[go: up one dir, main page]

WO2021024643A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021024643A1
WO2021024643A1 PCT/JP2020/025212 JP2020025212W WO2021024643A1 WO 2021024643 A1 WO2021024643 A1 WO 2021024643A1 JP 2020025212 W JP2020025212 W JP 2020025212W WO 2021024643 A1 WO2021024643 A1 WO 2021024643A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
semiconductor device
gate
voltage
nmos transistor
Prior art date
Application number
PCT/JP2020/025212
Other languages
English (en)
French (fr)
Inventor
功 斉藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202080011324.9A priority Critical patent/CN113396541B/zh
Priority to JP2021537620A priority patent/JP7099640B2/ja
Publication of WO2021024643A1 publication Critical patent/WO2021024643A1/ja
Priority to US17/381,426 priority patent/US12230627B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0149Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/016Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/101Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
    • H10D84/141VDMOS having built-in components
    • H10D84/143VDMOS having built-in components the built-in components being PN junction diodes
    • H10D84/144VDMOS having built-in components the built-in components being PN junction diodes in antiparallel diode configurations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/211Design considerations for internal polarisation
    • H10D89/213Design considerations for internal polarisation in field-effect devices
    • H10D89/215Design considerations for internal polarisation in field-effect devices comprising arrangements for charge pumping or biasing substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • H10D89/611Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • H10D89/811Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using FETs as protective elements
    • H10D89/813Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using FETs as protective elements specially adapted to provide an electrical current path other than the field-effect induced current path
    • H10D89/814Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using FETs as protective elements specially adapted to provide an electrical current path other than the field-effect induced current path involving a parasitic bipolar transistor triggered by the electrical biasing of the gate electrode of the FET, e.g. gate coupled transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/811Combinations of field-effect devices and one or more diodes, capacitors or resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a semiconductor device.
  • An ECU Electric Control Unit
  • a battery in a general automobile and a load such as a motor is provided with a switch for supplying electric power from the battery to the load (for example, Patent Document 1).
  • a switch for supplying electric power to a load for example, two MOS transistors having a common gate electrode (particularly, an NMOS transistor) may be used.
  • two MOS transistors having a common gate electrode particularly, an NMOS transistor
  • the gate capacitance of the two MOS transistors constituting the switch is large, there is a problem that the switching period when the switch is turned on and off becomes long.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a semiconductor device including a switch capable of shortening a switching period.
  • the main invention for solving the above-mentioned problems is with the first and second MOS transistors in which drain electrodes are connected in series between the first line to which the power supply voltage is applied and the second line to which the load is connected.
  • a third line connected to the gate electrode of the first MOS transistor and a fourth line connected to the gate electrode of the second MOS transistor and electrically separated from the third line are provided. It is a semiconductor device characterized by.
  • a semiconductor device including a switch capable of shortening the switching period.
  • FIG. 1 is a diagram showing a configuration of a motor control device 10 according to an embodiment of the present invention.
  • the motor control device 10 is a device for controlling a motor 12 provided in an automobile by using electric power from a battery 11, and has an ECU 20 including an IPS (Intelligent Power Switch) 21.
  • the battery 11 is, for example, a lithium-ion battery for automobiles, and outputs a power supply voltage Vcc of 12 V.
  • the ECU 20 is a device that controls the motor 12, and includes an IPS 21 (described later), a microcomputer 30, and a switch 31.
  • the microcomputer 30 controls the IPS 21 and the switch 31 based on an instruction (not shown) input from the outside.
  • the switch 31 is an element for applying the power supply voltage Vcc of the battery 11 output via the IPS 21 to the motor 12.
  • the microcomputer 30 will be described as having the switch 31 turned on.
  • the IPS 21 is a "semiconductor device” that switches whether or not to supply the power supply voltage Vcc of the battery 11 to the motor 12 based on the instruction signal Sa output from the microcomputer 30.
  • the IPS 21 includes terminals VCS, GND, IN, and OUT, the power supply voltage Vcc of the battery 11 is applied to the terminal VCS, and the terminal GND is grounded. Further, the instruction signal Sa from the microcomputer 30 is input to the terminal IN, and the voltage Vcc is output from the terminal OUT when the switch (described later) inside the IPS 21 is turned on. In this embodiment, the voltage of the terminal GND is set to the ground voltage Vgnd (0V).
  • the IPS 21 appropriately protects the motor 12 and the ECU 20 when the battery 11 is reversely connected.
  • the "reverse connection” is a state in which the positive electrode of the battery 11 is connected to a terminal on the ground side (for example, terminal GND) and the negative electrode of the battery 11 is connected to a terminal on the power supply side (for example, terminal VCS).
  • FIG. 2 is a diagram showing an example of the configuration of IPS 21.
  • the IPS 21 includes an IC (Integrated Circuit) 50 on which a switch (described later) is formed, and an IC 51 having a circuit for turning the switch on and off.
  • IC Integrated Circuit
  • the IC50 includes two MOS transistors constituting a switch (hereinafter, referred to as "switch X1") for switching whether or not to output the power supply voltage Vcc from the terminal OUT.
  • switch X1 a switch
  • the two transistors are NMOS transistors M1 and M2.
  • the source electrode S1 is connected to the "power supply line L1" to which the power supply voltage Vcc is applied. Further, a diode 60 is formed as a body diode between the source electrode S1 of the NMOS transistor M1 and the drain electrode D1.
  • the source electrode S2 is connected to the "load line L2" to which the load of the ECU 20 or the like is connected, and the drain electrode D2 is connected to the drain electrode D1 of the NMOS transistor M1. Further, a diode 61 is formed as a body diode between the source electrode S2 of the NMOS transistor M2 and the drain electrode D2.
  • the drain electrodes D1 and D2 of the NMOS transistors M1 and M2 are connected in series to each other, when both the NMOS transistors M1 and M2 are turned on, the power supply voltage Vcc of the terminal VCC is output from the terminal OUT. Will be.
  • the anode of the diode 60 is connected to the power supply line L1
  • the cathode of the diode 60 is connected to the cathode of the diode 61.
  • the anode of the diode 61 is connected to the load line L2. Therefore, the diodes 60 and 61 provided between the power supply line L1 and the load line L2 are connected so that their cathodes face each other.
  • the power supply voltage Vcc applied to the terminal VCS is cut off by the diode 61.
  • the power supply voltage Vcc of the terminal OUT is cut off by the diode 60.
  • the "switch X1" can prevent the current from flowing to the load connected to the terminal OUT, so that the load is appropriately protected.
  • the NMOS transistor M1 corresponds to the "first MOS transistor”
  • the NMOS transistor M2 corresponds to the "second MOS transistor”.
  • the power supply line L1 corresponds to the "first line”
  • the load line L2 corresponds to the "second line”.
  • FIG. 3 is a diagram showing a cross section of the NMOS transistors M1 and M2.
  • the NMOS transistors M1 and M2 are formed on the semiconductor substrate 200 of the IC50.
  • the semiconductor substrate 200 is, for example, an n-type substrate made of silicon, and drain electrodes 210 are formed on the back surface side, source electrodes 211a and 211b and substrate electrodes 212a and 212b are formed on the front surface side.
  • the drain electrode 210, the source electrodes 211a and 211b, and the substrate electrodes 212a and 212b may be formed of a conductive material such as polysilicon or a metal electrode. Since the structures of the NMOS transistors M1 and M2 are the same, the NMOS transistors M1 will be described below.
  • the electrodes of the NMOS transistors M1 and M2 are designated by different reference numerals for convenience, but the drain electrode 210 of the NMOS transistor M1 corresponds to the “drain electrode D1” and the source electrode 211a. Corresponds to "source electrode S1". Further, the gate electrode 241a (described later) corresponds to the “gate electrode G1”.
  • an n-type drift region 220, an n + -type drain region 221, a p-type well region 222a, an n + -type source region 223a, a p + -type contact region 224a, and a gate trench portion 230a are formed inside the semiconductor substrate 200.
  • the drift region 220 is a region containing n-type impurities such as phosphorus, and the drain region 221 contains n-type impurities such as phosphorus at a higher concentration than the drift region 220 and is formed on the back surface side of the drift region 220. Area.
  • the well region 222a is a region formed on the surface side of the drift region 220, and the source region 223a is an n + type region formed in a part of the well region 222a.
  • n + type or p + type it means that the doping concentration is higher than that of n type or p type.
  • a p + type contact region 224a containing a high concentration of p-type impurities is formed from the well region 222a.
  • a diode 60 which is a body diode, is formed between the p-type well region 222a and the n-type drift region 220.
  • the gate trench portion 230a includes a gate oxide film 240a formed on the inner wall of the trench and a gate electrode 241a in the trench covered with the gate oxide film 240a.
  • the gate electrode 241a is made of a conductive material such as polysilicon. Further, the gate trench portion 230a is covered with an oxide film 231a, and a source electrode 211a is formed on the surface side of the oxide film 231a so as to cover the oxide film 231a.
  • the drain electrode 210 of the NMOS transistor M2 corresponds to the “drain electrode D2”
  • the source electrode 211b corresponds to the “source electrode S2”.
  • the gate electrode 241b corresponds to the “gate electrode G2”.
  • the IC 51 of FIG. 2 is a circuit for turning on / off the “switch X1” based on the instruction signal Sa, and is a power supply circuit 70, a control circuit 71, a charge pump circuit 72, a separation circuit 73, a discharge circuit 74, and a gate protection circuit. It is composed of 75, 76, and resistors 80-82.
  • the power supply circuit 70 generates a power supply voltage Vdd for operating circuits such as the control circuit 71 and the charge pump circuit 72 based on the power supply voltage Vcc from the battery 11.
  • the power supply voltage Vdd is a voltage lower than the power supply voltage Vcc.
  • the control circuit 71 Based on the instruction signal Sa, the control circuit 71 has an instruction signal Sb (first instruction signal) for turning on the "switch X1" and an instruction signal Sc (second instruction signal) for turning off the "switch X1". And, it is a logic circuit that generates.
  • the charge pump circuit 72 is a circuit that generates a predetermined voltage Vcp (predetermined voltage) for turning on the NMOS transistors M1 and M2 constituting the "switch X1" based on the instruction signal Sb. The details of the charge pump circuit 72 will be described later.
  • the separation circuit 73 is a circuit that applies a voltage corresponding to the voltage Vcp to the two lines in a state where the two lines (described later) to which the gate electrodes of the NMOS transistors M1 and M2 are connected are electrically separated. is there.
  • the separation circuit 73 includes diodes 100 to 103 and resistors 104 and 105.
  • a voltage Vcp is applied to the anode of the diode 100, and the cathode is connected to the anode of the diode 101.
  • the cathode of the diode 101 is connected to one end of the resistor 104 and the other end of the resistor 104 is connected to the gate line L3.
  • the gate line L3 is a wiring connected to the gate electrode G1 of the NMOS transistor M1 via the resistor 80.
  • a voltage Vcp is applied to the anode of the diode 102, and the cathode is connected to the anode of the diode 103.
  • the cathode of the diode 103 is connected to one end of the resistor 105 and the other end of the resistor 105 is connected to the gate line L4.
  • the gate line L4 is a wiring connected to the gate electrode G2 of the NMOS transistor M2 via the resistor 81.
  • the diodes 100, 101 and the resistor 104 connected in series apply a voltage corresponding to the voltage Vcp only to the gate line L3 among the gate lines L3 and L4.
  • the diodes 102 and 103 and the resistor 105 connected in series apply a voltage corresponding to the voltage Vcp only to the gate line L4 among the gate lines L3 and L4.
  • two diodes are connected to the gate lines L3 and L4, but another number (for example, one or three or more) may be used.
  • the gate line L3 may be any "wiring that electrically connects the output from the separation circuit 73 and the gate electrode G1". Therefore, the gate line L3 does not have to include the resistor 80.
  • the gate line L4 is the same as the gate line L3. Here, the gate line L3 corresponds to the "third line”, and the gate line L4 corresponds to the "fourth line”. Further, each of the diodes 100 and 101 corresponds to the "first diode”, and each of the diodes 102 and 103 corresponds to the "second diode".
  • the discharge circuit 74 is a circuit for turning off the NMOS transistors M1 and M2 constituting the "switch X1", and includes the NMOS transistors 120 and the switches 121 and 122.
  • the NMOS transistor 120 is a depletion type transistor, the drain electrode D3 is connected to the gate line L3, and the gate electrode G3 and the source electrode S3 are connected to the load line L2 via the resistor 82. Therefore, since the NMOS transistor 120 is always on, the gate capacitance of the NMOS transistor M1 is discharged via the NMOS transistor 120.
  • the current value when the NMOS transistor 120 discharges the gate capacitance of the NMOS transistor M1 is set to a sufficiently small value so as not to affect when the NMOS transistor M1 is turned on. Further, the NMOS transistor 120 corresponds to the "third MOS transistor".
  • the switch 121 is provided between the gate line L4 and the grounding line L5 connected to the terminal GND, and the switch 122 is provided between the gate line L4 and the load line L2. Then, the switches 121 and 122 are turned on based on, for example, the instruction signal Sc for turning off the "switch X1". Therefore, the gate capacitance of the NMOS transistor M2 passes through the “path A1” of the gate line L4, the switch 121, and the ground line L5, and the “path A2” of the gate line L4, the switch 122, and the load line L2. It is discharged.
  • the switch X1 When the "switch X1" is on, a voltage corresponding to the power supply voltage Vcc is applied to the load line L2. Therefore, the gate capacitance of the NMOS transistor M2 is first discharged via the “path A1”.
  • the ground line L5 corresponds to the "fifth line”
  • the switch 121 corresponds to the "first switch”
  • the switch 122 corresponds to the "second switch”.
  • the gate protection circuit 75 is a circuit for preventing the voltage of the source electrode S1 from becoming too high with respect to the gate electrode G1 of the NMOS transistor M1, and includes diodes 130 and 131.
  • the anode of the diode 130 is connected to the power supply line L1, and the cathode is connected to the anode of the diode 131. Further, the cathode of the diode 130 is connected to the gate line L3. It is assumed that the forward voltage of each of the diodes 130 and 131 is Vf.
  • the gate protection circuit 75 can prevent the source voltage of the NMOS transistor M1 from becoming too large than the gate voltage. Therefore, in the present embodiment, it is possible to prevent the gate oxide film 240a (see FIG. 3) of the NMOS transistor M1 from being damaged. Further, since the gate capacitance of the gate electrode G1 of the NMOS transistor M1 is charged in advance, this has the effect of shortening the switching period.
  • the gate protection circuit 76 is a circuit for preventing the voltage of the source electrode S2 from becoming too high with respect to the gate electrode G2 of the NMOS transistor M2, and includes diodes 132, 133, and a resistor 134. When the connection direction of the battery 11 is normal, the voltage of the source electrode S2 does not increase, but when the battery 11 is reversely connected, the voltage of the source electrode S2 increases.
  • the anode of the diode 132 is connected to the load line L2, and the cathode is connected to the anode of the diode 133. Further, the cathode of the diode 133 is connected to the gate line L4 via a resistor 134 for limiting the current.
  • the forward voltage of each of the diodes 132 and 133 is Vf.
  • the gate protection circuit 76 can prevent the source voltage of the NMOS transistor M2 from becoming too large than the gate voltage. Therefore, in the present embodiment, it is possible to prevent the gate oxide film 240b (see FIG. 3) of the NMOS transistor M2 from being damaged.
  • each of the diodes 130 and 131 whose anode side is connected to the power supply line L1 and whose cathode side is connected to the gate line L3 corresponds to the "third diode”.
  • each of the diodes 132 and 133 whose anode side is connected to the load line L2 and whose cathode side is connected to the gate line L4 corresponds to the "fourth diode”.
  • FIG. 4 is a diagram showing an example of the charge pump circuit 72.
  • the charge pump circuit 72 includes an oscillator 300, inverters 310 and 311, diodes 320 to 323, and capacitors 330 and 331.
  • the forward voltage of the diodes 320 to 323 is defined as "Vf".
  • the oscillator 300 is, for example, a circuit that outputs a clock signal CLK of a predetermined frequency based on an instruction signal Sb for turning on the “switch X1”, and the inverters 310 and 311 determine the logic level of the input signal. Invert and output.
  • the inverter 310, the diode 320, and the capacitor 330 form the first-stage booster circuit of the charge pump circuit 72.
  • a power supply voltage Vdd is applied to the anode of the diode 320, and the cathode is connected to one end of the capacitor 330. Further, the output of the inverter 310 is connected to the other end of the capacitor 330.
  • the inverter 311, the diode 321, 322, and the capacitor 331 form the second stage booster circuit of the charge pump circuit 72.
  • the anode of the diode 321 is connected to one end of the capacitor 330, and the cathode is connected to one end of the capacitor 331.
  • a power supply voltage Vdd is applied to the anode of the diode 322, and the cathode is connected to one end of the capacitor 331. Further, the output of the inverter 311 is connected to the other end of the capacitor 331.
  • the voltage Vc2 at one end of the capacitor 331 of the second stage booster circuit is output as the voltage Vcp via the diode 323.
  • Vc1 Vdd-Vf ... (1)
  • the output of the inverter 310 becomes the H level (power supply voltage Vdd), so the voltage Vc1 at one end of the capacitor 330 is represented by the equation (2).
  • Vc1 2 ⁇ Vdd-Vf ... (2) Further, at this timing, since the output of the inverter 311 is at the L level, the other end of the capacitor 331 becomes the ground voltage Vgnd (0V). As a result, the voltage Vc2 at one end of the capacitor 331 is represented by the equation (3).
  • Vc2 2 ⁇ Vdd-2 ⁇ Vf ... (3) Further, when the clock signal CLK becomes H level, the output of the inverter 311 becomes H level, so that the voltage Vc2 at one end of the capacitor 331 is represented by the equation (4).
  • Vc2 3 x Vdd-2 x Vf ... (4) Since the separation circuit 73 is connected to the cathode of the diode 323, the voltage Vcp output from the diode 323 is represented by the equation (5).
  • the charge pump circuit 72 of the present embodiment includes a two-stage booster circuit, but the present invention is not limited to this, and any configuration can be used as long as the voltage Vcp is a voltage capable of turning on the NMOS transistors M1 and M2. There may be.
  • FIG. 5 is a diagram showing an example of a change in the output voltage Vout of the IPS 21.
  • the “H” level instruction signal Sb for turning on the “switch X1” is input at the time t0.
  • the "H” level instruction signal Sc for turning off the "switch X1” is input. Therefore, before time t0, the NMOS transistors M1 and M2 (“switch X1”) are turned off by the NMOS transistors 120 of the discharge circuit 74 of FIG. 2 and the switches 121 and 122 that are turned on.
  • the charge pump circuit 72 outputs a voltage Vcp and switches 121. , 122 are off.
  • the separation circuit 73 applies a voltage corresponding to the voltage Vcp to each of the gate lines L3 and L4.
  • the voltage of the source electrode S1 of the NMOS transistor M1 is the power supply voltage Vcc
  • the voltage of the source electrode S2 of the NMOS transistor M2 is the ground voltage Vgnd (0V). Therefore, of the NMOS transistors M1 and M2, the NMOS transistor M2 is turned on first.
  • the current value at which the NMOS transistor 120 discharges the gate capacitance of the NMOS transistor M1 is set to a sufficiently small value so as not to affect when the NMOS transistor M1 is turned on. ..
  • the switches 121 and 122 are switches having a sufficiently small on-resistance. Therefore, the gate capacitance of the NMOS transistor M2 is discharged in a short time via the switches 121 and 122, and the NMOS transistor M2 is immediately turned off. Then, when the NMOS transistor M2 is turned off, the power supply voltage Vcc is cut off by the diode 61. As a result, for example, at time t3, the output voltage Vout drops to the ground voltage.
  • the NMOS transistor M1 is in the ON state, but when the NMOS transistor M2 is turned off, the "switch X1" provided between the terminal VCS and the terminal OUT is turned off.
  • the NMOS transistors M1 and M2 constituting the "switch X1" are driven by electrically separated gate lines L3 and L4, respectively.
  • the time of change of the output voltage Vout is compared between the case of using the "switch X1" having such a configuration and the case of using the "switch” composed of two NMOS transistors having a common gate electrode. ..
  • FIG. 6 is a diagram showing an example of the configuration of the IPS 25 according to the comparative example.
  • the IPS 25 includes an IC 55 on which a switch (described later) is formed, and an IC 56 having a circuit for turning the switch on and off.
  • IPS 21 of FIG. 2 and IPS 25 of FIG. 6 the elements and blocks with the same reference numerals are the same.
  • the IC55 includes the NMOS transistors M1 and M2 like the IC50. However, the gate electrodes G1 and G2 of the NMOS transistors M1 and M2 are connected to each other. In the IC55, the connections of the electrodes other than the gate electrodes G1 and G2 of the NMOS transistors M1 and M2 are the same as those of the IC50.
  • the switch composed of the NMOS transistors M1 and M2 will be referred to as "switch X2".
  • the IC 56 is a circuit for turning on or off the "switch X2", and includes a power supply circuit 70, a control circuit 71, a charge pump circuit 72, a discharge circuit 77, and a resistor 85.
  • the power supply circuit 70, the control circuit 71, and the charge pump circuit 72 of the IC 56 are the same as the blocks included in the IC 51, the discharge circuit 77 and the resistor 85 will be described.
  • the discharge circuit 77 is a circuit for turning off the NMOS transistors M1 and M2 constituting the "switch X2", and includes switches 125 and 126.
  • the switch 125 is provided between the gate line L6 connected to the gate electrodes of the NMOS transistors M1 and M2 and the ground line L5 connected to the terminal GND, and the switch 126 is provided with the gate line L6 and the load line L2. It is provided between.
  • the switches 125 and 126 are turned on based on, for example, the instruction signal Sc for turning off the "switch X2". Therefore, the gate capacitance of the NMOS transistors M1 and M2 is discharged via the path of the gate line L6, the switch 125, and the ground line L5, and the path of the gate line L6, the switch 126, and the load line L2.
  • the resistor 85 is a gate resistance of the NMOS transistors M1 and M2, and has, for example, the same resistance value as the gate resistance of the NMOS transistors M1 and M2 of IPS21 in FIG.
  • FIG. 7 is a diagram showing an example of a change in the output voltage Vout of the IPS 25.
  • the waveform of the output voltage Vout of the IPS 21 shown in FIG. 5 is shown as a comparison target.
  • the charge pump circuit 72 outputs a voltage Vcp and switches 125. , 126 are off.
  • the charge pump circuit 72 When the charge pump circuit 72 outputs the voltage Vcp, the voltage Vcp is applied to the gate line L6.
  • the charge pump circuit 72 needs to drive a larger capacitance than the “switch X1” of the IPS 21.
  • the "switch X2" is turned on at a time t10 later than the time t1 when the above-mentioned "switch X1" is turned on, and the output voltage Vout rises to the power supply voltage Vcc.
  • the IPS 21 can turn on the "switch X1" in a shorter period.
  • the charge pump circuit 72 stops the output of the voltage Vcp. Then, the switches 125 and 126 are turned on.
  • the switches 121 and 122 discharge the gate capacitance of only the NMOS transistors M2, but the switches 125 and 126 of the IPS 25 of FIG. 6 discharge the gate capacitance of the NMOS transistors M1 and M2.
  • the "switch X2" is turned off and the output voltage Vout drops to the ground voltage.
  • the IPS 21 can turn off the "switch X1" in a shorter period.
  • FIG. 8 is a diagram for explaining the operation of the IPS 21 when the battery 11 is reversely connected. For convenience, FIG. 8 shows only a part of the blocks related to the reverse connection operation among the plurality of blocks of the IPS 21 of FIG.
  • FIG. 9 is a diagram showing a cross section of the NMOS transistor 120.
  • the NMOS transistor 120 includes a gate electrode 410, a source electrode 411, a drain electrode 412, and a substrate electrode 413, 414 formed on the semiconductor substrate 400 of the IC 51 and made of a conductive material such as polysilicon.
  • the electrodes of the NMOS transistor 120 are designated by different reference numerals for convenience, but the gate electrode 410 of the NMOS transistor 120 corresponds to the “gate electrode G3” and is a source electrode. 411 corresponds to the “source electrode S3”. Further, the drain electrode 412 corresponds to the “drain electrode D3”, and the substrate electrodes 413 and 414 correspond to the "board electrode B3" and the "board electrode Bx", respectively.
  • An n + type contact region 426 is formed inside the semiconductor substrate 400.
  • the drift region 420 is a region containing n-type impurities such as phosphorus, and the well region 421 is a p-type region formed on the surface side of the drift region 420.
  • the drift region 420 corresponds to the "first region”
  • the well region 421 corresponds to the "second region”.
  • the source region 422 and the drain region 423 are n + type regions formed in a part of the well region 421, and an n-type gate region 424 is formed between the source region 422 and the drain region 423. Has been done.
  • a contact region 425 containing a high concentration of p-type impurities is formed from the well region 421.
  • a diode 500 which is a parasitic diode, is formed between the p-type well region 421 and the n-type drift region 420.
  • a contact region 426 containing a high concentration of n-type impurities is formed on the surface side of the semiconductor substrate 400 of the n-type drift region 420.
  • the power supply voltage Vcc applied to the terminal OUT is applied to the source electrode S3, the gate electrode G3, and the substrate electrode B3 of the NMOS transistor 120 via the motor coil (not shown) of the motor 12, the load line L2, and the like. It is applied.
  • the substrate electrode Bx of the n-type semiconductor substrate 400 is usually a terminal so that the power supply voltage Vcc, which is the highest potential, is applied. It is connected to the power supply line L1 of the VCS.
  • the voltage of the negative electrode of the battery 11 is applied to the substrate electrode Bx, so that the diode 500, which is the parasitic diode shown in FIG. 9, is turned on.
  • the voltage of the source electrode S3, the gate electrode G3, and the substrate electrode B3 of the NMOS transistor 120 drops from the power supply voltage Vcc to the “forward voltage Vfx” of the diode 500.
  • the gate capacitance of the NMOS transistor M1 is the gate line L3, the drain electrode D3 of the NMOS transistor 120, the diode 500, and the substrate electrode B3. Is discharged via.
  • the path through which the gate capacitance of the NMOS transistor M1 is discharged is shown by a alternate long and short dash line.
  • the threshold voltage of the NMOS transistor M1 is set higher than the “forward voltage Vfx” of the diode 500. Therefore, the gate of the NMOS transistor M1 is discharged in such a path, so that the NMOS transistor M1 is surely turned off.
  • the power supply voltage Vcc applied to the terminal OUT is output to the NMOS transistor M1 via the diode 61, but is cut off by the MOSFET transistor M1 that is turned off.
  • the IPS 21 can appropriately protect the motor 12 and the like even when the battery 11 is reversely connected.
  • the voltage Vcp is applied to the gate line L3 via the diodes 100 and 101, and is applied to the gate line L4 via the diodes 102 and 103. Therefore, the voltage Vcp output from one charge pump circuit 72 can be electrically separated and applied to the gate lines L3 and L4.
  • a charge pump circuit may be provided for each of the gate lines L3 and L4, but such a configuration increases the circuit scale.
  • a voltage can be applied to the electrically separated gate lines L3 and L4 while keeping the circuit scale small.
  • the diodes 130 and 131 of the present embodiment can prevent the voltage of the source electrode S1 from becoming too high with respect to the gate electrode G1 of the NMOS transistor M1, the gate oxide film of the NMOS transistor M1 is damaged. Can be suppressed. Further, the diodes 130 and 131 have the effect of precharging the gate capacitance of the gate electrode G1 of the NMOS transistor M1 before the switch X1 is turned on.
  • the diodes 132 and 133 of the present embodiment can prevent the voltage of the source electrode S2 from becoming too high with respect to the gate electrode G2 of the NMOS transistor M2, the gate oxide film of the NMOS transistor M2 is damaged. Can be suppressed.
  • the discharge circuit 74 discharges the gate capacitance of the NMOS transistor M2 based on the instruction signal Sc, the NMOS transistor M2 is surely turned off.
  • the switch 121 of the discharge circuit 74 discharges the gate capacitance of the NMOS transistor M2 to the ground line L5. Therefore, for example, the period for turning off the NMOS transistor M2 can be shortened as compared with the case where only the switch 121 is used.
  • gate lines L3 and L4 are provided with resistors 80 and 81, noise when the NMOS transistors M1 and M2 are turned on is suppressed.
  • the gate capacitance of the NMOS transistor M1 is discharged by the depletion type NMOS transistor 120.
  • the NMOS transistor 120 can surely turn off the NMOS transistor M1 without using a complicated circuit.
  • the NMOS transistor 120 is formed in, for example, the p-type well region 421 formed in the n-type drift region 420. In such a configuration, when the battery 11 is reversely connected, the parasitic diode 500 of the NMOS transistor 120 is turned on. As a result, the gate capacitance of the NMOS transistor M1 can be discharged.
  • the threshold voltage of the NMOS transistor M1 is larger than the “forward voltage Vfx” of the diode 500. Therefore, when the gate capacitance of the NMOS transistor M1 is discharged via the diode 500, the NMOS transistor M1 is surely turned off. As a result, the IPS 21 can reliably protect the load even when the battery 11 is reversely connected.
  • the output voltage Vout of the IPS 21 is applied to the motor 12, which is a load, via the switch 31 of the ECU 20, but the present invention is not limited to this.
  • the output voltage Vout of the IPS 21 may be applied directly to the motor 12.
  • the IC 51 is an n-type semiconductor substrate, it may be, for example, a p-type semiconductor substrate. Further, when a p-type semiconductor substrate is used for the IC 51, the same effect as that of the present embodiment can be obtained by using a semiconductor device having a twin-well or triple-well structure so that a parasitic diode 500 is formed on the NMOS transistor 120. Can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electronic Switches (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

半導体装置は、電源電圧が印加される第1ラインと負荷が接続される第2ラインとの間で互いのドレイン電極が直列に接続された第1及び第2MOSトランジスタと、前記第1MOSトランジスタのゲート電極に接続された第3ラインと、前記第2MOSトランジスタのゲート電極に接続され、前記第3ラインと電気的に分離して設けられた第4ラインと、を備える。

Description

半導体装置
 本発明は、半導体装置に関する。
 一般的な自動車におけるバッテリーとモータ等の負荷との間に設けられるECU(Electronic Control Unit)には、負荷にバッテリーからの電力を供給するためのスイッチが設けられる(例えば、特許文献1)。
特開平7-184318号公報
 ところで、負荷に電力を供給するスイッチとしては、例えば、ゲート電極が共通する2つのMOSトランジスタ(とりわけ、NMOSトランジスタ)が用いられることがある。しかしながら、一般に、スイッチを構成する2つのMOSトランジスタのゲート容量は大きいため、スイッチがオン、オフする際のスイッチング期間が長くなるという問題があった。
 本発明は、上記のような従来の問題に鑑みてなされたものであって、その目的は、スイッチング期間を短くすることができるスイッチを含む半導体装置を提供することにある。
 前述した課題を解決する主たる本発明は、電源電圧が印加される第1ラインと負荷が接続される第2ラインとの間で互いのドレイン電極が直列に接続された第1及び第2MOSトランジスタと、前記第1MOSトランジスタのゲート電極に接続された第3ラインと、前記第2MOSトランジスタのゲート電極に接続され、前記第3ラインと電気的に分離して設けられた第4ラインと、を備えることを特徴とする半導体装置である。
 本発明によれば、スイッチング期間を短くすることができるスイッチを含む半導体装置を提供することができる。
モータ制御装置10の一例を示す図である。 IPS21の一例を示す図である。 NMOSトランジスタM1,M2の断面図である。 チャージポンプ回路72の一例を示す図である。 IPS21の出力電圧Voutの変化の一例を示す図である。 IPS25の一例を示す図である。 IPS21,25の出力電圧Voutの変化の一例を示す図である。 バッテリー11が逆接続された場合のIPS21の動作を説明するための図である。 NMOSトランジスタ120の断面図である。
 関連出願の相互参照
 この出願は、2019年8月6日に出願された日本特許出願、特願2019-144555に基づく優先権を主張し、その内容を援用する。
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
=====本実施形態=====
 図1は、本発明の一実施形態であるモータ制御装置10の構成を示す図である。モータ制御装置10は、バッテリー11からの電力を用いて、自動車に設けられたモータ12を制御するための装置であり、IPS(Intelligent Power Switch)21を含むECU20を有する。なお、バッテリー11は、例えば、自動車用のリチウムイオン電池であり、12Vの電源電圧Vccを出力する。
 ECU20は、モータ12を制御する装置であり、IPS21(後述)、マイコン30、スイッチ31を含んで構成される。
 マイコン30は、外部から入力される指示(不図示)に基づいてIPS21やスイッチ31を制御する。スイッチ31は、IPS21を介して出力されるバッテリー11の電源電圧Vccを、モータ12に印加するための素子である。なお、以下、本実施形態では、便宜上、マイコン30は、スイッチ31をオンしていることとして説明する。
 IPS21は、マイコン30から出力される指示信号Saに基づいて、バッテリー11の電源電圧Vccを、モータ12に供給するか否かを切り替える「半導体装置」である。
 IPS21は、端子VCC,GND,IN,OUTを含み、端子VCCには、バッテリー11の電源電圧Vccが印加され、端子GNDは接地される。また、端子INは、マイコン30からの指示信号Saが入力され、端子OUTからは、IPS21内部のスイッチ(後述)がオンの際に、電圧Vccが出力される。なお、本実施形態では、端子GNDの電圧を、接地電圧Vgnd(0V)とする。
 また、詳細は後述するが、IPS21は、バッテリー11が逆接続された際に、モータ12やECU20を適切保護する。なお、“逆接続”とは、バッテリー11の正極が、接地側の端子(例えば、端子GND)に接続され、バッテリー11の負極が、電源側の端子(例えば、端子VCC)に接続される状態をいう。
<<<IPS21の構成>>>
 図2は、IPS21の構成の一例を示す図である。IPS21は、スイッチ(後述)が形成されたIC(Integrated Circuit)50と、スイッチをオン、オフするための回路を有するIC51と、を含んで構成される。
===IC50===
 IC50は、電源電圧Vccを、端子OUTから出力させるか否かを切り替えるためのスイッチ(以下、“スイッチX1”と称する。)を構成する2つのMOSトランジスタを含む。とりわけ、本実施形態では、2つのトランジスタはNMOSトランジスタM1,M2である。
 NMOSトランジスタM1において、ソース電極S1は、電源電圧Vccが印加される“電源ラインL1”に接続されている。また、NMOSトランジスタM1のソース電極S1と、ドレイン電極D1との間には、ボディダイオードとして、ダイオード60が形成される。
 NMOSトランジスタM2において、ソース電極S2は、ECU20等の負荷が接続される“負荷ラインL2”に接続され、ドレイン電極D2は、NMOSトランジスタM1のドレイン電極D1に接続されている。また、NMOSトランジスタM2のソース電極S2と、ドレイン電極D2との間には、ボディダイオードとして、ダイオード61が形成されている。
 ここで、NMOSトランジスタM1,M2は、互いのドレイン電極D1,D2が直列に接続されているため、NMOSトランジスタM1,M2がともにオンとなると、端子VCCの電源電圧Vccは、端子OUTから出力されることになる。
 また、ダイオード60のアノードは、電源ラインL1に接続され、ダイオード60のカソードは、ダイオード61のカソードに接続されている。そして、ダイオード61のアノードは、負荷ラインL2に接続されている。このため、電源ラインL1と、負荷ラインL2との間に設けられたダイオード60,61は、それぞれのカソードが向かい合って接続されることになる。
 したがって、NMOSトランジスタM1,M2がともにオフの場合、例えば、端子VCCに印加される電源電圧Vccは、ダイオード61で遮断される。一方、例えば、バッテリー11が逆接続され、端子OUTに電源電圧Vccが印加された場合、端子OUTの電源電圧Vccは、ダイオード60で遮断される。
 この結果、NMOSトランジスタM1,M2がともにオフの場合、“スイッチX1”は、端子OUTに接続された負荷に電流が流れることを防ぐことができるため、負荷を適切に保護することになる。
 なお、NMOSトランジスタM1は、「第1MOSトランジスタ」に相当し、NMOSトランジスタM2は、「第2MOSトランジスタ」に相当する。また、電源ラインL1は、「第1ライン」に相当し、負荷ラインL2は、「第2ライン」に相当する。
==NMOSトランジスタM1,M2の構造==
 図3は、NMOSトランジスタM1,M2の断面を示す図である。NMOSトランジスタM1,M2は、IC50の半導体基板200に形成されている。
 半導体基板200は、例えばシリコンで形成されたn型の基板であり、裏面側にはドレイン電極210、表面側には、ソース電極211a,211b、基板電極212a,212bが形成されている。ここで、ドレイン電極210、ソース電極211a,211b、基板電極212a,212bは、例えばポリシリコン等の導電材料や金属電極で形成されてよい。なお、NMOSトランジスタM1,M2の構造は同じであるため、以下、NMOSトランジスタM1について説明する。
 また、図2と、図3とでは、NMOSトランジスタM1,M2の電極に、便宜上異なる符号を付しているが、NMOSトランジスタM1のドレイン電極210は“ドレイン電極D1”に相当し、ソース電極211aは“ソース電極S1”に相当する。また、ゲート電極241a(後述)は“ゲート電極G1”に相当する。
 半導体基板200の内部には、n型のドリフト領域220、n+型のドレイン領域221、p型のウェル領域222a、n+型のソース領域223a、p+型のコンタクト領域224a、ゲートトレンチ部230aが形成される。
 ドリフト領域220は、例えばリン等のn型の不純物を含む領域であり、ドレイン領域221は、リン等のn型の不純物をドリフト領域220より高濃度に含み、ドリフト領域220より裏面側に形成された領域である。
 ウェル領域222aは、ドリフト領域220より表面側に形成された領域であり、ソース領域223aは、ウェル領域222aの一部に形成されたn+型の領域である。なお、以降、n+型またはp+型と記載した場合、n型またはp型よりもドーピング濃度が高いことを意味するものとする。また、ウェル領域222aの半導体基板200の表面側には、ウェル領域222aより、p型の不純物を高濃度に含むp+型のコンタクト領域224aが形成されている。なお、p型のウェル領域222aと、n型のドリフト領域220との間には、ボディダイオードであるダイオード60が形成される。
 ゲートトレンチ部230aは、トレンチ内壁に形成されたゲート酸化膜240aと、トレンチ内にゲート酸化膜240aに覆われたゲート電極241aとを備える。なお、ゲート電極241aは、ポリシリコン等の導電材料で形成される。また、ゲートトレンチ部230aは、酸化膜231aで覆われており、酸化膜231aの表面側には、酸化膜231aを覆うよう、ソース電極211aが形成されている。
 ここで、NMOSトランジスタM1のゲート-ソース間電圧と、NMOSトランジスタM2のゲート-ソース間電圧と、がそれぞれのしきい値電圧より高くなると、ウェル領域222a,222bにチャネルが形成され、NMOSトランジスタM1,M2はオンする。
 この結果、例えば、NMOSトランジスタM1のソース電極S1に電源電圧Vccが印加され、NMOSトランジスタM2のソース電極S2が接地電圧となると、図3の一点鎖線で示す経路で電流が流れることになる。
 なお、NMOSトランジスタM2の詳細な説明は省略したが、NMOSトランジスタM2のドレイン電極210は“ドレイン電極D2”に相当し、ソース電極211bは“ソース電極S2”に相当する。ゲート電極241bは“ゲート電極G2”に相当する。
===IC51===
 図2のIC51は、指示信号Saに基づいて、“スイッチX1”をオン、オフする回路であり、電源回路70、制御回路71、チャージポンプ回路72、分離回路73、放電回路74、ゲート保護回路75,76、及び抵抗80~82を含んで構成される。
 電源回路70は、バッテリー11からの電源電圧Vccに基づいて、制御回路71やチャージポンプ回路72等の回路を動作させるための電源電圧Vddを生成する。なお、電源電圧Vddは、電源電圧Vccより低い電圧である。
 制御回路71は、指示信号Saに基づいて、“スイッチX1”をオンするための指示信号Sb(第1指示信号)と、“スイッチX1”をオフするための指示信号Sc(第2指示信号)と、を生成する論理回路である。
 チャージポンプ回路72は、指示信号Sbに基づいて、“スイッチX1”を構成するNMOSトランジスタM1,M2をオンするための所定の電圧Vcp(所定電圧)を生成する回路である。なお、チャージポンプ回路72の詳細については後述する。
 分離回路73は、NMOSトランジスタM1,M2のそれぞれのゲート電極が接続された2つのライン(後述)が電気的に分離された状態で、電圧Vcpに応じた電圧を2つのラインに印加する回路である。分離回路73は、ダイオード100~103、抵抗104,105を含んで構成される。
 ダイオード100のアノードには、電圧Vcpが印加され、カソードは、ダイオード101のアノードに接続されている。ダイオード101のカソードは、抵抗104の一端に接続され、抵抗104の他端は、ゲートラインL3に接続されている。
 ここで、ゲートラインL3は、抵抗80を介してNMOSトランジスタM1のゲート電極G1に接続された配線である。
 また、ダイオード102のアノードには、電圧Vcpが印加され、カソードは、ダイオード103のアノードに接続されている。ダイオード103のカソードは、抵抗105の一端に接続され、抵抗105の他端は、ゲートラインL4に接続されている。
 ここで、ゲートラインL4は、抵抗81を介してNMOSトランジスタM2のゲート電極G2に接続された配線である。
 このため、直列に接続されたダイオード100,101、抵抗104は、電圧Vcpに応じた電圧を、ゲートラインL3,L4のうち、ゲートラインL3のみに印加する。一方、直列に接続されたダイオード102,103、抵抗105は、電圧Vcpに応じた電圧を、ゲートラインL3,L4のうち、ゲートラインL4のみに印加する。このような分離回路73を用いることにより、1つのチャージポンプ回路72から出力される電圧Vcpを、電気的に分離して設けられたゲートラインL3,L4のそれぞれに対して印加することができる。
 なお、本実施形態では、例えば、ゲートラインL3,L4には、2個のダイオードが接続されることとしたが、他の個数(例えば、1個や3個以上)であっても良い。分離回路73のダイオードの数を増加させることにより、電源電圧Vccが非常に高くなった場合であっても、チャージポンプ回路72に高い電圧が印加されることを防ぐことができる。
 なお、ゲートラインL3は、分離回路73からの出力と、ゲート電極G1とを「電気的に接続する配線」であれば良い。このため、ゲートラインL3には、抵抗80が含まれてなくても良い。なお、ゲートラインL4についても、ゲートラインL3と同様である。ここで、ゲートラインL3は、「第3ライン」に相当し、ゲートラインL4は、「第4ライン」に相当する。また、ダイオード100,101のそれぞれは、「第1ダイオード」に相当し、ダイオード102,103のそれぞれは、「第2ダイオード」に相当する。
 放電回路74は、“スイッチX1”を構成するNMOSトランジスタM1,M2をオフするための回路であり、NMOSトランジスタ120、スイッチ121,122を含んで構成される。
 NMOSトランジスタ120は、デプレッション型のトランジスタであり、ドレイン電極D3は、ゲートラインL3に接続され、ゲート電極G3及びソース電極S3は、抵抗82を介して負荷ラインL2に接続されている。このため、NMOSトランジスタ120は常にオンしているため、NMOSトランジスタM1のゲート容量は、NMOSトランジスタ120を介して放電されることになる。
 なお、NMOSトランジスタ120が、NMOSトランジスタM1のゲート容量を放電する際の電流値は、NMOSトランジスタM1がオンとなる際には影響を与えないよう、十分小さい値が設定されている。また、NMOSトランジスタ120は、「第3MOSトランジスタ」に相当する。
 スイッチ121は、ゲートラインL4と、端子GNDに接続された接地ラインL5との間に設けられ、スイッチ122は、ゲートラインL4と、負荷ラインL2との間に設けられている。そして、スイッチ121,122は、例えば、“スイッチX1”をオフするための指示信号Scに基づいてオンする。このため、NMOSトランジスタM2のゲート容量は、ゲートラインL4、スイッチ121、及び接地ラインL5の“経路A1”と、ゲートラインL4、スイッチ122、及び負荷ラインL2の“経路A2”と、を介して放電される。
 なお、“スイッチX1”がオンの際には、負荷ラインL2には電源電圧Vccに応じた電圧が印加されている。このため、NMOSトランジスタM2のゲート容量は、まず、“経路A1”を介して放電される。ここで、接地ラインL5は、「第5ライン」に相当し、スイッチ121は、「第1スイッチ」に相当し、スイッチ122は、「第2スイッチ」に相当する。
 ゲート保護回路75は、NMOSトランジスタM1のゲート電極G1に対し、ソース電極S1の電圧が高くなり過ぎることを防ぐための回路であり、ダイオード130,131を含んで構成される。
 ダイオード130のアノードは、電源ラインL1に接続され、カソードは、ダイオード131のアノードに接続されている。また、ダイオード130のカソードは、ゲートラインL3に接続されている。なお、ダイオード130,131のそれぞれの順方向電圧はVfであることとする。
 このような場合、ソース電極S1の電圧が、ゲート電極G1の電圧より、ダイオード130,131の2つ分の順方向電圧(2×Vf)より高くなると、ダイオード130,131は、オンとなる。この結果、ゲート保護回路75は、NMOSトランジスタM1のソース電圧が、ゲート電圧より大きくなり過ぎることを抑制できる。したがって、本実施形態では、NMOSトランジスタM1のゲート酸化膜240a(図3参照)が、ダメージを受けることを防ぐことができる。また、これはNMOSトランジスタM1のゲート電極G1のゲート容量を予め充電するので、スイッチング期間を短くする効果を奏する。
 ゲート保護回路76は、NMOSトランジスタM2のゲート電極G2に対し、ソース電極S2の電圧が高くなり過ぎることを防ぐための回路であり、ダイオード132,133、抵抗134を含んで構成される。なお、バッテリー11の接続の向きが正常である場合、ソース電極S2の電圧が上昇することはないが、バッテリー11が逆接続されると、ソース電極S2の電圧は上昇する。
 ダイオード132のアノードは、負荷ラインL2に接続され、カソードは、ダイオード133のアノードに接続されている。また、ダイオード133のカソードは、電流を制限するための抵抗134を介してゲートラインL4に接続されている。なお、ダイオード132,133のそれぞれの順方向電圧はVfであることする。
 このような場合、ソース電極S2の電圧が、ゲート電極G2の電圧より、ダイオード132,133の2つ分の順方向電圧(2×Vf)より高くなると、ダイオード132,133は、オンとなる。この結果、ゲート保護回路76は、NMOSトランジスタM2のソース電圧が、ゲート電圧より大きくなり過ぎることを抑制できる。したがって、本実施形態では、NMOSトランジスタM2のゲート酸化膜240b(図3参照)が、ダメージを受けることを防ぐことができる。
 なお、アノード側が電源ラインL1に接続され、カソード側がゲートラインL3に接続されたダイオード130,131のそれぞれは、「第3ダイオード」に相当する。また、アノード側が負荷ラインL2に接続され、カソード側がゲートラインL4に接続されたダイオード132,133のそれぞれは、「第4ダイオード」に相当する。
==チャージポンプ回路72の構成==
 図4は、チャージポンプ回路72の一例を示す図である。チャージポンプ回路72は、発振器300、インバータ310,311、ダイオード320~323、及びコンデンサ330,331を含んで構成される。なお、ここでは、ダイオード320~323の順方向電圧を、“Vf”とする。
 発振器300は、例えば、“スイッチX1”をオンするための指示信号Sbに基づいて、所定の周波数のクロック信号CLKを出力する回路であり、インバータ310,311は、入力される信号の論理レベルを反転して出力する。
 インバータ310、ダイオード320、コンデンサ330は、チャージポンプ回路72の1段目の昇圧回路を構成する。ダイオード320のアノードには、電源電圧Vddが印加され、カソードは、コンデンサ330の一端に接続される。また、コンデンサ330の他端には、インバータ310の出力が接続される。
 インバータ311、ダイオード321,322、コンデンサ331は、チャージポンプ回路72の2段目の昇圧回路を構成する。
 ダイオード321のアノードは、コンデンサ330の一端に接続され、カソードは、コンデンサ331の一端に接続される。ダイオード322のアノードには、電源電圧Vddが印加され、カソードは、コンデンサ331の一端に接続される。また、コンデンサ331の他端には、インバータ311の出力が接続される。
 そして、2段目の昇圧回路のコンデンサ331の一端の電圧Vc2は、ダイオード323を介して、電圧Vcpとして出力される。
==チャージポンプ回路72の動作==
 ここで、クロック信号CLKがハイレベル(以下、“H”レベル)であると、インバータ310の出力がローレベル(以下、“L”レベル)となり、コンデンサ330の一端の電圧Vc1は、ダイオード320を介して充電される。この結果、コンデンサ330の一端の電圧Vc1の電圧は、式(1)で表される。
 Vc1=Vdd-Vf・・・(1)
 そして、クロック信号がLレベルになると、インバータ310の出力はHレベル(電源電圧Vdd)となるため、コンデンサ330の一端の電圧Vc1は、式(2)で表される。
 Vc1=2×Vdd-Vf・・・(2)
 また、このタイミングにおいて、インバータ311の出力はLレベルであるため、コンデンサ331の他端は、接地電圧Vgnd(0V)となる。この結果、コンデンサ331の一端の電圧Vc2は、式(3)で表される。
 Vc2=2×Vdd-2×Vf・・・(3)
 さらに、クロック信号CLKがHレベルになると、インバータ311の出力はHレベルとなるため、コンデンサ331の一端の電圧Vc2は、式(4)で表される。
 Vc2=3×Vdd-2×Vf・・・(4)
 そして、ダイオード323のカソードには、分離回路73が接続されているため、ダイオード323から出力される電圧Vcpは、式(5)で表される。
 Vc2=3×Vdd-3×Vf・・・(5)
 なお、本実施形態のチャージポンプ回路72は、2段の昇圧回路を含むこととしたが、これに限られず、電圧VcpがNMOSトランジスタM1,M2をオンできる電圧であれば、どの様な構成であっても良い。
<<<IPS21の動作>>>
 ここで、図1のモータ制御装置10において、IPS21の“スイッチX1”がオン、オフした際の出力電圧Voutについて説明する。なお、ここでは、バッテリー11は、正常な向きに接続されているため、端子VCCには、電源電圧Vccが印加され、端子OUTには、モータ12のコイル(不図示)を介して接地電圧が印加されている。また、チャージポンプ回路72では、十分短い時間で所望の電圧Vcpを生成するよう、クロック信号CLKの周期は設定されていることとする。
 図5は、IPS21の出力電圧Voutの変化の一例を示す図である。ここでは、時刻t0に、“スイッチX1”をオンするための“H”レベルの指示信号Sbが入力されることとする。なお、時刻t0以前には、“スイッチX1”をオフするための“H”レベルの指示信号Scが入力されている。このため、時刻t0以前においては、図2の放電回路74のNMOSトランジスタ120と、オンされたスイッチ121,122とによって、NMOSトランジスタM1,M2(“スイッチX1”)はオフとなっている。
 まず、時刻t0において、“スイッチX1”をオンすべく、指示信号Sbが“H”レベルとなり、指示信号Scが“L”レベルとなると、チャージポンプ回路72は、電圧Vcpを出力し、スイッチ121,122はオフする。
 チャージポンプ回路72が電圧Vcpを出力すると、分離回路73は、電圧Vcpに応じた電圧を、ゲートラインL3,L4のそれぞれに印加することになる。ここで、NMOSトランジスタM1のソース電極S1の電圧は、電源電圧Vccであり、NMOSトランジスタM2のソース電極S2の電圧は、接地電圧Vgnd(0V)である。このため、NMOSトランジスタM1,M2のうち、まず、NMOSトランジスタM2がオンする。
 そして、ゲートラインL3に印加される電圧が、NMOSトランジスタM1のソース電極S1の電圧である電源電圧Vccより、NMOSトランジスタM1の閾値電圧だけ高くなると、NMOSトランジスタM1はオンする。この結果、NMOSトランジスタM1,M2がともにオンとなる時刻t1には、出力電圧Voutは、電源電圧Vccまで上昇する。なお、ここでは、便宜上、NMOSトランジスタM1,M2のオン抵抗により電圧降下等は考慮していない。
 そして、例えば、時刻t2に、“スイッチX1”をオフすべく、指示信号Sbが“L”レベルとなり、指示信号Scが“H”レベルとなると、チャージポンプ回路72は、電圧Vcpの出力を停止し、スイッチ121,122はオンする。
 ここで、本実施形態では、NMOSトランジスタ120が、NMOSトランジスタM1のゲート容量を放電する電流値は、NMOSトランジスタM1がオンとなる際には影響を与えないよう、十分小さい値が設定されている。一方、スイッチ121,122は、オン抵抗が十分小さいスイッチである。このため、NMOSトランジスタM2のゲート容量は、スイッチ121,122を介して短時間で放電され、NMOSトランジスタM2は、直ちにオフする。そして、NMOSトランジスタM2がオフとなると、電源電圧Vccは、ダイオード61で遮断される。この結果、例えば、時刻t3において、出力電圧Voutは、接地電圧へと低下することになる。
 したがって、時刻t3において、NMOSトランジスタM1はオンの状態であるが、NMOSトランジスタM2がオフすることにより、端子VCCと、端子OUTとの間に設けられた“スイッチX1”はオフすることになる。
 本実施形態では、“スイッチX1”を構成するNMOSトランジスタM1,M2は、電気的に分離されたゲートラインL3,L4によりそれぞれ駆動される。つぎに、このような構成の“スイッチX1”を用いた場合と、ゲート電極が共通する2つのNMOSトランジスタによって構成される“スイッチ”を用いる場合とで、出力電圧Voutの変化の時間を比較する。
<<<比較例に係るIPS25の構成>>
 図6は、比較例に係るIPS25の構成の一例を示す図である。IPS25は、IPS21と同様に、スイッチ(後述)が形成されたIC55と、スイッチをオン、オフするための回路を有するIC56と、を含んで構成される。なお、図2のIPS21と、図6のIPS25において、同じ符号の付された素子、ブロックは同じである。
 IC55は、IC50と同様に、NMOSトランジスタM1,M2を含む。ただし、NMOSトランジスタM1,M2のそれぞれのゲート電極G1,G2は接続されている。なお、IC55において、NMOSトランジスタM1,M2のゲート電極G1,G2以外の電極の接続は、IC50と同じである。また、以下、IC55において、NMOSトランジスタM1,M2で構成されるスイッチを、“スイッチX2”と称する。
 IC56は、“スイッチX2”を、オン、またはオフするための回路であり、電源回路70、制御回路71、チャージポンプ回路72、放電回路77、及び抵抗85を含んで構成される。ここで、IC56の電源回路70、制御回路71、チャージポンプ回路72は、IC51に含まれるブロックと同じであるため、放電回路77、及び抵抗85について説明する。
 放電回路77は、“スイッチX2”を構成するNMOSトランジスタM1,M2をオフするための回路であり、スイッチ125,126を含んで構成される。
 スイッチ125は、NMOSトランジスタM1,M2のゲート電極に接続されたゲートラインL6と、端子GNDに接続された接地ラインL5との間に設けられ、スイッチ126は、ゲートラインL6と、負荷ラインL2との間に設けられている。
 そして、スイッチ125,126は、例えば、“スイッチX2”をオフするための指示信号Scに基づいてオンする。このため、NMOSトランジスタM1,M2のゲート容量は、ゲートラインL6、スイッチ125、及び接地ラインL5の経路と、ゲートラインL6、スイッチ126、及び負荷ラインL2の経路と、を介して放電される。
 抵抗85は、NMOSトランジスタM1,M2のゲート抵抗であり、例えば、図2のIPS21のNMOSトランジスタM1,M2のそれぞれのゲート抵抗と同じ抵抗値を有する。
<<<比較例に係るIPS25の動作>>
 図7は、IPS25の出力電圧Voutの変化の一例を示す図である。なお、ここでは、図5で示したIPS21の出力電圧Voutの波形を比較対象として図示している。
 また、ここでは、図5と同様に、時刻t0に、“スイッチX1”をオンするための“H”レベルの指示信号Sbが入力されることとする。
 まず、時刻t0において、“スイッチX2”をオンすべく、指示信号Sbが“H”レベルとなり、指示信号Scが“L”レベルとなると、チャージポンプ回路72は、電圧Vcpを出力し、スイッチ125,126はオフする。
 チャージポンプ回路72が電圧Vcpを出力すると、電圧Vcpが、ゲートラインL6に印加されることになる。ここで、NMOSトランジスタM1,M2のゲート電極は共通であるため、チャージポンプ回路72は、IPS21の“スイッチX1”と比較して、大きな容量を駆動する必要がある。この結果、上述した“スイッチX1”がオンする時刻t1より遅いタイミングの時刻t10に“スイッチX2”がオンし、出力電圧Voutが電源電圧Vccまで上昇する。このように、時刻t0~時刻t1までの期間は、時刻t0~時刻t10までの期間より短いため、IPS21は、“スイッチX1”をより短い期間でオンできる。
 また、例えば、時刻t2に、“スイッチX2”をオフすべく、指示信号Sbが“L”レベルとなり、指示信号Scが“H”レベルとなると、チャージポンプ回路72は、電圧Vcpの出力を停止し、スイッチ125,126はオンする。
 ここで、図2のIPS21においては、スイッチ121,122は、NMOSトランジスタM2のみのゲート容量を放電したが、図6のIPS25のスイッチ125,126は、NMOSトランジスタM1,M2のゲート容量を放電する必要がある。この結果、“スイッチX1”がオフする時刻t3より遅い時刻t11に、“スイッチX2”がオフし、出力電圧Voutは、接地電圧まで低下する。このように、時刻t2~時刻t3までの期間は、時刻t2~時刻t11までの期間より短いため、IPS21は、“スイッチX1”をより短い期間でオフできる。
===バッテリー11が逆接続された場合===
 図8は、バッテリー11が逆接続された際のIPS21の動作を説明するため図である。なお、便宜上、図8においては、図2のIPS21の複数のブロックうち、逆接続の動作に関連する一部のブロックのみ図示している。
 図9は、NMOSトランジスタ120の断面を示す図である。NMOSトランジスタ120は、IC51の半導体基板400に形成され、ポリシリコン等の導電材料で形成されたゲート電極410、ソース電極411、ドレイン電極412、基板電極413,414を備える。
 なお、図2及び図8と、図9とでは、NMOSトランジスタ120の電極に、便宜上異なる符号を付しているが、NMOSトランジスタ120のゲート電極410は“ゲート電極G3”に相当し、ソース電極411は“ソース電極S3”に相当する。また、ドレイン電極412は“ドレイン電極D3”に相当し、基板電極413,414は“基板電極B3”,“基板電極Bx”のそれぞれに相当する。
 半導体基板400の内部には、n型のドリフト領域420、p型のウェル領域421、n+型のソース領域422、n+型のドレイン領域423、n型のゲート領域424、p+型のコンタクト領域425、n+型のコンタクト領域426が形成されている。
 ドリフト領域420は、例えばリン等のn型の不純物を含む領域であり、ウェル領域421は、ドリフト領域420より表面側に形成された、p型の領域である。なお、ドリフト領域420は、「第1領域」に相当し、ウェル領域421は、「第2領域」に相当する。
 ソース領域422、及びドレイン領域423は、ウェル領域421の一部に形成されたn+型の領域であり、ソース領域422と、ドレイン領域423との間のには、n型のゲート領域424が形成されている。
 また、ウェル領域421の半導体基板400の表面側には、ウェル領域421より、p型の不純物を高濃度に含むコンタクト領域425が形成されている。なお、p型のウェル領域421と、n型のドリフト領域420との間には、寄生ダイオードであるダイオード500が形成される。
 さらに、n型のドリフト領域420の半導体基板400の表面側には、n型の不純物を高濃度に含むコンタクト領域426が形成されている。
 図8において、バッテリー11が逆接続されると、端子OUTには、バッテリー11の正極の電源電圧Vccが、モータ12のモータコイル(不図示)やスイッチ31を介して印加される。一方、端子VCCには、バッテリー11の負極の電圧が印加される。
 このような状態において、端子OUTに印加された電源電圧Vccは、モータ12のモータコイル(不図示)や負荷ラインL2等を介し、NMOSトランジスタ120のソース電極S3、ゲート電極G3及び基板電極B3に印加される。
 ここで、NMOSトランジスタ120は、n型の半導体基板400に形成されているため、n型の半導体基板400の基板電極Bxは、通常、最も高い電位である電源電圧Vccが印加されるよう、端子VCCの電源ラインL1に接続されている。
 ただし、バッテリー11が逆接続されている状態では、基板電極Bxにバッテリー11の負極の電圧が印加されることになるため、図9で示した寄生ダイオードであるダイオード500がオンする。この結果、NMOSトランジスタ120のソース電極S3、ゲート電極G3及び基板電極B3の電圧は、電源電圧Vccから、ダイオード500の“順方向電圧Vfx”まで低下することになる。
 このため、仮に、NMOSトランジスタM1のゲート容量に電荷が蓄積されていた場合であっても、NMOSトランジスタM1のゲート容量は、ゲートラインL3、NMOSトランジスタ120のドレイン電極D3、ダイオード500、基板電極B3を介して放電される。なお、図8において、NMOSトランジスタM1のゲート容量が放電される経路を、一点鎖線で図示している。
 また、本実施形態では、NMOSトランジスタM1の閾値電圧を、ダイオード500の“順方向電圧Vfx”より高く設定している。このため、このような経路で、NMOSトランジスタM1のゲートが放電されることにより、NMOSトランジスタM1は確実にオフする。
 したがって、バッテリー11が逆接続されると、端子OUTに印加された電源電圧Vccは、ダイオード61を介してNMOSトランジスタM1へと出力されるが、オフされたNMOSトランジスタM1で遮断される。この結果、本実施形態では、バッテリー11が逆接続された場合であっても、IPS21は、モータ12等を適切に保護することができる。
===まとめ===
 以上、本実施形態のモータ制御装置10について説明した。本実施形態では、“スイッチX1”を構成するNMOSトランジスタM1,M2のゲートラインL3,L4は、電気的に分離されている。このため、例えば、図7に示したように、“スイッチX1”のスイッチング期間は短くなる。
 また、本実施形態では、電圧Vcpは、ダイオード100,101を介してゲートラインL3に印加され、ダイオード102,103を介してゲートラインL4に印加されている。このため、1つのチャージポンプ回路72から出力される電圧Vcpを、電気的に分離して、ゲートラインL3,L4に印加することができる。
 また、例えば、ゲートラインL3,L4のそれぞれに対しチャージポンプ回路を設けても良いが、そのような構成とすると、回路規模が大きくなる。本実施形態では、分離回路73を用いているため、回路規模を小さく保ちつつ、電気的に分離したゲートラインL3,L4に電圧を印加できる。
 また、本実施形態のダイオード130,131は、NMOSトランジスタM1のゲート電極G1に対し、ソース電極S1の電圧が高くなり過ぎることを防ぐことができるため、NMOSトランジスタM1のゲート酸化膜がダメージを受けることを抑制できる。さらに、ダイオード130,131は、スイッチX1をオンする前に、NMOSトランジスタM1のゲート電極G1のゲート容量を予め充電する効果を奏する。
 また、本実施形態のダイオード132,133は、NMOSトランジスタM2のゲート電極G2に対し、ソース電極S2の電圧が高くなり過ぎることを防ぐことができるため、NMOSトランジスタM2のゲート酸化膜がダメージを受けることを抑制できる。
 また、放電回路74は、指示信号Scに基づいて、NMOSトランジスタM2のゲート容量を放電するため、確実にNMOSトランジスタM2はオフされる。
 また、例えば、放電回路74のスイッチ121は、NMOSトランジスタM2のゲート容量を、接地ラインL5へと放電する。このため、例えば、スイッチ121のみの場合と比較すると、NMOSトランジスタM2をオフする期間を短くすることができる。
 また、ゲートラインL3,L4のそれぞれには、抵抗80,81が設けられているため、NMOSトランジスタM1,M2がオンする際のノイズが抑制される。
 また、NMOSトランジスタM1のゲート容量は、デプレッション型のNMOSトランジスタ120によって放電される。NMOSトランジスタ120は、複雑な回路を用いることなく、確実にNMOSトランジスタM1をオフできる。
 また、NMOSトランジスタ120は、例えば、n型のドリフト領域420に形成された、p型のウェル領域421に形成されている。このような構成では、バッテリー11が逆接続された際には、NMOSトランジスタ120の寄生のダイオード500はオンする。この結果、NMOSトランジスタM1のゲート容量を放電することができる。
 また、本実施形態では、NMOSトランジスタM1の閾値電圧は、ダイオード500の“順方向電圧Vfx”より大きい値となっている。このため、NMOSトランジスタM1のゲート容量が、ダイオード500を介して放電されると、NMOSトランジスタM1は確実にオフされる。これにより、バッテリー11が逆接続された場合であっても、IPS21は、負荷を確実に保護することができる。
 上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。
 例えば、本実施形態では、ECU20のスイッチ31を介して、IPS21の出力電圧Voutが、負荷であるモータ12に印加されることとしたが、これに限られない。例えば、IPS21の出力電圧Voutが、モータ12に直接印加されることとしても良い。
 また、IC51は、n型の半導体基板であることとしたが、例えば、p型の半導体基板であっても良い。また、IC51に、p型の半導体基板を用いた場合、NMOSトランジスタ120に寄生のダイオード500が形成されるよう、ツインウェル、またはトリプルウェル構造の半導体装置を用いれば、本実施形態と同様の効果を得ることができる。
10 モータ制御装置
11 バッテリー
12 モータ
20 ECU
21,25 IPS
50,51,55,56 IC
60,61,100~103,130~133,320~323,500 ダイオード
70 電源回路
71 制御回路
72 チャージポンプ回路
73 分離回路
74,77 放電回路
75,76 ゲート保護回路
80~82,85,104,105,134 抵抗
120,M1,M2 NMOSトランジスタ
121,122,125,126 スイッチ
200,400 半導体基板
220,420 ドリフト領域
222,421 ウェル領域
223,422 ソース領域
221,423 ドレイン領域
224,425,426 コンタクト領域
230 ゲートトレンチ部
231 酸化膜
240 絶縁膜
300 発振器
310,311 インバータ
330,331 コンデンサ
G1~G3,241,410 ゲート電極
S1~S3,211,411 ソース電極
D1~D3,210,412 ドレイン電極
B3,Bx,212,413,414 基板電極
424 ゲート領域
 

Claims (11)

  1.  電源電圧が印加される第1ラインと負荷が接続される第2ラインとの間で互いのドレイン電極が直列に接続された第1及び第2MOSトランジスタと、
     前記第1MOSトランジスタのゲート電極に接続された第3ラインと、
     前記第2MOSトランジスタのゲート電極に接続され、前記第3ラインと電気的に分離して設けられた第4ラインと、
     を備えることを特徴とする半導体装置。
  2.  請求項1に記載の半導体装置であって、
     前記第1及び第2MOSトランジスタをオンするための所定電圧を、前記第3ラインに印加する第1ダイオードと、
     前記所定電圧を、前記第4ラインに印加する第2ダイオードと、
     を備えることを特徴とする半導体装置。
  3.  請求項2に記載の半導体装置であって、
     前記第1及び第2MOSトランジスタのオンを指示する第1指示信号に基づいて、前記第1及び第2ダイオードに前記所定電圧を出力するチャージポンプ回路を備えること、
     を特徴とする半導体装置。
  4.  請求項1~3の何れか一項に記載の半導体装置であって、
     アノード側が前記第1ラインに接続され、カソード側が前記第3ラインに接続された第3ダイオードを備えること、
     を特徴とする半導体装置。
  5.  請求項1~4の何れか一項に記載の半導体装置であって、
     アノード側が前記第2ラインに接続され、カソード側が前記第4ラインに接続された第4ダイオードを備えること、
     を特徴とする半導体装置。
  6.  請求項1~5の何れか一項に記載の半導体装置であって、
     前記第2MOSトランジスタのオフを指示する第2指示信号に基づいて、前記第2MOSトランジスタのゲート容量を放電する放電回路を備えること、
     を特徴とする半導体装置。
  7.  請求項6に記載の半導体装置であって、
     前記放電回路は、
     前記第4ラインと、接地側の第5ラインとの間に設けられ、前記第2指示信号に基づいてオンする第1スイッチと、
     前記第4ラインと、前記第2ラインとの間に設けられ、前記第2指示信号に基づいてオンする第2スイッチと、
     を含むこと、
     を特徴とする半導体装置。
  8.  請求項1~7の何れか一項に記載の半導体装置であって、
     前記第3ラインと、前記第4ラインとにそれぞれ、抵抗が設けられていること、
     を特徴とする半導体装置。
  9.  請求項1~8の何れか一項に記載の半導体装置であって、
     デプレッション型の第3MOSトランジスタを備え、
     前記第3MOSトランジスタは、ゲート電極とソース電極とが前記第2ラインに接続され、ドレイン電極が前記第3ラインに接続されること、
     を特徴とする半導体装置。
  10.  請求項9に記載の半導体装置であって、
     前記第3MOSトランジスタは、NMOSトランジスタであって、半導体基板のn型の第1領域に形成されたp型の第2領域に形成されていること、
     を特徴とする半導体装置。
  11.  請求項10に記載の半導体装置であって、
     前記第1MOSトランジスタの閾値電圧は、前記第1及び第2領域で形成される寄生ダイオードの順方向電圧より大きいこと、
     を特徴とする半導体装置。
     
PCT/JP2020/025212 2019-08-06 2020-06-26 半導体装置 WO2021024643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080011324.9A CN113396541B (zh) 2019-08-06 2020-06-26 半导体装置
JP2021537620A JP7099640B2 (ja) 2019-08-06 2020-06-26 半導体装置
US17/381,426 US12230627B2 (en) 2019-08-06 2021-07-21 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144555 2019-08-06
JP2019-144555 2019-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/381,426 Continuation US12230627B2 (en) 2019-08-06 2021-07-21 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2021024643A1 true WO2021024643A1 (ja) 2021-02-11

Family

ID=74502920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025212 WO2021024643A1 (ja) 2019-08-06 2020-06-26 半導体装置

Country Status (4)

Country Link
US (1) US12230627B2 (ja)
JP (1) JP7099640B2 (ja)
CN (1) CN113396541B (ja)
WO (1) WO2021024643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12218654B2 (en) 2022-09-26 2025-02-04 Kabushiki Kaisha Toshiba Switching device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586176B (zh) * 2021-12-31 2024-01-23 英诺赛科(苏州)半导体有限公司 氮基双向开关器件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154778A (ja) * 1974-11-08 1976-05-14 Fujitsu Ltd
JPS5181578A (ja) * 1975-01-16 1976-07-16 Hitachi Ltd Handotaisochi
JPH0463475A (ja) * 1990-07-03 1992-02-28 Toshiba Corp 半導体装置
JPH06348350A (ja) * 1993-06-10 1994-12-22 Matsushita Electric Works Ltd 電源装置
JPH11178224A (ja) * 1997-12-08 1999-07-02 Nec Kansai Ltd 電池パック
JP2013150139A (ja) * 2012-01-19 2013-08-01 Asahi Kasei Electronics Co Ltd 電源接続装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530312B2 (ja) * 1975-01-16 1980-08-09
US5539610A (en) 1993-05-26 1996-07-23 Siliconix Incorporated Floating drive technique for reverse battery protection
JP2001224135A (ja) 2000-02-08 2001-08-17 Nissan Motor Co Ltd 負荷駆動装置
JP4942007B2 (ja) * 2004-10-25 2012-05-30 ルネサスエレクトロニクス株式会社 半導体集積回路
JP2006217699A (ja) 2005-02-02 2006-08-17 Yazaki Corp 異常検出装置
JP5747727B2 (ja) 2011-08-08 2015-07-15 株式会社デンソー 電源逆接保護装置
JP5488550B2 (ja) 2011-08-19 2014-05-14 株式会社安川電機 ゲート駆動回路および電力変換装置
JP6229952B2 (ja) * 2012-08-10 2017-11-15 パナソニックIpマネジメント株式会社 バッテリー装置およびバッテリー制御装置
JP6117640B2 (ja) * 2013-07-19 2017-04-19 ルネサスエレクトロニクス株式会社 半導体装置及び駆動システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154778A (ja) * 1974-11-08 1976-05-14 Fujitsu Ltd
JPS5181578A (ja) * 1975-01-16 1976-07-16 Hitachi Ltd Handotaisochi
JPH0463475A (ja) * 1990-07-03 1992-02-28 Toshiba Corp 半導体装置
JPH06348350A (ja) * 1993-06-10 1994-12-22 Matsushita Electric Works Ltd 電源装置
JPH11178224A (ja) * 1997-12-08 1999-07-02 Nec Kansai Ltd 電池パック
JP2013150139A (ja) * 2012-01-19 2013-08-01 Asahi Kasei Electronics Co Ltd 電源接続装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12218654B2 (en) 2022-09-26 2025-02-04 Kabushiki Kaisha Toshiba Switching device

Also Published As

Publication number Publication date
CN113396541B (zh) 2025-06-10
JPWO2021024643A1 (ja) 2021-11-25
CN113396541A (zh) 2021-09-14
US20210351177A1 (en) 2021-11-11
JP7099640B2 (ja) 2022-07-12
US12230627B2 (en) 2025-02-18

Similar Documents

Publication Publication Date Title
US5917359A (en) Semiconductor apparatus having protective circuitry
US7466189B2 (en) Semiconductor integrated circuit
US7495482B2 (en) Semiconductor device
US7606082B2 (en) Semiconductor circuit, inverter circuit, semiconductor apparatus, and manufacturing method thereof
US8013642B2 (en) Output drive circuit
US20160336442A1 (en) Integrated high side gate driver structure and circuit for driving high side power transistors
JP7099640B2 (ja) 半導体装置
US6844769B2 (en) Drive circuit
JP2007281196A (ja) 半導体装置
JP7505267B2 (ja) スイッチング制御回路、半導体装置
US20080169863A1 (en) Semiconductor integrated circuit device including charge pump circuit capable of suppressing noise
JP2000286687A (ja) レベルシフト回路及びインバータ装置
CN112821728A (zh) 开关控制电路、半导体装置
JP2021150532A (ja) 半導体装置
JP3617425B2 (ja) 半導体集積回路装置の入力インターフェイス回路
JP5805573B2 (ja) 出力回路
JP7533109B2 (ja) 半導体装置
JP3518310B2 (ja) 容量性負荷駆動回路
JP7581763B2 (ja) 半導体装置
JP5226474B2 (ja) 半導体出力回路
KR101091835B1 (ko) 음전압 공급장치
JP3681731B2 (ja) ドライブ回路
JP2990998B2 (ja) 半導体装置及びその製造方法
CN109194100B (zh) 一种栅极驱动电路
JP3396872B2 (ja) 電圧検出回路及び高電圧出力回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849247

Country of ref document: EP

Kind code of ref document: A1