WO2020246268A1 - Substrate temperature control device and substrate temperature control method - Google Patents
Substrate temperature control device and substrate temperature control method Download PDFInfo
- Publication number
- WO2020246268A1 WO2020246268A1 PCT/JP2020/020323 JP2020020323W WO2020246268A1 WO 2020246268 A1 WO2020246268 A1 WO 2020246268A1 JP 2020020323 W JP2020020323 W JP 2020020323W WO 2020246268 A1 WO2020246268 A1 WO 2020246268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suction force
- suction
- substrate
- wafer
- temperature control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
Definitions
- the present disclosure relates to a substrate temperature control device and a substrate temperature control method.
- Patent Document 1 discloses a technique for mounting a semiconductor wafer (hereinafter referred to as "wafer") on a mounting table of a heating device in a state in which the warp of the substrate is corrected. More specifically, in Patent Document 1, a suction member that protrudes from the surface of the mounting table is provided, and when the wafer delivered from the substrate transport mechanism by the elevating pin is placed on the mounting table, the wafer is mounted. The suction member is attracted to the lower surface. Then, the suction member and the elevating pin are lowered in synchronization with each other, and the wafer is placed on the mounting table.
- wafer semiconductor wafer
- the suction pressure of the suction member is monitored by the pressure sensor to determine whether the suction member is attracted to the wafer, and after the suction member is attracted to the wafer, the suction pressure of the suction member is reduced. I have to. As a result, the load on the suction pump is reduced. Further, in Patent Document 1, a damper is provided in the suction pipe connected to the suction member, and the suction pressure on the suction member side is adjusted by the opening degree of the damper.
- the technology according to the present disclosure makes it possible to suck the substrate on the mounting table of the temperature control device with an appropriate suction force, and further improves the responsiveness at the time of switching the suction force and the reproducibility of the suction force.
- One aspect of the present disclosure is a substrate temperature control device for adjusting the temperature of a substrate, which is a mounting table on which the substrate is mounted and a mounting table for adjusting the temperature of the substrate mounted on the above-described stand.
- the temperature control part that adjusts the temperature of the substrate and the suction force that sucks the substrate are generated, and the substrate is attracted to the above-mentioned stand whose temperature is adjusted, and the suction has a suction pipe that sucks the air around the substrate.
- a force generating unit and a suction force adjusting unit having an adjusting gas pipe for supplying the suction force adjusting gas for adjusting the suction force to the suction pipe are provided.
- the substrate can be attracted to the mounting table of the temperature adjusting device with an appropriate suction force, and the responsiveness at the time of switching the suction force and the reproducibility of the suction force can be improved.
- FIG. 5 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG. 5, and is an explanatory diagram in a normal VAC mode. The piping system for explaining the outline of the structure of the suction mechanism of FIG.
- FIG. 5 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG. 5, and is an explanatory diagram in the VAC-OFF mode.
- the piping system for explaining the outline of the structure of the suction mechanism of FIG. 5 is shown, and it is explanatory drawing in the idle mode. It is a vertical cross-sectional view which shows the outline of the structure of the heat treatment apparatus as the substrate temperature control apparatus which concerns on 2nd Embodiment.
- FIG. 13 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG. 13, and is an explanatory diagram in a normal VAC mode.
- FIG. 13 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG. 13, and is an explanatory diagram in the high VAC mode.
- FIG. 13 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG.
- FIG. 13 shows a piping system for explaining the outline of the configuration of the suction mechanism of FIG. 13, and is an explanatory diagram in the VAC-OFF mode.
- the piping system for explaining the outline of the structure of the suction mechanism of FIG. 13 is shown, and it is explanatory drawing in the idle mode. It is explanatory drawing which shows the outline of the structure of the heat treatment apparatus which concerns on a reference embodiment.
- a series of processes are performed in order to form a predetermined resist pattern on a wafer as a substrate.
- the series of treatments include a coating treatment of applying a resist liquid to form a resist film, an exposure treatment of exposing the resist film to a predetermined pattern, and a development treatment of applying a developing liquid to the exposed resist film for development.
- the heat treatment includes a post-exposure baking (PEB) treatment that promotes a chemical reaction in the resist film after exposure.
- PEB post-exposure baking
- the wafer is warped due to the influence of the process before the heat treatment, the distance between the hot plate for heating the wafer and the wafer varies in the wafer plane, and it becomes difficult to heat the wafer uniformly in the plane. .. Therefore, by sucking and adsorbing the wafer on a mounting table that functions as a hot plate in which a temperature control mechanism such as a heater is embedded, the wafer is placed on the mounting table with the warp of the wafer corrected. ing.
- the film formed on the wafer has become thicker, and the warpage of the wafer has increased (for example, up to several hundred ⁇ m).
- the warp of the wafer is large as described above, a strong suction force is required to correct the warp.
- the wafer may be locally cooled by the air flow flowing between the wafer and the mounting table, and the wafer may be surfaced. It may not be possible to heat uniformly inside. This point becomes more remarkable as the suction force becomes stronger.
- the suction force is increased, the lower surface of the wafer may be scratched or the like. Further, even if the amount of air sucked in the space formed between the wafer and the mounting table is the same, the pressure in the space changes depending on the temperature of the mounting table. Therefore, the suction amount required for correcting the warp of the wafer also changes depending on the temperature of the mounting table.
- Patent Document 1 discloses that a suction member that protrudes from the surface of the mounting table is provided, and after the suction member is attracted to the wafer, the suction pressure of the suction member is reduced.
- Patent Document 1 does not disclose the above-mentioned problems and the like when the suction force is increased.
- the change in suction pressure is adjusted by the opening degree of the damper. Since the damper is used so that its opening degree becomes a predetermined opening degree, it takes time from the start to the completion of the operation, and the responsiveness is poor. Therefore, when a damper is used as in Patent Document 1, it takes time to settle the suction pressure. Further, if the suction force is adjusted by the opening degree of the damper, the suction force changes with a slight variation in the opening degree, so that the reproducibility of the suction force is poor.
- the technique according to the present disclosure makes it possible to suck the substrate on the mounting table of the temperature control device with an appropriate suction force, and further, the responsiveness at the time of switching the suction force and the reproducibility of the suction force. To improve.
- (First Embodiment) 1 and 2 are a vertical sectional view and a horizontal sectional view showing an outline of the configuration of the heat treatment apparatus 1 as the substrate temperature control apparatus according to the first embodiment.
- the heat treatment apparatus 1 includes a heating unit 11 for heat-treating the wafer W and a cooling unit 12 for cooling the wafer W in the housing 10.
- a heating unit 11 for heat-treating the wafer W
- a cooling unit 12 for cooling the wafer W in the housing 10.
- carry-in / out outlets 13 for carrying in / out the wafer W are formed on both side surfaces in the vicinity of the cooling portion 12 of the housing 10.
- the heating unit 11 is a hot plate accommodating unit that is located on the upper side and is movable up and down, and is located on the lower side and is integrated with the lid body 20 to form a processing chamber S. 21 is provided.
- the lid 20 has a substantially tubular shape with an open lower surface, and covers the upper surface, which is the surface to be processed of the wafer W placed on the hot plate 30 described later.
- An exhaust portion 20a is provided at the center of the upper surface of the lid 20. The atmosphere in the processing chamber S is exhausted from the exhaust unit 20a.
- a hot plate 30 as a mounting table is provided in the center of the hot plate accommodating portion 21.
- the hot plate 30 is for mounting the wafer W and heating the mounted wafer W.
- the hot plate 30 has a thick substantially disk shape, and a heater 31 as a temperature control portion for heating the upper surface of the hot plate 30, that is, the mounting surface of the wafer W is provided inside the hot plate 30.
- a heater 31 as a temperature control portion for heating the upper surface of the hot plate 30, that is, the mounting surface of the wafer W is provided inside the hot plate 30.
- the heater 31 for example, an electric heater is used.
- the hot plate accommodating portion 21 is provided with an elevating pin 40 that penetrates the hot plate 30 in the thickness direction.
- the elevating pin 40 can be elevated and lowered by an elevating drive unit 41 such as a cylinder, and can project to the upper surface of the hot plate 30 to transfer the wafer W to and from the cooling plate 60 described later.
- the hot plate accommodating portion 21 includes, for example, an annular holding member 50 that accommodates the hot plate 30 and holds the outer peripheral portion of the hot plate 30, and a substantially tubular support that surrounds the outer peripheral portion of the holding member 50. It has a ring 51.
- the cooling unit 12 adjacent to the heating unit 11 is provided with, for example, a cooling plate 60 on which the wafer W is placed and cooled.
- the cooling plate 60 has a substantially rectangular flat plate shape, and the end surface on the heating portion 11 side is curved in an arc shape.
- a cooling member such as a Peltier element is built in the cooling plate 60, and the cooling plate 60 can be adjusted to a predetermined set temperature.
- the cooling plate 60 is supported by a support arm 61 as shown in FIG. 1, for example, and the support arm 61 is attached to a rail 62 extending in the X direction on the heating portion 11 side.
- the cooling plate 60 can be moved on the rail 62 by the drive mechanism 63 attached to the support arm 61. As a result, the cooling plate 60 can move above the hot plate 30 on the heating unit 11 side.
- the cooling plate 60 is formed with two slits 64 along the X direction in FIG.
- the slit 64 is formed from the end surface of the cooling plate 60 on the heating portion 11 side to the vicinity of the central portion of the cooling plate 60.
- the slit 64 prevents interference between the cooling plate 60 that has moved to the heating unit 11 side and the elevating pin 40 on the hot plate 30.
- an elevating pin 65 is provided below the cooling plate 60 located in the cooling unit 12.
- the elevating pin 65 can be elevated by the elevating drive unit 66.
- the lifting pin 65 rises from below the cooling plate 60, passes through the slit 64, projects above the cooling plate 60, and enters, for example, the inside of the housing 10 from the carry-in outlet 13 (not shown). Wafer W can be delivered to and from.
- the heat treatment apparatus 1 described above is provided with a control unit 70 as shown in FIG.
- the control unit 70 is, for example, a computer and has a program storage unit (not shown).
- a program for controlling processing in the heat treatment apparatus 1 is stored in the program storage unit.
- the program storage unit also stores a program for controlling the operation of each of the above-mentioned parts and the suction mechanism described later to realize the heat treatment including the warp correction process described later in the heat treatment apparatus 1.
- the program may be recorded on a computer-readable storage medium and may be installed on the control unit 70 from the storage medium.
- FIG. 3 and 4 are a cross-sectional view and a plan view showing an outline of the configuration of the hot plate 30.
- FIG. 5 is an explanatory diagram showing an outline of the configuration of a suction mechanism described later.
- the hot plate 30 is provided with the above-mentioned heater 31, and also has a through hole 32 through which the above-mentioned elevating pin 40 is inserted. Further, a plurality of gap pins 33 as protrusions for supporting the wafer W are provided on the surface of the hot plate 30. As shown in FIG. 4, the gap pins 33 are provided at equal intervals on the circumference about the center of the hot plate 30 in a plan view. The height of the gap pin 33 is, for example, 0.05 mm or more and 0.1 mm or less.
- a plurality of suction holes 34 for sucking the lower surface of the wafer W are provided on the surface of the hot plate 30 at positions that do not overlap with the gap pins 33 in a plan view.
- the suction holes 34 are provided at equal intervals on the circumference about the center of the hot plate 30 in a plan view.
- the annular region provided with the suction hole 34 is located inside the annular region provided with the gap pin 33.
- the gap pin 33 and the suction hole 34 are provided as described above, even if the wafer W is sucked, there is a gap between the wafer W and the hot plate 30, so that the wafer W is being sucked. , An air flow is generated along the lower surface of the wafer W. The in-plane uniform heating of the wafer W is hindered by this air flow.
- a flow path 35 extending downward is provided for each of the suction holes 34 in the hot plate 30.
- Each suction hole 34 is connected to the annular flow path 36 via the flow path 35.
- the annular flow path 36 is formed in an annular shape along the arrangement direction of the suction holes 34, and the suction mechanism 100 is connected to the annular flow path 36.
- the suction mechanism 100 has a suction force generating unit 101 and a suction force adjusting unit 102.
- the suction force generating unit 101 generates a suction force for sucking the wafer W, corrects the warp of the wafer W, and attracts the wafer W to the temperature-controlled hot plate 30, and has a vacuum ejector 110. ..
- the vacuum ejector 110 has two inlets including a low pressure port 110a and a high pressure port 110b, and one outlet 110c.
- a suction pipe 150 communicating with the annular flow path 36 of the hot plate 30, that is, communicating with the suction hole 34 is connected to the low pressure port 110a. Further, a main supply pipe 151 that leads to a supply source (not shown) of compressed air (hereinafter, may be referred to as "air”) is connected to the high pressure port 110b. An exhaust pipe 152 leading to a duct D of the factory exhaust system (EXH) is connected to the outlet 110c.
- EXH factory exhaust system
- the suction force generating unit 101 when high-speed air is supplied to the high-pressure port 110b of the vacuum ejector 110 via the main supply pipe 151 and discharged from the outlet 110c of the vacuum ejector 110, the high-speed air is supplied. By being attracted, air is sucked from the low pressure port 110a of the vacuum ejector 110. As a result, the air around the wafer W is sucked into the suction pipe 150 through the suction hole 34, and a suction force for sucking the wafer W is generated. The air sucked from the low pressure port 110a of the vacuum ejector 110 and the high-speed compressed air supplied to the high pressure port 110b are discharged from the outlet 110c to the exhaust pipe 152.
- the suction pipe 150 is provided with a suction switching valve 111, and a pressure sensor 112 is provided on the upstream side of the suction switching valve 111. Further, the main supply pipe 151 is provided with a speed controller 113 that adjusts the flow rate of high-speed air. A filter 114, a regulator 115, and a shutoff valve 116 are provided on the upstream side of the speed controller 113 in the main supply pipe 151 in this order from the upstream side. The filter 114 removes foreign matter in the air from the air source (not shown). The regulator 115 adjusts the pressure of the air on the secondary side to a predetermined pressure regardless of the pressure on the primary side. The shutoff valve 116 is for switching whether or not to shut off the supply of air via the regulator 115.
- the suction force adjusting unit 102 weakens the suction force acting on the wafer W and adjusts the suction force, and supplies air as the suction force adjusting gas to the suction force generating unit 101 (specifically, for example, the suction pipe 150). It has a regulating gas pipe 153 to supply.
- the adjusting gas pipe 153 includes a first pipe 153a that branches from the main supply pipe 151 and joins the suction pipe 150.
- One end of the first pipe 153a is connected to the portion between the shutoff valve 116 and the speed controller 113 in the main supply pipe 151, and the other end is between the vacuum ejector 110 and the suction switching valve 111 in the suction pipe 150. It is connected to the part.
- the first pipe 153a is provided with a speed controller 117 and a switching valve 118 in this order from the upstream side.
- the speed controller 117 adjusts the flow rate of air supplied to the suction pipe 150 through the first pipe 153a.
- the switching valve 118 will be described later.
- the adjusting gas pipe 153 includes a second pipe 153b that bypasses the speed controller 117 in the first pipe 153a.
- One end of the second pipe 153b is connected to the upstream portion of the speed controller 113 in the first pipe 153a, and the other end is connected to the internal flow path of the switching valve 118.
- the second pipe 153b is provided with a speed controller 119 and a switching valve 120 in this order from the upstream side.
- the speed controller 119 adjusts the flow rate of air supplied to the suction pipe 150 through the second pipe 153b.
- the switching valve 120 switches whether or not to supply the air whose flow rate is adjusted by the speed controller 119 to the switching valve 118.
- the switching valve 118 described above switches the piping connected to the suction pipe 150 between the speed controller 117 side and the switching valve 120 side.
- the speed controllers 117 and 119 and the switching valves 118 and 120 in the suction force adjusting unit 102 constitute a gas supply amount adjusting mechanism for adjusting the supply amount of air as the suction force adjusting gas to the suction pipe 150.
- the ON state of the suction switching valve 111 means a state in which the vacuum ejector 110 and the suction hole 34 communicate with each other via the suction pipe 150.
- the state in which the suction switching valve 111 is OFF means a state in which the suction pipe 150 is cut off at a portion between the vacuum ejector 110 and the suction hole 34. That is, when the suction switching valve 111 is ON, it means that air is sucked from the suction hole 34, and when the suction switching valve 111 is OFF, air is not sucked from the suction hole 34. Means the state.
- the ON state of the switching valve 118 means a state in which the suction pipe 150 and the internal flow path of the switching valve 120 communicate with each other, and the OFF state of the switching valve 118 means that the suction pipe 150 and the speed controller 117 communicate with each other. Means the state of doing.
- the ON state of the switching valve 120 means that air is supplied to the switching valve 118 via the speed controller 119, and the OFF state of the switching valve 120 means that air is supplied to the switching valve 118.
- the suction mechanism 100 described above operates in a normal VAC mode, a high VAC mode, an ultra-high VAC mode, a VAC-OFF mode, and an idle mode.
- the operation of the suction mechanism 100 in each mode will be described with reference to FIGS. 6 to 10.
- the pipe through which the air sucked from the suction hole 34 and the compressed air from the source of the compressed air (not shown) is flowing is shown by a thick line to open and close some valves. Omits the explanation.
- the shutoff valve 116 is opened, and the suction switching valve 111 and the switching valve 118 among the suction switching valve 111, the switching valve 118, and the switching valve 120 are in the ON state. Will be done.
- the suction flow rate V of the suction flow generated in the low pressure port 110a of the vacuum ejector 110 is the same as in the normal VAC mode, but since the switching valve 118 is in the ON state, the flow rate A controlled by the speed controller 119 (for example, 7L). / Min) of air is supplied to the suction pipe 150.
- the shutoff valve 116 is opened, and the suction switching valve 111, the switching valve 118, and the switching valve 120 are all turned on.
- VAC-OFF mode In the VAC-OFF mode, as shown in FIG. 9, the shutoff valve 116 is in the open state, but the suction switching valve 111 is in the OFF state. In this mode, air is not sucked through the suction hole 34.
- the suction switching valve 111 is turned off as in the VAC-OFF mode, and the shutoff valve 116 is closed unlike the VAC-OFF mode.
- the air consumption can be suppressed by operating in the mode.
- a plurality of heat treatment devices 1 may be mounted on one semiconductor manufacturing device. At this time, if the supply source of compressed air is common among the heat treatment devices 1, specifically, the heat treatment device. It may be common among the suction mechanisms 100 of 1.
- the suction mechanism 100 is provided with a regulator 115.
- the heat treatment in the heat treatment apparatus 1 will be mainly described with respect to the warp correction treatment of the wafer W included in the heat treatment.
- different heat treatments are performed according to the warped state of the wafer W. Specifically, for example, in the case of a concave wafer W having a large amount of warpage, in the case of a concave wafer W having a small amount of warpage, a different heat treatment is performed depending on the case of a convex wafer W. Which heat treatment is performed is set by the user for each lot, for example.
- the "warp amount” refers to the height of the outer peripheral portion of the wafer W with respect to the central portion.
- the wafer W is first sucked by the first suction force to correct the warp during the heat treatment. After being attracted to the hot plate 30, the wafer W is sucked by switching to a second suction force weaker than the first suction force.
- the suction mechanism 100 starts operating in the ultra-high VAC mode before the wafer W is placed (for example, several seconds before). .. Then, the elevating pin 40 is lowered, the wafer W is placed on the hot plate 30, and the heating of the wafer W is started. At this time, since the suction mechanism 100 is already operating in the ultra-high VAC mode, the ultra-strong suction force immediately acts on the wafer W as the first suction force, and the wafer W is attracted to the hot plate 30. The amount of warpage is corrected to, for example, 50 ⁇ m or less.
- the suction mechanism 100 switches the operation from the ultra-high VAC mode to the high VAC mode.
- the suction force acting on the wafer W changes, and the strong suction force as the second suction force acts on the wafer W.
- the strong suction force is set so that the correction of the warp of the wafer W is equivalent to the case where the wafer W is sucked by the super strong suction force.
- the suction mechanism 100 switches the operation to the VAC-OFF mode to eliminate the adsorption and warpage correction of the wafer W. After that, the elevating pin 40 is raised, and the wafer W is carried out from the hot plate 30.
- the suction mechanism 100 starts operating in the high VAC mode before the wafer W is placed (for example, several seconds before). Then, the elevating pin 40 is lowered, the wafer W is placed on the hot plate 30, and the heating of the wafer W is started. At this time, since the suction mechanism 100 is already operating in the high VAC mode, a strong suction force immediately acts on the wafer W as the first suction force, the wafer W is attracted to the hot plate 30, and the amount of warpage thereof. Is corrected to, for example, 50 ⁇ m or less.
- the suction mechanism 100 switches the operation from the high VAC mode to the normal VAC mode.
- the suction force acting on the wafer W changes, and the normal suction force as the second suction force acts on the wafer W.
- the normal suction force is set so that the correction of the warp of the wafer W is equivalent to the case where the wafer W is sucked by the strong suction force.
- the suction mechanism 100 switches the operation to the VAC-OFF mode to eliminate the adsorption and warpage correction of the wafer W. After that, the elevating pin 40 is raised, and the wafer W is carried out from the hot plate 30.
- the suction mechanism 100 usually starts operating in the VAC mode before the wafer W is placed (for example, from a few seconds before). Then, the elevating pin 40 is lowered, the wafer W is placed on the hot plate 30, and the heating of the wafer W is started. At this time, since the suction mechanism 100 is already operating in the normal mode, the normal suction force immediately acts on the wafer W, the wafer W is attracted to the hot plate 30, and the amount of warpage is corrected to, for example, 50 ⁇ m or less. To.
- the suction mechanism 100 operates in the normal VAC mode until the heating of the wafer W is completed, and after the heating is completed, the operation is switched to the VAC-OFF mode to eliminate the adsorption of the wafer W. After that, the elevating pin 40 is raised, and the wafer W is carried out from the hot plate 30.
- the heat treatment apparatus 1 generates a suction force for sucking the wafer W and sucks the wafer W on the temperature-controlled hot plate, and sucks the air around the wafer W.
- a suction force generating unit 101 having 150 is provided.
- the heat treatment apparatus 1 has a suction force adjusting unit having an adjusting gas pipe 153 that supplies air as a suction force adjusting gas for adjusting the suction force of the wafer W to the suction force generating unit 101 (specifically, the suction pipe 150). 102 is provided. Therefore, the wafer W can be adsorbed on the hot plate 30 in the heat treatment apparatus 1 with an appropriate suction force.
- the suction force of the wafer W is adjusted by supplying the suction force adjusting gas to the suction pipe 150 as described above. Therefore, by switching between supplying and stopping the supply of the suction force adjusting gas to the suction pipe 150 while supplying the force for producing the maximum suction force, that is, the valve for switching between the supply and the supply stop is simply opened and closed. This makes it possible to switch the magnitude of the suction force of the wafer W.
- the responsiveness at the time of switching the suction force is higher than the case where the suction force is switched by the opening degree of the damper as in Patent Document 1. Further, when the suction force is switched by the opening degree of the damper as in Patent Document 1, the suction force varies due to a slight variation in the opening degree of the damper, but the suction force is switched by the suction force adjusting gas as in the present embodiment. Therefore, the risk of variation in suction power can be reduced. That is, the reproducibility of the suction force can be improved.
- the force required for the maximum suction force is always taken into the piping system. Therefore, by monitoring the pressure of the force (for example, with a pressure gauge provided on the outlet side of the regulator 115), it is possible to detect the case where the original force drops by just before the processing, and the next force is insufficient. It is possible to avoid the risk of proceeding with the processing of. That is, processing defects can be prevented.
- the suction force When the suction force is switched according to the opening degree of the damper as in Patent Document 1, the suction force varies due to a slight variation in the opening degree of the damper. Therefore, by using a damper with high accuracy and high reproducibility, the suction force can be increased. There is a possibility that reproducibility and accuracy can be improved, but high-precision and high-reproducibility dampers are expensive.
- the reproducibility and accuracy of the suction force can be improved at low cost.
- the flow rate of the suction force adjusting gas can be controlled with high accuracy and high reproducibility by using an inexpensive speed controller, so that the suction force can be precisely adjusted with high accuracy, high reproducibility, and low reproducibility. It can be done at a cost.
- different heat treatments are performed depending on the warped state of the wafer W. Specifically, when a strong suction force is required to correct the warp, the wafer W is first sucked with a strong suction force (first suction force), attracted to the heat plate 30, and then sucked. The suction force is switched to the second suction force in which the suction force is weakened within the range in which the correction of the warp is maintained, and the heating of the wafer is continued. Therefore, since the local cooling of the wafer W due to the strong suction force can be suppressed, the wafer W can be heated uniformly in the plane. In addition, since the time for suction with a strong suction force is short, the amount of air consumed can be suppressed.
- a vacuum ejector 110 that generates a suction force by passing air is used as a suction force generation source that generates a suction force that acts on the wafer W. Then, the air to be passed through the vacuum ejector 110 and the air as the suction force adjusting gas are supplied from the same compressed air supply source, and the adjusting gas pipe 153 connects the compressed air supply source and the vacuum ejector 110. It is branched from the main supply pipe 151 in the heat treatment apparatus 1. Therefore, according to the present embodiment, it is not necessary to separately provide a gas system for the gas to be passed through the vacuum ejector 110 and the suction force adjusting gas, and one gas system is sufficient, so that the gas can be easily installed. .. Further, the suction pipe 150 can be cleaned by supplying air from the adjusting gas pipe 153 so as to flow back through the suction pipe 150.
- the shutoff valve 116 is provided, and in the idle mode of the suction mechanism 100, the shutoff valve 116 is closed to shut off the air supply to the vacuum ejector 110 or the like. Therefore, the amount of air consumed can be reduced.
- FIG. 11 is a vertical cross-sectional view showing an outline of the configuration of the heat treatment apparatus 2 as the substrate temperature control apparatus according to the second embodiment.
- the heat treatment apparatus 2 of FIG. 11 has a distance sensor 80 as a warp state detection unit for detecting the warp state of the wafer W.
- the distance sensor 80 is provided above the cooling unit 12, and is in a warped state of the wafer W placed on the cooling plate 60, that is, a warped state of the wafer W before being heat-treated by the heating unit 11. Is for detecting.
- the distance sensor 80 measures, for example, optically the distance from the distance sensor 80 to the portion of the wafer W directly below the distance sensor 80.
- a plurality of distance sensors 80 are provided, one distance sensor 80 measures the distance to the central portion of the wafer W, and the other distance sensor 80 measures the distance to the outer peripheral portion of the wafer W. Based on these measurement results, the state of warpage of the wafer W is detected, that is, the warp direction of the wafer W (whether the wafer is concave or convex) is detected and the amount of warpage is measured.
- the heat treatment apparatus 2 of the present embodiment operates as follows according to the detection result of the warp direction and the warp amount. That is, in the first embodiment, different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot.
- the control unit 70 determines which heat treatment is to be performed according to the state of warpage of the wafer W detected from the measurement result by the distance sensor 80. In particular, when the wafer W is warped in a concave shape, the control unit 70 determines the above-mentioned first suction force and the second suction force based on the amount of warpage.
- the control unit 70 when the amount of warpage of the concave wafer W exceeds a predetermined threshold value, the first suction force becomes the above-mentioned super strong suction force, and the second suction force becomes the second suction force.
- the first suction force and the second suction force are determined so that the force becomes the above-mentioned strong suction force. That is, the control unit 70 determines the operation order so as to switch from the ultra-high VAC mode to the high VAC mode during the heat treatment by using the ultra-high VAC mode and the high VAC mode as the operation modes of the suction mechanism 100.
- the first suction force becomes the above-mentioned strong suction force
- the second suction force becomes the above-mentioned normal suction force.
- the first suction force and the second suction force are determined. That is, the high VAC mode and the normal VAC mode are used as the operation modes of the suction mechanism 100, and the control unit 70 determines the operation order so as to switch from the high VAC mode to the normal VAC mode during the heat treatment.
- the heat treatment of the wafer W can be performed while automatically sucking the wafer unit with an appropriate suction force. Further, since the first suction force becomes an appropriate suction force, the wafer W can be heated uniformly in the plane, and the possibility of scratches on the wafer W can be reduced. Further, since the second suction force becomes an appropriate suction force, the wafer W can be heated uniformly in the plane and the consumption of air can be reduced.
- the suction force acting on the wafer W may be corrected according to the amount of warpage of the wafer W.
- the first suction force is the above-mentioned super strong suction force
- the second suction force is the above-mentioned strong suction force.
- these super strong suction force and the strong suction force may be corrected according to the amount of warpage. This correction is performed so that, for example, the larger the amount of warpage, the greater the suction force.
- the suction force may be corrected according to the warp amount of the wafer W. ..
- the flow rate of the first suction force and the suction force adjusting gas for forming the second suction force according to the amount of warpage of the wafer W is determined as follows, for example. That is, wafers W having various shapes are prepared, and the state of warpage of each wafer W is detected. Then, each wafer W is placed on the hot plate 30, the suction force adjusting gas is started to be supplied via the speed controller 117, and the supply amount is gradually increased. At this time, the wafer W is adsorbed and the pressure detected by the pressure sensor 112 may be greatly reduced.
- the suction force adjusting gas supply amount immediately before that is determined as the suction force adjustment gas supply amount for the first suction force corresponding to the warped state of the wafer W, and is stored in the control unit 70.
- the supply amount of the suction force adjusting gas is gradually reduced. At this time, the warp correction of the wafer W is eliminated, and the pressure detected by the pressure sensor 112 may be greatly increased.
- the suction force adjusting gas supply amount immediately before that is determined as the suction force adjustment gas supply amount for the second suction force corresponding to the warped state of the wafer W, and is stored in the control unit 70.
- different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot.
- the suction force may be corrected according to the amount of warpage of the wafer W. In this case, for example, as in FIG. 11, it is necessary to provide the distance sensor 80 and measure the amount of warpage of the wafer W.
- the heat treatment of the wafer W can be performed while sucking with a more appropriate suction force according to the amount of warpage of the wafer W.
- the position where the distance sensor 80 is provided as the warp state detection unit is not limited to the upper part of the cooling unit 12, and may be other than that.
- FIG. 12 is a vertical cross-sectional view showing an outline of the configuration of the heat treatment apparatus 2 as the substrate temperature control apparatus according to the modified example of the second embodiment.
- a temperature sensor 90 for measuring the temperature of the hot plate 30 is provided in the hot plate 30.
- the suction force acting on the wafer W is corrected according to the temperature T of the hot plate 30 measured by the temperature sensor 90. For example, when the amount of warpage of the concave wafer W exceeds a predetermined threshold value, the first suction force is the above-mentioned super strong suction force, and the second suction force is the above-mentioned strong suction force.
- These super strong suction force and strong suction force may be corrected according to the temperature of the hot plate 30.
- This correction corrects the suction force, that is, the flow rate of air as the suction force adjusting gas so that the suction force becomes smaller as the temperature is higher.
- the suction force may be corrected according to the temperature of the hot plate 30. ..
- the flow rate of the suction force adjusting gas for making the first suction force and the second suction force according to the temperature of the hot plate is determined as follows, for example. For example, wafers W having various shapes are prepared, and the state of warpage of each wafer W is detected. Further, the temperature of the hot plate 30 is detected by using the temperature sensor 90. Then, each wafer W is placed on the hot plate 30, the suction force adjusting gas is started to be supplied via the speed controller 117, and the supply amount is gradually increased. At this time, the wafer W is adsorbed and the pressure detected by the pressure sensor 112 may be greatly reduced.
- the suction force adjusting gas supply amount immediately before that is determined as the suction force adjusting gas supply amount for the first suction force corresponding to the combination of the warp state of the wafer W and the temperature of the hot plate 30, and the control unit. It is stored in 70. Further, after adsorbing on the hot plate 30, the supply amount of the suction force adjusting gas is gradually reduced. At this time, the warp correction of the wafer W is eliminated and the pressure detected by the pressure sensor 112 is greatly increased.
- the suction force adjusting gas supply amount immediately before that is determined as the suction force adjusting gas supply amount for the first suction force corresponding to the combination of the warp state of the wafer W and the temperature of the hot plate 30, and the control unit. It is stored in 70.
- the suction force acting on the wafer W may be corrected according to the set temperature of the hot plate 30.
- different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot.
- the suction force may be corrected according to the temperature of the hot plate 30.
- the heat treatment of the wafer W can be performed while sucking with a more appropriate suction force according to the temperature of the hot plate 30.
- the suction force may be corrected according to the temperature of the wafer W before the heat treatment.
- FIG. 13 is an explanatory diagram showing an outline of the configuration of the suction mechanism 200 included in the heat treatment device as the substrate temperature control device according to the third embodiment.
- the suction mechanism 200 according to the present embodiment has a suction force generating unit 201 and a suction force adjusting unit 202.
- the suction force generating unit 201 generates a suction force for sucking the wafer W to correct the warp of the wafer W, and attracts the wafer W to the temperature-controlled hot plate 30.
- the suction force generating unit 201 is connected to a duct D of a factory exhaust system (EXH) provided with a blower fan B.
- EXH factory exhaust system
- a vacuum pump may be used instead of the blower fan B.
- the suction force generating unit 201 has a suction pipe 250.
- One end of the suction pipe 250 communicates with the annular flow path 36 of the hot plate 30, that is, communicates with the suction hole 34, and the other end is connected to the duct D.
- the suction force generating unit 201 the air around the wafer W is sucked into the suction pipe 250 through the suction hole 34 by the operation of the blower fan B, and a suction force for sucking the wafer W is generated.
- the air sucked into the suction pipe 250 is discharged to the duct D.
- the suction pipe 250 is provided with a suction switching valve 210, and a pressure sensor 112 is provided on the upstream side of the suction switching valve 210.
- the suction switching valve 210 switches whether the suction target by the blower fan B is the air on the suction hole 34 side or the outside air.
- the suction force adjusting unit 202 weakens the suction force acting on the wafer W and adjusts the suction force, and has an adjusting gas pipe 251 that supplies air as a suction force adjusting gas to the suction pipe 250.
- the adjusting gas pipe 251 includes the first to third pipes 251a to 251c.
- the first pipe 251a is connected to a portion of the suction pipe 250 between the suction switching valve 210 and the duct D, and the other end is connected to a compressed air supply source (not shown).
- the first pipe 251a is provided with a filter 114, a regulator 115, a shutoff valve 116, and a speed controller 211 in this order from the upstream side.
- the speed controller 211 adjusts the flow rate of air supplied to the suction pipe 250 via the speed controller 211.
- the second pipe 251b bypasses the speed controller 211 in the first pipe 251a.
- One end of the second pipe 251b is connected to a portion between the shutoff valve 116 and the speed controller 211 in the first pipe 153a, and the other end is connected to a portion downstream of the speed controller 211 in the first pipe 153a. It is connected.
- the speed controller 212 and the switching valve 213 are provided in this second pipe 251b in order from the upstream side.
- the speed controller 212 adjusts the flow rate of air supplied to the suction pipe 250 via the speed controller 212.
- the switching valve 213 will be described later.
- the third pipe 251c bypasses the speed controller 212 in the second pipe 251b.
- One end of the third pipe 251c is connected to the upstream portion of the speed controller 212 in the second pipe 251b, and the other end is connected to the internal flow path of the switching valve 213.
- the third pipe 251c is provided with a speed controller 214 and a switching valve 215 in this order from the upstream side.
- the speed controller 214 adjusts the flow rate of air supplied to the suction pipe 250 via the speed controller 214.
- the switching valve 215 switches whether or not to supply the air whose flow rate is adjusted by the speed controller 214 to the switching valve 213.
- the switching valve 213 described above switches the piping connected to the suction pipe 250 between the speed controller 212 side and the switching valve 215 side.
- the speed controllers 211, 212, 214 and the switching valves 213 and 215 in the suction force adjusting unit 202 constitute a gas supply amount adjusting mechanism for adjusting the supply amount of air as the suction force adjusting gas to the suction pipe 250.
- the ON state of the suction switching valve 210 means a state in which the blower fan B sucks the air on the suction hole 34 side, while the OFF state of the suction switching valve 210 means the blower fan B.
- the ON state of the switching valve 213 means a state in which the suction pipe 250 and the internal flow path of the switching valve 215 communicate with each other, and the OFF state of the switching valve 213 means that the suction pipe 250 and the speed controller 212 communicate with each other. Means the state of doing.
- the ON state of the switching valve 215 means a state in which air is supplied to the switching valve 213 via the speed controller 214, and the OFF state of the switching valve 215 means that air is supplied to the switching valve 213. Means a state in which is not performed.
- the suction mechanism 200 described above operates in a normal VAC mode, a high VAC mode, an ultra-high VAC mode, a VAC-OFF mode, and an idle mode.
- the operation of the suction mechanism in each mode will be described with reference to FIGS. 14 to 18.
- the pipe through which the air sucked from the suction hole 34 and the compressed air from the source of the compressed air (not shown) is flowing is shown by a thick line to open and close some valves. Omits the explanation.
- the shutoff valve 116 is opened, and the suction switching valve 210 and the switching valve 213 of the suction switching valve 210, the switching valve 213, and the switching valve 215 are in the ON state. Will be done.
- the flow rate of the suction flow at the downstream end of the suction pipe 250 is the same as in the normal VAC mode, but since the switching valve 213 is in the ON state, the flow rate A (for example, 7 L / min) controlled by the speed controller 212. Air is supplied to the suction pipe 250.
- the shutoff valve 116 is opened, and the suction switching valve 210, the switching valve 213, and the switching valve 215 are all turned on.
- VAC-OFF mode In the VAC-OFF mode, as shown in FIG. 17, the shutoff valve 116 is in the open state, but the suction switching valve 210 is in the OFF state. In this mode, air is not sucked through the suction hole 34. However, since the blower fan B continues to operate because it is shared with the suction mechanism 200 of the other heat treatment apparatus, the outside air is sucked into the suction pipe 250 via the suction switching valve 210.
- the suction switching valve 210 is turned off as in the VAC-OFF mode, and unlike the VAC-OFF mode, the shutoff valve 116 is closed.
- the air consumption can be suppressed by operating in the mode.
- the regulator 115 is provided, when one suction mechanism 200 is set to the idle mode or returned from the idle mode.
- the air flow rate does not fluctuate in the other suction mechanism 200. Therefore, it is possible to prevent the adsorption of the wafer W and the correction of the warp of the wafer W from being eliminated during the heat treatment.
- This embodiment is preferably used when there are many sublimated products during heat treatment.
- the wafer W can be attracted to the hot plate 30 with an appropriate suction force. it can.
- the suction switching valve 210 is switched, and the outside air is used by the blower fan B. I try to inhale.
- the blower fan B is shared with another suction mechanism 200, when the suction flow rate by the blower fan B in the one suction mechanism 200 is set to zero when the VAC-OFF mode is set in the one suction mechanism 200, the other suction is performed.
- the suction flow rate by the blower fan B in the mechanism 200 fluctuates. According to this embodiment, this fluctuation can be prevented.
- the suction force may be changed according to the warped state of the wafer W and the temperature of the hot plate 30.
- FIG. 19 is an explanatory diagram showing an outline of the configuration of the heat treatment apparatus 300 according to the reference embodiment.
- the heat treatment apparatus 300 of FIG. 19 includes a hot plate 30 having a gap pin 33, a suction hole 34, an annular flow path 36, and a suction mechanism 310 that sucks the wafer W, corrects the warp, and sucks the wafer W on the hot plate 30.
- the heat treatment apparatus 300 includes a distance sensor 80 as a warp state detection unit for detecting the warp state of the wafer W, as in the example of FIG. 11, and a hot plate as in the example of FIG.
- a temperature sensor 90 for measuring the temperature of 30 is provided.
- the suction mechanism 310 included in the heat treatment apparatus 300 has a vacuum ejector 311.
- the vacuum ejector 311 has two inlets including a low pressure port 311a and a high pressure port 311b, and one outlet 311c.
- a suction pipe 350 that communicates with the annular flow path 36 of the hot plate 30, that is, communicates with the suction hole 34, is connected to the low pressure port 311a.
- a pressure sensor 112 is connected to the suction pipe 350.
- a supply pipe 351 leading to an air supply source (not shown) is connected to the high pressure port 311b.
- An electropneumatic regulator 312 is interposed in the supply pipe 351.
- An exhaust pipe 352 leading to the factory exhaust system is connected to the outlet 311c.
- the suction mechanism 310 high-speed air whose flow rate is controlled by the electropneumatic regulator 312 is supplied to the high-pressure port 311b of the vacuum ejector 311 via the supply pipe 351.
- the air is attracted to the high-speed air and is sucked from the low-pressure port 311a of the vacuum ejector 311.
- the air around the wafer W is sucked into the suction pipe 350 through the suction hole 34, and a suction force for sucking the wafer W is generated.
- the air sucked from the low pressure port 311a of the vacuum ejector 311 and the high-speed compressed air supplied to the high pressure port 311b are discharged from the outlet 311c to the exhaust pipe 352.
- the heat treatment apparatus 300 has a control unit 320.
- the control unit 320 is, for example, a computer and has a program storage unit (not shown).
- the program storage unit stores a program that controls processing in the heat treatment apparatus 300. Further, the program storage unit also stores a program for controlling the operation of the suction mechanism 310 and the like to realize the heat treatment including the warp correction process in the heat treatment apparatus 1.
- the program may be recorded on a computer-readable storage medium and may be installed on the control unit 320 from the storage medium.
- control unit 320 controls the electropneumatic regulator 312 based on the warped state of the wafer W detected from the output of the distance sensor 80 and the temperature of the hot plate 30, and supplies air to the vacuum ejector 311. Control the amount. Thereby, the suction amount by the vacuum ejector 311, that is, the suction force of the wafer W is controlled.
- the measurement result of the pressure sensor 112 may also be used to control the amount of air supplied to the vacuum ejector 311.
- the wafer W to be adsorbed is preferably a wafer W in which the air supply amount of the vacuum ejector 311 is changed during the heat treatment, like the concave wafer W having a large warp amount. To do.
- the suction treatment first, from a few seconds before the wafer W is placed on the hot plate 30, the state of warpage of the wafer W to be processed (the direction of the warp of the wafer W and the amount of warpage of the wafer W) and the temperature of the hot plate 30.
- the control unit 320 controls the electropneumatic regulator 312 so that the wafer W is sucked with the optimum suction force for correcting the warp according to the above.
- the control unit 70 controls the distance sensor so that the supply amount of the warp correction air, which is optimal for the combination of the warp state of the wafer W to be processed and the temperature of the hot plate 30, is supplied to the vacuum ejector 311.
- the electropneumatic regulator 312 is controlled based on the measurement result of the 80 and the measurement result of the temperature sensor 90.
- the optimum amount of warp correction air supplied for each combination of the warp state of the wafer W and the temperature of the hot plate 30 is stored in advance in the control unit 320 as, for example, a data table.
- the control unit 320 controls the electropneumatic regulator 312 so that the wafer is sucked. Specifically, the control unit 320 supplies the vacuum ejector 311 with the amount of air for maintaining the warp correction, which is optimal for the combination of the warp state of the wafer W to be processed and the temperature of the hot plate 30.
- the electropneumatic regulator 312 is controlled based on the measurement result of the distance sensor 80 and the measurement result of the temperature sensor 90.
- the optimum amount of air for maintaining warpage correction for each combination of the warp state of the wafer W and the temperature of the hot plate 30 is stored in advance in the control unit 320 as, for example, a data table.
- the amount of air supplied to the vacuum ejector 311 may be automatically controlled based on the measurement result of the pressure sensor 112 while the compulsion is maintained.
- the target pressure in this case is set based on the combination of the warped state of the wafer W to be processed and the temperature of the hot plate 30.
- the warped state of the wafer W and the target pressure for each combination of the temperatures of the hot plate 30 are stored in the control unit 320 as a data table.
- the suction mechanism 310 eliminates the adsorption and warpage correction of the wafer W, and then the wafer W is carried out from the hot plate 30.
- the in-plane uniformity of the wafer temperature can be further improved. Further, it is possible to prevent the back surface of the wafer W from being scratched or the wafer from being cracked. Further, the amount of particles adhering to the back surface of the wafer W can be reduced. Furthermore, air consumption can be reduced.
- the optimum supply amount of warp straightening air and the optimum supply amount of warp straightening maintenance air for each combination of the warp state of the wafer W and the temperature of the hot plate 30 are stored in advance as a data table. It was supposed to be.
- the optimum supply amount of warp correction air and the optimum supply amount of warp correction maintenance air described in these data tables may be calibrated as follows.
- wafers W of various shapes are prepared, and the state of warpage of each wafer W is detected. Further, the temperature of the hot plate 30 is detected by using the temperature sensor 90. Then, each wafer W is placed on the hot plate 30, the supply of air to the vacuum ejector 311 is started, and the supply amount is gradually increased. At this time, since the wafer W is attracted and the pressure detected by the pressure sensor 112 is greatly reduced, the amount of air supplied immediately before that is determined by the combination of the warped state of the wafer W and the temperature of the hot plate 30. Correct the data table as the optimum amount of air for warp correction. Further, after adsorbing on the hot plate 30, the amount of air supplied to the vacuum ejector 311 is gradually reduced.
- the warp correction of the wafer W is eliminated and the pressure detected by the pressure sensor 112 is greatly increased, the amount of air supplied immediately before that is determined by the state of the warp of the wafer W and the hot plate 30. Correct the data table, etc. as the optimum supply amount of correction maintenance air for the combination of temperatures.
- the above-mentioned data table configuration may be performed for each heat treatment apparatus 300.
- the wafer W can be sucked with the optimum suction force for each heat treatment apparatus 300.
- the temperature control device is assumed to be a heat treatment device that performs heat treatment.
- the temperature control device according to the present disclosure may be a cooling device that performs a cooling process.
- a substrate temperature control device that adjusts the temperature of the substrate.
- a suction force generating part having a suction pipe for sucking the air around the substrate, which generates a suction force for sucking the substrate and attracts the substrate to the above-mentioned stand whose temperature is adjusted,
- a substrate temperature control device including a suction force adjusting unit having an adjusting gas pipe for supplying the suction force adjusting gas for adjusting the suction force to the suction force generating unit.
- the suction force includes a first suction force and a second suction force weaker than the first suction force.
- the suction force adjusting unit has a gas supply amount adjusting mechanism for adjusting the supply amount of the suction force adjusting gas.
- the substrate temperature control device adjusts the gas supply amount so that the suction force acting on the substrate is switched from the first suction force to the second suction force after the substrate is attracted to the above-mentioned table.
- the substrate temperature control device according to (1) above which includes a control unit that controls the mechanism. According to the above (2), the temperature of the substrate can be treated more uniformly in the plane. Further, when a gas is used to generate the suction force, the consumption of the gas can be suppressed.
- the control unit determines the first suction force and the second suction force based on at least one of the warpage amount of the substrate before being adsorbed on the description table and the temperature of the table.
- the substrate temperature control device according to (2) or (3) above, which corrects at least one of them. According to the above (4), the warp of the substrate can be corrected with a more appropriate suction force and the substrate can be adsorbed.
- the suction force generating portion has a vacuum ejector that generates the suction force by passing gas through the suction force generating portion.
- the gas flowing through the vacuum ejector and the suction force adjusting gas are supplied from the same gas supply source.
- the adjustment gas pipe according to any one of (1) to (4) above, wherein the adjusting gas pipe is branched in the substrate temperature control device from the main supply pipe connecting the gas supply source and the vacuum ejector. Board temperature control device. According to the above (5), it is not necessary to separately provide a gas system for the gas to be passed through the vacuum ejector and the suction force adjusting gas, and one gas system is sufficient, so that the gas can be easily installed. Further, the suction pipe can be cleaned by supplying air from the adjusting gas pipe so that the suction pipe flows backward.
- the force for sucking the air around the substrate in the suction force generating portion is generated by a blower fan or a vacuum pump.
- the substrate temperature control device according to any one of (1) to (4) above, wherein the suction pipe has a switching valve for switching between suction around the substrate and suction of outside air.
- the stop of suction around the substrate by the blower fan or the vacuum pump in one substrate temperature control device can be achieved. It does not affect the suction in other substrate temperature control devices. Therefore, it is not necessary to provide a blower fan or the like for each substrate temperature control device, so that the installation cost can be reduced.
- a substrate temperature control method for adjusting the temperature of the substrate A temperature control process that adjusts the temperature of the mounting table on which the board is placed, The mounting process of mounting the substrate on the temperature-controlled stand described above, and It has a suction step of adsorbing the substrate to the above-mentioned pedestal by the suction force by sucking air from the suction force generating part having the suction pipe from the periphery of the substrate on the above-mentioned pedestal.
- the suction step is a substrate temperature control method including a suction force adjusting step of supplying a suction force adjusting gas to the suction force generating portion to adjust the suction force.
- the suction force adjusting step is performed on the suction force generating portion so that the first suction force is switched to a second suction force weaker than the first suction force after the substrate is sucked onto the above-mentioned stand.
- the first suction force and the second suction force are corrected based on at least one of the warpage amount of the substrate before being adsorbed on the above-mentioned stand and the temperature of the above-mentioned stand.
- the substrate temperature control method according to any one of 9) or (10).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本開示は、基板温調装置及び基板温調方法に関する。 The present disclosure relates to a substrate temperature control device and a substrate temperature control method.
特許文献1には、加熱装置の載置台に半導体ウェハ(以下、「ウェハ」という。)を載置するにあたって、基板の反りを矯正した状態で載置する技術が開示されている。より詳細には、特許文献1では、載置台の表面から突没する吸引用部材が設けられており、昇降ピンにより基板搬送機構から受け渡されたウェハを載置台に載置するときにウェハの下面に吸引用部材を吸着させる。そして、吸引用部材と昇降ピンとを同期させて下降させて、ウェハを載置台に載置している。さらに、圧力センサにより吸引用部材の吸引用圧力を監視し、吸引用部材がウェハに吸着しているかを判断し、吸引用部材がウェハに吸着した後は、吸引用部材の吸引圧力を下げるようにしている。これにより、吸引ポンプの負荷を下げている。また、特許文献1では、吸引用部材に接続された吸引管にダンパが設けられており、ダンパの開度により吸引用部材側の吸引圧力が調整されている。
本開示にかかる技術は、温度調整装置の載置台に適切な吸引力で基板を吸着することを可能とし、さらに、吸引力の切替時の応答性及び吸引力の再現性を向上させる。 The technology according to the present disclosure makes it possible to suck the substrate on the mounting table of the temperature control device with an appropriate suction force, and further improves the responsiveness at the time of switching the suction force and the reproducibility of the suction force.
本開示の一態様は、基板の温度を調節する基板温調装置であって、基板が載置される載置台と、前記載置台に載置された基板の温度を調節するために当該載置台の温度を調節する温調部と、基板を吸引する吸引力を発生させ、温度が調節された前記載置台に当該基板を吸着させるものであり、基板の周囲の空気を吸い込む吸込配管を有する吸引力発生部と、前記吸引力を調整する吸引力調整ガスを前記吸込配管に供給する調整ガス配管を有する吸引力調整部と、を備える。 One aspect of the present disclosure is a substrate temperature control device for adjusting the temperature of a substrate, which is a mounting table on which the substrate is mounted and a mounting table for adjusting the temperature of the substrate mounted on the above-described stand. The temperature control part that adjusts the temperature of the substrate and the suction force that sucks the substrate are generated, and the substrate is attracted to the above-mentioned stand whose temperature is adjusted, and the suction has a suction pipe that sucks the air around the substrate. A force generating unit and a suction force adjusting unit having an adjusting gas pipe for supplying the suction force adjusting gas for adjusting the suction force to the suction pipe are provided.
本開示によれば、温度調整装置の載置台に適切な吸引力で基板を吸着することができ、さらに、吸引力の切替時の応答性及び吸引力の再現性を向上させることができる。 According to the present disclosure, the substrate can be attracted to the mounting table of the temperature adjusting device with an appropriate suction force, and the responsiveness at the time of switching the suction force and the reproducibility of the suction force can be improved.
半導体デバイス等の製造プロセスにおけるフォトリソグラフィー工程では、基板としてのウェハ上に所定のレジストパターンを形成するために一連の処理が行われる。上記一連の処理には、レジスト液を塗布してレジスト膜を形成する塗布処理、レジスト膜を所定のパターンに露光する露光処理、露光されたレジスト膜に現像液を塗布して現像する現像処理、ウェハを加熱する熱処理等が含まれる。なお、加熱処理には、露光後にレジスト膜内の化学反応を促進させるポストエクスポージャーベーキング(PEB)処理等が含まれる。 In the photolithography process in the manufacturing process of semiconductor devices and the like, a series of processes are performed in order to form a predetermined resist pattern on a wafer as a substrate. The series of treatments include a coating treatment of applying a resist liquid to form a resist film, an exposure treatment of exposing the resist film to a predetermined pattern, and a development treatment of applying a developing liquid to the exposed resist film for development. Includes heat treatment to heat the wafer. The heat treatment includes a post-exposure baking (PEB) treatment that promotes a chemical reaction in the resist film after exposure.
加熱処理以前の工程の影響によりウェハに反りが生じていると、ウェハを加熱する熱板と当該ウェハとの距離がウェハ面内でばらつくので、ウェハを面内均一に加熱することが困難となる。そのため、ヒータ等の温度調節機構が埋設された熱板として機能する載置台に、ウェハを吸引して吸着させることで、ウェハの反りを矯正した状態で載置台にウェハが載置されるようにしている。 If the wafer is warped due to the influence of the process before the heat treatment, the distance between the hot plate for heating the wafer and the wafer varies in the wafer plane, and it becomes difficult to heat the wafer uniformly in the plane. .. Therefore, by sucking and adsorbing the wafer on a mounting table that functions as a hot plate in which a temperature control mechanism such as a heater is embedded, the wafer is placed on the mounting table with the warp of the wafer corrected. ing.
ところで、3D NAND型の半導体デバイス等の分野では、近年、ウェハ上に形成される膜が厚くなってきており、それに伴い、ウェハの反りが(例えば数百μmまで)大きくなってきている。このようにウェハの反りが大きい場合、反りの矯正には強い吸引力が必要となる。
しかし、本発明者らの鋭意検討したところによれば、大きな反りを解消するために吸引力を強くすると、ウェハと載置台との間を流れる気流によって局所的に冷えることがあり、ウェハを面内均一に加熱することができなくなることがある。この点は、吸引力が強くなるほどより顕著になる。また、吸引力を強くすると、ウェハの下面に傷等が生じるおそれがある。
さらにウェハと載置台の間に形成される空間内の空気の吸込み量が同じであっても上記空間の圧力は載置台の温度によって変わる。したがって、載置台の温度によって、ウェハの反りの矯正に必要な上記吸込み量も変わる。
By the way, in the field of 3D NAND type semiconductor devices and the like, in recent years, the film formed on the wafer has become thicker, and the warpage of the wafer has increased (for example, up to several hundred μm). When the warp of the wafer is large as described above, a strong suction force is required to correct the warp.
However, according to the diligent studies of the present inventors, if the suction force is increased in order to eliminate a large warp, the wafer may be locally cooled by the air flow flowing between the wafer and the mounting table, and the wafer may be surfaced. It may not be possible to heat uniformly inside. This point becomes more remarkable as the suction force becomes stronger. Further, if the suction force is increased, the lower surface of the wafer may be scratched or the like.
Further, even if the amount of air sucked in the space formed between the wafer and the mounting table is the same, the pressure in the space changes depending on the temperature of the mounting table. Therefore, the suction amount required for correcting the warp of the wafer also changes depending on the temperature of the mounting table.
なお、特許文献1には、載置台の表面から突没する吸引用部材を設け、吸引用部材がウェハに吸着した後は、吸引用部材の吸引圧力を下げることが開示されている。しかし、特許文献1は、吸引力を強くしたときの上述の課題等について開示するものではない。また、特許文献1では、吸引圧力の変更をダンパの開度により調整している。ダンパは、その開度が所定開度となるように用いられるため、動作開始から完了までに時間を要し、応答性が悪い。したがって、特許文献1のようにダンパを用いると吸引圧力の静定までに時間を要する。また、ダンパの開度で吸引力を調整すると、僅かな開度のばらつきで吸引力が変わるため、吸引力の再現性が悪い。
Note that
上述の点を鑑み、本開示にかかる技術は、温度調整装置の載置台に適切な吸引力で基板を吸着することを可能とし、さらに、吸引力の切替時の応答性及び吸引力の再現性を向上させる。 In view of the above points, the technique according to the present disclosure makes it possible to suck the substrate on the mounting table of the temperature control device with an appropriate suction force, and further, the responsiveness at the time of switching the suction force and the reproducibility of the suction force. To improve.
以下、本実施形態にかかる基板温調装置及び基板温調方法を、図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, the substrate temperature control device and the substrate temperature control method according to the present embodiment will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.
(第1実施形態)
図1及び図2は、第1実施形態に係る基板温調装置としての熱処理装置1の構成の概略を示す縦断面図及び横断面図である。
熱処理装置1は、図1及び図2に示すように筐体10内に、ウェハWを加熱処理する加熱部11と、ウェハWを冷却処理する冷却部12を備えている。図2に示すように筐体10の冷却部12近傍の両側面には、ウェハWを搬入出するための搬入出口13が形成されている。
(First Embodiment)
1 and 2 are a vertical sectional view and a horizontal sectional view showing an outline of the configuration of the
As shown in FIGS. 1 and 2, the
加熱部11は、図1に示すように上側に位置して上下動自在な蓋体20と、下側に位置してその蓋体20と一体となって処理室Sを形成する熱板収容部21を備えている。
As shown in FIG. 1, the
蓋体20は、下面が開口した略筒形状を有し、後述の熱板30上に載置されたウェハWの処理対象面である上面を覆う。蓋体20の上面中央部には、排気部20aが設けられている。処理室S内の雰囲気は、排気部20aから排気される。
The
熱板収容部21の中央には、載置台としての熱板30が設けられている。熱板30は、ウェハWが載置され、該載置されたウェハWを加熱するものである。この熱板30は、厚みのある略円盤形状を有しており、熱板30の上面すなわちウェハWの搭載面を加熱する温調部としてのヒータ31がその内部に設けられている。ヒータ31としては、例えば電気ヒータが用いられる。
A
熱板収容部21には、熱板30を厚み方向に貫通する昇降ピン40が設けられている。昇降ピン40は、シリンダ等の昇降駆動部41により昇降自在であり、熱板30の上面に突出して後述する冷却板60との間でウェハWの受け渡しを行うことができる。
The hot
熱板収容部21は、例えば図1に示すように熱板30を収容して熱板30の外周部を保持する環状の保持部材50と、その保持部材50の外周を囲む略筒状のサポートリング51を有している。
As shown in FIG. 1, the hot
加熱部11に隣接する冷却部12には、例えばウェハWを載置して冷却する冷却板60が設けられている。冷却板60は、例えば図2に示すように略方形の平板形状を有し、加熱部11側の端面が円弧状に湾曲している。冷却板60の内部には、例えばペルチェ素子などの図示しない冷却部材が内蔵されており、冷却板60を所定の設定温度に調整できる。
The cooling
冷却板60は、例えば図1に示すように支持アーム61に支持され、その支持アーム61は、加熱部11側のX方向に向かって延伸するレール62に取付けられている。冷却板60は、支持アーム61に取り付けられた駆動機構63によりレール62上を移動できる。これにより、冷却板60は、加熱部11側の熱板30の上方まで移動できる。
The cooling
冷却板60には、例えば図2のX方向に沿った2本のスリット64が形成されている。スリット64は、冷却板60の加熱部11側の端面から冷却板60の中央部付近まで形成されている。このスリット64により、加熱部11側に移動した冷却板60と、熱板30上の昇降ピン40との干渉が防止される。図1に示すように冷却部12内に位置する冷却板60の下方には、昇降ピン65が設けられている。昇降ピン65は、昇降駆動部66によって昇降できる。昇降ピン65は、冷却板60の下方から上昇してスリット64を通過し、冷却板60の上方に突出して、例えば搬入出口13から筐体10の内部に進入するウェハ搬送装置(図示せず)との間でウェハWの受け渡しを行うことができる。
For example, the cooling
以上の熱処理装置1には、図1に示すように制御部70が設けられている。制御部70は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、熱処理装置1における処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各部や後述の吸引機構の動作を制御して、熱処理装置1における後述の反りの矯正処理を含む熱処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部70にインストールされたものであってもよい。
The
次に、熱板30の構成について詳述する。図3及び図4は、熱板30の構成の概略を示す断面図及び平面図である。図5は、後述の吸引機構の構成の概略を示す説明図である。
Next, the configuration of the
熱板30は、図3及び図4に示すように、前述のヒータ31が設けられている他、前述の昇降ピン40が挿通される貫通孔32が形成されている。
また、熱板30の表面には、ウェハWを支持する突起としてのギャップピン33が複数設けられている。このギャップピン33は、図4に示すように、平面視において、熱板30の中心を軸とした円周上に等間隔で設けられている。なお、ギャップピン33の高さは、例えば0.05mm以上0.1mm以下である。
As shown in FIGS. 3 and 4, the
Further, a plurality of gap pins 33 as protrusions for supporting the wafer W are provided on the surface of the
さらに、熱板30の表面における、平面視においてギャップピン33と重ならない位置に、ウェハWの下面を吸引する吸引孔34が複数設けられている。この吸引孔34は、平面視において、熱板30の中心を軸とした円周上に等間隔で設けられている。本例では、平面視において、吸引孔34の設けられた円環状の領域は、ギャップピン33の設けられた円環状の領域の内側に位置する。
Further, a plurality of suction holes 34 for sucking the lower surface of the wafer W are provided on the surface of the
なお、ギャップピン33と吸引孔34が上述のように設けられているため、ウェハWを吸着しても、ウェハWと熱板30との間に隙間が存在するので、ウェハWの吸着中に、ウェハWの下面に沿って気流が生じる。この気流により、ウェハWの面内均一加熱が阻害されている。
Since the
熱板30の説明に戻る。
図3に示すように、熱板30における吸引孔34それぞれに対して、下方に延びる流路35が設けられている。各吸引孔34は、流路35を介して環状流路36に接続されている。環状流路36は、吸引孔34の配列方向に沿って環状に形成されており、吸引機構100が接続されている。
Returning to the explanation of the
As shown in FIG. 3, a
吸引機構100は、図5に示すように、吸引力発生部101と、吸引力調整部102とを有する。
As shown in FIG. 5, the
吸引力発生部101は、ウェハWを吸引する吸引力を発生させ当該ウェハWの反りを矯正させ、温度が調節された熱板30に当該ウェハWを吸着させるものであり、真空エジェクタ110を有する。真空エジェクタ110は、低圧口110aと高圧口110bからなる2つの入口と、1つの出口110cとを有する。
The suction
低圧口110aには、熱板30の環状流路36に連通する、すなわち、吸引孔34に連通する吸込配管150が接続されている。また、高圧口110bには、圧縮空気(以下、「エア」ということがある。)の供給源(図示せず)に通ずる主供給配管151が接続されている。出口110cには、工場排気系(EXH)のダクトDに通ずる排気配管152が接続されている。
A
吸引力発生部101では、高速のエアが、主供給配管151を介して、真空エジェクタ110の高圧口110bに供給されて、当該真空エジェクタ110の出口110cから排出されると、この高速のエアに誘引されて、当該真空エジェクタ110の低圧口110aから空気が吸引される。これにより、ウェハWの周囲の空気が、吸引孔34を介して吸込配管150に吸い込まれ、ウェハWを吸引する吸引力が生じる。
真空エジェクタ110の低圧口110aから吸引された空気と高圧口110bに供給された高速の圧縮空気は、出口110cから排気配管152へ排出される。
In the suction
The air sucked from the
なお、吸込配管150には、吸引切替弁111が設けられ、吸引切替弁111の上流側に圧力センサ112が設けられている。
また、主供給配管151には、高速のエアの流量を調節するスピードコントローラ113が設けられている。主供給配管151におけるスピードコントローラ113の上流側には、上流側から順に、フィルタ114、レギュレータ115、遮断弁116が設けられている。フィルタ114は、エア供給源(図示せず)からのエア内の異物を除去する。レギュレータ115は、一次側の圧力によらず二次側のエアの圧力を所定の圧力に調整するものである。遮断弁116は、レギュレータ115を介したエアの供給を遮断するか否か切り替えるためのものである。
The
Further, the
吸引力調整部102は、ウェハWに作用させる吸引力を弱め当該吸引力を調整するものであり、吸引力調整ガスとしてのエアを吸引力発生部101(具体的には例えば吸込配管150)に供給する調整ガス配管153を有する。
The suction
調整ガス配管153は、主供給配管151から分岐し吸込配管150に合流する第1の配管153aを含む。第1の配管153aの一端は、主供給配管151における遮断弁116とスピードコントローラ113との間の部分に接続され、他端は、吸込配管150における真空エジェクタ110と吸引切替弁111との間の部分に接続されている。
この第1の配管153aには、上流側から順にスピードコントローラ117、切替弁118が設けられている。スピードコントローラ117は、第1の配管153aを通じて吸込配管150に供給するエアの流量を調節する。切替弁118については後述する。
The adjusting
The
また、調整ガス配管153は、第1の配管153aにおけるスピードコントローラ117をバイパスする第2の配管153bを含む。第2の配管153bの一端は、第1の配管153aにおけるスピードコントローラ113の上流側の部分に接続され、他端は、切替弁118の内部流路に接続されている。また、第2の配管153bには、上流側から順にスピードコントローラ119、切替弁120が設けられている。スピードコントローラ119は、第2の配管153bを通じて吸込配管150に供給するエアの流量を調節する。切替弁120は、スピードコントローラ119により流量が調節されたエアを切替弁118に供給するか否かを切り替える。また、前述した切替弁118は、吸込配管150に接続する配管をスピードコントローラ117側と切替弁120側とで切り替える。
Further, the adjusting
吸引力調整部102における、スピードコントローラ117、119及び切替弁118、120は、吸込配管150への吸引力調整ガスとしてのエアの供給量を調整するガス供給量調整機構を構成する。
The
なお、以下の説明では、吸引切替弁111がON状態とは、吸込配管150を介して真空エジェクタ110と吸引孔34とが連通する状態を意味する。一方、吸引切替弁111がOFF状態とは、真空エジェクタ110と吸引孔34との間の部分において吸込配管150が遮断されている状態を意味する。つまり、吸引切替弁111がON状態とは、吸引孔34からの空気の吸い込みが行われる状態を意味し、吸引切替弁111がOFF状態とは、吸引孔34からの空気の吸い込みが行われない状態を意味する。また、切替弁118がON状態とは、吸込配管150と切替弁120の内部流路とが連通する状態を意味し、切替弁118がOFF状態とは、吸込配管150とスピードコントローラ117とが連通する状態を意味する。そして、切替弁120がON状態とは、切替弁118へのスピードコントローラ119を介したエアの供給が行われる状態を意味し、切替弁120がOFF状態とは、切替弁118へのエアの供給が行われない状態を意味する。
In the following description, the ON state of the
上述の吸引機構100は、通常VACモード、高VACモード、超高VACモード、VAC-OFFモード、アイドルモードで動作する。
吸引機構100の各モードでの動作について、図6~図10を用いて説明する。なお、これらの図では、吸引孔34から吸い込まれた空気や圧縮空気の供給源(図示せず)からの圧縮空気が流通している管を太線で示すことで、一部の弁の開閉については説明を省略する。
The
The operation of the
(通常VACモード)
通常VACモードでは、図6に示すように、遮断弁116が開状態とされると共に、吸引切替弁111、切替弁118、切替弁120のうち、吸引切替弁111のみがON状態とされる。この場合、真空エジェクタ110には、スピードコントローラ113により制御された流量(例えば40L/min)のエアが供給されることで、当該真空エジェクタ110の低圧口110aには、吸込流量V(例えば15L/min)の吸込流が発生する。そして、スピードコントローラ117により制御された流量D(例えば13L/min)のエアが、切替弁118を介して吸込配管150に供給(パージ)されるので、吸引孔34を介した吸込み空気の流量Qは小さくなる(例えば、Q=V-D=15-13=2L/minとなる)。
(Normal VAC mode)
In the normal VAC mode, as shown in FIG. 6, the
(高VACモード)
高VACモードでは、図7に示すように、遮断弁116が開状態とされると共に、吸引切替弁111、切替弁118、切替弁120のうち、吸引切替弁111及び切替弁118がON状態とされる。この場合、真空エジェクタ110の低圧口110aに生じる吸込み流の吸込流量Vは通常VACモードと同様であるが、切替弁118がON状態であるため、スピードコントローラ119により制御された流量A(例えば7L/min)のエアが吸込配管150に供給される。そのため、吸引孔34における吸込み空気の流量Qは通常VACモードより大きくなる(例えば、Q=V-A=15-7=8L/minとなる)。つまり、高VACモードでは、ウェハWの吸引力が、通常VACモード時の吸引力(以下、「通常吸引力」という。)より強い、強吸引力となる。
(High VAC mode)
In the high VAC mode, as shown in FIG. 7, the
(超高VACモード)
超高VACモードでは、図8に示すように、遮断弁116が開状態とされると共に、吸引切替弁111、切替弁118、切替弁120の全てがON状態とされる。この場合、真空エジェクタ110の低圧口110aに生じる吸込み流の吸込流量Vは通常VACモード等と同様であるが、切替弁118、120がON状態であるため、吸引力調整のためのエアは吸込配管150に供給されない。そのため、吸引孔34における吸込み空気の流量Qは高VACモードよりさらに大きくなる(例えば、Q=V=15L/minとなる)。つまり、超高VACモードでは、ウェハWの吸引力が高VACモードよりさらに強い、超強吸引力となる。
(Ultra high VAC mode)
In the ultra-high VAC mode, as shown in FIG. 8, the
(VAC-OFFモード)
VAC-OFFモードでは、図9に示すように、遮断弁116が開状態とされるが、吸引切替弁111がOFF状態とされる。このモードでは、吸引孔34を介した空気の吸い込みは行われない。
(VAC-OFF mode)
In the VAC-OFF mode, as shown in FIG. 9, the
(アイドルモード)
このモードでは、図10に示すように、VAC-OFFモードと同様に吸引切替弁111がOFF状態とされる他、VAC-OFFモードとは異なり、遮断弁116が閉状態とされる。このモードでは、真空エジェクタ110にエアが供給されないため、ウェハWの吸着が必要ない場合に、当該モードで動作することにより、エアの消費量を抑えることができる。
なお、1つの半導体製造装置に、複数の熱処理装置1を搭載することがあり、このときに、圧縮空気の供給源が、熱処理装置1間で共通とされる場合、具体的には、熱処理装置1の吸引機構100間で共通とされる場合がある。この場合において、各吸引機構100にレギュレータ115を設けていないと、一の吸引機構100をアイドルモードとしたりアイドルモードから復帰させたりしたときに、他の吸引機構100においてエアの流量が変動する。その結果、吸引力が不足し熱処理中にウェハWの吸着やウェハWの反りの矯正が解消されてしまったり、吸引力が過多になりウェハWと熱板30との間を流れる気流によって熱処理の面内均一性が損なわれたりすることがある。これらを防ぐため、吸引機構100にレギュレータ115が設けられている。
(Idle mode)
In this mode, as shown in FIG. 10, the
A plurality of
続いて、熱処理装置1での熱処理について、当該熱処理に含まれる、ウェハWの反りの矯正処理を中心に説明する。
Subsequently, the heat treatment in the
熱処理装置1では、ウェハWの反りの状態に応じて、異なる熱処理が行われる。具体的には、例えば、反り量が大きい凹形状のウェハWの場合、反り量が小さい凹形状のウェハWの場合、凸形状のウェハWの場合とで、異なる熱処理が行われる。いずれの熱処理が行われるかは、例えば、ロット毎にユーザにより設定される。なお、「反り量」とは、ウェハWの中央部に対する外周部の高さを言う。
In the
(反り量が大きい凹形状のウェハWの場合)
ウェハWが凹形状すなわち下に凸形状の反りを有し、その反り量が例えば数百μm以上と大きい場合、熱処理に際し、まず第1の吸引力でウェハWを吸引し、反りを矯正させて熱板30に吸着させた後、第1の吸引力より弱い第2の吸引力に切り替えてウェハWを吸引する。
(In the case of concave wafer W with a large amount of warpage)
When the wafer W has a concave shape, that is, a downwardly convex warp, and the amount of the warp is as large as several hundred μm or more, the wafer W is first sucked by the first suction force to correct the warp during the heat treatment. After being attracted to the
具体的には、反り量が大きい凹形状のウェハWの場合、例えば、ウェハWが載置されるより前から(例えば数秒前から)、吸引機構100は超高VACモードでの動作を開始する。そして、昇降ピン40が下降し、熱板30にウェハWが載置され、ウェハWの加熱が開始される。このとき、吸引機構100が既に超高VACモードで動作しているため、ウェハWに即座に超強吸引力が第1の吸引力として作用し、当該ウェハWが熱板30に吸着され、その反り量が例えば50μm以下に矯正される。
熱板30にウェハWが載置されてから所定時間経過後(例えば数秒経過後)、吸引機構100は超高VACモードから高VACモードへ動作を切り替える。これにより、ウェハWに作用する吸引力が変化し、第2の吸引力としての強吸引力がウェハWに作用する。このように変化させても、ウェハWの反りの矯正は超強吸引力で吸着させたときと同等になるよう、上記強吸引力は設定されている。
ウェハWの加熱の終了後、吸引機構100はVAC-OFFモードへ動作を切り替え、ウェハWの吸着及び反りの矯正を解消する。その後、昇降ピン40が上昇し、熱板30上からウェハWが搬出される。
Specifically, in the case of a concave wafer W having a large amount of warpage, for example, the
After a predetermined time has elapsed (for example, several seconds have passed) after the wafer W is placed on the
After the heating of the wafer W is completed, the
(反り量が小さい凹形状のウェハWの場合)
ウェハWが凹形状の反りを有し、その反り量が例えば100μm程度と小さい場合、前述の反り量が大きい場合と同様、熱処理に際し、第1の吸引力でウェハWを吸引し、反りを矯正させて熱板30に吸着させた後、第1の吸引力より弱い第2の吸引力で吸引する。ただし、前述の反り量が大きい場合とは、第1及び第2の吸引力の強さが異なる。
(In the case of concave wafer W with a small amount of warpage)
When the wafer W has a concave warp and the warp amount is as small as, for example, about 100 μm, the wafer W is sucked by the first suction force during the heat treatment to correct the warp, as in the case where the warp amount is large. After being attracted to the
具体的には、反り量が大きい凹形状のウェハWの場合、例えば、ウェハWが載置されるより前から(例えば数秒前から)、吸引機構100は高VACモードでの動作を開始する。そして、昇降ピン40が下降し、熱板30にウェハWが載置され、ウェハWの加熱が開始される。このとき、吸引機構100が既に高VACモードで動作しているため、ウェハWに即座に強吸引力が第1の吸引力として作用し、当該ウェハWが熱板30に吸着され、その反り量が例えば50μm以下に矯正される。
熱板30にウェハWが載置されてから所定時間経過後(例えば数秒経過後)、吸引機構100は高VACモードから通常VACモードへ動作を切り替える。これにより、ウェハWに作用する吸引力が変化し、第2の吸引力としての通常吸引力がウェハWに作用する。このように変化させても、ウェハWの反りの矯正は強吸引力で吸着させたときと同等になるよう、上記通常吸引力は設定されている。
ウェハWの加熱の終了後、吸引機構100はVAC-OFFモードへ動作を切り替え、ウェハWの吸着及び反りの矯正を解消する。その後、昇降ピン40が上昇し、熱板30上からウェハWが搬出される。
Specifically, in the case of a concave wafer W having a large amount of warpage, for example, the
After a predetermined time has elapsed (for example, several seconds have passed) after the wafer W is placed on the
After the heating of the wafer W is completed, the
(凸形状のウェハWの場合)
ウェハWが上方に突出する凸形状の反りを有する場合、ウェハWが凹形状の反りを有する場合と異なり、熱処理に際し、吸引力を途中で変化させずに、弱い吸引力でウェハを一定に吸引する。
(In the case of convex wafer W)
When the wafer W has a convex warp protruding upward, unlike the case where the wafer W has a concave warp, the wafer is sucked constantly with a weak suction force without changing the suction force during the heat treatment. To do.
凸形状のウェハWの場合、具体的には、例えば、ウェハWが載置されるより前から(例えば数秒前から)、吸引機構100は通常VACモードでの動作を開始する。そして、昇降ピン40が下降し、熱板30にウェハWが載置され、ウェハWの加熱が開始される。このとき、吸引機構100が既に通常モードで動作しているため、ウェハWに即座に通常吸引力が作用し、当該ウェハWが熱板30に吸着され、その反り量が例えば50μm以下に矯正される。そして、吸引機構100は、ウェハWの加熱が終了するまで通常VACモードで動作し、上記加熱が終了後に、VAC-OFFモードへ動作を切り替え、ウェハWの吸着を解消する。その後、昇降ピン40が上昇し、熱板30上からウェハWが搬出される。
In the case of the convex wafer W, specifically, for example, the
以上の実施形態では、熱処理装置1が、ウェハWを吸引する吸引力を発生させ、温度が調節された熱板に当該ウェハWを吸着させるものであり、ウェハWの周囲の空気を吸い込む吸込配管150を有する吸引力発生部101を備える。また、熱処理装置1が、ウェハWの吸引力を調整する吸引力調整ガスとしてのエアを吸引力発生部101(具体的には吸込配管150)に供給する調整ガス配管153を有する吸引力調整部102を備える。したがって、熱処理装置1における熱板30へのウェハWの吸着を適切な吸引力で行うことができる。その結果、ウェハWの裏面に傷が生じたり、ウェハの割れが生じたりするのを防止することができ、また、ウェハWの裏面に傷が生じないため、当該裏面に付着するパーティクルの量を低減させることができ、さらに、エア消費量を低減させることができる。
さらにまた、本実施形態では、上述のように吸引力調整ガスを吸込配管150に供給することでウェハWの吸引力を調整している。したがって、最大吸引力を生む用力を供給した状態で、吸引力調整ガスの吸込配管150への供給と供給停止とを切り替えることで、すなわち、上記供給と供給停止を切り替えるバルブの単純な開閉を行うことで、ウェハWの吸引力の大きさを切り替えることができる。したがって、特許文献1のように吸引力の切替をダンパの開度で行う場合に比べて、吸引力の切替時の応答性が高い。また、特許文献1のようにダンパの開度で吸引力を切り替える場合、ダンパの僅かな開度のばらつきで吸引力がばらつくが、本実施形態のように吸引力調整ガスで吸引力を切り替えることで、吸引力のばらつきのリスクを低くすることができる。すなわち、吸引力の再現性を高くすることができる。
In the above embodiment, the
Furthermore, in the present embodiment, the suction force of the wafer W is adjusted by supplying the suction force adjusting gas to the
また、本実施形態では、常に最大吸引力に必要な用力を配管系に取り込んでいる。そのため、当該用力の圧力を(例えばレギュレータ115の出口側に設けられた圧力計により)監視することで、処理の直前までに大元の用力が低下した場合を検出し、用力が不足したまま次の処理を進めるという、リスクを回避することができる。つまり、処理不良を防止することができる。 Further, in the present embodiment, the force required for the maximum suction force is always taken into the piping system. Therefore, by monitoring the pressure of the force (for example, with a pressure gauge provided on the outlet side of the regulator 115), it is possible to detect the case where the original force drops by just before the processing, and the next force is insufficient. It is possible to avoid the risk of proceeding with the processing of. That is, processing defects can be prevented.
なお、特許文献1のようにダンパの開度で吸引力を切り替える場合、ダンパの僅かな開度のばらつきで吸引力がばらつくため、高精度・高再現性のダンパを用いることで、吸引力の再現性や精度を向上できる可能性があるが、高精度・高再現性のダンパは高価である。それに対し、本実施形態のように、吸引力調整ガスの吸込配管150への供給と供給停止とを切り替えることで、低コストで、吸引力の再現性や精度を向上させることができる。また、吸引力調整ガスの流量の制御も、安価なスピードコントローラを用いることで、高精度且つ高再現性で行うことができるため、吸引力の精密な調整も、高精度、高再現性、低コストで行うことができる。
When the suction force is switched according to the opening degree of the damper as in
また、本実施形態では、ウェハWの反りの状態に応じて、異なる熱処理を行う。具体的には、反りの矯正に強い吸引力が必要な場合には、まず強い吸引力(第1の吸引力)でウェハWを吸引し熱板30に吸着しその反りを矯正した後に、吸着と反りの矯正が維持される範囲で上記吸引力を弱くした第2の吸引力へ吸引力を切り替えて、ウェハの加熱を継続する。したがって、強い吸引力によるウェハWの局所的な冷えを抑えることができるため、ウェハWを面内均一に加熱することができる。また、強い吸引力で吸引する時間が少ないため、エアの消費量も抑えることができる。
Further, in the present embodiment, different heat treatments are performed depending on the warped state of the wafer W. Specifically, when a strong suction force is required to correct the warp, the wafer W is first sucked with a strong suction force (first suction force), attracted to the
さらに、本実施形態では、ウェハWへ作用させる吸引力を発生させる吸引力発生源として、エアが通流されることにより吸引力を発生させる真空エジェクタ110を用いている。そして、真空エジェクタ110に通量させるエアと吸引力調整ガスとしてのエアは、同一の圧縮空気供給源から供給され、また、調整ガス配管153は、圧縮空気供給源と真空エジェクタ110とを接続する主供給配管151から熱処理装置1内において分岐したものである。したがって、本実施形態によれば、真空エジェクタ110に通量させるガスと、吸引力調整ガスとで別々にガス系統を設ける必要がなく、1つのガス系統で足りるため、容易に設置することができる。また、調整ガス配管153から、吸込配管150を逆流するようにエアを供給することで吸込配管150の清掃を行うことができる。
Further, in the present embodiment, a
さらにまた、本実施形態では、遮断弁116が設けられており、吸引機構100のアイドルモードでは、遮断弁116を閉状態とし、真空エジェクタ110等へのエア供給を遮断する。したがって、エアの消費量を削減することができる。
Furthermore, in the present embodiment, the
(第2実施形態)
図11は、第2実施形態に係る基板温調装置としての熱処理装置2の構成の概略を示す縦断面図である。
図11の熱処理装置2は、ウェハWの反りの状態を検出するための反り状態検出部としての距離センサ80を有する。距離センサ80は、冷却部12の上方に設けられており、冷却板60上に載置されたウェハWの反りの状態、すなわち、加熱部11で加熱処理される前のウェハWの反りの状態を検出するためのものである。
(Second Embodiment)
FIG. 11 is a vertical cross-sectional view showing an outline of the configuration of the
The
距離センサ80は、当該距離センサ80から、ウェハWにおける当該距離センサ80の直下の部分までの距離を例えば光学的に測定する。距離センサ80は複数設けられており、一の距離センサ80は、ウェハWの中央部分までの距離を測定し、他の一の距離センサ80は、ウェハWの外周部までの距離を測定する。これらの測定結果に基づいて、ウェハWの反りの状態が検出され、すなわち、ウェハWの反り方向(ウェハが凹形状であるか凸形状であるか)が検出され反り量が測定される。
The
そして、本実施形態の熱処理装置2では、反り方向及び反り量の検出結果に応じて、以下のように動作する。
すなわち、第1実施形態では、ウェハWの反りの状態に応じて、異なる熱処理を行うよう構成され、いずれの熱処理が行われるかは、ロット毎にユーザにより設定されていた。それに対し、本実施形態では、距離センサ80による測定結果から検出されるウェハWの反りの状態に応じて、制御部70が、いずれの熱処理を行うか決定する。特に、制御部70は、ウェハWが凹形状に反っている場合、反り量に基づいて、前述の第1の吸引力と第2の吸引力とを決定する。具体的には、例えば、制御部70は、凹形状のウェハWの反り量が所定の閾値を超えている場合には、第1の吸引力が前述の超強吸引力となり、第2の吸引力が前述の強吸引力となるように、第1の吸引力と第2の吸引力とを決定する。つまりは、吸引機構100の動作モードとして、超高VACモードと高VACモードとを用い熱処理の途中で超高VACモードから高VACモードに切り替えるよう制御部70は動作順序を決定する。また、凹形状のウェハWの反り量が所定の閾値を超えていない場合は、第1の吸引力が前述の強吸引力となり、第2の吸引力が前述の通常吸引力となるように、第1の吸引力と第2の吸引力とを決定する。つまりは、吸引機構100の動作モードとして、高VACモードと通常VACモードとを用い熱処理の途中で高VACモードから通常VACモードに切り替えるよう制御部70は動作順序を決定する。
Then, the
That is, in the first embodiment, different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot. On the other hand, in the present embodiment, the
本実施形態によれば、ウェハ単位で自動的に、適切な吸引力で吸引しながら、ウェハWの熱処理を行うことができる。
また、第1の吸引力が適切な吸引力となるため、ウェハWを面内均一に加熱できる他、ウェハWに傷等が生じる可能性を低減させることができる。また、第2の吸引力が適切な吸引力となるため、ウェハWを面内均一に加熱できる他、エアの消費量を削減することができる。
According to this embodiment, the heat treatment of the wafer W can be performed while automatically sucking the wafer unit with an appropriate suction force.
Further, since the first suction force becomes an appropriate suction force, the wafer W can be heated uniformly in the plane, and the possibility of scratches on the wafer W can be reduced. Further, since the second suction force becomes an appropriate suction force, the wafer W can be heated uniformly in the plane and the consumption of air can be reduced.
また、本実施形態では、ウェハWの反り量に応じて、ウェハWに作用させる吸引力を補正してもよい。
例えば、上述の例では、凹形状のウェハWの反り量が所定の閾値を超えている場合、第1の吸引力が前述の超強吸引力とされ、第2の吸引力が前述の強吸引力とされるが、これら超強吸引力及び強吸引力を、反り量に応じて補正してもよい。この補正は、例えば、反り量が大きいほど吸引力が大きくなるように行われる。
なお、凹形状のウェハWの反り量が所定の閾値を超えていない場合や、凸形状のウェハWの場合についても、同様に、ウェハWの反り量に応じて吸引力を補正してもよい。
Further, in the present embodiment, the suction force acting on the wafer W may be corrected according to the amount of warpage of the wafer W.
For example, in the above example, when the amount of warpage of the concave wafer W exceeds a predetermined threshold value, the first suction force is the above-mentioned super strong suction force, and the second suction force is the above-mentioned strong suction force. Although it is regarded as a force, these super strong suction force and the strong suction force may be corrected according to the amount of warpage. This correction is performed so that, for example, the larger the amount of warpage, the greater the suction force.
Similarly, when the warp amount of the concave wafer W does not exceed a predetermined threshold value or when the convex wafer W is used, the suction force may be corrected according to the warp amount of the wafer W. ..
ウェハWの反り量に応じた第1の吸引力及び第2の吸引力とするための吸引力調整ガスの流量は、例えば以下のようにして決定される。すなわち、各種形状のウェハWを用意し、各ウェハWの反りの状態を検出する。そして、各ウェハWについて、熱板30へ載置し、スピードコントローラ117を介した吸引力調整ガスの供給を開始し、徐々に当該供給量を上げていく。このときに、ウェハWが吸着され圧力センサ112で検出される圧力が大きく減少するところがある。その直前の吸引力調整ガス供給量が、当該ウェハWが有する反りの状態に対応する、第1の吸引力用の吸引力調整ガス供給量として決定され、制御部70に記憶される。また、熱板30へ吸着させた後、吸引力調整ガスの供給量を徐々に減らしていく。このときに、ウェハWの反り矯正が解消され圧力センサ112で検出される圧力が大きく増加するところがある。その直前の吸引力調整ガス供給量が、当該ウェハWが有する反りの状態に対応する、第2の吸引力用の吸引力調整ガス供給量として決定され、制御部70に記憶される。
The flow rate of the first suction force and the suction force adjusting gas for forming the second suction force according to the amount of warpage of the wafer W is determined as follows, for example. That is, wafers W having various shapes are prepared, and the state of warpage of each wafer W is detected. Then, each wafer W is placed on the
また、第1の実施形態のように、ウェハWの反りの状態に応じて、異なる熱処理を行うよう構成され、いずれの熱処理が行われるかが、ロット毎にユーザにより設定される場合においても、ウェハWの反り量に応じて吸引力を補正してもよい。この場合、例えば図11と同様に、距離センサ80を設けられ、ウェハWの反り量を測定する必要がある。
Further, as in the first embodiment, different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot. The suction force may be corrected according to the amount of warpage of the wafer W. In this case, for example, as in FIG. 11, it is necessary to provide the
上述のような補正を行うことにより、ウェハWの反り量に応じたより適切な吸引力で吸引しながら、ウェハWの熱処理を行うことができる。 By performing the above-mentioned correction, the heat treatment of the wafer W can be performed while sucking with a more appropriate suction force according to the amount of warpage of the wafer W.
なお、反り状態検出部としての距離センサ80を設ける位置は、冷却部12の上方に限られず、他であってもよい。
The position where the
(第2実施形態の変形例)
図12は、第2実施形態の変形例に係る基板温調装置としての熱処理装置2の構成の概略を示す縦断面図である。
図12の熱処理装置2は、熱板30内に当該熱板30の温度を測定する温度センサ90が設けられている。
ところで、ウェハWと載置台としての熱板30の間に形成される空間内の空気の吸込み量が同じであっても、上記空間の圧力P、すなわちウェハWに作用する吸引力は、熱板30の温度が上昇すると強くなる。上記圧力Pは、気体の粘度をμ、気体の密度をρとしたときに、μ/ρに比例する。そして、気体の温度が上がると、粘度μが増加し、密度ρが低下するため、上記圧力Pは増加する。具体的には、熱板30の温度をT、室温をT0としたときに、上記Pは(T/T0)5/3に比例する。
そこで、本例では、温度センサ90で測定された熱板30の温度Tに応じて、ウェハWに作用させる吸引力を補正する。
例えば、凹形状のウェハWの反り量が所定の閾値を超えている場合、第1の吸引力が前述の超強吸引力とされ、第2の吸引力が前述の強吸引力とされるが、これら超強吸引力及び強吸引力を、熱板30の温度に応じて補正してもよい。この補正は、温度が高いほど吸引力が小さくなるように、当該吸引力すなわち吸引力調整ガスとしてのエアの流量を補正する。
なお、凹形状のウェハWの反り量が所定の閾値を超えていない場合や、凸形状のウェハWの場合についても、同様に、熱板30の温度に応じて吸引力を補正してもよい。
(Modified example of the second embodiment)
FIG. 12 is a vertical cross-sectional view showing an outline of the configuration of the
In the
By the way, even if the amount of air sucked in the space formed between the wafer W and the
Therefore, in this example, the suction force acting on the wafer W is corrected according to the temperature T of the
For example, when the amount of warpage of the concave wafer W exceeds a predetermined threshold value, the first suction force is the above-mentioned super strong suction force, and the second suction force is the above-mentioned strong suction force. , These super strong suction force and strong suction force may be corrected according to the temperature of the
Similarly, when the amount of warpage of the concave wafer W does not exceed a predetermined threshold value or when the convex wafer W is used, the suction force may be corrected according to the temperature of the
熱板の温度に応じた第1の吸引力及び第2の吸引力とするための吸引力調整ガスの流量は、例えば以下のようにして決定される。例えば、各種形状のウェハWを用意し、各ウェハWの反りの状態を検出する。また、熱板30の温度を、温度センサ90を用いて検出しておく。そして、各ウェハWについて、熱板30へ載置し、スピードコントローラ117を介した吸引力調整ガスの供給を開始し、徐々に当該供給量を上げていく。このときに、ウェハWが吸着され圧力センサ112で検出される圧力が大きく減少するところがある。その直前の吸引力調整ガス供給量を、当該ウェハWが有する反りの状態と熱板30の温度の組み合わせに対応する、第1の吸引力用の吸引力調整ガス供給量として決定され、制御部70に記憶される。また、熱板30へ吸着させた後、吸引力調整ガスの供給量を徐々に減らしていく。このときに、ウェハWの反り矯正が解消され圧力センサ112で検出される圧力が大きく増加する。その直前の吸引力調整ガス供給量が、当該ウェハWが有する反りの状態と熱板30の温度の組み合わせに対応する、第1の吸引力用の吸引力調整ガス供給量として決定され、制御部70に記憶される。
The flow rate of the suction force adjusting gas for making the first suction force and the second suction force according to the temperature of the hot plate is determined as follows, for example. For example, wafers W having various shapes are prepared, and the state of warpage of each wafer W is detected. Further, the temperature of the
また、処理レシピで熱板30の設定温度が指定されている場合は、その熱板30の設定温度に応じて、ウェハWに作用させる吸引力を補正してもよい。
Further, when the set temperature of the
また、第1の実施形態のように、ウェハWの反りの状態に応じて、異なる熱処理を行うよう構成され、いずれの熱処理が行われるかは、ロット毎にユーザにより設定される場合においても、熱板30の温度に応じて吸引力を補正してもよい。
Further, as in the first embodiment, different heat treatments are performed according to the warped state of the wafer W, and which heat treatment is performed is set by the user for each lot. The suction force may be corrected according to the temperature of the
上述のような補正を行うことにより、熱板30の温度に応じたより適切な吸引力で吸引しながら、ウェハWの熱処理を行うことができる。
By performing the above-mentioned correction, the heat treatment of the wafer W can be performed while sucking with a more appropriate suction force according to the temperature of the
なお、熱処理前のウェハWの温度に応じて吸引力を補正するようにしてもよい。 The suction force may be corrected according to the temperature of the wafer W before the heat treatment.
(第3実施形態)
図13は、第3実施形態に係る基板温調装置としての熱処理装置が備える吸引機構200の構成の概略を示す説明図である。
図13に示すように、本実施形態にかかる吸引機構200は、吸引力発生部201と、吸引力調整部202とを有する。
(Third Embodiment)
FIG. 13 is an explanatory diagram showing an outline of the configuration of the
As shown in FIG. 13, the
吸引力発生部201は、ウェハWを吸引する吸引力を発生させ当該ウェハWの反りを矯正させ、温度が調節された熱板30に当該ウェハWを吸着させるものである。この吸引力発生部201は、ブロアファンBが設けられた工場排気系(EXH)のダクトDに接続されている。ブロアファンBに代えて真空ポンプとしてもよい。
The suction
吸引力発生部201は、吸込配管250を有する。吸込配管250の一端は、熱板30の環状流路36に連通し、すなわち、吸引孔34に連通し、他端は、上記ダクトDに接続されている。
吸引力発生部201では、ブロアファンBの動作により、ウェハWの周囲の空気が、吸引孔34を介して吸込配管250に吸い込まれ、ウェハWを吸引する吸引力が生じる。
吸込配管250に吸引された空気は、上記ダクトDへ排出される。
The suction
In the suction
The air sucked into the
なお、吸込配管250には、吸引切替弁210が設けられ、吸引切替弁210の上流側に圧力センサ112が設けられている。吸引切替弁210は、ブロアファンBによる吸引対象を吸引孔34側の空気とするか外気とするかを切り替えるものである。
The
吸引力調整部202は、ウェハWに作用させる吸引力を弱め当該吸引力を調整するものであり、吸引力調整ガスとしてのエアを吸込配管250に供給する調整ガス配管251を有する。
The suction
調整ガス配管251は、第1~第3の配管251a~251cを含む。
The adjusting
第1の配管251aの一端は、吸込み配管250における吸引切替弁210とダクトDとの間の部分に接続され、他端は、圧縮空気供給源(図示せず)に通じている。
第1の配管251aには、上流側から順に、フィルタ114、レギュレータ115、遮断弁116、スピードコントローラ211が設けられている。スピードコントローラ211は、当該スピードコントローラ211を介して吸込配管250に供給するエアの流量を調節する。
One end of the
The
第2の配管251bは、第1の配管251aにおけるスピードコントローラ211をバイバスする。第2の配管251bの一端は、第1の配管153aにおける遮断弁116とスピードコントローラ211との間の部分に接続され、他端は、第1の配管153aにおけるスピードコントローラ211より下流側の部分に接続されている。この第2の配管251bには、上流側から順にスピードコントローラ212、切替弁213が設けられている。スピードコントローラ212は、当該スピードコントローラ212を介して吸込配管250に供給するエアの流量を調節する。切替弁213については後述する。
The
第3の配管251cは、第2の配管251bにおけるスピードコントローラ212をバイパスする。第3の配管251cの一端は、第2の配管251bにおけるスピードコントローラ212の上流側の部分に接続され、他端は、切替弁213の内部流路に接続されている。また、第3の配管251cには、上流側から順にスピードコントローラ214、切替弁215が設けられている。スピードコントローラ214は、当該スピードコントローラ214を介して吸込配管250に供給するエアの流量を調節する。切替弁215は、スピードコントローラ214により流量が調節されたエアを切替弁213に供給するか否かを切り替える。また、前述した切替弁213は、吸込配管250に接続する配管をスピードコントローラ212側と切替弁215側とで切り替える。
The
吸引力調整部202における、スピードコントローラ211、212、214及び切替弁213、215は、吸込配管250への吸引力調整ガスとしてのエアの供給量を調整するガス供給量調整機構を構成する。
The
なお、以下の説明では、吸引切替弁210がON状態とは、ブロアファンBで吸引孔34側の空気を吸引する状態を意味し、一方、吸引切替弁210がOFF状態とは、ブロアファンBで外気を吸引する状態を意味する。また、切替弁213がON状態とは、吸込配管250と切替弁215の内部流路とが連通する状態を意味し、切替弁213がOFF状態とは、吸込配管250とスピードコントローラ212とが連通する状態を意味する。そして、切替弁215がON状態とは、切替弁213へのスピードコントローラ214を介したエアの供給が行われる状態を意味し、切替弁215がOFF状態とは、切替弁213へのエアの供給が行われない状態を意味する。
In the following description, the ON state of the
上述の吸引機構200は、通常VACモード、高VACモード、超高VACモード、VAC-OFFモード、アイドルモードで動作する。
吸引機構の各モードでの動作について、図14~図18を用いて説明する。なお、これらの図では、吸引孔34から吸い込まれた空気や圧縮空気の供給源(図示せず)からの圧縮空気が流通している管を太線で示すことで、一部の弁の開閉については説明を省略する。
The
The operation of the suction mechanism in each mode will be described with reference to FIGS. 14 to 18. In these figures, the pipe through which the air sucked from the
(通常VACモード)
通常VACモードでは、図14に示すように、遮断弁116が開状態とされると共に、吸引切替弁210、切替弁213、切替弁215のうち、吸引切替弁210のみがON状態とされる。このとき、ブロアファンBの出力すなわちブロアファンBによる吸引量Vと、スピードコントローラ211により制御されるエアの流量Cは、吸込配管250の下流端における吸込流の流量が一定値になるよう調整されている。つまり、V-C=一定(例えば15L/min)になるように調整されている。このように調整されているのは、各吸引機構200でブロアファンBを共有した場合に、吸引機構200間で、当該ブロアファンBによる吸込み流量に差が出てくることがあるからである。
また、スピードコントローラ212により制御された流量D(例えば13L/min)のエアが、切替弁213を介して吸込配管250に供給(パージ)される。したがって、吸引孔34を介した吸込み空気の流量Qは小さくなる(例えば、Q=(V-C)-D=15-13=2L/minとなる)。
(Normal VAC mode)
In the normal VAC mode, as shown in FIG. 14, the
Further, air having a flow rate D (for example, 13 L / min) controlled by the
(高VACモード)
高VACモードでは、図15に示すように、遮断弁116が開状態とされると共に、吸引切替弁210、切替弁213、切替弁215のうち、吸引切替弁210及び切替弁213がON状態とされる。この場合、吸込配管250の下流端における吸込流の流量は通常VACモードと同様であるが、切替弁213がON状態であるため、スピードコントローラ212により制御された流量A(例えば7L/min)のエアが吸込配管250に供給される。そのため、吸引孔34における吸込み空気の流量Qは通常VACモードより大きくなる(例えば、Q=(V-C)-A=15-7=8L/minとなる)。つまり、高VACモードでは、ウェハWの吸引力が、通常吸引力すなわち通常VACモード時の吸引力より強い、強吸引力となる。
(High VAC mode)
In the high VAC mode, as shown in FIG. 15, the
(超高VACモード)
超高VACモードでは、図16に示すように、遮断弁116が開状態とされると共に、吸引切替弁210、切替弁213、切替弁215の全てがON状態とされる。この場合、吸込配管250の下流端における吸込流の流量は通常VACモード等と同様であるが、切替弁213、215がON状態であるため、切替弁213から吸込配管250へのエアの供給は行われない。そのため、吸引孔34における吸込み空気の流量Qは高VACモードよりさらに大きくなる(例えば、Q=V-C=15L/minとなる)。つまり、超高VACモードでは、ウェハWの吸引力が高VACモードよりさらに強い、超強吸引力となる。
(Ultra high VAC mode)
In the ultra-high VAC mode, as shown in FIG. 16, the
(VAC-OFFモード)
VAC-OFFモードでは、図17に示すように、遮断弁116が開状態とされるが、吸引切替弁210がOFF状態とされる。このモードでは、吸引孔34を介した空気の吸い込みは行われない。ただし、ブロアファンBは、他の熱処理装置の吸引機構200と共有されているため動作を続けるので、吸込配管250には吸引切替弁210を介して外気が吸い込まれる。
(VAC-OFF mode)
In the VAC-OFF mode, as shown in FIG. 17, the
(アイドルモード)
このモードでは、図18に示すように、VAC-OFFモードと同様に吸引切替弁210がOFF状態とされる他、VAC-OFFモードとは異なり、遮断弁116が閉状態とされる。このモードでは、吸込配管250にエアが供給されないため、ウェハWの吸着が必要ない場合に、当該モードで動作することにより、エアの消費量を抑えることができる。
なお、圧縮空気の供給源を、他の熱処理装置の吸引機構200と共有しても、レギュレータ115が設けられているため、一の吸引機構200をアイドルモードとしたりアイドルモードから復帰させたりしたときに、他の吸引機構200においてエアの流量が変動しない。そのため、熱処理中にウェハWの吸着やウェハWの反りの矯正が解消されてしまうのを防ぐことができる。
(Idle mode)
In this mode, as shown in FIG. 18, the
Even if the supply source of the compressed air is shared with the
なお、本実施形態における熱処理装置全体としての動作は、吸引機構200の動作を除き、第1実施形態と同様であるため、その説明を省略する。
Since the operation of the heat treatment apparatus as a whole in this embodiment is the same as that of the first embodiment except for the operation of the
本実施形態は、熱処理時の昇華物が多い場合に好適に用いられる。
本実施形態においても、第1実施形態と同様に、吸引力調整ガスとしてのエアを吸込配管250に供給しているため、熱板30へのウェハWの吸着を適切な吸引力で行うことができる。
This embodiment is preferably used when there are many sublimated products during heat treatment.
In the present embodiment as well, as in the first embodiment, since air as the suction force adjusting gas is supplied to the
また、本実施形態では、吸引孔34を介した空気の吸込みは行わないVAC-OFFモードやアイドルモードでは、ブロアファンBの動作を止めず、吸引切替弁210を切り替えて、ブロアファンBで外気を吸込むようにしている。ブロアファンBを他の吸引機構200と共有する場合、一の吸引機構200においてVAC-OFFモードとしたときに当該一の吸引機構200でのブロアファンBによる吸込み流量をゼロにすると、他の吸引機構200でのブロアファンBによる吸込み流量が変動してしまう。本実施形態によれば、この変動を防ぐことができる。
Further, in the present embodiment, in the VAC-OFF mode and the idle mode in which air is not sucked through the
なお、本実施形態においても、ウェハWの反りの状態や熱板30の温度に応じて、吸引力を変更するようにしてもよい。
Also in this embodiment, the suction force may be changed according to the warped state of the wafer W and the temperature of the
(参考の実施形態)
図19は、参考の実施形態に係る熱処理装置300の構成の概略を示す説明図である。
図19の熱処理装置300は、ギャップピン33、吸引孔34、環状流路36等を有する熱板30と、ウェハWを吸引しその反りを矯正して熱板30に吸着する吸引機構310と、を備える。さらに、熱処理装置300は、図11の例と同様に、ウェハWの反りの状態を検出するための反り状態検出部としての距離センサ80を備え、また、図12の例と同様に、熱板30の温度を測定する温度センサ90を備える。
(Reference embodiment)
FIG. 19 is an explanatory diagram showing an outline of the configuration of the
The
この熱処理装置300が備える吸引機構310は、真空エジェクタ311を有する。真空エジェクタ311には、低圧口311aと高圧口311bからなる2つの入口と、1つの出口311cとを有する。
低圧口311aには、熱板30の環状流路36に連通する、すなわち、吸引孔34に連通する吸込配管350が接続されている。吸込み配管350には圧力センサ112が接続されている。また、高圧口311bには、エアの供給源(図示せず)に通ずる供給配管351が接続されている。供給配管351には、電空レギュレータ312が介設されている。出口311cには、工場排気系に通ずる排気配管352が接続されている。
The
A
吸引機構310では、電空レギュレータ312により流量制御された高速のエアが、供給配管351を介して、真空エジェクタ311の高圧口311bに供給される。そして、上記高速のエアが、当該真空エジェクタ311の出口311cから排出されると、当該高速のエアに誘引されて、当該真空エジェクタ311の低圧口311aから空気が吸引される。これにより、ウェハWの周囲の空気が、吸引孔34を介して吸込配管350に吸い込まれ、ウェハWを吸引する吸引力が生じる。
真空エジェクタ311の低圧口311aから吸引された空気と高圧口311bに供給された高速の圧縮空気は、出口311cから排気配管352へ排出される。
In the
The air sucked from the
さらに、熱処理装置300は、制御部320を有する。制御部320は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、熱処理装置300における処理を制御するプログラムが格納されている。また、プログラム格納部には、吸引機構310等の動作を制御して、熱処理装置1における反りの矯正処理を含む熱処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部320にインストールされたものであってもよい。
Further, the
熱処理装置300では、距離センサ80の出力から検出されるウェハWの反りの状態及び熱板30の温度に基づいて、制御部320が電空レギュレータ312を制御し、真空エジェクタ311へのエアの供給量を制御する。これにより、真空エジェクタ311による吸込み量、すなわち、ウェハWの吸引力を制御する。真空エジェクタ311へのエアの供給量の制御には、さらに圧力センサ112での測定結果も用いてもよい。
In the
続いて、熱処理装置300におけるウェハWの吸着処理について説明する。なお、以下の説明では、吸着対象のウェハWは、反り量が大きい凹上のウェハWのように、熱処理の途中で真空エジェクタ311のエア供給量を変更することが好ましいウェハWであるものとする。
Subsequently, the adsorption process of the wafer W in the
吸着処理では、まず、ウェハWの熱板30への載置の数秒前から、処理対象のウェハWの反りの状態(ウェハWの反りの方向及びウェハWの反り量)及び熱板30の温度に応じた、反りの矯正に最適な吸引力でウェハWが吸引されるよう、制御部320が電空レギュレータ312を制御する。具体的には、処理対象のウェハWの反りの状態及び熱板30の温度の組み合わせに最適な、反り矯正用エアの供給量が真空エジェクタ311に供給されるよう、制御部70が、距離センサ80での測定結果及び温度センサ90での測定結果に基づいて、電空レギュレータ312を制御する。なお、ウェハWの反りの状態及び熱板30の温度の組み合わせ毎の、最適な反り矯正用エアの供給量は、例えば、データテーブルとして制御部320に予め記憶されている。
In the suction treatment, first, from a few seconds before the wafer W is placed on the
そして、ウェハWが熱板30へ載置されると、既に上述のように吸引は開始されているため、ウェハWに即座に、反り矯正に適した吸引力が作用し、当該ウェハWが熱板30に吸着され、その反り量が矯正される。
Then, when the wafer W is placed on the
次いで、熱板30にウェハWが載置されてから数秒経過後から、処理対象のウェハWの反りの状態及び熱板30の温度に応じた、反り矯正の維持に最適な吸引力でウェハWが吸引されるよう、制御部320が電空レギュレータ312を制御する。具体的には、処理対象のウェハWの反りの状態及び熱板30の温度の組み合わせに最適な、反り矯正維持用のエアの供給量が真空エジェクタ311に供給されるよう、制御部320が、距離センサ80での測定結果及び温度センサ90での測定結果に基づいて、電空レギュレータ312を制御する。なお、ウェハWの反りの状態及び熱板30の温度の組み合わせ毎の、最適な反り矯正維持用エアの供給量は、例えば、データテーブルとして制御部320に予め記憶されている。
Next, a few seconds after the wafer W is placed on the
なお、強制を維持している間、圧力センサ112での測定結果に基づいて、真空エジェクタ311へのエア供給量を自動制御するようにしてもよい。この場合の目標圧力は、処理対象のウェハWの反りの状態及び熱板30の温度の組み合わせに基づいて設定される。なお、ウェハWの反りの状態及び熱板30の温度の組み合わせ毎の目標圧力は、データテーブルとして制御部320に記憶される。
Note that the amount of air supplied to the
ウェハWの加熱の終了後、吸引機構310によるウェハWの吸着及び反りの矯正は解消され、その後、熱板30上からウェハWが搬出される。
After the heating of the wafer W is completed, the
本参考の実施形態によれば、ウェハの温度の面内均一性をさらに向上させることができる。また、ウェハWの裏面に傷が生じたり、ウェハの割れが生じたりするのを防止することができる。さらに、ウェハWの裏面に付着するパーティクルの量を低減させることができる。さらにまた、エア消費量を低減させることができる。 According to the embodiment of this reference, the in-plane uniformity of the wafer temperature can be further improved. Further, it is possible to prevent the back surface of the wafer W from being scratched or the wafer from being cracked. Further, the amount of particles adhering to the back surface of the wafer W can be reduced. Furthermore, air consumption can be reduced.
以上の説明では、ウェハWの反りの状態及び熱板30の温度の組み合わせ毎の、最適な反り矯正用エアの供給量及び最適な反り矯正維持用エアの供給量は、データテーブルとして予め記憶されているものとした。これらのデータテーブルに記載の、最適な反り矯正用エアの供給量及び最適な反り矯正維持用エアの供給量は、以下のようにして較正するようにしてもよい。
In the above description, the optimum supply amount of warp straightening air and the optimum supply amount of warp straightening maintenance air for each combination of the warp state of the wafer W and the temperature of the
例えば、各種形状のウェハWを用意し、各ウェハWの反りの状態を検出する。また、熱板30の温度を、温度センサ90を用いて検出しておく。そして、各ウェハWについて、熱板30へ載置し、真空エジェクタ311へのエアの供給を開始し、徐々に当該供給量を上げていく。このときに、ウェハWが吸着され圧力センサ112で検出される圧力が大きく減少するところがあるので、その直前のエア供給量を、当該ウェハWが有する反りの状態と熱板30の温度の組み合わせについて最適な、反り矯正用エアの供給量として、データテーブルの修正等を行う。また、熱板30へ吸着させた後、真空エジェクタ311へのエアの供給量を徐々に減らしていく。このときに、ウェハWの反り矯正が解消され圧力センサ112で検出される圧力が大きく増加するところがあるので、その直前のエアの供給量を、当該ウェハWが有する反りの状態と熱板30の温度の組み合わせについて最適な、矯正維持用エアの供給量として、データテーブルの修正等を行う。
For example, wafers W of various shapes are prepared, and the state of warpage of each wafer W is detected. Further, the temperature of the
なお、上述のデータテーブルの構成は、熱処理装置300毎に行ってもよい。これにより、熱処理装置300毎に最適な吸引力でウェハWを吸引することができる。
Note that the above-mentioned data table configuration may be performed for each
以上の説明では、温調装置は、加熱処理を行う熱処理装置であるものとした。しかし、本開示にかかる温調装置は、冷却処理を行う冷却装置であってもよい。 In the above explanation, the temperature control device is assumed to be a heat treatment device that performs heat treatment. However, the temperature control device according to the present disclosure may be a cooling device that performs a cooling process.
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope of the appended claims and the gist thereof.
なお、以下のような構成も本開示の技術的範囲に属する。 The following configurations also belong to the technical scope of the present disclosure.
(1)基板の温度を調節する基板温調装置であって、
基板が載置される載置台と、
前記載置台に載置された基板の温度を調節するために当該載置台の温度を調節する温調部と、
基板を吸引する吸引力を発生させ、温度が調節された前記載置台に当該基板を吸着させるものであり、基板の周囲の空気を吸い込む吸込配管を有する吸引力発生部と、
前記吸引力を調整する吸引力調整ガスを前記吸引力発生部に供給する調整ガス配管を有する吸引力調整部と、を備える、基板温調装置。
前記(1)によれば、吸引力を調節することができるため、適切な吸引力で基板の反りを矯正して当該基板を吸着させることができる。そのため、基板を面内均一に温度処理することができ、基板に傷等が生じるのを防止することができる。
(1) A substrate temperature control device that adjusts the temperature of the substrate.
The mounting table on which the board is mounted and
A temperature control unit that adjusts the temperature of the pedestal to adjust the temperature of the substrate mounted on the pedestal described above.
A suction force generating part having a suction pipe for sucking the air around the substrate, which generates a suction force for sucking the substrate and attracts the substrate to the above-mentioned stand whose temperature is adjusted,
A substrate temperature control device including a suction force adjusting unit having an adjusting gas pipe for supplying the suction force adjusting gas for adjusting the suction force to the suction force generating unit.
According to the above (1), since the suction force can be adjusted, the warp of the substrate can be corrected with an appropriate suction force and the substrate can be adsorbed. Therefore, the temperature of the substrate can be uniformly treated in the plane, and it is possible to prevent the substrate from being scratched or the like.
(2)前記吸引力は、第1の吸引力と、前記第1の吸引力より弱い第2の吸引力とを含み、
前記吸引力調整部は、前記吸引力調整ガスの供給量を調整するガス供給量調整機構を有し、
当該基板温調装置は、基板に作用する前記吸引力が、当該基板が前記載置台に吸着された後に、前記第1の吸引力から前記第2の吸引力に切り替わるよう、前記ガス供給量調整機構を制御する制御部を備える、前記(1)に記載の基板温調装置。
前記(2)によれば、より面内均一に基板を温度処理することができる。また、吸引力の発生にガスを用いる場合、そのガスの消費量を抑えることができる。
(2) The suction force includes a first suction force and a second suction force weaker than the first suction force.
The suction force adjusting unit has a gas supply amount adjusting mechanism for adjusting the supply amount of the suction force adjusting gas.
The substrate temperature control device adjusts the gas supply amount so that the suction force acting on the substrate is switched from the first suction force to the second suction force after the substrate is attracted to the above-mentioned table. The substrate temperature control device according to (1) above, which includes a control unit that controls the mechanism.
According to the above (2), the temperature of the substrate can be treated more uniformly in the plane. Further, when a gas is used to generate the suction force, the consumption of the gas can be suppressed.
(3)前記制御部は、前記載置台に吸着される前の基板の反りの状態に応じて、前記第1の吸引力及び前記第2の吸引力を決定する、前記(2)に記載の基板温調装置。
前記(3)によれば、より適切な吸引力で基板の反りを矯正して当該吸着させることができる。そのため、より面内均一に基板を温度処理することができ、基板に傷等が生じる可能性をより低減させることができる。
(3) The above-described (2), wherein the control unit determines the first suction force and the second suction force according to the state of warpage of the substrate before being attracted to the above-mentioned table. Board temperature control device.
According to the above (3), the warp of the substrate can be corrected with a more appropriate suction force and the substrate can be adsorbed. Therefore, the temperature of the substrate can be treated more uniformly in the plane, and the possibility of scratches on the substrate can be further reduced.
(4)前記制御部は、前記載置台に吸着される前の基板の反り量及び前記載置台の温度の少なくともいずれか一方に基づいて、前記第1の吸引力及び前記第2の吸引力の少なくともいずれか一方を補正する、前記(2)または(3)に記載の基板温調装置。
前記(4)によれば、より適切な吸引力で基板の反りを矯正して当該吸着させることができる。
(4) The control unit determines the first suction force and the second suction force based on at least one of the warpage amount of the substrate before being adsorbed on the description table and the temperature of the table. The substrate temperature control device according to (2) or (3) above, which corrects at least one of them.
According to the above (4), the warp of the substrate can be corrected with a more appropriate suction force and the substrate can be adsorbed.
(5)前記吸引力発生部は、ガスが通流されることにより前記吸引力を発生させる真空エジェクタを有し、
前記真空エジェクタに通流されるガスと前記吸引力調整ガスは、同一のガス供給源から供給され、
前記調整ガス配管は、前記ガス供給源と前記真空エジェクタとを接続する主供給配管から当該基板温調装置内において分岐したものである、前記(1)~(4)のいずれか1に記載の基板温調装置。
前記(5)によれば、真空エジェクタに通量させるガスと、吸引力調整ガスとで別々にガス系統を設ける必要がなく、1つのガス系統で足りるため、容易に設置することができる。また、調整ガス配管から、吸込配管を逆流するようにエアを供給することで吸込配管の清掃を行うことができる。
(5) The suction force generating portion has a vacuum ejector that generates the suction force by passing gas through the suction force generating portion.
The gas flowing through the vacuum ejector and the suction force adjusting gas are supplied from the same gas supply source.
The adjustment gas pipe according to any one of (1) to (4) above, wherein the adjusting gas pipe is branched in the substrate temperature control device from the main supply pipe connecting the gas supply source and the vacuum ejector. Board temperature control device.
According to the above (5), it is not necessary to separately provide a gas system for the gas to be passed through the vacuum ejector and the suction force adjusting gas, and one gas system is sufficient, so that the gas can be easily installed. Further, the suction pipe can be cleaned by supplying air from the adjusting gas pipe so that the suction pipe flows backward.
(6)前記主供給配管における、前記調整ガス配管への分岐点より上流側に遮断弁、当該遮断弁より上流側に圧力レギュレータを有する、前記(5)に記載の基板温調装置。
前記(6)によれば、吸引力調整ガスの消費量を抑えることができ、また、吸引力調整ガスの供給を停止したときに他の装置の吸引力調整ガスの供給に影響が及ぶのを防ぐことができる。
(6) The substrate temperature control device according to (5) above, which has a shutoff valve on the upstream side of the branch point to the regulated gas pipe and a pressure regulator on the upstream side of the shutoff valve in the main supply pipe.
According to (6) above, the consumption of the suction force adjusting gas can be suppressed, and when the supply of the suction force adjusting gas is stopped, the supply of the suction force adjusting gas of another device is affected. Can be prevented.
(7)前記吸引力発生部における、基板の周囲の空気を吸い込む力は、ブロアファンまたは真空ポンプにより発生され、
前記吸込配管は、基板の周囲の吸込みと外気の吸込みとを切り替える切替弁を有する、前記(1)~(4)のいずれか1に記載の基板温調装置。
前記(7)によれば、ブロアファンまたは真空ポンプを複数の基板温調装置で共有しても、一の基板温調装置における、ブロアファンまたは真空ポンプによる、基板の周囲の吸込みの停止が、他の基板温調装置における同吸込みに影響を及ぼすことがない。したがって、ブロアファン等を基板温調装置毎に設ける必要がないため、設置コストを削減することができる。
(7) The force for sucking the air around the substrate in the suction force generating portion is generated by a blower fan or a vacuum pump.
The substrate temperature control device according to any one of (1) to (4) above, wherein the suction pipe has a switching valve for switching between suction around the substrate and suction of outside air.
According to (7) above, even if the blower fan or the vacuum pump is shared by a plurality of substrate temperature control devices, the stop of suction around the substrate by the blower fan or the vacuum pump in one substrate temperature control device can be achieved. It does not affect the suction in other substrate temperature control devices. Therefore, it is not necessary to provide a blower fan or the like for each substrate temperature control device, so that the installation cost can be reduced.
(8)基板の温度を調節する基板温調方法であって、
基板が載置される載置台の温度を調節する温度調節工程と、
温度が調節された前記載置台に基板を載置する載置工程と、
前記載置台上の基板の周囲からの、吸込配管を有する吸引力発生部の空気の吸い込みによる吸引力で、前記載置台に基板を吸着させる吸着工程と、を有し、
前記吸着工程は、前記吸引力発生部へ吸引力調整ガスを供給して、前記吸引力を調整する吸引力調整工程を有する、基板温調方法。
(8) A substrate temperature control method for adjusting the temperature of the substrate.
A temperature control process that adjusts the temperature of the mounting table on which the board is placed,
The mounting process of mounting the substrate on the temperature-controlled stand described above, and
It has a suction step of adsorbing the substrate to the above-mentioned pedestal by the suction force by sucking air from the suction force generating part having the suction pipe from the periphery of the substrate on the above-mentioned pedestal.
The suction step is a substrate temperature control method including a suction force adjusting step of supplying a suction force adjusting gas to the suction force generating portion to adjust the suction force.
(9)前記吸引力調整工程は、前記載置台への基板の吸着後に、第1の吸引力から当該第1の吸引力より弱い第2の吸引力に切り替わるよう、前記吸引力発生部への前記吸引力調整ガスの供給量を調整する、前記(8)に記載の基板温調方法。 (9) The suction force adjusting step is performed on the suction force generating portion so that the first suction force is switched to a second suction force weaker than the first suction force after the substrate is sucked onto the above-mentioned stand. The substrate temperature control method according to (8) above, wherein the supply amount of the suction force adjusting gas is adjusted.
(10)前記載置台に吸着される前の基板の反りの状態に応じて、前記第1の吸引力及び前記第2の吸引力を決定する工程を有する、前記(9)に記載の基板温調方法。 (10) The substrate temperature according to (9) above, which comprises a step of determining the first suction force and the second suction force according to the state of warpage of the substrate before being adsorbed on the above-mentioned stand. How to adjust.
(11)前記載置台に吸着される前の基板の反り量及び前記載置台の温度の少なくともいずれか一方に基づいて、前記第1の吸引力及び前記第2の吸引力を補正する、前記(9)または(10)のいずれか1に記載の基板温調方法。 (11) The first suction force and the second suction force are corrected based on at least one of the warpage amount of the substrate before being adsorbed on the above-mentioned stand and the temperature of the above-mentioned stand. The substrate temperature control method according to any one of 9) or (10).
1、2 熱処理装置
30 熱板
31 ヒータ
101、201 吸引力発生部
102、202 吸引力調整部
150、250 吸込配管
153、251 調整ガス配管
W ウェハ
1, 2
Claims (11)
基板が載置される載置台と、
前記載置台に載置された基板の温度を調節するために当該載置台の温度を調節する温調部と、
基板を吸引する吸引力を発生させ、温度が調節された前記載置台に当該基板を吸着させるものであり、基板の周囲の空気を吸い込む吸込配管を有する吸引力発生部と、
前記吸引力を調整する吸引力調整ガスを前記吸引力発生部に供給する調整ガス配管を有する吸引力調整部と、を備える、基板温調装置。 A board temperature control device that regulates the temperature of the board.
The mounting table on which the board is mounted and
A temperature control unit that adjusts the temperature of the pedestal to adjust the temperature of the substrate mounted on the pedestal described above.
A suction force generating part having a suction pipe for sucking the air around the substrate, which generates a suction force for sucking the substrate and attracts the substrate to the above-mentioned stand whose temperature is adjusted,
A substrate temperature control device including a suction force adjusting unit having an adjusting gas pipe for supplying the suction force adjusting gas for adjusting the suction force to the suction force generating unit.
前記吸引力調整部は、前記吸引力調整ガスの供給量を調整するガス供給量調整機構を有し、
当該基板温調装置は、基板に作用する前記吸引力が、当該基板が前記載置台に吸着された後に、前記第1の吸引力から前記第2の吸引力に切り替わるよう、前記ガス供給量調整機構を制御する制御部を備える、請求項1に記載の基板温調装置。 The suction force includes a first suction force and a second suction force weaker than the first suction force.
The suction force adjusting unit has a gas supply amount adjusting mechanism for adjusting the supply amount of the suction force adjusting gas.
The substrate temperature control device adjusts the gas supply amount so that the suction force acting on the substrate is switched from the first suction force to the second suction force after the substrate is attracted to the above-mentioned table. The substrate temperature control device according to claim 1, further comprising a control unit for controlling the mechanism.
前記真空エジェクタに通流されるガスと前記吸引力調整ガスは、同一のガス供給源から供給され、
前記調整ガス配管は、前記ガス供給源と前記真空エジェクタとを接続する主供給配管から当該基板温調装置内において分岐したものである、請求項1~4のいずれか1項に記載の基板温調装置。 The suction force generating portion has a vacuum ejector that generates the suction force when gas is passed through the suction force generating portion.
The gas flowing through the vacuum ejector and the suction force adjusting gas are supplied from the same gas supply source.
The substrate temperature according to any one of claims 1 to 4, wherein the adjusting gas pipe is branched in the substrate temperature control device from a main supply pipe connecting the gas supply source and the vacuum ejector. Tuning device.
前記吸込配管は、基板の周囲の吸込みと外気の吸込みとを切り替える切替弁を有する、請求項1~4のいずれか1項に記載の基板温調装置。 The force for sucking the air around the substrate in the suction force generating portion is generated by a blower fan or a vacuum pump.
The substrate temperature control device according to any one of claims 1 to 4, wherein the suction pipe has a switching valve for switching between suction around the substrate and suction of outside air.
基板が載置される載置台の温度を調節する温度調節工程と、
温度が調節された前記載置台に基板を載置する載置工程と、
前記載置台上の基板の周囲からの、吸込配管を有する吸引力発生部の空気の吸い込みによる吸引力で、前記載置台に基板を吸着させる吸着工程と、を有し、
前記吸着工程は、前記吸引力発生部へ吸引力調整ガスを供給して、前記吸引力を調整する吸引力調整工程を有する、基板温調方法。 It is a substrate temperature control method that adjusts the temperature of the substrate.
A temperature control process that adjusts the temperature of the mounting table on which the board is placed,
The mounting process of mounting the substrate on the temperature-controlled stand described above, and
It has a suction step of adsorbing the substrate to the above-mentioned pedestal by the suction force by sucking air from the suction force generating part having the suction pipe from the periphery of the substrate on the above-mentioned pedestal.
The suction step is a substrate temperature control method including a suction force adjusting step of supplying a suction force adjusting gas to the suction force generating portion to adjust the suction force.
9 or 10 of claim 9 or 10 for correcting the first suction force and the second suction force based on at least one of the warpage amount of the substrate before being adsorbed on the above-mentioned stand and the temperature of the above-mentioned stand. The substrate temperature control method described in 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021524757A JP7237154B2 (en) | 2019-06-04 | 2020-05-22 | Substrate temperature control device and substrate temperature control method |
KR1020217042004A KR20220016887A (en) | 2019-06-04 | 2020-05-22 | Substrate temperature control device and substrate temperature control method |
CN202080038539.XA CN113874994B (en) | 2019-06-04 | 2020-05-22 | Substrate temperature control device and substrate temperature control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-104600 | 2019-06-04 | ||
JP2019104600 | 2019-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246268A1 true WO2020246268A1 (en) | 2020-12-10 |
Family
ID=73652844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020323 WO2020246268A1 (en) | 2019-06-04 | 2020-05-22 | Substrate temperature control device and substrate temperature control method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7237154B2 (en) |
KR (1) | KR20220016887A (en) |
CN (1) | CN113874994B (en) |
TW (1) | TWI874400B (en) |
WO (1) | WO2020246268A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112309894A (en) * | 2019-07-23 | 2021-02-02 | 三星电子株式会社 | Wafer processing apparatus and wafer processing method using the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20250183091A1 (en) * | 2023-12-05 | 2025-06-05 | Applied Materials, Inc. | Substrate warpage reduction |
CN119725176A (en) * | 2025-01-14 | 2025-03-28 | 无锡邑文微电子科技股份有限公司 | Pressure control device and pressure control method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007300047A (en) * | 2006-05-08 | 2007-11-15 | Tokyo Electron Ltd | Heat treatment method, program and heat treatment apparatus |
JP2008542037A (en) * | 2005-05-26 | 2008-11-27 | エルピーイー ソシエタ ペル アチオニ | Wafer handling vacuum system |
JP2010147451A (en) * | 2008-12-18 | 2010-07-01 | Nippon Cambridge Filter Kk | N2 purge apparatus for foup |
JP2014003186A (en) * | 2012-06-19 | 2014-01-09 | Disco Abrasive Syst Ltd | Processing apparatus |
JP2017195218A (en) * | 2016-04-18 | 2017-10-26 | 株式会社ディスコ | Chuck table mechanism and transport method |
JP2017228696A (en) * | 2016-06-23 | 2017-12-28 | 東京エレクトロン株式会社 | Substrate placing apparatus and substrate placing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4470199B2 (en) | 2003-09-25 | 2010-06-02 | Smc株式会社 | Semiconductor substrate temperature control device |
JP2005262351A (en) * | 2004-03-17 | 2005-09-29 | Koganei Corp | Vacuum suction unit |
DE102004038839B3 (en) * | 2004-08-10 | 2005-12-22 | Siemens Ag | Gripper unit, placement head and method for equipping substrates with electrical components |
CN101576097B (en) * | 2009-05-31 | 2012-07-11 | 中国纺织工业设计院 | Method and system for pumping and processing tail gas of polyester device by jet ejector |
CN107148667B (en) * | 2014-10-29 | 2020-05-05 | Agc株式会社 | Substrate suction device, substrate bonding device and bonding method, and method for manufacturing electronic device |
-
2020
- 2020-05-22 KR KR1020217042004A patent/KR20220016887A/en not_active Ceased
- 2020-05-22 CN CN202080038539.XA patent/CN113874994B/en active Active
- 2020-05-22 TW TW109117054A patent/TWI874400B/en active
- 2020-05-22 WO PCT/JP2020/020323 patent/WO2020246268A1/en not_active Application Discontinuation
- 2020-05-22 JP JP2021524757A patent/JP7237154B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008542037A (en) * | 2005-05-26 | 2008-11-27 | エルピーイー ソシエタ ペル アチオニ | Wafer handling vacuum system |
JP2007300047A (en) * | 2006-05-08 | 2007-11-15 | Tokyo Electron Ltd | Heat treatment method, program and heat treatment apparatus |
JP2010147451A (en) * | 2008-12-18 | 2010-07-01 | Nippon Cambridge Filter Kk | N2 purge apparatus for foup |
JP2014003186A (en) * | 2012-06-19 | 2014-01-09 | Disco Abrasive Syst Ltd | Processing apparatus |
JP2017195218A (en) * | 2016-04-18 | 2017-10-26 | 株式会社ディスコ | Chuck table mechanism and transport method |
JP2017228696A (en) * | 2016-06-23 | 2017-12-28 | 東京エレクトロン株式会社 | Substrate placing apparatus and substrate placing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112309894A (en) * | 2019-07-23 | 2021-02-02 | 三星电子株式会社 | Wafer processing apparatus and wafer processing method using the same |
Also Published As
Publication number | Publication date |
---|---|
CN113874994B (en) | 2025-01-03 |
KR20220016887A (en) | 2022-02-10 |
TW202109731A (en) | 2021-03-01 |
TWI874400B (en) | 2025-03-01 |
JPWO2020246268A1 (en) | 2020-12-10 |
CN113874994A (en) | 2021-12-31 |
JP7237154B2 (en) | 2023-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020246268A1 (en) | Substrate temperature control device and substrate temperature control method | |
US7432476B2 (en) | Substrate heat treatment apparatus | |
US8138456B2 (en) | Heat processing method, computer-readable storage medium, and heat processing apparatus | |
JP5503564B2 (en) | Abnormality determination system for processing apparatus and abnormality determination method thereof | |
KR101932208B1 (en) | Substrate support, method for loading a substrate on a substrate support location, lithographic apparatus and device manufacturing method | |
US8166913B2 (en) | Coating treatment method, computer-readable storage medium, and coating treatment apparatus | |
JP7074514B2 (en) | Board processing equipment and board processing method | |
TW202117829A (en) | Polishing apparatus | |
TWI794585B (en) | Thermal processing apparatus and thermal processing method | |
US8852857B2 (en) | Substrate treatment method | |
US11143964B2 (en) | Substrate treating method and apparatus used therefor | |
TW200414295A (en) | Semiconductor wafer processing apparatus | |
JP2020136622A (en) | Jig for adjustment, adjustment method, and position deviation measurement method | |
KR102070152B1 (en) | Valve module controlling positive pressure and negative pressure and wafer carrier apparatus for cmp process of semiconductor wafer or glass using the same | |
JP5434549B2 (en) | Exposure apparatus and exposure method | |
US20220359243A1 (en) | Substrate processing apparatus, substrate processing method and storage medium | |
KR20190041644A (en) | Driving method of semiconductor manufacturing apparatus | |
JP2757829B2 (en) | Resist curing equipment | |
JP3647278B2 (en) | Substrate heat treatment apparatus and substrate heat treatment method | |
KR100663340B1 (en) | Wafer exposure equipment | |
CN119301525A (en) | Substrate holder, lithographic apparatus, computer program and method | |
JP2004247526A (en) | Plasma processing apparatus and method | |
JP2012173512A (en) | Proximity exposure apparatus and proximity exposure method therefor | |
JP2011095718A (en) | Proximity exposure apparatus and proximity exposure method of the same | |
KR20240105089A (en) | Bake method and apparatus capable of controlling the photoresist film thickness profile of substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20818046 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524757 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217042004 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20818046 Country of ref document: EP Kind code of ref document: A1 |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020217042004 Country of ref document: KR |