[go: up one dir, main page]

WO2020218127A1 - 給気システム - Google Patents

給気システム Download PDF

Info

Publication number
WO2020218127A1
WO2020218127A1 PCT/JP2020/016620 JP2020016620W WO2020218127A1 WO 2020218127 A1 WO2020218127 A1 WO 2020218127A1 JP 2020016620 W JP2020016620 W JP 2020016620W WO 2020218127 A1 WO2020218127 A1 WO 2020218127A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
air
unit
controller
fans
Prior art date
Application number
PCT/JP2020/016620
Other languages
English (en)
French (fr)
Inventor
浩二 巽
鈴木 亮太
泰士 中島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20794326.7A priority Critical patent/EP3957926B1/en
Priority to CN202080029111.9A priority patent/CN113692516B/zh
Priority to AU2020261812A priority patent/AU2020261812B2/en
Priority to US17/603,785 priority patent/US12320539B2/en
Priority to ES20794326T priority patent/ES2955485T3/es
Publication of WO2020218127A1 publication Critical patent/WO2020218127A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F2003/003Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems with primary air treatment in the central station and subsequent secondary air treatment in air treatment units located in or near the rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Air supply system that distributes the air supplied to the target space such as a room in the building by a duct
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-304614 discloses an air conditioning system including an air conditioner main body having a heat exchange coil and a fan unit having a fan for blowing heat exchanged air. Each fan unit of Patent Document 1 is connected to a plurality of air outlets via a duct, and the air heat-exchanged by one air conditioner main body is divided into the plurality of air outlets to supply air to the air conditioning zone.
  • the controller of Patent Document 1 controls the rotation speeds of the pump motor of the pump unit whose flow rate can be adjusted to send the heat medium from the heat source to the heat exchange coil and the fan motors of a plurality of fan units. Sensors are provided at the plurality of outlets, and the controller controls the air volume of each fan and the heat medium flow rate of the heat exchange coil according to the fluctuation of the total value of the blow air volume signals of the sensors.
  • the rotation speeds of the fan motors of the plurality of fan units are controlled by one controller provided outside the plurality of fan units.
  • the controller of Patent Document 1 controls the rotation speed of the fan motor of each fan unit while checking the blowout air volume signals of a plurality of sensors provided at the plurality of outlets of each fan unit. Therefore, the control load of the controller of Patent Document 1 becomes large.
  • An air supply system equipped with a fan unit capable of controlling the air volume has a problem of reducing the control load.
  • the air supply system of the first viewpoint includes a first unit, a second unit, a duct, a first detection unit, and a first controller.
  • the first unit has a first fan.
  • the second unit has a second fan that supplies the first air to the target space.
  • the duct conveys the first air sent from the first unit by the first fan to the second unit.
  • the first detection unit detects the information of the second air in the target space.
  • the first controller communicates with the second unit and the first detection unit.
  • the second unit includes a second detection unit that detects the amount of air blown by the second fan, and a second controller that controls the rotation speed of the second fan.
  • the first controller determines the target air volume of the second unit based on the information of the second air acquired from the first detection unit, and instructs the second controller of the target air volume.
  • the second controller controls the rotation speed of the second fan so that the air volume detected by the second detection unit becomes the target air volume.
  • the second unit receives the indicated value of the air volume from the first controller, and the second controller automatically controls the air volume by the second controller without depending on the first controller. be able to.
  • the control load of the first controller can be reduced by appropriately giving an indicated value of the air volume to the first controller to the second unit.
  • the air supply system of the second viewpoint is the system of the first viewpoint, and the first unit has a heat exchanger through which a heat medium flows.
  • the heat exchanger exchanges heat between the first air delivered by the first fan and the heat medium.
  • the first unit can exchange heat with the heat medium by the heat exchanger and send the air-conditioned first air to the second unit.
  • the second unit can air-condition the target space by using the air-conditioned first air.
  • the air supply system of the third viewpoint is the system of the second viewpoint
  • the first detection unit is a temperature sensor, a CO 2 concentration sensor or a humidity sensor
  • the first controller sets a preset target space.
  • the target air volume of the second unit is determined based on the temperature, the set CO 2 concentration or the set humidity, and the value detected by the first detection unit.
  • the first controller controls the air volume of the second unit according to the target air volume to keep at least one of the temperature, humidity and CO 2 concentration of the target space in an appropriate range. Can be controlled to.
  • the air supply system of the fourth viewpoint is any system from the first viewpoint to the third viewpoint, which is arranged on the downstream side of the first unit and detects the pressure of the first air sent by the first fan.
  • a third detection unit is further provided. The first controller controls the rotation speed of the first fan so that the pressure value acquired from the third detection unit falls within a predetermined range.
  • the pressure value on the downstream side of the first unit falls within a predetermined range, so that the pressure value on the downstream side of the first unit deviates from the predetermined range.
  • the extra power consumption generated by the first fan and the second fan can be omitted.
  • the air supply system of the fifth viewpoint is any system from the first viewpoint to the fourth viewpoint, and includes a plurality of second units.
  • the duct conveys the first air sent from the first unit by the first fan to the plurality of second units.
  • a plurality of first detection units are provided corresponding to each of the plurality of second units.
  • the first controller determines a plurality of target air volumes of the plurality of second units based on the information of the second air in the target space acquired from the plurality of first detection units, and instructs each second controller of each target air volume. ..
  • the first controller can control the output of the first fan according to the amount of the first air supplied by the plurality of second fans. As a result, the air supply system can suppress power consumption.
  • the air supply system of the sixth aspect is the system of the fifth aspect, in which the first controller is in the operating state of at least one second fan among the plurality of second fans or among the plurality of second fans.
  • the first controller is in the operating state of at least one second fan among the plurality of second fans or among the plurality of second fans.
  • priority is given to increasing the output of the fan-efficient fan among the first fan and the plurality of second fans, or decreasing the output of the fan with low fan efficiency. Give priority to that.
  • the first controller preferentially increases the output of the fan with high fan efficiency among the first fan and the plurality of second fans, or decreases the output of the fan with low fan efficiency. Control. As a result, the energy consumption of the air supply system is suppressed.
  • the air supply system of the seventh aspect is the system of the sixth aspect, in which the first controller has the highest fan efficiency among the plurality of second fans, but the processing static pressure is constant or a plurality of second.
  • the output of the first fan is determined so that the fan speed of the two fans is the highest, but the fan speed is maximized.
  • the first controller has the highest fan efficiency among the plurality of second fans, but the processing static pressure is constant, or the fan efficiency among the plurality of second fans is the highest.
  • the output of the first fan is determined so that the fan speed is maximized although it is high.
  • the output of the second fan which has low fan efficiency, can be preferentially reduced.
  • the air supply system of the eighth viewpoint is a system of the sixth viewpoint, in which the first controller has the lowest fan efficiency among the plurality of second fans, but the processing static pressure is constant, or a plurality of second fans.
  • the output of the first fan is determined so that the fan speed of the two fans, which has the lowest fan efficiency, is minimized.
  • the first controller has the lowest fan efficiency among the plurality of second fans, but the processing static pressure is constant, or the fan efficiency among the plurality of second fans is the highest.
  • the output of the first fan is determined so that the fan speed is minimized although it is low. As a result, the output of a fan with high fan efficiency can be increased preferentially.
  • the air supply system of the ninth aspect is the system of the seventh aspect or the eighth aspect, and includes a plurality of differential pressure sensors for detecting the processing static pressure of a plurality of second fans, and the controller has a plurality of differences.
  • the output of the first fan is determined based on the detected value of the pressure sensor.
  • the air supply system of the tenth viewpoint is the system of the seventh viewpoint or the eighth viewpoint, and the first controller has the maximum fan efficiency among the plurality of second fans, but the air volume does not reach the target air volume. , Increase the output of the first fan.
  • the first controller may increase the output of the first fan and control the air volume of the plurality of second fans having the maximum fan efficiency to reach the target air volume. it can.
  • the air supply system of the eleventh viewpoint is any of the systems of the sixth to tenth viewpoints, and further includes a fourth detection unit for detecting the air volume of the first air sent by the first fan.
  • the first controller uses at least one of the plurality of second detection units and the plurality of fourth detection units for comparing the fan efficiencies of the first fan and the plurality of second fans.
  • the conceptual diagram which shows the structure of the air supply system which concerns on embodiment The conceptual diagram which shows an example of the structure of the air supply system which concerns on the modification.
  • a block diagram for explaining the configuration of the controller The conceptual diagram which shows the other example of the structure of the air supply system which concerns on the modification.
  • the air supply system 10 shown in FIG. 1 includes a first unit 20, a second unit 30, a duct 40, and a controller 50.
  • the first unit 20 has a first fan 21.
  • Each of the plurality of second units 30 has a second fan 31.
  • Each second fan 31 supplies air from the second unit 30 to the target space 100.
  • the target space 100 is, for example, a room in a building.
  • a room is, for example, a space in which the movement of air is restricted by floors, ceilings and walls.
  • a plurality of second units 30 are arranged with respect to one or a plurality of target spaces 100.
  • FIG. 1 shows an example in which an air supply system 10 having two second units 30 is arranged with respect to one target space 100 as a typical example of an air supply system 10 having a plurality of second units 30. It is shown.
  • the number of the second units 30 may be 3 or more, and is appropriately set.
  • the target space 100 in which the second unit 30 is arranged may be two or more.
  • the duct 40 distributes the first air SA sent from the first unit 20 by the first fan 21 to the plurality of second units 30.
  • the duct 40 includes a main pipe 41 and a branch pipe 42 branched from the main pipe 41.
  • FIG. 1 shows a case where the main pipe 41 is arranged outside the first unit 20, the main pipe 41 may be arranged inside the first unit 20 and may be arranged in the first unit 20. It may be arranged so as to extend from the inside to the outside of the first unit 20.
  • a part of the casing of the first unit 20 may function as the main pipe 41.
  • FIG. 1 shows an example in which the inlet 41a of the main pipe 41 is connected to the first unit 20.
  • the first fan 21 is arranged in the first unit 20. Here, all the air blown out from the first fan 21 is configured to flow into the duct 40.
  • the outlet 41b of the main pipe 41 of the duct 40 is connected to the inlet 42a of the branch pipe 42.
  • the plurality of outlets 42b of the branch pipe 42 are connected to the plurality of second units 30.
  • Each second unit 30 and the target space 100 are connected by a ventilation passage 81.
  • the inlet 81a of the ventilation path 81 is connected to the second unit 30.
  • Each second fan 31 generates an air flow from the outlet 42b of the duct 40 toward the inlet 81a of the ventilation passage 81 in the second unit 30. From another point of view, each second fan 31 sucks the first air SA from the outlet 42b of the branch pipe 42.
  • Each second fan 31 can change the static pressure in each second unit 30 (in front of the inlet 81a of the ventilation passage 81) by changing the rotation speed.
  • each of the second fans 31 increases the static pressure in each of the second units 30 (in front of the inlet 81a of the ventilation passage 81) by increasing the rotation speed. be able to.
  • the static pressure in the second unit 30 becomes high, the amount of air in the first air SA flowing through the ventilation passage 81 increases.
  • the amount of air supply air blown from the outlet 81b of each ventilation path 81 to the target space 100 changes.
  • the controller 50 includes a main controller 51 and a plurality of sub-controllers 52.
  • the main controller 51 and the plurality of sub-controllers 52 are connected to each other to form the controller 50.
  • the main controller 51 controls the rotation speed of the first fan 21.
  • the main controller 51 controls the output of the first fan 21.
  • the state of the first fan 21 changes in the direction in which the amount of air blown by the first fan 21 increases.
  • One sub-controller 52 is provided for each second unit 30. Each sub-controller 52 issues an instruction regarding the air volume change to the corresponding second fan 31. Each sub-controller 52 stores the target air volume. Each sub-controller 52 issues an instruction (instruction regarding changing the air volume) to increase the rotation speed of the second fan 31 if the supply air volume is insufficient with respect to the target air volume. On the contrary, if the supply air volume is excessive with respect to the target air volume, the sub controller 52 issues an instruction (instruction regarding changing the air volume) to reduce the rotation speed of the second fan 31.
  • the controller 50 obtains information on the amount of air supplied to the target space 100 by the plurality of second fans 31.
  • the information on the amount of air is, for example, the amount of air to be supplied to the target space 100 per second, and in other words, the amount of air to be supplied is the required amount of air supply.
  • the required output of the first fan 21 is determined based on the obtained air amount information.
  • the controller 50 controls the output of the first fan 21 so as to obtain the determined required output.
  • each sub-controller 52 obtains information on the amount of air in the second unit 30 from the corresponding second unit 30.
  • Each sub-controller 52 outputs information on the amount of air to the main controller 51.
  • First unit 20 In addition to the first fan 21 described above, the first unit 20 includes a heat exchanger 22, a fourth detection unit 23, a temperature sensor 24, and a water amount adjusting valve 25.
  • cold water or hot water is supplied to the heat exchanger 22 as a heat medium from the heat source unit 60.
  • the heat medium supplied to the heat exchanger 22 may be something other than cold water or hot water, for example brine.
  • the fourth detection unit 23 for example, an air volume sensor, a wind speed sensor, or a differential pressure sensor can be used.
  • the fourth detection unit 23 detects the amount of air blown by the first fan 21.
  • the fourth detection unit 23 is connected to the main controller 51.
  • the value of the air volume detected by the fourth detection unit 23 is transmitted from the fourth detection unit 23 to the main controller 51.
  • the air volume detected by the fourth detection unit 23 is the air volume flowing through the main pipe 41 of the duct 40.
  • the air volume detected by the fourth detection unit 23 is the total amount of air supply air supplied from the plurality of second units 30 to the target space 100.
  • the temperature sensor 24 detects the temperature of the first air SA sent from the first fan 21 to the duct 40.
  • the temperature sensor 24 is connected to the main controller 51.
  • the temperature value detected by the temperature sensor 24 is transmitted from the temperature sensor 24 to the main controller 51.
  • the first unit 20 is connected to the target space 100 via the ventilation passage 82.
  • the second air RA returned from the target space 100 through the ventilation passage 82 is sent out to the duct 40 through the heat exchanger 22 by the first fan 21.
  • the second air RA returned from the target space 100 is the air that was in the target space 100.
  • the returned second air RA exchanges heat with the cold water or hot water flowing through the heat exchanger 22 to become conditioned air.
  • the amount of heat given to the first air SA that exchanges heat with the heat exchanger 22 and is sent to the duct 40 is adjusted by the water amount adjusting valve 25.
  • the opening degree of the water amount adjusting valve 25 is controlled by the main controller 51.
  • the opening degree of the water amount adjusting valve 25 increases, the amount of water flowing through the heat exchanger 22 increases, and the amount of heat exchanged between the heat exchanger 22 and the first air SA per unit time increases. On the contrary, when the opening degree of the water amount adjusting valve 25 becomes small, the amount of water flowing through the heat exchanger 22 decreases, and the amount of heat exchanged between the heat exchanger 22 and the first air SA per unit time decreases.
  • the second unit 30 has a second detection unit 32 in addition to the second fan 31 already described.
  • the second detection unit 32 detects the amount of air blown by the second fan 31.
  • Each second detection unit 32 is connected to one corresponding sub-controller 52.
  • the value of the air volume detected by the second detection unit 32 is transmitted to the sub controller 52.
  • the air volume detected by the second detection unit 32 is the air volume flowing through the ventilation passage 81.
  • the air volume detected by the second detection unit 32 is the air supply air volume supplied from each second unit 30 to the target space 100.
  • an air volume sensor, a wind speed sensor, or a differential pressure sensor can be used for the second detection unit 32.
  • the plurality of remote sensors 70 have a function of a temperature sensor. Each remote sensor 70 is configured to transmit data indicating the temperature of the second air RA in the target space 100 to the corresponding sub-controller 52.
  • Each of the plurality of sub-controllers 52 receives the detected temperature value of the target space from the connected remote sensor 70.
  • Each sub-controller 52 holds data indicating the set temperature. For example, data indicating the set temperature is transmitted in advance to each sub-controller 52 from a remote controller (not shown) or the like.
  • Each sub-controller 52 stores data indicating a set temperature received from a remote controller or the like in a storage device 52b (see FIG. 3) such as a built-in memory.
  • Each sub-controller 52 transmits a set temperature value to the main controller 51.
  • the main controller 51 determines the target air volume of each second unit 30 according to the temperature of the second air RA detected by the corresponding remote sensor 70 based on the set temperature.
  • the main controller 51 transmits the value of the target air volume to each sub controller 52.
  • the main controller 51 determines the output of the first fan 21 according to the total amount of the target air volume to be supplied to the target space 100.
  • the static pressure at the outlet 41b of the main pipe 41 (the inlet 42a of the branch pipe 42) takes an intermediate value between the static pressure at the inlet 41a of the main pipe 41 and the static pressure at the outlet 42b of the branch pipe 42, and from the intermediate value. Comparing with the case where the value is large, the ratio of the output of the first fan 21 is larger than the ratio of the output of the plurality of second fans 31 when the value is larger than the intermediate value. On the contrary, when the static pressure at the outlet 41b of the main pipe 41 (the inlet 42a of the branch pipe 42) takes an intermediate value and a value smaller than the intermediate value, the case where the static pressure takes a smaller value is compared.
  • the output ratio of the first fan 21 is smaller than the output ratio of the plurality of second fans 31. There is an efficient range in the ratio of the output of the first fan 21 to the output of the plurality of second fans 31. Therefore, the main controller 51 determines the output of the first fan 21 so as to have an efficient ratio. In other words, it means that the main controller 51 determines the output of the first fan 21 at a predetermined appropriate output with respect to the total amount of the target air volume.
  • the output of the first fan 21 has an output range of the first fan 21 suitable for reducing power consumption. If the output of the first fan 21 is increased to increase the total power consumption of the first fan 21 and the plurality of second fans 31, the output of the first fan 21 is gradually decreased to increase the output of the first fan 21 and the plurality of second fans. If the total power consumption of the two fans 31 is determined to be the output of the first fan 21 before it starts to rise again, the determined output range becomes a range in which the power consumption is smaller than the other ranges.
  • the output of the first fan 21 is lowered to increase the total power consumption of the first fan 21 and the plurality of second fans 31, the output of the first fan 21 is gradually increased to increase the output of the first fan 21 and the first fan 21. If the total power consumption of the plurality of second fans 31 is determined to be the output of the first fan 21 before it starts to rise again, the determined output range becomes a range in which the power consumption is smaller than the other ranges. If the output of the first fan 21 is increased and the total power consumption of the first fan 21 and the plurality of second fans 31 is decreased, the output of the first fan 21 is gradually increased to decrease the output of the first fan 21 and the plurality of second fans.
  • the determined output range becomes a range in which the power consumption is smaller than the other ranges.
  • the output of the first fan 21 is lowered and the total power consumption of the first fan 21 and the plurality of second fans 31 is lowered, the output of the first fan 21 is gradually lowered, and the first fan 21 and If the total power consumption of the plurality of second fans 31 is determined to be the output of the first fan 21 before it starts to rise again, the determined output range becomes a range in which the power consumption is smaller than the other ranges.
  • determining an appropriate output of the first fan 21 is not limited to such a method.
  • each second unit 30 other than the second unit 30 having the highest fan efficiency is seconded by the corresponding sub controller 52.
  • the rotation speed of the fan 31 is adjusted.
  • the rotation speeds of the plurality of second fans 31 are adjusted independently of each other.
  • the rotation speed of the second fan 31 of the second unit 30 having the highest fan efficiency is maximized.
  • the second unit 30 having the highest fan efficiency is the second unit 30 having the smallest energy consumption when the static pressure at the inlet 42a of the branch pipe 42 is the same and the amount of air supplied to the target space 100 is the same. is there.
  • the second unit 30 having the lowest fan efficiency is the second unit 30 having the largest energy consumption when the static pressure at the inlet 42a of the branch pipe 42 is the same and the amount of air supplied to the target space 100 is the same. ..
  • Each sub-controller 52 controls the rotation speed of each second fan 31 in order to match the supply air volume with the target air volume.
  • the plurality of sub-controllers 52 control the rotation speeds of the plurality of second fans 31 independently of each other. If the air volume detected by the second detection unit 32 is smaller than the target air volume, each sub-controller 52 increases the rotation speed of each second fan 31. If the air volume detected by the second detection unit 32 is larger than the target air volume, each sub-controller 52 reduces the rotation speed of each second fan 31. If the rotation speed of the second unit 30 having the highest fan efficiency drops, the main controller 51 changes the output of the first fan 21 to maximize the rotation speed of the second unit 30 having the highest fan efficiency. Adjust so that
  • the main controller 51 uses the operating state of at least one second fan among the plurality of second fans 31 or the air volume of at least one second fan 31 among the plurality of second fans 31.
  • priority is given to increasing the output of the fan having high fan efficiency among the first fan 21 and the plurality of second fans 31, or giving priority to decreasing the output of the fan having low fan efficiency.
  • the main controller 51 increases the output of the fan with high fan efficiency among the first fan 21 and the plurality of second fans 31 when increasing the amount of air supplied to the target space 100.
  • the output of one fan 21 and the target air volume of the plurality of second units 30 are determined.
  • the main controller 51 reduces the output of the fan having high fan efficiency among the first fan 21 and the plurality of second fans 31.
  • the output of one fan 21 and the target air volume of the plurality of second units 30 are determined.
  • the main controller 51 increases the output of the first fan 21 when the air volume of the plurality of second units 30 having the maximum fan efficiency does not reach the target air volume. At this time, the main controller 51 increases the output of the first fan 21 and keeps the rotation speed of the second fan 31 of the second unit 30 having the maximum fan efficiency at the maximum.
  • the main controller 51 determines the output of the first fan 21
  • the main controller 51 uses the first fan 21 so that the rotation speed of the plurality of second fans 31 having the lowest fan efficiency is minimized. It may be configured to determine the output of.
  • the corresponding sub-controller 52 adjusts the rotation speed of the second fan 31. The rotation speeds of the plurality of second fans 31 are adjusted independently of each other.
  • each second unit 30 has a differential pressure sensor 33 for detecting the processing static pressure of the second fan 31 (see FIG. 2). Is configured to include.
  • the controller 50 is configured to calculate the processing static pressure from the detection result of the second detection unit 32 and the rotation speed of the second fan 31.
  • the controller 50 determines the output of the first fan 21 based on the detection value of the differential pressure sensor 33 of the second unit 30 having the highest fan efficiency.
  • the corresponding sub-controller 52 adjusts the rotation speed of the second fan 31.
  • the rotation speeds of the plurality of second fans 31 are adjusted independently of each other.
  • each second unit 30 has a differential pressure sensor 33 for detecting the processing static pressure of the second fan 31 (see FIG. 2). Is configured to include.
  • the controller 50 is configured to calculate the processing static pressure from the detection result of the second detection unit 32 and the rotation speed of the second fan 31.
  • the controller 50 determines the output of the first fan 21 based on the detection value of the differential pressure sensor 33 of the second unit 30 having the lowest fan efficiency.
  • the corresponding sub-controller 52 adjusts the rotation speed of the second fan 31.
  • the rotation speeds of the plurality of second fans 31 are adjusted independently of each other.
  • the remote sensor 70 may have at least one function of, for example, a temperature sensor, a CO 2 concentration sensor, and a humidity sensor. ..
  • the plurality of sub-controllers 52 receive at least one detected value of the temperature, CO 2 concentration, and humidity of the target space 100 from the connected remote sensor 70, respectively.
  • Each sub-controller 52 holds data of set values to be detected by the remote sensor 70.
  • Each sub-controller 52 transmits at least one set value of these temperature, CO 2 concentration and humidity to the main controller 51.
  • the main controller 51 determines the target air volume of each second unit 30 based on the set value according to the detection value of the corresponding remote sensor 70.
  • the main controller 51 transmits the value of the target air volume to each sub controller 52.
  • the air supply system 10 may be configured as a system that ventilates the target space 100, for example, when the CO 2 concentration in the target space 100 is high.
  • the controller 50 is realized by a computer.
  • the controller 50 includes control arithmetic units 51a and 52a and storage devices 51b and 52b.
  • a processor such as a CPU or GPU can be used for the control arithmetic units 51a and 52a.
  • the control arithmetic units 51a and 52a read the programs stored in the storage devices 51b and 52b, and perform predetermined image processing and arithmetic processing according to the programs. Further, the control arithmetic units 51a and 52a can write the arithmetic results in the storage devices 51b and 52b and read the information stored in the storage devices 51b and 52b according to the program.
  • FIG. 3 shows various functional blocks realized by the control arithmetic units 51a and 52a.
  • the storage devices 51b and 52b can be used as a database.
  • the outside air introduction unit 110 may be attached to the first unit 20.
  • the outside air introduction unit 110 has a third fan 111 and a fifth detection unit 112.
  • the outside air introduction unit 110 takes in the outside air OA from the outside of the target space 100 by the third fan 111 and blows it to the first unit 20.
  • the fifth detection unit 112 detects the air volume of the outside air OA sent to the first unit 20.
  • the fifth detection unit 112 transmits the value of the detected air flow amount of the outside air OA to the main controller 51.
  • the main controller 51 may be configured to correct the output control of the first fan 21 according to the amount of air blown by the outside air OA. ..
  • an air volume sensor, a wind speed sensor, or a differential pressure sensor can be used.
  • a third detection unit is located on the downstream side of the first unit 20 of the air supply system 10 according to the embodiment shown in FIG.
  • the pressure sensor 90 is arranged.
  • the pressure sensor 90 detects the pressure of the first air SA sent by the first fan 21.
  • the pressure sensor 90 is arranged, for example, in the vicinity of the first unit 20 in the duct 40, in other words, in the vicinity of the inlet 41a of the duct 40.
  • the configuration other than the pressure sensor 90 is the same as that of the air supply system 10 of the above embodiment, and thus the description thereof will be omitted.
  • the main controller 51 acquires the value of the pressure of the first air SA detected by the pressure sensor 90.
  • the main controller 51 controls the rotation speed of the first fan 21 so that the pressure value of the first air SA falls within a predetermined range. If the pressure value of the first air SA is smaller than the lower limit value in the predetermined range, the main controller 51 increases the rotation speed of the first fan 21. If the value of the pressure of the first air SA is larger than the upper limit value in the predetermined range, the main controller 51 reduces the rotation speed of the first fan 21.
  • a pressure sensor 90 which is a third detection unit, is arranged on the downstream side of the first unit 20 of the air supply system 10 according to the modified example 1E shown in FIG. May be good.
  • the configuration of the controller 50 of FIG. 6 is shown in FIG.
  • the air supply system 10 described above includes the first unit 20, the second unit 30, the duct 40, the remote sensor 70 which is the first detection unit, and the first unit and the main controller 51 which is the first controller.
  • the second unit 30 has a second fan 31 that supplies the first air SA to the target space 100.
  • the duct 40 conveys the first air SA sent from the first unit 20 by the first fan 21 to the second unit 30.
  • the remote sensor 70 detects the information of the second air RA in the target space 100.
  • the information of the second air RA is, for example, the temperature of the second air RA, the CO 2 concentration of the second air RA, or the humidity of the second air RA.
  • the main controller 51 communicates with the second unit 30 and the remote sensor 70.
  • the second unit 30 includes a second detection unit 32, which is a second detection unit that detects the amount of air blown by the second fan 31, and a sub controller 52, which is a second controller that controls the rotation speed of the second fan. I'm out.
  • the main controller 51 determines the target air volume of the second unit 30 based on the information of the second air RA acquired from the remote sensor 70, for example, the temperature detection value, the CO 2 concentration detection value, or the humidity detection value.
  • the main controller 51 instructs the sub controller 52 of the determined target air volume.
  • the sub-controller 52 controls the rotation speed of the second fan 31 so that the air volume detected by the second detection unit 32 becomes the target air volume.
  • the second unit 30 receives the indicated value of the air volume from the main controller 51, and the sub controller 52 controls the air volume by the second unit 30 itself without depending on the main controller 51. Can be done automatically. In this way, the instruction value of the air volume may be appropriately given to the second unit 30 from the main controller 51, and the control load of the main controller 51 can be reduced.
  • the first unit 20 can exchange heat with the heat medium by the heat exchanger 22 and send the air-conditioned air to the plurality of second units 30.
  • the plurality of second units 30 can use this air-conditioned air to air-condition the target space 100.
  • the controller 50 of the air supply system 10 described above determines the air volume of the air supplied by the plurality of second units 30 according to at least one of the temperature, humidity and CO 2 concentration of the target space 100, and determines the air volume of the air supplied by the plurality of second units 30.
  • the air volume of each of the two units 30 is controlled.
  • the controller 50 controls the air volume of each of the plurality of second units 30 to set at least one of the temperature, humidity, and CO 2 concentration of the target space 100 to an appropriate range. Can be kept.
  • the air supply system 10 includes a pressure sensor 90 which is arranged on the downstream side of the first unit 20 and is a third detection unit for detecting the pressure of the first air SA sent by the first fan 21. ing.
  • the main controller 51 controls the rotation speed of the first fan 21 so that the value of the pressure acquired from the pressure sensor 90 falls within a predetermined range.
  • the pressure value on the downstream side of the first unit 20 is in a predetermined range, so that the pressure value on the downstream side of the first unit 20 is out of the predetermined range, as compared with the case where the first fan 21 and the downstream side are out of the predetermined range.
  • the extra power consumption generated by the second fan 31 can be omitted.
  • the main controller 51 can control the output of the first fan 21 to an appropriate value according to the total amount of air supply air with respect to the target space 100.
  • the total amount of air supply air is an example of the amount of air in the first air SA of the plurality of second fans 31.
  • the main controller 51 changes the operating state of at least one of the plurality of second fans 31 or the air volume of at least one second fan 31 of the plurality of second fans 31. When doing so, it is configured to give priority to increasing the output of the fan having high fan efficiency among the first fan 21 and the plurality of second fans 31, or to give priority to decreasing the output of the fan having low fan efficiency. Can be done. In the air supply system 10 configured in this way, the main controller 51 controls the output of the fan having high fan efficiency to be preferentially increased or decreased to decrease the output of the fan having low fan efficiency. Reduce energy consumption.
  • the main controller 51 makes the processing static pressure of the second fan 31 having the highest fan efficiency among the plurality of second fans 31 constant, or among the plurality of second fans 31.
  • the output of the second fan 31 having the lowest fan efficiency can be preferentially reduced.
  • the main controller 51 makes the processing static pressure of the second fan 31 having the lowest fan efficiency among the plurality of second fans 31 constant, or among the plurality of second fans 31.
  • the output of the fan with high fan efficiency can be preferentially increased. it can.
  • the energy consumption is reduced as compared with the case of increasing the output of the second fan 31 having a lower fan efficiency. Can be done.
  • the main controller 51 increases the output of the first fan 21 when the air volume of the plurality of second fans 31 having the maximum fan efficiency does not reach the target air volume. In the air supply system 10 configured in this way, the main controller 51 increases the output of the first fan 21 so that the air volume of the plurality of second fans 31 having the maximum fan efficiency reaches the target air volume. Can be controlled to.
  • Air supply system 20 1st unit 21 1st fan 22 Heat exchanger 23 4th detector 30 2nd unit 31 2nd fan 32 2nd detector 33 Differential pressure sensor 40 Duct 50 controller 51 Main controller (1st controller Example) 52 Sub controller (example of second controller) 70 Remote sensor (example of 1st detector) 90 Pressure sensor (example of 3rd detector)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

給気システムにおいて、各ファンで生じる余分なエネルギーの消費を抑制する。第2ユニット(30)は、第1空気(SA)を対象空間(100)に供給する第2ファン(31)を有している。ダクト(40)は、第1ユニット(20)から第1ファン(21)により送出された第1空気(SA)を第2ユニット(30)に搬送する。第1検知部であるリモートセンサ(70)は、対象空間(100)の第2空気(RA)の情報を検知する。第1コントローラであるメインコントローラ(51)は、第2ユニット(30)及びリモートセンサ(70)と通信を行う。第2ユニット(30)は、第2ファン(31)が送風する風量を検知する第2検知部(32)と、第2ファン(31)の回転数を制御する第2コントローラであるサブコントローラ(52)とを含む。メインコントローラ(51)は、リモートセンサ(70)から取得した第2空気(RA)の情報に基づき、第2ユニット(30)の目標風量を決定し、目標風量をサブコントローラ(52)に指示する。サブコントローラ(52)は、第2検知部(32)により検知された風量が、目標風量になるように、第2ファン(31)の回転数を制御する。

Description

給気システム
 建物内の部屋などの対象空間に供給される空気をダクトで分配する給気システム
 特許文献1(特開2001-304614号公報)には、熱交換コイルを有する空調機本体と、熱交換した空気を送風するファンを有するファンユニットとを備える空気調和システムが開示されている。特許文献1の各ファンユニットは、ダクトを介して複数の吹出口に連結され、1つの空調機本体で熱交換された空気を複数の吹出口に分流させて空調ゾーンに給気する。
 特許文献1のコントローラは、熱源からの熱媒を熱交換コイルに送る流量調整自在なポンプユニットのポンプモータと、複数のファンユニットのファンモータの回転速度を制御する。複数の吹出口にはセンサが設けられており、コントローラは、それらのセンサの吹出し風量信号の合計数値の変動に応じて、各ファンの風量と熱交換コイルの熱媒流量を制御する。
 特許文献1に記載されたファンユニットは、複数のファンユニットの外部に設けられた1つのコントローラにより、複数のファンユニットのファンモータの回転速度が制御されている。特許文献1のコントローラは、各ファンユニットの複数の吹出口に設けられている複数のセンサの吹出風量信号を確認しつつ、各ファンユニットのファンモータの回転速度を制御する。そのため、特許文献1のコントローラの制御負荷が大きくなってしまう。
 風量の制御が可能なファンユニットを備える給気システムには、制御負荷を小さくするという課題がある。
 第1観点の給気システムは、第1ユニットと、第2ユニットと、ダクトと、第1検知部と、第1コントローラとを備える。第1ユニットは、第1ファンを有する。第2ユニットは、第1空気を対象空間に供給する第2ファンを有する。ダクトは、第1ユニットから第1ファンにより送出された第1空気を第2ユニットに搬送する。第1検知部は、対象空間の第2空気の情報を検知する。第1コントローラは、第2ユニット及び第1検知部と通信を行う。第2ユニットは、第2ファンが送風する風量を検知する第2検知部と、第2ファンの回転数を制御する第2コントローラとを含む。第1コントローラは、第1検知部から取得した第2空気の情報に基づき、第2ユニットの目標風量を決定し、目標風量を第2コントローラに指示する。第2コントローラは、第2検知部により検知された風量が、目標風量になるように、第2ファンの回転数を制御する。
 第1観点の給気システムは、第2ユニットが、第1コントローラから風量の指示値を受け取り、第1コントローラに依存せずに第2コントローラによって第2ユニット自身で風量の制御を自動的に行うことができる。第1コントローラから第2ユニットに対しては、適宜風量の指示値を与えればよく、第1コントローラの制御負荷を小さくすることができる。
 第2観点の給気システムは、第1観点のシステムであって、第1ユニットは、熱媒体の流れる熱交換器を有する。熱交換器は、第1ファンにより送出される第1空気と熱媒体との間で熱交換を行う。
 第2観点の給気システムでは、第1ユニットが、熱交換器で熱媒体と熱交換して、空気調和された第1空気を第2ユニットに送ることができる。第2ユニットは、この空気調和された第1空気を用いて、対象空間の空気調和ができる。
 第3観点の給気システムは、第2観点のシステムであって、第1検知部は、温度センサ、CO濃度センサまたは湿度センサであり、第1コントローラは、予め設定された対象空間の設定温度、設定CO濃度または設定湿度と、第1検知部によって検知された値とに基づき、第2ユニットの目標風量を決定する。
 第3観点の給気システムでは、第1コントローラが、目標風量によって第2ユニットの風量を制御して、対象空間の温度、湿度及びCO濃度のうちの少なくとも一つを適正な範囲に保つように制御することができる。
 第4観点の給気システムは、第1観点から第3観点のいずれかのシステムであって、第1ユニットの下流側に配置され、第1ファンにより送出された第1空気の圧力を検知する第3検知部をさらに備える。第1コントローラは、第3検知部から取得した圧力の値が所定の範囲になるように、第1ファンの回転数を制御する。
 第4観点の給気システムは、第1ユニットの下流側の圧力の値が所定の範囲になることにより、第1ユニットの下流側の圧力の値が所定の範囲から外れる場合に比べて、第1ファン及び第2ファンで発生する余分な費電力を省くことができる。
 第5観点の給気システムは、第1観点から第4観点のいずれかのシステムであって、第2ユニットを複数備える。ダクトは、第1ユニットから第1ファンにより送出される第1空気を複数の第2ユニットに搬送する。第1検知部は、複数の第2ユニットそれぞれに対応して複数設けられている。第1コントローラは、複数の第1検知部から取得した対象空間の第2空気の情報に基づき、複数の第2ユニットの複数の目標風量を決定し、各第2コントローラに各目標風量を指示する。
 第5観点の給気システムでは、第1コントローラが、第1ファンの出力を、複数の第2ファンが供給する第1空気の空気量に合わせて制御することができる。これにより、給気システムは消費電力を抑制することができる。
 第6観点の給気システムは、第5観点のシステムであって、第1コントローラが、複数の第2ファンの中の少なくとも1台の第2ファンの運転状態または複数の第2ファンの中の少なくとも1台の第2ファンの風量を変更するときには、第1ファン及び複数の第2ファンの中のファン効率の高いファンの出力を増やすことを優先するかまたはファン効率の低いファンの出力を減らすことを優先する。
 第6観点の給気システムでは、第1コントローラが、第1ファン及び複数の第2ファンの中のファン効率の高いファンの出力を優先的に増やし、またはファン効率の低いファンの出力を減らすよう制御する。これにより、給気システムの消費エネルギーは抑制される。
 第7観点の給気システムは、第6観点のシステムであって、第1コントローラが、複数の第2ファンの中のファン効率が最も高いものの処理静圧が一定になるように若しくは複数の第2ファンの中のファン効率が最も高いもののファン回転数が最大になるように、第1ファンの出力を決める。
 第7観点の給気システムでは、第1コントローラが、複数の第2ファンの中のファン効率が最も高いものの処理静圧が一定になるように若しくは複数の第2ファンの中のファン効率が最も高いもののファン回転数が最大になるように、第1ファンの出力を決める。これにより、ファン効率の低い第2ファンの出力を優先的に減らせる。
 第8観点の給気システムは、第6観点のシステムであって、第1コントローラが、複数の第2ファンの中のファン効率が最も低いものの処理静圧が一定になるように若しくは複数の第2ファンの中のファン効率が最も低いもののファン回転数が最小になるように、第1ファンの出力を決める。
 第8観点の給気システムでは、第1コントローラが、複数の第2ファンの中のファン効率が最も低いものの処理静圧が一定になるように若しくは複数の第2ファンの中のファン効率が最も低いもののファン回転数が最小になるように、第1ファンの出力を決める。これにより、ファン効率の高いファンの出力を優先的に増やせる。
 第9観点の給気システムは、第7観点または第8観点のシステムであって、複数の第2ファンの処理静圧を検知するための複数の差圧センサを備え、コントローラが、複数の差圧センサの検出値に基づいて第1ファンの出力を決める。
 第10観点の給気システムは、第7観点または第8観点のシステムであって、第1コントローラは、複数の第2ファンの中のファン効率が最大のものの風量が目標風量に達しない場合に、第1ファンの出力を増加させる。
 第10観点の給気システムでは、第1コントローラは、第1ファンの出力を増加させて、複数の第2ファンの中のファン効率が最大のものの風量が目標風量に達するように制御することができる。
 第11観点の給気システムは、第6観点から第10観点のいずれかのシステムであって、第1ファンにより送出される第1空気の風量を検知するための第4検知部をさらに備える。第1コントローラが、第1ファン及び複数の第2ファンのファン効率の比較に、複数の第2検知部及び第4検知部のうちの少なくとも一方を用いる。
実施形態に係る給気システムの構成を示す概念図。 変形例に係る給気システムの構成の一例を示す概念図。 コントローラの構成を説明するためのブロック図。 変形例に係る給気システムの構成の他の例を示す概念図。 変形例に係る給気システムの構成の他の例を示す概念図。 変形例に係る給気システムの構成の他の例を示す概念図。 図6に示されているコントローラの構成を説明するためのブロック図。
 (1)全体構成
 図1に示されている給気システム10は、第1ユニット20と、第2ユニット30と、ダクト40と、コントローラ50とを備えている。第1ユニット20は、第1ファン21を有する。複数の第2ユニット30は、それぞれ、第2ファン31を有する。各第2ファン31は、空気を第2ユニット30から対象空間100に供給する。対象空間100は、例えば、建物内の部屋である。部屋は、例えば、床、天井及び壁によって空気の移動が制限された空間である。1つまたは複数の対象空間100に対して、複数の第2ユニット30が配設される。図1には、複数の第2ユニット30を備える給気システム10の代表例として、2つの第2ユニット30を備える給気システム10が1つの対象空間100に対して配設されている例が示されている。第2ユニット30の個数は、3以上であってもよく、適宜設定されるものである。先にも述べたが、第2ユニット30が配設される対象空間100は、2以上であってもよい。
 ダクト40は、第1ユニット20から第1ファン21により送出される第1空気SAを、複数の第2ユニット30に分配する。ダクト40は、主管41と、主管41から分岐した枝管42とを含んでいる。図1では、主管41が、第1ユニット20の外に配置されている場合が示されているが、主管41は、第1ユニット20の中に配置されてもよく、また第1ユニット20の中から第1ユニット20の外まで延びるように配置されてもよい。主管41は、第1ユニット20の中に配置されている場合には、第1ユニット20のケーシングの一部が主管41として機能する場合も含む。図1では、主管41の入口41aは、第1ユニット20に接続されている例が示されている。第1ファン21は、第1ユニット20内に配置されている。ここでは、第1ファン21から吹出される空気は、全てダクト40に流れ込むように構成されている。
 ダクト40の主管41の出口41bは、枝管42の入口42aに接続されている。枝管42の複数の出口42bは、複数の第2ユニット30に接続されている。
 各第2ユニット30と、対象空間100とは、通風路81により繋がっている。通風路81の入口81aが第2ユニット30に接続されている。各第2ファン31は、第2ユニット30の中で、ダクト40の出口42bから通風路81の入口81aに向う気流を発生させる。これは別の観点で見ると、各第2ファン31は、枝管42の出口42bから第1空気SAを吸引しているということである。各第2ファン31は、回転数を変更することにより各第2ユニット30の中(通風路81の入口81aの手前)の静圧を変更することができる。各第2ファン31は、ダクト40の静圧が一定であるとすると、回転数を大きくすることにより、各第2ユニット30の中(通風路81の入口81aの手前)の静圧を高くすることができる。第2ユニット30の中の静圧が高くなると、通風路81を流れる第1空気SAの空気量が多くなる。このように流れる空気量が変わることによって、各通風路81の出口81bから対象空間100に吹出される給気風量が変わる。
 コントローラ50は、メインコントローラ51と複数のサブコントローラ52とを含んでいる。メインコントローラ51と複数のサブコントローラ52とが互いに接続されて、コントローラ50が構成されている。メインコントローラ51は、第1ファン21の回転数を制御する。言い換えると、メインコントローラ51が第1ファン21の出力を制御する。第1ファン21の出力が高くなれば、第1ファン21の送風量が多くなる方向に第1ファン21の状態が変わる。
 各第2ユニット30に対しては、1つのサブコントローラ52が設けられている。各サブコントローラ52は、対応する第2ファン31に風量変更に関する指示を出す。各サブコントローラ52は、目標風量を記憶している。各サブコントローラ52は、目標風量に対して給気風量が不足していれば第2ファン31の回転数を増加させる指示(風量変更に関する指示)を出す。逆に、サブコントローラ52は、目標風量に対して給気風量が過剰であれば、第2ファン31の回転数を減少させる指示(風量変更に関する指示)を出す。
 コントローラ50は、複数の第2ファン31により対象空間100に供給される空気の空気量の情報を得る。空気量の情報は、例えば、1秒間当たりに対象空間100に供給すべき空気量であり、この供給すべき空気量を言い換えると必要給気風量ということになる。得られた空気量の情報を基に第1ファン21の要求出力を決定する。コントローラ50は、決定した要求出力になるように、第1ファン21の出力を制御する。具体的には、各サブコントローラ52が、対応する第2ユニット30から、当該第2ユニット30の空気量の情報を得ている。各サブコントローラ52は、空気量の情報をメインコントローラ51に出力する。
 (2)詳細構成
 (2-1)第1ユニット20
 第1ユニット20は、既に説明した第1ファン21以外に、熱交換器22、第4検知部23、温度センサ24及び水量調整弁25を有している。熱交換器22には、熱源ユニット60から熱媒体として例えば冷水または温水が供給される。熱交換器22に供給される熱媒体は、冷水または温水以外のもの、例えばブラインであってもよい。第4検知部23には、例えば、風量センサ、風速センサまたは差圧センサを用いることができる。
 第4検知部23は、第1ファン21が送風する風量を検知する。第4検知部23は、メインコントローラ51に接続されている。第4検知部23が検知した風量の値は、第4検知部23からメインコントローラ51に送信される。第4検知部23が検知した風量は、ダクト40の主管41を流れる風量である。言い換えると、第4検知部23が検知した風量は、複数の第2ユニット30から対象空間100に供給される給気風量の総量になる。
 温度センサ24は、第1ファン21からダクト40に送られる第1空気SAの温度を検知する。温度センサ24は、メインコントローラ51に接続されている。温度センサ24が検知した温度の値は、温度センサ24からメインコントローラ51に送信される。
 第1ユニット20は、通風路82を介して、対象空間100に繋がっている。通風路82を通って対象空間100から戻ってきた第2空気RAは、第1ファン21により、熱交換器22を通ってダクト40に送り出される。対象空間100から戻ってきたこの第2空気RAは、対象空間100の中に在った空気である。熱交換器22を通るときに、戻ってきた第2空気RAは、熱交換器22を流れる冷水または温水と熱交換して調和空気になる。熱交換器22で熱交換をしてダクト40に送り出される第1空気SAに与えられる熱量は、水量調整弁25によって調整される。水量調整弁25の開度は、メインコントローラ51により制御される。水量調整弁25の開度が大きくなれば、熱交換器22に流れる水量が多くなり、熱交換器22と第1空気SAとの間で単位時間あたりに交換される熱量が多くなる。逆に、水量調整弁25の開度が小さくなれば、熱交換器22に流れる水量が少なくなり、熱交換器22と第1空気SAとの間の単位時間あたりの熱交換量が少なくなる。
 (2-2)第2ユニット30
 第2ユニット30は、既に説明した第2ファン31以外に、第2検知部32を有している。第2検知部32は、第2ファン31が送風する風量を検知する。各第2検知部32は、対応する1つのサブコントローラ52に接続されている。第2検知部32が検知した風量の値は、サブコントローラ52に送信される。第2検知部32が検知した風量は、通風路81を流れる風量である。言い換えると、第2検知部32が検知した風量は、各第2ユニット30から対象空間100に供給される給気風量になる。第2検知部32には、例えば、風量センサ、風速センサまたは差圧センサを用いることができる。
 (2-3)リモートセンサ70
 複数のリモートセンサ70は、温度センサの機能を有している。各リモートセンサ70は、対応するサブコントローラ52に、対象空間100の第2空気RAの温度を示すデータを送信できるように構成されている。
 (3)給気システム10の動作
 複数のサブコントローラ52は、それぞれ、接続されているリモートセンサ70から、検知した対象空間の温度の値を受信する。各サブコントローラ52は、設定温度を示すデータを保持している。例えば、リモートコントローラ(図示せず)などから、各サブコントローラ52に設定温度を示すデータが予め送信される。各サブコントローラ52は、リモートコントローラなどから受信した設定温度を示すデータを内蔵するメモリなどの記憶装置52b(図3参照)に記憶している。各サブコントローラ52が設定温度の値をメインコントローラ51に送信する。メインコントローラ51は、設定温度に基づき、対応するリモートセンサ70の検知した第2空気RAの温度に応じて、各第2ユニット30の目標風量を決定する。メインコントローラ51は、目標風量の値を各サブコントローラ52に送信する。
 メインコントローラ51は、対象空間100に供給すべき目標風量の総量に応じて、第1ファン21の出力を決定する。
 例えば、主管41の出口41b(枝管42の入口42a)の静圧が主管41の入口41aの静圧と枝管42の出口42bの静圧の中間の値をとる場合と、中間の値よりも大きな値をとる場合とを比較すると、中間の値よりも大きな値をとる場合の方が第1ファン21の出力の割合が複数の第2ファン31の出力の割合よりも大きくなる。逆に、主管41の出口41b(枝管42の入口42a)の静圧が当該中間の値をとる場合と中間の値よりも小さな値をとる場合とを比較すると、小さな値をとる場合の方が第1ファン21の出力の割合が複数の第2ファン31の出力の割合よりも小さくなる。第1ファン21の出力と複数の第2ファン31の出力の割合には、効率の良い範囲がある。そこで、メインコントローラ51は、効率の良い割合になるように、第1ファン21の出力を決定する。言い換えると、それは、メインコントローラ51が、目標風量の総量に対して、予め定められている適切な出力に、第1ファン21の出力を決定する、ということである。
 例えば、第1ファン21の出力の次のような決定方法を考えれば、第1ファン21の出力に消費電力の削減に適した第1ファン21の出力の範囲があることが分かる。第1ファン21の出力を上げて第1ファン21及び複数の第2ファン31の消費電力の総計が上がるのであれば、第1ファン21の出力を徐々に下げ、第1ファン21及び複数の第2ファン31の消費電力の総計が再び上昇に転じる前の第1ファン21の出力に決定すれば、その決定された出力の範囲が他の範囲よりも消費電力が小さな範囲になる。逆に、第1ファン21の出力を下げて第1ファン21及び複数の第2ファン31の消費電力の総計が上がるのであれば、第1ファン21の出力を徐々に上げ、第1ファン21及び複数の第2ファン31の消費電力の総計が再び上昇に転じる前の第1ファン21の出力に決定すれば、その決定された出力の範囲が他の範囲よりも消費電力が小さな範囲になる。第1ファン21の出力を上げて第1ファン21及び複数の第2ファン31の消費電力の総計が下がるのであれば、第1ファン21の出力を徐々に上げ、第1ファン21及び複数の第2ファン31の消費電力の総計が再び上昇に転じる前の第1ファン21の出力に決定すれば、その決定された出力の範囲が他の範囲よりも消費電力が小さな範囲になる。逆に、第1ファン21の出力を下げて第1ファン21及び複数の第2ファン31の消費電力の総計が下がるのであれば、第1ファン21の出力を徐々に下げ、第1ファン21及び複数の第2ファン31の消費電力の総計が再び上昇に転じる前の第1ファン21の出力に決定すれば、その決定された出力の範囲が他の範囲よりも消費電力が小さな範囲になる。ただし、第1ファン21の適切な出力を決定するのはこのような方法には限られない。
 メインコントローラ51が目標風量を決定して目標風量の値を各サブコントローラ52に送信した後、ファン効率が最も高い第2ユニット30以外の各第2ユニット30は、対応するサブコントローラ52により第2ファン31の回転数を調整される。複数の第2ファン31の回転数の調整は互いに独立して行われる。
このとき、決定された第1ファン21の出力において、ファン効率が最も高い第2ユニット30の第2ファン31の回転数が最大になっている。ここで、ファン効率が最も高い第2ユニット30は、枝管42の入口42aの静圧が同じで対象空間100に供給する給気風量が同じ場合に、消費エネルギーが最も小さい第2ユニット30である。また、ファン効率が最も低い第2ユニット30は、枝管42の入口42aの静圧が同じで対象空間100に供給する給気風量が同じ場合に、消費エネルギーが最も大きい第2ユニット30である。
 各サブコントローラ52は、給気風量を目標風量に一致させるべく、各第2ファン31の回転数を制御する。複数のサブコントローラ52は、互いに独立して、複数の第2ファン31の回転数を制御する。各サブコントローラ52は、目標風量に対して、第2検知部32が検知した風量が小さければ、各第2ファン31の回転数を増加させる。各サブコントローラ52は、目標風量に対して、第2検知部32が検知した風量が多ければ、各第2ファン31の回転数を減少させる。もし、ファン効率が最も高い第2ユニット30の回転数が下がったときには、メインコントローラ51は、第1ファン21の出力を変更して、ファン効率が最も高い第2ユニット30の回転数が最大になるように調整する。
 風量を変更するとき、メインコントローラ51は、複数の第2ファン31の中の少なくとも1台の第2ファンの運転状態または複数の第2ファン31の中の少なくとも1台の第2ファン31の風量を変更するときには、第1ファン21及び複数の第2ファン31の中のファン効率の高いファンの出力を増やすことを優先するかまたはファン効率の低いファンの出力を減らすことを優先する。言い換えると、メインコントローラ51は、対象空間100への給気風量を多くする場合には、第1ファン21及び複数の第2ファン31の中のファン効率の高いファンの出力を増やすように、第1ファン21の出力及び複数の第2ユニット30の目標風量を決定する。逆に、メインコントローラ51は、対象空間100への給気風量を少なくする場合には、第1ファン21及び複数の第2ファン31の中のファン効率の高いファンの出力を減らすように、第1ファン21の出力及び複数の第2ユニット30の目標風量を決定する。
 しかし、メインコントローラ51は、複数の第2ユニット30の中のファン効率が最大のものの風量が目標風量に達しない場合には、第1ファン21の出力を増加させる。このとき、メインコントローラ51は、第1ファン21出力を増加させ且つ、ファン効率が最大の第2ユニット30の第2ファン31の回転数を最大に保たせる。
 (4)変形例
 (4-1)変形例1A
 上記実施形態では、メインコントローラ51が第1ファン21の出力を決定する際、メインコントローラ51は、複数の第2ファン31のうちのファン効率が最も高いものの回転数が最大となるように決定する場合について説明した。
 しかし、メインコントローラ51が第1ファン21の出力を決定する際、メインコントローラ51は、複数の第2ファン31のうちのファン効率が最も低いものの回転数が最小となるように、第1ファン21の出力を決定するように構成されてもよい。この場合、ファン効率が最も低い第2ユニット30以外の各第2ユニット30は、対応するサブコントローラ52が第2ファン31の回転数を調整する。複数の第2ファン31の回転数の調整は互いに独立して行われる。
 また、メインコントローラ51が目標風量を小さくする場合、メインコントローラ51は、複数の第2ファン31のうちのファン効率が最も高いもの処理静圧を一定とするように、第1ファン21の出力を決定する構成であってもよい。このように構成される場合、各第2ユニット30のうち処理静圧が一定の第2ユニット30は、他に比べて効率の高い第2ファン31の回転数を高く保つことができるので、給気システム10の全体としての効率を高く保つことができる。このように、処理静圧を一定に保つ構成を採用する場合には、例えば、各第2ユニット30が、第2ファン31の処理静圧を検知するための差圧センサ33(図2参照)を備えるように構成される。或いは、第2検知部32の検知結果と第2ファン31の回転数からコントローラ50が処理静圧を算出するように構成される。コントローラ50は、ファン効率が最も高い第2ユニット30の差圧センサ33の検出値に基づいて第1ファン21の出力を決める。この場合、処理差圧を一定に保たれる第2ユニット30以外の各第2ユニット30は、対応するサブコントローラ52が第2ファン31の回転数を調整する。複数の第2ファン31の回転数の調整は互いに独立して行われる。
 また、メインコントローラ51が目標風量を大きくする場合、メインコントローラ51は、複数の第2ファン31のうちのファン効率が最も低いものの処理静圧を一定とするように、第1ファン21の出力を決定する構成であってもよい。このように構成される場合、各第2ユニット30のうち処理静圧が一定の第2ユニット30は、他に比べて効率の低い第2ファン31の回転数を低く保つことができるので、給気システム10の全体としての効率を高く保つことができる。このように、処理静圧を一定に保つ構成を採用する場合には、例えば、各第2ユニット30が、第2ファン31の処理静圧を検知するための差圧センサ33(図2参照)を備えるように構成される。或いは、第2検知部32の検知結果と第2ファン31の回転数からコントローラ50が処理静圧を算出するように構成される。コントローラ50は、ファン効率が最も低い第2ユニット30の差圧センサ33の検出値に基づいて第1ファン21の出力を決める。この場合、処理差圧を一定に保たれる第2ユニット30以外の各第2ユニット30は、対応するサブコントローラ52が第2ファン31の回転数を調整する。複数の第2ファン31の回転数の調整は互いに独立して行われる。
 (4-2)変形例1B
 上記実施形態では、リモートセンサ70が温度センサを有する場合について説明したが、リモートセンサ70は、例えば、温度センサ、CO濃度センサ及び湿度センサのうちの少なくとも1つの機能持つものであってもよい。このように構成された場合、複数のサブコントローラ52は、それぞれ、接続されているリモートセンサ70から、対象空間100の温度、CO濃度及び湿度のうちの少なくとも1つの検知値を受信する。各サブコントローラ52は、リモートセンサ70の検知対象の設定値のデータを保持している。各サブコントローラ52が、これら温度、CO濃度及び湿度のうちの少なくとも1つの設定値をメインコントローラ51に送信する。メインコントローラ51は、設定値に基づき、対応するリモートセンサ70の検知値に応じて、各第2ユニット30の目標風量を決定する。メインコントローラ51は、目標風量の値を各サブコントローラ52に送信する。
 (4-3)変形例1C
 上記実施形態では、第1ユニット20が熱交換器22を有している場合について説明した。しかし、第1ユニット20は、熱交換器22を構成しない形態をとることもできる。給気システム10は、例えば、対象空間100のCO濃度が高いときに、対象空間100を換気するシステムとして構成されてもよい。
 (4-4)変形例1D
 コントローラ50はコンピュータにより実現されるものである。コントローラ50は、制御演算装置51a,52aと記憶装置51b,52bとを備える。制御演算装置51a,52aには、CPU又はGPUといったプロセッサを使用できる。制御演算装置51a,52aは、記憶装置51b,52bに記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置51a,52aは、プログラムに従って、演算結果を記憶装置51b,52bに書き込んだり、記憶装置51b,52bに記憶されている情報を読み出したりすることができる。図3は、制御演算装置51a,52aにより実現される各種の機能ブロックを示している。記憶装置51b,52bは、データベースとして用いることができる。
 (4-5)変形例1E
 第1ユニット20には、図4に示されているように、外気導入ユニット110が取り付けられてもよい。外気導入ユニット110は、第3ファン111及び第5検知部112を有している。外気導入ユニット110は、第3ファン111により、対象空間100の外から外気OAを取り入れて第1ユニット20に送風する。第5検知部112は、第1ユニット20に送られる外気OAの風量を検知する。第5検知部112は、検知した外気OAの送風量の値をメインコントローラ51に送信する。外気導入ユニット110から外気OAが第1ユニット20に送られる場合に、メインコントローラ51は、第1ファン21の出力の制御について外気OAの送風量に応じた補正を行うように構成されてもよい。第5検知部112には、例えば、風量センサ、風速センサまたは差圧センサを用いることができる。
 (4-6)変形例1F
 変形例1Fに係る給気システム10には、図5に示されているように、図1に示された実施形態に係る給気システム10の第1ユニット20の下流側に、第3検知部である圧力センサ90が配置されている。この圧力センサ90は、第1ファン21により送出された第1空気SAの圧力を検知する。圧力センサ90は、例えば、ダクト40の中の第1ユニット20の近傍、言い換えるとダクト40の入口41aの近傍に配置される。この圧力センサ90以外の構成は、上記実施形態の給気システム10と同様であるので、説明を省略する。メインコントローラ51は、圧力センサ90が検知した第1空気SAの圧力の値を取得する。メインコントローラ51は、第1空気SAの圧力の値が所定の範囲になるように、第1ファン21の回転数を制御する。メインコントローラ51は、第1空気SAの圧力の値が所定の範囲の下限値よりも小さければ、第1ファン21の回転数を増加させる。メインコントローラ51は、第1空気SAの圧力の値が所定の範囲の上限値よりも大きければ、第1ファン21の回転数を減少させる。
 また、図6に示されているように、図4に示された変形例1Eに係る給気システム10の第1ユニット20の下流側に、第3検知部である圧力センサ90を配置してもよい。図6のコントローラ50の構成が、図7に示されている。
 (5)特徴
 (5-1)
 以上説明した給気システム10は、第1ユニット20と、第2ユニット30と、ダクト40と、第1検知部であるリモートセンサ70と、第1ユニット、第1コントローラであるメインコントローラ51とを備えている。第2ユニット30は、第1空気SAを対象空間100に供給する第2ファン31を有している。ダクト40は、第1ユニット20から第1ファン21により送出された第1空気SAを第2ユニット30に搬送する。リモートセンサ70は、対象空間100の第2空気RAの情報を検知する。第2空気RAの情報は、例えば、第2空気RAの温度、第2空気RAのCO濃度または第2空気RAの湿度である。メインコントローラ51は、第2ユニット30及びリモートセンサ70と通信を行う。第2ユニット30は、第2ファン31が送風する風量を検知する第2検知部である第2検知部32と、第2ファンの回転数を制御する第2コントローラであるサブコントローラ52とを含んでいる。メインコントローラ51は、リモートセンサ70から取得した第2空気RAの情報である例えば温度の検出値、CO濃度の検出値または湿度の検出値に基づき、第2ユニット30の目標風量を決定する。メインコントローラ51は、決定した目標風量をサブコントローラ52に指示する。サブコントローラ52は、第2検知部32により検知された風量が、目標風量になるように、第2ファン31の回転数を制御する。
 このように構成された給気システム10は、第2ユニット30が、メインコントローラ51から風量の指示値を受け取り、メインコントローラ51に依存せずにサブコントローラ52によって第2ユニット30自身で風量の制御を自動的に行うことができる。このようにメインコントローラ51から第2ユニット30に対しては、適宜風量の指示値を与えればよく、メインコントローラ51の制御負荷を小さくすることができる。
 (5-2)
 上記実施形態の給気システム10では、第1ユニット20が、熱交換器22で熱媒体と熱交換して、空気調和された空気を複数の第2ユニット30に送ることができる。複数の第2ユニット30は、この空気調和された空気を用いて、対象空間100の空気調和ができる。
 (5-3)
 上述の給気システム10のコントローラ50は、対象空間100の温度、湿度及びCO濃度のうちの少なくとも一つ応じて複数の第2ユニット30により供給される空気の風量を決定し、複数の第2ユニット30のそれぞれの風量を制御している。このような給気システム10では、コントローラ50より、複数の第2ユニット30のそれぞれの風量を制御して、対象空間100の温度、湿度及びCO濃度のうちの少なくとも一つを適正な範囲に保つことができる。
 (5-4)
 変形例1Fに係る給気システム10では、第1ユニット20の下流側に配置され、第1ファン21により送出された第1空気SAの圧力を検知する第3検知部である圧力センサ90を備えている。メインコントローラ51は、圧力センサ90から取得した圧力の値が所定の範囲になるように、第1ファン21の回転数を制御する。その結果、第1ユニット20の下流側の圧力の値が所定の範囲になることにより、第1ユニット20の下流側の圧力の値が所定の範囲から外れる場合に比べて、第1ファン21及び第2ファン31で発生する余分な費電力を省くことができる。
 (5-5)
 上述の給気システム10では、メインコントローラ51が、第1ファン21の出力を対象空間100に対する給気風量の総量に合わせて適正な値に制御することができる。給気風量の総量が、複数の第2ファン31の第1空気SAの空気量の一例である。メインコントローラ51のこのような制御により、給気システム10は、システム全体としての消費エネルギーを抑制することができる。
 (5-6)
 上述の給気システム10は、メインコントローラ51が、複数の第2ファン31の中の少なくとも1台の運転状態または複数の第2ファン31の中の少なくとも1台の第2ファン31の風量を変更するときには、第1ファン21及び複数の第2ファン31の中のファン効率の高いファンの出力を増やすことを優先するかまたはファン効率の低いファンの出力を減らすことを優先するように構成することができる。このように構成された給気システム10では、メインコントローラ51が、ファン効率の高いファンの出力を優先的に増やし、またはファン効率の低いファンの出力を減らすよう制御して、給気システム10の消費エネルギーを抑制する。
 (5-7)
 上述の給気システム10は、メインコントローラ51が、複数の第2ファン31の中のファン効率が最も高い第2ファン31の処理静圧が一定になるように若しくは複数の第2ファン31の中のファン効率が最も高い第2ファン31のファン回転数が最大になるように、第1ファン21の出力を決めることで、ファン効率の低い第2ファン31の出力を優先的に減らせるように構成することができる。このように構成する場合には、ファン効率の低い第2ファン31の出力を優先的に減らした結果、ファン効率のより高い第2ファン31の出力を減らす場合に比べて消費エネルギーを削減することができる。
 (5-8)
 上述の給気システム10は、メインコントローラ51が、複数の第2ファン31の中のファン効率が最も低い第2ファン31の処理静圧が一定になるように若しくは複数の第2ファン31の中のファン効率が最も低い第2ファン31のファン回転数が最小になるように、第1ファン21の出力を決めることで、ファン効率の高いファンの出力を優先的に増やせるように構成することができる。このように構成する場合には、ファン効率の高い第2ファン31の出力を優先的に増やした結果、ファン効率のより低い第2ファン31の出力を増やす場合に比べて消費エネルギーを削減することができる。
 (5-9)
 上述の給気システム10では、メインコントローラ51は、複数の第2ファン31の中のファン効率が最大のものの風量が目標風量に達しない場合に、第1ファン21の出力を増加させる。このように構成された給気システム10では、メインコントローラ51が、第1ファン21の出力を増加させて、複数の第2ファン31の中のファン効率が最大のものの風量が目標風量に達するように制御することができる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10 給気システム
 20 第1ユニット
 21 第1ファン
 22 熱交換器
 23 第4検知部
 30 第2ユニット
 31 第2ファン
 32 第2検知部
 33 差圧センサ
 40 ダクト
 50 コントローラ
 51 メインコントローラ (第1コントローラの例)
 52 サブコントローラ (第2コントローラの例)
 70 リモートセンサ (第1検知部の例)
 90 圧力センサ(第3検知部の例)
特開2001-304614号公報

Claims (11)

  1.  第1ファン(21)を有する第1ユニット(20)と、
     第1空気を対象空間に供給する第2ファン(31)を有する第2ユニット(30)と、
     前記第1ユニットから前記第1ファンにより送出された前記第1空気を前記第2ユニットに搬送するダクト(40)と、
     前記対象空間の第2空気の情報を検知する第1検知部(70)と、
     前記第1ユニット、前記第2ユニット及び前記第1検知部と通信を行う第1コントローラ(51)と、
    を備え、
     前記第2ユニットは、前記第2ファンが送風する風量を検知する第2検知部(32)と、前記第2ファンの回転数を制御する第2コントローラ(52)とを含み、
     前記第1コントローラは、前記第1検知部から取得した前記第2空気の情報に基づき、前記第2ユニットの目標風量を決定し、前記目標風量を前記第2コントローラに指示し、
     前記第2コントローラは、前記第2検知部により検知された風量が、前記目標風量になるように、前記第2ファンの回転数を制御する、給気システム(10)。
  2.  前記第1ユニットは、熱媒体の流れる熱交換器(22)を有し、
     前記熱交換器は、前記第1ファンにより送出される前記第1空気と前記熱媒体との間で熱交換を行う、
    請求項1に記載の給気システム(10)。
  3.  前記第1検知部は、温度センサ、CO濃度センサまたは湿度センサであり、
     前記第1コントローラは、予め設定された対象空間の設定温度、設定CO濃度または設定湿度と、前記第1検知部によって検知された値とに基づき、前記第2ユニットの前記目標風量を決定する、
    請求項2に記載の給気システム(10)。
  4.  前記第1ユニットの下流側に配置され、前記第1ファンにより送出された前記第1空気の圧力を検知する第3検知部をさらに備え、
     前記第1コントローラは、前記第3検知部から取得した圧力の値が所定の範囲になるように、前記第1ファンの回転数を制御する、
    請求項1から3のいずれか一項に記載の給気システム(10)。
  5.  前記第2ユニットを複数備え、
     前記ダクトは、前記第1ユニットから前記第1ファンにより送出される前記第1空気を複数の前記第2ユニットに搬送し、
     前記第1検知部は、複数の前記第2ユニットそれぞれに対応して複数設けられ、
     前記第1コントローラは、複数の前記第1検知部から取得した前記対象空間の前記第2空気の情報に基づき、複数の前記第2ユニットの複数の前記目標風量を決定し、前記各第2コントローラに前記各目標風量を指示する、
    請求項1から4のいずれか一項に記載の給気システム(10)。
  6.  前記第1コントローラが、複数の前記第2ファンの中の少なくとも1台の前記第2ファンの運転状態または複数の前記第2ファンの中の少なくとも1台の前記第2ファンの風量を変更するときには、前記第1ファン及び複数の前記第2ファンの中のファン効率の高いファンの出力を増やすことを優先するかまたはファン効率の低いファンの出力を減らすことを優先する、
    請求項5に記載の給気システム(10)。
  7.  前記第1コントローラが、複数の前記第2ファンの中のファン効率が最も高いものの処理静圧が一定になるように若しくは複数の前記第2ファンの中のファン効率が最も高いもののファン回転数が最大になるように、前記第1ファンの出力を決める、
    請求項6に記載の給気システム(10)。
  8.  前記第1コントローラが、複数の前記第2ファンの中のファン効率が最も低いものの処理静圧が一定になるように若しくは複数の前記第2ファンの中のファン効率が最も低いもののファン回転数が最小になるように、前記第1ファンの出力を決める、
    請求項6に記載の給気システム(10)。
  9.  複数の前記第2ファンの処理静圧を検知するための複数の差圧センサ(33)を備え、
     前記第1コントローラが、複数の前記差圧センサの検出値に基づいて前記第1ファンの出力を決める、
    請求項7または8に記載の給気システム(10)。
  10.  前記第1コントローラは、複数の前記第2ファンの中のファン効率が最大のものの風量が前記目標風量に達しない場合に、前記第1ファンの出力を増加させる、
    請求項7または請求項8に記載の給気システム(10)。
  11.  前記第1ファンにより送出される前記第1空気の風量を検知するための第4検知部(23)をさらに備え、
     前記第1コントローラが、前記第1ファン及び複数の前記第2ファンのファン効率の比較に、複数の前記第2検知部及び前記第4検知部のうちの少なくとも一方を用いる、
    請求項6から9のいずれか一項に記載の給気システム(10)。
PCT/JP2020/016620 2019-04-15 2020-04-15 給気システム WO2020218127A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20794326.7A EP3957926B1 (en) 2019-04-15 2020-04-15 Air supply system
CN202080029111.9A CN113692516B (zh) 2019-04-15 2020-04-15 供气系统
AU2020261812A AU2020261812B2 (en) 2019-04-15 2020-04-15 Air supply system
US17/603,785 US12320539B2 (en) 2019-04-15 2020-04-15 Air supply system
ES20794326T ES2955485T3 (es) 2019-04-15 2020-04-15 Sistema de suministro de aire

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019-077306 2019-04-15
JP2019-077305 2019-04-15
JP2019-077307 2019-04-15
JP2019077305 2019-04-15
JP2019077306 2019-04-15
JP2019077307 2019-04-15
JP2019-116144 2019-06-24
JP2019116144 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020218127A1 true WO2020218127A1 (ja) 2020-10-29

Family

ID=72942478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016620 WO2020218127A1 (ja) 2019-04-15 2020-04-15 給気システム

Country Status (6)

Country Link
US (1) US12320539B2 (ja)
EP (1) EP3957926B1 (ja)
CN (1) CN113692516B (ja)
AU (1) AU2020261812B2 (ja)
ES (1) ES2955485T3 (ja)
WO (1) WO2020218127A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102025A (ja) * 2020-12-25 2022-07-07 ダイキン工業株式会社 空気処理システムの試運転方法
JP2022102024A (ja) * 2020-12-25 2022-07-07 ダイキン工業株式会社 ファンユニットの選定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181425B2 (ja) * 2019-12-04 2022-11-30 日立グローバルライフソリューションズ株式会社 空調システム
US20220154964A1 (en) * 2020-11-16 2022-05-19 Mumarba LLC Artificial Breeze System
US20220154972A1 (en) * 2020-11-19 2022-05-19 Chilled Beam Controls, LLC Terminal unit and method for improved indoor cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304614A (ja) 2000-04-24 2001-10-31 Kimura Kohki Co Ltd 空気調和システム
JP2011052905A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 空調制御システム
JP2012077968A (ja) * 2010-09-30 2012-04-19 Sanken Setsubi Kogyo Co Ltd 空調方法及び空調システム

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673840U (ja) 1979-11-13 1981-06-17
JPS59184033U (ja) 1983-05-26 1984-12-07 三菱電機株式会社 空調換気扇
JPS6021653U (ja) 1983-07-22 1985-02-14 株式会社東芝 空気調和機
JPS604008B2 (ja) 1984-03-19 1985-02-01 日本発条株式会社 電車線支持装置
US4513574A (en) 1984-04-30 1985-04-30 Tempmaster Corporation Low Temperature air conditioning system and method
JPS6172947A (ja) 1984-09-18 1986-04-15 Takasago Thermal Eng Co Ltd クリ−ンル−ムの形成法およびこの方法に使用する空気調和設備ユニツト
JPH0145001Y2 (ja) 1984-10-16 1989-12-26
KR900001875B1 (ko) 1985-02-20 1990-03-26 미쓰비시전기주식회사 공기조화기
US5179524A (en) 1988-04-01 1993-01-12 Carrier Corporation Fan-powered mixing box assembly
JPH01300135A (ja) 1988-05-25 1989-12-04 Matsushita Electric Works Ltd 換気・循環冷暖房設備
JPH0278849A (ja) 1988-09-14 1990-03-19 Toshiba Corp 空気調和機
US5004149A (en) 1989-01-24 1991-04-02 Kabushiki Kaisha Toshiba Central air conditioning system having compensating control function for total heat load in a plurality of rooms
US4997030A (en) 1989-01-24 1991-03-05 Kabushiki Kaisha Toshiba Central air conditioning system having remote controller in a plurality of rooms for starting or stopping air conditioning apparatus
JP2760556B2 (ja) 1989-03-30 1998-06-04 株式会社東芝 ダクト式空気調和装置
US5230719A (en) 1990-05-15 1993-07-27 Erling Berner Dehumidification apparatus
JPH0432634A (ja) 1990-05-29 1992-02-04 Toshiba Corp 空気調和機
JP2504315B2 (ja) 1990-09-05 1996-06-05 三菱電機株式会社 空気調和機
JP2838941B2 (ja) 1991-11-01 1998-12-16 三菱電機株式会社 ダクト式空気調和機
JPH05149605A (ja) 1991-11-30 1993-06-15 Toshiba Corp 空気調和機
JP3104344B2 (ja) 1991-12-10 2000-10-30 ダイキン工業株式会社 空気調和装置
JPH05223328A (ja) 1992-02-14 1993-08-31 Three K Kk 集中式空気調和設備における送風量制御方法
JPH0650597A (ja) 1992-07-30 1994-02-22 Toshiba Ave Corp 空気調和機
JP3181116B2 (ja) 1992-11-30 2001-07-03 東芝キヤリア株式会社 空気調和機
JPH0728033A (ja) 1993-07-07 1995-01-31 Fujitsu Ltd アクティブマトリクス型液晶表示装置
US5417368A (en) 1994-03-04 1995-05-23 Carrier Corporation Leaving air temperature control of heating system
US5417077A (en) 1994-03-04 1995-05-23 Carrier Corporation Leaving air temperature control of cooling system
JPH07260201A (ja) * 1994-03-22 1995-10-13 Hitachi Plant Eng & Constr Co Ltd アンダーフロア空調システム
JPH0842909A (ja) 1994-07-29 1996-02-16 Showa Tekko Kk 空調システム
JPH08261545A (ja) 1995-03-24 1996-10-11 Mitsubishi Electric Corp 空気調和機
US5772501A (en) 1995-10-12 1998-06-30 Gas Research Institute Indoor environmental conditioning system and method for controlling the circulation of non-conditioned air
IL116764A (en) 1996-01-15 2001-01-11 Acclim Line Ltd Central air conditioning system
JP3194220B2 (ja) 1997-02-06 2001-07-30 株式会社山武 Vav制御システム
JPH10253132A (ja) 1997-03-14 1998-09-25 Toshiba Corp 空気調和システム
US6076346A (en) 1997-09-29 2000-06-20 Murata Kikai Kabushiki Kaisha Twisting apparatus
JPH11132489A (ja) 1997-10-29 1999-05-21 Kenchiku Setsubi Sekkei Kenkyusho:Kk 空調システム
US5863246A (en) 1997-12-15 1999-01-26 Carrier Corporation Variable air volume control system
US6601168B1 (en) 1999-11-19 2003-07-29 Hewlett-Packard Development Company, L.P. Computer fan speed system to reduce audible perceptibility of fan speed changes
JP4495842B2 (ja) 2000-09-01 2010-07-07 Hoya株式会社 ガラス成形品の製造方法及び製造装置、並びにガラス製品の製造方法
TW465838U (en) 2000-10-24 2001-11-21 Hon Hai Prec Ind Co Ltd Electrical connector
JP2002162067A (ja) 2000-11-21 2002-06-07 Daikin Ind Ltd 空気調和装置
JP2002372277A (ja) 2001-06-18 2002-12-26 Toshiba Kyaria Kk 換気ユニット
US20050087614A1 (en) * 2003-10-23 2005-04-28 Dennis Ruise Method and apparatus for delivering heated or conditioned air to a remote room in a structure
US6964174B2 (en) 2004-01-20 2005-11-15 Carrier Corporation Method and system for determining relative duct sizes by zone in an HVAC system
JP4418885B2 (ja) 2004-05-17 2010-02-24 大成建設株式会社 天井隠蔽型空調機を用いたダクトレス方式による躯体蓄熱空調システム
US8348732B2 (en) * 2004-11-12 2013-01-08 Adaptive-Ac, Inc. Airflow control system
US7347774B2 (en) * 2004-11-12 2008-03-25 Peter S. Aronstam Remote autonomous intelligent air flow control system and network
US20060116067A1 (en) 2004-12-01 2006-06-01 Federspiel Clifford C Method and apparatus for determining critical pressure of variable air volume heating, ventilating, and air-conditioning systems
ES2639539T3 (es) 2005-03-10 2017-10-27 Aircuity Incorporated Sistema de muestreo de aire de múltiples puntos que tiene sensores comunes para proporcionar información de parámetros de calidad de aire mezclada para monitoreo y control de construcción
JP4979308B2 (ja) * 2006-08-28 2012-07-18 三機工業株式会社 空調システム
US20080242218A1 (en) 2007-03-27 2008-10-02 Matsushita Electric Works, Ltd. Ventilation system
JP2009145004A (ja) 2007-12-17 2009-07-02 Kazuo Sato 回転型全熱交換器
JP2009186062A (ja) 2008-02-05 2009-08-20 Yamatake Corp 無線制御システム
CN101303153A (zh) * 2008-06-30 2008-11-12 湖南大学 变风量空调系统送风静压优化控制方法及其装置
US8814639B1 (en) 2008-10-29 2014-08-26 Climatecraft Technologies, Inc. Fan system comprising fan array with surge control
JP5524467B2 (ja) 2008-10-31 2014-06-18 高砂熱学工業株式会社 サーバ室用空調システム
JP5312055B2 (ja) * 2009-01-07 2013-10-09 三菱電機株式会社 空気調和システム
JP2010181046A (ja) * 2009-02-03 2010-08-19 Daikin Ind Ltd クリーンルーム空調システム
JP5239959B2 (ja) 2009-03-12 2013-07-17 ダイキン工業株式会社 空調システム
WO2010131336A1 (ja) 2009-05-13 2010-11-18 三菱電機株式会社 空気調和装置
US8483883B1 (en) 2009-06-16 2013-07-09 David Stanley Watson System and method for controlling supply fan speed within a variable air volume system
US20100323604A1 (en) 2009-06-19 2010-12-23 Michael Duffe Portable air distribution device
JP5426322B2 (ja) 2009-10-30 2014-02-26 三機工業株式会社 空調システム及び空調方法
KR101128574B1 (ko) 2009-11-30 2012-03-23 린나이코리아 주식회사 실내환기장치
FI20096397A0 (fi) 2009-12-23 2009-12-23 Enervent Oy Ab Ilmanvaihtolaite
JP4993014B2 (ja) * 2010-09-30 2012-08-08 ダイキン工業株式会社 コントローラおよび空調処理システム
JP5195899B2 (ja) * 2010-12-28 2013-05-15 ダイキン工業株式会社 クリーンルーム用空調システム
JP2012154596A (ja) 2011-01-28 2012-08-16 Azbil Corp 空調制御装置および方法
CN103534533B (zh) 2011-05-13 2017-02-01 通风系统控股有限公司 用于空气通风的通风系统及穿过通风系统实现通风的方法
JP5427833B2 (ja) 2011-05-18 2014-02-26 パナソニック株式会社 クリーンルームの逆流防止装置
CN103946638B (zh) 2011-11-16 2017-05-24 松下知识产权经营株式会社 给排型换气装置
US9188355B1 (en) * 2012-01-03 2015-11-17 Digital Control Systems, Inc. Fan array control system
JP5988112B2 (ja) 2012-03-09 2016-09-07 パナソニックIpマネジメント株式会社 換気扇および換気システム
US9109989B2 (en) 2012-04-04 2015-08-18 International Business Machines Corporation Corrosion detector apparatus for universal assessment of pollution in data centers
US20130281000A1 (en) 2012-04-23 2013-10-24 Douglas A. Newcomer Environmental control systems and methods of configuring environmental control systems
JP5323234B2 (ja) 2012-07-12 2013-10-23 株式会社東芝 空調制御システムおよびこれに利用する空調制御装置
JP5533973B2 (ja) 2012-10-10 2014-06-25 ダイキン工業株式会社 調湿換気装置
JP6142503B2 (ja) 2012-10-31 2017-06-07 マックス株式会社 換気装置
JP6122281B2 (ja) 2012-11-12 2017-04-26 ローヤル電機株式会社 換気装置及びその熱交換ユニット
JP6420565B2 (ja) 2014-04-18 2018-11-07 株式会社竹中工務店 空調システム
GB2528842B (en) 2014-07-29 2021-06-02 Advanced Risc Mach Ltd A data processing apparatus, and a method of handling address translation within a data processing apparatus
US9850404B2 (en) 2014-07-31 2017-12-26 Nike, Inc. Vacuum enabled article transfer
ES3006460T3 (en) 2014-12-11 2025-03-18 Mitsubishi Electric Corp Duct-type air conditioning system
EP3260791B1 (en) 2015-02-18 2019-04-10 Daikin Industries, Ltd. Air conditioning system
CN107710610B (zh) 2015-07-03 2019-04-23 株式会社村田制作所 高频模块
US10274217B2 (en) * 2015-07-24 2019-04-30 Aeolus Building Efficiency Integrated airflow control for variable air volume and air handler HVAC systems to reduce building HVAC energy use
JP6588777B2 (ja) * 2015-09-08 2019-10-09 株式会社竹中工務店 空調装置
TWI766588B (zh) 2015-10-30 2022-06-01 日商半導體能源研究所股份有限公司 電容器、半導體裝置、模組以及電子裝置的製造方法
US20170219231A1 (en) * 2016-02-01 2017-08-03 Hon Hai Precision Industry Co., Ltd. Energy efficient air conditioning system
WO2017159208A1 (ja) 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム
AU2017271592A1 (en) 2016-05-27 2018-12-06 Twin City Fan Companies, Ltd. Tunnel fan and method
WO2018100657A1 (ja) 2016-11-30 2018-06-07 三菱電機株式会社 空調用室内機
JP6906302B2 (ja) 2016-12-20 2021-07-21 三菱電機株式会社 空気調和システム
JP6832760B2 (ja) 2017-03-17 2021-02-24 三菱電機株式会社 空気調和システム及び建物
US20180363933A1 (en) * 2017-06-14 2018-12-20 Joseph A. Ross Zoning System for Air Conditioning (HVAC) Equipment
US12339023B2 (en) 2017-06-14 2025-06-24 Joseph A. Ross Zoning system for air conditioning (HVAC) equipment
US11384951B2 (en) * 2017-06-14 2022-07-12 Joseph A. Ross Zoning system for air conditioning (HVAC) equipment
JP6959773B2 (ja) 2017-06-29 2021-11-05 ダイダン株式会社 室圧制御システム
DE102017116399A1 (de) 2017-07-20 2019-01-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Verfahren zum Regeln von wenigstens zwei Ventilatoren
JP6976779B2 (ja) 2017-09-11 2021-12-08 株式会社竹中工務店 空調システム
DE202018000922U1 (de) 2018-02-17 2018-04-09 Seventilation Gmbh Druckabhängige Steuerung für dezentrale Lüftungssysteme mit und ohne Wärmerückgewinnung
US10619880B2 (en) 2018-04-27 2020-04-14 Johnson Controls Technology Company Masterless air handler unit (AHU) controller system
TWM566801U (zh) 2018-06-01 2018-09-11 千里實業有限公司 Full heat exchanger structure
US10655878B2 (en) 2018-07-06 2020-05-19 Johnson Controls Technology Company Variable refrigerant flow system with sub-cooling temperature optimization using extremum-seeking control
CN109163386B (zh) 2018-08-23 2020-12-04 广东美的暖通设备有限公司 多联机空调系统及其风阀装置和室外机
US11879658B2 (en) 2019-01-10 2024-01-23 Mitsubishi Electric Corporation Air-conditioning ventilation system
WO2020213655A1 (ja) 2019-04-15 2020-10-22 ダイキン工業株式会社 空気調和システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304614A (ja) 2000-04-24 2001-10-31 Kimura Kohki Co Ltd 空気調和システム
JP2011052905A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 空調制御システム
JP2012077968A (ja) * 2010-09-30 2012-04-19 Sanken Setsubi Kogyo Co Ltd 空調方法及び空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957926A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102025A (ja) * 2020-12-25 2022-07-07 ダイキン工業株式会社 空気処理システムの試運転方法
JP2022102024A (ja) * 2020-12-25 2022-07-07 ダイキン工業株式会社 ファンユニットの選定方法
JP7185147B2 (ja) 2020-12-25 2022-12-07 ダイキン工業株式会社 ファンユニットの選定方法

Also Published As

Publication number Publication date
AU2020261812B2 (en) 2022-12-22
ES2955485T3 (es) 2023-12-01
AU2020261812A1 (en) 2021-12-09
EP3957926A4 (en) 2022-06-22
US20220214071A1 (en) 2022-07-07
CN113692516B (zh) 2023-04-04
US12320539B2 (en) 2025-06-03
EP3957926A1 (en) 2022-02-23
CN113692516A (zh) 2021-11-23
EP3957926B1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2020218127A1 (ja) 給気システム
CN113728202B (zh) 风机单元、风机单元系统以及空气处理系统
US11614244B2 (en) Air conditioning system
KR20210080795A (ko) 스마트 공기 조화 시스템
JP7167081B2 (ja) 給気システム
US12111067B2 (en) Air conditioning system
US12320540B2 (en) Air conditioning system
WO2021200478A1 (ja) 空気調和システム
JP7245730B2 (ja) 空気調和システム
KR20170090837A (ko) 공기조화기 및 그 제어방법
US11971188B2 (en) Fan unit and air treatment system including the same
JP2022054130A (ja) ファンユニット、およびそれを備えた空気処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794326

Country of ref document: EP

Effective date: 20211115

ENP Entry into the national phase

Ref document number: 2020261812

Country of ref document: AU

Date of ref document: 20200415

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 17603785

Country of ref document: US