WO2021065555A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents
無方向性電磁鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2021065555A1 WO2021065555A1 PCT/JP2020/035362 JP2020035362W WO2021065555A1 WO 2021065555 A1 WO2021065555 A1 WO 2021065555A1 JP 2020035362 W JP2020035362 W JP 2020035362W WO 2021065555 A1 WO2021065555 A1 WO 2021065555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- content
- average
- oriented electrical
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/06—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
- C23C10/08—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/06—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
- C23C10/16—Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/60—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to non-oriented electrical steel sheets, and particularly to non-oriented electrical steel sheets having low iron loss in a high frequency region.
- the present invention also relates to a method for manufacturing the non-oriented electrical steel sheet.
- Patent Document 1 proposes to control the Si concentration distribution in the plate thickness direction by subjecting a steel sheet to silica-annealing.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-oriented electrical steel sheet in which iron loss in a frequency range of about 400 Hz is further reduced.
- the present inventors reduced the stress caused by the difference in lattice constant between the surface layer portion and the inner layer portion of the steel sheet in order to reduce the iron loss in the frequency range of about 400 Hz. It was found that it is important to reduce the average content of N contained in steel as an unavoidable impurity.
- the present invention has been made based on the above findings, and its gist structure is as follows.
- An inner layer portion where the Si content is defined as a region where the Si content is less than the average Si content of the total plate thickness, and a region where the Si content is defined as a region where the Si content is equal to or more than the average Si content of the total plate thickness provided on both sides of the inner layer portion.
- It is a non-oriented electrical steel sheet composed of a surface layer portion to be formed. Si and Average content of all plate thickness C: 0.020% by mass or less, It contains Mn: 0.010% by mass to 2.0% by mass, and S: 0.0100% by mass or less, and the balance is composed of Fe and unavoidable impurities.
- the average Si content [Si] 1 in the surface layer portion is 2.5 to 7.0% by mass.
- the non-oriented electrical steel sheet has a thickness t of 0.01 to 0.35 mm.
- the ratio t 1 / t of the total thickness t 1 of the surface layer portion to the plate thickness t is 0.10 to 0.70.
- the average N content [N] in the total thickness of the non-oriented electrical steel sheet is 40 ppm or less.
- the component composition is the average content in the total plate thickness.
- Al 0.10% by mass or less
- P 0.10% by mass or less
- the ratio of the ⁇ 100 ⁇ plane integration degree to the ⁇ 111 ⁇ plane integration degree in the ⁇ 2 45 ° cross section of the orientation distribution function on the surface of the non-oriented electrical steel sheet at a depth of 1/4 of the plate thickness.
- a steel sheet having a Si content of 1.5 to 5.0% by mass is subjected to a siliceous treatment in a SiCl 4 atmosphere at a siliceous treatment temperature of 1000 ° C. or higher and 1300 ° C. or lower.
- the steel sheet after the siliceous treatment is subjected to diffusion treatment in an N 2 atmosphere at a temperature of 950 ° C. or higher and 1300 ° C. or lower.
- the average cooling rate v 1 in the temperature range up 900 ° C. from the diffusion treatment temperature: 5 ⁇ 20 °C / s
- the average cooling rate in the temperature range from 900 ° C. to 100 °C v 2 30 ⁇
- FIG. 1 is a schematic view showing the structure of a non-oriented electrical steel sheet according to an embodiment of the present invention.
- FIG. 2 is a schematic view showing an example of the Si content profile in the thickness direction of the non-oriented electrical steel sheet.
- the vertical axis in FIG. 2 indicates the position in the plate thickness direction, where 0 represents one surface of the non-oriented electrical steel sheet and t represents the other surface of the non-oriented electrical steel sheet.
- the non-oriented electrical steel sheet 1 of the present invention (hereinafter, may be simply referred to as “steel sheet”) has Si whose Si content continuously decreases from the surface toward the center of the sheet thickness. It has a content distribution.
- the Si content distribution may be a distribution in which the Si content continuously changes over the entire plate thickness direction of the steel sheet, but for example, the Si content continuously changes on the surface side of the steel sheet, and the central portion of the plate thickness. Then, the Si content distribution may be constant. Further, the amount of Si near the surface of the steel sheet may be slightly reduced, that is, the inner layer portion having an average Si content of less than the average Si content of the total plate thickness and the Si content provided on both sides of the inner layer portion are all plates. It may be composed of a surface layer portion having an average Si content or more of the thickness.
- the non-oriented electrical steel sheet 1 of the present invention is composed of an inner layer portion 10 and surface layer portions 20 provided on both sides of the inner layer portion 10.
- the non-oriented electrical steel sheet according to the embodiment of the present invention has a component composition containing Si, C, Mn, and S, and the balance is Fe and unavoidable impurities.
- “%” representing the content of each element shall represent “mass%” unless otherwise specified.
- the content of each element other than Si refers to the average content of the element in the total thickness of the steel sheet.
- C 0.020% or less C is an element harmful to magnetic properties, and if the C content exceeds 0.020%, iron loss will increase significantly due to magnetic aging. Therefore, the C content is 0.020% or less.
- the lower limit of the C content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost, the C content is preferably 0.0001% or more, and more preferably 0.001% or more.
- Mn 0.010% to 2.0%
- Mn is an element effective for improving hot workability. Further, Mn has the effect of increasing the intrinsic resistance of the steel sheet and, as a result, reducing the iron loss. In order to obtain the above effect, the Mn content is set to 0.010% or more. On the other hand, if the Mn content exceeds 2.0%, the manufacturability is lowered and the cost is increased. Therefore, the Mn content is set to 2.0% or less.
- S 0.0100% or less S increases iron loss due to the formation of fine precipitates and segregation at grain boundaries. Therefore, the S content is set to 0.0100% or less. On the other hand, from the viewpoint of iron loss, the lower the S content is, the more preferable it is. Therefore, the lower limit of the S content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost, the S content is preferably 0.0001% or more.
- Si is an element that has the effect of increasing the electrical resistance of the steel sheet and reducing the eddy current loss. If the average Si content ([Si] 1 ) of the surface layer portion is less than 2.5%, the eddy current loss cannot be effectively reduced. Therefore, the average Si content in the surface layer portion is 2.5% or more, preferably 3.0% or more, and more preferably more than 3.5%. On the other hand, when the average Si content in the surface layer portion exceeds 7.0%, the magnetic flux density is lowered due to the decrease in saturation magnetization, and the manufacturability of the non-oriented electrical steel sheet is lowered.
- the average Si content in the surface layer portion is 7.0% or less, preferably less than 6.5%, and more preferably 6.0% or less.
- the average Si content in the surface layer portion is 2.5 to 7.0%, which means that the average Si content in the surface layer portion (first surface layer portion) on one surface of the non-oriented electrical steel sheet is 2. It means that it is 5 to 7.0% and the average Si content in the surface layer portion (second surface layer portion) on the other surface of the non-oriented electrical steel sheet is 2.5 to 7.0%. ..
- the average Si content in the first surface layer portion and the average Si content in the second surface layer portion may be the same or different.
- the non-oriented electrical steel sheet has a component composition containing the above elements and the balance being Fe and unavoidable impurities.
- the component composition can further optionally contain at least one selected from the group consisting of Al, P, Sn, and Sb in the content described below. ..
- the content of each element described below shall refer to the average content of the element in the total thickness of the steel sheet.
- Al 0.10% or less
- Al is an element having an action of increasing the intrinsic resistance of the steel sheet, and the iron loss can be further reduced by adding Al.
- the Al content exceeds 0.10%, the manufacturability is lowered and the cost is increased. Therefore, when Al is added, the Al content is set to 0.10% or less.
- the lower limit of the Al content is not particularly limited, but when Al is added, the Al content is preferably 0.01% or more from the viewpoint of enhancing the addition effect.
- P 0.10% or less
- the texture can be greatly improved, the magnetic flux density can be further improved, and the hysteresis loss can be further reduced.
- P nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed.
- the P content exceeds 0.10%, the effect is saturated and the manufacturability is lowered. Therefore, when P is added, the P content is set to 0.10% or less.
- the lower limit of the P content is not particularly limited, but from the viewpoint of enhancing the effect of adding P, the P content is preferably 0.001% or more.
- Sn 0.10% or less
- Sn 0.10% or less
- the texture can be greatly improved, the magnetic flux density can be further improved, and the hysteresis loss can be further reduced.
- Sn nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed. If the Sn content exceeds 0.10%, the effect is saturated, and in addition, the manufacturability is lowered and the cost is increased. Therefore, when Sn is added, the Sn content is set to 0.10% or less.
- the lower limit of the Sn content is not particularly limited, but from the viewpoint of enhancing the effect of adding Sn, the Sn content is preferably 0.001% or more.
- Sb 0.10% or less Similar to P and Sn, the addition of Sb can greatly improve the texture, further improve the magnetic flux density, and further reduce the hysteresis loss. Further, by adding Sb, nitriding of the steel sheet at the time of high temperature annealing can be suppressed, and an increase in iron loss can be further suppressed. If the Sb content exceeds 0.10%, the effect will be saturated, and in addition, the manufacturability will decrease and the cost will increase. Therefore, when Sb is added, the Sb content is set to 0.10% or less. On the other hand, the lower limit of the Sb content is not particularly limited, but from the viewpoint of obtaining the effect of adding Sb, the Sb content is preferably 0.001% or more.
- MnS [Mn] [S] ⁇ 0.0030
- MnS precipitates during annealing at a relatively low temperature of less than 1000 ° C. Then, the crystal grain growth is inhibited by the precipitated MnS, and the crystal grain size of the finally obtained non-oriented electrical steel sheet becomes small, and as a result, the hysteresis loss increases.
- the siliceous treatment is performed at a relatively high temperature of 1000 ° C. or higher, MnS can be solid-solved to promote grain growth.
- the product [Mn] [S] of the average content of Mn and the average content of S exceeds 0.0030, the grain growth during the siliceous treatment is hindered by the precipitated MnS, and the hysteresis loss increases. To do. Therefore, from the viewpoint of suppressing an increase in hysteresis loss due to the precipitation of MnS during the siliceous treatment, it is preferable that the above-mentioned component composition further satisfies the condition of the following formula. [Mn] [S] ⁇ 0.0030
- [Mn] and [S] are average contents (mass%) of Mn and S in the total plate thickness, respectively.
- the lower limit of [Mn] [S] is not particularly limited, but is preferably 0.000005 or more from the viewpoint of manufacturability and cost.
- the thickness t of the non-oriented electrical steel sheet is 0.01 mm or more.
- the eddy current loss becomes large and the total iron loss increases. Therefore, t is set to 0.35 mm or less.
- t 1 / t is different.
- a non-oriented electrical steel sheet was prepared by the following procedure, and its magnetic properties were evaluated.
- the "total thickness of the surface layer portion” refers to the sum of the thicknesses of the surface layer portions provided on both sides of the non-oriented electrical steel sheet.
- the surface layer portion is defined as a region in which the Si content is equal to or higher than the average Si content of the total plate thickness.
- a steel slab having a composition was hot-rolled to obtain a hot-rolled steel sheet.
- the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
- the average Si content [Si] 1 of the surface layer portion was set to 4.0%
- the average Si content [Si] 0 of the inner layer portion was set to 2.2%.
- the ratio t 1 / t of the obtained non-oriented electrical steel sheet was 0.05 to 0.80.
- Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
- the specific evaluation method was the same as the method described in the examples.
- FIG. 3 shows the correlation between t 1 / t and W 10/400 (W / kg). From this result, it can be seen that the iron loss is significantly reduced when t 1 / t is 0.10 to 0.70. This decrease in iron loss is considered to be due to the following reasons. First, when t 1 / t is less than 0.10, the proportion of the surface layer portion having high resistance is low, so that the eddy current concentrated on the surface layer portion cannot be effectively reduced. On the other hand, when t 1 / t exceeds 0.70, the magnetic permeability difference between the surface layer portion and the inner layer portion becomes small, so that the magnetic flux permeates into the inner layer portion and eddy current loss is also generated from the inner layer portion.
- the ratio t 1 / t of the total thickness t 1 of the surface layer portion to the plate thickness t is set to 0.10 to 0.70.
- a steel slab having a component composition consisting of Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet.
- the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
- the average Si content [Si] 1 in the surface layer portion is 3.0 to 7.0%
- the average Si content [Si] 1 in the inner layer portion is 2.2 to 2.7%
- t. 1 / t was 0.30.
- Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
- the specific evaluation method was the same as the method described in the examples.
- the in-plane tensile stress was measured by the following procedure.
- chemical polishing with hydrofluoric acid is performed from one side of the obtained non-oriented electrical steel sheet, and the plate thickness t S of the sample becomes 0.1 mm so that the surface of the polished sample becomes the surface layer portion and the inner layer portion. Polished to. Since the sample after chemical polishing warps so that the surface layer portion is on the inside, it can be seen that the sample before polishing has a tensile stress in the surface of the surface layer portion. Therefore, the in-plane tensile stress of the non-oriented electrical steel sheet was calculated from the radius of curvature r, which is an index of the amount of warpage of the obtained sample, using the following formula.
- FIG. 4 shows the correlation between the in-plane tensile stress (MPa) and W 10/400 (W / kg). From this result, it can be seen that the iron loss is reduced when the in-plane tensile stress is 5 to 50 MPa. This is considered to be due to the following reasons. That is, the tensile stress generated in the surface of the surface layer portion causes the easy axis of magnetization to be in the in-plane direction, so that the magnetic flux is concentrated on the surface layer and the eddy current loss is reduced. However, if the internal stress is excessively large, the magnetic flux is concentrated on the surface layer portion and the eddy current loss is reduced, but the hysteresis loss is significantly increased, and as a result, the iron loss is increased.
- the in-plane tensile stress of the surface layer portion is set to 5 to 5. It is set to 50 MPa.
- the in-plane tensile stress of the surface layer portion is mainly caused by the difference in Si concentration between the surface layer portion and the inner layer portion: ⁇ Si ([Si] 1- [Si] 0 ), in order to obtain the internal stress of the present invention. It is preferable that ⁇ Si is 1.0% or more. In general, [Si] 1 is higher than [Si] 0 , so in other words, it is preferable that [Si] 1 ⁇ ⁇ [Si] 0 + 1.0 mass% ⁇ .
- the average N content [N] in the total thickness of the non-oriented electrical steel sheet is 40 ppm or less. The reason for the limitation will be described later.
- the iron loss in the present invention was evaluated by the iron loss (total iron loss) W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
- W 10/400 (W / kg) and plate thickness t (mm) satisfy the following formulas. This is because if the relationship of the following equation is not satisfied, the heat generated by the stator core becomes very large, and the motor efficiency is significantly reduced. Since the iron loss depends on the plate thickness, the upper limit of the iron loss is specified in the following formula in consideration of the influence of the plate thickness.
- the non-oriented electrical steel sheet of the present invention has contradictory properties by controlling the component composition, in-plane tensile stress and multi-layer ratio of the surface layer portion and the inner layer portion of the steel sheet as described above. It achieves both magnetic flux density and low iron loss.
- the average rate of temperature rise from 200 ° C. to the siliceous temperature during the siliceous treatment should be 20 ° C./s or more, or segregation. It is effective to add at least one of the elements P, Sn, and Sb in an appropriate amount.
- the non-oriented electrical steel sheet of the present invention is not particularly limited, but can be produced by using a silencing method.
- the Si content of the surface layer on both sides of the steel sheet can be increased by subjecting the steel sheet having a constant Si content in the thickness direction to the siliceous treatment and the diffusion treatment.
- the non-oriented electrical steel sheet produced by the silica dipping method has, for example, a Si content profile as shown in FIG. 2 (a).
- the grain-oriented electrical steel sheet is manufactured by sequentially performing the following steps (1) to (3) on the steel sheet.
- a steel sheet having a Si content of 1.5 to 5.0% may be used.
- the steel sheet it is preferable to use a steel sheet having a substantially uniform composition in the plate thickness direction.
- the component composition of the steel sheet other than Si is not particularly limited, but can be the same as the component composition of the non-oriented electrical steel sheet described above.
- the steel sheet to be processed is the steel sheet to be processed.
- Si 1.5-5.0%
- C 0.020% or less
- the component composition of the steel sheet is determined.
- Al 0.10% by mass or less
- P 0.1% by mass or less
- It can further contain at least one selected from the group consisting of Sn: 0.10% by mass or less and Sb: 0.10% by mass or less.
- composition of the steel sheet preferably further satisfies the following formula.
- [Mn] and [S] are average contents (mass%) of Mn and S in the total plate thickness, respectively.
- siliceous treatment is carried out in a SiCl 4 atmosphere at a siliceous treatment temperature of 1000 ° C. or higher and 1300 ° C. or lower.
- a siliceous treatment temperature 1000 ° C. or higher and 1300 ° C. or lower.
- the silica immersion treatment temperature is less than 1000 ° C.
- the reaction between SiCl 4 and the base material is slowed down, so that the manufacturability is lowered and the cost is increased.
- the Si content of the surface layer of the steel sheet is increased by the siliceous treatment, the melting point is lowered. Therefore, when the siliceous treatment is performed at a high temperature exceeding 1300 ° C., the steel sheet is broken in the furnace and the manufacturability is lowered. Therefore, the siliceous treatment temperature is set to 1000 ° C. or higher and 1300 ° C. or lower.
- the steel sheet after the siliceous treatment is subjected to a diffusion treatment.
- the diffusion treatment is carried out in an N 2 atmosphere at a temperature of 950 ° C. or higher and 1300 ° C. or lower.
- Diffusion treatment can be performed in an Ar atmosphere, but it is not realistic because of the cost increase, and it is performed in an N 2 atmosphere from an industrial point of view. Further, if the diffusion treatment is performed at a temperature lower than 950 ° C., the diffusion rate becomes slow, so that the manufacturability is lowered. On the other hand, when the Si content of the surface layer of the steel sheet is increased by the siliceous treatment, the melting point is lowered.
- the temperature of the diffusion treatment is set to 950 ° C. or higher and 1300 ° C. or lower.
- the steel sheet after the diffusion treatment is cooled averagely in a temperature range from the diffusion treatment temperature to 900 ° C. v 1 : 5 to 20 ° C./s and 900 ° C. to 100 ° C. Cool at a speed v 2 : 30 to 100 ° C./s.
- C 0.005%, Si: 2.5%, Mn: 0.06%, S: 0.003%, Sn: 0.06%, and P: 0.06% are contained, and the balance is
- a steel slab having a component composition consisting of Fe and unavoidable impurities was hot-rolled to obtain a hot-rolled steel sheet.
- the hot-rolled steel sheet was annealed at 950 ° C. ⁇ 30 s, and then the steel sheet after the hot-rolled sheet was annealed was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.2 mm.
- the average Si content [Si] 1 in the surface layer portion was set to 4.5%.
- the average cooling rate in the temperature range from the diffusion treatment temperature to 900 ° C. v 1 : 5 to 35 ° C./s, and the average cooling rate in the temperature range from 900 ° C. to 100 ° C. v 2 : 5 to 120 ° C./s. Under the conditions, it was cooled to 100 ° C. or lower.
- the ratio t 1 / t of the obtained non-oriented electrical steel sheet was 0.30.
- Test pieces were collected from each of the obtained non-oriented electrical steel sheets, and an Epstein test was performed to evaluate iron loss W 10/400 (W / kg) at a maximum magnetic flux density of 1.0 T and a frequency of 400 Hz.
- the specific evaluation method was the same as the method described in the examples.
- FIG. 5 shows the correlation between the average cooling rate v 1 (° C./s ) and the iron loss W 10/400 (W / kg) when the average cooling rate v 2 is constant at 45 ° C./s.
- the iron loss increases when the average cooling rate v 1 exceeds 20 ° C./s. It is considered that this is because when the average cooling rate v 1 exceeds 20 ° C./s, the steel sheet is distorted due to rapid cooling, and as a result, the hysteresis loss increases. Therefore, in the present invention, the average cooling rate v 1 is set to 20 ° C./s or less. On the other hand, if v 1 is less than 5 ° C./s, the production efficiency is lowered and the cost is increased. Therefore, v 1 is set to 5 ° C./s or higher.
- FIG. 6 shows the correlation between the average cooling rate v 2 (° C./s) and the iron loss W 10/400 (W / kg) when the average cooling rate v 1 is constant at 10 ° C./s. .. As can be seen from this result , the iron loss increased when the average cooling rate v 2 was less than 30 ° C./s.
- the average N content [N] in the total thickness of the non-oriented electrical steel sheets obtained under each condition was measured.
- the correlation between the average cooling rate v 2 (° C./s) and the measured average N content [N] (ppm) is shown in FIG.
- the average N content [N] was measured by the method described in Examples. From the results shown in FIG. 7, it was found that when the average cooling rate v 2 was less than 30 ° C./s, [N] was higher than when v 2 was 30 ° C./s or more. From this result, it is considered that the iron loss increased due to the nitriding of the steel sheet when the average cooling rate v 2 was less than 30 ° C./s.
- the average N content [N] in the total thickness is 40 ppm or less.
- the average cooling rate v 2 is set to 30 ° C./s or more.
- the average cooling rate v 2 exceeds 100 ° C./s, the iron loss increases even though the amount of nitrogen in the steel is 30 ppm or less. .. It is considered that this is because when the average cooling rate v 2 exceeds 100 ° C./s, the iron loss increases due to the cooling strain. Therefore, in the present invention, the average cooling rate v 2 is set to 100 ° C./s or less.
- Example 1 In order to confirm the effect of the present invention, a non-oriented electrical steel sheet was manufactured by the procedure described below, and its magnetic characteristics were evaluated.
- a steel slab containing Si: 2.0 to 4.0% was prepared.
- the composition of the steel slab was adjusted by degassing after blowing in a converter.
- the steel slab was heated at 1140 ° C. for 1 hour and then hot-rolled to obtain a hot-rolled steel sheet having a plate thickness of 2 mm.
- the hot rolling finish temperature in the hot rolling was 800 ° C.
- the hot-rolled steel sheet was wound at a winding temperature of 610 ° C., and then annealed at 900 ° C. for 30 s to obtain a hot-rolled annealed sheet.
- the hot-rolled annealed sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet.
- the obtained cold-rolled steel sheet was subjected to a siliceous treatment in a SiCl 4 atmosphere at a siliceous treatment temperature of 1200 ° C.
- the rate of temperature rise from 200 ° C. to the siliceous treatment temperature was changed between 10 and 40 ° C./s.
- diffusion treatment and cooling were carried out in an N 2 atmosphere under the conditions shown in Tables 1 and 2 to obtain non-oriented electrical steel sheets having a plate thickness t shown in Tables 1 and 2.
- the average cooling rate v 1 represents the average cooling rate from the diffusion treatment temperature to 900 ° C.
- the average cooling rate v 2 represents the average cooling rate from 900 ° C. to 100 ° C.
- composition The obtained non-oriented electrical steel sheet was embedded in a carbon mold, and the Si content distribution in the cross section in the plate thickness direction was measured using EPMA (Electron Probe Micro Analyzer). The average value of the Si content in the thickness of the steel sheet was calculated, and the portion where the Si concentration was higher than the average value was defined as the surface layer portion and the portion where the Si concentration was lower than the average value was defined as the inner layer portion. From the obtained results, the ratio of the total thickness t 1 of the surface layer portion to the plate thickness t 1 / t, the average Si content in the surface layer portion: [Si] 1 , and the average Si content in the inner layer portion: [Si]. I asked for 0. Moreover, the average N content: [N] of the total thickness of the non-oriented electrical steel sheet was measured by using the ICP emission spectrometry method. The measurement results are also shown in Tables 1 and 2.
- the average content in the total plate thickness was measured by using the ICP emission spectrometry method. The measurement results are shown in Tables 1 and 2.
- the non-oriented electrical steel sheet satisfying the conditions of the present invention had an excellent characteristic that the iron loss at 400 Hz was low.
- the iron loss was inferior.
- the steel sheet was broken during manufacturing, so that the iron loss could not be evaluated.
- Example 2 A steel slab containing the components shown in Table 3 was heated at 1140 ° C. for 1 hour and then hot-rolled at a hot-rolled finishing temperature of 800 ° C. to obtain a hot-rolled steel sheet having a plate thickness of 2 mm.
- the obtained hot-rolled steel sheet was wound at 610 ° C., and then annealed at 950 ° C. ⁇ 30 s to obtain a hot-rolled annealed sheet. Then, the hot-rolled annealed sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet having the plate thickness shown in Table 3.
- the obtained cold-rolled steel sheet was subjected to a silica-dip treatment in a SiCl 4 + N 2 atmosphere at a silica-dip treatment temperature of 1200 ° C.
- diffusion treatment is performed at 1150 ° C. in an N 2 atmosphere, and the average cooling rate is v 1 : 20 ° C./s from 1150 ° C. to 900 ° C., and the average cooling rate v 2 : 6 ° C./s is from 900 ° C. to 100 ° C. Cooled with.
- the siliceous treatment was carried out so that the plate thickness ratio t 1 / t of the surface layer and the inner layer was 0.40.
- the non-oriented electrical steel sheets having [Mn] [S] of 0.0030 or less are non-oriented electrical steel sheets having [Mn] [S] of more than 0.0030. Compared with, the iron loss was further reduced.
- Non-oriented electrical steel sheet 10 Inner layer 20 Surface layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
Siと、
全板厚における平均含有量で、
C :0.020質量%以下、
Mn:0.010質量%~2.0質量%、および
S :0.0100質量%以下とを含有し、残部がFeおよび不可避不純物からなり、
前記表層部における平均Si含有量[Si]1が2.5~7.0質量%であり、
前記内層部における平均Si含有量[Si]0が1.5~5.0質量%である成分組成を有し、
前記表層部が5~50MPaの面内引張応力を有し、
前記無方向性電磁鋼板の板厚tが0.01~0.35mmであり、
前記板厚tに対する前記表層部の合計厚さt1の比t1/tが0.10~0.70であり、
前記無方向性電磁鋼板の全板厚における平均N含有量[N]が40ppm以下であり、
最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)と、前記板厚t(mm)とが下記(1)式を満たす無方向性電磁鋼板。
W10/400≦8+30t …(1)
Al:0.10質量%以下、
P :0.10質量%以下、
Sn:0.10質量%以下、および
Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有する、上記1に記載の無方向性電磁鋼板。
[Mn][S]≦0.0030 …(2)
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。
Si含有量が1.5~5.0質量%である鋼板に、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で浸珪処理を施し、
前記浸珪処理後の鋼板にN2雰囲気中、950℃以上、1300℃以下の温度で拡散処理を施し、
前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する、無方向性電磁鋼板の製造方法。
図1は、本発明の一実施形態における無方向性電磁鋼板の構造を示す模式図である。また、図2は、無方向性電磁鋼板の板厚方向における、Si含有量プロファイルの例を示す模式図である。図2における縦軸は板厚方向の位置を示しており、0が無方向性電磁鋼板の一方の表面を、tが該無方向性電磁鋼板の他方の表面を、それぞれ表している。
まず、本発明の無方向性電磁鋼板の成分組成について説明する。本発明の一実施形態における無方向性電磁鋼板は、Si、C、Mn、およびSを含有し、残部がFeおよび不可避不純物からなる成分組成を有する。なお、以下の説明において、各元素の含有量を表す「%」は、特に断らない限り「質量%」を表すものとする。また、以下の説明において、Siを除く各元素の含有量は、鋼板の全板厚における当該元素の平均含有量を指すものとする。
Cは磁気特性に対して有害な元素であり、C含有量が0.020%を超えると磁気時効により鉄損が著しく増大する。したがって、C含有量は0.020%以下とする。一方、磁気特性の観点からはC含有量が低ければ低いほど好ましいため、C含有量の下限はとくに限定されない。しかし、過度の低減は製造コストの増加を招くことから、C含有量は0.0001%以上とすることが好ましく、0.001%以上とすることがより好ましい。
Mnは熱間加工性を改善するのに有効な元素である。また、Mnは鋼板の固有抵抗を増加させ、その結果、鉄損を低減する効果を有する。前記効果を得るために、Mn含有量を0.010%以上とする。一方、Mn含有量が2.0%を超えると製造性の低下およびコストの上昇を招く。そのため、Mn含有量は2.0%以下とする。
Sは、微細な析出物の形成および粒界への偏析により、鉄損を増大させる。そのため、S含有量は0.0100%以下とする。一方、鉄損の観点からはS含有量が低ければ低いほど好ましいため、S含有量の下限はとくに限定されない。しかし、過度の低減は製造コストの増加を招くことから、S含有量は0.0001%以上とすることが好ましい。
Siは、鋼板の電気抵抗を高め、渦電流損を低減する作用を有する元素である。表層部の平均Si含有量([Si]1)が2.5%未満であると、効果的に渦電流損を低減することができない。そのため、表層部における平均Si含有量は2.5%以上、好ましくは3.0%以上、より好ましくは3.5%超とする。一方、表層部における平均Si含有量が7.0%を超えると、飽和磁化の低下により磁束密度が低下することに加え、無方向性電磁鋼板の製造性が低下する。そのため、表層部における平均Si含有量は7.0%以下、好ましくは6.5%未満、より好ましくは6.0%以下とする。なお、表層部における平均Si含有量が2.5~7.0%であるとは、無方向性電磁鋼板の一方の面における表層部(第1の表層部)における平均Si含有量が2.5~7.0%であり、かつ該無方向性電磁鋼板の他方の面における表層部(第2の表層部)における平均Si含有量が2.5~7.0%であることを意味する。第1の表層部における平均Si含有量と第2の表層部における平均Si含有量とは同じであっても、異なっていてもよい。
内層部における平均Si含有量([Si]0)が1.5%未満であると渦電流損が増加する。そのため、内層部における平均Si含有量は1.5%以上とする。一方、内層部における平均Si含有量が5.0%を超えると、モータコアの打ち抜き時にコアが割れるといった問題が生じる。そのため、内層部における平均Si含有量は5.0%以下、好ましくは4.0%以下とする。
本発明の他の実施形態においては、上記成分組成が、さらに任意に、Al、P、Sn、およびSbからなる群より選択される少なくとも1つを、以下に記す含有量で含有することができる。なお、以下に記す各元素の含有量は、鋼板の全板厚における当該元素の平均含有量を指すものとする。
Alは鋼板の固有抵抗を増加させる作用を有する元素であり、Alを添加することにより鉄損をさらに低減することができる。しかし、Al含有量が0.10%を超えると製造性の低下およびコストの上昇を招く。そのため、Alを添加する場合、Al含有量は0.10%以下とする。一方、Al含有量の下限はとくに限定されないが、Alを添加する場合、添加効果を高めるという観点からは、Al含有量を0.01%以上とすることが好ましい。
Pを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Pを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。しかし、P含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下を招く。そのため、Pを添加する場合、P含有量は0.10%以下とする。一方、P含有量の下限はとくに限定されないが、Pの添加効果を高めるという観点からは、P含有量を0.001%以上とすることが好ましい。
Pと同様に、Snを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Snを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。Sn含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Snを添加する場合、Sn含有量は0.10%以下とする。一方、Sn含有量の下限はとくに限定されないが、Snの添加効果を高めるという観点からは、Sn含有量を0.001%以上とすることが好ましい。
PおよびSnと同様に、Sbを添加することにより、集合組織を大きく改善し、磁束密度をさらに向上させるとともにヒステリシス損をさらに低下させることができる。また、Sbを添加することにより、高温焼鈍時における鋼板の窒化を抑制し、鉄損の増加をさらに抑制することができる。Sb含有量が0.10%を超えると効果が飽和することに加えて、製造性の低下およびコストの上昇を招く。そのため、Sbを添加する場合、Sb含有量は0.10%以下とする。一方、Sb含有量の下限はとくに限定されいないが、Sbの添加効果を得るという観点からは、Sb含有量を0.001%以上とすることが好ましい。
MnとSを含有する鋼では、1000℃未満といった比較的低温での焼鈍中にMnSが析出する。そして、析出したMnSにより結晶粒成長が阻害され、最終的に得られる無方向性電磁鋼板の結晶粒サイズが小さくなり、その結果、ヒステリシス損が増加する。これに対して、本発明では1000℃以上の比較的高温で浸珪処理を行うため、MnSが固溶して粒成長を促すことができる。しかし、Mnの平均含有量とSの平均含有量の積[Mn][S]が0.0030を超えると、析出したままのMnSによって浸珪処理時の粒成長が阻害され、ヒステリシス損が増加する。したがって、浸珪処理中のMnSの析出に起因するヒステリシス損の増加を抑制するという観点からは、上記成分組成が、さらに下記の式の条件を満たすことが好ましい。
[Mn][S]≦0.0030
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。一方、[Mn][S]の下限は特に限定されないが、製造性およびコストの観点から、0.000005以上とすることが好ましい。
無方向性電磁鋼板が薄すぎると、冷間圧延や焼鈍などの製造過程における取り扱いが困難となり、製造コストが増大する。そのため、無方向性電磁鋼板の板厚tは0.01mm以上とする。一方、無方向性電磁鋼板が厚すぎると渦電流損が大きくなり、全鉄損が増加する。そのため、tは0.35mm以下とする。
次に、無方向性電磁鋼板の板厚tに対する表層部の合計厚さt1の比t1/t(複層比)が磁気特性に与える影響について検討するために、t1/tが異なる無方向性電磁鋼板を以下の手順で作製し、その磁気特性を評価した。ここで、「表層部の合計厚さ」とは、無方向性電磁鋼板の両面に設けられている表層部の厚さの和を指す。また、表層部とは、上述したように、Si含有量が全板厚の平均Si含有量以上の領域として定義される。
無方向性電磁鋼板のさらなる低鉄損化を図るべく検討したところ、無方向性電磁鋼板には内部応力として、面内引張応力が生じていることがわかった。前記面内引張応力が無方向性電磁鋼板の磁気特性に及ぼす影響について検討するために以下の試験を行った。
面内引張応力(MPa)=tS×E/(4×r)
ここで、
tS:サンプルの板厚=0.1mm
E:ヤング率=190GPa
r:曲率半径(mm)である。
本発明においては、無方向性電磁鋼板の全板厚における平均N含有量[N]を40ppm以下とする。その限定理由については後述する。
本発明における鉄損は、最大磁束密度1.0T、周波数400Hzにおける鉄損(全鉄損)W10/400(W/kg)で評価した。本発明の無方向性電磁鋼板は、W10/400(W/kg)と、板厚t(mm)とが、下記の式を満たす。これは、下記の式の関係を満たさない場合、ステータコアの発熱が非常に大きくなり、モータ効率が著しく低下してしまうためである。なお、鉄損は板厚に依存するため、下記の式では板厚の影響を考慮して鉄損の上限値を規定した。
W10/400≦8+30t
無方向性電磁鋼板において{100}面を増やし、{111}面を減らすことで該無方向性電磁鋼板の面内に磁化しやすくなるため、磁束密度がさらに向上するとともにヒステリシス損を一層低下させることができる。そのため、前記無方向性電磁鋼板の表面から板厚tの1/4の深さの面における方位分布関数(ODF)のΦ2=45°断面において、{111}面集積度に対する{100}面集積度の比{100}/{111}を55%以上とすることが好ましい。一方、前記{100}/{111}が過度に大きくなるとコアの加工性が低下するおそれがある。そのため、{100}/{111}は90%以下とすることが好ましい。
本発明の無方向性電磁鋼板は、特に限定されることないが、浸珪法を用いて製造することができる。浸珪法を用いる場合は、Si含有量が厚さ方向に一定である鋼板に対して浸珪処理および拡散処理を施すことにより、鋼板両面の表層部のSi含有量を高めることができる。浸珪法により製造される無方向性電磁鋼板は、例えば、図2(a)に示したようなSi含有量プロファイルを有する。
(1)浸珪処理
(2)拡散処理
(3)冷却
Si:1.5~5.0%、
C :0.020%以下、
Mn:0.010~2.0%、および
S :0.0100%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鋼板を用いることが好ましい。
Al:0.10質量%以下、
P :0.1質量%以下、
Sn:0.10質量%以下、および
Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有することができる。
[Mn][S]≦0.0030
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。
まず、前記鋼板に対して浸珪処理を施す。前記浸珪処理は、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で行う。浸珪処理温度が1000℃未満である場合、SiCl4と母材の反応が遅くなるため、製造性が低下し、コストが増加する。また、浸珪処理によって鋼板表層部のSi含有量が増加すると融点が低下するため、1300℃を超える高温で浸珪処理を施すと、鋼板が炉内で破断し、製造性が低下する。したがって、浸珪処理温度は1000℃以上、1300℃以下とする。
次に、前記浸珪処理後の鋼板に拡散処理を施す。前記拡散処理はN2雰囲気中、950℃以上、1300℃以下の温度で行う。拡散処理はAr雰囲気で行うこともできるが、コストが上がるため現実的ではなく、工業的な観点からN2雰囲気下で行うこととする。また、拡散処理を950℃未満の温度で行うと、拡散速度が遅くなるため、製造性が低下する。一方、浸珪処理によって鋼板表層部のSi含有量が増加すると融点が低下するため、1300℃を超える高温で拡散処理を施すと、鋼板が炉内で破断し、製造性が低下する。したがって、拡散処理の温度は950℃以上、1300℃以下とする。
次いで、前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する。
本発明の効果を確認するために、以下に述べる手順で無方向性電磁鋼板を製造し、その磁気特性を評価した。
得られた無方向性電磁鋼板をカーボンモールドに埋め込み、EPMA(Electron Probe Micro Analyzer)を用いて板厚方向断面におけるSi含有量分布を測定した。鋼板の板厚におけるSi含有量の平均値を算出し、前記平均値よりもSi濃度が高い部分を表層部、低い部分を内層部とした。得られた結果から、板厚tに対する表層部の合計厚さt1の比t1/t、表層部における平均Si含有量:[Si]1、および内層部における平均Si含有量:[Si]0を求めた。また、ICP発光分析法を用いて無方向性電磁鋼板の全板厚の平均N含有量:[N]を測定した。測定結果を表1、2に併記する。
内部応力の測定には幅30mm、長さ180mmの試験片を使用し、サンプルを片面からフッ酸による化学研磨を施し、研磨後のサンプルの表面が表層部と内層部になるよう、該サンプルの板厚tSがt/2になるまで研磨した。その後、サンプルの反り量から、下記(2)式を使用して面内引張応力を算出した。
面内引張応力(MPa)=tS×E/(4×r)…(2)
ここで、
tS:サンプルの板厚
E:ヤング率=190GPa
r:曲率半径(mm)である。
また、得られた無方向性電磁鋼板の集合組織を調査するため、無方向性電磁鋼板の表面から板厚1/4まで化学研磨し、X線を用いてODF解析を行って、方位分布関数のΦ2=45°断面における{111}面集積度に対する{100}面集積度の比{100}/{111}を求めた。測定結果を表1、2に併記する。
得られた無方向性電磁鋼板のそれぞれから、幅30mm、長さ180mmの試験片を採取し、エプスタイン試験を行って、最大磁束密度:1.0T、周波数:400Hzにおける鉄損:W10/400(W/kg)を測定した。前記エプスタイン試験は、JIS C 2550-1に準じて、25cmエプスタイン枠を用いて行った。また、前記エプスタイン試験では、試験片の長さ方向が圧延方向(L方向)となるように採取したL方向試験片と、試験片の長さ方向が圧延直角方向(C方向)となるように採取したC方向試験片を等量用い、L方向とC方向における磁気特性の平均値を評価した。測定結果を表1、2に併記する。
表3に示す成分を含有する鋼スラブを1140℃で1時間加熱した後、熱延仕上温度が800℃の熱間圧延を施し、板厚2mmの熱延鋼板とした。得られた熱延鋼板を610℃で巻き取り、次いで、950℃×30sの熱延板焼鈍を施して、熱延焼鈍板とした。その後、熱延焼鈍板に酸洗および冷間圧延を施して、表3に示した板厚を有する冷延鋼板とした。
10 内層部
20 表層部
Claims (5)
- Si含有量が全板厚の平均Si含有量未満の領域として定義される内層部と、前記内層部の両側に設けられた、Si含有量が全板厚の平均Si含有量以上の領域として定義される表層部とからなる無方向性電磁鋼板であって、
Siと、
全板厚における平均含有量で、
C :0.020質量%以下、
Mn:0.010質量%~2.0質量%、および
S :0.0100質量%以下とを含有し、残部がFeおよび不可避不純物からなり、
前記表層部における平均Si含有量[Si]1が2.5~7.0質量%であり、
前記内層部における平均Si含有量[Si]0が1.5~5.0質量%である成分組成を有し、
前記表層部が5~50MPaの面内引張応力を有し、
前記無方向性電磁鋼板の板厚tが0.01~0.35mmであり、
前記板厚tに対する前記表層部の合計厚さt1の比t1/tが0.10~0.70であり、
前記無方向性電磁鋼板の全板厚における平均N含有量[N]が40ppm以下であり、
最大磁束密度:1.0T、周波数400Hzにおける鉄損W10/400(W/kg)と、前記板厚t(mm)とが下記(1)式を満たす無方向性電磁鋼板。
W10/400≦8+30t …(1) - 前記成分組成が、全板厚における平均含有量で、
Al:0.10質量%以下、
P :0.10質量%以下、
Sn:0.10質量%以下、および
Sb:0.10質量%以下からなる群より選択される少なくとも1つをさらに含有する、請求項1に記載の無方向性電磁鋼板。 - さらに、前記無方向性電磁鋼板の表面から板厚の1/4の深さの面における方位分布関数のΦ2=45°断面において、{111}面集積度に対する{100}面集積度の比{100}/{111}が55~90%である集合組織を有する、請求項1または2に記載の無方向性電磁鋼板。
- 前記成分組成が、さらに下記(2)式を満たす、請求項1~3のいずれか一項に記載の無方向性電磁鋼板。
[Mn][S]≦0.0030 …(2)
ただし、[Mn]、[S]はそれぞれMn、Sの全板厚における平均含有量(質量%)である。 - 請求項1~4のいずれか一項に記載の無方向性電磁鋼板を製造する方法であって、
Si含有量が1.5~5.0質量%である鋼板に、SiCl4雰囲気中、1000℃以上、1300℃以下の浸珪処理温度で浸珪処理を施し、
前記浸珪処理後の鋼板にN2雰囲気中、950℃以上、1300℃以下の温度で拡散処理を施し、
前記拡散処理後の鋼板を、拡散処理温度から900℃までの温度域における平均冷却速度v1:5~20℃/s、900℃から100℃までの温度域における平均冷却速度v2:30~100℃/sの条件で冷却する、無方向性電磁鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/754,146 US12018357B2 (en) | 2019-10-03 | 2020-09-17 | Non-oriented electrical steel sheet and method of producing same |
EP20871054.1A EP4039832A4 (en) | 2019-10-03 | 2020-09-17 | NON-ALIGNED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF |
CA3151160A CA3151160C (en) | 2019-10-03 | 2020-09-17 | Non-oriented electrical steel sheet and method of producing same |
JP2021507723A JP7218794B2 (ja) | 2019-10-03 | 2020-09-17 | 無方向性電磁鋼板およびその製造方法 |
KR1020227008618A KR102691108B1 (ko) | 2019-10-03 | 2020-09-17 | 무방향성 전기 강판 및 그 제조 방법 |
CN202080066999.3A CN114514332B (zh) | 2019-10-03 | 2020-09-17 | 无取向性电磁钢板及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-183100 | 2019-10-03 | ||
JP2019183100 | 2019-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065555A1 true WO2021065555A1 (ja) | 2021-04-08 |
Family
ID=75338218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035362 WO2021065555A1 (ja) | 2019-10-03 | 2020-09-17 | 無方向性電磁鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12018357B2 (ja) |
EP (1) | EP4039832A4 (ja) |
JP (1) | JP7218794B2 (ja) |
KR (1) | KR102691108B1 (ja) |
CN (1) | CN114514332B (ja) |
CA (1) | CA3151160C (ja) |
WO (1) | WO2021065555A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023041019A (ja) * | 2021-09-10 | 2023-03-23 | Jfeスチール株式会社 | ロータコアとその製造方法ならびにモータ |
WO2023132198A1 (ja) * | 2022-01-07 | 2023-07-13 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
WO2023132197A1 (ja) * | 2022-01-07 | 2023-07-13 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3957758A4 (en) * | 2019-04-17 | 2022-06-22 | JFE Steel Corporation | NON-ORIENTED ELECTROMAGNETIC STEEL SHEET |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059705A (ja) * | 1991-06-28 | 1993-01-19 | Nkk Corp | 均質で優れた磁気特性をもつ高珪素鋼板の製造方法 |
JPH05125496A (ja) * | 1991-10-31 | 1993-05-21 | Nkk Corp | Si拡散浸透処理法により製造される磁気特性および機械特性の優れた高珪素鋼板およびその製造方法 |
JPH11199988A (ja) * | 1998-01-13 | 1999-07-27 | Nkk Corp | シリコンの濃度勾配を有するけい素鋼板 |
JPH11307353A (ja) * | 1998-04-17 | 1999-11-05 | Nkk Corp | 高効率リラクタンスモータ |
JPH11307352A (ja) * | 1998-04-17 | 1999-11-05 | Nkk Corp | 高効率モータ |
JP2000045053A (ja) * | 1998-07-29 | 2000-02-15 | Nkk Corp | 鉄損の低い方向性珪素鋼板 |
JP2012251191A (ja) * | 2011-06-01 | 2012-12-20 | Jfe Steel Corp | 電磁鋼板およびその製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10140298A (ja) * | 1996-11-07 | 1998-05-26 | Nkk Corp | 低騒音・低残留磁束密度の無方向性けい素鋼板 |
JP3948112B2 (ja) | 1998-04-07 | 2007-07-25 | Jfeスチール株式会社 | 珪素鋼板 |
JP4073075B2 (ja) | 1998-03-12 | 2008-04-09 | Jfeスチール株式会社 | 高周波鉄損W1/10kの低い珪素鋼板 |
KR100334860B1 (ko) | 1998-03-12 | 2002-05-02 | 야마오카 요지로 | 규소강판 및 그 제조방법 |
US5993568A (en) | 1998-03-25 | 1999-11-30 | Nkk Corporation | Soft magnetic alloy sheet having low residual magnetic flux density |
JP2005120403A (ja) | 2003-10-15 | 2005-05-12 | Jfe Steel Kk | 高周波域の鉄損が低い無方向性電磁鋼板 |
CN101122022A (zh) * | 2007-09-12 | 2008-02-13 | 河北理工大学 | 一种Fe-6.5Wt%Si软磁钢片的制备方法 |
JP5446377B2 (ja) | 2008-03-31 | 2014-03-19 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
CN102199721B (zh) * | 2010-03-25 | 2013-03-13 | 宝山钢铁股份有限公司 | 高硅无取向冷轧薄板的制造方法 |
JP5854182B2 (ja) | 2010-08-30 | 2016-02-09 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法 |
JP5867713B2 (ja) * | 2012-01-27 | 2016-02-24 | Jfeスチール株式会社 | 電磁鋼板 |
JP6024867B2 (ja) | 2012-02-06 | 2016-11-16 | Jfeスチール株式会社 | 打ち抜き加工後の鉄損特性に優れるモータコア用鋼板 |
JP6260800B2 (ja) | 2014-07-31 | 2018-01-17 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法 |
CA2992966C (en) | 2015-09-17 | 2020-04-28 | Jfe Steel Corporation | High-silicon steel sheet and method for manufacturing the same |
WO2017170749A1 (ja) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | 電磁鋼板およびその製造方法 |
BR112019014799B1 (pt) | 2017-02-07 | 2023-10-24 | Jfe Steel Corporation | Método para produção de chapa de aço elétrico não orientado, método para produção de núcleo de motor e núcleo de motor |
JP7334673B2 (ja) * | 2019-05-15 | 2023-08-29 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
-
2020
- 2020-09-17 JP JP2021507723A patent/JP7218794B2/ja active Active
- 2020-09-17 EP EP20871054.1A patent/EP4039832A4/en active Pending
- 2020-09-17 US US17/754,146 patent/US12018357B2/en active Active
- 2020-09-17 KR KR1020227008618A patent/KR102691108B1/ko active Active
- 2020-09-17 CN CN202080066999.3A patent/CN114514332B/zh active Active
- 2020-09-17 CA CA3151160A patent/CA3151160C/en active Active
- 2020-09-17 WO PCT/JP2020/035362 patent/WO2021065555A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059705A (ja) * | 1991-06-28 | 1993-01-19 | Nkk Corp | 均質で優れた磁気特性をもつ高珪素鋼板の製造方法 |
JPH05125496A (ja) * | 1991-10-31 | 1993-05-21 | Nkk Corp | Si拡散浸透処理法により製造される磁気特性および機械特性の優れた高珪素鋼板およびその製造方法 |
JPH11199988A (ja) * | 1998-01-13 | 1999-07-27 | Nkk Corp | シリコンの濃度勾配を有するけい素鋼板 |
JPH11307353A (ja) * | 1998-04-17 | 1999-11-05 | Nkk Corp | 高効率リラクタンスモータ |
JPH11307352A (ja) * | 1998-04-17 | 1999-11-05 | Nkk Corp | 高効率モータ |
JP2000045053A (ja) * | 1998-07-29 | 2000-02-15 | Nkk Corp | 鉄損の低い方向性珪素鋼板 |
JP2012251191A (ja) * | 2011-06-01 | 2012-12-20 | Jfe Steel Corp | 電磁鋼板およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023041019A (ja) * | 2021-09-10 | 2023-03-23 | Jfeスチール株式会社 | ロータコアとその製造方法ならびにモータ |
JP7601068B2 (ja) | 2021-09-10 | 2024-12-17 | Jfeスチール株式会社 | ロータコアとその製造方法ならびにモータ |
WO2023132198A1 (ja) * | 2022-01-07 | 2023-07-13 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
WO2023132197A1 (ja) * | 2022-01-07 | 2023-07-13 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
JP7375985B1 (ja) * | 2022-01-07 | 2023-11-08 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
JP7388597B1 (ja) * | 2022-01-07 | 2023-11-29 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
Also Published As
Publication number | Publication date |
---|---|
CN114514332A (zh) | 2022-05-17 |
CN114514332B (zh) | 2023-03-14 |
JP7218794B2 (ja) | 2023-02-07 |
KR102691108B1 (ko) | 2024-08-05 |
CA3151160C (en) | 2023-10-31 |
CA3151160A1 (en) | 2021-04-08 |
KR20220045223A (ko) | 2022-04-12 |
US20220290287A1 (en) | 2022-09-15 |
US12018357B2 (en) | 2024-06-25 |
EP4039832A1 (en) | 2022-08-10 |
JPWO2021065555A1 (ja) | 2021-11-25 |
EP4039832A4 (en) | 2023-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9466411B2 (en) | Non-oriented electrical steel sheet | |
WO2021065555A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP5446377B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP6436316B2 (ja) | 方向性電磁鋼板の製造方法 | |
JPWO2020136993A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
CA1333988C (en) | Ultra-rapid annealing of nonoriented electrical steel | |
JP7173286B2 (ja) | 無方向性電磁鋼板 | |
JP5428188B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP2020190026A (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP2000129410A (ja) | 磁束密度の高い無方向性電磁鋼板 | |
JP2018165383A (ja) | 無方向性電磁鋼板 | |
KR950004934B1 (ko) | 투자율이 우수한 무방향성 전기 강판 및 그 제조방법 | |
JP2003293101A (ja) | 歪取焼鈍後の磁気特性および耐食性に優れた無方向性電磁鋼板 | |
JP2560579B2 (ja) | 高透磁率を有する高珪素鋼板の製造方法 | |
US12123082B2 (en) | Non-oriented electrical steel sheet | |
JP4258163B2 (ja) | 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板 | |
KR102483634B1 (ko) | 무방향성 전기강판 및 그 제조 방법 | |
KR20250021920A (ko) | 무방향성 전기강판 및 무방향성 전기강판 제조 방법 | |
WO2024095665A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
KR20250015207A (ko) | 냉연 강판, 무방향성 전기강판 및 무방향성 전기강판 제조 방법 | |
KR20240166303A (ko) | 무방향성 전기강판 및 무방향성 전기강판의 제조 방법 | |
JP2003027139A (ja) | 方向性電磁鋼板の製造方法 | |
KR20210057452A (ko) | 무방향성 전기강판 및 그 제조 방법 | |
JP2001335898A (ja) | 磁気特性に優れた電磁鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021507723 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871054 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3151160 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20227008618 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020871054 Country of ref document: EP Effective date: 20220503 |