[go: up one dir, main page]

WO2021024572A1 - Method for manufacturing cylindrical member - Google Patents

Method for manufacturing cylindrical member Download PDF

Info

Publication number
WO2021024572A1
WO2021024572A1 PCT/JP2020/019876 JP2020019876W WO2021024572A1 WO 2021024572 A1 WO2021024572 A1 WO 2021024572A1 JP 2020019876 W JP2020019876 W JP 2020019876W WO 2021024572 A1 WO2021024572 A1 WO 2021024572A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
pressing force
machining tool
protruding
pressing
Prior art date
Application number
PCT/JP2020/019876
Other languages
French (fr)
Japanese (ja)
Inventor
紘和 岩本
早川 尚志
恒彦 木村
Original Assignee
株式会社三五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三五 filed Critical 株式会社三五
Priority to JP2021507100A priority Critical patent/JP7041319B2/en
Priority to MYPI2021000948A priority patent/MY192796A/en
Publication of WO2021024572A1 publication Critical patent/WO2021024572A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/04Reducing; Closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/84Making other particular articles other parts for engines, e.g. connecting-rods

Definitions

  • a tubular member having a contracted tube portion protruding outward from the virtual extension surface of the outer peripheral surface of the straight tube portion is formed from a workpiece having a straight tubular shape by spinning processing.
  • the present invention relates to a method for manufacturing a shaped member.
  • a tubular stepped work having a non-processed portion having an outer shape of the final target shape of the main body portion and a machining target portion adjacent to the non-processed portion and having a larger outer diameter than the non-processed portion is provided. It has been proposed to form a tubular member having a reduced diameter portion protruding outward from the virtual extension surface of the outer peripheral surface of the main body portion by spinning processing used as a raw pipe (for example, Patent Documents 2 and 3). See). Such a stepped work can be formed by, for example, expanding or reducing the diameter of one end of a raw tube having a straight tubular shape.
  • the straight pipe portion is adjacent to the straight pipe portion and has at least one of eccentricity, inclination and twist with respect to the axis of the straight pipe portion.
  • On one side of the work in a method of forming a tubular member having a reduced tube portion having a final target shape and having a portion of the straight tube portion protruding outward from the virtual extension surface of the straight pipe portion by spinning.
  • At least a part of the plurality of paths of the machining tool in the first step may include a state in which the machining tool does not contact one side of the work. It is desirable that the machining tool presses the work in the path at least at the starting point of the path.
  • the method for manufacturing a tubular member according to the present invention is a raw tube having a cylindrical shape using a spinning processing device.
  • This is a method for manufacturing a tubular member, which forms a tubular member having a straight pipe portion and a contracted pipe portion by performing a spinning process in a range from one end to the middle of a work in the axial direction.
  • the straight pipe portion is a portion where a part of the work is maintained in an unprocessed state.
  • the reduced pipe portion has an axis that is adjacent to the straight pipe portion and has at least one relationship of eccentricity, inclination, and twist with respect to the axis of the straight pipe portion, and a part of the outer peripheral surface of the straight pipe portion. It is a part having a final target shape protruding outward from the virtual extension surface.
  • the spinning processing device is configured to be able to control the work angle, offset, and pressing radius, respectively.
  • the work angle is an angle formed by the rotation axis of the machining tool that presses the work and the axis of the work.
  • the offset is the distance between the central axis of the workpiece portion pressed by the machining tool and the rotation axis of the machining tool.
  • the pressing radius is the distance from the rotation axis of the pressing portion of the processing tool.
  • the work used in the method of the present invention has a straight tubular shape having a constant outer diameter. Furthermore, the method of the present invention includes the first step and the second step shown below.
  • the final target is the portion corresponding to the protruding portion of the work by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force becomes smaller than the second pressing force.
  • This is a step of projecting to the position of the protruding portion in the shape or a position outside the virtual extension surface from the position.
  • the first pressing force is the pressing force on the workpiece of the machining tool on the protruding side where the protruding portion is formed, which is the portion protruding outward from the virtual extension surface in the final target shape of the contracted tube portion of the tubular member. is there.
  • the second pressing force is the pressing force on the workpiece of the machining tool on the opposite side of the protruding side with the rotation axis of the machining tool in between.
  • the pressing force difference which is the difference between the first pressing force and the second pressing force, is smaller than the pressing force difference in the first step, and the first pressing force is equal to or less than the second pressing force.
  • At least a part of a plurality of paths of the machining tool in the first step may include a state in which the machining tool does not come into contact with one side of the work.
  • at least a part of the plurality of paths of the machining tool in the first step is a non-contact path including a state in which the machining tool does not contact the work when the machining tool is on the protruding side.
  • the combination of the work angle and the offset and / or the pressing radius is controlled.
  • the machining tool in the non-contact path described above, may press the work at least at the starting point of the path.
  • the workpiece is pressed so that the machining tool presses the work when the machining tool is on the protruding side at the starting point which is at least the end of the machining tool on the straight pipe side.
  • the combination of angle and offset and / or pressing radius is controlled.
  • a tubular member having a contracted tube portion that protrudes outward from the virtual extension surface of the outer peripheral surface of the straight tube portion is spun into a work having a straight tubular shape having a constant outer diameter.
  • first method a method for manufacturing a tubular member according to the first embodiment of the present invention
  • the first method is to use a spinning processing device to perform spinning processing from one end to the middle of the work, which is a raw pipe having a cylindrical shape, in the axial direction, thereby forming a straight pipe portion and a contracted pipe.
  • This is a method for manufacturing a tubular member, which forms a tubular member having a portion.
  • the straight pipe portion is a portion where a part of the work is maintained in an unprocessed state.
  • the reduced pipe portion has an axis that is adjacent to the straight pipe portion and has at least one relationship of eccentricity, inclination, and twist with respect to the axis of the straight pipe portion, and a part of the outer peripheral surface of the straight pipe portion. It is a part having a final target shape protruding outward from the virtual extension surface.
  • a tubular member having a straight pipe portion and a reduced pipe portion as described above may be referred to as a "specific tubular member".
  • the spinning processing device is configured to be able to control the work angle, offset, and pressing radius, respectively.
  • the work angle is an angle formed by the rotation axis of the machining tool that presses the work and the axis of the work.
  • the offset is the distance between the central axis of the workpiece portion pressed by the machining tool and the rotation axis of the machining tool.
  • the pressing radius is the distance from the rotation axis of the pressing portion of the processing tool.
  • Machining tool refers to a molding tool that is pressed against the work in spinning.
  • Specific examples of the processing tool include forming tools such as spatulas and rollers. Since the general configuration and operation of the spinning processing apparatus are well known to those skilled in the art, detailed description thereof will be omitted here.
  • the work used in the first method has a straight tubular shape having a constant outer diameter. That is, in the first method, a raw tube having a straight tubular shape is used as the work, not a raw tube having a special shape like the stepped work used in the above-mentioned conventional technique. Specific examples of such a work include a metal pipe such as a steel pipe.
  • FIG. 1 is a flowchart showing the flow of each process executed in the first method.
  • step S01 in FIG. 1 the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 becomes smaller than the second pressing force Pf2.
  • This is a step of projecting the portion corresponding to the protruding portion of the work to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
  • the first pressing force Pf1 is the pressing force against the work of the machining tool on the protruding side, which is the side where the protruding portion is formed, which is the portion protruding outward from the virtual extension surface in the final target shape of the contracted tube portion of the tubular member. Is.
  • the second pressing force Pf2 is the pressing force on the workpiece of the machining tool on the opposite side of the protruding side with the rotation axis of the machining tool sandwiched.
  • the combination of the work angle and the offset and / or the pressing radius is set so that the pressing force acting on the work by the machining tool is larger on the opposite side of the protruding side than on the protruding side. Be controlled. Specifically, by controlling the combination of the work angle and the offset, the combination of the work angle and the pressing radius, or the combination of the work angle and the offset and the pressing radius, the pressing force acting on the work by the machining tool protrudes. Spinning is applied to the work while achieving a larger state on the opposite side of the protruding side than on the side.
  • the portion corresponding to the protruding portion of the work that is, the portion that becomes the protruding portion in the final target shape
  • the first step is completed and the process proceeds to the next second step.
  • the virtual extension surface of the outer peripheral surface of the straight pipe portion is a surface obtained when the outer peripheral surface of the straight pipe portion is extended in the axial direction of the straight pipe portion.
  • the straight pipe portion is a portion where a part of the work is maintained in an unprocessed state. Therefore, the virtual extension surface is also a surface obtained when the outer peripheral surface of the work is extended in the axial direction of the work.
  • the pressing force difference which is the difference between the first pressing force and the second pressing force
  • This is a step of forming a contracted tube portion having a final target shape by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force is smaller than the second pressing force. ..
  • the portion corresponding to the contracted tube portion of the work (that is, the portion that becomes the contracted tube portion of the finally obtained tubular member) is formed into the final target shape and the contracted tube.
  • the combination of the workpiece angle and the offset and / or pressing radius is controlled so that the portion is formed.
  • the spinning process performed in the second step is basically the same as the general spinning process.
  • the portion corresponding to the protruding portion of the work is already formed so as to protrude to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. That is, it is not necessary to bend the work to the protruding side any more in the second step. Therefore, in the second step, the work angle and the offset and / or the pressing radius are set so that the pressing force difference, which is the difference between the first pressing force and the second pressing force, is smaller than the pressing force difference in the first step. The combination of is controlled.
  • the protrusion amount of the portion corresponding to the position of the protrusion in the final target shape or the protrusion of the work formed so as to protrude to a position outside the virtual extension surface from the position is It is necessary to prevent the portion from being reduced in the second step and returning to the inside of the virtual extension surface. Therefore, in the second step, it is necessary that the first pressing force is equal to or less than the second pressing force. In other words, in the second step, it is necessary that the first pressing force is not larger than the second pressing force. Therefore, in the second step, the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force is equal to or less than the second pressing force.
  • FIG. 2 is a schematic view showing an example of the structure of the specific tubular member.
  • (A) is a partial cross-sectional view when the specific tubular member is observed from the side surface
  • (b) is a plan view when the specific tubular member is observed from the opposite side of the protruding side
  • (c) is (c). It is sectional drawing of the straight pipe part of the specific tubular member by the plane including the broken line AA shown in b).
  • the specific tubular member 200 illustrated in FIG. 2 includes a straight pipe portion 210, which is a portion of the work that is maintained in an unprocessed state, and a straight pipe portion 210 that is adjacent to the straight pipe portion 210 and has a straight pipe portion 210. It has an axis that is inclined with respect to the axis, and has a final target shape in which a part (the part surrounded by the broken line) protrudes outward from the virtual extension surface (two-dot chain line) of the outer peripheral surface of the straight pipe portion 210. It is a tubular member having a reduced tube portion 220 which is a portion.
  • a contracted pipe portion protruding outward from the virtual extension surface of the outer peripheral surface of the raw pipe (work) of the processing source is formed by general spinning processing. It is said that it is impossible to do so. That is, it is not possible to form the specific tubular member as illustrated in FIG. 2 from a work having a straight tubular shape by general spinning processing. This is because, for example, as shown in FIG. 3, in general spinning processing, the processing tool 310 moves inward from the outer peripheral surface (dashed line) of the work while pressing the work (white outline). See the arrow).
  • a tubular stepped work 130 having a non-processed portion 110 corresponding to the straight pipe portion 210 as shown in b) and a processed target portion 120 adjacent to the non-processed portion 110 and having an outer diameter larger than that of the non-processed portion 110. It is necessary to use it as a bare tube.
  • a raw tube having a straight tubular shape is used as a work.
  • the portion of the work corresponding to the protruding portion of the reduced tube portion constituting the specific tubular member is placed outside the position of the protruding portion in the final target shape of the reduced tube portion or the virtual extension surface from the position. Protrude to the position of.
  • Such a forming process is performed in the spinning processing apparatus by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force becomes smaller than the second pressing force.
  • FIG. 5 is a schematic view showing a change in the shape of the work in the first step included in the first method.
  • a part (protruding portion) of the reduced tube portion 220 is larger than the virtual extension surface of the straight tube portion 210 by the amount of protrusion D. It protrudes outward.
  • the pressing force (first pressing force Pf1) at which the machining tool 310 presses the work 100 on the projecting side (lower side toward the drawing) on which the protruding portion is formed is the machining tool 310.
  • the combination of the work angle and the offset and / or the pressing radius is set so that the machining tool 310 is smaller than the pressing force (second pressing force Pf2) pressing the work 100 on the opposite side of the rotating shaft of Be controlled.
  • rotation of a machining tool that presses the work by rotating a clamp 320 that holds the work 100 around an axis that forms a predetermined angle (for example, 90 °) with respect to the axis of the work 100.
  • the work angle which is the angle formed by the axis and the axis of the work, can be controlled.
  • the position of the clamp 320 with respect to the axis of the work 100 it is possible to control the offset which is the distance between the central axis of the part of the work pressed by the machining tool and the rotation axis of the machining tool.
  • the pressing radius which is the distance from the rotation axis of the pressing portion of the machining tool.
  • the portion of the work 100 corresponding to the protruding portion in the final target shape of the contracted tube portion 220 is the position of the protruding portion or a virtual extension surface from the position. It can be projected to a more outer position. Therefore, in the next second step, the portion corresponding to the contracted tube portion 220 of the work 100 (that is, the contracted tube portion 220 of the finally obtained tubular member 200) is obtained in the same manner as the general spinning process.
  • the contracted tube portion 220 can be formed by molding the portion) into the final target shape.
  • FIG. 5 shows a very schematic change in the shape of the work 100 in the first step for the purpose of facilitating the understanding of the present invention, and accurately represents the actual shape of the work 100. is not it. Therefore, the transition of the processed shape of the work 100 in the process of forming the specific tubular member 200 from the work 100 having a straight tubular shape by the first method will be described in detail below.
  • the positional relationship between the machining tool and the work (work angle, offset and pressing radius) in the path and the shape of the work are schematically shown in FIGS. 8 to 13, respectively.
  • the final target shape of the portion of the specific tubular member to be the contracted tube portion 220 finally obtained is shown by the dotted line.
  • the work 100 is rotated clockwise by a predetermined angle and offset by a predetermined amount to the protruding side (lower side toward the drawing) as shown by the white arrow.
  • Spinning is performed with a predetermined pressing radius.
  • the pressing force (first pressing force Pf1) of the machining tool 310 on the work 100 on the protruding side of the work 100 is the machining tool 310 on the opposite side of the protruding side across the rotation axis of the machining tool 310. It is controlled to be smaller than the pressing force on the work 100 (second pressing force Pf2). As a result, the amount of protrusion of the tip side (the side that becomes the contracted tube portion 220) of the work 100 toward the protruding side is slightly increased.
  • the spinning process is performed with a larger work angle, a larger offset, and a smaller pressing radius as compared with the second pass illustrated in FIG.
  • the first pressing force Pf1 is controlled to be smaller than the second pressing force Pf2.
  • the amount of protrusion of the tip side portion of the work 100 toward the protruding side is further increased, and the tip end side portion of the work 100 is the protruding portion of the contracted tube portion 220 (indicated by the dotted line) in the final target shape.
  • the spinning process is performed with a larger work angle, a larger offset, and a smaller pressing radius as compared with the fifth pass illustrated in FIG.
  • the pressing force difference ⁇ Pf2 which is the difference between the first pressing force Pf1 and the second pressing force Pf2 at this time, is smaller than the pressing force difference ⁇ Pf1 in the first step, and the first pressing force is equal to or less than the second pressing force.
  • the combination of the work angle and the offset and / or the pressing radius is controlled.
  • the work 100 formed so as to project to the position of the protruding portion in the final target shape by the spinning process (first step) up to the fifth pass (N 5) illustrated in FIG.
  • the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 is equal to or less than the second pressing force Pf2.
  • the portion on the tip end side (the side that becomes the reduced tube portion 220) of the work 100 is formed so as to approach the final target shape of the reduced tube portion 220.
  • the cutting edge of the final shape obtained as described above is longer than the cutting edge of the final target shape of the reduced tube portion 220, for example, cutting or the like.
  • secondary processing may be performed to a shape that matches the final target shape.
  • a tubular member having a contracted tube portion protruding outward from the virtual extension surface of the outer peripheral surface of the straight tube portion has a straight tubular shape having a constant outer diameter.
  • Second Embodiment a method for manufacturing a tubular member according to a second embodiment of the present invention (hereinafter, may be referred to as a “second method”) will be described.
  • the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 becomes smaller than the second pressing force Pf2.
  • the portion corresponding to the protruding portion of the work can be projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
  • the machining tool does not come into contact with the protruding side of the work. It is desirable to cause it.
  • the second method is the first method described above, and the machining tool comes into contact with the work when at least a part of the plurality of passes of the machining tool in the first step is on the protruding side. It is a method of manufacturing a tubular member that controls a combination of a work angle and an offset and / or a pressing radius so as to be a non-contact path that includes a non-contact state.
  • the machining tool when the machining tool is on the protruding side, the machining tool does not come into contact with the work. In this way, when the machining tool is on the protruding side and the machining tool does not come into contact with the work, the machining tool is on the opposite side of the protruding side than when the machining tool is on the protruding side. Will be in contact with the work for a longer period of time.
  • the first push pressure Pf1 can be made smaller than the second push pressure Pf2 more reliably, and the first push in the first step can be performed.
  • At least a part of the plurality of paths of the machining tool in the first step includes a state in which the machining tool does not contact the work when the machining tool is on the protruding side.
  • the combination of the work angle and the offset and / or the pressing radius is controlled so as to be a non-contact path. Therefore, according to the second method, the portion corresponding to the protruding portion of the work can be more reliably projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
  • a method for manufacturing a tubular member according to a third embodiment of the present invention (hereinafter, may be referred to as a “third method”) will be described.
  • the second method at least a part of the plurality of paths of the machining tool in the first step includes a state in which the machining tool does not contact the work when the machining tool is on the protruding side.
  • the combination of the work angle and the offset and / or the pressing radius is controlled so as to be a non-contact path. Therefore, according to the second method, the portion corresponding to the protruding portion of the work can be more reliably projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
  • the final target is the portion corresponding to the protruding portion of the work by making the machining tool press the work at least at the starting point of the path. It is possible to project more efficiently to the position of the protruding portion in the shape or to a position outside the virtual extension surface from the position.
  • the third method is the above-mentioned third method, in which the machining tool is on the protruding side at least in at least a part of the non-contact paths at the starting point which is the end of the path of the machining tool on the straight pipe portion side. It is a method of manufacturing a tubular member that controls a combination of a work angle and an offset and / or a pressing radius so that a machining tool sometimes presses a work.
  • FIG. 14 is a schematic view showing the positional relationship between the machining tool and the work when the machining tool is on the protruding side in the non-contact path in the first step included in the third method.
  • the machining tool 310 presses the portion of the work 100 corresponding to the contracted tube portion (220) of the specific tubular member at the starting point (the portion surrounded by the broken line), and then the machining tool 310 presses the work 100.
  • the work angle, offset and pressing radius are controlled so as to move away from.
  • the machining tool presses the work to form a specific tubular shape. It is considered that stress concentration occurs on the pressing portion in the portion of the work corresponding to the contracted tube portion of the member, and the work bends more easily starting from the pressing portion.
  • the first pressing force is smaller than the second pressing force, and the amount of protrusion of the work portion corresponding to the contracted tube portion of the specific tubular member is reduced. There is no particular limitation as long as the relevant part does not return to the inside of the virtual extension surface.
  • the machining tool in at least a part of the non-contact paths, the machining tool is operated when the machining tool is on the protruding side at least at the starting point which is the end of the machining tool path on the straight pipe portion side.
  • the combination of the work angle and the offset and / or the pressing radius is controlled so as to press the work. Therefore, according to the third method, the portion corresponding to the protruding portion of the work can be more efficiently projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

In a method for forming, through a spinning process, a cylindrical member having a straight tube part and a reduced tube part that is adjacent to the straight tube part and has an axis that has at least a relationship of being eccentric, inclined, or twisted with respect to the axis of the straight tube part, and that has a final target shape having a portion protruding further outside than a virtual extension surface of the straight tube part, a first step is performed to cause a portion of a workpiece having a straight tube shape to protrude toward the outside of the virtual extension surface to an extent equal to or greater than the final target shape by making the pressing force on one side of the workpiece due to a processing tool smaller than the other side, and thereafter the final target shape is formed by reducing the difference in the pressing force between one side and the other side. Accordingly, the cylindrical member provided with the reduced tube part protruding outward from the virtual extension surface of the straight tube part can be more easily formed. The first step may involve a state where in at least a portion of a plurality of paths of the processing tool, the processing tool does not make contact with one side of the workpiece. At at least a path start point in the path, it is preferable that the processing tool presses the workpiece.

Description

筒状部材の製造方法Manufacturing method of tubular member
 本発明は、直管部の外周面の仮想延長面よりも外側に突出する縮管部を備える筒状部材を、直管状の形状を有する素管であるワークから、スピニング加工によって成形する、筒状部材の製造方法に関する。 In the present invention, a tubular member having a contracted tube portion protruding outward from the virtual extension surface of the outer peripheral surface of the straight tube portion is formed from a workpiece having a straight tubular shape by spinning processing. The present invention relates to a method for manufacturing a shaped member.
 例えば自動車の触媒コンバータ及び消音器等の排気系部品等においては、例えば生産性及び車両への搭載性の向上等を目的として、例えば直管部(本体部)の中心軸に対して偏芯(オフセット)及び/又は傾斜した縮管部(縮径部)を端部に備える複雑な形状を有する外筒(ケース)が求められている。このような形状を有する外筒等の筒状部材は、例えば偏芯スピニング加工及び/又は傾斜スピニング加工等によってワーク(素管)の端部を成形することにより、良好に製造することができる。 For example, in exhaust system parts such as catalyst converters and silencers of automobiles, for example, for the purpose of improving productivity and mountability on a vehicle, for example, eccentricity with respect to the central axis of a straight pipe portion (main body portion) ( There is a demand for an outer cylinder (case) having a complicated shape having an offset) and / or an inclined reduced tube portion (reduced diameter portion) at an end portion. A tubular member such as an outer cylinder having such a shape can be satisfactorily manufactured by forming the end portion of a work (bare tube) by, for example, eccentric spinning processing and / or inclined spinning processing.
 しかしながら、当該技術分野においては、一般的なスピニング加工によっては加工元の素管(ワーク)の外周面の仮想延長面よりも外側に突出する縮管部を成形することは不可能であるとされている(例えば、特許文献1を参照)。 However, in the technical field, it is said that it is impossible to form a reduced pipe portion protruding outward from the virtual extension surface of the outer peripheral surface of the raw pipe (work) of the processing source by general spinning processing. (See, for example, Patent Document 1).
 そこで、当該技術分野においては、本体部の最終目標形状の外形を有する非加工部と非加工部に隣接し且つ非加工部よりも大きい外径を有する加工対象部を有する管状の段付ワークを素管として用いるスピニング加工により、本体部の外周面の仮想延長面よりも外側に突出する縮径部を備える筒状部材を成形することが提案されている(例えば、特許文献2及び特許文献3を参照)。このような段付ワークは、例えば直管状の形状を有する素管の一端を拡径又は縮径させることによって成形することができる。 Therefore, in the art, a tubular stepped work having a non-processed portion having an outer shape of the final target shape of the main body portion and a machining target portion adjacent to the non-processed portion and having a larger outer diameter than the non-processed portion is provided. It has been proposed to form a tubular member having a reduced diameter portion protruding outward from the virtual extension surface of the outer peripheral surface of the main body portion by spinning processing used as a raw pipe (for example, Patent Documents 2 and 3). See). Such a stepped work can be formed by, for example, expanding or reducing the diameter of one end of a raw tube having a straight tubular shape.
 しかしながら、上記のような段付ワークを素管として用いるスピニング加工においても改善されるべき問題点が存在する。例えば、素管の一端を縮径させて段付ワークを成形する場合、例えば電縫鋼管等の溶接鋼管の溶接ビード部が他の部分よりも先に縮管型に当接するため、溶接ビード部と母材との境界部分に応力が集中する。その結果、ワークの内側へと材料が逃げてしまい、座屈に繋がる虞がある。一方、素管の一端を拡径させて段付ワークを成形する場合、拡径に伴ってワークの周長が増大するので、拡径部の板厚(肉厚)が減少する。更に、素管の一端を縮径させる場合及び拡径させる場合の何れにおいても、このように加工された部分の硬化(加工硬化)に起因して、溶接ビード部において割れが生ずる虞がある。 However, there is a problem to be improved even in the spinning process using the above-mentioned stepped work as a raw pipe. For example, when forming a stepped work by reducing the diameter of one end of a raw pipe, for example, the weld bead portion of a welded steel pipe such as an electric resistance pipe comes into contact with the reduced pipe mold before other portions, so that the weld bead portion Stress is concentrated at the boundary between the base metal and the base metal. As a result, the material escapes to the inside of the work, which may lead to buckling. On the other hand, when one end of the raw pipe is expanded to form a stepped work, the peripheral length of the work increases as the diameter increases, so that the plate thickness (thickness) of the enlarged diameter portion decreases. Further, in both the case where one end of the raw pipe is reduced in diameter and the case where the diameter is increased, there is a possibility that cracks may occur in the weld bead portion due to hardening (work hardening) of the portion processed in this way.
 以上のように、上述したような従来技術に係るスピニング加工によれば、直管部の外周面の仮想延長面よりも外側に突出する縮管部を備える筒状部材を成形することが可能である。しかしながら、上述したような段付ワークの成形過程及び段付ワークからの筒状部材の成形過程において、例えば板厚の減少、溶接ビード部の近傍における座屈及び溶接ビード部における割れ等の問題が生ずる虞がある。 As described above, according to the spinning process according to the prior art as described above, it is possible to form a tubular member having a contracted tube portion protruding outward from the virtual extension surface of the outer peripheral surface of the straight tube portion. is there. However, in the process of forming the stepped work and the process of forming the tubular member from the stepped work as described above, there are problems such as reduction of plate thickness, buckling in the vicinity of the weld bead portion, and cracking in the weld bead portion. It may occur.
特許第4683519号公報Japanese Patent No. 4683519 特許第4450504号公報Japanese Patent No. 4450504 特許第4303455号公報Japanese Patent No. 4303455
 上述したように、当該技術分野においては、直管部の外周面の仮想延長面よりも外側に突出する縮管部を備える筒状部材をより容易に成形することが可能な製造方法に対する継続的な要求が存在する。 As described above, in the art, there is a continuation of manufacturing methods that can more easily form a tubular member having a contracted tube portion that projects outward from the virtual extension surface of the outer peripheral surface of the straight tube portion. There is a demand.
 上記課題に鑑み、本発明者は、鋭意研究の結果、直管部と、直管部に隣接し且つ直管部の軸に対して偏芯、傾斜及び捩れの少なくとも何れかの関係にある軸を有し且つ一部が直管部の仮想延長面より外側に突出している最終目標形状を有する縮管部と、を有する筒状部材をスピニング加工によって成形する方法において、ワークの一方の側における加工ツールによる押圧力を他方の側より小さくして直管状の形状を有するワークの一部を最終目標形状と同等以上に仮想延長面の外側に突出させる第1工程の後に、一方の側と他方の側との押圧力の差を低減して最終目標形状を成形することにより、直管部の仮想延長面より外側に突出する縮管部を備える筒状部材をより容易に成形することができることを見出した。第1工程における加工ツールの複数のパスの少なくとも一部において、ワークの一方の側に加工ツールが接触しない状態が含まれ得る。当該パスにおいても少なくともパスの起点においては加工ツールがワークを押圧することが望ましい。 In view of the above problems, as a result of diligent research, the present inventor has found that the straight pipe portion is adjacent to the straight pipe portion and has at least one of eccentricity, inclination and twist with respect to the axis of the straight pipe portion. On one side of the work, in a method of forming a tubular member having a reduced tube portion having a final target shape and having a portion of the straight tube portion protruding outward from the virtual extension surface of the straight pipe portion by spinning. One side and the other after the first step in which the pressing force by the machining tool is made smaller than the other side and a part of the work having a straight tubular shape is projected to the outside of the virtual extension surface at least equal to the final target shape. By reducing the difference in pressing force from the side of the pipe to form the final target shape, it is possible to more easily form a tubular member having a contracted pipe portion protruding outward from the virtual extension surface of the straight pipe portion. I found. At least a part of the plurality of paths of the machining tool in the first step may include a state in which the machining tool does not contact one side of the work. It is desirable that the machining tool presses the work in the path at least at the starting point of the path.
 具体的には、本発明に係る筒状部材の製造方法(以降、「本発明方法」と称呼される場合がある。)は、スピニング加工装置を用いて、円筒状の形状を有する素管であるワークの軸方向における一方の端部から途中までの範囲にスピニング加工を施すことにより直管部と縮管部とを有する筒状部材を成形する、筒状部材の製造方法である。直管部は、ワークの一部が未加工のままの状態に維持されている部分である。縮管部は、直管部に隣接し且つ直管部の軸に対して偏芯、傾斜及び捩れの少なくとも何れか1つの関係にある軸を有し且つ一部が直管部の外周面の仮想延長面より外側に突出している最終目標形状を有する部分である。 Specifically, the method for manufacturing a tubular member according to the present invention (hereinafter, may be referred to as "the method of the present invention") is a raw tube having a cylindrical shape using a spinning processing device. This is a method for manufacturing a tubular member, which forms a tubular member having a straight pipe portion and a contracted pipe portion by performing a spinning process in a range from one end to the middle of a work in the axial direction. The straight pipe portion is a portion where a part of the work is maintained in an unprocessed state. The reduced pipe portion has an axis that is adjacent to the straight pipe portion and has at least one relationship of eccentricity, inclination, and twist with respect to the axis of the straight pipe portion, and a part of the outer peripheral surface of the straight pipe portion. It is a part having a final target shape protruding outward from the virtual extension surface.
 スピニング加工装置は、ワーク角度、オフセット及び押圧半径をそれぞれ制御することができるように構成されている。ワーク角度は、ワークを押圧する加工ツールの回転軸とワークの軸とがなす角度である。オフセットは、加工ツールによって押圧されるワークの部位の中心軸と加工ツールの回転軸との距離である。押圧半径は、加工ツールの押圧部位の回転軸からの距離である。 The spinning processing device is configured to be able to control the work angle, offset, and pressing radius, respectively. The work angle is an angle formed by the rotation axis of the machining tool that presses the work and the axis of the work. The offset is the distance between the central axis of the workpiece portion pressed by the machining tool and the rotation axis of the machining tool. The pressing radius is the distance from the rotation axis of the pressing portion of the processing tool.
 本発明方法において用いられるワークは、一定の外径を有する直管状の形状を有する。更に、本発明方法は、以下に示す第1工程及び第2工程を含む。 The work used in the method of the present invention has a straight tubular shape having a constant outer diameter. Furthermore, the method of the present invention includes the first step and the second step shown below.
 第1工程は、第1押圧力が第2押圧力よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御することにより、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出させる工程である。第1押圧力は、筒状部材の縮管部の最終目標形状において仮想延長面より外側に突出している部分である突出部が形成される側である突出側における加工ツールのワークに対する押圧力である。第2押圧力は、加工ツールの回転軸を挟んで突出側の反対側における加工ツールのワークに対する押圧力である。 In the first step, the final target is the portion corresponding to the protruding portion of the work by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force becomes smaller than the second pressing force. This is a step of projecting to the position of the protruding portion in the shape or a position outside the virtual extension surface from the position. The first pressing force is the pressing force on the workpiece of the machining tool on the protruding side where the protruding portion is formed, which is the portion protruding outward from the virtual extension surface in the final target shape of the contracted tube portion of the tubular member. is there. The second pressing force is the pressing force on the workpiece of the machining tool on the opposite side of the protruding side with the rotation axis of the machining tool in between.
 第2工程は、第1工程の後に、第1押圧力と第2押圧力との差である押圧力差が第1工程における押圧力差よりも小さく且つ第1押圧力が第2押圧力以下であるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御することにより、最終目標形状を有する縮管部を成形する工程である。 In the second step, after the first step, the pressing force difference, which is the difference between the first pressing force and the second pressing force, is smaller than the pressing force difference in the first step, and the first pressing force is equal to or less than the second pressing force. This is a step of forming a contracted tube portion having a final target shape by controlling the combination of the work angle and the offset and / or the pressing radius.
 本発明方法の1つの態様において、第1工程における加工ツールの複数のパスの少なくとも一部において、ワークの一方の側に加工ツールが接触しない状態が含まれていてもよい。この場合、第1工程における加工ツールの複数のパスのうち少なくとも一部のパスが、加工ツールが突出側にあるときに加工ツールがワークに接触しない状態を含むパスである非接触パスとなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 In one aspect of the method of the present invention, at least a part of a plurality of paths of the machining tool in the first step may include a state in which the machining tool does not come into contact with one side of the work. In this case, at least a part of the plurality of paths of the machining tool in the first step is a non-contact path including a state in which the machining tool does not contact the work when the machining tool is on the protruding side. In addition, the combination of the work angle and the offset and / or the pressing radius is controlled.
 本発明方法のもう1つの態様において、上述した非接触パスにおいて、少なくともパスの起点において加工ツールがワークを押圧するようにしてもよい。この場合、非接触パスのうち少なくとも一部において、少なくとも加工ツールのパスの直管部側の端部である起点において加工ツールが突出側にあるときに加工ツールがワークを押圧するように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 In another aspect of the method of the present invention, in the non-contact path described above, the machining tool may press the work at least at the starting point of the path. In this case, in at least a part of the non-contact paths, the workpiece is pressed so that the machining tool presses the work when the machining tool is on the protruding side at the starting point which is at least the end of the machining tool on the straight pipe side. The combination of angle and offset and / or pressing radius is controlled.
 本発明方法によれば、直管部の外周面の仮想延長面よりも外側に突出する縮管部を備える筒状部材を、一定の外径を有する直管状の形状を有するワークにスピニング加工を施すことにより、段付ワークを必要とすること無く、より容易に成形することができる。 According to the method of the present invention, a tubular member having a contracted tube portion that protrudes outward from the virtual extension surface of the outer peripheral surface of the straight tube portion is spun into a work having a straight tubular shape having a constant outer diameter. By applying, it is possible to mold more easily without requiring a stepped work.
 本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。 Other objects, other features and accompanying advantages of the present invention will be readily understood from the description of each embodiment of the invention described with reference to the drawings below.
本発明の第1実施態様に係る筒状部材の製造方法(第1方法)において実行される各工程の流れを示すフローチャートである。It is a flowchart which shows the flow of each step executed in the manufacturing method (1st method) of the tubular member which concerns on 1st Embodiment of this invention. 特定筒状部材の構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the specific tubular member. 一般的なスピニング加工において加工ツールが移動する様子を示す模式図である。It is a schematic diagram which shows how the processing tool moves in a general spinning process. 第1方法において用いられる直管状のワーク(a)及び従来技術に係る一般的なスピニング加工において用いられる段付ワーク(b)の構成を例示する模式図である。It is a schematic diagram which illustrates the structure of the straight tubular work (a) used in the 1st method, and stepped work (b) used in the general spinning process which concerns on the prior art. 第1方法に含まれる第1工程におけるワークの形状の変化を示す模式図である。It is a schematic diagram which shows the change of the shape of the work in the 1st step included in the 1st method. 第1方法における加工ツールの各パスにおける軌跡の一例を示す模式図である。It is a schematic diagram which shows an example of the locus in each path of the processing tool in the 1st method. 図6に示した加工ツールのN回目のパスにおける軌跡に対応するワークの形状を示す模式図である。It is a schematic diagram which shows the shape of the work corresponding to the locus in the Nth pass of the processing tool shown in FIG. 図7に示した加工ツールの0回目のパス(N=0)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 0th pass (N = 0) of the machining tool shown in FIG. 7, and the shape of the work. 図7に示した加工ツールの2回目のパス(N=2)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 2nd pass (N = 2) of the machining tool shown in FIG. 7, and the shape of the work. 図7に示した加工ツールの5回目のパス(N=5)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 5th pass (N = 5) of the machining tool shown in FIG. 7, and the shape of the work. 図7に示した加工ツールの8回目のパス(N=8)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 8th pass (N = 8) of the machining tool shown in FIG. 7, and the shape of the work. 図7に示した加工ツールの11回目のパス(N=11)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 11th pass (N = 11) of the machining tool shown in FIG. 7, and the shape of the work. 図7に示した加工ツールの14回目のパス(N=14)における加工ツール及びワークの位置関係並びにワークの形状を示す模式図である。It is a schematic diagram which shows the positional relationship of the machining tool and the work in the 14th pass (N = 14) of the machining tool shown in FIG. 7, and the shape of the work. 本発明の第3実施態様に係る筒状部材の製造方法(第3方法)に含まれる第1工程における非接触パスにおいて加工ツールが突出側にあるときの加工ツールとワークとの位置関係を示す模式図である。The positional relationship between the machining tool and the work when the machining tool is on the protruding side in the non-contact path in the first step included in the method for manufacturing a tubular member (third method) according to the third embodiment of the present invention is shown. It is a schematic diagram.
《第1実施形態》
 以下、本発明の第1実施形態に係る筒状部材の製造方法(以降、「第1方法」と称呼される場合がある。)について説明する。
<< First Embodiment >>
Hereinafter, a method for manufacturing a tubular member according to the first embodiment of the present invention (hereinafter, may be referred to as a “first method”) will be described.
〈構成〉
 第1方法は、スピニング加工装置を用いて、円筒状の形状を有する素管であるワークの軸方向における一方の端部から途中までの範囲にスピニング加工を施すことにより、直管部と縮管部とを有する筒状部材を成形する、筒状部材の製造方法である。直管部は、ワークの一部が未加工のままの状態に維持されている部分である。縮管部は、直管部に隣接し且つ直管部の軸に対して偏芯、傾斜及び捩れの少なくとも何れか1つの関係にある軸を有し且つ一部が直管部の外周面の仮想延長面より外側に突出している最終目標形状を有する部分である。尚、以下の説明においては、上記のような直管部と縮管部とを有する筒状部材を「特定筒状部材」と称呼する場合がある。
<Constitution>
The first method is to use a spinning processing device to perform spinning processing from one end to the middle of the work, which is a raw pipe having a cylindrical shape, in the axial direction, thereby forming a straight pipe portion and a contracted pipe. This is a method for manufacturing a tubular member, which forms a tubular member having a portion. The straight pipe portion is a portion where a part of the work is maintained in an unprocessed state. The reduced pipe portion has an axis that is adjacent to the straight pipe portion and has at least one relationship of eccentricity, inclination, and twist with respect to the axis of the straight pipe portion, and a part of the outer peripheral surface of the straight pipe portion. It is a part having a final target shape protruding outward from the virtual extension surface. In the following description, a tubular member having a straight pipe portion and a reduced pipe portion as described above may be referred to as a "specific tubular member".
 スピニング加工装置は、ワーク角度、オフセット及び押圧半径をそれぞれ制御することができるように構成されている。ワーク角度は、ワークを押圧する加工ツールの回転軸とワークの軸とがなす角度である。オフセットは、加工ツールによって押圧されるワークの部位の中心軸と加工ツールの回転軸との距離である。押圧半径は、加工ツールの押圧部位の回転軸からの距離である。 The spinning processing device is configured to be able to control the work angle, offset, and pressing radius, respectively. The work angle is an angle formed by the rotation axis of the machining tool that presses the work and the axis of the work. The offset is the distance between the central axis of the workpiece portion pressed by the machining tool and the rotation axis of the machining tool. The pressing radius is the distance from the rotation axis of the pressing portion of the processing tool.
 加工ツールは、スピニング加工においてワークに押し当てられる成形工具を指す。加工ツールの具体例としては、例えば、へら及びローラ等の成形工具を挙げることができる。尚、スピニング加工装置の一般的な構成及び作動については当業者に周知であるので、ここでの詳細な説明は省略する。 Machining tool refers to a molding tool that is pressed against the work in spinning. Specific examples of the processing tool include forming tools such as spatulas and rollers. Since the general configuration and operation of the spinning processing apparatus are well known to those skilled in the art, detailed description thereof will be omitted here.
 第1方法において用いられるワークは、一定の外径を有する直管状の形状を有する。即ち、第1方法においては、上述した従来技術において用いられる段付ワークのような特別な形状を有する素管ではなく、直管状の形状を有する素管がワークとして用いられる。このようなワークの具体例としては、例えば鋼管等、金属製の素管を挙げることができる。 The work used in the first method has a straight tubular shape having a constant outer diameter. That is, in the first method, a raw tube having a straight tubular shape is used as the work, not a raw tube having a special shape like the stepped work used in the above-mentioned conventional technique. Specific examples of such a work include a metal pipe such as a steel pipe.
 更に、本発明方法は、以下に示す第1工程及び第2工程を含む。図1は、第1方法において実行される各工程の流れを示すフローチャートである。 Further, the method of the present invention includes the first step and the second step shown below. FIG. 1 is a flowchart showing the flow of each process executed in the first method.
 図1においてステップS01として示されている第1工程は、第1押圧力Pf1が第2押圧力Pf2よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御することにより、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出させる工程である。第1押圧力Pf1は、筒状部材の縮管部の最終目標形状において仮想延長面より外側に突出している部分である突出部が形成される側である突出側における加工ツールのワークに対する押圧力である。第2押圧力Pf2は、加工ツールの回転軸を挟んで突出側の反対側における加工ツールのワークに対する押圧力である。尚、第1工程における第1押圧力Pf1と第2押圧力Pf2との差の大きさは押圧力差ΔPf1である(Pf2-Pf1=ΔPf1)。 In the first step shown as step S01 in FIG. 1, the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 becomes smaller than the second pressing force Pf2. This is a step of projecting the portion corresponding to the protruding portion of the work to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. The first pressing force Pf1 is the pressing force against the work of the machining tool on the protruding side, which is the side where the protruding portion is formed, which is the portion protruding outward from the virtual extension surface in the final target shape of the contracted tube portion of the tubular member. Is. The second pressing force Pf2 is the pressing force on the workpiece of the machining tool on the opposite side of the protruding side with the rotation axis of the machining tool sandwiched. The magnitude of the difference between the first pressing force Pf1 and the second pressing force Pf2 in the first step is the pressing force difference ΔPf1 (Pf2-Pf1 = ΔPf1).
 上記のように、第1工程においては、加工ツールによってワークに作用する押圧力が突出側よりも突出側の反対側においてより大きくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。具体的には、ワーク角度とオフセットとの組み合わせ、ワーク角度と押圧半径との組み合わせ、又はワーク角度とオフセットと押圧半径との組み合わせを制御することにより、加工ツールによってワークに作用する押圧力が突出側よりも突出側の反対側においてより大きい状態を達成しつつ、ワークに対してスピニング加工を施す。 As described above, in the first step, the combination of the work angle and the offset and / or the pressing radius is set so that the pressing force acting on the work by the machining tool is larger on the opposite side of the protruding side than on the protruding side. Be controlled. Specifically, by controlling the combination of the work angle and the offset, the combination of the work angle and the pressing radius, or the combination of the work angle and the offset and the pressing radius, the pressing force acting on the work by the machining tool protrudes. Spinning is applied to the work while achieving a larger state on the opposite side of the protruding side than on the side.
 上記の結果、ワークの先端側(縮管部側)の部分の突出側への突出量が徐々に増大する。やがてワークの突出部に対応する部分(即ち、最終目標形状における突出部となる部分)が最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出する。この時点において第1工程が終了して次の第2工程へと移行する。 As a result of the above, the amount of protrusion of the tip side (constricted tube side) of the work toward the protruding side gradually increases. Eventually, the portion corresponding to the protruding portion of the work (that is, the portion that becomes the protruding portion in the final target shape) protrudes to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. At this point, the first step is completed and the process proceeds to the next second step.
 尚、直管部の外周面の仮想延長面とは、直管部の外周面を直管部の軸方向に延長した場合に得られる面である。上述したように、直管部は、ワークの一部が未加工のままの状態に維持されている部分である。従って、仮想延長面は、ワークの外周面をワークの軸方向に延長した場合に得られる面でもある。 The virtual extension surface of the outer peripheral surface of the straight pipe portion is a surface obtained when the outer peripheral surface of the straight pipe portion is extended in the axial direction of the straight pipe portion. As described above, the straight pipe portion is a portion where a part of the work is maintained in an unprocessed state. Therefore, the virtual extension surface is also a surface obtained when the outer peripheral surface of the work is extended in the axial direction of the work.
 次に、図1においてステップS02として示されている第2工程は、第1工程の後に、第1押圧力と第2押圧力との差である押圧力差が第1工程における押圧力差よりも小さく且つ第1押圧力が第2押圧力以下であるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御することにより、最終目標形状を有する縮管部を成形する工程である。 Next, in the second step shown as step S02 in FIG. 1, after the first step, the pressing force difference, which is the difference between the first pressing force and the second pressing force, is larger than the pressing force difference in the first step. This is a step of forming a contracted tube portion having a final target shape by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force is smaller than the second pressing force. ..
 上記のように、第2工程においては、ワークの縮管部に対応する部分(即ち、最終的に得られる筒状部材の縮管部となる部分)が最終目標形状へと成形されて縮管部が成形されるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。この点において、第2工程において実行されるスピニング加工は一般的なスピニング加工と基本的には同じである。 As described above, in the second step, the portion corresponding to the contracted tube portion of the work (that is, the portion that becomes the contracted tube portion of the finally obtained tubular member) is formed into the final target shape and the contracted tube. The combination of the workpiece angle and the offset and / or pressing radius is controlled so that the portion is formed. In this respect, the spinning process performed in the second step is basically the same as the general spinning process.
 但し、第1工程においてワークの突出部に対応する部分が最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出するように既に成形されている。即ち、第2工程においてワークを突出側にこれ以上曲げる必要は無い。従って、第2工程においては、第1押圧力と第2押圧力との差である押圧力差が第1工程における押圧力差よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 However, in the first step, the portion corresponding to the protruding portion of the work is already formed so as to protrude to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. That is, it is not necessary to bend the work to the protruding side any more in the second step. Therefore, in the second step, the work angle and the offset and / or the pressing radius are set so that the pressing force difference, which is the difference between the first pressing force and the second pressing force, is smaller than the pressing force difference in the first step. The combination of is controlled.
 上記に加えて、第1工程において最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出するように成形されたワークの突出部に対応する部分の突出量が第2工程において減少して当該部分が仮想延長面よりも内側へと戻ってしまわないようにする必要がある。従って、第2工程においては、第1押圧力が第2押圧力以下であることが必要である。換言すれば、第2工程においては、第1押圧力が第2押圧力よりも大きくないことが必要である。このため、第2工程においては、第1押圧力が第2押圧力以下であるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 In addition to the above, in the first step, the protrusion amount of the portion corresponding to the position of the protrusion in the final target shape or the protrusion of the work formed so as to protrude to a position outside the virtual extension surface from the position is It is necessary to prevent the portion from being reduced in the second step and returning to the inside of the virtual extension surface. Therefore, in the second step, it is necessary that the first pressing force is equal to or less than the second pressing force. In other words, in the second step, it is necessary that the first pressing force is not larger than the second pressing force. Therefore, in the second step, the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force is equal to or less than the second pressing force.
〈成形過程〉
 ここで、第1方法におけるワークの成形過程につき、図面を参照しながら以下に詳しく説明する。図2は、特定筒状部材の構造の一例を示す模式図である。(a)は特定筒状部材を側面から観察した場合における部分断面図であり、(b)は特定筒状部材を突出側の反対側から観察した場合における平面図であり、(c)は(b)に示す破線A-Aを含む平面による特定筒状部材の直管部の断面図である。
<Molding process>
Here, the molding process of the work in the first method will be described in detail below with reference to the drawings. FIG. 2 is a schematic view showing an example of the structure of the specific tubular member. (A) is a partial cross-sectional view when the specific tubular member is observed from the side surface, (b) is a plan view when the specific tubular member is observed from the opposite side of the protruding side, and (c) is (c). It is sectional drawing of the straight pipe part of the specific tubular member by the plane including the broken line AA shown in b).
 図2に例示する特定筒状部材200は、ワークの一部が未加工のままの状態に維持されている部分である直管部210と、直管部210に隣接し且つ直管部210の軸に対して傾斜する軸を有し且つ一部(破線によって囲まれている部分)が直管部210の外周面の仮想延長面(二点鎖線)より外側に突出している最終目標形状を有する部分である縮管部220と、を有する筒状部材である。 The specific tubular member 200 illustrated in FIG. 2 includes a straight pipe portion 210, which is a portion of the work that is maintained in an unprocessed state, and a straight pipe portion 210 that is adjacent to the straight pipe portion 210 and has a straight pipe portion 210. It has an axis that is inclined with respect to the axis, and has a final target shape in which a part (the part surrounded by the broken line) protrudes outward from the virtual extension surface (two-dot chain line) of the outer peripheral surface of the straight pipe portion 210. It is a tubular member having a reduced tube portion 220 which is a portion.
 本明細書の冒頭において述べたように、当該技術分野においては、一般的なスピニング加工によっては加工元の素管(ワーク)の外周面の仮想延長面よりも外側に突出する縮管部を成形することは不可能であるとされている。即ち、一般的なスピニング加工によっては図2に例示したような特定筒状部材を直管状の形状を有するワークから成形することはできない。これは、例えば図3に示すように、一般的なスピニング加工においては、ワークの外周面(二点鎖線)から内側に向かって加工ツール310がワークを押圧しながら移動するためである(白抜きの矢印を参照)。 As described at the beginning of the present specification, in the technical field, a contracted pipe portion protruding outward from the virtual extension surface of the outer peripheral surface of the raw pipe (work) of the processing source is formed by general spinning processing. It is said that it is impossible to do so. That is, it is not possible to form the specific tubular member as illustrated in FIG. 2 from a work having a straight tubular shape by general spinning processing. This is because, for example, as shown in FIG. 3, in general spinning processing, the processing tool 310 moves inward from the outer peripheral surface (dashed line) of the work while pressing the work (white outline). See the arrow).
 従って、例えば図2に例示したような特定筒状部材を、一般的なスピニング加工によって成形するためには、図4の(a)に示すような直管状のワーク100ではなく、図4の(b)に示すような直管部210に対応する非加工部110と非加工部110に隣接し且つ非加工部110よりも大きい外径を有する加工対象部120を有する管状の段付ワーク130を素管として用いる必要がある。 Therefore, for example, in order to form the specific tubular member as illustrated in FIG. 2 by a general spinning process, it is not the straight tubular work 100 as shown in FIG. A tubular stepped work 130 having a non-processed portion 110 corresponding to the straight pipe portion 210 as shown in b) and a processed target portion 120 adjacent to the non-processed portion 110 and having an outer diameter larger than that of the non-processed portion 110. It is necessary to use it as a bare tube.
 一方、第1方法においては、上述したように、直管状の形状を有する素管がワークとして用いられる。そして、第1工程において、特定筒状部材を構成する縮管部の突出部に対応するワークの部分を、縮管部の最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出させる。このような成形過程は、スピニング加工装置において、第1押圧力が第2押圧力よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御することにより実行される。 On the other hand, in the first method, as described above, a raw tube having a straight tubular shape is used as a work. Then, in the first step, the portion of the work corresponding to the protruding portion of the reduced tube portion constituting the specific tubular member is placed outside the position of the protruding portion in the final target shape of the reduced tube portion or the virtual extension surface from the position. Protrude to the position of. Such a forming process is performed in the spinning processing apparatus by controlling the combination of the work angle and the offset and / or the pressing radius so that the first pressing force becomes smaller than the second pressing force.
 図5は、第1方法に含まれる第1工程におけるワークの形状の変化を示す模式図である。図5の(a)において点線によって示すように、縮管部220の最終目標形状においては、縮管部220の一部(突出部)が突出量Dだけ直管部210の仮想延長面よりも外側に突出している。このような形状は一般的なスピニング加工によっては成形することができない。しかしながら、第1工程においては、突出部が形成される側である突出側(図面に向かって下側)において加工ツール310がワーク100を押圧する押圧力(第1押圧力Pf1)が加工ツール310の回転軸を挟んで突出側の反対側において加工ツール310がワーク100を押圧する押圧力(第2押圧力Pf2)よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 FIG. 5 is a schematic view showing a change in the shape of the work in the first step included in the first method. As shown by the dotted line in FIG. 5A, in the final target shape of the reduced tube portion 220, a part (protruding portion) of the reduced tube portion 220 is larger than the virtual extension surface of the straight tube portion 210 by the amount of protrusion D. It protrudes outward. Such a shape cannot be formed by general spinning. However, in the first step, the pressing force (first pressing force Pf1) at which the machining tool 310 presses the work 100 on the projecting side (lower side toward the drawing) on which the protruding portion is formed is the machining tool 310. The combination of the work angle and the offset and / or the pressing radius is set so that the machining tool 310 is smaller than the pressing force (second pressing force Pf2) pressing the work 100 on the opposite side of the rotating shaft of Be controlled.
 具体的には、例えば、ワーク100を保持するクランプ320をワーク100の軸に対して所定の角度(例えば、90°)をなす軸の周りに回転させることにより、ワークを押圧する加工ツールの回転軸とワークの軸とがなす角度であるワーク角度を制御することができる。また、ワーク100の軸に対するクランプ320の位置を調節することにより、加工ツールによって押圧されるワークの部位の中心軸と加工ツールの回転軸との距離であるオフセットを制御することができる。更に、加工ツール310の回転軸からの位置を調節することにより、加工ツールの押圧部位の回転軸からの距離である押圧半径を制御することができる。 Specifically, for example, rotation of a machining tool that presses the work by rotating a clamp 320 that holds the work 100 around an axis that forms a predetermined angle (for example, 90 °) with respect to the axis of the work 100. The work angle, which is the angle formed by the axis and the axis of the work, can be controlled. Further, by adjusting the position of the clamp 320 with respect to the axis of the work 100, it is possible to control the offset which is the distance between the central axis of the part of the work pressed by the machining tool and the rotation axis of the machining tool. Further, by adjusting the position of the machining tool 310 from the rotation axis, it is possible to control the pressing radius, which is the distance from the rotation axis of the pressing portion of the machining tool.
 上記の結果、図5の(b)において太い実線によって示すように、縮管部220の最終目標形状における突出部に対応するワーク100の部分を当該突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出させることができる。従って、次の第2工程においては、一般的なスピニング加工と同様にして、ワーク100の縮管部220に対応する部分(即ち、最終的に得られる筒状部材200の縮管部220となる部分)を最終目標形状へと成形して、縮管部220を成形することができる。 As a result of the above, as shown by a thick solid line in FIG. 5B, the portion of the work 100 corresponding to the protruding portion in the final target shape of the contracted tube portion 220 is the position of the protruding portion or a virtual extension surface from the position. It can be projected to a more outer position. Therefore, in the next second step, the portion corresponding to the contracted tube portion 220 of the work 100 (that is, the contracted tube portion 220 of the finally obtained tubular member 200) is obtained in the same manner as the general spinning process. The contracted tube portion 220 can be formed by molding the portion) into the final target shape.
 尚、図5は、本発明に関する理解を容易にすることを目的として、第1工程におけるワーク100の形状の変化を極めて模式的に示すものであり、実際のワーク100の形状を正確に表すものではない。そこで、第1方法によって直管状の形状を有するワーク100から特定筒状部材200を成形する過程におけるワーク100の加工形状の推移につき、以下に詳細に説明する。 Note that FIG. 5 shows a very schematic change in the shape of the work 100 in the first step for the purpose of facilitating the understanding of the present invention, and accurately represents the actual shape of the work 100. is not it. Therefore, the transition of the processed shape of the work 100 in the process of forming the specific tubular member 200 from the work 100 having a straight tubular shape by the first method will be described in detail below.
 図6は、第1方法における加工ツールの各パスにおける軌跡の一例を示す模式図である。より詳しくは、図6においては、ワークの一部が未加工のままの状態に維持されている直管部210と略テーパ状の最終目標形状を有する縮管部220とを有する特定筒状部材200の図面に向かって左側に、第1方法における加工ツールのN回目のパスにおける軌跡を表す図形が太い実線によって描かれている(N=2,5,8,11,14)。尚、第1方法における加工ツールの各々のパスにおいては、上述したように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが適宜制御される。 FIG. 6 is a schematic diagram showing an example of a locus in each path of the machining tool in the first method. More specifically, in FIG. 6, a specific tubular member having a straight pipe portion 210 in which a part of the work is maintained in an unprocessed state and a contracted pipe portion 220 having a substantially tapered final target shape. On the left side of the drawing of 200, a figure showing the trajectory of the machining tool in the first method in the Nth pass is drawn by a thick solid line (N = 2, 5, 8, 11, 14). In each path of the machining tool in the first method, the combination of the work angle and the offset and / or the pressing radius is appropriately controlled as described above.
 図7は、図6に示した加工ツールのN回目のパスにおける軌跡に対応するワーク100の形状を示す模式図である(N=0,2,5,8,11,14)。図7に示す例においては、加工ツールの5回目のパスにより、特定筒状部材を構成する縮管部220の突出部に対応するワーク100の部分が、縮管部220の(点線によって示されている)最終目標形状における突出部の位置にまで突出している。即ち、図7に示す例においては、加工ツールの5回目のパスまでが上述した第1工程に相当し、加工ツールの6回目以降のパスが上述した第2工程に相当する。 FIG. 7 is a schematic view showing the shape of the work 100 corresponding to the locus in the Nth pass of the machining tool shown in FIG. 6 (N = 0,2,5,8,11,14). In the example shown in FIG. 7, the portion of the work 100 corresponding to the protruding portion of the reduced tube portion 220 constituting the specific tubular member is indicated by the (dotted line) of the reduced tube portion 220 by the fifth pass of the processing tool. It protrudes to the position of the protruding part in the final target shape. That is, in the example shown in FIG. 7, up to the fifth pass of the machining tool corresponds to the above-mentioned first step, and the sixth and subsequent passes of the machining tool correspond to the above-mentioned second step.
 尚、上述したように、第1方法においては、ワーク角度とオフセット及び/又は押圧半径との組み合わせを適宜制御することにより、上述した第1工程及び第2工程が実行される。そこで、図6に示した加工ツールのN回目(N=2,5,8,11,14)のパス及び図7に示した加工ツールのN回目(N=0,2,5,8,11,14)のパスにおける加工ツール及びワークの位置関係(ワーク角度、オフセット及び押圧半径)並びにワークの形状を図8乃至図13にそれぞれ模式的に示す。これらの図において、最終的に得られる特定筒状部材の縮管部220となる部分の最終目標形状が点線によって示されている。 As described above, in the first method, the above-mentioned first step and the second step are executed by appropriately controlling the combination of the work angle and the offset and / or the pressing radius. Therefore, the Nth pass (N = 2,5,8,11,14) of the machining tool shown in FIG. 6 and the Nth pass (N = 0,2,5,8,11) of the machining tool shown in FIG. , 14) The positional relationship between the machining tool and the work (work angle, offset and pressing radius) in the path and the shape of the work are schematically shown in FIGS. 8 to 13, respectively. In these figures, the final target shape of the portion of the specific tubular member to be the contracted tube portion 220 finally obtained is shown by the dotted line.
 図8は、第1方法の開始時において図示しないスピニング加工装置が備えるクランプ320によってワーク100が保持された状態を示す模式図であり、図示しない加工ツールによるワーク100の押圧は未だ行われていない状態を示す(即ち、N=0)。従って、図8においては、ワーク100は直管状の形状を有している。 FIG. 8 is a schematic view showing a state in which the work 100 is held by a clamp 320 included in a spinning machine (not shown) at the start of the first method, and the work 100 has not yet been pressed by a machining tool (not shown). Indicates a state (ie, N = 0). Therefore, in FIG. 8, the work 100 has a straight tubular shape.
 次に、図9は、図6及び図7に示した加工ツール310の2回目のパス(N=2)における加工ツール310及びワーク100の位置関係(ワーク角度、オフセット及び押圧半径)並びにワーク100の形状を示す模式図である。図9に例示する2回目のパスにおいては、白抜きの矢印によって示すようにワーク100が時計回りに所定角度回転され且つ突出側(図面に向かって下側)に所定量オフセットされた状態において、所定の押圧半径にてスピニング加工が実行される。この際、上述したように、ワーク100の突出側における加工ツール310のワーク100に対する押圧力(第1押圧力Pf1)が加工ツール310の回転軸を挟んで突出側の反対側における加工ツール310のワーク100に対する押圧力(第2押圧力Pf2)よりも小さくなるように制御される。その結果、ワーク100の先端側(縮管部220となる側)の部分の突出側への突出量が僅かに増大している。 Next, FIG. 9 shows the positional relationship (work angle, offset and pressing radius) of the machining tool 310 and the work 100 in the second pass (N = 2) of the machining tool 310 shown in FIGS. 6 and 7, and the work 100. It is a schematic diagram which shows the shape of. In the second pass illustrated in FIG. 9, the work 100 is rotated clockwise by a predetermined angle and offset by a predetermined amount to the protruding side (lower side toward the drawing) as shown by the white arrow. Spinning is performed with a predetermined pressing radius. At this time, as described above, the pressing force (first pressing force Pf1) of the machining tool 310 on the work 100 on the protruding side of the work 100 is the machining tool 310 on the opposite side of the protruding side across the rotation axis of the machining tool 310. It is controlled to be smaller than the pressing force on the work 100 (second pressing force Pf2). As a result, the amount of protrusion of the tip side (the side that becomes the contracted tube portion 220) of the work 100 toward the protruding side is slightly increased.
 更に、図10は、図6及び図7に示した5回目のパス(N=5)における加工ツール310及びワーク100の位置関係並びにワーク100の形状を示す模式図である。図10に例示する5回目のパスにおいては、図9に例示した2回目のパスに比べて、より大きいワーク角度、より大きいオフセット及びより小さい押圧半径にてスピニング加工が実行される。このパスにおいても、第1押圧力Pf1が第2押圧力Pf2よりも小さくなるように制御される。その結果、ワーク100の先端側の部分の突出側への突出量が更に増大し、ワーク100の先端側の部分が縮管部220の(点線によって示されている)最終目標形状における突出部の位置にまで突出している。即ち、これらの図によって示す例においては、上述したように、加工ツール310の5回目のパス(N=5)までが上述した第1工程に相当し、加工ツール310の6回目以降のパス(N≧6)が上述した第2工程に相当する。 Further, FIG. 10 is a schematic view showing the positional relationship between the machining tool 310 and the work 100 and the shape of the work 100 in the fifth pass (N = 5) shown in FIGS. 6 and 7. In the fifth pass illustrated in FIG. 10, the spinning process is performed with a larger work angle, a larger offset, and a smaller pressing radius as compared with the second pass illustrated in FIG. Also in this pass, the first pressing force Pf1 is controlled to be smaller than the second pressing force Pf2. As a result, the amount of protrusion of the tip side portion of the work 100 toward the protruding side is further increased, and the tip end side portion of the work 100 is the protruding portion of the contracted tube portion 220 (indicated by the dotted line) in the final target shape. It protrudes to the position. That is, in the examples shown by these figures, as described above, up to the fifth pass (N = 5) of the machining tool 310 corresponds to the first step described above, and the sixth and subsequent passes of the machining tool 310 ( N ≧ 6) corresponds to the second step described above.
 次に、図11は、図6及び図7に示した8回目のパス(N=8)における加工ツール310及びワーク100の位置関係並びにワーク100の形状を示す模式図である。図11に例示する8回目のパスにおいては、図10に例示した5回目のパスに比べて、より大きいワーク角度、より大きいオフセット及びより小さい押圧半径にてスピニング加工が実行される。但し、上記のように図10に例示した5回目のパス(N=5)までのスピニング加工により第1工程が完了しているので、図11に例示する8回目のパス(N=8)は第2工程に相当する。従って、このときの第1押圧力Pf1と第2押圧力Pf2との差である押圧力差ΔPf2が第1工程における押圧力差ΔPf1よりも小さく且つ第1押圧力が第2押圧力以下となるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。 Next, FIG. 11 is a schematic diagram showing the positional relationship between the machining tool 310 and the work 100 and the shape of the work 100 in the eighth pass (N = 8) shown in FIGS. 6 and 7. In the eighth pass illustrated in FIG. 11, the spinning process is performed with a larger work angle, a larger offset, and a smaller pressing radius as compared with the fifth pass illustrated in FIG. However, since the first step is completed by the spinning process up to the fifth pass (N = 5) illustrated in FIG. 10 as described above, the eighth pass (N = 8) illustrated in FIG. 11 is Corresponds to the second step. Therefore, the pressing force difference ΔPf2, which is the difference between the first pressing force Pf1 and the second pressing force Pf2 at this time, is smaller than the pressing force difference ΔPf1 in the first step, and the first pressing force is equal to or less than the second pressing force. As described above, the combination of the work angle and the offset and / or the pressing radius is controlled.
 また、上記のように図10に例示した5回目のパス(N=5)までのスピニング加工(第1工程)により最終目標形状における突出部の位置にまで突出するように成形されたワーク100の突出部に対応する部分の突出量が6回目のパス(N=6)以降のスピニング加工(第2工程)において減少して当該部分が仮想延長面よりも内側へと戻ってしまわないようにする必要がある。従って、上述したように、第2工程においては、第1押圧力Pf1が第2押圧力Pf2以下であるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。その結果、ワーク100の先端側(縮管部220となる側)の部分が縮管部220の最終目標形状へと近付くように成形される。 Further, as described above, the work 100 formed so as to project to the position of the protruding portion in the final target shape by the spinning process (first step) up to the fifth pass (N = 5) illustrated in FIG. The amount of protrusion of the portion corresponding to the protrusion is reduced in the spinning process (second step) after the sixth pass (N = 6) so that the portion does not return to the inside of the virtual extension surface. There is a need. Therefore, as described above, in the second step, the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 is equal to or less than the second pressing force Pf2. As a result, the portion on the tip end side (the side that becomes the reduced tube portion 220) of the work 100 is formed so as to approach the final target shape of the reduced tube portion 220.
 その後、図12及び図13に示すように、図6及び図7に示した11回目及び14回目のパス(N=11及びN-14)において、更に大きいワーク角度、更に大きいオフセット及び更に小さい押圧半径にてスピニング加工が実行される。これらのパスにおいても、第1押圧力Pf1と第2押圧力Pf2との差である押圧力差ΔPf2が第1工程における押圧力差ΔPf1よりも小さく且つ第1押圧力が第2押圧力以下となるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。その結果、ワーク100の先端側(縮管部220となる側)の部分が縮管部220の最終目標形状へと更に近付くように成形される。 Then, as shown in FIGS. 12 and 13, in the 11th and 14th passes (N = 11 and N-14) shown in FIGS. 6 and 7, a larger work angle, a larger offset, and a smaller pressing force are then made. Spinning is performed at the radius. Also in these passes, the pressing force difference ΔPf2, which is the difference between the first pressing force Pf1 and the second pressing force Pf2, is smaller than the pressing force difference ΔPf1 in the first step, and the first pressing force is equal to or less than the second pressing force. The combination of the work angle and the offset and / or the pressing radius is controlled so as to be. As a result, the portion on the tip end side (the side that becomes the reduced tube portion 220) of the work 100 is formed so as to be closer to the final target shape of the reduced tube portion 220.
 尚、上記のようにして得られる最終的な形状の最先端部(図面に向かって左端の部分)が縮管部220の最終目標形状における最先端部よりも長い場合は、例えば切削加工等の手法により、最終目標形状に適合する形状に二次加工してもよい。 If the cutting edge of the final shape obtained as described above (the leftmost portion when facing the drawing) is longer than the cutting edge of the final target shape of the reduced tube portion 220, for example, cutting or the like. Depending on the method, secondary processing may be performed to a shape that matches the final target shape.
〈効果〉
 以上のように、本発明方法によれば、直管部の外周面の仮想延長面よりも外側に突出する縮管部を備える筒状部材を、一定の外径を有する直管状の形状を有するワークにスピニング加工を施すことにより、段付ワークを必要とすること無く、より容易に成形することができる。
<effect>
As described above, according to the method of the present invention, a tubular member having a contracted tube portion protruding outward from the virtual extension surface of the outer peripheral surface of the straight tube portion has a straight tubular shape having a constant outer diameter. By applying spinning processing to the work, it can be formed more easily without the need for a stepped work.
《第2実施形態》
 以下、本発明の第2実施形態に係る筒状部材の製造方法(以降、「第2方法」と称呼される場合がある。)について説明する。上述したように、第1方法に含まれる第1工程においては、第1押圧力Pf1が第2押圧力Pf2よりも小さくなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。これにより、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで突出させることができる。
<< Second Embodiment >>
Hereinafter, a method for manufacturing a tubular member according to a second embodiment of the present invention (hereinafter, may be referred to as a “second method”) will be described. As described above, in the first step included in the first method, the combination of the work angle and the offset and / or the pressing radius is controlled so that the first pressing force Pf1 becomes smaller than the second pressing force Pf2. To. As a result, the portion corresponding to the protruding portion of the work can be projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
 上記において、ワークの突出部に対応する部分をより効率的に突出させる観点からは、第1工程における加工ツールの複数のパスの少なくとも一部において、ワークの突出側に加工ツールが接触しない状態を生じさせることが望ましい。 In the above, from the viewpoint of more efficiently projecting the portion corresponding to the projecting portion of the work, in at least a part of the plurality of paths of the machining tool in the first step, the machining tool does not come into contact with the protruding side of the work. It is desirable to cause it.
〈構成〉
 そこで、第2方法は、上述した第1方法であって、第1工程における加工ツールの複数のパスのうち少なくとも一部のパスが、加工ツールが突出側にあるときに加工ツールがワークに接触しない状態を含むパスである非接触パスとなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御する、筒状部材の製造方法である。
<Constitution>
Therefore, the second method is the first method described above, and the machining tool comes into contact with the work when at least a part of the plurality of passes of the machining tool in the first step is on the protruding side. It is a method of manufacturing a tubular member that controls a combination of a work angle and an offset and / or a pressing radius so as to be a non-contact path that includes a non-contact state.
 上記非接触パスにおいては、加工ツールが突出側にあるときに加工ツールがワークに接触しない状態が発生する。このように加工ツールが突出側にあるときに加工ツールがワークに接触しない状態においては、加工ツールが突出側にあるときよりも加工ツールが突出側の反対側にあるときの方が、加工ツールがワークに接触している期間がより長くなる。加えて、加工ツールが突出側にあるときに加工ツールがワークに接触しないので、より確実に第1押圧力Pf1を第2押圧力Pf2よりも小さくすることができ、第1工程における第1押圧力Pf1と第2押圧力Pf2との差である押圧力差ΔPf1(=Pf2-Pf1)を十分に大きくすることができる。 In the above non-contact path, when the machining tool is on the protruding side, the machining tool does not come into contact with the work. In this way, when the machining tool is on the protruding side and the machining tool does not come into contact with the work, the machining tool is on the opposite side of the protruding side than when the machining tool is on the protruding side. Will be in contact with the work for a longer period of time. In addition, since the machining tool does not come into contact with the work when the machining tool is on the protruding side, the first push pressure Pf1 can be made smaller than the second push pressure Pf2 more reliably, and the first push in the first step can be performed. The pressing pressure difference ΔPf1 (= Pf2-Pf1), which is the difference between the pressure Pf1 and the second pressing pressure Pf2, can be sufficiently increased.
〈効果〉
 上記のように、第2方法においては、第1工程における加工ツールの複数のパスのうち少なくとも一部のパスが、加工ツールが突出側にあるときに加工ツールがワークに接触しない状態を含むパスである非接触パスとなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。従って、第2方法によれば、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで、より確実に突出させることができる。
<effect>
As described above, in the second method, at least a part of the plurality of paths of the machining tool in the first step includes a state in which the machining tool does not contact the work when the machining tool is on the protruding side. The combination of the work angle and the offset and / or the pressing radius is controlled so as to be a non-contact path. Therefore, according to the second method, the portion corresponding to the protruding portion of the work can be more reliably projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
《第3実施形態》
 以下、本発明の第3実施形態に係る筒状部材の製造方法(以降、「第3方法」と称呼される場合がある。)について説明する。上述したように、第2方法においては、第1工程における加工ツールの複数のパスのうち少なくとも一部のパスが、加工ツールが突出側にあるときに加工ツールがワークに接触しない状態を含むパスである非接触パスとなるように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。従って、第2方法によれば、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで、より確実に突出させることができる。
<< Third Embodiment >>
Hereinafter, a method for manufacturing a tubular member according to a third embodiment of the present invention (hereinafter, may be referred to as a “third method”) will be described. As described above, in the second method, at least a part of the plurality of paths of the machining tool in the first step includes a state in which the machining tool does not contact the work when the machining tool is on the protruding side. The combination of the work angle and the offset and / or the pressing radius is controlled so as to be a non-contact path. Therefore, according to the second method, the portion corresponding to the protruding portion of the work can be more reliably projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
 ところが、本発明者が得た知見によれば、上述した非接触パスにおいても、少なくともパスの起点において加工ツールがワークを押圧するようにすることにより、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで更により効率的に突出させることができる。 However, according to the findings obtained by the present inventor, even in the above-mentioned non-contact path, the final target is the portion corresponding to the protruding portion of the work by making the machining tool press the work at least at the starting point of the path. It is possible to project more efficiently to the position of the protruding portion in the shape or to a position outside the virtual extension surface from the position.
〈構成〉
 そこで、第3方法は、上述した第3方法であって、非接触パスのうち少なくとも一部において、少なくとも加工ツールのパスの直管部側の端部である起点において加工ツールが突出側にあるときに加工ツールがワークを押圧するように、ワーク角度とオフセット及び/又は押圧半径との組み合わせを制御する、筒状部材の製造方法である。
<Constitution>
Therefore, the third method is the above-mentioned third method, in which the machining tool is on the protruding side at least in at least a part of the non-contact paths at the starting point which is the end of the path of the machining tool on the straight pipe portion side. It is a method of manufacturing a tubular member that controls a combination of a work angle and an offset and / or a pressing radius so that a machining tool sometimes presses a work.
 図14は、第3方法に含まれる第1工程における非接触パスにおいて加工ツールが突出側にあるときの加工ツールとワークとの位置関係を示す模式図である。図14に示す例においては、起点(破線によって囲まれた部分)において加工ツール310が特定筒状部材の縮管部(220)に対応するワーク100の部分を押圧した後に加工ツール310がワーク100から離れるように、ワーク角度、オフセット及び押圧半径が制御される。 FIG. 14 is a schematic view showing the positional relationship between the machining tool and the work when the machining tool is on the protruding side in the non-contact path in the first step included in the third method. In the example shown in FIG. 14, the machining tool 310 presses the portion of the work 100 corresponding to the contracted tube portion (220) of the specific tubular member at the starting point (the portion surrounded by the broken line), and then the machining tool 310 presses the work 100. The work angle, offset and pressing radius are controlled so as to move away from.
 上記のように加工ツールのパスの直管部側の端部である起点(破線によって囲まれた部分)において加工ツールが突出側にあるときに加工ツールがワークを押圧することにより、特定筒状部材の縮管部に対応するワークの部分における当該押圧部位への応力集中が起こり、当該押圧部位を起点としてワークの屈曲がより容易に起こるものと考えられる。尚、上記起点における加工ツールのワークに対する押圧力の大きさは、第1押圧力が第2押圧力よりも小さく、特定筒状部材の縮管部に対応するワークの部分の突出量が減少して当該部分が仮想延長面よりも内側へと戻ってしまわない限り、特に限定されない。 As described above, when the machining tool is on the protruding side at the starting point (the part surrounded by the broken line) which is the end on the straight pipe side of the path of the machining tool, the machining tool presses the work to form a specific tubular shape. It is considered that stress concentration occurs on the pressing portion in the portion of the work corresponding to the contracted tube portion of the member, and the work bends more easily starting from the pressing portion. Regarding the magnitude of the pressing force of the machining tool with respect to the work at the above starting point, the first pressing force is smaller than the second pressing force, and the amount of protrusion of the work portion corresponding to the contracted tube portion of the specific tubular member is reduced. There is no particular limitation as long as the relevant part does not return to the inside of the virtual extension surface.
〈効果〉
 上記のように、第3方法においては、非接触パスのうち少なくとも一部において、少なくとも加工ツールのパスの直管部側の端部である起点において加工ツールが突出側にあるときに加工ツールがワークを押圧するように、ワーク角度とオフセット及び/又は押圧半径との組み合わせが制御される。従って、第3方法によれば、ワークの突出部に対応する部分を最終目標形状における突出部の位置又は当該位置よりも仮想延長面より外側の位置にまで更により効率的に突出させることができる。
<effect>
As described above, in the third method, in at least a part of the non-contact paths, the machining tool is operated when the machining tool is on the protruding side at least at the starting point which is the end of the machining tool path on the straight pipe portion side. The combination of the work angle and the offset and / or the pressing radius is controlled so as to press the work. Therefore, according to the third method, the portion corresponding to the protruding portion of the work can be more efficiently projected to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position. ..
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。 As described above, for the purpose of explaining the present invention, some embodiments having a specific configuration have been described with reference to the accompanying drawings, but the scope of the present invention is limited to these exemplary embodiments. It should not be construed as being limited, and it goes without saying that amendments can be made as appropriate within the scope of claims and the matters described in the specification.
 100…ワーク(直管状)、110…非加工部、120…加工対象部、130…段付ワーク、200…特定筒状部材、210…直管部、220…縮管部、310…加工ツール、及び320…クランプ。 100 ... Work (straight tubular), 110 ... Non-machined part, 120 ... Machined part, 130 ... Stepped work, 200 ... Specific tubular member, 210 ... Straight pipe part, 220 ... Shrinked pipe part, 310 ... Processing tool, And 320 ... Clamp.

Claims (3)

  1.  円筒状の形状を有する素管であるワークを押圧する加工ツールの回転軸と前記ワークの軸とがなす角度であるワーク角度、前記加工ツールによって押圧される前記ワークの部位の中心軸と前記加工ツールの前記回転軸との距離であるオフセット及び前記加工ツールの押圧部位の前記回転軸からの距離である押圧半径をそれぞれ制御することができるように構成されたスピニング加工装置を用いて、前記ワークの軸方向における一方の端部から途中までの範囲にスピニング加工を施すことにより、前記ワークの一部が未加工のままの状態に維持されている部分である直管部と、前記直管部に隣接し且つ前記直管部の軸に対して偏芯、傾斜及び捩れの少なくとも何れか1つの関係にある軸を有し且つ一部が前記直管部の外周面の仮想延長面より外側に突出している最終目標形状を有する部分である縮管部と、を有する筒状部材を成形する、筒状部材の製造方法であって、
     前記ワークは、一定の外径を有する直管状の形状を有し、
     前記最終目標形状において前記仮想延長面より外側に突出している部分である突出部が形成される側である突出側における加工ツールの前記ワークに対する押圧力である第1押圧力が前記加工ツールの回転軸を挟んで前記突出側の反対側における前記加工ツールの前記ワークに対する押圧力である第2押圧力よりも小さくなるように、前記ワーク角度と前記オフセット及び/又は前記押圧半径との組み合わせを制御することにより、前記ワークの前記突出部に対応する部分を前記最終目標形状における前記突出部の位置又は当該位置よりも前記仮想延長面より外側の位置にまで突出させる工程である第1工程と、
     前記第1工程の後に、前記第1押圧力と前記第2押圧力との差である押圧力差が前記第1工程における前記押圧力差よりも小さく且つ前記第1押圧力が前記第2押圧力以下であるように、前記ワーク角度と前記オフセット及び/又は前記押圧半径との組み合わせを制御することにより、前記最終目標形状を有する前記縮管部を成形する工程である第2工程と、
    を含む、
    筒状部材の製造方法。
    The work angle, which is the angle formed by the rotation axis of the machining tool that presses the workpiece, which is a raw tube having a cylindrical shape, and the axis of the workpiece, the central axis of the portion of the workpiece pressed by the machining tool, and the machining. The work is made by using a spinning machine configured to be able to control the offset, which is the distance of the tool from the rotation axis, and the pressing radius, which is the distance of the pressing portion of the processing tool from the rotation axis. A straight pipe portion, which is a portion in which a part of the work is maintained in an unprocessed state by performing spinning processing in a range from one end to the middle in the axial direction of the work, and the straight pipe portion. It has an axis that is adjacent to and has at least one relationship of eccentricity, inclination, and twist with respect to the axis of the straight pipe portion, and a part of the shaft is outside the virtual extension surface of the outer peripheral surface of the straight pipe portion. A method for manufacturing a tubular member, which forms a tubular member having a contracted tube portion which is a portion having a protruding final target shape.
    The work has a straight tubular shape having a constant outer diameter and has a straight tubular shape.
    The first pressing force, which is the pressing force on the work of the machining tool on the protruding side, which is the side where the protruding portion is formed, which is the portion protruding outward from the virtual extension surface in the final target shape, is the rotation of the machining tool. The combination of the work angle and the offset and / or the pressing radius is controlled so as to be smaller than the second pressing force, which is the pressing force of the machining tool on the work on the opposite side of the protruding side with the shaft in between. By doing so, the first step is a step of projecting the portion of the work corresponding to the protruding portion to the position of the protruding portion in the final target shape or a position outside the virtual extension surface from the position.
    After the first step, the pressing force difference, which is the difference between the first pressing force and the second pressing force, is smaller than the pressing force difference in the first step, and the first pressing force is the second pressing force. The second step, which is a step of forming the contracted tube portion having the final target shape, by controlling the combination of the work angle and the offset and / or the pressing radius so as to be equal to or less than the pressure.
    including,
    A method for manufacturing a tubular member.
  2.  請求項1に記載された筒状部材の製造方法であって、
     前記第1工程における前記加工ツールの複数のパスのうち少なくとも一部のパスが、前記加工ツールが前記突出側にあるときに前記加工ツールが前記ワークに接触しない状態を含むパスである非接触パスとなるように、前記ワーク角度と前記オフセット及び/又は前記押圧半径との組み合わせを制御する、
    筒状部材の製造方法。
    The method for manufacturing a tubular member according to claim 1.
    At least a part of the plurality of paths of the processing tool in the first step is a non-contact path including a state in which the processing tool does not contact the work when the processing tool is on the protruding side. The combination of the work angle and the offset and / or the pressing radius is controlled so as to be.
    A method for manufacturing a tubular member.
  3.  請求項2に記載された筒状部材の製造方法であって、
     前記非接触パスのうち少なくとも一部において、少なくとも前記加工ツールのパスの前記直管部側の端部である起点において前記加工ツールが前記突出側にあるときに前記加工ツールが前記ワークを押圧するように、前記ワーク角度と前記オフセット及び/又は前記押圧半径との組み合わせを制御する、
    筒状部材の製造方法。
    The method for manufacturing a tubular member according to claim 2.
    In at least a part of the non-contact path, the machining tool presses the work when the machining tool is on the protruding side at the starting point which is at least the end of the path of the machining tool on the straight pipe portion side. As described above, the combination of the work angle and the offset and / or the pressing radius is controlled.
    A method for manufacturing a tubular member.
PCT/JP2020/019876 2019-08-06 2020-05-20 Method for manufacturing cylindrical member WO2021024572A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021507100A JP7041319B2 (en) 2019-08-06 2020-05-20 Manufacturing method of tubular member
MYPI2021000948A MY192796A (en) 2019-08-06 2020-05-20 Production method of tubular member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144306 2019-08-06
JP2019-144306 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021024572A1 true WO2021024572A1 (en) 2021-02-11

Family

ID=74503434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019876 WO2021024572A1 (en) 2019-08-06 2020-05-20 Method for manufacturing cylindrical member

Country Status (3)

Country Link
JP (1) JP7041319B2 (en)
MY (1) MY192796A (en)
WO (1) WO2021024572A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151535A (en) * 1997-11-18 1999-06-08 Sango Co Ltd Method and device for forming tube end
JP2003010935A (en) * 2001-06-29 2003-01-15 Toyota Motor Corp Hollow member, manufacturing method thereof, manufacturing apparatus thereof, and fluid distribution system using the hollow member
JP2003181554A (en) * 2001-10-09 2003-07-02 Toyota Motor Corp Spinning molding method, spinning molding apparatus, and catalytic converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450504B2 (en) 2000-12-28 2010-04-14 株式会社三五 Workpiece edge forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151535A (en) * 1997-11-18 1999-06-08 Sango Co Ltd Method and device for forming tube end
JP2003010935A (en) * 2001-06-29 2003-01-15 Toyota Motor Corp Hollow member, manufacturing method thereof, manufacturing apparatus thereof, and fluid distribution system using the hollow member
JP2003181554A (en) * 2001-10-09 2003-07-02 Toyota Motor Corp Spinning molding method, spinning molding apparatus, and catalytic converter

Also Published As

Publication number Publication date
MY192796A (en) 2022-09-09
JP7041319B2 (en) 2022-03-23
JPWO2021024572A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP4959388B2 (en) Hollow rack bar and method and apparatus for reducing diameter of end of hollow rack bar
CN102825161A (en) Manufacturing method of cylinder device
KR101910395B1 (en) Method and device for reshaping a workpice
KR102084465B1 (en) Method of manufacturing hollow tube
US5806358A (en) Method and apparatus for the manufacture of a workpiece having a boss
JP4993951B2 (en) Pipe bending method and apparatus
JP2760269B2 (en) Manufacturing method of bulge-shaped piping
JP7041319B2 (en) Manufacturing method of tubular member
WO2004041458A1 (en) Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product
JP6618940B2 (en) Spinning method and cylindrical body having a head cone at the end
JP2007283315A (en) Method for spinning tube end
JPH1071428A (en) Method for bending pipe
JP4270921B2 (en) Bottomed tube and method for forming the same
JPH10249459A (en) Method for reducing tube made of metal
JP3983211B2 (en) Pipe bending machine
JPWO2007132799A1 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP2011036912A (en) Spinning method
JPS6313625A (en) Necking method for circular pipe
US11951527B2 (en) Method for producing a ball raceway on a workpiece and a ball screw nut having a ball raceway thus produced
JP4544468B2 (en) Spinning method
JP2009183983A (en) Method of bending electric resistance welded steel tube
JP7558394B2 (en) Method for forming cylindrical body having tapered portion
JP3624970B2 (en) Press bending method and apparatus
JPH08243680A (en) Tube upset processing method
JP2004122189A (en) Pipe contracting method and pipe contracting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507100

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850386

Country of ref document: EP

Kind code of ref document: A1