[go: up one dir, main page]

WO2021009831A1 - 電力変換装置および劣化診断システム - Google Patents

電力変換装置および劣化診断システム Download PDF

Info

Publication number
WO2021009831A1
WO2021009831A1 PCT/JP2019/027869 JP2019027869W WO2021009831A1 WO 2021009831 A1 WO2021009831 A1 WO 2021009831A1 JP 2019027869 W JP2019027869 W JP 2019027869W WO 2021009831 A1 WO2021009831 A1 WO 2021009831A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
smoothing capacitor
current
power conversion
conversion device
Prior art date
Application number
PCT/JP2019/027869
Other languages
English (en)
French (fr)
Inventor
メンデス マウリシオ デ ジーサス トボン
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2021532587A priority Critical patent/JP7191227B2/ja
Priority to CN201980097216.5A priority patent/CN114008907B/zh
Priority to PCT/JP2019/027869 priority patent/WO2021009831A1/ja
Priority to EP19937456.2A priority patent/EP4002670A4/en
Publication of WO2021009831A1 publication Critical patent/WO2021009831A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present invention relates to a power conversion device and a deterioration diagnosis system using the power conversion device.
  • a normal power converter includes a diode bridge that rectifies AC voltage, a smoothing capacitor, and multiple switching elements.
  • the smoothing capacitor plays the role of smoothing the rectified voltage, but ripple occurs due to the capacitor and load.
  • the smoothing capacitor deteriorates, the capacitance decreases and the ripple increases.
  • the ripple becomes large, the switch timing in the inverter section becomes unstable, and the converter cannot generate a desired AC signal.
  • the reverse conversion circuit 5 is controlled so that a DC current flows through the electric motor 13 when the AC power supply 1 is cut off, and the DC current detected by the output current detection circuit 14 and the DC detected by the DC voltage detection circuit 6
  • the CPU 10 calculates the capacitance of the smoothing capacitor 4 based on the voltage value, and the capacitance of the smoothing capacitor 4 obtained by the calculation is equal to or less than the lifetime capacity stored in the non-volatile storage circuit 8 in advance. At that point, the smoothing capacitor 4 is provided with a life diagnosis circuit 100 for diagnosing the end of life.
  • the deterioration detection circuit of the smoothing capacitor measures the load current of the load (conversion unit 6 and the motor 7) connected to the smoothing capacitor 3 to which the DC voltage including the pulsating flow is applied.
  • the load current detection unit 5, the DC voltage detection unit 4 that measures the DC voltage of the smoothing capacitor 3, the control unit 9 to which these are connected, and a comparative average voltage value predetermined in correspondence with the load current are stored.
  • the configuration is provided with the storage unit 9a, and the control unit 9 calculates the average voltage value from the DC voltage of the smoothing capacitor 3, and corresponds to the average voltage value and the load current value measured by the load current detection unit 5.
  • the abnormality of the smoothing capacitor 3 is determined by comparing with the comparative average voltage value.
  • the deterioration state of the smoothing capacitor can be determined only at the time of interruption. However, depending on the application of the power conversion device, it is always operated, so it is desired to determine the deterioration state of the smoothing capacitor during the operation of the power conversion device.
  • the average voltage is calculated from the DC voltage of the smoothing capacitor in a specified period and compared with the comparative average voltage value determined by the load current.
  • An object of the present invention is to provide a power conversion device capable of determining a deteriorated state of a smoothing capacitor during operation in which momentary load fluctuations and regenerative currents are generated.
  • a preferred example of the present invention is to control a DC conversion unit that converts an AC voltage into a DC voltage, a smoothing capacitor that smoothes the DC voltage, an AC conversion unit that converts a DC voltage into an AC voltage, and the AC conversion unit. It has a control unit for detecting a DC voltage, a voltage detector for detecting the DC voltage, and a current detector for detecting a load current. During operation, the control unit acquires a time change of the ripple voltage based on the DC voltage detected by the voltage detector, and based on the time change of the ripple voltage and the load current, the deterioration state of the smoothing capacitor. It is a power conversion device that determines.
  • the present invention it is possible to determine the deterioration state of the smoothing capacitor during operation in which momentary load fluctuations and regenerative currents are generated.
  • FIG. It is a schematic block diagram of the motor drive system using the power conversion apparatus in Example 1.
  • FIG. It is a figure which shows the waveform of the output current from a DC converter, the current of a smoothing capacitor, a load current, and a DC voltage. It is a figure which shows the processing flow which acquires the DC voltage data in Example 1.
  • FIG. It is a figure which shows the processing flow which determines the deterioration state of the smoothing capacitor in Example 1.
  • FIG. It is a schematic block diagram of the motor drive system using the power conversion device in Example 2.
  • FIG. 1 is a schematic configuration diagram of a motor drive system using the power conversion device 100 of this embodiment.
  • This motor drive system includes a power converter 100 that supplies electric power to a controlled object, a three-phase AC power supply 102 that supplies electric power to the electric power converter 100, and an AC motor 105 that is a controlled object.
  • the three-phase AC power supply 102 is a power source that supplies power to the power conversion device 100. Specifically, it supplies a three-phase AC voltage supplied from an electric power company or an AC voltage supplied from a generator.
  • the power conversion device 100 includes a smoothing capacitor 101, a DC conversion unit 103, an AC conversion unit 104, a current detector 106, a DC voltage detector 107, and a control unit 108.
  • the DC conversion unit 103 converts the AC voltage input from the three-phase AC power supply 102 into a DC voltage and outputs it to the smoothing capacitor 101.
  • it is composed of a DC conversion circuit composed of a diode and a DC conversion circuit using an IGBT (Insulated Gate Bipolar Transistor) and a flywheel diode.
  • FIG. 1 shows a DC conversion circuit composed of a diode as an example.
  • the smoothing capacitor 101 smoothes the DC voltage input from the DC conversion unit 103, and outputs the DC voltage to the AC conversion unit 104.
  • the AC conversion unit 104 receives the DC voltage of the smoothing capacitor 101 and the output command of the control unit as inputs, and converts the DC voltage into an AC voltage based on the output command of the control unit. In the case of this embodiment, the output is output to the AC motor 105. Further, the AC conversion unit 104 of this embodiment is composed of, for example, an AC conversion circuit using an IGBT and a flywheel diode.
  • the current detector 106 detects the current output to the AC motor 105 and outputs it to the current detection unit 111. Further, the current detector 106 of this embodiment is composed of a Hall CT and a shunt resistor. Further, the position of the current detector 106 is not limited to the position shown in FIG. 1, and the position where the output current to the AC motor 105 can be measured, for example, inside the AC conversion unit 104 or the DC conversion unit 103. It may be between the AC converter 104 and the AC converter 104.
  • the DC voltage detector 107 detects the DC voltage and outputs it to the DC voltage detection unit 109.
  • the DC voltage detector 107 is composed of an arrangement of resistors.
  • the position of the DC voltage detector 107 is not limited to the position shown in FIG. 1, and may be any position as long as the voltage of the smoothing capacitor 101 can be detected.
  • control unit 108 Next, the control unit 108 will be described.
  • the control unit 108 includes a current detection unit 111, a DC voltage detection unit 109, a CPU (Central Processing Unit) 112, an information storage unit 114, a PWM (Pulse Width Modulation) output unit 110, and an external communication unit 113.
  • a current detection unit 111 a DC voltage detection unit 109
  • a CPU Central Processing Unit
  • an information storage unit 114 an information storage unit 114
  • PWM Pulse Width Modulation
  • the CPU 112 is an arithmetic unit such as an MCU (MicroControllerUnit) or an FPGA (field-programmable gatearray), and a function described later is realized by an arithmetic circuit of software or hardware.
  • MCU MicroControllerUnit
  • FPGA field-programmable gatearray
  • the current detection unit 111 takes the signal output by the current detector 106 as an input, converts it into calculation data, and outputs it to the CPU 112.
  • the current detection unit 111 is composed of an AD converter or the like.
  • the DC voltage detection unit 109 takes the signal output by the DC voltage detector 107 as an input, converts it into calculation data, and outputs it to the CPU 112.
  • it is composed of, for example, an AD converter.
  • the CPU 112 processes the detected current and voltage, and performs control processing for the AC motor 105. Specifically, it is the creation and transmission of an output signal to the PWM output unit 110. In this embodiment, the case where the deterioration state of the smoothing capacitor 101 is determined by the CPU 112 will be described, but the processing may be performed by an external device such as a host device via the external communication unit 113.
  • FIG. 2 is a diagram showing waveforms of an output current 203 from the DC conversion unit of the power converter 100, a smoothing capacitor current i C 202, a load current i L 201, and a DC voltage Vdc 200.
  • the DC voltage Vdc has a ripple voltage 206
  • the maximum voltage 204 is treated as v h
  • the minimum voltage 205 is treated as v l .
  • the slope of the ripple voltage over time when the ripple voltage decreases is defined as the ripple conversion amount 207 ⁇ v / ⁇ t.
  • the current flowing through the smoothing capacitor 101 is defined as i C
  • the load current supplied to the AC motor 105 is defined as i L.
  • the DC converter 103 converts the voltage from the power supply to DC and smoothes the capacitor. Since the input of the DC conversion unit 103 is a three-phase AC voltage, the output current 203 of the DC conversion unit 103 is periodic as shown in FIG.
  • the load current i L is not supplied only in part from the DC converter 103.
  • the smoothing capacitor 101 also operates to supply the load current i L. In some cases, the smoothing capacitor 101 supplies all the load current i L. At this time, the smoothing capacitor 101 is discharged, and the DC voltage Vdc is reduced.
  • the current supplied from the DC converter 103 also increases at the timing when the smoothing capacitor 101 supplies the current (the current waveform diagram is omitted). Therefore, it is necessary to approximate the current i C of the smoothing capacitor 101 from the load current i L.
  • the current of the smoothing capacitor 101 is approximated by i C ⁇ i L (1-k * i L ). k is determined by the parameters of the power converter and experimental measurement.
  • FIG. 3 is a diagram showing a processing flow for acquiring data about the DC voltage Vdc detected by the DC voltage detection unit 109.
  • FIG. 3 and FIG. 4 described later show the processing executed by the CPU 112 in the control unit 108 in the first embodiment.
  • the DC voltage Vdc is taken in from the DC voltage detection unit 109 (S301).
  • the DC voltage Vdc is taken in from the DC voltage detection unit 109 (S304).
  • FIG. 4 is a diagram showing a processing flow for determining a deterioration state of the smoothing capacitor 101.
  • the CPU 112 in the control unit 108 acquires data (S400). Specifically, as described with reference to FIG. 3, the load current i L stored in the information storage unit 114, the DC voltage Vdc, the acquisition of data for the time t performed.
  • the ripple conversion amount ⁇ v / ⁇ t which is the time change of the ripple voltage, is calculated (S401).
  • ⁇ v is the voltage difference between the maximum voltage v h of the ripple voltage and the minimum voltage v l of the ripple voltage.
  • ⁇ t is the time difference between the time when the maximum voltage v h was detected and the time when the minimum voltage v l was detected.
  • the threshold value of the load current is determined and set in advance based on the specifications (rated current, capacity, etc.) of the power converter 100.
  • the smoothing capacitor current i C uses the load current i L and the preset parameter k, and i L (1-k). * Approximate based on the equation i L ) to calculate the current i C of the smoothing capacitor (S404).
  • the initial state means the case where the smoothing capacitor 101 is used for the first time or when it is replaced with a new one.
  • the capacity of capacitors varies widely. Therefore, if the power conversion device 100 is in the initial state and the smoothing capacitor 101 is in the initial state (Yes in S406), the capacitor capacity obtained in S405 is stored (S407). The value of the capacitor capacity in the initial state saved is used in the step of S409. However, the threshold value of the capacitor capacity may be set in consideration of the allowable range instead of the capacitor capacity itself in the initial state.
  • the deterioration state of the smoothing capacitor 101 is determined (S410). Specifically, when the capacitance C of the smoothing capacitor 101 calculated in S405 is smaller than the threshold value of the capacitor capacitance, it is determined that the smoothing capacitor 101 is in a deteriorated state (Yes in S410).
  • a warning is given that the smoothing capacitor 101 is in a deteriorated state (S411).
  • a warning an error signal is output. It is not always necessary to give a warning.
  • the determination result may be recorded in the information storage unit 114 such as a memory.
  • the power conversion device 100 can determine the deterioration status of the smoothing capacitor 101 without adding new parts.
  • the DC voltage detection unit 109 and the current detection unit 111 are installed in the normal power conversion device 100, it is not necessary to add parts to the normal power conversion device 100. Further, since the power conversion device 100 can be diagnosed even during operation, it is possible to check the deterioration status of the capacitor even when continuous operation is required.
  • FIG. 5 is a schematic configuration diagram of a motor drive system using the power conversion device 100 in the second embodiment.
  • the DC converter output current detector 501 and the DC converter output current detector 502 are added to the configuration of the first embodiment. Since the configurations other than the DC converter output current detector 501 and the DC converter output current detector 502 are the same as those in FIG. 1, duplicated description will be omitted.
  • the output current idc of the DC converter detected by the DC converter output current detector 501 at the timing when the smoothing capacitor 101 supplies the current, that is, at the time of discharge, is shown in S400 of FIG. Get in the same way.
  • S402, S403, S404 is, in Example 2, is not required since it is not necessary to approximate the current i C of the smoothing capacitor.
  • the other steps of FIG. 4 are also performed in Example 2.
  • the calculation error of the capacitor capacity can be reduced, and the accuracy of the determination of the deterioration state of the smoothing capacitor can be improved in the second embodiment from the first embodiment.
  • the second embodiment has the same effect as that of the first embodiment, that is, the deterioration state of the smoothing capacitor can be determined during the operation in which the instantaneous load fluctuation and the regenerative current are generated.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the power conversion apparatus 100 acquires data on the DC voltage shown in FIG. 3, the host computer, such as a cloud from the external communication unit 113, the DC converter unit output current i dc, the load current i L, the DC voltage, etc. It is also possible to make a deterioration diagnosis system that transmits the data of the above, calculates the ripple conversion amount and capacitance in the host device, and judges the deterioration state of the smoothing capacitor.
  • the power conversion device 100 in the above embodiment can be applied as a power conversion device such as a general-purpose inverter, a servo amplifier, and a DCBL controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

電力変換装置は、交流電圧を直流電圧に変換する直流変換部と、直流電圧を平滑にする平滑コンデンサと、直流電圧を交流電圧に変換する交流変換部と、交流変換部を制御する制御部と、直流電圧を検出する電圧検出器と、負荷電流を検出する電流検出器とを有し、制御部は、運転中に、電圧検出器で検出した直流電圧に基づいてリップル電圧の時間変化を取得し、リップル電圧の時間変化と負荷電流に基づいて、平滑コンデンサの劣化状態を判定する。

Description

電力変換装置および劣化診断システム
 本発明は、電力変換装置、およびそれを用いた劣化診断システムに関する。
 通常の電力変換装置には交流電圧を整流するダイオードブリッジ、平滑コンデンサと複数のスイッチング素子が含まれる。平滑コンデンサが整流された電圧を滑らかにする役割を果たしているが、コンデンサや負荷などのため、リップルが発生する。平滑コンデンサが劣化すると容量が減少するため、リップルが大きくなる。リップルが大きくなると、インバータ部におけるスイッチタイミングが不安定になるため、変換装置が所望の交流信号を生成できなくなる。
 平滑コンデンサの劣化の診断をするために、以下の特許文献が提案されている。
 特許文献1の要約には「交流電源1遮断時に電動機13に直流電流を流すように逆変換回路5を制御し、出力電流検出回路14で検出した直流電流および直流電圧検出回路6で検出した直流電圧の値に基づいてCPU10で平滑コンデンサ4の静電容量を演算し、演算して得られた平滑コンデンサ4の静電容量があらかじめ不揮発性の記憶回路8に記憶している寿命容量以下になった時点をもって平滑コンデンサ4は寿命であると診断する寿命診断回路100を備えた。」と記載されている。
 また、特許文献2の要約には「平滑コンデンサの劣化検出回路を、脈流を含む直流電圧が印加された平滑コンデンサ3に接続された負荷(変換部6とモータ7)の負荷電流を測定する負荷電流検出部5と、平滑コンデンサ3の直流電圧を測定する直流電圧検出部4と、これらが接続される制御部9と、負荷電流と対応して予め定められた比較平均電圧値を記憶する記憶部9aとを備えた構成にし、制御部9は平滑コンデンサ3の直流電圧から平均電圧値を算出すると共に、同平均電圧値と、負荷電流検出部5で測定した負荷電流の値に対応する比較平均電圧値とを比較して平滑コンデンサ3の異常を判定する。」と記載されている。
特開2007-295655 特開2009-168587
 特許文献1では平滑コンデンサの劣化状態の判定は遮断時しかできない。しかし、電力変換装置の用途によっては常時運転を行っているため、電力変換装置の運転中に、平滑コンデンサの劣化状態の判定をすることが望まれる。
 また、特許文献2は平滑コンデンサの異常を検出するために、定めている期間で平滑コンデンサの直流電圧から平均電圧を算出し、負荷電流により決まっている比較平均電圧値と比較する。
 このため、電力変換装置を運転しながら平滑コンデンサの異常検出ができる。しかし、負荷電流が瞬間的に変化するとリップルも変化し、定めている期間の平均電圧だけで平滑コンデンサの劣化の診断は困難である。
 さらに、回生電流が流れる場合には、直流電圧が大きく変動するため平均電圧を利用すると劣化診断が困難である。
 本発明の目的は、瞬間的な負荷変動や回生電流が発生する運転中に、平滑コンデンサの劣化状態の判定ができる電力変換装置を提供することが目的である。
 本発明の好ましい一例は、交流電圧を直流電圧に変換する直流変換部と、前記直流電圧を平滑にする平滑コンデンサと、直流電圧を交流電圧に変換する交流変換部と、前記交流変換部を制御する制御部と、前記直流電圧を検出する電圧検出器と、負荷電流を検出する電流検出器とを有し、
前記制御部は、運転中に、前記電圧検出器で検出した直流電圧に基づいてリップル電圧の時間変化を取得し、前記リップル電圧の時間変化と前記負荷電流に基づいて、前記平滑コンデンサの劣化状態を判定する電力変換装置である。
 本発明によれば、瞬間的な負荷変動や回生電流が発生する運転中に、平滑コンデンサの劣化状態の判定ができる。
実施例1における電力変換装置を用いたモータ駆動システムの概略構成図である。 直流変換部からの出力電流、平滑コンデンサの電流、負荷電流、直流電圧の波形を示す図である。 実施例1における直流電圧のデータを取得する処理フローを示す図である。 実施例1における平滑コンデンサの劣化状態を判定する処理フローを示す図である。 実施例2における電力変換装置を用いたモータ駆動システムの概略構成図である。
 以下、本発明の実施例について図面を用いて説明する。
 図1は、本実施例の電力変換装置100を用いたモータ駆動システムの概略構成図である。本モータ駆動システムは、制御対象に電力を供給する電力変換装置100と、電力変換装置100に電力を供給する三相交流電源102と、制御対象である交流電動機105とを備えている。
 三相交流電源102は、電力変換装置100に対して電力を供給する電源である。具体的には、電力会社から供給される三相交流電圧または発電機から供給される交流電圧を供給する。
 電力変換装置100は、平滑コンデンサ101、直流変換部103、交流変換部104、電流検出器106、直流電圧検出器107、制御部108を備えている。
 直流変換部103は、三相交流電源102から入力された交流電圧を、直流電圧に変換し、平滑コンデンサ101に出力する。例えばダイオードで構成された直流変換回路やIGBT(Insulated Gate Bipolar Transistor)とフライホイールダイオードを用いた直流変換回路で構成される。図1では、一例としてダイオードで構成された直流変換回路を示している。
 平滑コンデンサ101は、直流変換部103から入力された直流電圧を平滑にし、交流変換部104に直流電圧を出力する。
 交流変換部104は、平滑コンデンサ101の直流電圧と制御部の出力指令とを入力とし、直流電圧を制御部の出力指令に基づいた交流電圧に変換する。本実施例の場合、交流電動機105に出力している。また、本実施例の交流変換部104は、例えばIGBTとフライホイールダイオードを用いた交流変換回路で構成される。
 電流検出器106は、交流電動機105に出力される電流を検出し、電流検出部111に出力する。また、本実施例の電流検出器106は、ホールCTやシャント抵抗で構成される。また、電流検出器106の位置は、図1の位置に限定されることはなく、交流電動機105への出力電流の測定が可能な場所、例えば交流変換部104の内部、あるいは、直流変換部103と交流変換部104の間であってもよい。
 直流電圧検出器107は直流電圧を検出し、直流電圧検出部109に出力する。直流電圧検出器107は抵抗のアレンジで構成される。なお、直流電圧検出器107の位置は、図1の位置に限定されることはなく、平滑コンデンサ101の電圧を検出できる場所であればいずれもよい。
 次に、制御部108について説明する。
 制御部108は、電流検出部111、直流電圧検出部109、CPU(Central Processing Unit)112、情報蓄積部114、PWM(Pulse Width Modulation)出力部110、外部通信部113を備えている。
 CPU112は、MCU(Micro Controller Unit)やFPGA(field-programmable gate array)などの演算器であって、ソフトウェアあるいはハードウェアの演算回路で後述する機能が実現される。
 電流検出部111は、電流検出器106が出力した信号を入力とし、演算用データに変換して、CPU112に出力する。電流検出部111は、AD変換器などで構成される。
 直流電圧検出部109は、直流電圧検出器107が出力した信号を入力とし、演算用データに変換して、CPU112に出力する。本実施例では、例えばAD変換器などで構成される。
 CPU112では、検出された電流や電圧を処理し、交流電動機105のための制御処理を行う。具体的には、PWM出力部110への出力信号の作成、送信である。なお、本実施例では平滑コンデンサ101の劣化状態の判定処理をCPU112で行う場合について説明するが、外部通信部113を経由して外部の上位装置などの機器で処理を行ってもよい。
 図2は、電力変換装置100の直流変換部からの出力電流203、平滑コンデンサの電流i202、負荷電流i201、直流電圧Vdc200の波形を示す図である。まず、本実施例の原理について説明する。
 図2に示すように直流電圧Vdcにはリップル電圧206があって、その最大電圧204はvとし、最小電圧205はvとして扱う。さらに、図2示すように、リップル電圧が減少する際におけるリップル電圧の時間における傾きをリップル変換量207 Δv/Δtと定義する。また、平滑コンデンサ101に流れている電流はiと定義し、交流電動機105に供給する負荷電流をiと定義する。
 直流変換部103は電源からの電圧を直流にし、コンデンサを平滑する。直流変換部103の入力が3相の交流電圧なので、図2に示すように、直流変換部103の出力電流203は周期的である。
 直流変換部103の出力電流203の周期の中で、負荷電流iは直流変換部103から一部しか供給されない。平滑コンデンサ101も負荷電流iを供給するように動作する。場合によって、平滑コンデンサ101はすべての負荷電流iを供給する。この時、平滑コンデンサ101を放電し、直流電圧Vdcが減少する。
 図2に示したように、負荷電流iが小さい場合、平滑コンデンサ101からの電流iに近似することができる。そして、式(1)からコンデンサの容量Cを求めることができる。
 C=i*(dv/dt)-1    (1)
このように、平滑コンデンサが電流を供給するタイミング(放電時)で負荷電流i、直流電圧Vdcと時間のデータを取得すれば、平滑コンデンサの容量Cを推定することができる。
 しかし、負荷が増加するほど、平滑コンデンサ101が電流を供給するタイミングでも、直流変換部103からの供給電流も増加する(電流波形の図は省略)。このため、平滑コンデンサ101の電流iを負荷電流iから近似する必要がある。平滑コンデンサ101の電流がi≒i(1-k*i)で近似する。kは電力変換装置のパラメータや実験測定で決定する。
 図3は、直流電圧検出部109で検出された直流電圧Vdcについてのデータを取得する処理フローを示す図である。図3と後に説明する図4は、実施例1において制御部108におけるCPU112が実行する処理を示す。
 直流電圧Vdcを監視するため、直流電圧検出部109から直流電圧Vdcを取り込む(S301)。
 取り込んだ時系列の直流電圧Vdcを比較し、最大電圧vを検出したかどうかを判断する(S302)。
最大電圧vを検出していない場合(S302のNo)には、S301に戻り、直流電圧Vdcを監視する。
最大電圧vを検出したら(S302のYes)、負荷電流iのサンプリングとその保存を開始する。そして、サンプリングしている、負荷電流i、直流電圧Vdc及び、それらのデータを取得した時間tを情報蓄積部114に保存する(S303)。
 次に、直流電圧Vdcを監視するため、直流電圧検出部109から直流電圧Vdcを取り込む(S304)。
 取り込んだ時系列の直流電圧Vdcを比較し、最小電圧vを検出したかどうかを判断する(S305)。
 最小電圧vを検出していない場合(S305のNo)には、S303に戻り、負荷電流iのサンプリングと負荷電流i、直流電圧Vdc及び時間tの保存をし、最小電圧vを検出していない間は、S303の処理は繰り返される。
 S305でvを検出した場合(S305のYes)には、サンプリングしている負荷電流i、直流電圧Vdc、及び時間tの保存を停止する(S306)。そして、S301に戻る。
 図4は、平滑コンデンサ101の劣化状態を判定する処理フローを示す図である。
 制御部108におけるCPU112は、データ取得を行う(S400)。具体的には、図3で説明したように、情報蓄積部114に保存した負荷電流i、直流電圧Vdc、時間tのデータの取得を行う。
 取得した直流電圧Vdcのリップル電圧と時間tに基づいて、リップル電圧の時間変化であるリップル変換量Δv/Δtを計算する(S401)。ここで、Δvは、リップル電圧の最大電圧vとリップル電圧の最小電圧vとの電圧差である。Δtは、最大電圧vを検出した時間と最小電圧vを検出した時間との間の時間差である。
 次に、負荷電流iと負荷電流の閾値を比較する(S402)。負荷電流の閾値は電力変換装置100の仕様(定格電流、容量など)に基づいて、予め決定して設定しておく。
 負荷電流iが負荷電流の閾値より小さい場合(S402のYes)には、平滑コンデンサの電流iを負荷電流iとみなす近似をする(S403)。
 負荷電流iが負荷電流の閾値以上の場合(S402のNo)には、平滑コンデンサの電流iは、負荷電流iや予め設定しておいたパラメータkを使い、i(1-k*i)という式に基づいて近似をして平滑コンデンサの電流iを算出する(S404)。
 近似した平滑コンデンサの電流iと、リップル変換量Δv/Δtを利用し、C=i*(Δv/Δt)-1の式により、平滑コンデンサ101の推定コンデンサ容量Cを算出する(S405)。
 平滑コンデンサ101が初期状態であるかどうかを判定する(S406)。初期状態とは、平滑コンデンサ101を最初に使う場合もしくは新品に交換した場合をいう。
 一般的にコンデンサの容量は、ばらつきが大きい。そこで、電力変換装置100が初期状況で平滑コンデンサ101が初期状態であれば(S406のYes)、S405で求めたコンデンサ容量を保存する(S407)。保存した初期状態のコンデンサ容量の値をS409のステップで使う。ただし、初期状態のコンデンサ容量自体ではなく、許容範囲を考慮しコンデンサ容量の閾値を設定するようにしてもよい。
 平滑コンデンサ101が初期状態でなければ(S406のNo)、S405で算出したコンデンサ容量CとS407で保存したコンデンサ容量の閾値と比較する(S409)。
 S409での比較結果に基づいて、平滑コンデンサ101の劣化状態を判定する(S410)。具体的には、S405で算出した平滑コンデンサ101の容量Cがコンデンサ容量の閾値より小さい場合には、平滑コンデンサ101は劣化状態であると判定する(S410のYes)。
 S405で算出した平滑コンデンサ101の容量Cがコンデンサ容量の閾値以上の場合には、平滑コンデンサ101は劣化状態ではないと判定する(S410のNo)し、S400のステップに戻る。
 平滑コンデンサ101は劣化状態であると判定した場合には、劣化状態であるということをワーニング(警告)する(S411)。ワーニングとしてはエラー信号を出力するようにする。必ずしも、ワーニングをしなくてもよい。例えば、S411の代わりに、メモリなどの情報蓄積部114に判定結果を記録するようにしてもかまわない。
 実施例1によれば、直流電圧検出部109と電流検出部111を備えることで電力変換装置100が新たな部品を追加することなく、平滑コンデンサ101の劣化状況を判定することができる。
 直流電圧検出部109と電流検出部111は、通常の電力変換装置100に設置されているので、通常の電力変換装置100に部品を追加する必要がない。さらに、電力変換装置100が動作中でも診断できることにより継続的な運転が必要な時でもコンデンサの劣化状況を調べることができる。
 さらに、本実施例によれば、リップル電圧の時間変化に基づいて平滑コンデンサの静電容量を求めることにより、瞬間的な負荷変動や回生電流が発生する運転中に、平滑コンデンサの劣化状態の判定ができる。
 図5は、実施例2における電力変換装置100を用いたモータ駆動システムの概略構成図である。実施例2では、図5に示すように、直流変換部出力電流検出器501と直流変換部出力電流検出部502が、実施例1の構成に追加される。直流変換部出力電流検出器501と直流変換部出力電流検出部502以外の構成は図1と同一であるので、重複した説明は省略する。
 実施例1と同じく、実施例2でも平滑コンデンサ101が電流を供給するタイミング、つまり放電時に、直流変換部出力電流検出器501で検出した直流変換部の出力電流idcを、図4のS400において同様に取得する。
 図4のうち、S402、S403、S404は、実施例2では、平滑コンデンサの電流iを近似する必要は無いので不要である。その代わりに、実施例2では、平滑コンデンサの電流iを近似するではなく直流変換部出力電流idcと負荷電流iから、(i=idc-i)の演算式により平滑コンデンサの電流iを算出する。図4の他のステップは、実施例2においても実行される。
 算出した平滑コンデンサの電流iと図4のS405に示す式に基づいて平滑コンデンサ101の容量を計算する。実施例2では、直流変換部出力電流検出部502が追加されるため、平滑コンデンサの電流iを近似することなく、実際に流れている電流を算出できる。
 このため、コンデンサ容量の計算誤差が減少でき、実施例1より実施例2では平滑コンデンサの劣化状態の判定の正確さを向上できる。また、実施例2は、瞬間的な負荷変動や回生電流が発生する運転中に、平滑コンデンサの劣化状態の判定ができるという、実施例1と同様な効果を有する。
 なお、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、電力変換装置100で、図3に示した直流電圧についてのデータを取得し、外部通信部113からクラウドなどの上位計算機に、直流変換部出力電流idc、負荷電流i、直流電圧などのデータを送信し、上位装置でリップル変換量、静電容量の計算をし、平滑コンデンサの劣化状態の判断をする劣化診断システムにすることもできる。
 さらに、直流変換部103や交流変換部104に対してノイズなどの障害により、計算の誤差がある可能性あるので、平滑コンデンサの劣化の判定に対して閾値レベルだけではなく、算出した平滑コンデンサの静電容量の統計的な解析で、劣化状態を判断することも可能である。
 上記の実施例における電力変換装置100は、汎用インバータ、サーボアンプ、DCBLコントローラなどの電力変換装置として適用できる。
100:電力変換装置、101:平滑コンデンサ、103:直流変換部、104:交流変換部、108:制御部、109:直流電圧検出部、111:電流検出部、112:CPU、113:外部通信部、114:情報蓄積部

Claims (11)

  1. 交流電圧を直流電圧に変換する直流変換部と、
    前記直流電圧を平滑にする平滑コンデンサと、
    前記直流電圧を交流電圧に変換する交流変換部と、
    前記交流変換部を制御する制御部と、
    前記直流電圧を検出する電圧検出器と、
    負荷電流を検出する電流検出器とを有し、
    前記制御部は、運転中に、
    前記電圧検出器で検出した前記直流電圧に基づいてリップル電圧の時間変化を取得し、
    前記リップル電圧の時間変化と前記負荷電流に基づいて、前記平滑コンデンサの劣化状態を判定することを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記制御部は、
    放電中における前記負荷電流に基づいて、前記平滑コンデンサの劣化状態を判定することを特徴とする電力変換装置。
  3. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記リップル電圧の時間的な変化であるリップル変換量を算出することを特徴とする電力変換装置。
  4. 請求項3に記載の電力変換装置において、
    前記制御部は、
    前記リップル変換量と推定した前記平滑コンデンサの電流に基づいて、前記平滑コンデンサの静電容量を算出することを特徴とする電力変換装置。
  5. 請求項4に記載の電力変換装置において、
    前記制御部は、
    前記負荷電流が、閾値より小さい場合には、前記負荷電流を前記平滑コンデンサの電流とみなして前記静電容量を算出することを特徴とする電力変換装置。
  6. 請求項4に記載の電力変換装置において、
    前記制御部は、
    前記負荷電流が、閾値以上の場合には、前記負荷電流とパラメータに基づいて前記平滑コンデンサの電流を算出することを特徴とする電力変換装置。
  7. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記平滑コンデンサの静電容量を算出し、
    前記平滑コンデンサが初期状態である場合には、算出した前記静電容量を閾値として前記平滑コンデンサの劣化状態の判定に用いることを特徴とする電力変換装置。
  8. 請求項1に記載の電力変換装置において、
    前記制御部は、
    前記平滑コンデンサの静電容量を算出し、算出した前記静電容量と閾値とに基づいて、前記平滑コンデンサの劣化状態を判定することを特徴とする電力変換装置。
  9. 請求項1に記載の電力変換装置において、
    前記直流変換部の出力電流を検出する直流変換部出力電流検出部を有し、
    前記制御部は、運転中に、
    前記電圧検出器で検出した前記直流電圧に基づいて前記リップル電圧の時間変化を取得し、前記リップル電圧の時間的変化と前記直流変換部出力電流検出部で検出した電流と前記負荷電流に基づいて、前記平滑コンデンサの劣化状態を判定することを特徴とする電力変換装置。
  10.   交流電圧を直流電圧に変換する直流変換部と、
      前記直流電圧を平滑にする平滑コンデンサと、
      前記直流電圧を交流電圧に変換する交流変換部と、
      前記交流変換部を制御する制御部と、
      前記直流電圧を検出する電圧検出器と、
      負荷電流を検出する電流検出器と、
      外部通信部と、
     を有する電力変換装置と、
     上位装置と、
    を有する劣化診断システムであって、
      前記制御部は、
      前記電圧検出器で検出した前記直流電圧に基づいてリップル電圧の時間変化を取得し、
      前記外部通信部は、
      前記リップル電圧と前記負荷電流を前記上位装置に送信し、
      前記上位装置は、
      前記リップル電圧の時間変化と前記負荷電流に基づいて、
      前記平滑コンデンサの劣化状態を判定することを特徴とする劣化診断システム。
  11. 請求項10に記載の劣化診断システムにおいて、
    前記電力変換装置は、
    前記直流変換部の出力電流を検出する直流変換部出力電流検出部を有し、
    前記外部通信部は、前記リップル電圧と前記直流変換部の出力電流と前記負荷電流を前記上位装置に送信し、
    前記上位装置は、
    前記リップル電圧の時間変化と前記直流変換部の出力電流と前記負荷電流に基づいて、前記平滑コンデンサの劣化状態を判定することを特徴とする劣化診断システム。
PCT/JP2019/027869 2019-07-16 2019-07-16 電力変換装置および劣化診断システム WO2021009831A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021532587A JP7191227B2 (ja) 2019-07-16 2019-07-16 電力変換装置および劣化診断システム
CN201980097216.5A CN114008907B (zh) 2019-07-16 2019-07-16 电力转换装置和劣化诊断系统
PCT/JP2019/027869 WO2021009831A1 (ja) 2019-07-16 2019-07-16 電力変換装置および劣化診断システム
EP19937456.2A EP4002670A4 (en) 2019-07-16 2019-07-16 Power conversion device and deterioration diagnostic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027869 WO2021009831A1 (ja) 2019-07-16 2019-07-16 電力変換装置および劣化診断システム

Publications (1)

Publication Number Publication Date
WO2021009831A1 true WO2021009831A1 (ja) 2021-01-21

Family

ID=74210308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027869 WO2021009831A1 (ja) 2019-07-16 2019-07-16 電力変換装置および劣化診断システム

Country Status (4)

Country Link
EP (1) EP4002670A4 (ja)
JP (1) JP7191227B2 (ja)
CN (1) CN114008907B (ja)
WO (1) WO2021009831A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295655A (ja) 2006-04-21 2007-11-08 Yaskawa Electric Corp 電力変換装置
JP2008172910A (ja) * 2007-01-11 2008-07-24 Yaskawa Electric Corp 電力変換装置
JP2009168587A (ja) 2008-01-16 2009-07-30 Fujitsu General Ltd 平滑コンデンサの異常検出回路及びこれを備えた電子機器
JP2014025927A (ja) * 2012-07-26 2014-02-06 Lsis Co Ltd インバータの直流リンクコンデンサの容量推定装置
JP2018046609A (ja) * 2016-09-12 2018-03-22 株式会社日立製作所 電力変換装置および電力変換装置の監視システム
JP2018102082A (ja) * 2016-12-21 2018-06-28 ファナック株式会社 モータ駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019063B2 (ja) * 1998-06-01 2000-03-13 トヨタ自動車株式会社 インバータ内部コンデンサの異常検出装置
JP4765689B2 (ja) * 2006-03-10 2011-09-07 株式会社富士通ゼネラル 平滑コンデンサの劣化検出回路及びこれを備えた電子機器
JP5196370B2 (ja) * 2008-03-14 2013-05-15 東芝エレベータ株式会社 電力変換装置の寿命診断装置
JP6169459B2 (ja) * 2013-09-30 2017-07-26 株式会社日立産機システム 電力変換装置および制御方法
CN105850024B (zh) * 2013-12-27 2019-01-01 株式会社日立产机系统 电力转换装置
JP2017112792A (ja) * 2015-12-18 2017-06-22 富士電機株式会社 コンデンサの劣化診断方法および電力変換装置
JP6817881B2 (ja) * 2017-04-21 2021-01-20 株式会社日立製作所 電力変換装置、及び異常検出方法
JP6884029B2 (ja) * 2017-05-09 2021-06-09 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295655A (ja) 2006-04-21 2007-11-08 Yaskawa Electric Corp 電力変換装置
JP2008172910A (ja) * 2007-01-11 2008-07-24 Yaskawa Electric Corp 電力変換装置
JP2009168587A (ja) 2008-01-16 2009-07-30 Fujitsu General Ltd 平滑コンデンサの異常検出回路及びこれを備えた電子機器
JP2014025927A (ja) * 2012-07-26 2014-02-06 Lsis Co Ltd インバータの直流リンクコンデンサの容量推定装置
JP2018046609A (ja) * 2016-09-12 2018-03-22 株式会社日立製作所 電力変換装置および電力変換装置の監視システム
JP2018102082A (ja) * 2016-12-21 2018-06-28 ファナック株式会社 モータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4002670A4

Also Published As

Publication number Publication date
JPWO2021009831A1 (ja) 2021-01-21
EP4002670A1 (en) 2022-05-25
CN114008907B (zh) 2024-03-08
CN114008907A (zh) 2022-02-01
EP4002670A4 (en) 2023-01-18
JP7191227B2 (ja) 2022-12-16

Similar Documents

Publication Publication Date Title
KR101668174B1 (ko) 전동기 제어 장치
JP6896153B2 (ja) Dcバスコンデンサをオンラインモニタリングする方法及び装置
KR101327591B1 (ko) 인버터의 직류링크 커패시터 진단장치
JP4151651B2 (ja) インバータ装置
US10020648B2 (en) Apparatus for detecting malfunction of relay
CN104170234A (zh) 功率转换系统及其电压检测装置
US10439504B2 (en) Power converter device and control method thereof
EP1646525B1 (en) Monitoring an operation of a converter
WO2021009831A1 (ja) 電力変換装置および劣化診断システム
JP2011055681A (ja) 電力変換装置
JP6788489B2 (ja) 電気回路およびその制御装置
JP7295519B2 (ja) 電力変換装置の劣化推定装置および劣化推定プログラム
JP7553724B2 (ja) 電力変換装置、平滑コンデンサの劣化判定方法
JPH104626A (ja) 3レベル電力変換器のコンデンサ容量判定装置
JP2018026946A (ja) 電力変換装置、電力変換装置の寿命診断方法、電力変換装置のスイッチング素子温度検出方法および電力変換システム
CN112952757A (zh) 具有单独诊断的电驱动系统
WO2005062456A1 (en) Detecting a failure in a converter-load system
JP4793433B2 (ja) 電圧変換装置
JP2007534282A (ja) 電気モータ動作制御方法、電気モータ動作制御システム、およびコンプレッサ
KR20210137837A (ko) 전력 변환기에서 dc 링크 커패시터 수명 측정 방법 및 장치
WO2022014034A1 (ja) 電力変換装置
JP6156121B2 (ja) 電力変換装置
KR20040060227A (ko) 전력변환장치의 실시간 열화진단시스템 및 그전력변환장치의 실시간 온라인 원격 열화진단시스템
JP2021025934A (ja) 監視診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937456

Country of ref document: EP

Effective date: 20220216