and LC-MS.
Compound d-6 (3.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.9 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-273 (5.5 g). Identification of compound z-273 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-15(5.0g)、化合物c-6(2.8g)および酢酸ナトリウム(1.1g)を、無水酢酸(30mL)中、100℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:メタノール)で精製することで、化合物d-7(3.7g)を得た。化合物d-7の同定は、1H-NMRおよびLC-MSで行った。
化合物d-7(3.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-277(5.4g)を得た。化合物z-277の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-15 (5.0 g), compound c-6 (2.8 g) and sodium acetate (1.1 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-7 (3.7 g). Identification of compound d-7 was performed by 1 1 H-NMR and LC-MS.
Compound d-7 (3.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex were stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel column chromatography (mobile phase) was performed. : Purification with dichloromethane) gave compound z-277 (5.4 g). Identification of compound z-277 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-7(3.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-277(5.4g)を得た。化合物z-277の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-15 (5.0 g), compound c-6 (2.8 g) and sodium acetate (1.1 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-7 (3.7 g). Identification of compound d-7 was performed by 1 1 H-NMR and LC-MS.
Compound d-7 (3.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex were stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel column chromatography (mobile phase) was performed. : Purification with dichloromethane) gave compound z-277 (5.4 g). Identification of compound z-277 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-16(5.0g)、化合物c-6(4.0g)および酢酸ナトリウム(1.5g)を、無水酢酸(30mL)中、100℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:メタノール)で精製することで、化合物d-8(3.5g)を得た。化合物d-8の同定は、1H-NMRおよびLC-MSで行った。
化合物d-8(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.1g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-298(5.6g)を得た。化合物z-298の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-16 (5.0 g), compound c-6 (4.0 g) and sodium acetate (1.5 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-8 (3.5 g). Identification of compound d-8 was performed by 1 1 H-NMR and LC-MS.
Compound d-8 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.1 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-298 (5.6 g). Identification of compound z-298 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-8(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.1g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-298(5.6g)を得た。化合物z-298の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-16 (5.0 g), compound c-6 (4.0 g) and sodium acetate (1.5 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-8 (3.5 g). Identification of compound d-8 was performed by 1 1 H-NMR and LC-MS.
Compound d-8 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.1 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-298 (5.6 g). Identification of compound z-298 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-22(5.0g)と、化合物c-1(1.0g)とを、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-9(2.9g)を得た。化合物d-9の同定は、1H-NMRおよびLC-MSで行った。
化合物d-9(2.9g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.0g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-311(4.5g)を得た。化合物z-311の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-22 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-9 (2.9 g). Identification of compound d-9 was performed by 1 1 H-NMR and LC-MS.
Compound d-9 (2.9 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.0 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-311 (4.5 g). Identification of compound z-311 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-9(2.9g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.0g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-311(4.5g)を得た。化合物z-311の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-22 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-9 (2.9 g). Identification of compound d-9 was performed by 1 1 H-NMR and LC-MS.
Compound d-9 (2.9 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.0 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-311 (4.5 g). Identification of compound z-311 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-28(5.0g)と、化合物c-1(1.0g)とを、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-10(3.0g)を得た。化合物d-10の同定は、1H-NMRおよびLC-MSで行った。
化合物d-10(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.1g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-332(4.1g)を得た。化合物z-332の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-10 (3.0 g). Identification of compound d-10 was performed by 1 1 H-NMR and LC-MS.
Compound d-10 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.1 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-332 (4.1 g). Identification of compound z-332 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-10(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.1g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-332(4.1g)を得た。化合物z-332の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-10 (3.0 g). Identification of compound d-10 was performed by 1 1 H-NMR and LC-MS.
Compound d-10 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.1 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-332 (4.1 g). Identification of compound z-332 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-32(5.0g)と、化合物c-1(1.1g)とを、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-11(3.0g)を得た。化合物d-11の同定は、1H-NMRおよびLC-MSで行った。
化合物d-11(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.5g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-359(4.8g)を得た。化合物z-359の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-32 (5.0 g) and compound c-1 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-11 (3.0 g). Identification of compound d-11 was performed by 1 1 H-NMR and LC-MS.
Compound d-11 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.5 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-359 (4.8 g). Identification of compound z-359 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-11(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.5g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-359(4.8g)を得た。化合物z-359の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-32 (5.0 g) and compound c-1 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-11 (3.0 g). Identification of compound d-11 was performed by 1 1 H-NMR and LC-MS.
Compound d-11 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.5 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-359 (4.8 g). Identification of compound z-359 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-35(5.0g)と、化合物c-4(1.1g)とを、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-12(2.6g)を得た。化合物d-12の同定は、1H-NMRおよびLC-MSで行った。
化合物d-12(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.4 g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-128(4.6g)を得た。化合物z-128の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-35 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-12 (2.6 g). Identification of compound d-12 was performed by 1 1 H-NMR and LC-MS.
Compound d-12 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel is used. Purification by column chromatography (mobile phase: dichloromethane) gave compound z-128 (4.6 g). Identification of compound z-128 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-12(2.6g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.4 g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-128(4.6g)を得た。化合物z-128の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-35 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-12 (2.6 g). Identification of compound d-12 was performed by 1 1 H-NMR and LC-MS.
Compound d-12 (2.6 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and silica gel is used. Purification by column chromatography (mobile phase: dichloromethane) gave compound z-128 (4.6 g). Identification of compound z-128 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-9(5.0g)と、化合物c-4(1.1g)とを、トルエン(20mL)/メタノール(20mL)中、60℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-13(3.1g)を得た。化合物d-13の同定は、1H-NMRおよびLC-MSで行った。
化合物d-13(3.1g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-199(4.9g)を得た。化合物z-199の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-9 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-13 (3.1 g). Identification of compound d-13 was performed by 1 1 H-NMR and LC-MS.
Compound d-13 (3.1 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-199 (4.9 g). Identification of compound z-199 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-13(3.1g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-199(4.9g)を得た。化合物z-199の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-9 (5.0 g) and compound c-4 (1.1 g) were heated in toluene (20 mL) / methanol (20 mL) at 60 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-13 (3.1 g). Identification of compound d-13 was performed by 1 1 H-NMR and LC-MS.
Compound d-13 (3.1 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-199 (4.9 g). Identification of compound z-199 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-8(5.0g)と、化合物c-1(1.0g)とを、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-14(3.0g)を得た。化合物d-14の同定は、1H-NMRおよびLC-MSで行った。
化合物d-14(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-153(5.0g)を得た。化合物z-153の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-8 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-14 (3.0 g). Identification of compound d-14 was performed by 1 1 H-NMR and LC-MS.
Compound d-14 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-153 (5.0 g). Identification of compound z-153 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-14(3.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-153(5.0g)を得た。化合物z-153の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-8 (5.0 g) and compound c-1 (1.0 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-14 (3.0 g). Identification of compound d-14 was performed by 1 1 H-NMR and LC-MS.
Compound d-14 (3.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-153 (5.0 g). Identification of compound z-153 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-39(5.0g)と、化合物c-8(2.5g)とを、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-15(3.5g)を得た。化合物d-15の同定は、1H-NMRおよびLC-MSで行った。
化合物d-15(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-72(5.3g)を得た。化合物z-72の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-39 (5.0 g) and compound c-8 (2.5 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-15 (3.5 g). Identification of compound d-15 was performed by 1 1 H-NMR and LC-MS.
Compound d-15 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-72 (5.3 g). Identification of compound z-72 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-15(3.5g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(4.7g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-72(5.3g)を得た。化合物z-72の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-39 (5.0 g) and compound c-8 (2.5 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-15 (3.5 g). Identification of compound d-15 was performed by 1 1 H-NMR and LC-MS.
Compound d-15 (3.5 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (4.7 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-72 (5.3 g). Identification of compound z-72 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-45(5.0g)と、化合物c-1(0.9g)とを、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-16(6.0g)を得た。化合物d-16の同定は、1H-NMRおよびLC-MSで行った。
化合物d-16(6.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(7.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-360(8.7g)を得た。化合物z-360の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-1 (0.9 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-16 (6.0 g). Identification of compound d-16 was performed by 1 1 H-NMR and LC-MS.
Compound d-16 (6.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (7.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-360 (8.7 g). Identification of compound z-360 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-16(6.0g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(7.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-360(8.7g)を得た。化合物z-360の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-1 (0.9 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-16 (6.0 g). Identification of compound d-16 was performed by 1 1 H-NMR and LC-MS.
Compound d-16 (6.0 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (7.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-360 (8.7 g). Identification of compound z-360 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-28(5.0g)、グルタコンアルデヒドジアニル塩酸塩(5.4g)および酢酸ナトリウム(1.2g)を、無水酢酸(30mL)中、100℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:メタノール)で精製することで、化合物d-17(5.4g)を得た。化合物d-17の同定は、1H-NMRおよびLC-MSで行った。
化合物d-17(5.4g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(8.4g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-362(8.7g)を得た。化合物z-362の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g), glutaconaldehyde dianyl hydrochloride (5.4 g) and sodium acetate (1.2 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-17 (5.4 g). Identification of compound d-17 was performed by 1 1 H-NMR and LC-MS.
Compound d-17 (5.4 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (8.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-362 (8.7 g). Identification of compound z-362 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-17(5.4g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(8.4g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-362(8.7g)を得た。化合物z-362の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g), glutaconaldehyde dianyl hydrochloride (5.4 g) and sodium acetate (1.2 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-17 (5.4 g). Identification of compound d-17 was performed by 1 1 H-NMR and LC-MS.
Compound d-17 (5.4 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (8.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-362 (8.7 g). Identification of compound z-362 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-45(5.0g)、グルタコンアルデヒドジアニル塩酸塩(4.7g)および酢酸ナトリウム(1.1g)を、無水酢酸(30mL)中、100℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:メタノール)で精製することで、化合物d-18(4.7g)を得た。化合物d-18の同定は、1H-NMRおよびLC-MSで行った。
化合物d-18(4.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(6.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-363(7.0g)を得た。化合物z-363の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g), glutaconaldehyde dianyl hydrochloride (4.7 g) and sodium acetate (1.1 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-18 (4.7 g). Identification of compound d-18 was performed by 1 1 H-NMR and LC-MS.
Compound d-18 (4.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (6.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-363 (7.0 g). Identification of compound z-363 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-18(4.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(6.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-363(7.0g)を得た。化合物z-363の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g), glutaconaldehyde dianyl hydrochloride (4.7 g) and sodium acetate (1.1 g) were heated in acetic anhydride (30 mL) at 100 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: methanol) to obtain compound d-18 (4.7 g). Identification of compound d-18 was performed by 1 1 H-NMR and LC-MS.
Compound d-18 (4.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (6.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-363 (7.0 g). Identification of compound z-363 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-46(5.0g)、化合物c-4(0.6g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-19(6.0g)を得た。化合物d-19の同定は、1H-NMRおよびLC-MSで行った。
化合物d-19(6.1g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.6g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-364(8.5g)を得た。化合物z-364の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-46 (5.0 g) and compound c-4 (0.6 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-19 (6.0 g). Identification of compound d-19 was performed by 1H-NMR and LC-MS.
Compound d-19 (6.1 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.6 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-364 (8.5 g). Identification of compound z-364 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-19(6.1g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.6g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-364(8.5g)を得た。化合物z-364の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-46 (5.0 g) and compound c-4 (0.6 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-19 (6.0 g). Identification of compound d-19 was performed by 1H-NMR and LC-MS.
Compound d-19 (6.1 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.6 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-364 (8.5 g). Identification of compound z-364 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-28(5.0g)、化合物c-9(0.9g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-20(6.7g)を得た。化合物d-20の同定は、1H-NMRおよびLC-MSで行った。
化合物d-20(6.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(9.5g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-365(11.1g)を得た。化合物z-365の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-9 (0.9 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-20 (6.7 g). Identification of compound d-20 was performed by 1H-NMR and LC-MS.
Compound d-20 (6.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (9.5 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and are stirred on a silica gel column. Purification by chromatography (mobile phase: dichloromethane) gave compound z-365 (11.1 g). Identification of compound z-365 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-20(6.7g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(9.5g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-365(11.1g)を得た。化合物z-365の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-9 (0.9 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-20 (6.7 g). Identification of compound d-20 was performed by 1H-NMR and LC-MS.
Compound d-20 (6.7 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (9.5 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and are stirred on a silica gel column. Purification by chromatography (mobile phase: dichloromethane) gave compound z-365 (11.1 g). Identification of compound z-365 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-45(5.0g)、化合物c-9(0.8g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-21(5.9g)を得た。化合物d-21の同定は、1H-NMRおよびLC-MSで行った。
化合物d-21(5.9g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(7.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-366(8.5g)を得た。化合物z-366の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-9 (0.8 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-21 (5.9 g). Identification of compound d-21 was performed by 1 1 H-NMR and LC-MS.
Compound d-21 (5.9 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (7.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-366 (8.5 g). Identification of compound z-366 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-21(5.9g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(7.3g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-366(8.5g)を得た。化合物z-366の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-9 (0.8 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-21 (5.9 g). Identification of compound d-21 was performed by 1 1 H-NMR and LC-MS.
Compound d-21 (5.9 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (7.3 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-366 (8.5 g). Identification of compound z-366 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-28(5.0g)、化合物c-10(1.4g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-22(5.3g)を得た。化合物d-22の同定は、1H-NMRおよびLC-MSで行った。
化合物d-22(5.3g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(6.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-367(8.4g)を得た。化合物z-367の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-10 (1.4 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-22 (5.3 g). Identification of compound d-22 was performed by 1 1 H-NMR and LC-MS.
Compound d-22 (5.3 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (6.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-376 (8.4 g). Identification of compound z-376 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-22(5.3g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(6.8g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-367(8.4g)を得た。化合物z-367の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-28 (5.0 g) and compound c-10 (1.4 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-22 (5.3 g). Identification of compound d-22 was performed by 1 1 H-NMR and LC-MS.
Compound d-22 (5.3 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (6.8 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-376 (8.4 g). Identification of compound z-376 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物e-45(5.0g)、化合物c-10(1.3g)を、トルエン(20mL)/メタノール(20mL)中、90℃で1時間加熱した。室温で放冷後、エバポレーターで溶媒を除去し、シリカゲルカラムクロマトグラフィー(移動相:ヘキサン/酢酸エチル=3/1)で精製することで、化合物d-23(4.3g)を得た。化合物d-23の同定は、1H-NMRおよびLC-MSで行った。
化合物d-23(4.3g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.4g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-368(6.7g)を得た。化合物z-368の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-10 (1.3 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-23 (4.3 g). Identification of compound d-23 was performed by 1 1 H-NMR and LC-MS.
Compound d-23 (4.3 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-368 (6.7 g). Identification of compound z-368 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
化合物d-23(4.3g)と、リチウム テトラキス(ペンタフルオロフェニル)ボレート ジエチルエーテル錯体(5.4g)とを、ジクロロメタン(30mL)/水(30mL)中、室温で8時間撹拌し、シリカゲルカラムクロマトグラフィー(移動相:ジクロロメタン)で精製することで、化合物z-368(6.7g)を得た。化合物z-368の同定は、1H-NMR、19F-NMRおよびLC-MSで行った。 Compound e-45 (5.0 g) and compound c-10 (1.3 g) were heated in toluene (20 mL) / methanol (20 mL) at 90 ° C. for 1 hour. After allowing to cool at room temperature, the solvent was removed by an evaporator, and purification was performed by silica gel column chromatography (mobile phase: hexane / ethyl acetate = 3/1) to obtain compound d-23 (4.3 g). Identification of compound d-23 was performed by 1 1 H-NMR and LC-MS.
Compound d-23 (4.3 g) and lithium tetrakis (pentafluorophenyl) borate diethyl ether complex (5.4 g) are stirred in dichloromethane (30 mL) / water (30 mL) at room temperature for 8 hours, and the silica gel column is used. Purification by chromatography (mobile phase: dichloromethane) gave compound z-368 (6.7 g). Identification of compound z-368 was performed by 1 1 H-NMR, 19 F-NMR and LC-MS.
[樹脂合成例1]
下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100質量部、1-ヘキセン(分子量調節剤)18質量部およびトルエン(開環重合反応用溶媒)300質量部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2質量部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9質量部とを添加し、この溶液を80℃で3時間加熱攪拌することで開環重合反応させ、開環重合体溶液を得た。この重合反応における重合転化率は97%であった。 [Resin Synthesis Example 1]
8-Methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-ene (hereinafter also referred to as "DNM") 100 parts by mass, 1-hexene (molecular weight modifier) 18 parts by mass and toluene (solvent for ring-opening polymerization reaction) 300 parts by mass, nitrogen. It was placed in a replaced reaction vessel and the solution was heated to 80 ° C. Next, 0.2 parts by mass of a toluene solution of triethylaluminum (0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) 0 were added to the solution in the reaction vessel as a polymerization catalyst. .9 parts by mass was added, and the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
下記式(a)で表される8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「DNM」ともいう。)100質量部、1-ヘキセン(分子量調節剤)18質量部およびトルエン(開環重合反応用溶媒)300質量部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2質量部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9質量部とを添加し、この溶液を80℃で3時間加熱攪拌することで開環重合反応させ、開環重合体溶液を得た。この重合反応における重合転化率は97%であった。 [Resin Synthesis Example 1]
8-Methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-ene (hereinafter also referred to as "DNM") 100 parts by mass, 1-hexene (molecular weight modifier) 18 parts by mass and toluene (solvent for ring-opening polymerization reaction) 300 parts by mass, nitrogen. It was placed in a replaced reaction vessel and the solution was heated to 80 ° C. Next, 0.2 parts by mass of a toluene solution of triethylaluminum (0.6 mol / liter) and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) 0 were added to the solution in the reaction vessel as a polymerization catalyst. .9 parts by mass was added, and the solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.
前記で得られた開環重合体溶液1,000質量部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6H5)3]3を0.12質量部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。得られた反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。
1,000 parts by mass of the ring-opening polymer solution obtained above was charged into an autoclave, and 0.12 parts by mass of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Then, under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C., the hydrogenation reaction was carried out by heating and stirring for 3 hours. After cooling the obtained reaction solution (hydrogenated polymer solution), hydrogen gas was released. The obtained reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, which was dried to obtain a hydrogenated polymer (hereinafter, also referred to as "resin A"). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C.
[樹脂合成例2]
3Lの4つ口フラスコに、2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、温度を徐々に160℃まで上昇させ、そのままの温度で6時間反応させた。その後、室温(25℃)まで冷却し、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥することで、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。 [Resin Synthesis Example 2]
35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate in a 3 L four-necked flask. (0.300 mol), 443 g of N, N-dimethylacetamide and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask. Then, after nitrogen substitution in the flask, the obtained solution was reacted at 140 ° C. for 3 hours, and the water produced was removed from the Dean-Stark apparatus at any time. When the formation of water was no longer observed, the temperature was gradually raised to 160 ° C., and the reaction was carried out at the same temperature for 6 hours. Then, the mixture was cooled to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filter medium was vacuum dried at 60 ° C. overnight to obtain a white powder (hereinafter, also referred to as “resin B”) (yield 95%). The obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
3Lの4つ口フラスコに、2,6-ジフルオロベンゾニトリル35.12g(0.253mol)、9,9-ビス(4-ヒドロキシフェニル)フルオレン87.60g(0.250mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド443gおよびトルエン111gを添加した。続いて、4つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、ディーンスターク管および冷却管を取り付けた。次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をディーンスターク管から随時取り除いた。水の生成が認められなくなったところで、温度を徐々に160℃まで上昇させ、そのままの温度で6時間反応させた。その後、室温(25℃)まで冷却し、生成した塩をろ紙で除去し、ろ液をメタノールに投じて再沈殿させ、ろ別によりろ物(残渣)を単離した。得られたろ物を60℃で一晩真空乾燥することで、白色粉末(以下「樹脂B」ともいう。)を得た(収率95%)。得られた樹脂Bは、数平均分子量(Mn)が75,000、重量平均分子量(Mw)が188,000であり、ガラス転移温度(Tg)が285℃であった。 [Resin Synthesis Example 2]
35.12 g (0.253 mol) of 2,6-difluorobenzonitrile, 87.60 g (0.250 mol) of 9,9-bis (4-hydroxyphenyl) fluorene, 41.46 g of potassium carbonate in a 3 L four-necked flask. (0.300 mol), 443 g of N, N-dimethylacetamide and 111 g of toluene were added. Subsequently, a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask. Then, after nitrogen substitution in the flask, the obtained solution was reacted at 140 ° C. for 3 hours, and the water produced was removed from the Dean-Stark apparatus at any time. When the formation of water was no longer observed, the temperature was gradually raised to 160 ° C., and the reaction was carried out at the same temperature for 6 hours. Then, the mixture was cooled to room temperature (25 ° C.), the produced salt was removed with a filter paper, the filtrate was poured into methanol for reprecipitation, and the filtrate (residue) was isolated by filtration. The obtained filter medium was vacuum dried at 60 ° C. overnight to obtain a white powder (hereinafter, also referred to as “resin B”) (yield 95%). The obtained resin B had a number average molecular weight (Mn) of 75,000, a weight average molecular weight (Mw) of 188,000, and a glass transition temperature (Tg) of 285 ° C.
[樹脂合成例3]
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下で、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れ、γ-ブチロラクトン68.65gおよびN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒であるトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、留出液を随時留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷し、次いで、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却することで、固形分濃度20質量%のポリイミド溶液264.16gを得た。このポリイミド溶液の一部を1Lのメタノール中に注ぎ入れてポリイミドを沈殿させた。ろ別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥することで、白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。 [Resin Synthesis Example 3]
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introduction tube, dripping funnel with side tube, Dean Stark tube and cooling tube, 1,4-bis (4-amino-α, 27.66 g (0.08 mol) of α-dimethylbenzyl) benzene and 7.38 g (0.02 mol) of 4,4′-bis (4-aminophenoxy) biphenyl were added, and 68.65 g of γ-butyrolactone and N, It was dissolved in 17.16 g of N-dimethylacetamide. The resulting solution was cooled to 5 ° C. using an ice-water bath and kept at the same temperature with 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst. 0.50 g (0.005 mol) of triethylamine was added all at once. After completion of the addition, the temperature was raised to 180 ° C., and the distillate was refluxed for 6 hours while being distilled off as needed. After completion of the reaction, the mixture is air-cooled until the internal temperature reaches 100 ° C., then 143.6 g of N, N-dimethylacetamide is added to dilute the reaction, and the mixture is cooled with stirring to obtain a polyimide solution 264 having a solid content concentration of 20% by mass. .16 g was obtained. A part of this polyimide solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and then dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter, also referred to as "resin C"). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. The glass transition temperature (Tg) of the resin C was 310 ° C., and the logarithmic viscosity was measured and found to be 0.87.
温度計、撹拌器、窒素導入管、側管付き滴下ロート、ディーンスターク管および冷却管を備えた500mLの5つ口フラスコに、窒素気流下で、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン27.66g(0.08モル)および4,4'-ビス(4-アミノフェノキシ)ビフェニル7.38g(0.02モル)を入れ、γ-ブチロラクトン68.65gおよびN,N-ジメチルアセトアミド17.16gに溶解させた。得られた溶液を、氷水バスを用いて5℃に冷却し、同温に保ちながら1,2,4,5-シクロヘキサンテトラカルボン酸二無水物22.62g(0.1モル)およびイミド化触媒であるトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、留出液を随時留去させながら、6時間還流させた。反応終了後、内温が100℃になるまで空冷し、次いで、N,N-ジメチルアセトアミド143.6gを加えて希釈し、攪拌しながら冷却することで、固形分濃度20質量%のポリイミド溶液264.16gを得た。このポリイミド溶液の一部を1Lのメタノール中に注ぎ入れてポリイミドを沈殿させた。ろ別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥することで、白色粉末(以下「樹脂C」ともいう。)を得た。得られた樹脂CのIRスペクトルを測定したところ、イミド基に特有の1704cm-1、1770cm-1の吸収が見られた。樹脂Cはガラス転移温度(Tg)が310℃であり、対数粘度を測定したところ、0.87であった。 [Resin Synthesis Example 3]
In a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introduction tube, dripping funnel with side tube, Dean Stark tube and cooling tube, 1,4-bis (4-amino-α, 27.66 g (0.08 mol) of α-dimethylbenzyl) benzene and 7.38 g (0.02 mol) of 4,4′-bis (4-aminophenoxy) biphenyl were added, and 68.65 g of γ-butyrolactone and N, It was dissolved in 17.16 g of N-dimethylacetamide. The resulting solution was cooled to 5 ° C. using an ice-water bath and kept at the same temperature with 22.62 g (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and an imidization catalyst. 0.50 g (0.005 mol) of triethylamine was added all at once. After completion of the addition, the temperature was raised to 180 ° C., and the distillate was refluxed for 6 hours while being distilled off as needed. After completion of the reaction, the mixture is air-cooled until the internal temperature reaches 100 ° C., then 143.6 g of N, N-dimethylacetamide is added to dilute the reaction, and the mixture is cooled with stirring to obtain a polyimide solution 264 having a solid content concentration of 20% by mass. .16 g was obtained. A part of this polyimide solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol and then dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder (hereinafter, also referred to as "resin C"). The IR spectrum of the obtained resin C was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. The glass transition temperature (Tg) of the resin C was 310 ° C., and the logarithmic viscosity was measured and found to be 0.87.
[実施例1]
〔基材の作製〕
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(Z)として、下記化合物(z-25)(ジクロロメタン中での吸収極大波長933nm)0.04質量部、化合物(X)として、下記化合物(x-1)(ジクロロメタン中での吸収極大波長711nm)0.06質量部、下記化合物(x-2)(ジクロロメタン中での吸収極大波長738nm)0.07質量部、およびジクロロメタンを加えて樹脂濃度が20質量%の溶液を調製した。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜を更に減圧下100℃で8時間乾燥して、厚さ0.1mm、縦210mm、横210mmの樹脂層(1)を得た。 [Example 1]
[Preparation of base material]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.04 parts by mass of the following compound (z-25) (absorption maximum wavelength in dichloromethane, 933 nm), and compound (X) as compound (Z). The following compound (x-1) (absorption maximum wavelength 711 nm in dichloromethane) 0.06 parts by mass, the following compound (x-2) (absorption maximum wavelength 738 nm in dichloromethane) 0.07 parts by mass, and dichloromethane. Was added to prepare a solution having a resin concentration of 20% by mass. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried under reduced pressure at 100 ° C. for 8 hours to obtain a resin layer (1) having a thickness of 0.1 mm, a length of 210 mm and a width of 210 mm.
〔基材の作製〕
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(Z)として、下記化合物(z-25)(ジクロロメタン中での吸収極大波長933nm)0.04質量部、化合物(X)として、下記化合物(x-1)(ジクロロメタン中での吸収極大波長711nm)0.06質量部、下記化合物(x-2)(ジクロロメタン中での吸収極大波長738nm)0.07質量部、およびジクロロメタンを加えて樹脂濃度が20質量%の溶液を調製した。得られた溶液を平滑なガラス板上にキャストし、20℃で8時間乾燥した後、ガラス板から剥離した。剥離した塗膜を更に減圧下100℃で8時間乾燥して、厚さ0.1mm、縦210mm、横210mmの樹脂層(1)を得た。 [Example 1]
[Preparation of base material]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.04 parts by mass of the following compound (z-25) (absorption maximum wavelength in dichloromethane, 933 nm), and compound (X) as compound (Z). The following compound (x-1) (absorption maximum wavelength 711 nm in dichloromethane) 0.06 parts by mass, the following compound (x-2) (absorption maximum wavelength 738 nm in dichloromethane) 0.07 parts by mass, and dichloromethane. Was added to prepare a solution having a resin concentration of 20% by mass. The obtained solution was cast on a smooth glass plate, dried at 20 ° C. for 8 hours, and then peeled off from the glass plate. The peeled coating film was further dried under reduced pressure at 100 ° C. for 8 hours to obtain a resin layer (1) having a thickness of 0.1 mm, a length of 210 mm and a width of 210 mm.
得られた樹脂層(1)の片面に、下記樹脂組成物(1)を、得られる樹脂層(2)の厚みが3μmとなるようにバーコーターで塗布し、オーブン中70℃で2分間加熱して溶剤を揮発除去した。次にUVコンベア式露光機(アイグラフィックス(株)製、アイ紫外線硬化用装置、型式US2-X0405、60Hz)を用いて露光(露光量500mJ/cm2、照度:200mW/cm2)を行い、樹脂組成物(1)を硬化させ、樹脂層(1)上に樹脂層(2)を形成した。同様にして、樹脂層(1)のもう一方の面にも樹脂組成物(1)からなる樹脂層(2)を形成した。これにより、化合物(Z)を含む樹脂層(1)の両面に化合物(Z)を含まない樹脂層(2)を有する基材を得た。
The following resin composition (1) is applied to one side of the obtained resin layer (1) with a bar coater so that the thickness of the obtained resin layer (2) is 3 μm, and heated in an oven at 70 ° C. for 2 minutes. The solvent was volatilized and removed. Next, exposure (exposure amount 500 mJ / cm 2 , illuminance: 200 mW / cm 2 ) is performed using a UV conveyor type exposure machine (manufactured by Eye Graphics Co., Ltd., eye ultraviolet curing device, model US2-X0405, 60 Hz). , The resin composition (1) was cured to form a resin layer (2) on the resin layer (1). Similarly, a resin layer (2) made of the resin composition (1) was formed on the other surface of the resin layer (1). As a result, a base material having the resin layer (2) containing no compound (Z) on both sides of the resin layer (1) containing the compound (Z) was obtained.
樹脂組成物(1):トリシクロデカンジメタノールアクリレート60質量部、ジペンタエリスリトールヘキサアクリレート40質量部、1-ヒドロキシシクロヘキシルフェニルケトン5質量部、およびメチルエチルケトン(溶剤、得られる組成物中の固形分濃度が30質量%となるよう使用)を含む組成物
Resin composition (1): 60 parts by mass of tricyclodecanedimethanol acrylate, 40 parts by mass of dipentaerythritol hexaacrylate, 5 parts by mass of 1-hydroxycyclohexylphenyl ketone, and methyl ethyl ketone (solvent, solid content concentration in the obtained composition). (Used so as to be 30% by mass)
化合物(z-25)のジクロロメタン溶液中の分光特性と、得られた基材のXa、TaおよびTbを測定した。結果をそれぞれ表10および11に示す。また、得られた基材の分光特性を図1に示す。
The spectral characteristics of the compound (z-25) in a dichloromethane solution and the Xa, Ta and Tb of the obtained base material were measured. The results are shown in Tables 10 and 11, respectively. Moreover, the spectral characteristics of the obtained base material are shown in FIG.
表10における要件(A)~(D)は、前記<化合物(Z)>の欄の要件(A)~(D)のことを示す。なお、表10では、各化合物をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長950~1150nmの範囲に透過率が85%となる波長を有する場合を○、該波長を有さない場合を×とした。
The requirements (A) to (D) in Table 10 indicate the requirements (A) to (D) in the column of <Compound (Z)>. In Table 10, in the transmission spectrum measured using a solution in which each compound is dissolved in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%), the wavelength is 950. The case of having a wavelength having a transmittance of 85% in the range of about 1150 nm was evaluated as ◯, and the case of not having the wavelength was evaluated as x.
<耐熱性評価>
前記基材の作製で得られた基材を、予め155℃に熱しておいたオーブンで7時間加熱し、この加熱試験後の基材のTcおよびTdを測定した。結果を表11に示す。 <Heat resistance evaluation>
The base material obtained in the preparation of the base material was heated in an oven preheated to 155 ° C. for 7 hours, and the Tc and Td of the base material after this heating test were measured. The results are shown in Table 11.
前記基材の作製で得られた基材を、予め155℃に熱しておいたオーブンで7時間加熱し、この加熱試験後の基材のTcおよびTdを測定した。結果を表11に示す。 <Heat resistance evaluation>
The base material obtained in the preparation of the base material was heated in an oven preheated to 155 ° C. for 7 hours, and the Tc and Td of the base material after this heating test were measured. The results are shown in Table 11.
<耐UV性評価>
前記基材の作製で得られた基材に、UV露光機(岩崎電気(株)製、アイ紫外線硬化用装置US2-KO4501、照度:180mW/cm2、照射量:560mJ/cm2)を用いてUVを照射し、このUV照射後の基材のTeおよびTfを測定した。結果を表11に示す。 <UV resistance evaluation>
A UV exposure machine (manufactured by Iwasaki Electric Co., Ltd., eye ultraviolet curing device US2-KO4501, illuminance: 180 mW / cm 2 , irradiation amount: 560 mJ / cm 2 ) was used as the base material obtained in the preparation of the base material. UV was irradiated, and Te and Tf of the base material after this UV irradiation were measured. The results are shown in Table 11.
前記基材の作製で得られた基材に、UV露光機(岩崎電気(株)製、アイ紫外線硬化用装置US2-KO4501、照度:180mW/cm2、照射量:560mJ/cm2)を用いてUVを照射し、このUV照射後の基材のTeおよびTfを測定した。結果を表11に示す。 <UV resistance evaluation>
A UV exposure machine (manufactured by Iwasaki Electric Co., Ltd., eye ultraviolet curing device US2-KO4501, illuminance: 180 mW / cm 2 , irradiation amount: 560 mJ / cm 2 ) was used as the base material obtained in the preparation of the base material. UV was irradiated, and Te and Tf of the base material after this UV irradiation were measured. The results are shown in Table 11.
〔光学フィルターの作製〕
前記基材の作製で得られた基材の片面に誘電体多層膜(I)を形成し、さらに基材のもう一方の面に誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を図2および表11に示す。 [Manufacturing of optical filter]
A dielectric multilayer film (I) was formed on one side of the substrate obtained by producing the substrate, and a dielectric multilayer film (II) was further formed on the other surface of the substrate, and the thickness was about 0. A 110 mm optical filter was obtained.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in FIG. 2 and Table 11.
前記基材の作製で得られた基材の片面に誘電体多層膜(I)を形成し、さらに基材のもう一方の面に誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を図2および表11に示す。 [Manufacturing of optical filter]
A dielectric multilayer film (I) was formed on one side of the substrate obtained by producing the substrate, and a dielectric multilayer film (II) was further formed on the other surface of the substrate, and the thickness was about 0. A 110 mm optical filter was obtained.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in FIG. 2 and Table 11.
誘電体多層膜(I)は、蒸着温度100℃で、シリカ(SiO2)層とチタニア(TiO2)層とを交互に積層した積層体である(合計28層)。誘電体多層膜(II)は、蒸着温度100℃で、シリカ(SiO2)層とチタニア(TiO2)層とを交互に積層した積層体である(合計24層)。
誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層を、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順となるように交互に積層し、光学フィルターの最外層をシリカ層とした。 The dielectric multilayer film (I) is a laminated body in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated at a vapor deposition temperature of 100 ° C. (28 layers in total). The dielectric multilayer film (II) is a laminated body in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated at a vapor deposition temperature of 100 ° C. (24 layers in total).
In both the dielectric multilayer films (I) and (II), the silica layer and the titania layer are arranged in the order of the titania layer, the silica layer, the titania layer, ..., the silica layer, the titania layer, and the silica layer from the substrate side. The outermost layer of the optical filter was a silica layer.
誘電体多層膜(I)および(II)のいずれにおいても、シリカ層およびチタニア層を、基材側からチタニア層、シリカ層、チタニア層、・・・シリカ層、チタニア層、シリカ層の順となるように交互に積層し、光学フィルターの最外層をシリカ層とした。 The dielectric multilayer film (I) is a laminated body in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated at a vapor deposition temperature of 100 ° C. (28 layers in total). The dielectric multilayer film (II) is a laminated body in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated at a vapor deposition temperature of 100 ° C. (24 layers in total).
In both the dielectric multilayer films (I) and (II), the silica layer and the titania layer are arranged in the order of the titania layer, the silica layer, the titania layer, ..., the silica layer, the titania layer, and the silica layer from the substrate side. The outermost layer of the optical filter was a silica layer.
各層の厚さと層数については、可視域の良好な透過率と近赤外域の反射性能とを達成できるよう、基材の屈折率の波長依存特性や、使用した化合物(Z)および(X)の吸収特性に合わせて、光学薄膜設計ソフト(Essential Macleod、Thin Film Center社製)を用いて最適化を行った。最適化を行う際、本実施例においてはソフトへの入力パラメータ(Target値)を下記表8の通りとした。
Regarding the thickness and number of layers of each layer, the wavelength-dependent characteristics of the refractive index of the base material and the compounds (Z) and (X) used so that good transmittance in the visible region and reflection performance in the near infrared region can be achieved. Optimization was performed using optical thin film design software (Essential Macleod, manufactured by Thin Film Center) according to the absorption characteristics of. When optimizing, in this embodiment, the input parameters (Target values) to the software are as shown in Table 8 below.
膜構成最適化の結果、前記誘電体多層膜(I)を、物理膜厚約32~159nmのシリカ層と物理膜厚約9~94nmのチタニア層とを交互に積層した、積層数28層の多層蒸着膜とし、誘電体多層膜(II)を、物理膜厚約39~193nmのシリカ層と物理膜厚約12~117nmのチタニア層とを交互に積層した、積層数24層の多層蒸着膜とした。最適化を行った膜構成の一例を下記表9に示す。
As a result of film configuration optimization, the dielectric multilayer film (I) is laminated with 28 layers in which silica layers having a physical film thickness of about 32 to 159 nm and titania layers having a physical film thickness of about 9 to 94 nm are alternately laminated. A multi-layer vapor deposition film having 24 layers, in which a dielectric multilayer film (II) is alternately laminated with a silica layer having a physical film thickness of about 39 to 193 nm and a titania layer having a physical film thickness of about 12 to 117 nm. And said. An example of the optimized film configuration is shown in Table 9 below.
[実施例2]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-130)(ジクロロメタン中での吸収極大波長939nm)0.04質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、下記化合物(x-3)(ジクロロメタン中での吸収極大波長700nm)0.06質量部を用いたこと、化合物(x-2)0.07質量部の代わりに、下記化合物(x-4)(ジクロロメタン中での吸収極大波長732nm)0.07質量部を用いたこと、樹脂Aの代わりに樹脂Bを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-130)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 2]
In Example 1, 0.04 parts by mass of the following compound (z-130) (absorption maximum wavelength in dichloromethane) was used in place of 0.04 parts by mass of compound (z-25), and compound (x). -1) 0.06 parts by mass of the following compound (x-3) (absorptionmaximum wavelength 700 nm in dichloromethane) was used instead of 0.06 parts by mass, and 0.07 parts by mass of compound (x-2). The same as in Example 1 except that the following compound (x-4) (absorption maximum wavelength in dichloromethane, 732 nm) was used in an amount of 0.07 parts by mass, and resin B was used instead of resin A. To obtain a base material.
In the same manner as in Example 1, the spectral characteristics of the compound (z-130) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-130)(ジクロロメタン中での吸収極大波長939nm)0.04質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、下記化合物(x-3)(ジクロロメタン中での吸収極大波長700nm)0.06質量部を用いたこと、化合物(x-2)0.07質量部の代わりに、下記化合物(x-4)(ジクロロメタン中での吸収極大波長732nm)0.07質量部を用いたこと、樹脂Aの代わりに樹脂Bを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-130)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 2]
In Example 1, 0.04 parts by mass of the following compound (z-130) (absorption maximum wavelength in dichloromethane) was used in place of 0.04 parts by mass of compound (z-25), and compound (x). -1) 0.06 parts by mass of the following compound (x-3) (absorption
In the same manner as in Example 1, the spectral characteristics of the compound (z-130) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例3]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-184)(ジクロロメタン中での吸収極大波長1065nm)0.05質量部を用いたこと、化合物(x-2)0.07質量部の代わりに、化合物(x-4)0.07質量部を用いたこと、樹脂Aの代わりに樹脂Cを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-184)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 3]
In Example 1, 0.05 parts by mass of the following compound (z-184) (absorption maximum wavelength in dichloromethane, 1065 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -2) Based on the same method as in Example 1 except that 0.07 parts by mass of compound (x-4) was used instead of 0.07 parts by mass and resin C was used instead of resin A. I got the material.
In the same manner as in Example 1, the spectral characteristics of compound (z-184) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-184)(ジクロロメタン中での吸収極大波長1065nm)0.05質量部を用いたこと、化合物(x-2)0.07質量部の代わりに、化合物(x-4)0.07質量部を用いたこと、樹脂Aの代わりに樹脂Cを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-184)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 3]
In Example 1, 0.05 parts by mass of the following compound (z-184) (absorption maximum wavelength in dichloromethane, 1065 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -2) Based on the same method as in Example 1 except that 0.07 parts by mass of compound (x-4) was used instead of 0.07 parts by mass and resin C was used instead of resin A. I got the material.
In the same manner as in Example 1, the spectral characteristics of compound (z-184) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例4]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-191)(ジクロロメタン中での吸収極大波長861nm)0.05質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、化合物(x-3)0.06質量部を用いたこと、樹脂Aの代わりに(株)日本触媒製アクリビュアを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-191)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 4]
In Example 1, 0.05 parts by mass of the following compound (z-191) (absorption maximum wavelength in dichloromethane, 861 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -1) Example 1 except that 0.06 parts by mass of compound (x-3) was used instead of 0.06 parts by mass and Acriviewer manufactured by Nippon Catalyst Co., Ltd. was used instead of resin A. A substrate was obtained in the same manner as above.
In the same manner as in Example 1, the spectral characteristics of compound (z-191) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-191)(ジクロロメタン中での吸収極大波長861nm)0.05質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、化合物(x-3)0.06質量部を用いたこと、樹脂Aの代わりに(株)日本触媒製アクリビュアを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-191)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 4]
In Example 1, 0.05 parts by mass of the following compound (z-191) (absorption maximum wavelength in dichloromethane, 861 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -1) Example 1 except that 0.06 parts by mass of compound (x-3) was used instead of 0.06 parts by mass and Acriviewer manufactured by Nippon Catalyst Co., Ltd. was used instead of resin A. A substrate was obtained in the same manner as above.
In the same manner as in Example 1, the spectral characteristics of compound (z-191) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例5]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-211)(ジクロロメタン中での吸収極大波長976nm)0.05質量部を用いたこと、樹脂Aの代わりに帝人(株)製ピュアエースを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-211)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 5]
In Example 1, 0.05 parts by mass of the following compound (z-211) (absorption maximum wavelength in dichloromethane, 976 nm) was used instead of 0.04 parts by mass of the compound (z-25). A base material was obtained in the same manner as in Example 1 except that Pure Ace manufactured by Teijin Limited was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-211) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-211)(ジクロロメタン中での吸収極大波長976nm)0.05質量部を用いたこと、樹脂Aの代わりに帝人(株)製ピュアエースを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-211)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 5]
In Example 1, 0.05 parts by mass of the following compound (z-211) (absorption maximum wavelength in dichloromethane, 976 nm) was used instead of 0.04 parts by mass of the compound (z-25). A base material was obtained in the same manner as in Example 1 except that Pure Ace manufactured by Teijin Limited was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-211) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例6]
実施例1において、化合物(x-1)および化合物(x-2)を用いない以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 6]
A substrate was obtained in the same manner as in Example 1 except that compound (x-1) and compound (x-2) were not used in Example 1.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 11.
実施例1において、化合物(x-1)および化合物(x-2)を用いない以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 6]
A substrate was obtained in the same manner as in Example 1 except that compound (x-1) and compound (x-2) were not used in Example 1.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 11.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例7]
実施例2において、化合物(x-3)および化合物(x-4)を用いない以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 7]
A substrate was obtained in the same manner as in Example 2 except that compound (x-3) and compound (x-4) were not used in Example 2.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 2. The results are shown in Table 11.
実施例2において、化合物(x-3)および化合物(x-4)を用いない以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 7]
A substrate was obtained in the same manner as in Example 2 except that compound (x-3) and compound (x-4) were not used in Example 2.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 2. The results are shown in Table 11.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例8]
実施例3において、化合物(x-1)および化合物(x-4)を用いない以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 8]
A substrate was obtained in the same manner as in Example 3 except that compound (x-1) and compound (x-4) were not used in Example 3.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 3. The results are shown in Table 11.
実施例3において、化合物(x-1)および化合物(x-4)を用いない以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表11に示す。 [Example 8]
A substrate was obtained in the same manner as in Example 3 except that compound (x-1) and compound (x-4) were not used in Example 3.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 3. The results are shown in Table 11.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例9]
実施例4において、化合物(z-191)0.05質量部の代わりに、下記化合物(z-273)(ジクロロメタン中での吸収極大波長868nm)0.06質量部を用いたこと以外は、実施例4と同様にして基材を得た。
実施例4と同様にして、化合物(z-273)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 9]
In Example 4, 0.06 parts by mass of the following compound (z-273) (absorption maximum wavelength in dichloromethane) was used instead of 0.05 parts by mass of compound (z-191). A substrate was obtained in the same manner as in Example 4.
In the same manner as in Example 4, the spectral characteristics of compound (z-273) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例4において、化合物(z-191)0.05質量部の代わりに、下記化合物(z-273)(ジクロロメタン中での吸収極大波長868nm)0.06質量部を用いたこと以外は、実施例4と同様にして基材を得た。
実施例4と同様にして、化合物(z-273)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 9]
In Example 4, 0.06 parts by mass of the following compound (z-273) (absorption maximum wavelength in dichloromethane) was used instead of 0.05 parts by mass of compound (z-191). A substrate was obtained in the same manner as in Example 4.
In the same manner as in Example 4, the spectral characteristics of compound (z-273) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例10]
実施例5において、化合物(z-211)0.05質量部の代わりに、下記化合物(z-277)(ジクロロメタン中での吸収極大波長892nm)0.05質量部を用いたこと以外は、実施例5と同様にして基材を得た。
実施例5と同様にして、化合物(z-277)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 10]
In Example 5, the following compound (z-277) (absorption maximum wavelength in dichloromethane, 892 nm) was used in place of 0.05 parts by mass, except that 0.05 parts by mass was used. A substrate was obtained in the same manner as in Example 5.
In the same manner as in Example 5, the spectral characteristics of compound (z-277) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例5において、化合物(z-211)0.05質量部の代わりに、下記化合物(z-277)(ジクロロメタン中での吸収極大波長892nm)0.05質量部を用いたこと以外は、実施例5と同様にして基材を得た。
実施例5と同様にして、化合物(z-277)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 10]
In Example 5, the following compound (z-277) (absorption maximum wavelength in dichloromethane, 892 nm) was used in place of 0.05 parts by mass, except that 0.05 parts by mass was used. A substrate was obtained in the same manner as in Example 5.
In the same manner as in Example 5, the spectral characteristics of compound (z-277) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例11]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-298)(ジクロロメタン中での吸収極大波長1016nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-298)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 11]
In Example 1, 0.04 parts by mass of the following compound (z-298) (absorption maximum wavelength in dichloromethane, 1016 nm) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-298) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-298)(ジクロロメタン中での吸収極大波長1016nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-298)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 11]
In Example 1, 0.04 parts by mass of the following compound (z-298) (absorption maximum wavelength in dichloromethane, 1016 nm) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-298) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例12]
実施例2において、化合物(z-130)0.04質量部の代わりに、下記化合物(z-311)(ジクロロメタン中での吸収極大波長933nm)0.04質量部を用いたこと以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、化合物(z-311)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 12]
In Example 2, 0.04 parts by mass of the following compound (z-311) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-130). A substrate was obtained in the same manner as in Example 2.
In the same manner as in Example 2, the spectral characteristics of compound (z-311) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例2において、化合物(z-130)0.04質量部の代わりに、下記化合物(z-311)(ジクロロメタン中での吸収極大波長933nm)0.04質量部を用いたこと以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、化合物(z-311)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 12]
In Example 2, 0.04 parts by mass of the following compound (z-311) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-130). A substrate was obtained in the same manner as in Example 2.
In the same manner as in Example 2, the spectral characteristics of compound (z-311) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例13]
実施例3において、化合物(z-184)0.05質量部の代わりに、下記化合物(z-332)(ジクロロメタン中での吸収極大波長932nm)0.04質量部を用いたこと以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、化合物(z-332)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 13]
In Example 3, 0.04 parts by mass of the following compound (z-332) (absorption maximum wavelength in dichloromethane, 932 nm) was used instead of 0.05 parts by mass of compound (z-184). A substrate was obtained in the same manner as in Example 3.
In the same manner as in Example 3, the spectral characteristics of compound (z-332) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例3において、化合物(z-184)0.05質量部の代わりに、下記化合物(z-332)(ジクロロメタン中での吸収極大波長932nm)0.04質量部を用いたこと以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、化合物(z-332)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 13]
In Example 3, 0.04 parts by mass of the following compound (z-332) (absorption maximum wavelength in dichloromethane, 932 nm) was used instead of 0.05 parts by mass of compound (z-184). A substrate was obtained in the same manner as in Example 3.
In the same manner as in Example 3, the spectral characteristics of compound (z-332) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例14]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-359)(ジクロロメタン中での吸収極大波長933nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-359)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 14]
In Example 1, 0.04 parts by mass of the following compound (z-359) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-359) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-359)(ジクロロメタン中での吸収極大波長933nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-359)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 14]
In Example 1, 0.04 parts by mass of the following compound (z-359) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-359) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-360)(ジクロロメタン中での吸収極大波長943nm)0.04質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、化合物(x-3)0.06質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-360)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15]
In Example 1, 0.04 parts by mass of the following compound (z-360) (absorption maximum wavelength in dichloromethane, 943 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -1) A substrate was obtained in the same manner as in Example 1 except that 0.06 parts by mass of compound (x-3) was used instead of 0.06 parts by mass.
In the same manner as in Example 1, the spectral characteristics of compound (z-360) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-360)(ジクロロメタン中での吸収極大波長943nm)0.04質量部を用いたこと、化合物(x-1)0.06質量部の代わりに、化合物(x-3)0.06質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-360)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15]
In Example 1, 0.04 parts by mass of the following compound (z-360) (absorption maximum wavelength in dichloromethane, 943 nm) was used instead of 0.04 parts by mass of the compound (z-25), and the compound (x). -1) A substrate was obtained in the same manner as in Example 1 except that 0.06 parts by mass of compound (x-3) was used instead of 0.06 parts by mass.
In the same manner as in Example 1, the spectral characteristics of compound (z-360) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-1]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-362)(ジクロロメタン中での吸収極大波長893nm)0.04質量部を用いたこと、樹脂Aの代わりに帝人(株)製ピュアエースを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-362)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-1]
In Example 1, 0.04 parts by mass of the following compound (z-362) (absorption maximum wavelength in dichloromethane, 893 nm) was used instead of 0.04 parts by mass of the compound (z-25). A base material was obtained in the same manner as in Example 1 except that Pure Ace manufactured by Teijin Limited was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-362) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-362)(ジクロロメタン中での吸収極大波長893nm)0.04質量部を用いたこと、樹脂Aの代わりに帝人(株)製ピュアエースを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-362)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-1]
In Example 1, 0.04 parts by mass of the following compound (z-362) (absorption maximum wavelength in dichloromethane, 893 nm) was used instead of 0.04 parts by mass of the compound (z-25). A base material was obtained in the same manner as in Example 1 except that Pure Ace manufactured by Teijin Limited was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-362) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-2]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-363)(ジクロロメタン中での吸収極大波長898nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-363)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-2]
In Example 1, 0.04 parts by mass of the following compound (z-363) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-363) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-363)(ジクロロメタン中での吸収極大波長898nm)0.04質量部を用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-363)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-2]
In Example 1, 0.04 parts by mass of the following compound (z-363) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-363) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-3]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-364)(ジクロロメタン中での吸収極大波長941nm)0.04質量部を用いたこと、樹脂Aの代わりに樹脂Bを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-364)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-3]
In Example 1, 0.04 parts by mass of the following compound (z-364) (absorption maximum wavelength in dichloromethane, 941 nm) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1 except that resin B was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-364) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-364)(ジクロロメタン中での吸収極大波長941nm)0.04質量部を用いたこと、樹脂Aの代わりに樹脂Bを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-364)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-3]
In Example 1, 0.04 parts by mass of the following compound (z-364) (absorption maximum wavelength in dichloromethane, 941 nm) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1 except that resin B was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-364) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-4]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-365)(ジクロロメタン中での吸収極大波長934nm)0.04質量部を用いたこと、樹脂Aの代わりに樹脂Cを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-365)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-4]
In Example 1, 0.04 parts by mass of the following compound (z-365) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1 except that resin C was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-365) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-365)(ジクロロメタン中での吸収極大波長934nm)0.04質量部を用いたこと、樹脂Aの代わりに樹脂Cを用いたこと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-365)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-4]
In Example 1, 0.04 parts by mass of the following compound (z-365) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1 except that resin C was used instead.
In the same manner as in Example 1, the spectral characteristics of compound (z-365) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-5]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-366)(ジクロロメタン中での吸収極大波長939nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-366)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-5]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-366) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-366) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-366)(ジクロロメタン中での吸収極大波長939nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-366)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-5]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-366) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-366) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-6]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-367)(ジクロロメタン中での吸収極大波長942nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-367)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-6]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-376) (absorption maximum wavelength in dichloromethane, 942 nm) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-376) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-367)(ジクロロメタン中での吸収極大波長942nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-367)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-6]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-376) (absorption maximum wavelength in dichloromethane, 942 nm) was used instead of 0.04 parts by mass of the compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-376) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例15-7]
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-368)(ジクロロメタン中での吸収極大波長945nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-368)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-7]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-368) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-368) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
実施例1において、化合物(z-25)0.04質量部の代わりに、下記化合物(z-368)(ジクロロメタン中での吸収極大波長945nm)0.04質量部を用いたことと以外は、実施例1と同様にして基材を得た。
実施例1と同様にして、化合物(z-368)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを測定した。結果をそれぞれ表10および11に示す。 [Example 15-7]
Except for the fact that in Example 1, 0.04 parts by mass of the following compound (z-368) (absorption maximum wavelength in dichloromethane) was used instead of 0.04 parts by mass of compound (z-25). A substrate was obtained in the same manner as in Example 1.
In the same manner as in Example 1, the spectral characteristics of compound (z-368) in dichloromethane were measured, and Xa, Ta to Tf of the obtained substrate were measured. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[実施例16]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.56質量部、化合物(x-2)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E16-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-128)(ジクロロメタン中の吸収極大波長:942nm)0.42質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E16-2)を得た。 [Example 16]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.56 parts by mass of the compound (x-1), 0.68 parts by mass of the compound (x-2), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E16-1).
Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-128) (maximum absorption wavelength in dichloromethane: 942 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E16-2).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.56質量部、化合物(x-2)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E16-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-128)(ジクロロメタン中の吸収極大波長:942nm)0.42質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E16-2)を得た。 [Example 16]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.56 parts by mass of the compound (x-1), 0.68 parts by mass of the compound (x-2), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E16-1).
Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-128) (maximum absorption wavelength in dichloromethane: 942 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E16-2).
200mm×200mmの大きさにカットした、日本電気硝子(株)製の透明ガラス支持体「OA-10G」(厚み200μm)の両面に下記樹脂組成物(2)を、乾燥後の膜厚が約1μmとなるようにスピンコートで塗布した後、ホットプレート上80℃で2分間加熱して、溶媒を揮発除去し、ガラス支持体と後述するコーティング樹脂層(1)およびコーティング樹脂層(2)との接着層として機能する接着層を形成した。
The following resin composition (2) is applied to both sides of a transparent glass support "OA-10G" (thickness 200 μm) manufactured by Nippon Electric Glass Co., Ltd., which is cut to a size of 200 mm × 200 mm, and the thickness after drying is about. After applying with spin coating so as to be 1 μm, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes to form a glass support and a coating resin layer (1) and a coating resin layer (2) described later. An adhesive layer that functions as an adhesive layer was formed.
次に、前記接着層が形成されたガラス支持体の片面にスピンコーターを用いて、樹脂溶液(E16-1)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して溶媒を揮発除去し、コーティング樹脂層(2)を形成した。更に、前記接着層が形成されたガラス支持体のもう一方の面にスピンコーターを用いて、樹脂溶液(E16-2)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して溶媒を揮発除去し、コーティング樹脂層(1)を形成した。これにより、ガラス支持体の一方の面に化合物(Z)を含む樹脂層を積層し、他方の面に化合物(Z)を含まない樹脂層を積層した厚み222μmの基材を得た。
実施例1と同様にして、化合物(z-128)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, using a spin coater, a resin solution (E16-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E16-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
In the same manner as in Example 1, the spectral characteristics of the compound (z-128) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
実施例1と同様にして、化合物(z-128)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, using a spin coater, a resin solution (E16-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E16-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
In the same manner as in Example 1, the spectral characteristics of the compound (z-128) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
樹脂組成物(2):イソシアヌル酸エチレンオキサイド変性トリアクリレート(商品名:アロニックス M-315、東亜合成(株)製)30質量部、1,9-ノナンジオールジアクリレート20質量部、メタクリル酸20質量部、メタクリル酸グリシジル30質量部、3-グリシドキシプロピルトリメトキシシラン5質量部、1-ヒドロキシシクロヘキシルベンゾフェノン(商品名:IRGACURE184、BASFジャパン(株)製)5質量部およびサンエイドSI-110主剤(三新化学工業(株)製)1質量部を混合し、固形分濃度が50質量%となるようにプロピレングリコールモノメチルエーテルアセテートに溶解した後、孔径0.2μmのミリポアフィルタでろ過した組成物
Resin composition (2): Isocyanuric acid ethylene oxide-modified triacrylate (trade name: Aronix M-315, manufactured by Toa Synthetic Co., Ltd.) 30 parts by mass, 1,9-nonanediol diacrylate 20 parts by mass, methacrylic acid 20 parts by mass Parts, 30 parts by mass of glycidyl methacrylate, 5 parts by mass of 3-glycidoxypropyltrimethoxysilane, 5 parts by mass of 1-hydroxycyclohexylbenzophenone (trade name: IRGACURE184, manufactured by BASF Japan Co., Ltd.) and Sun Aid SI-110 main agent ( A composition obtained by mixing 1 part by mass of Sanshin Kagaku Kogyo Co., Ltd., dissolving it in propylene glycol monomethyl ether acetate so that the solid content concentration becomes 50% by mass, and then filtering it with a millipore filter having a pore size of 0.2 μm.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.226mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[実施例17]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-2)0.68質量部、化合物(x-3)0.55質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E17-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-199)(ジクロロメタン中の吸収極大波長:884nm)0.45質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E17-2)を得た。 [Example 17]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.68 parts by mass of the compound (x-2), 0.55 parts by mass of the compound (x-3), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E17-1).
Similarly, 100 parts by mass of resin A, 0.45 parts by mass of the following compound (z-199) (maximum absorption wavelength in dichloromethane: 884 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E17-2).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-2)0.68質量部、化合物(x-3)0.55質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E17-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-199)(ジクロロメタン中の吸収極大波長:884nm)0.45質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E17-2)を得た。 [Example 17]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.68 parts by mass of the compound (x-2), 0.55 parts by mass of the compound (x-3), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E17-1).
Similarly, 100 parts by mass of resin A, 0.45 parts by mass of the following compound (z-199) (maximum absorption wavelength in dichloromethane: 884 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E17-2).
樹脂製支持体(ゼオノアフィルムZF-16、日本ゼオン(株)製、100μm厚)の片面に、樹脂溶液(E17-1)を乾燥後の厚みが10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(2)を形成した。更に、樹脂製支持体のもう一方の面に、樹脂溶液(E17-2)を乾燥後の厚み10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(1)を形成した。これにより、樹脂製支持体の一方の面に化合物(Z)を含む樹脂層を有し、他方の面に化合物(Z)を含まない樹脂層を有する厚み120μmの基材を得た。
実施例1と同様にして、化合物(z-199)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 A resin solution (E17-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to form the coating resin layer (2). Further, a resin solution (E17-2) was applied to the other surface of the resin support so as to have a thickness of 10 μm after drying, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. It was dried for 8 hours to form a coating resin layer (1). As a result, a substrate having a thickness of 120 μm having a resin layer containing the compound (Z) on one surface of the resin support and a resin layer not containing the compound (Z) on the other surface was obtained.
In the same manner as in Example 1, the spectral characteristics of compound (z-199) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
実施例1と同様にして、化合物(z-199)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 A resin solution (E17-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to form the coating resin layer (2). Further, a resin solution (E17-2) was applied to the other surface of the resin support so as to have a thickness of 10 μm after drying, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. It was dried for 8 hours to form a coating resin layer (1). As a result, a substrate having a thickness of 120 μm having a resin layer containing the compound (Z) on one surface of the resin support and a resin layer not containing the compound (Z) on the other surface was obtained.
In the same manner as in Example 1, the spectral characteristics of compound (z-199) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.124mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[実施例18]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(Z)として、下記化合物(z-153)(ジクロロメタン中の吸収極大波長:1054nm)0.52質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E18)を得た。 [Example 18]
To the container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.52 parts by mass of the following compound (z-153) (absorption maximum wavelength in dichloromethane: 1054 nm), and dichloromethane as the compound (Z) were added. A solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E18).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(Z)として、下記化合物(z-153)(ジクロロメタン中の吸収極大波長:1054nm)0.52質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E18)を得た。 [Example 18]
To the container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.52 parts by mass of the following compound (z-153) (absorption maximum wavelength in dichloromethane: 1054 nm), and dichloromethane as the compound (Z) were added. A solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E18).
200mm×200mmの大きさにカットした、松浪硝子工業(株)製の吸収型ガラス支持体「BS-6」(厚み200μm)の片面に前記樹脂組成物(2)を、乾燥後の膜厚が約1μmとなるようにスピンコートで塗布した後、ホットプレート上80℃で2分間加熱して溶媒を揮発除去し、吸収型ガラス支持体と後述するコーティング樹脂層(1)との接着層として機能する接着層を形成した。
The resin composition (2) is applied to one side of an absorbent glass support "BS-6" (thickness 200 μm) manufactured by Matsunami Glass Ind. Co., Ltd., which is cut to a size of 200 mm × 200 mm, and the film thickness after drying is increased. After applying with spin coating to a thickness of about 1 μm, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes to function as an adhesive layer between the absorbent glass support and the coating resin layer (1) described later. An adhesive layer was formed.
次に、前記接着層上に、スピンコーターを用いて、樹脂溶液(E18)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(1)を形成した。これにより、吸収型ガラス支持体の片面に化合物(Z)を含む樹脂層を積層させた、厚み211μmの基材を得た。
実施例1と同様にして、化合物(z-153)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, the resin solution (E18) is applied onto the adhesive layer using a spin coater so that the film thickness after drying is 10 μm, and the solvent is volatilized by heating on a hot plate at 80 ° C. for 5 minutes. It was removed to form a coating resin layer (1). As a result, a base material having a thickness of 211 μm was obtained by laminating a resin layer containing the compound (Z) on one side of the absorbent glass support.
In the same manner as in Example 1, the spectral characteristics of compound (z-153) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
実施例1と同様にして、化合物(z-153)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, the resin solution (E18) is applied onto the adhesive layer using a spin coater so that the film thickness after drying is 10 μm, and the solvent is volatilized by heating on a hot plate at 80 ° C. for 5 minutes. It was removed to form a coating resin layer (1). As a result, a base material having a thickness of 211 μm was obtained by laminating a resin layer containing the compound (Z) on one side of the absorbent glass support.
In the same manner as in Example 1, the spectral characteristics of compound (z-153) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.215mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.215 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.215 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[実施例19]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.57質量部、化合物(x-4)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E19-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、前記化合物(z-211)0.52質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E19-2)を得た。 [Example 19]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.57 parts by mass of the compound (x-3), 0.68 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E19-1).
Similarly, 100 parts by mass of the resin A, 0.52 parts by mass of the compound (z-211) as the compound (Z), and dichloromethane were added to prepare a solution having a resin concentration of 20% by mass and having a pore size of 5 μm. Filtration was carried out with a millipore filter to obtain a resin solution (E19-2).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.57質量部、化合物(x-4)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E19-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、前記化合物(z-211)0.52質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E19-2)を得た。 [Example 19]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.57 parts by mass of the compound (x-3), 0.68 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E19-1).
Similarly, 100 parts by mass of the resin A, 0.52 parts by mass of the compound (z-211) as the compound (Z), and dichloromethane were added to prepare a solution having a resin concentration of 20% by mass and having a pore size of 5 μm. Filtration was carried out with a millipore filter to obtain a resin solution (E19-2).
200mm×200mmの大きさにカットした、日本電気硝子(株)製の透明ガラス支持体「OA-10G」(厚み200μm)の両面に前記樹脂組成物(2)を、乾燥後の膜厚が約1μmとなるようにスピンコートで塗布した後、ホットプレート上80℃で2分間加熱して、溶媒を揮発除去し、ガラス支持体と後述する後述するコーティング樹脂層(1)およびコーティング樹脂層(2)との接着層として機能する接着層を形成した。
The resin composition (2) is applied to both sides of a transparent glass support "OA-10G" (thickness 200 μm) manufactured by Nippon Electric Glass Co., Ltd., which is cut to a size of 200 mm × 200 mm, and the thickness after drying is about. After applying with spin coating so as to be 1 μm, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes, and the glass support and the coating resin layer (1) and the coating resin layer (2) described later will be described later. ) And an adhesive layer that functions as an adhesive layer was formed.
次に、前記接着層が形成されたガラス支持体の片面にスピンコーターを用いて、樹脂溶液(E19-1)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(2)を形成した。更に、前記接着層が形成されたガラス支持体のもう一方の面にスピンコーターを用いて、樹脂溶液(E19-2)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(1)を形成した。これにより、ガラス支持体の一方の面に化合物(Z)を含む樹脂層を積層し、他方の面に化合物(Z)を含まない樹脂層を積層した厚み222μmの基材を得た。
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 Next, using a spin coater, a resin solution (E19-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E19-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 Next, using a spin coater, a resin solution (E19-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E19-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.226mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[実施例20]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.57質量部、化合物(x-4)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E20-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-72)(ジクロロメタン中の吸収極大波長:937nm)0.42質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E20-2)を得た。 [Example 20]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.57 parts by mass of the compound (x-3), 0.68 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E20-1).
Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-72) (maximum absorption wavelength in dichloromethane: 937 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E20-2).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.57質量部、化合物(x-4)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E20-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、下記化合物(z-72)(ジクロロメタン中の吸収極大波長:937nm)0.42質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E20-2)を得た。 [Example 20]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.57 parts by mass of the compound (x-3), 0.68 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E20-1).
Similarly, 100 parts by mass of resin A, 0.42 parts by mass of the following compound (z-72) (maximum absorption wavelength in dichloromethane: 937 nm), and dichloromethane are added as compound (Z), and the resin concentration is 20 parts by mass. % Was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E20-2).
樹脂製支持体(ゼオノアフィルムZF-16、日本ゼオン(株)製、100μm厚)の片面に、樹脂溶液(E20-1)を乾燥後の厚みが10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(2)を得た。更に、樹脂製支持体のもう一方の面に、樹脂溶液(E20-2)を乾燥後の厚みが10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(1)を形成した。これにより、樹脂製支持体の一方の面に化合物(Z)を含む樹脂層を有し、他方の面に化合物(Z)を含まない樹脂層を有する厚み120μmの基材を得た。
実施例1と同様にして、化合物(z-72)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 A resin solution (E20-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to obtain a coated resin layer (2). Further, a resin solution (E20-2) was applied to the other surface of the resin support so that the thickness after drying was 10 μm, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. Was dried for 8 hours to form a coating resin layer (1). As a result, a substrate having a thickness of 120 μm having a resin layer containing the compound (Z) on one surface of the resin support and a resin layer not containing the compound (Z) on the other surface was obtained.
In the same manner as in Example 1, the spectral characteristics of compound (z-72) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
実施例1と同様にして、化合物(z-72)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 A resin solution (E20-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to obtain a coated resin layer (2). Further, a resin solution (E20-2) was applied to the other surface of the resin support so that the thickness after drying was 10 μm, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. Was dried for 8 hours to form a coating resin layer (1). As a result, a substrate having a thickness of 120 μm having a resin layer containing the compound (Z) on one surface of the resin support and a resin layer not containing the compound (Z) on the other surface was obtained.
In the same manner as in Example 1, the spectral characteristics of compound (z-72) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.124mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[実施例21]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.56質量部、化合物(x-2)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E21-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、前記化合物(z-311)0.45質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E21-2)を得た。 [Example 21]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.56 parts by mass of the compound (x-1), 0.68 parts by mass of the compound (x-2), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E21-1).
Similarly, 100 parts by mass of the resin A, 0.45 parts by mass of the compound (z-311) as the compound (Z), and dichloromethane were added to prepare a solution having a resin concentration of 20% by mass and having a pore size of 5 μm. Filtration was carried out with a millipore filter to obtain a resin solution (E21-2).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.56質量部、化合物(x-2)0.68質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E21-1)を得た。
同様にして、樹脂A 100質量部、化合物(Z)として、前記化合物(z-311)0.45質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(E21-2)を得た。 [Example 21]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.56 parts by mass of the compound (x-1), 0.68 parts by mass of the compound (x-2), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (E21-1).
Similarly, 100 parts by mass of the resin A, 0.45 parts by mass of the compound (z-311) as the compound (Z), and dichloromethane were added to prepare a solution having a resin concentration of 20% by mass and having a pore size of 5 μm. Filtration was carried out with a millipore filter to obtain a resin solution (E21-2).
200mm×200mmの大きさにカットした、日本電気硝子(株)製の透明ガラス支持体「OA-10G」(厚み200μm)の両面に前記樹脂組成物(2)を、乾燥後の膜厚が約1μmとなるようにスピンコートで塗布した後、ホットプレート上80℃で2分間加熱して、溶媒を揮発除去し、ガラス支持体と後述するコーティング樹脂層(1)およびコーティング樹脂層(2)との接着層として機能する接着層を形成した。
The resin composition (2) is applied to both sides of a transparent glass support "OA-10G" (thickness 200 μm) manufactured by Nippon Electric Glass Co., Ltd., which is cut to a size of 200 mm × 200 mm, and the thickness after drying is about. After applying with spin coating so as to be 1 μm, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes to form a glass support and a coating resin layer (1) and a coating resin layer (2) described later. An adhesive layer that functions as an adhesive layer was formed.
次に、前記接着層が形成されたガラス支持体の片面にスピンコーターを用いて、樹脂溶液(E21-1)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(2)を形成した。更に、前記接着層が形成されたガラス支持体のもう一方の面にスピンコーターを用いて、樹脂溶液(E21-2)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(1)を形成した。これにより、ガラス支持体の一方の面に化合物(Z)を含む樹脂層を積層し、他方の面に化合物(Z)を含まない樹脂層を積層した厚み222μmの基材を得た。
実施例1と同様にして得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, using a spin coater, a resin solution (E21-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E21-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
Xa, Ta to Tf of the base material obtained in the same manner as in Example 1 were determined. The results are shown in Tables 10 and 12.
実施例1と同様にして得られた基材のXa、Ta~Tfを求めた。結果を表10および12に示す。 Next, using a spin coater, a resin solution (E21-1) was applied to one side of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and the temperature was 80 ° C. on a hot plate. The solvent was volatilized and removed by heating for 5 minutes to form a coating resin layer (2). Further, using a spin coater, a resin solution (E21-2) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (1). As a result, a base material having a thickness of 222 μm was obtained by laminating a resin layer containing the compound (Z) on one surface of the glass support and laminating a resin layer containing no compound (Z) on the other surface.
Xa, Ta to Tf of the base material obtained in the same manner as in Example 1 were determined. The results are shown in Tables 10 and 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.226mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[比較例1]
実施例1において、化合物(Z)を使用しなかったこと以外は、実施例1と同様にして基材を得た。
この基材を用いたこと以外は実施例1と同様にして、Xa、Ta~Tfを求めた。結果を表11に示す。 [Comparative Example 1]
A substrate was obtained in the same manner as in Example 1 except that compound (Z) was not used in Example 1.
Xa and Ta to Tf were determined in the same manner as in Example 1 except that this base material was used. The results are shown in Table 11.
実施例1において、化合物(Z)を使用しなかったこと以外は、実施例1と同様にして基材を得た。
この基材を用いたこと以外は実施例1と同様にして、Xa、Ta~Tfを求めた。結果を表11に示す。 [Comparative Example 1]
A substrate was obtained in the same manner as in Example 1 except that compound (Z) was not used in Example 1.
Xa and Ta to Tf were determined in the same manner as in Example 1 except that this base material was used. The results are shown in Table 11.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[比較例2]
実施例2において、化合物(Z)を用いず、化合物(X)として、化合物(x-1)0.06質量部、化合物(x-4)0.07質量部、および化合物(x-5)(ジクロロメタン中での吸収極大波長1095nm)0.06質量部を用いた以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、化合物(x-5)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果をそれぞれ表10および11に示す。また、得られた基材の分光特性を図3に示す。 [Comparative Example 2]
In Example 2, 0.06 parts by mass of compound (x-1), 0.07 parts by mass of compound (x-4), and compound (x-5) were used as compound (X) without using compound (Z). A substrate was obtained in the same manner as in Example 2 except that 0.06 parts by mass (absorption maximum wavelength in dichloromethane, 1095 nm) was used.
In the same manner as in Example 2, the spectral characteristics of the compound (x-5) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 11, respectively. Further, the spectral characteristics of the obtained base material are shown in FIG.
実施例2において、化合物(Z)を用いず、化合物(X)として、化合物(x-1)0.06質量部、化合物(x-4)0.07質量部、および化合物(x-5)(ジクロロメタン中での吸収極大波長1095nm)0.06質量部を用いた以外は、実施例2と同様にして基材を得た。
実施例2と同様にして、化合物(x-5)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果をそれぞれ表10および11に示す。また、得られた基材の分光特性を図3に示す。 [Comparative Example 2]
In Example 2, 0.06 parts by mass of compound (x-1), 0.07 parts by mass of compound (x-4), and compound (x-5) were used as compound (X) without using compound (Z). A substrate was obtained in the same manner as in Example 2 except that 0.06 parts by mass (absorption maximum wavelength in dichloromethane, 1095 nm) was used.
In the same manner as in Example 2, the spectral characteristics of the compound (x-5) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 11, respectively. Further, the spectral characteristics of the obtained base material are shown in FIG.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。また、得られた光学フィルターの分光特性を図4に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11. Further, the spectral characteristics of the obtained optical filter are shown in FIG.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。また、得られた光学フィルターの分光特性を図4に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11. Further, the spectral characteristics of the obtained optical filter are shown in FIG.
[比較例3]
実施例3において、化合物(Z)を用いず、化合物(X)として、化合物(x-2)0.07質量部、化合物(x-3)0.06質量部、および化合物(x-6)(ジクロロメタン中での吸収極大波長835nm)0.05質量部を用いた以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、化合物(x-6)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果をそれぞれ表10および11に示す。 [Comparative Example 3]
In Example 3, 0.07 parts by mass of compound (x-2), 0.06 parts by mass of compound (x-3), and compound (x-6) were used as compound (X) without using compound (Z). A substrate was obtained in the same manner as in Example 3 except that 0.05 parts by mass (absorption maximum wavelength in dichloromethane, 835 nm) was used.
In the same manner as in Example 3, the spectral characteristics of the compound (x-6) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 11, respectively.
実施例3において、化合物(Z)を用いず、化合物(X)として、化合物(x-2)0.07質量部、化合物(x-3)0.06質量部、および化合物(x-6)(ジクロロメタン中での吸収極大波長835nm)0.05質量部を用いた以外は、実施例3と同様にして基材を得た。
実施例3と同様にして、化合物(x-6)のジクロロメタン中の分光特性を測定し、得られた基材のXa、Ta~Tfを求めた。結果をそれぞれ表10および11に示す。 [Comparative Example 3]
In Example 3, 0.07 parts by mass of compound (x-2), 0.06 parts by mass of compound (x-3), and compound (x-6) were used as compound (X) without using compound (Z). A substrate was obtained in the same manner as in Example 3 except that 0.05 parts by mass (absorption maximum wavelength in dichloromethane, 835 nm) was used.
In the same manner as in Example 3, the spectral characteristics of the compound (x-6) in dichloromethane were measured, and Xa, Ta to Tf of the obtained base material were determined. The results are shown in Tables 10 and 11, respectively.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.110mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表11に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.110 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 11.
[比較例4]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.29質量部、化合物(x-4)0.32質量部、化合物(x-5)0.30質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(H4-1)を得た。 [Comparative Example 4]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.29 parts by mass of the compound (x-1), 0.32 parts by mass of the compound (x-4), and the compound (x) as the compound (X). -5) A solution having a resin concentration of 20% by mass was prepared by adding 0.30 parts by mass and dichloromethane, and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (H4-1).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-1)0.29質量部、化合物(x-4)0.32質量部、化合物(x-5)0.30質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(H4-1)を得た。 [Comparative Example 4]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.29 parts by mass of the compound (x-1), 0.32 parts by mass of the compound (x-4), and the compound (x) as the compound (X). -5) A solution having a resin concentration of 20% by mass was prepared by adding 0.30 parts by mass and dichloromethane, and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (H4-1).
200mm×200mmの大きさにカットした、日本電気硝子(株)製の透明ガラス支持体「OA-10G」(厚み200μm)の両面に前記樹脂組成物(2)を、乾燥後の膜厚が約1μmとなるようにスピンコートで塗布した後、ホットプレート上80℃で2分間加熱して、溶媒を揮発除去し、ガラス支持体と後述するコーティング樹脂層(1)およびコーティング樹脂層(2)との接着層として機能する接着層を形成した。
The resin composition (2) is applied to both sides of a transparent glass support "OA-10G" (thickness 200 μm) manufactured by Nippon Electric Glass Co., Ltd., which is cut to a size of 200 mm × 200 mm, and the thickness after drying is about. After applying with spin coating so as to be 1 μm, the solvent is volatilized and removed by heating on a hot plate at 80 ° C. for 2 minutes to form a glass support and a coating resin layer (1) and a coating resin layer (2) described later. An adhesive layer that functions as an adhesive layer was formed.
次に、前記接着層の片面に、スピンコーターを用いて、樹脂溶液(H4-1)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(1)を形成した。更に、前記接着層が形成されたガラス支持体のもう一方の面にスピンコーターを用いて、樹脂溶液(H4-1)を乾燥後の膜厚が10μmとなるように塗布し、ホットプレート上80℃で5分間加熱して、溶媒を揮発除去し、コーティング樹脂層(2)を形成した。これにより、ガラス支持体の両面に化合物(Z)を含まない樹脂層を積層した厚み222μmの基材を得た。
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 Next, a resin solution (H4-1) was applied to one side of the adhesive layer using a spin coater so that the film thickness after drying was 10 μm, and heated on a hot plate at 80 ° C. for 5 minutes. The solvent was volatilized and removed to form the coating resin layer (1). Further, using a spin coater, a resin solution (H4-1) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (2). As a result, a substrate having a thickness of 222 μm was obtained by laminating a resin layer containing no compound (Z) on both sides of the glass support.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 Next, a resin solution (H4-1) was applied to one side of the adhesive layer using a spin coater so that the film thickness after drying was 10 μm, and heated on a hot plate at 80 ° C. for 5 minutes. The solvent was volatilized and removed to form the coating resin layer (1). Further, using a spin coater, a resin solution (H4-1) was applied to the other surface of the glass support on which the adhesive layer was formed so that the film thickness after drying was 10 μm, and 80 on a hot plate. The solvent was volatilized and removed by heating at ° C. for 5 minutes to form the coating resin layer (2). As a result, a substrate having a thickness of 222 μm was obtained by laminating a resin layer containing no compound (Z) on both sides of the glass support.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.226mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.226 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
[比較例5]
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.27質量部、化合物(x-4)0.31質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(H5-1)を得た。 [Comparative Example 5]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.27 parts by mass of the compound (x-3), 0.31 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (H5-1).
容器に、樹脂合成例1で得られた樹脂A 100質量部、化合物(X)として、化合物(x-3)0.27質量部、化合物(x-4)0.31質量部、およびジクロロメタンを加えて、樹脂濃度が20質量%の溶液を調製し、孔径5μmのミリポアフィルタで濾過を行い、樹脂溶液(H5-1)を得た。 [Comparative Example 5]
In a container, 100 parts by mass of the resin A obtained in Resin Synthesis Example 1, 0.27 parts by mass of the compound (x-3), 0.31 parts by mass of the compound (x-4), and dichloromethane as the compound (X). In addition, a solution having a resin concentration of 20% by mass was prepared and filtered through a millipore filter having a pore size of 5 μm to obtain a resin solution (H5-1).
樹脂製支持体(ゼオノアフィルムZF-16、日本ゼオン(株)製、100μm厚)の片面に、樹脂溶液(H5-1)を乾燥後の厚みが10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(1)を形成した。更に、樹脂製支持体のもう一方の面に、樹脂溶液(H5-1)を乾燥後の厚み10μmとなるように塗布し、80℃で8時間乾燥させた後、更に真空中、150℃で8時間乾燥させ、コーティング樹脂層(2)を形成した。これにより、透明樹脂基板の両面に化合物(Z)を含まない樹脂層を有する厚み120μmの基材を得た。
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 A resin solution (H5-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to form the coating resin layer (1). Further, a resin solution (H5-1) was applied to the other surface of the resin support so as to have a thickness of 10 μm after drying, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. It was dried for 8 hours to form a coating resin layer (2). As a result, a substrate having a thickness of 120 μm having a resin layer containing no compound (Z) on both sides of the transparent resin substrate was obtained.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
実施例1と同様にして、得られた基材のXa、Ta~Tfを求めた。結果を表12に示す。 A resin solution (H5-1) is applied to one side of a resin support (Zeonoa film ZF-16, manufactured by Nippon Zeon Corporation, 100 μm thickness) so that the thickness after drying is 10 μm, and the thickness is 8 at 80 ° C. After drying for hours, it was further dried in vacuum at 150 ° C. for 8 hours to form the coating resin layer (1). Further, a resin solution (H5-1) was applied to the other surface of the resin support so as to have a thickness of 10 μm after drying, dried at 80 ° C. for 8 hours, and then further in vacuum at 150 ° C. It was dried for 8 hours to form a coating resin layer (2). As a result, a substrate having a thickness of 120 μm having a resin layer containing no compound (Z) on both sides of the transparent resin substrate was obtained.
Xa, Ta to Tf of the obtained base material were determined in the same manner as in Example 1. The results are shown in Table 12.
続いて、実施例1と同様に、得られた基材の片面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計28層の誘電体多層膜(I)を形成し、さらに基材のもう一方の面に、シリカ(SiO2)層とチタニア(TiO2)層とが交互に積層されてなる合計24層の誘電体多層膜(II)を形成し、厚さ約0.124mmの光学フィルターを得た。
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
誘電体多層膜の設計は、実施例1と同様に、基材の屈折率の波長依存性等を考慮した上で、実施例1と同じ設計パラメーターを用いて行った。
得られた光学フィルターの垂直方向から測定した分光透過率を測定し、TgおよびThを求めた。結果を表12に示す。 Subsequently, as in Example 1, a total of 28 dielectric multilayer films (I ) in which silica (SiO 2 ) layers and titanium (TiO 2 ) layers are alternately laminated on one side of the obtained base material. ), And a total of 24 layers of dielectric multilayer film (II) formed by alternately laminating silica (SiO 2 ) layers and titania (TiO 2 ) layers on the other surface of the base material. , An optical filter having a thickness of about 0.124 mm was obtained.
The design of the dielectric multilayer film was carried out using the same design parameters as in Example 1 in consideration of the wavelength dependence of the refractive index of the base material and the like, as in Example 1.
The spectral transmittance measured from the vertical direction of the obtained optical filter was measured, and Tg and Th were determined. The results are shown in Table 12.
Claims (15)
- 樹脂と、
下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物(Z)と
を含有する樹脂組成物。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。]
ZA~ZCおよびYB~YCはそれぞれ独立に、炭素原子、硫黄原子、酸素原子、窒素原子、リン原子およびケイ素原子から選ばれる少なくとも1つを有する基、水素原子もしくはハロゲン原子、または、ZA~ZCのうち隣接した二つが相互に結合して環を形成していてもよく、YBおよびYCが相互に結合して環を形成していてもよく、
ユニットAおよびユニットBはそれぞれ独立に、複素芳香環を有する基であり、
ユニットA中の一部の基は、YAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、ユニットB中の一部の基は、YDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
ZBが、ハロゲン原子、または、下記式(A-1)~(A-2)のいずれかで表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-3)で表される基ではなく、かつ、ユニットBは下記式(A-4)で表される基ではなく、
ZBが、塩素原子であり、かつ、YBおよびYC同士が相互に結合して形成された6員の脂環式炭化水素基であり、かつ、該6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-5)で表される基ではなく、かつ、ユニットBは下記式(A-6)で表される基ではなく、
ZBが、下記式(A-7)で表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-8)で表される基ではなく、かつ、ユニットBは下記式(A-9)で表される基ではない。]
A resin composition represented by the following formula (I) and containing a compound (Z) having a maximum absorption wavelength in the wavelength range of 850 to 1100 nm.
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
Z A to Z C and Y B to Y C are independently groups having at least one selected from a carbon atom, a sulfur atom, an oxygen atom, a nitrogen atom, a phosphorus atom and a silicon atom, a hydrogen atom or a halogen atom, or a halogen atom. , Z A to Z C may be joined to each other to form a ring, or Y B and Y C may be joined to each other to form a ring.
Unit A and unit B are independent groups having a heteroaromatic ring.
Some groups in unit A may be bonded to Y A to form a cyclic hydrocarbon group having 5 or 6 carbon atoms, and some groups in unit B may be bonded to Y D. It may form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other. When the 5-membered alicyclic hydrocarbon group is a 5-membered alicyclic hydrocarbon group and all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is represented by the following formula (A-3). It is not a group represented, and unit B is not a group represented by the following formula (A-4).
Z B is a chlorine atom and is a 6-membered alicyclic hydrocarbon group formed by mutual bonding of Y B and Y C, and the 6-membered alicyclic hydrocarbon group. When all the substituents other than Z B are hydrogen atoms, the unit A is not a group represented by the following formula (A-5), and the unit B is a group represented by the following formula (A-6). not,
Z B is a group represented by the following formula (A-7), and is a 5-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, and When all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is not a group represented by the following formula (A-8), and the unit B is represented by the following formula. It is not a group represented by (A-9). ]
- 前記ユニットAが、下記式(A-I)~(A-III)のいずれかで表される基であり、
前記ユニットBが、下記式(B-I)~(B-III)のいずれかで表される基であり、
前記YAおよびYDがそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、
前記ZA~ZCおよびYB~YCがそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、または、-SO2Q3であり、
ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、Q1は、下記Lb~Lgのいずれかであり、Q2は、水素原子または下記Lb~Lfのいずれかであり、Q3は、水酸基または下記Lb~Lfのいずれかであり、Riは下記Lb~Lfのいずれかである、
請求項1に記載の樹脂組成物。
式(B-I)~(B-III)中の=**は、前記式(II)のYDが結合する炭素と二重結合することを示し、
式(A-I)~(B-III)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または-N(R8)-であり、
R1~R6はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgRh基、-SRi基、-SO2Ri基、-OSO2Ri基、-C(O)Ri基または下記Lb~Liのいずれかであり、
R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(A-III)中のR1またはR4は、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(B-III)中のR1またはR4は、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
R8は水素原子、ハロゲン原子、-C(O)Ri基、下記Lb~Liのいずれかであり、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、
Riは下記Lb~Lfのいずれかであり、
(Lb):炭素数1~15の脂肪族炭化水素基
(Lc):ハロゲン置換アルキル基
(Ld):脂環式炭化水素基
(Le):芳香族炭化水素基
(Lf):複素環基
(Lg):-OR(Rは炭化水素基)
(Lh):置換基Lを有してもよいアシル基
(Li):置換基Lを有してもよいアルコキシカルボニル基
前記置換基Lは、前記Lb~Lfより選ばれる少なくとも一種である。] The unit A is a group represented by any of the following formulas (AI) to (A-III).
The unit B is a group represented by any of the following formulas (BI) to (B-III).
Y A and Y D are independently hydrogen atoms, halogen atoms, or hydrocarbon groups having 1 to 8 carbon atoms.
Z A to Z C and Y B to Y C are independently hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group, -Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , or -SO 2 Q 3 ,
A 5- to 6-membered fat that may contain at least one aromatic hydrocarbon group, nitrogen atom, oxygen atom or sulfur atom having 6 to 14 carbon atoms, in which two adjacent two of Z A to Z C are bonded to each other. It may form a ring group or a complex aromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and complex. The aromatic group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
A 5- to 6-membered alicyclic group in which Y B and Y C are bonded to each other and may contain at least one aromatic hydrocarbon group having 6 to 14 carbon atoms, a nitrogen atom, an oxygen atom or a sulfur atom, or It may form a heteroaromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may form. It may have an aliphatic hydrocarbon group or a halogen atom having 1 to 9 carbon atoms.
R g and R h are each independently a hydrogen atom, an −C (O) R i group or any of the following L b to L f , and Q 1 is any of the following L b to L g. Q 2 is a hydrogen atom or any of the following L b to L f , Q 3 is either a hydroxyl group or the following L b to L f , and R i is any of the following L b to L f. is there,
The resin composition according to claim 1.
= ** in formulas (BI) to (B-III) indicate that Y D of the formula (II) is double bonded to the carbon to which it is bonded.
In formulas (AI)-(B-III), X is independently an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or -N (R 8 )-.
R 1 to R 6 are independently hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphate group, -NR g R h group, -SR i group, -SO 2 R. It is either an i group, an -OSO 2 R i group, an -C (O) R i group, or the following L b to L i.
Adjacent two of R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 1 or R 4 in the formula (A-III), the formula in combination with Y A in (II) may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
R 1 or R 4 in the formula (B-III) may be bonded to Y D in the formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 8 is a hydrogen atom, a halogen atom, an −C (O) R i group, or any of the following L b to Li i.
R g and R h are independently either a hydrogen atom, an −C (O) R i group, or L b to L f below.
R i is one of the following L b to L f ,
(L b ): aliphatic hydrocarbon group having 1 to 15 carbon atoms (L c ): halogen-substituted alkyl group (L d ): alicyclic hydrocarbon group (L e ): aromatic hydrocarbon group (L f ) : Heterocyclic group (L g ): -OR (R is a hydrocarbon group)
(L h ): Acyl group which may have a substituent L ( Li ): An alkoxycarbonyl group which may have a substituent L The substituent L is at least one selected from the above L b to L f. Is. ] - 前記化合物(Z)が下記要件(A)を満たす、請求項1または2に記載の樹脂組成物。
要件(A):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長430~580nmにおける光の透過率の平均値が70%以上である The resin composition according to claim 1 or 2, wherein the compound (Z) satisfies the following requirement (A).
Requirement (A): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). The average value of the light transmittance at a wavelength of 430 to 580 nm is 70% or more. - 前記化合物(Z)が下記要件(C)および(D)を満たす、請求項1~3のいずれか1項に記載の樹脂組成物。
要件(C):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)において、波長950~1150nmの範囲に、透過率が85%となる波長を有する
要件(D):前記化合物(Z)をジクロロメタンに溶解した溶液を用いて測定される透過スペクトル(但し、該透過スペクトルは、吸収極大波長における透過率が10%となるスペクトルである。)の吸収極大波長より長波長において、透過率が20%となる最も短波長側の波長(Wa)と、透過率が70%となる最も短波長側の波長(Wb)との差の絶対値が10~60nmである The resin composition according to any one of claims 1 to 3, wherein the compound (Z) satisfies the following requirements (C) and (D).
Requirement (C): In a transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is a spectrum in which the transmittance at the absorption maximum wavelength is 10%). Having a wavelength in the wavelength range of 950 to 1150 nm and having a transmittance of 85% Requirement (D): A transmission spectrum measured using a solution of the compound (Z) in dichloromethane (however, the transmission spectrum is It is a spectrum in which the transmittance at the absorption maximum wavelength is 10%.) At a wavelength longer than the absorption maximum wavelength, the wavelength on the shortest wavelength side (Wa) at which the transmittance is 20% and the transmittance are 70%. The absolute value of the difference from the wavelength (Wb) on the shortest wavelength side is 10 to 60 nm. - 前記樹脂が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin is a cyclic (poly) olefin resin, an aromatic polyether resin, a polyimide resin, a polyester resin, a polycarbonate resin, a polyamide resin, a polyarylate resin, a polysulfone resin, or a polyether sulfone resin. , Polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester curable resin, silsesquioxane ultraviolet The resin composition according to any one of claims 1 to 4, which is at least one resin selected from the group consisting of a curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin.
- 請求項1~5のいずれか1項に記載の樹脂組成物から形成された化合物(Z)を含有する樹脂層を含む基材(i)と、誘電体多層膜とを有する、光学フィルター。 An optical filter having a base material (i) containing a resin layer containing a compound (Z) formed from the resin composition according to any one of claims 1 to 5 and a dielectric multilayer film.
- 前記基材(i)が、
前記化合物(Z)を含有する樹脂層からなる基材、
2層以上の樹脂層を含む基材であって、該2層以上の樹脂層のうち少なくとも1つが前記化合物(Z)を含有する樹脂層である基材、または、
ガラス支持体と前記化合物(Z)を含有する樹脂層とを含む基材
である、請求項6に記載の光学フィルター。 The base material (i) is
A substrate composed of a resin layer containing the compound (Z),
A base material containing two or more resin layers, wherein at least one of the two or more resin layers is a resin layer containing the compound (Z), or a base material.
The optical filter according to claim 6, which is a base material containing a glass support and a resin layer containing the compound (Z). - 前記光学フィルターが、下記特性(a)および(b)を満たす近赤外線カットフィルターである、請求項6または7に記載の光学フィルター。
特性(a):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(b):波長850~1200nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が5%以下 The optical filter according to claim 6 or 7, wherein the optical filter is a near-infrared ray cut filter satisfying the following characteristics (a) and (b).
Characteristic (a): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the wavelength region of 430 to 580 nm. Characteristic (b): The vertical direction of the optical filter in the wavelength region of 850 to 1200 nm. The average value of transmittance measured from 5% or less - 前記光学フィルターが、下記特性(c)および(d)を満たす可視光-近赤外線選択透過フィルターである、請求項6または7に記載の光学フィルター。
特性(c):波長430~580nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が75%以上
特性(d):波長650nm以上の領域に、光線阻止帯域Za、光線透過帯域Zbおよび光線阻止帯域Zcを有し、それぞれの帯域の中心波長はZa<Zb<Zcであり、
前記ZaおよびZcにおける光学フィルターの垂直方向から測定した場合の最小透過率がそれぞれ15%以下であり、
前記Zbにおける光学フィルターの垂直方向から測定した場合の最大透過率が55%以上である The optical filter according to claim 6 or 7, wherein the optical filter is a visible light-near infrared selective transmission filter satisfying the following characteristics (c) and (d).
Characteristic (c): The average value of the transmittance measured from the vertical direction of the optical filter is 75% or more in the region of wavelength 430 to 580 nm. Characteristic (d): Light ray blocking band Za and light rays in the region of wavelength 650 nm or more. It has a transmission band Zb and a light blocking band Zc, and the center wavelength of each band is Za <Zb <Zc.
The minimum transmittances of Za and Zc measured from the vertical direction of the optical filter are 15% or less, respectively.
The maximum transmittance measured from the vertical direction of the optical filter in Zb is 55% or more. - 前記光学フィルターが、下記特性(e)および(f)を満たす近赤外線透過フィルターである、請求項6または7に記載の光学フィルター。
特性(e):波長380~700nmの領域において、光学フィルターの垂直方向から測定した場合の透過率の平均値が10%以下
特性(f):波長750nm以上の領域に、光線透過帯Yaを有し、前記光線透過帯Yaにおいて、光学フィルターの垂直方向から測定した場合の最大透過率(TIR)が45%以上である The optical filter according to claim 6 or 7, wherein the optical filter is a near-infrared ray transmitting filter satisfying the following characteristics (e) and (f).
Characteristic (e): The average value of the transmittance measured from the vertical direction of the optical filter is 10% or less in the region of wavelength 380 to 700 nm. Characteristic (f): The light transmission band Ya is provided in the region of wavelength 750 nm or more. However, in the light transmittance band Ya, the maximum transmittance ( TIR ) measured from the vertical direction of the optical filter is 45% or more. - 固体撮像装置用である、請求項6~10のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 6 to 10, which is for a solid-state image sensor.
- 光学センサー装置用である、請求項6~10のいずれか1項に記載の光学フィルター。 The optical filter according to any one of claims 6 to 10, which is for an optical sensor device.
- 請求項6~10のいずれか1項に記載の光学フィルターを具備する固体撮像装置。 A solid-state image sensor provided with the optical filter according to any one of claims 6 to 10.
- 請求項6~10のいずれか1項に記載の光学フィルターを具備する光学センサー装置。 An optical sensor device including the optical filter according to any one of claims 6 to 10.
- 下記式(I)で表され、吸収極大波長が波長850~1100nmの範囲にある化合物(Z)。
Cn+An- (I)
[式(I)中、Cn+は下記式(II)で表される一価のカチオンであり、An-は一価のアニオンである。]
ユニットBは、下記式(B-I)~(B-III)のいずれかで表される基であり、
YAおよびYDはそれぞれ独立に、水素原子、ハロゲン原子または炭素数1~8の炭化水素基であり、
ZA~ZCおよびYB~YCはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、カルボキシ基、ニトロ基、-NRgRh基、アミド基、イミド基、シアノ基、シリル基、-Q1、-N=N-Q1、-S-Q2、-SSQ2、または、-SO2Q3であり、
ZA~ZCのうち隣接した二つが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
YBおよびYCが相互に結合して、炭素数6~14の芳香族炭化水素基、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含んでもよい5~6員の脂環基、または、窒素原子、酸素原子もしくは硫黄原子を少なくとも一つ含む、炭素数3~14の複素芳香族基を形成していてもよく、これらの脂環基、芳香族炭化水素基および複素芳香族基は、炭素数1~9の脂肪族炭化水素基またはハロゲン原子を有してもよく、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、Q1は、下記Lb~Lgのいずれかであり、Q2は、水素原子または下記Lb~Lfのいずれかであり、Q3は、水酸基または下記Lb~Lfのいずれかであり、Riは下記Lb~Lfのいずれかであり、
ZBが、ハロゲン原子、または、下記式(A-1)~(A-2)のいずれかで表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-3)で表される基ではなく、かつ、ユニットBは下記式(A-4)で表される基ではなく、
ZBが、塩素原子であり、かつ、YBおよびYC同士が相互に結合して形成された6員の脂環式炭化水素基であり、かつ、該6員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-5)で表される基ではなく、かつ、ユニットBは下記式(A-6)で表される基ではなく、
ZBが、下記式(A-7)で表される基であり、かつ、YBおよびYC同士が相互に結合して形成された5員の脂環式炭化水素基であり、かつ、該5員の脂環式炭化水素基においてZB以外の置換基は全て水素原子である場合、ユニットAは下記式(A-8)で表される基ではなく、かつ、ユニットBは下記式(A-9)で表される基ではない。]
式(B-I)~(B-III)中の=**は、前記式(II)のYDが結合する炭素と二重結合することを示し、
式(A-I)~(B-III)中、Xは独立に、酸素原子、硫黄原子、セレン原子、テルル原子または-N(R8)-であり、
R1~R6はそれぞれ独立に、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボキシ基、リン酸基、-NRgRh基、-SRi基、-SO2Ri基、-OSO2Ri基、-C(O)Ri基または下記Lb~Liのいずれかであり、
R1~R6のうち隣接した二つは相互に結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(A-III)中のR1またはR4は、前記式(II)中のYAと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
式(B-III)中のR1またはR4は、前記式(II)中のYDと結合して炭素数5または6の環状炭化水素基を形成していてもよく、
R8は水素原子、ハロゲン原子、-C(O)Ri基、下記Lb~Liのいずれかであり、
RgおよびRhはそれぞれ独立に、水素原子、-C(O)Ri基または下記Lb~Lfのいずれかであり、
Riは下記Lb~Lfのいずれかであり、
(Lb):炭素数1~15の脂肪族炭化水素基
(Lc):ハロゲン置換アルキル基
(Ld):脂環式炭化水素基
(Le):芳香族炭化水素基
(Lf):複素環基
(Lg):-OR(Rは炭化水素基)
(Lh):置換基Lを有してもよいアシル基
(Li):置換基Lを有してもよいアルコキシカルボニル基
前記置換基Lは、前記Lb~Lfより選ばれる少なくとも一種である。]
Cn + An - (I)
[In formula (I), Cn + is a monovalent cation represented by the following formula (II), and An - is a monovalent anion. ]
Unit B is a group represented by any of the following formulas (BI) to (B-III).
Y A and Y D are independently hydrogen atoms, halogen atoms or hydrocarbon groups having 1 to 8 carbon atoms.
Z A to Z C and Y B to Y C are independently hydrogen atom, halogen atom, hydroxyl group, carboxy group, nitro group, -NR g R h group, amide group, imide group, cyano group, silyl group,- Q 1 , -N = N-Q 1 , -S-Q 2 , -SSQ 2 , or -SO 2 Q 3 ,
A 5- to 6-membered fat that may contain at least one aromatic hydrocarbon group, nitrogen atom, oxygen atom or sulfur atom having 6 to 14 carbon atoms, in which two adjacent two of Z A to Z C are bonded to each other. It may form a ring group or a complex aromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and complex. The aromatic group may have an aliphatic hydrocarbon group having 1 to 9 carbon atoms or a halogen atom.
A 5- to 6-membered alicyclic group in which Y B and Y C are bonded to each other and may contain at least one aromatic hydrocarbon group having 6 to 14 carbon atoms, a nitrogen atom, an oxygen atom or a sulfur atom, or It may form a heteroaromatic group having 3 to 14 carbon atoms containing at least one nitrogen atom, oxygen atom or sulfur atom, and these alicyclic groups, aromatic hydrocarbon groups and heteroaromatic groups may form. It may have an aliphatic hydrocarbon group or a halogen atom having 1 to 9 carbon atoms.
R g and R h are each independently a hydrogen atom, an −C (O) R i group or any of the following L b to L f , and Q 1 is any of the following L b to L g. Q 2 is a hydrogen atom or any of the following L b to L f , Q 3 is either a hydroxyl group or the following L b to L f , and R i is any of the following L b to L f. Yes,
Z B is a halogen atom or a group represented by any of the following formulas (A-1) to (A-2), and Y B and Y C are formed by being bonded to each other. When the 5-membered alicyclic hydrocarbon group is a 5-membered alicyclic hydrocarbon group and all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is represented by the following formula (A-3). It is not a group represented, and unit B is not a group represented by the following formula (A-4).
Z B is a chlorine atom and is a 6-membered alicyclic hydrocarbon group formed by mutual bonding of Y B and Y C, and the 6-membered alicyclic hydrocarbon group. When all the substituents other than Z B are hydrogen atoms, the unit A is not a group represented by the following formula (A-5), and the unit B is a group represented by the following formula (A-6). not,
Z B is a group represented by the following formula (A-7), and is a 5-membered alicyclic hydrocarbon group formed by bonding Y B and Y C to each other, and When all the substituents other than Z B in the 5-membered alicyclic hydrocarbon group are hydrogen atoms, the unit A is not a group represented by the following formula (A-8), and the unit B is represented by the following formula. It is not a group represented by (A-9). ]
= ** in formulas (BI) to (B-III) indicate that Y D of the formula (II) is double bonded to the carbon to which it is bonded.
In formulas (AI)-(B-III), X is independently an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom or -N (R 8 )-.
R 1 to R 6 are independently hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carboxy group, phosphate group, -NR g R h group, -SR i group, -SO 2 R. It is either an i group, an -OSO 2 R i group, an -C (O) R i group, or the following L b to L i.
Adjacent two of R 1 to R 6 may be bonded to each other to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 1 or R 4 in the formula (A-III), the formula in combination with Y A in (II) may form a cyclic hydrocarbon group having 5 or 6 carbon atoms,
R 1 or R 4 in the formula (B-III) may be bonded to Y D in the formula (II) to form a cyclic hydrocarbon group having 5 or 6 carbon atoms.
R 8 is a hydrogen atom, a halogen atom, an −C (O) R i group, or any of the following L b to Li i.
R g and R h are independently either a hydrogen atom, an −C (O) R i group, or L b to L f below.
R i is one of the following L b to L f ,
(L b ): aliphatic hydrocarbon group having 1 to 15 carbon atoms (L c ): halogen-substituted alkyl group (L d ): alicyclic hydrocarbon group (L e ): aromatic hydrocarbon group (L f ) : Heterocyclic group (L g ): -OR (R is a hydrocarbon group)
(L h ): Acyl group which may have a substituent L ( Li ): An alkoxycarbonyl group which may have a substituent L The substituent L is at least one selected from the above L b to L f. Is. ]
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021553598A JP7663505B2 (en) | 2019-11-01 | 2020-10-26 | Resin composition, compound (Z), optical filter and use thereof |
CN202080073048.9A CN114616291B (en) | 2019-11-01 | 2020-10-26 | Resin composition, compound, optical filter, and optical sensor |
KR1020227013997A KR20220097889A (en) | 2019-11-01 | 2020-10-26 | Resin composition, compound (Z), optical filter and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-199897 | 2019-11-01 | ||
JP2019199897 | 2019-11-01 | ||
JP2020-135282 | 2020-08-07 | ||
JP2020135282 | 2020-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085372A1 true WO2021085372A1 (en) | 2021-05-06 |
Family
ID=75715972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040085 WO2021085372A1 (en) | 2019-11-01 | 2020-10-26 | Resin composition, compound (z), optical filter, and use thereof |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20220097889A (en) |
CN (1) | CN114616291B (en) |
TW (1) | TWI851844B (en) |
WO (1) | WO2021085372A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070782A (en) * | 2019-11-01 | 2021-05-06 | Jsr株式会社 | Resin composition, resin layer, and optical filter |
JP7630759B2 (en) | 2020-02-21 | 2025-02-18 | Jsr株式会社 | Resin composition, compound (Z), substrate (i), optical filter and use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI829562B (en) * | 2023-03-21 | 2024-01-11 | 澤米科技股份有限公司 | Dual-passband optical filter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5262549A (en) * | 1991-05-30 | 1993-11-16 | Polaroid Corporation | Benzpyrylium dyes, and processes for their preparation and use |
US5766956A (en) * | 1997-05-27 | 1998-06-16 | American Research Corporation | Diode laser-based chemical and biological sensor |
JPH10203032A (en) * | 1996-11-08 | 1998-08-04 | Eastman Kodak Co | Stabilized infrared coloring matter for forming laser image |
JP2012117030A (en) * | 2010-11-12 | 2012-06-21 | Shin-Etsu Chemical Co Ltd | Near infrared light-absorbing dye compound, near infrared light-absorbing film-forming material, and near infrared light-absorbing film formed using the same |
JP2014095007A (en) * | 2012-11-08 | 2014-05-22 | Nippon Kayaku Co Ltd | Novel cyanine pigment compound, resin composition and near infrared ray cutting filter |
WO2019168090A1 (en) * | 2018-03-02 | 2019-09-06 | Jsr株式会社 | Optical filter, camera module, and electronic device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3163813B2 (en) | 1992-12-28 | 2001-05-08 | 日本ゼオン株式会社 | Near-infrared absorbing resin composition and molded article |
JPH10195319A (en) * | 1997-01-13 | 1998-07-28 | Mitsubishi Paper Mills Ltd | Method for producing polymethine cyanine compound |
JP4086871B2 (en) * | 2004-11-18 | 2008-05-14 | 日立マクセル株式会社 | Near-infrared shield and display front plate |
JP2006313303A (en) * | 2004-11-24 | 2006-11-16 | Dainippon Printing Co Ltd | Optical filter and display using the same |
JP5665204B2 (en) * | 2006-09-06 | 2015-02-04 | 日本化薬株式会社 | Novel cyanine compounds and uses thereof |
JP2008088426A (en) * | 2006-09-06 | 2008-04-17 | Nippon Kayaku Co Ltd | New cyanine compound and use of the same |
KR101251898B1 (en) | 2010-12-28 | 2013-04-08 | 에스케이케미칼주식회사 | Diimmonium type compound and near infrared ray absorption filter using the same |
CN105754367A (en) * | 2011-10-14 | 2016-07-13 | Jsr株式会社 | Optical filter for solid-state image pickup device, and solid-state image pickup device and camera module using the same |
CN105531608B (en) * | 2013-08-20 | 2020-03-06 | Jsr株式会社 | Optical filter, solid-state imaging device, and camera module |
CN111665583B (en) * | 2015-05-12 | 2022-03-15 | Agc株式会社 | Near-infrared absorbing pigments and absorbing layers |
-
2020
- 2020-10-26 CN CN202080073048.9A patent/CN114616291B/en active Active
- 2020-10-26 WO PCT/JP2020/040085 patent/WO2021085372A1/en active Application Filing
- 2020-10-26 KR KR1020227013997A patent/KR20220097889A/en active Pending
- 2020-10-30 TW TW109137854A patent/TWI851844B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5262549A (en) * | 1991-05-30 | 1993-11-16 | Polaroid Corporation | Benzpyrylium dyes, and processes for their preparation and use |
JPH10203032A (en) * | 1996-11-08 | 1998-08-04 | Eastman Kodak Co | Stabilized infrared coloring matter for forming laser image |
US5766956A (en) * | 1997-05-27 | 1998-06-16 | American Research Corporation | Diode laser-based chemical and biological sensor |
JP2012117030A (en) * | 2010-11-12 | 2012-06-21 | Shin-Etsu Chemical Co Ltd | Near infrared light-absorbing dye compound, near infrared light-absorbing film-forming material, and near infrared light-absorbing film formed using the same |
JP2014095007A (en) * | 2012-11-08 | 2014-05-22 | Nippon Kayaku Co Ltd | Novel cyanine pigment compound, resin composition and near infrared ray cutting filter |
WO2019168090A1 (en) * | 2018-03-02 | 2019-09-06 | Jsr株式会社 | Optical filter, camera module, and electronic device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021070782A (en) * | 2019-11-01 | 2021-05-06 | Jsr株式会社 | Resin composition, resin layer, and optical filter |
JP7360665B2 (en) | 2019-11-01 | 2023-10-13 | Jsr株式会社 | Resin composition, resin layer and optical filter |
JP7630759B2 (en) | 2020-02-21 | 2025-02-18 | Jsr株式会社 | Resin composition, compound (Z), substrate (i), optical filter and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021085372A1 (en) | 2021-05-06 |
CN114616291A (en) | 2022-06-10 |
TWI851844B (en) | 2024-08-11 |
KR20220097889A (en) | 2022-07-08 |
TW202118835A (en) | 2021-05-16 |
CN114616291B (en) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6881660B2 (en) | Optical filter and optical sensor device | |
JP5884953B2 (en) | Optical filter, solid-state imaging device, and camera module | |
KR101969612B1 (en) | Optical filter, solid state image-capturing device using same, and camera module using same | |
JP7405228B2 (en) | Resin compositions for optical filters, optical filters, camera modules and electronic devices | |
JPWO2016158461A1 (en) | Optical filter and device using optical filter | |
WO2021085372A1 (en) | Resin composition, compound (z), optical filter, and use thereof | |
JP6578718B2 (en) | Optical filter and device using optical filter | |
JP6398980B2 (en) | Optical filter and device using optical filter | |
TW201339659A (en) | Light selective transmission filter, resin sheet and solid-state imaging device | |
JP2021006901A (en) | Optical filter and uses thereof | |
JP2025013855A (en) | Resin composition, compound (Z), substrate (i), optical filter and use thereof | |
JP7040362B2 (en) | Optical filters, solid-state image sensors, camera modules and biometrics | |
TW202248203A (en) | Composition, optical member and device including optical member having a characteristic of selectively broadly absorbing unnecessary near-infrared light | |
JP2023153056A (en) | Composition, optical member, solid-state imaging device, optical sensor device and compound | |
JP7663505B2 (en) | Resin composition, compound (Z), optical filter and use thereof | |
JP7360665B2 (en) | Resin composition, resin layer and optical filter | |
TW202242010A (en) | Substrate, optical filter, solid-state imaging device and camera module capable of being used in an optical filter which has excellent transmission characteristics of visible light rays and a part of near infrared rays and can suppress ghosting | |
JP2025060840A (en) | Resin composition, compound (Z), optical filter and use thereof | |
CN116891617A (en) | Composition, optical member, solid-state imaging device, optical sensor device, and compound | |
JP2016102862A (en) | Near-infrared cut filter, solid imaging device, camera module and composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20881951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021553598 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20881951 Country of ref document: EP Kind code of ref document: A1 |