WO2020253264A1 - 一种内排露天矿坑底水库分段建设方法 - Google Patents
一种内排露天矿坑底水库分段建设方法 Download PDFInfo
- Publication number
- WO2020253264A1 WO2020253264A1 PCT/CN2020/077329 CN2020077329W WO2020253264A1 WO 2020253264 A1 WO2020253264 A1 WO 2020253264A1 CN 2020077329 W CN2020077329 W CN 2020077329W WO 2020253264 A1 WO2020253264 A1 WO 2020253264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- open
- pit
- isolation layer
- reservoir
- water
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000002955 isolation Methods 0.000 claims abstract description 58
- 238000003860 storage Methods 0.000 claims abstract description 37
- 239000004927 clay Substances 0.000 claims abstract description 16
- 239000004567 concrete Substances 0.000 claims abstract description 11
- 238000009434 installation Methods 0.000 claims abstract description 8
- 238000007789 sealing Methods 0.000 claims abstract description 4
- 238000010276 construction Methods 0.000 claims description 39
- 239000004576 sand Substances 0.000 claims description 20
- 239000011378 shotcrete Substances 0.000 claims description 7
- 239000004746 geotextile Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000002689 soil Substances 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 3
- 238000005056 compaction Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000007921 spray Substances 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 15
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 239000004744 fabric Substances 0.000 abstract 1
- 239000002699 waste material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012946 outsourcing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/02—Foundation pits
- E02D17/04—Bordering surfacing or stiffening the sides of foundation pits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/02—Foundation pits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2300/00—Materials
- E02D2300/0004—Synthetics
- E02D2300/0018—Cement used as binder
- E02D2300/002—Concrete
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2300/00—Materials
- E02D2300/0037—Clays
Definitions
- the invention relates to a segmented construction method of an inner row open pit bottom reservoir, which belongs to the field of mining and environmental protection.
- Open-pit mining is a process of removing the covering on the ore body and extracting useful minerals from the open-surface mining field.
- Inner-draining open-pit refers to the process of open-pit mining, the stripped materials are directly discharged to the goaf
- the district forms an internal dumping yard, which is an operation method in which the internal dumping yard and the coal mining steps of the open-pit mine advance simultaneously.
- Huge pits are formed during open-pit mining. Most open-pit mines in northern areas are open-pit mines with near-level occurrences.
- the mined-out areas are generally directly backfilled instead of Comprehensive utilization greatly wastes the space formed by excavation.
- planting and greening will be carried out on the surface of the pit after backfilling, which increases the storage demand for water resources in the mining area.
- the purpose of the present invention is to provide a method for constructing an inner-drained open-pit bottom reservoir in stages, aiming at the low water resources in open-pit mining areas in northern my country, solving the problem of low water resource utilization in mining areas and improving Mine utilization rate, while reducing the cost of open pit mining.
- a method for segmented construction of pit bottom reservoirs in an inner row of open-pit mines includes single reservoir construction, multi-reservoir segmented construction and water resources storage procedures. The specific steps are as follows:
- S1 Side treatment, that is, when the width of the pit bottom of the open-pit mine reaches about 150-300m, the clay is discarded at the lowest step of the dump in the open-pit mine, and the thickness of the clay is 5-10m to form an isolation layer of the dump , After the isolation layer of the dumping site is formed, the dumping site in the open-pit mine stops advancing;
- S3 The open pit bottom is treated with concrete shotcrete, filled and compacted, and the bottom is sealed, and the thickness of the laying is 2-5m to form the bottom isolation layer.
- the surface of the bottom isolation layer forms a slope toward both sides of the pit bottom. The middle position is higher, and the sides near the ends are lower;
- sand and gravel will be discharged in the open pit.
- the sand and gravel to be discharged is the massive sand and gravel that is stripped by the open pit and that does not disintegrate in contact with water.
- the height of the discharged gravel is The height of the bottom step of the open-pit side ledge;
- water resources storage is carried out, that is, after the construction of the single reservoir is completed, the water resources are injected into the bottom reservoir through the water storage well.
- the water resources are stored between the pores of the sand and gravel.
- the water resources are pumped to the surface through the water intake well .
- the isolation layer at the bottom of the pit in step S3 can be replaced by compaction of clay.
- step S3 is set to an inclination of three thousandths.
- the shotcrete thickness of the end isolation layer in step S2 is 20-50 cm.
- step S5 the sand and gravel are laid to a height higher than the lowest step of the end sill. At this time, the height of the corresponding isolation layer should be increased accordingly to ensure the sealing of the reservoir.
- the beneficial effects of the present invention are: use the bottom of the open pit to build the reservoir and store water, realize the deep in-situ multiple circulation storage of water resources, reduce water evaporation, and most of the raw materials for reservoir construction, such as clay, come from the open pit itself.
- Outsourcing reduces the cost of reservoir construction.
- it makes full use of the space resources at the bottom of the open-pit mine to provide water resources guarantee for the environmental management of the open-pit mine.
- the moisture sensor monitors the closure of the reservoir in real time, which can promptly discard the damaged reservoir and reduce water storage loss.
- the overall construction process can be connected with the production of the open-pit mine, without additional production processes of the open-pit mine, and avoiding the increase in the production cost of the open-pit mine itself.
- Figure 1 is a schematic top view of the Neibai open-pit mine
- Figure 2 is a schematic diagram of the structure of the isolation layer at the bottom of the pit
- Figure 3 is a schematic diagram of the completed construction of a single reservoir
- Figure 4 is a schematic diagram of the structure of water storage wells and water intake wells.
- 1-internal dumping site 2-internal dumping isolation layer, 3-end bottom step, 4-pit bottom, 5-stope, 6-end isolation layer, 7-pit bottom isolation layer , 8-sand stone, 9- roof isolation layer, 10-storage isolation layer, 11-storage well, 12-take water well.
- a method for segmented construction of pit bottom reservoirs of an inner row open-pit mine includes single reservoir construction, multi-reservoir segmented construction and water resources storage procedures. The specific steps are as follows:
- S1 Side treatment, that is, when the width of the bottom 4 of the open-pit mine reaches about 150-300m, the clay is discarded at the lowest step of the dump 1 in the open-pit mine, and the thickness of the clay is 5-10m to form an inner drain After the isolation layer 2 of the soil yard and the isolation layer 2 of the internal dumping site are formed, the internal dumping site 1 of the open pit mine stops advancing.
- the spraying method is used to discharge the concrete to the slope surface of the lowermost step 3 of the end sills on both sides of the open pit bottom 4 to form an end siding isolation layer 6 to complete the end siding treatment.
- the shotcrete thickness of the end insulation layer 6 is 20-50 cm. Within this range, it can not only ensure the isolation of water resources, but also reduce the amount of concrete used and reduce production costs.
- the open pit bottom 4 is treated with concrete shotcrete, filled and compacted, and sealed, and the thickness of the laying is 2-5m to form the bottom isolation layer 7.
- the surface of the bottom isolation layer 7 forms a slope of three-thousandths toward the end sides of the pit.
- the middle position of the bottom 4 is higher, and the vicinity of the end sides on both sides is lower.
- the height of three-thousandths can effectively make water resources. It flows to both sides, and will not waste the amount of construction due to excessive tilt.
- the pit bottom isolation layer 7 can also be replaced with discarded clay, which reduces the use of concrete and reduces construction costs.
- the sand and gravel 8 are discharged in the open pit.
- the sand and gravel discharged are the massive sand and gravel that are stripped from the open pit and that do not disintegrate when exposed to water.
- the height is the height of the last step 3 of the open pit end.
- the construction principle of the reservoir segmented construction method of the present invention is to follow the above steps, starting from the open-pit pit, after excavation, through shotcrete or dumping clay, gradually forming the inner dump isolation layer 2, the end side isolation layer 6,
- the bottom isolation layer 7 is then topped with geotextile, and then the storage isolation layer 10 is constructed to complete the construction of a single reservoir, and move toward the direction of the inner dump 1, namely the direction of stope 5.
- the water resources are introduced through the water storage well 11, temporarily stored in the reservoir, and extracted from the water intake well 12 when necessary. There is less water loss during the whole process, which effectively reduces the waste of water resources in northern coal mine areas.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Environmental & Geological Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种内排露天矿坑底水库分段建设方法,具体步骤如下:S1:端帮处理,在露天矿内排土场最下台阶排弃黏土,形成排土场隔离层;S2:将混凝土排至坑底两侧端帮的最下台阶坡面,形成端帮隔离层;S3:封底,形成坑底隔离层;S4:在露天矿矿坑内排弃砂石;S5:铺设土工布,形成顶板隔离层,完成盖顶工作;S6:在内排土场端帮最下台阶上重新使用黏土,形成封库隔离层;S7:沿着露天矿的推进方向,逐步建设多个水库;S8:进行水资源存储工作,完成储水井的安装;S9:完成对取水井的安装工作;S10:进行水资源存储。本发明方法实现了水资源的就地深部储存,为露天矿的环境治理提供了水资源保证。
Description
本发明涉及一种内排露天矿坑底水库分段建设方法,属于矿业开采及环保领域。
在我国北方地区,气候干旱,年蒸发量大于降水量,水资源稀少,地表露天式的储水装置储水过程中水资源蒸发损失大,资源浪费严重,而建设封闭式储水装置花销大,又占据大量的空间,极大的提高了企业的储水成本。
露天开采是一个移走矿体上的覆盖物,从敞露地表的采矿场采出有用矿物的过程,内排露天矿是指在露天矿开采过程中,将剥离的物料直接排弃至采空区形成内排土场,内排土场与露天矿的采煤台阶同步推进的一种作业方法。露天开采过程中会形成巨大的矿坑,北方地区的露天矿大多为近水平赋存的露天矿,为保证开采后的矿区环境得到有效恢复,一般直接将开采后的采空区进行回填,而不进行综合利用,极大的浪费了开挖形成的空间。同时为保证矿区环境的恢复,还会在回填后的矿坑表面进行种植绿化,增加了矿区水资源的存储需求。
因此,不论是面对北方水资源存储困难的问题,还是矿区环境治理的用水需求,或是出于对矿坑综合利用的考虑,都要求能够将矿坑资源与水资源的存储进行有效融合,避免矿坑空间资源的浪费,同时为水资源的存储提供有效的方案。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种内排露天矿坑底水库分段建设方法,针对我国北方地区露天矿区水资源少的情况,解决矿区水资源利用率低,且提高矿坑利用率,同时以降低露天矿的开采成本问题。
为实现上述目的,本发明采用的技术方案是:
一种内排露天矿坑底水库分段建设方法,包括单水库建设、多水库分段建设以及水资源存储工序,具体步骤如下:
S1:侧帮处理,即在露天矿的坑底宽度施工达到150-300m左右时,在露天矿内排土场最下台阶排弃黏土,黏土排弃厚度5-10m,形成排土场隔离层,排土场隔离层形成后,露天矿内排土场停止推进;
S2:侧帮处理后,采用喷浆的方式,将混凝土排至露天矿坑底两侧端帮最下部台阶坡面,形成端帮隔离层,完成端帮处理;
S3:将露天矿坑底使用混凝土喷浆处理,充满并压实,进行封底,且铺设厚度为2-5m,形成坑底隔离层,坑底隔离层表面向两侧端帮形成坡度,坑底的中间位置较高,两侧端帮附近较低;
S4:封底之后,在露天矿矿坑内开始排弃砂石,排弃的砂石为露天矿剥离的孔隙较大的且遇水不发生崩解的块状砂石,排弃砂石的高度为露天矿端帮最下部台阶的高度;
S5:在排弃砂石过程中,在砂石达到端帮最下台阶的高度时,铺设土工布,形成顶板隔离层,顶板隔离层形成后,完成盖顶工作,同时上部排土场正常进行排土;
S6:随着露天矿坑的逐渐向前推进,达到150-300m时,在内排土场端帮最下台阶上重新使用黏土,形成封库隔离层,单个坑底水库建设完成,即实现封库,且在每个隔离层的两侧均对称布置多组水分传感器,实时监测所在位置土壤水分情况;
S7:在单个水库建设完成后,重复上述步骤,沿着露天矿的推进方向,即由内排土场指向采场方向,随露天矿的推进而逐步建设多个水库,形成分段水库;
S8:接着进行水资源存储工作,首先完成储水井的安装,即在单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔,埋设水管,钻孔一端位于地表,另一端位于水库顶板隔离层下部;
S9:之后继续完成对取水井的安装工作,即单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔形成取水井,并安装抽水装置,取水井一端位于露天矿地表,另一端位于坑底水库坑底隔离层上部,靠近端帮位置;
S10:最后进行水资源存储,即单水库建设完成后,通过储水井将水资源注入坑底水库,水资源存储在砂石的孔隙之间,需要用水时,通过取水井将水资源抽到地表。
更进一步的,步骤S3中的坑底隔离层可使用黏土压实替代。
更进一步的,步骤S3中的坡度设置为千分之三的倾斜度。
更进一步的,步骤S2中的端帮隔离层的喷浆厚度为20-50cm。
更进一步的,步骤S5中的排砂过程中,将砂石铺设至高度高于端帮最下台阶,此时对 应的隔离层的高度也应该相应的增加,保证水库的封闭性。
本发明的有益效果为:利用露天矿坑底进行水库建设并储水,实现了水资源的就地深部多次循环储存,减少了水分蒸发,水库建设原料如黏土等大部分来自露天矿自身,无需外购,降低了水库建设成本。同时充分利用露天矿坑底空间资源,为露天矿的环境治理提供了水资源保证。水分传感器实时监测水库封闭情况,可及时废弃破损的水库,减少储水损失。整体建设工艺可与露天矿生产相互衔接,不额外增加露天矿生产工序,避免了增加露天矿自身的生产成本。
图1是内排露天矿俯视示意图;
图2是坑底隔离层的结构示意图;
图3是单个水库建设完成的结构示意图;
图4是储水井和取水井的结构示意图,
图中,1-内排土场,2-内排土场隔离层,3-端帮最下部台阶,4-坑底,5-采场,6-端帮隔离层,7-坑底隔离层,8-砂石,9-顶板隔离层,10-封库隔离层,11-储水井,12-取水井。
下面结合附图对本发明作进一步详细说明。
如图1所示,一种内排露天矿坑底水库分段建设方法,包括单水库建设、多水库分段建设以及水资源存储工序,具体步骤如下:
S1:侧帮处理,即在露天矿的坑底4宽度施工达到150-300m左右时,在露天矿内排土场1最下部台阶处排弃黏土,黏土排弃厚度5-10m,形成内排土场隔离层2,内排土场隔离层2形成后,露天矿内排土场1停止推进。
S2:侧帮处理后,采用喷浆的方式,将混凝土排至露天矿坑底4两侧端帮的最下部台阶3坡面,形成端帮隔离层6,完成端帮处理。作为优选方案,端帮隔离层6的喷浆厚度为20-50cm,在这个范围内,既可以起到保证水资源的隔离作用,又可以减少混凝土的使用量,减少生产成本。
S3:如图2所示,将露天矿坑底4使用混凝土喷浆处理,充满并压实,进行封底,且 铺设厚度为2-5m,形成坑底隔离层7,为了实现水资源的引流,坑底隔离层7表面向两侧端帮形成坡度为千分之三的倾斜度,坑底4的中间位置较高,两侧端帮附近较低,千分之三的高度可以有效的使水资源向两侧流动,且不会因倾斜度过大造成施工量的浪费。同时为了降低成本,坑底隔离层7也可以使用排弃的黏土来代替,减少混凝土的使用,降低施工成本。
S4:封底之后,在露天矿矿坑内开始排弃砂石8,排弃的砂石为露天矿剥离的孔隙较大的且遇水不发生崩解的块状砂石,排弃砂石8的高度为露天矿端帮最部台阶3的高度。
S5:在排弃砂石8过程中,在砂石达到端帮最下部台阶3的高度时,铺设土工布,形成顶板隔离层9,顶板隔离层9形成后,完成盖顶工作,同时上部内排土场1正常进行排土。若需要更大的水资源存储量,则可将排弃砂石8铺设至高度高于端帮最下部台阶3,以增加储水量,此时对应的隔离层的高度也应该相应的增加,保证水库的封闭性。
S6:如图3所示,随着露天矿坑的逐渐向前推进,达到150-300m时,在内排土场1的端帮最下部台阶3上重新使用黏土,形成封库隔离层10,单个坑底4水库建设完成,即实现封库。且在每个隔离层两侧对称布置多组水分传感器,实时监测所在位置土壤水分情况。
S7:在单个水库建设完成后,重复上述步骤,沿着露天矿的推进方向,即由内排土场1指向采场5方向,随露天矿的推进而逐步建设多个水库,形成分段水库。
S8:接着进行水资源存储工作,首先完成储水井11的安装,即在单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔,埋设水管,钻孔一端位于地表,另一端位于水库顶板隔离层9下部。
S9:之后继续完成对取水井12的安装工作,即单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔形成取水井12,并安装抽水装置,取水井12一端位于露天矿地表,另一端位于坑底4水库坑底隔离层7上部,靠近端帮位置。
S10:最后进行水资源存储,即单水库建设完成后,通过储水井11将水资源注入坑底4水库,水资源存储在砂石的孔隙之间,需要用水时,通过取水井12将水资源抽到地表。坑底隔离层7坡度保证水资源能够最大可能的汇集到端帮附近,保证存取水的效果,如图4所示。
本发明水库分段建设方法的施工原理是按照以上步骤,从露天矿矿坑开始,挖掘之后通过喷浆混凝土或者排弃黏土的方式,逐步形成内排土场隔离层2、端帮隔离层6、坑底隔离层7,接着使用土工布进行封顶,然后再施工建设封库隔离层10,完成单个水库的建设工作,并向着内排土场1内的推进方向,即采场5方向逐步建设多个水库。将水资源通过 储水井11导入,在水库中暂时储存,需要时由取水井12抽出。整个过程水分散失的较少,在北方煤矿地区,有效减少了水资源的浪费。
Claims (5)
- 一种内排露天矿坑底水库分段建设方法,其特征在于,包括单水库建设、多水库分段建设以及水资源存储工序,具体步骤如下:S1:侧帮处理,即在露天矿的坑底(4)宽度施工达到150-300m左右时,在露天矿内排土场(1)最下部台阶处排弃黏土,黏土排弃厚度5-10m,形成内排土场隔离层(2),内排土场隔离层(2)形成后,露天矿内排土场(1)停止推进;S2:侧帮处理后,采用喷浆的方式,将混凝土排至露天矿坑底(4)两侧端帮最下部台阶(3)坡面,形成端帮隔离层(6),完成端帮处理;S3:将露天矿坑底(4)使用混凝土喷浆处理,充满并压实,进行封底,且铺设厚度为2-5m,形成坑底隔离层(7),坑底隔离层(7)表面向两侧端帮形成坡度,坑底(4)的中间位置较高,两侧端帮附近较低;S4:封底之后,在露天矿矿坑内开始排弃砂石(8),排弃的砂石为露天矿剥离的孔隙较大的且遇水不发生崩解的块状砂石,排弃砂石(8)的高度为露天矿端帮最下部台阶(3)的高度;S5:在排弃砂石(8)过程中,在砂石达到端帮最下部台阶(3)的高度时,铺设土工布,形成顶板隔离层(9),顶板隔离层(9)形成后,完成盖顶工作,同时上部内排土场(1)正常进行排土;S6:随着露天矿坑的逐渐向前推进,达到150-300m时,在内排土场(1)的端帮最下部台阶(3)上重新使用黏土,形成封库隔离层(10),单个坑底(4)水库建设完成,即实现封库,且在每个隔离层的两侧均对称布置多组水分传感器,实时监测所在位置土壤水分情况;S7:在单个水库建设完成后,重复上述步骤,沿着露天矿的推进方向,即由内排土场(1)指向采场(5)方向,随露天矿的推进而逐步建设多个水库,形成分段水库;S8:接着进行水资源存储工作,首先完成储水井(11)的安装,即在单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔,埋设水管,钻孔一端位于地表,另一端位于水库顶板隔离层(9)下部;S9:之后继续完成对取水井(12)的安装工作,即单水库建设过程,在露天矿两侧端帮从地表斜向下定向钻孔形成取水井(12),并安装抽水装置,取水井(12)一端位于露天矿地表,另一端位于坑底(4)水库坑底隔离层(7)上部,靠近端帮位置;S10:最后进行水资源存储,即单水库建设完成后,通过储水井(11)将水资源注入坑 底(4)水库,水资源存储在砂石的孔隙之间,需要用水时,通过取水井(12)将水资源抽到地表。
- 根据权利要求1所述的内排露天矿坑底水库分段建设方法,其特征在于,步骤S3中的坑底隔离层(7)可使用黏土压实替代。
- 根据权利要求1或2所述的内排露天矿坑底水库分段建设方法,其特征在于,步骤S3中的坡度设置为千分之三的倾斜度。
- 根据权利要求1或2所述的内排露天矿坑底水库分段建设方法,其特征在于,步骤S2中的端帮隔离层(6)的喷浆厚度为20-50cm。
- 根据权利要求1或2所述的内排露天矿坑底水库分段建设方法,其特征在于,步骤S5中的排弃砂石(8)过程中,可调整砂石铺设至高度高于端帮最下部台阶(3),此时对应的隔离层的高度也应该相应的增加,保证水库的封闭性。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/619,102 US11795643B2 (en) | 2019-06-20 | 2020-02-29 | Method for constructing inner dump type strip mine pit bottom reservoirs section by section |
ZA2020/07464A ZA202007464B (en) | 2019-06-20 | 2020-11-30 | A method for constructing inner dump open-pit mine bottom reservoirs section by section |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910535710.7 | 2019-06-20 | ||
CN201910535710.7A CN110409359B (zh) | 2019-06-20 | 2019-06-20 | 一种内排露天矿坑底水库分段建设方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020253264A1 true WO2020253264A1 (zh) | 2020-12-24 |
Family
ID=68359472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/077329 WO2020253264A1 (zh) | 2019-06-20 | 2020-02-29 | 一种内排露天矿坑底水库分段建设方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11795643B2 (zh) |
CN (1) | CN110409359B (zh) |
WO (1) | WO2020253264A1 (zh) |
ZA (1) | ZA202007464B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113756812A (zh) * | 2021-08-20 | 2021-12-07 | 云南端田矿业科技开发有限公司 | 一种分区开采的露天矿端帮压煤回收方法 |
CN114294056A (zh) * | 2021-12-14 | 2022-04-08 | 万宝矿产有限公司 | 一种废石与干尾砂联合处置露天坑方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110409359B (zh) | 2019-06-20 | 2021-01-15 | 中国矿业大学 | 一种内排露天矿坑底水库分段建设方法 |
CN113107061A (zh) * | 2021-04-15 | 2021-07-13 | 中国矿业大学 | 一种近城市废弃露天矿地层重构方法 |
CN113622364B (zh) * | 2021-07-27 | 2022-09-27 | 中国矿业大学 | 一种适用于深度大于100m的贫水区露天矿地下水库的建设方法 |
CN113565172B (zh) * | 2021-08-02 | 2022-04-15 | 中国矿业大学 | 一种露天矿排土场地下水库抽注水井建设方法 |
CN114108566A (zh) * | 2021-08-17 | 2022-03-01 | 国家能源投资集团有限责任公司 | 一种露天矿分布式储水施工方法 |
CN113669109B (zh) * | 2021-08-23 | 2023-11-28 | 国能宝日希勒能源有限公司 | 一种露天矿的地下储水系统的修筑方法 |
CN114016569B (zh) * | 2021-09-29 | 2023-07-07 | 华能伊敏煤电有限责任公司 | 一种内排露天矿浅层地下水取用装置及取用恢复方法 |
CN115982807B (zh) * | 2022-12-02 | 2024-02-20 | 中圭建设有限公司 | 一种减少土地占用且提高矿物回收率的矿坑转角设计方法 |
CN116498326B (zh) * | 2023-05-10 | 2023-10-31 | 中国矿业大学 | 一种寒区露天煤矿端帮压靠协同开采方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1223958A1 (ru) * | 1984-04-05 | 1986-04-15 | Кузбасский Политехнический Институт | Способ изготовлени фильтра дл очистки воды |
FR2749330B1 (fr) * | 1996-06-03 | 1998-09-25 | Lavergne Lacroix Alain | Barriere sous-marine immergee et son procede de construction |
US20110169264A1 (en) * | 2010-01-08 | 2011-07-14 | John Irvan Moritzky Choate | Remediation of mines using pumped storage electrical generation |
CN109057799A (zh) * | 2018-07-11 | 2018-12-21 | 中国矿业大学 | 一种北方露天煤矿水资源存储及调配方法 |
CN109779820A (zh) * | 2019-02-25 | 2019-05-21 | 中国矿业大学 | 一种废弃露天矿坑的综合利用系统和利用方法 |
CN109854248A (zh) * | 2019-03-03 | 2019-06-07 | 煤炭科学研究总院 | 一种露天矿保水复垦方法 |
CN110409359A (zh) * | 2019-06-20 | 2019-11-05 | 中国矿业大学 | 一种内排露天矿坑底水库分段建设方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3848927A (en) * | 1970-02-25 | 1974-11-19 | C Livingston | Mining method using control blasting |
US3762771A (en) * | 1971-08-18 | 1973-10-02 | C Livingston | Mine layout applicable to natural resources development |
RU2433268C1 (ru) * | 2010-04-12 | 2011-11-10 | Государственное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ГОУ ИрГТУ) | Способ рекультивации карьеров (варианты) |
CN102767302B (zh) * | 2012-07-23 | 2014-08-13 | 中国神华能源股份有限公司 | 一种分布式地下水库及其建造方法 |
CL2015000742A1 (es) * | 2015-03-24 | 2015-08-14 | Jri Ingeniería S A | Procedimiento para disponer relaves que elimina la construccion de botaderos de lastre y tranques de relaves, porque es utilizado en minas que migran de la explotacion de rajo abierto a mina subterranea, la pulpa obtenida del proceso de flotacion del mineral de la mina subterranea es transportada hasta planta de espesamiento. |
CN106761584A (zh) * | 2017-02-25 | 2017-05-31 | 太原理工大学 | 一种含水条件下废弃矿井采空区煤层气地面排采方法 |
CN106884676B (zh) * | 2017-04-19 | 2018-08-17 | 中国矿业大学 | 一种邻近露天矿的井工塌陷区治理方法 |
CN107701229B (zh) * | 2017-09-29 | 2019-01-29 | 华北理工大学 | 露天采矿堆填治理与地下首中段采空区充填排水协同方法 |
CN109026152B (zh) * | 2018-08-27 | 2024-04-19 | 清华大学 | 一种包含心墙堆石挡水坝结构的露天煤矿地下水库 |
CN109057861B (zh) * | 2018-08-28 | 2023-07-04 | 清华大学 | 一种露天煤矿地下水库、水库储水体及水库库容计算方法 |
-
2019
- 2019-06-20 CN CN201910535710.7A patent/CN110409359B/zh active Active
-
2020
- 2020-02-29 US US17/619,102 patent/US11795643B2/en active Active
- 2020-02-29 WO PCT/CN2020/077329 patent/WO2020253264A1/zh active Application Filing
- 2020-11-30 ZA ZA2020/07464A patent/ZA202007464B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1223958A1 (ru) * | 1984-04-05 | 1986-04-15 | Кузбасский Политехнический Институт | Способ изготовлени фильтра дл очистки воды |
FR2749330B1 (fr) * | 1996-06-03 | 1998-09-25 | Lavergne Lacroix Alain | Barriere sous-marine immergee et son procede de construction |
US20110169264A1 (en) * | 2010-01-08 | 2011-07-14 | John Irvan Moritzky Choate | Remediation of mines using pumped storage electrical generation |
CN109057799A (zh) * | 2018-07-11 | 2018-12-21 | 中国矿业大学 | 一种北方露天煤矿水资源存储及调配方法 |
CN109779820A (zh) * | 2019-02-25 | 2019-05-21 | 中国矿业大学 | 一种废弃露天矿坑的综合利用系统和利用方法 |
CN109854248A (zh) * | 2019-03-03 | 2019-06-07 | 煤炭科学研究总院 | 一种露天矿保水复垦方法 |
CN110409359A (zh) * | 2019-06-20 | 2019-11-05 | 中国矿业大学 | 一种内排露天矿坑底水库分段建设方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113756812A (zh) * | 2021-08-20 | 2021-12-07 | 云南端田矿业科技开发有限公司 | 一种分区开采的露天矿端帮压煤回收方法 |
CN113756812B (zh) * | 2021-08-20 | 2023-10-13 | 云南端田矿业科技开发有限公司 | 一种分区开采的露天矿端帮压煤回收方法 |
CN114294056A (zh) * | 2021-12-14 | 2022-04-08 | 万宝矿产有限公司 | 一种废石与干尾砂联合处置露天坑方法 |
Also Published As
Publication number | Publication date |
---|---|
ZA202007464B (en) | 2022-02-23 |
US20220267974A1 (en) | 2022-08-25 |
CN110409359B (zh) | 2021-01-15 |
US11795643B2 (en) | 2023-10-24 |
CN110409359A (zh) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020253264A1 (zh) | 一种内排露天矿坑底水库分段建设方法 | |
CN110409360B (zh) | 一种基于内排露天矿中间桥的坑底水库分期建设方法 | |
CN108035335A (zh) | 一种冻结法施工井筒式地下停车库方法 | |
WO2020093813A1 (zh) | 一种基于含水层冻结的地下长壁工作面保水采煤方法 | |
CN106638669B (zh) | 一种盾构下穿既有地铁车站围护结构加固系统和方法 | |
CN109057799B (zh) | 一种北方露天煤矿水资源存储及调配方法 | |
CN102995599B (zh) | 湿陷性黄土输水渠道的抗冻防渗导水治理方法 | |
CN106437726A (zh) | 浅埋暗挖隧道过地裂缝破碎带施工方法 | |
CN107201908A (zh) | 一种酷寒地区隧道深埋中心水沟的施工方法 | |
RU2739880C1 (ru) | Способ сооружения наклонных тоннелей в слабых водонасыщенных грунтах | |
CN206220972U (zh) | 框支拱形隧道衬砌构造 | |
CN108486976A (zh) | 山区公路填挖交界处路基结构及其施工方法 | |
CN105112652B (zh) | 一种稀土矿原地浸出母液回收渠体结构 | |
CN106761771A (zh) | 一种横穿山谷地段下岩上土浅埋隧道的施工方法 | |
CN114855762B (zh) | 一种用于尾矿库闭库封场的装置与方法 | |
CN206467684U (zh) | 一种盾构下穿既有地铁车站围护结构加固系统 | |
CN108867673A (zh) | 一种基于抽水帷幕的基坑中地下水治理方法 | |
CN104088637A (zh) | 一种煤层群条件下上组浅埋残煤复采方法 | |
CN112431220B (zh) | 一种使用废旧混凝土轨枕的挡墙及其施工方法 | |
CN103046536B (zh) | 一种适于软弱地基的排土场综合治水措施 | |
CN110804994B (zh) | 一种水库大坝施工方法 | |
CN106638684B (zh) | 一种湿陷性黄土地区的管廊回填土处理方法 | |
CN205936632U (zh) | 一种分离式可维修隧道衬砌构造 | |
CN208455387U (zh) | 山区公路填挖交界处路基结构 | |
CN110185051A (zh) | 深窄基坑开挖施工排水方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20827829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20827829 Country of ref document: EP Kind code of ref document: A1 |