WO2020217760A1 - Laser welding method, and laser welding device - Google Patents
Laser welding method, and laser welding device Download PDFInfo
- Publication number
- WO2020217760A1 WO2020217760A1 PCT/JP2020/010405 JP2020010405W WO2020217760A1 WO 2020217760 A1 WO2020217760 A1 WO 2020217760A1 JP 2020010405 W JP2020010405 W JP 2020010405W WO 2020217760 A1 WO2020217760 A1 WO 2020217760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser welding
- laser beam
- metal
- laser
- spot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/22—Spot welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
Definitions
- the present invention relates to a laser welding method and a laser welding apparatus.
- Laser welding technology may be used to join metal members together. Joining of metal members by laser welding is performed by melting and solidifying a part of the metal members by irradiation with laser light. When metal members are joined by laser welding, they have the advantages of higher welding speed and less heat effect than when joining by resistance welding. Further, when metal members are joined to each other by laser welding, welding can be performed without contact with the metal members, the processing efficiency is high, and the rigidity can be increased by continuous welding.
- Patent Document 1 For such a problem, it is conceivable to adopt the technique disclosed in Patent Document 1.
- a predetermined region is irradiated with a laser beam to form a molten pool, and then a wire (filler) is brought closer to the molten pool and the tip of the wire is melted.
- the resulting droplets are deposited on the outer periphery of the molten pool.
- the molten pool in which the droplets are deposited is irradiated with laser light again to smooth the surface of the molten pool to form a welded portion.
- Patent Document 1 The technique disclosed in Patent Document 1 is used to suppress thinning and fragile organization in the outer peripheral portion of a welded portion when metal members having a gap between each other are joined by laser welding in a state before welding. It is also possible to adopt it.
- Patent Document 1 when the technique disclosed in Patent Document 1 is adopted to suppress thinning and fragile organization in the outer peripheral portion, a decrease in work efficiency becomes a problem. Specifically, in the technique disclosed in Patent Document 1, a molten pool is formed by irradiation with a laser beam, and then droplets formed by melting the tip of the wire are deposited on the molten pool, and then the laser beam is used. It is difficult to perform welding at high speed because the surface is flattened by irradiating. Therefore, when the technique disclosed in Patent Document 1 is adopted, it is considered that a decrease in work efficiency is unavoidable.
- the present invention has been made to solve the above-mentioned problems, and even when there is a gap between each other in the state before welding, the metal members can be joined to each other with high bonding strength.
- An object of the present invention is to provide a laser welding method and a laser welding apparatus capable of joining with high work efficiency.
- the laser welding method is a laser welding method in which a plurality of metal members are joined by laser welding, and is a laser beam that oscillates a laser beam and concentrates the oscillated laser beam on a welded portion. It includes an irradiation step, a scanning step for scanning the spot of the laser beam, and a fillering material supply step which is made of metal and supplies a filler material which is melted by the irradiation of the laser beam into the scanning region of the spot.
- the laser beam spot is scanned so as to orbit around the predetermined location to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the laser beam spot passes through.
- the filler metal is supplied to the portion of the above, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
- FIG. 1 is a schematic view showing a schematic configuration of a laser welding apparatus 1 according to the present embodiment.
- the laser welding apparatus 1 includes a laser oscillator 10, an optical path 11, and a condensing unit (scanning unit) 12.
- the laser oscillator 10 oscillates the laser beam according to a command from the controller (control unit) 16 connected to the laser oscillator 10.
- the controller 16 includes a microprocessor composed of a CPU, ROM, RAM, and the like.
- the laser beam oscillated by the laser oscillator 10 is propagated to the condensing unit 12 through the optical path 11.
- the propagated laser light is focused (spots are formed) on the surface of the plate material (metal member) 501 in the plate material laminate 500.
- the condensing unit 12 scans the spot of the laser beam on the surface of the plate member 501 according to the command from the controller 16.
- the plate material laminate 500 to be welded is a laminate of a plate material (metal member) 501 and a plate material (metal member) 502.
- the laser welding device 1 includes a welding robot 13 and a drive circuit unit 14 for driving the welding robot 13.
- the welding robot 13 has a condensing unit 12 attached to its tip portion, and can move the condensing unit 12 in three dimensions according to a command from the controller 16 connected to the drive circuit unit 14.
- the laser welding device 1 includes a wire feeder (filler supply unit) 15 attached to the tip portion of the welding robot 13.
- the wire feeder 15 supplies the wire 20 which is a filler material toward the welded portion.
- the wire feeder 15 executes the supply of the wire 20 to the welded portion and the separation of the wire 20 from the welded portion (melting pond) in accordance with the command from the controller 16.
- FIG. 2 is a schematic side view showing an arrangement state of the plate materials 501 and 502 constituting the plate material laminate 500 before welding.
- the plate material 501 and the plate material 502 are overlapped in the plate thickness direction (Z direction), but as shown in FIG. 2, there is a gap G of, for example, about 1 mm at the maximum between them before welding.
- FIG. 3 is a schematic plan view for explaining a laser welding method using the laser welding apparatus 1.
- the controller 16 issues a command (command for executing the laser beam irradiation step) to oscillate the laser beam to the laser oscillator 10. Then, the condensing unit 12 is controlled so that the spot of the laser beam orbits around the orbiting center (predetermined location) Ax LB1 in a substantially circular shape in a plan view. That is, the controller 16 controls the condensing unit 12 to scan the spot of the laser beam so as to execute the so-called laser screw welding in the welding of the plate material laminate 500 (execution command of the scanning step), and the welded portion. Welding and stirring of the plate members 501 and 502 in 100 are performed.
- controller 16 controls the wire feeder 15 so that the tip of the wire 20 is on the inner peripheral side of the outer edge 100b of the scanning region (welded portion 100 to be formed) of the laser beam spot.
- the scanning of the spot of the laser beam according to the present embodiment is continuously performed from the inner peripheral side, which is the circumferential center Ax LB1 side, toward the outer peripheral portion 100a, and the tip of the wire 20 is the region (outer circumference). It is supplied into the portion 100a).
- the controller 16 arranges the tip of the wire 20 to be located at a position where the spot of the laser beam passes, at least before the spot of the laser beam passes, and the wire 20 (of the wire 20) before the irradiation of the laser beam is completed.
- the part on the root side excluding the molten tip) is separated from the molten pool.
- FIG. 4 is a schematic cross-sectional view showing a cross section taken along line IV-IV of FIG. 3
- FIG. 5 is a schematic cross-sectional view showing an enlarged portion A of FIG.
- FIG. 6 is a schematic cross-sectional view showing the configuration of the outer peripheral portion of the welded portion when welding is performed by using the laser welding method according to the comparative example.
- the welded portion 100 formed by laser welding includes a base portion 101 formed by melting, stirring, and solidifying plate materials 501 and 502 by irradiation with laser light. It is composed of a thickening portion 102 formed by melting, stirring, and solidifying the tip of the wire 20 by irradiation with a laser beam. A part of the molten metal also flows into the gap G, and is also formed in the gap G around the region where the base portion 101 is irradiated with the laser beam.
- FIG. 4 is shown so that a boundary exists between the base portion 101 and the thickening portion 102 for convenience of explanation, the base portion 101 and the thickening portion 102 are actually shown.
- the welded portion 100 is formed integrally.
- the wire 20 is supplied to the outer peripheral portion 100a whose tip is on the inner peripheral side of the outer peripheral edge 100b of the scanning region (welded portion 100 to be formed) of the laser beam spot. Therefore, the tip of the wire 20 is melted by the irradiation of the laser beam and separated from the root side portion.
- the wall thickness of the outer peripheral portion 900a of the welded portion 900 is the thickness of the outer peripheral portion 100a according to the present embodiment. It will be thinner than it is thick. Therefore, even if the plate thickness of the plate material 901 to be welded and the gap between the plate materials are the same as those in the present embodiment, the outer peripheral portion 900a is thinned, which causes the portion to be rapidly cooled. Vulnerable tissue may be formed in.
- the welding speed is faster and the heat is higher than in the case of using resistance welding or the like. It has little influence, and welding can be performed on the plate members 501 and 502 without contact, the processing efficiency is high, and the rigidity can be increased by continuous welding.
- the spot of the laser beam is orbited around the orbiting center Ax LB1 to melt and stir the metal member of the portion, and the welded portion. Since 100 is formed, the molten metal will flow into the gap G even if there is a gap G between the plate material 501 and the plate material 502 in the state before welding.
- the tip of the wire 20 is melted by the laser beam during scanning to form a thickened portion (a part of the welded portion 100) 102. It is possible to suppress the occurrence of gouge (underfill) and melt-through in the welded portion 100 after solidification.
- the wire 20 is arranged so that the tip is arranged on the laser beam scanning locus LN LB while scanning the spot of the laser beam. Is supplied and the tip of the wire 20 is melted by irradiating the laser beam, so that the work efficiency higher than that of the technique disclosed in Patent Document 1 can be realized, in which the wire is melted in a step different from the melting of the plate material. ..
- the molten metal in which the wire 20 is melted by irradiation with laser light is also combined with the molten metal in which the plate materials 501 and 502 are melted.
- the surface of the molten pool is flattened by stirring by orbiting the spot of the laser beam.
- the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, the droplets formed by melting the wires are deposited, and then the irradiation of the laser beam is restarted. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, which flattens the surface of the molten pool.
- the spot of the laser beam is spotted on the wire 20 by supplying the wire 20 to the outer peripheral portion 100a on the inner peripheral side of the outer edge 100b of the welded portion 100.
- the wire 20 is welded at the irradiated portion of the laser beam. Therefore, the separation of the wire 20 from the molten pool can be easily controlled regardless of the supply amount of the wire 20.
- FIG. 7 is a schematic cross-sectional view illustrating the laser welding method according to the second embodiment.
- the plate material (metal member) 506 and the plate material (metal member) 507 are butted in substantially orthogonal directions, and the corner portion related to the butting is laser welded to abut.
- This is a so-called fillet welding method for forming a coalescence 505.
- the spot orbits around the orbital center Ax LB2 that intersects both the extending direction (Z direction) of the plate material 506 and the extending direction (X direction) of the plate material 507.
- the laser beam is irradiated so as to.
- the wire 20 is supplied to the outer peripheral portion 105a whose tip is on the inner peripheral side of the outer edge of the scanning region (welded portion 105 to be formed) of the laser beam spot.
- the supply amount of the wire 20 is small, so that the amount of movement of the wire 20 related to the insertion (advance) and the separation (reverse) of the wire 20 is extremely large.
- the wire 20 can be cut (cut off) by irradiation with a laser beam, so that control is easy.
- FIG. 8 is a schematic view showing a schematic configuration of the laser welding apparatus 2 according to the third embodiment.
- the laser welding apparatus 2 has a laser oscillator 10, an optical path 11, a condensing portion (scanning portion) 12, and welding, similarly to the laser welding apparatus 1 according to the first embodiment. It includes a robot 13, a drive circuit unit 14, a wire feeder (weld material supply unit) 15, and a controller (control unit) 16.
- the laser welding apparatus 2 includes an imaging camera (gap measuring unit) 25.
- the image pickup camera 25 takes an image of the boundary portion between the plate material (metal member) 511 and the plate material (metal member) 512 constituting the laminated body 510, and measures the presence or absence of a gap and its size if there is a gap. Then, the measurement result is sent to the controller 16.
- the controller 16 receives the gap measurement result from the image pickup camera 25 and selectively supplies the wire 20 when there is a gap between the plate material 511 and the plate material 512. Controls the wire feeder 15. In other words, the controller 16 controls the wire feeder 15 so that the wire 20 is not supplied when there is no gap between the plate member 511 and the plate member 512.
- the controller 16 controls the wire feeder 15 so as to adjust the supply amount of the wire 20 according to the size of the gap between the plate material 511 and the plate material 512. .. Specifically, the controller 16 relatively increases the supply amount of the wire 20 as the gap between the plate material 511 and the plate material 512 is relatively large, and the supply amount of the wire 20 is relatively small as the gap is relatively small.
- the wire feeder 15 is controlled so as to reduce the number of wires.
- the same effects as those of the first embodiment and the second embodiment can be obtained, and the following effects can be obtained. Obtainable.
- the wire 20 is used when there is no gap between the plate members 511 and 512 and the problem of gouge (underfill) or melt-through is unlikely to occur in the welded portion. It is possible to avoid the situation where it is supplied. As a result, by supplying the wire 20 as needed, high bonding strength can be ensured regardless of the presence or absence of a gap between the plate members 511, 512.
- the supply amount of the wires 20 is adjusted according to the size of the gap between the plate members 511, 512, so that the regions having different gaps are different from each other.
- the form of the welded portion when viewed from the irradiation side of the laser beam can be aligned between the two. Therefore, in the present embodiment, for example, it is possible to prevent the surface of the welded portion from being greatly raised by supplying a large amount of filler metal even though the gap is small.
- the gap between the plate materials 511, 512 is large, by controlling the supply amount of the wire 20 to be large, it is possible to fill the gap with a sufficient amount of molten metal, and the plate materials are high. The joint strength can be ensured.
- FIG. 9A is a schematic plan view for explaining the laser welding method according to the fourth embodiment.
- the circumferential center (predetermined location) Ax LB3 is the center.
- the spot of the laser beam is scanned so as to go around and the laser beam is irradiated.
- the metal member of the portion irradiated with the laser beam is melted and agitated to form a welded portion 110 having a substantially rounded polygonal shape (in this embodiment, a rounded quadrangle as an example) in a plan view.
- the wire 20 is supplied to the outer peripheral portion of the region (welded portion 110) for scanning the spot of the laser beam.
- the laser welding method according to the present embodiment is different from the first embodiment to the third embodiment in that the spot of the laser beam is scanned into a polygon with rounded corners.
- FIG. 9B is a schematic plan view for explaining the laser welding method according to the fifth embodiment.
- the circumferential center (predetermined location) Ax LB4 is the center.
- the spot of the laser beam is scanned so as to go around and the laser beam is irradiated.
- the metal member of the portion irradiated with the laser beam is melted and agitated to form the welded portion 115 having a substantially elliptical plan view.
- the wire 20 is supplied to the outer peripheral portion of the region (welded portion 115) for scanning the spot of the laser beam.
- FIG. 10A is a schematic view showing a welding mode according to the sixth embodiment.
- a screw portion 121 having a substantially circular shape in a plan view and a linear shape continuous with the screw portion 121 and extending in a plane line of sight in the X direction.
- a welded portion (nugget) 120 composed of a portion 122, a screw portion 123 which is continuous with the linear portion 122 and has a substantially circular shape in a plan view, is formed.
- the screw portion 121 and the screw portion 123 are formed by scanning the spot of the laser beam so as to orbit around a predetermined location, as in the first embodiment.
- the linear portion 122 is continuously irradiated with the laser beam before the metal member of the screw portion 121 solidifies, and the other one is performed before the metal member of the linear portion 122 solidifies. Irradiation of the laser beam to the screw portion 123 is continuously performed.
- the wire (filler) is supplied so that the tip is arranged in the scanning region of the spot of the laser beam.
- the linear portion 122 is continuously irradiated with the laser beam, and before the metal member of the linear portion 122 solidifies. Since the laser beam is continuously irradiated to the screw portion 123, even if there is a gap between the overlapped metal members in the state before welding, the screw portion 121 is formed and melted. In addition to the metal member, the molten metal formed by melting the wire flows into the gap between the members of the portion where the linear portion 122 is to be formed. Therefore, in the present embodiment, even when there is a gap between the metal members, not only the screw portion but also the linear portion can be joined with high strength.
- a wire is supplied at the time of forming the screw portions 121 and 123, and the melted wire is one of the welded portions 120. Since it is a portion, it is possible to suppress the occurrence of gouge (underfill) or melt-off in the welded portion 120 after solidification.
- the plate material metal member
- the molten metal obtained by melting the wire by irradiating the laser beam is also stirred together with the molten metal formed by melting the plate material (metal member) by orbiting scanning the spot of the laser beam.
- the surface of the molten pool is flattened.
- FIG. 10B is a schematic view showing a welding mode according to the seventh embodiment.
- a screw portion 126 having a substantially circular shape in a plan view and a linear portion 127 continuous with the screw portion 126 and extending in a plane line of sight ,
- a welded portion (nugget) 125 composed of a screw portion 128 which is continuous with the linear portion 127 and has a substantially circular shape in a plan view is formed.
- the laser welding method according to this embodiment is basically the same as that of the sixth embodiment.
- the linear portion 127 of the welded portion 125 according to the present embodiment is different from the sixth embodiment in the connection points with respect to the screw portion 126 and the screw portion 128. That is, in the welded portion 125 according to the present embodiment, the linear portion 127 is connected so as to form a tangent line at one radial end portion (outer edge portion in the Y direction) of each of the screw portion 126 and the screw portion 128. ing.
- the welding method according to the present embodiment can obtain the same effect as that of the sixth embodiment.
- FIG. 10C is a schematic view showing a welding mode according to the eighth embodiment.
- a screw portion 131 having a substantially circular shape in a plan view and a linear portion 132 continuous with the screw portion 131 and extending in a plane line of sight
- the screw portion 133 which is continuous with the linear portion 132 and is substantially circular in plan view
- the linear portion 134 which is continuous with the screw portion 133 and extends in a plane line of sight
- the screw portion 135 which is continuous with the linear portion 134 and is substantially circular in plan view.
- the welded portion (nugget) 130 including.
- FIG. 10C shows an example of forming a welded portion 130 composed of three screw portions 131, 133, 135 and two linear portions 132, 134, the screw portion and the linear portion are further continuous.
- the laser welding method according to the present embodiment can also obtain the same effects as those of the sixth embodiment and the seventh embodiment. Further, in the present embodiment, the welding speed is increased by forming the welded portion 130 including more screw portions 131, 133, 135 and linear portions 132, 134 than in the sixth embodiment and the seventh embodiment. It is possible to secure higher joint strength while increasing the speed.
- FIG. 11A is a schematic view showing a welding mode according to the ninth embodiment.
- a screw portion 141 having a substantially circular shape in a plan view and a linear portion 142 continuous with the screw portion 141 and extending in a plane line of sight ,
- a welded portion (nugget) 140 composed of.
- Each of the screw portion 141 and the linear portion 142 is formed by the same method as in the sixth to eighth embodiments. Further, also in the laser welding method according to the present embodiment, similarly to the sixth to eighth embodiments, when the welded portion 140 is formed, the linear portion is formed before the metal member of the screw portion 141 solidifies. Irradiation of the laser beam to 142 is continuously performed.
- FIG. 11B is a schematic view showing a welding mode according to the tenth embodiment.
- a screw portion 146 having a substantially circular shape in a plan view and a linear portion 147 continuous with the screw portion 146 and extending in a plane line of sight , To form a welded portion (nugget) 145.
- connection portion of the linear portion 147 of the welded portion 145 to the screw portion 146 is different from that of the ninth embodiment, and one end portion (Y direction) in the radial direction of the screw portion 146 is provided. It is connected so as to extend in the tangential direction at the outer edge).
- the screw portion 146 and the linear portion 147 are formed by the same method as in the sixth to ninth embodiments. Further, also in the laser welding method according to the present embodiment, as in the case of the sixth to ninth embodiments, when the welded portion 145 is formed, the linear portion is formed before the metal member of the screw portion 146 solidifies. Irradiation of the laser beam to the 147 is continuously performed.
- FIG. 11C is a schematic view showing a welding mode according to the eleventh embodiment.
- the screw portion 152 having a substantially circular shape in a plan view is separated from the screw portion 152 toward one side in the radial direction of the screw portion 152 by laser welding.
- a flat sight line shape of the line portion 151 as extending is, (as indicated by arrow B 1) to be separated toward the screw portion 152 on the other side of the radially extending plane
- a line-of-sight linear portion 153 and a welded portion 150 composed of the linear portion 153 are formed.
- the screw portions 152 and the linear portions 151 and 153 are formed by the same method as in the sixth to tenth embodiments. Further, in the present embodiment, both the start of the laser welding at the linear portion 151 and the start of the laser welding at the linear portion 153 are performed before the molten metal of the screw portion 152 solidifies.
- the laser welding apparatus 1 according to the first embodiment or the laser welding apparatus 2 according to the second embodiment is adopted.
- the metal member to be welded is made of a metal material containing carbon. Specifically, a metal member made of carbon steel is targeted for welding. Further, in this modification, the wire as a filler material is also made of a metal material containing carbon.
- a wire whose carbon equivalent is set according to the carbon equivalent of the metal member to be welded is supplied. Specifically, a wire having a relatively small carbon equivalent is supplied when the carbon equivalent of the metal member to be welded is relatively large, and the carbon equivalent is relative when the carbon equivalent of the metal member is relatively small. Is supplied with a large wire.
- the magnitude of the carbon equivalent of the wire is changed with the case where the carbon equivalent of the metal member is 0.25% as a threshold value.
- the condensing unit 12 is controlled to scan the spot of the laser beam, but the present invention is not limited thereto.
- the laser beam spot may be scanned by driving and controlling the tip portion of the welding robot 13, or the laser beam spot may be scanned using an XY table or the like.
- the condensing unit 12 is controlled to move the spot of the laser beam, but the present invention is not limited to this.
- the metal member to be welded may be moved to scan the spot of the laser beam. Further, if the welding is in a certain range, welding to a desired position can be performed only by scanning the light collecting unit 12 without using the welding robot 13.
- the two metal members are joined to each other, but the present invention is not limited to this.
- the present invention is applied to join three or more metal members, the same effect as described above can be obtained.
- the presence or absence of a gap and the size of the gap are measured by the imaging camera 25, but the present invention is not limited to this.
- the gap may be measured by ultrasonic waves or the like.
- the welded portion is irradiated with a laser beam for measurement, and the depth of the depression formed by welding the surface of the welded portion (distance between the laser beam irradiation surface of the metal member in the state before welding and the surface of the welding pond during welding).
- a depth measuring unit for measuring performing a measurement step
- the amount of wire (weld material) to be supplied may be controlled.
- the laser welding method is a laser welding method in which a plurality of metal members are joined by laser welding, and the laser light is oscillated and the oscillated laser light is focused on a welded portion. It includes an irradiation step, a scanning step for scanning the spot of the laser beam, and a filler material supply step which is made of metal and supplies a filler material which is melted by the irradiation of the laser beam into the scanning region of the spot.
- the laser beam spot is scanned so as to orbit around the predetermined location to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the laser beam spot passes through.
- the filler metal is supplied to the portion of the above, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
- the welding speed is faster, the thermal influence is less, and the metal member is less affected than the case where resistance welding or the like is used.
- Welding can be performed in a non-contact manner, processing efficiency is high, and rigidity can be increased by continuous welding.
- the spot of the laser beam is circulated around the predetermined portion to melt and stir the metal member of the portion to form the welded portion. Therefore, even if there is a gap between the metal members in the state before welding, the molten metal will flow into the gap between the metal members.
- the filler metal is melted by the laser beam during scanning to be a part of the welded portion, so that the welded portion is scooped out after solidification. It is possible to suppress the occurrence of (underfill) and melting off.
- the filler metal is supplied on the scanning locus of the spot while scanning the spot of the laser beam (during the execution of the scanning step) to melt the filler metal. Therefore (because the filler material supply step is executed), it is possible to realize a higher work efficiency than the technique disclosed in Patent Document 1 above, in which the filler metal is melted in a step different from the melting of the metal member.
- the molten metal obtained by melting the filler metal by irradiating the laser beam is also agitated and melted by orbiting scanning of the spot of the laser beam together with the molten metal formed by melting the metal member.
- the surface of the pond is flattened.
- the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, so that the laser beam is irradiated after the droplets formed by melting the filler metal are deposited. It is possible to realize higher work efficiency than the technique disclosed in the above-mentioned Patent Document 1 in which the above-mentioned is restarted to flatten the surface.
- the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
- the fillering material is supplied to the inner peripheral side of the outer edge of the welded portion, and the fillering material is supplied. It is also possible to adopt a configuration in which the tip of the material is melted by passing the spot of the laser beam and is separated from the portion on the root side of the tip.
- the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion, so that the spot of the laser beam passes through the filler metal and is welded at the passing portion.
- the material will be welded. Therefore, the separation of the filler metal from the molten pool can be easily controlled regardless of the amount of the filler metal supplied.
- a gap measuring step for measuring a gap between the metal members is further provided, and the filler metal is selectively supplied when the gap is open. It is also possible to adopt the configuration of.
- the filler material supply step it is possible to adopt a configuration in which the supply amount of the filler metal is relatively large as the gap is relatively large.
- the supply amount of the filler material is relatively increased as the gap is relatively large, in other words, the supply amount of the filler material is adjusted according to the size of the gap. Therefore, the form of the welded portion when viewed from the irradiation side of the laser beam can be made uniform between the regions having different gaps. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength. For example, if a large amount of filler metal is supplied even though the gap is small, a welded portion having a large raised surface will be formed. By adopting the above configuration, such a welded portion will be formed. You can avoid such a situation.
- a measuring step for measuring the depth to the surface of the molten pool formed by melting the metal member is further provided, and in the fillering material supply step, the filler metal is described as described above. It is also possible to adopt a configuration in which the supply amount of the filler metal is relatively increased as the depth is relatively deep before the laser beam is irradiated.
- the "depth to the surface of the molten pool" in the above is the distance between the laser beam irradiation surface of the metal member in the state before welding and the surface of the welding pond during welding.
- the filler metal is welded according to the magnitude of the depth before the laser beam is irradiated to the filler metal, in other words, the state before the filler metal is melted. Since the supply amount of the material is adjusted, the depth can be set to a predetermined predetermined depth regardless of the size of the gap between the metal members. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength.
- a metal containing carbon is used for each of the filler metal and the metal member, and the carbon equivalent of the filler metal has a relatively large carbon equivalent of the base metal. It is also possible to adopt a configuration in which the carbon equivalent of the base metal is set to be relatively small, and the carbon equivalent of the base metal is set to be relatively large.
- the carbon equivalent of the base metal is relatively large, the carbon equivalent is reduced by supplying the filler material, so that the carbon content of the molten pool is diluted and the structure becomes brittle.
- the carbon content of the molten pool is increased and the strength of the joint (welded portion) is improved. Can be planned.
- the laser welding apparatus is a laser welding apparatus that joins a plurality of metal members by laser welding, and is a laser oscillator that oscillates a laser beam and a condensing device that focuses the laser beam on a welded portion.
- the scanning unit and the control unit for controlling the filler material supply unit are provided, and the control unit scans the spot of the laser beam around a predetermined location so as to orbit the metal.
- the laser oscillator and the scanning portion are controlled so as to form a dot-shaped welded portion in a plan view in which the members are melted, and the filler metal is supplied to a portion before the spot of the laser beam passes.
- the filler material supply portion is controlled so that the filler metal is separated from the molten pool formed by melting the metal member.
- the welding speed is faster, the thermal influence is less, and the metal members are less affected than in the case of using resistance welding or the like.
- Welding can be performed in a non-contact manner, processing efficiency is high, and rigidity can be increased by continuous welding.
- the spot of the laser beam is circulated around the predetermined portion to melt and stir the metal member of the portion to form the welded portion. Even if there is a gap between the metal members in this state, the molten metal will flow into the gap between the metal members.
- the filler metal is melted by the laser beam during scanning to be a part of the welded portion, gouge (underfill) or melt-through occurs in the welded portion after solidification. It can be suppressed.
- the filler material is supplied on the scanning locus of the spot to melt the filler metal. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, in which the filler metal is melted in another step.
- the molten metal obtained by melting the filler metal by irradiating the laser beam is also agitated and melted by orbiting scanning of the spot of the laser beam together with the molten metal formed by melting the metal member.
- the surface of the pond is flattened.
- the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, so that the laser beam is irradiated after the droplets formed by melting the filler metal are deposited. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, in which the above is resumed to flatten the surface.
- the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
- the filler material is supplied to the inner peripheral side of the outer edge of the welded portion, and the fillering material is supplied. It is also possible to adopt a configuration in which the tip of the material is melted by passing the spot of the laser beam and is separated from the portion on the root side of the tip.
- the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion, so that the spot of the laser beam passes through the filler metal and is welded at the passing portion.
- the material will be welded. Therefore, the separation of the filler metal from the molten pool can be easily controlled regardless of the amount of the filler metal supplied.
- the laser welding apparatus further includes a gap measuring unit that measures a gap between the metal members and sends the measurement result to the control unit, and the control unit determines that the gap is open.
- a gap measuring unit that measures a gap between the metal members and sends the measurement result to the control unit, and the control unit determines that the gap is open.
- the filler metal is undesirably supplied even when there is no gap between the metal members and the problem of gouge (underfill) or melt-through is unlikely to occur in the welded portion. You can avoid such a situation.
- control unit controls the filler material supply unit so that the supply amount of the filler material becomes relatively large as the gap is relatively large.
- a configuration can also be adopted.
- the supply amount of the filler material is relatively increased as the gap is relatively large, in other words, the supply amount of the filler material is adjusted according to the size of the gap. Therefore, the form of the welded portion when viewed from the irradiation side of the laser beam can be made uniform between the regions having different gaps. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength. For example, if a large amount of filler metal is supplied even though the gap is small, a welded portion having a large raised surface will be formed. By adopting the above configuration, such a welded portion will be formed. You can avoid such a situation.
- the laser welding apparatus further includes a depth measuring unit for measuring the depth to the surface of the molten pool formed by melting the metal member, and the control unit provides the laser with respect to the filler metal.
- the structure is such that the filler metal supply unit is controlled so that the supply amount of the filler metal is relatively large as the depth is relatively deep before the light is irradiated. It can also be adopted.
- the filler metal is welded according to the magnitude of the depth before the laser beam is irradiated to the filler metal, in other words, the state before the filler metal is melted. Since the supply amount of the material is adjusted, the above depth can be set to a predetermined predetermined depth regardless of the size of the gap between the metal members. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength.
- the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
This laser welding method includes: a laser light radiating step of causing laser light to oscillate, and condensing the laser light onto a welding location; a scanning step of scanning a spot of the laser light; and a filler material feeding step of feeding a filler material into a scanning region of the spot of laser light. When carrying out laser welding: the spot is scanned in such a way as to circulate about a prescribed location, to form a welded portion in the shape of a dot in a plan view, obtained by melting a metal member; the filler material is fed to the location before the spot passes; and the filler material is removed from a molten pool before radiation of the laser light onto the welded portion ends.
Description
本発明は、レーザ溶接方法およびレーザ溶接装置に関する。
The present invention relates to a laser welding method and a laser welding apparatus.
金属部材同士の接合には、レーザ溶接技術が用いられることがある。レーザ溶接を用いた金属部材の接合は、レーザ光の照射により金属部材の一部を溶融させ、凝固させることでなされる。レーザ溶接を用いて金属部材同士を接合する場合には、抵抗溶接により接合する場合などに比べて、溶接速度が速く、熱影響が少ない、という優位性がある。また、レーザ溶接を用いて金属部材同士を接合する場合には、金属部材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
Laser welding technology may be used to join metal members together. Joining of metal members by laser welding is performed by melting and solidifying a part of the metal members by irradiation with laser light. When metal members are joined by laser welding, they have the advantages of higher welding speed and less heat effect than when joining by resistance welding. Further, when metal members are joined to each other by laser welding, welding can be performed without contact with the metal members, the processing efficiency is high, and the rigidity can be increased by continuous welding.
ところで、溶接前の状態で互いの間に隙間が空いた金属部材同士をレーザ溶接によって接合する場合には、溶接部に大きな窪みができ、場合によってはえぐれ(アンダーフィル)や溶け落ちが発生することがある。また、上記のような状態で溶接を行った場合には、えぐれや溶け落ちには至らないまでも、溶接部の外周部分の肉厚が薄くなってしまい、薄肉化による急冷に起因しての脆弱組織の形成などの問題を生ずる場合も考えられる。
By the way, when metal members having a gap between each other are joined by laser welding in the state before welding, a large dent is formed in the welded portion, and in some cases, gouge (underfill) or melt-through occurs. Sometimes. In addition, when welding is performed in the above-mentioned state, the wall thickness of the outer peripheral portion of the welded portion becomes thin, even if it does not gouge or melt down, which is caused by quenching due to the thinning. Problems such as the formation of vulnerable tissues may occur.
このような問題に対して、特許文献1に開示された技術を採用することも考えられる。特許文献1に開示の技術では、所定領域に対してレーザ光を照射して溶融池を形成し、続いて溶融池に対してワイヤ(溶加材)を近づけるとともに、当該ワイヤの先端を溶融させてできた溶滴を溶融池の外周部分に堆積させている。そして、該技術では、溶滴が堆積された溶融池に対して再びレーザ光を照射して溶融池の表面を平滑化して溶接部を形成している。
For such a problem, it is conceivable to adopt the technique disclosed in Patent Document 1. In the technique disclosed in Patent Document 1, a predetermined region is irradiated with a laser beam to form a molten pool, and then a wire (filler) is brought closer to the molten pool and the tip of the wire is melted. The resulting droplets are deposited on the outer periphery of the molten pool. Then, in this technique, the molten pool in which the droplets are deposited is irradiated with laser light again to smooth the surface of the molten pool to form a welded portion.
溶接前の状態で互いの間に隙間が空いた金属部材同士をレーザ溶接によって接合する場合において、溶接部の外周部分における薄肉化および脆弱組織化の抑制のために特許文献1に開示の技術を採用することも可能ではある。
The technique disclosed in Patent Document 1 is used to suppress thinning and fragile organization in the outer peripheral portion of a welded portion when metal members having a gap between each other are joined by laser welding in a state before welding. It is also possible to adopt it.
しかしながら、上記特許文献1に開示の技術を採用して外周部分での薄肉化および脆弱組織化を抑制しようとする場合には、作業効率の低下が問題となる。具体的に、上記特許文献1に開示の技術では、レーザ光の照射によって溶融池を形成し、その後にワイヤの先端を溶融して形成した溶滴を溶融池上に堆積させ、さらにその後にレーザ光を照射して表面の平坦化を行うため、高速で溶接を行うことが困難である。よって、上記特許文献1に開示の技術を採用する場合には、作業効率の低下が避けられないものと考えられる。
However, when the technique disclosed in Patent Document 1 is adopted to suppress thinning and fragile organization in the outer peripheral portion, a decrease in work efficiency becomes a problem. Specifically, in the technique disclosed in Patent Document 1, a molten pool is formed by irradiation with a laser beam, and then droplets formed by melting the tip of the wire are deposited on the molten pool, and then the laser beam is used. It is difficult to perform welding at high speed because the surface is flattened by irradiating. Therefore, when the technique disclosed in Patent Document 1 is adopted, it is considered that a decrease in work efficiency is unavoidable.
本発明は、上記のような問題の解決を図ろうとなされたものであって、溶接前の状態で互いの間に隙間が空いている場合であっても、金属部材同士を高い接合強度で且つ高い作業効率を以って接合可能なレーザ溶接方法およびレーザ溶接装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and even when there is a gap between each other in the state before welding, the metal members can be joined to each other with high bonding strength. An object of the present invention is to provide a laser welding method and a laser welding apparatus capable of joining with high work efficiency.
本発明の一態様に係るレーザ溶接方法は、複数の金属部材をレーザ溶接により接合するレーザ溶接方法であって、レーザ光を発振し、当該発振されたレーザ光を溶接箇所に集光するレーザ光照射ステップと、前記レーザ光のスポットを走査する走査ステップと、金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給ステップと、を備え、前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給するとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材を前記金属部材の溶融により形成された溶融池から離間させる。
The laser welding method according to one aspect of the present invention is a laser welding method in which a plurality of metal members are joined by laser welding, and is a laser beam that oscillates a laser beam and concentrates the oscillated laser beam on a welded portion. It includes an irradiation step, a scanning step for scanning the spot of the laser beam, and a fillering material supply step which is made of metal and supplies a filler material which is melted by the irradiation of the laser beam into the scanning region of the spot. The laser beam spot is scanned so as to orbit around the predetermined location to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the laser beam spot passes through. The filler metal is supplied to the portion of the above, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
以下では、実施形態について、図面を参酌しながら説明する。なお、以下で説明の形態は、本発明の一例であって、本発明は、その本質的な構成を除き何ら以下の形態に限定を受けるものではない。
In the following, the embodiment will be described with reference to the drawings. The forms described below are examples of the present invention, and the present invention is not limited to the following forms except for its essential configuration.
[第1実施形態]
1.レーザ溶接装置1の概略構成
第1実施形態に係るレーザ溶接装置1の概略構成について、図1を用いて説明する。図1は、本実施形態に係るレーザ溶接装置1の概略構成を示す模式図である。 [First Embodiment]
1. 1. Schematic configuration of thelaser welding apparatus 1 The schematic configuration of the laser welding apparatus 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a schematic configuration of a laser welding apparatus 1 according to the present embodiment.
1.レーザ溶接装置1の概略構成
第1実施形態に係るレーザ溶接装置1の概略構成について、図1を用いて説明する。図1は、本実施形態に係るレーザ溶接装置1の概略構成を示す模式図である。 [First Embodiment]
1. 1. Schematic configuration of the
図1に示すように、本実施形態に係るレーザ溶接装置1は、レーザ発振器10と光路11と集光部(走査部)12とを備える。レーザ発振器10は、当該レーザ発振器10に接続されたコントローラ(制御部)16からの指令に従ってレーザ光を発振する。なお、コントローラ16は、CPU、ROM、RAMなどから構成されたマイクロプロセッサを含み構成されている。
As shown in FIG. 1, the laser welding apparatus 1 according to the present embodiment includes a laser oscillator 10, an optical path 11, and a condensing unit (scanning unit) 12. The laser oscillator 10 oscillates the laser beam according to a command from the controller (control unit) 16 connected to the laser oscillator 10. The controller 16 includes a microprocessor composed of a CPU, ROM, RAM, and the like.
レーザ発振器10で発振されたレーザ光は、光路11を通り集光部12へと伝搬される。集光部12では、伝搬されてきたレーザ光が板材積層体500における板材(金属部材)501の表面に集光される(スポットが形成される)。そして、集光部12は、コントローラ16からの指令に従って、板材501の表面でレーザ光のスポットを走査する。
The laser beam oscillated by the laser oscillator 10 is propagated to the condensing unit 12 through the optical path 11. In the light collecting unit 12, the propagated laser light is focused (spots are formed) on the surface of the plate material (metal member) 501 in the plate material laminate 500. Then, the condensing unit 12 scans the spot of the laser beam on the surface of the plate member 501 according to the command from the controller 16.
なお、本実施形態では、光路11の一例として光ファイバーケーブルを用いているが、これ以外にもミラーを用いた光反射による伝搬など、種々の光路を採用することができる。ここで、本実施形態では、溶接の対象としての板材積層体500は、板材(金属部材)501と板材(金属部材)502との積層体である。
In the present embodiment, an optical fiber cable is used as an example of the optical path 11, but in addition to this, various optical paths such as propagation by light reflection using a mirror can be adopted. Here, in the present embodiment, the plate material laminate 500 to be welded is a laminate of a plate material (metal member) 501 and a plate material (metal member) 502.
また、レーザ溶接装置1は、溶接ロボット13と、該溶接ロボット13の駆動に係る駆動回路部14と、を備える。溶接ロボット13は、その先端部分に集光部12が取り付けられており、駆動回路部14に接続されたコントローラ16からの指令に従って、集光部12を3次元で移動させることができる。
Further, the laser welding device 1 includes a welding robot 13 and a drive circuit unit 14 for driving the welding robot 13. The welding robot 13 has a condensing unit 12 attached to its tip portion, and can move the condensing unit 12 in three dimensions according to a command from the controller 16 connected to the drive circuit unit 14.
さらに、本実施形態に係るレーザ溶接装置1は、溶接ロボット13の先端部分に取り付けられたワイヤ供給機(溶加材供給部)15を備える。ワイヤ供給機15は、溶接箇所に向けて溶加材であるワイヤ20を供給する。なお、ワイヤ供給機15は、コントローラ16からの指令に従って、溶接箇所へのワイヤ20の供給と、溶接箇所(溶融池)からのワイヤ20の離間とを実行する。
Further, the laser welding device 1 according to the present embodiment includes a wire feeder (filler supply unit) 15 attached to the tip portion of the welding robot 13. The wire feeder 15 supplies the wire 20 which is a filler material toward the welded portion. The wire feeder 15 executes the supply of the wire 20 to the welded portion and the separation of the wire 20 from the welded portion (melting pond) in accordance with the command from the controller 16.
2.板材積層体500の概略構成
板材積層体500の概略構成について、図2を用い説明する。図2は、板材積層体500を構成する板材501,502の溶接前における配置状態を示す模式側面図である。 2. Schematic configuration of theplate material laminate 500 The schematic configuration of the plate material laminate 500 will be described with reference to FIG. FIG. 2 is a schematic side view showing an arrangement state of the plate materials 501 and 502 constituting the plate material laminate 500 before welding.
板材積層体500の概略構成について、図2を用い説明する。図2は、板材積層体500を構成する板材501,502の溶接前における配置状態を示す模式側面図である。 2. Schematic configuration of the
板材501と板材502とは板厚方向(Z方向)に重ね合わされているが、溶接前のこれらの間には、図2に示すように、例えば最大で1mm程度の隙間Gが存在する。
The plate material 501 and the plate material 502 are overlapped in the plate thickness direction (Z direction), but as shown in FIG. 2, there is a gap G of, for example, about 1 mm at the maximum between them before welding.
3.レーザ溶接装置1を用いたレーザ溶接
本実施形態に係るレーザ溶接装置1を用いたレーザ溶接について、図3を用いて説明する。図3は、レーザ溶接装置1を用いたレーザ溶接方法を説明するための模式平面図である。 3. 3. Laser Welding UsingLaser Welding Device 1 Laser welding using the laser welding device 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a schematic plan view for explaining a laser welding method using the laser welding apparatus 1.
本実施形態に係るレーザ溶接装置1を用いたレーザ溶接について、図3を用いて説明する。図3は、レーザ溶接装置1を用いたレーザ溶接方法を説明するための模式平面図である。 3. 3. Laser Welding Using
図3に示すように、本実施形態に係るレーザ溶接装置1を用いた溶接では、コントローラ16がレーザ発振器10にレーザ光を発振する旨の指令(レーザ光照射ステップの実行指令)を出した状態で、レーザ光のスポットが周回中心(所定箇所)AxLB1を中心としてその周りを平面視略円形に周回するように集光部12を制御する。即ち、コントローラ16は、板材積層体500の溶接において、所謂、レーザスクリュ溶接を実行するように集光部12を制御してレーザ光のスポットの走査を行い(走査ステップの実行指令)、溶接部100における板材501,502の溶融・攪拌を実行する。
As shown in FIG. 3, in the welding using the laser welding apparatus 1 according to the present embodiment, the controller 16 issues a command (command for executing the laser beam irradiation step) to oscillate the laser beam to the laser oscillator 10. Then, the condensing unit 12 is controlled so that the spot of the laser beam orbits around the orbiting center (predetermined location) Ax LB1 in a substantially circular shape in a plan view. That is, the controller 16 controls the condensing unit 12 to scan the spot of the laser beam so as to execute the so-called laser screw welding in the welding of the plate material laminate 500 (execution command of the scanning step), and the welded portion. Welding and stirring of the plate members 501 and 502 in 100 are performed.
また、コントローラ16は、ワイヤ20の先端がレーザ光のスポットの走査領域(形成しようとする溶接部100)の外縁100bよりも内周側となるように、ワイヤ供給機15を制御する。
Further, the controller 16 controls the wire feeder 15 so that the tip of the wire 20 is on the inner peripheral side of the outer edge 100b of the scanning region (welded portion 100 to be formed) of the laser beam spot.
なお、本実施形態に係るレーザ光のスポットの走査は、周回中心AxLB1側である内周側から外周部分100aに向けて連続的に行うものであって、ワイヤ20の先端を当該領域(外周部分100a)内に供給する。
The scanning of the spot of the laser beam according to the present embodiment is continuously performed from the inner peripheral side, which is the circumferential center Ax LB1 side, toward the outer peripheral portion 100a, and the tip of the wire 20 is the region (outer circumference). It is supplied into the portion 100a).
ここで、コントローラ16は、少なくともレーザ光のスポットが通過する前に、当該スポットが通過する箇所にワイヤ20の先端が位置するようにし、レーザ光の照射が終了する前にワイヤ20(ワイヤ20の溶融した先端を除く根元側部分)を溶融池から離間させる。
Here, the controller 16 arranges the tip of the wire 20 to be located at a position where the spot of the laser beam passes, at least before the spot of the laser beam passes, and the wire 20 (of the wire 20) before the irradiation of the laser beam is completed. The part on the root side excluding the molten tip) is separated from the molten pool.
4.溶接部100の形態
図3を用いて説明したようなレーザ光照射を行って形成された溶接部100の形態について、図4~図6を用いて説明する。図4は、図3のIV-IV線断面を示す模式断面図であり、図5は、図4のA部を拡大して示す模式断面図である。図6は、比較例に係るレーザ溶接方法を用いて溶接を行った場合の溶接部の外周部分の構成を示す模式断面図である。 4. Form of WeldedPart 100 The form of the welded part 100 formed by irradiating the laser beam as described with reference to FIG. 3 will be described with reference to FIGS. 4 to 6. FIG. 4 is a schematic cross-sectional view showing a cross section taken along line IV-IV of FIG. 3, and FIG. 5 is a schematic cross-sectional view showing an enlarged portion A of FIG. FIG. 6 is a schematic cross-sectional view showing the configuration of the outer peripheral portion of the welded portion when welding is performed by using the laser welding method according to the comparative example.
図3を用いて説明したようなレーザ光照射を行って形成された溶接部100の形態について、図4~図6を用いて説明する。図4は、図3のIV-IV線断面を示す模式断面図であり、図5は、図4のA部を拡大して示す模式断面図である。図6は、比較例に係るレーザ溶接方法を用いて溶接を行った場合の溶接部の外周部分の構成を示す模式断面図である。 4. Form of Welded
図4に示すように、本実施形態に係るレーザ溶接により形成された溶接部100は、レーザ光の照射により板材501,502が溶融・攪拌・凝固されることで形成されたベース部101と、レーザ光の照射によりワイヤ20の先端が溶融・攪拌・凝固されることで形成された増肉部102と、からなる。溶融金属の一部は、隙間Gにも流れ込み、ベース部101がレーザ光を照射した領域の周囲の隙間Gにも形成されている。
As shown in FIG. 4, the welded portion 100 formed by laser welding according to the present embodiment includes a base portion 101 formed by melting, stirring, and solidifying plate materials 501 and 502 by irradiation with laser light. It is composed of a thickening portion 102 formed by melting, stirring, and solidifying the tip of the wire 20 by irradiation with a laser beam. A part of the molten metal also flows into the gap G, and is also formed in the gap G around the region where the base portion 101 is irradiated with the laser beam.
なお、図4では、説明の便宜のためにベース部101と増肉部102との間に境界が存在するように図示をしているが、実際にはベース部101と増肉部102とが一体的に形成されて溶接部100が形成されている。
Although FIG. 4 is shown so that a boundary exists between the base portion 101 and the thickening portion 102 for convenience of explanation, the base portion 101 and the thickening portion 102 are actually shown. The welded portion 100 is formed integrally.
図4に示すように、本実施形態では、先端がレーザ光のスポットの走査領域(形成しようとする溶接部100)の外縁100bよりも内周側となる外周部分100aにワイヤ20を供給しているので、レーザ光の照射によりワイヤ20の先端が溶融し、根元側部分から分離される。
As shown in FIG. 4, in the present embodiment, the wire 20 is supplied to the outer peripheral portion 100a whose tip is on the inner peripheral side of the outer peripheral edge 100b of the scanning region (welded portion 100 to be formed) of the laser beam spot. Therefore, the tip of the wire 20 is melted by the irradiation of the laser beam and separated from the root side portion.
次に、図5に示すように、本実施形態に係るレーザ溶接方法を採用した場合には、溶接部100における径方向外側部分の外周部分100aにおいて、肉厚が薄肉化されるのが抑制されている。これは、ベース部101に加えて増肉部102により溶接部100が形成され、また、レーザ光のスポットを周回走査することで溶融金属が攪拌されることによるものである。よって、本実施形態に係るレーザ溶接方法を用いる場合には、外周部分100aの薄肉化が抑制され、応力集中が緩和されるとともに、これによって当該部分が急冷されるのが抑制されて脆弱組織となることも抑制される。
Next, as shown in FIG. 5, when the laser welding method according to the present embodiment is adopted, thinning of the wall thickness is suppressed in the outer peripheral portion 100a of the radial outer portion of the welded portion 100. ing. This is because the welded portion 100 is formed by the thickened portion 102 in addition to the base portion 101, and the molten metal is agitated by orbiting scanning the spot of the laser beam. Therefore, when the laser welding method according to the present embodiment is used, the thinning of the outer peripheral portion 100a is suppressed, the stress concentration is alleviated, and the rapid cooling of the portion is suppressed, resulting in a fragile structure. It is also suppressed.
一方、レーザ光の照射の際にワイヤを供給しなかった比較例の場合には、図6に示すように、溶接部900の外周部分900aの肉厚が本実施形態に係る外周部分100aの肉厚よりも薄くなってしまう。このため、溶接対象となる板材901の板厚や板材間の隙間が本実施形態と同じであったとしても、外周部分900aの薄肉化が生じ、これによって急冷されることに起因して該部分に脆弱組織が形成される場合がある。
On the other hand, in the case of the comparative example in which the wire was not supplied at the time of irradiation with the laser beam, as shown in FIG. 6, the wall thickness of the outer peripheral portion 900a of the welded portion 900 is the thickness of the outer peripheral portion 100a according to the present embodiment. It will be thinner than it is thick. Therefore, even if the plate thickness of the plate material 901 to be welded and the gap between the plate materials are the same as those in the present embodiment, the outer peripheral portion 900a is thinned, which causes the portion to be rapidly cooled. Vulnerable tissue may be formed in.
5.効果
本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ溶接により板材501と板材502とを接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、板材501,502に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。 5. Effect In thelaser welding apparatus 1 and the laser welding method using the laser welding apparatus 1 according to the present embodiment, since the plate material 501 and the plate material 502 are joined by laser welding, the welding speed is faster and the heat is higher than in the case of using resistance welding or the like. It has little influence, and welding can be performed on the plate members 501 and 502 without contact, the processing efficiency is high, and the rigidity can be increased by continuous welding.
本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ溶接により板材501と板材502とを接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、板材501,502に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。 5. Effect In the
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ光のスポットを、周回中心AxLB1周りを周回させて当該部分の金属部材を溶融・攪拌して、溶接部100を形成するので、溶接前の状態で板材501と板材502との間に隙間Gが空いている場合であっても、溶融金属が隙間Gに流れ込むことになる。
Further, in the laser welding apparatus 1 according to the present embodiment and the laser welding method using the laser welding apparatus 1, the spot of the laser beam is orbited around the orbiting center Ax LB1 to melt and stir the metal member of the portion, and the welded portion. Since 100 is formed, the molten metal will flow into the gap G even if there is a gap G between the plate material 501 and the plate material 502 in the state before welding.
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、走査中のレーザ光によりワイヤ20の先端を溶融させて増肉部(溶接部100の一部)102とするので、凝固した後の溶接部100にえぐれ(アンダーフィル)や溶け落ちが発生するのを抑制することができる。
Further, in the laser welding apparatus 1 according to the present embodiment and the laser welding method using the laser welding apparatus 1, the tip of the wire 20 is melted by the laser beam during scanning to form a thickened portion (a part of the welded portion 100) 102. It is possible to suppress the occurrence of gouge (underfill) and melt-through in the welded portion 100 after solidification.
また、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ光のスポットを走査している間に、レーザ光走査軌跡LNLB上に先端が配されるようにワイヤ20を供給してレーザ光の照射によりワイヤ20の先端を溶融させるので、板材の溶融とは別ステップでワイヤの溶融を行う上記特許文献1に開示の技術よりも高い作業効率を実現することができる。
Further, in the laser welding apparatus 1 according to the present embodiment and the laser welding method using the laser welding apparatus 1, the wire 20 is arranged so that the tip is arranged on the laser beam scanning locus LN LB while scanning the spot of the laser beam. Is supplied and the tip of the wire 20 is melted by irradiating the laser beam, so that the work efficiency higher than that of the technique disclosed in Patent Document 1 can be realized, in which the wire is melted in a step different from the melting of the plate material. ..
さらに、本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、レーザ光の照射によりワイヤ20が溶融されてなる溶融金属も、板材501,502が溶融されてなる溶融金属とともに、レーザ光のスポットの周回走査により攪拌され溶融池の表面が平坦化される。このように、本実施形態では、溶融池の平坦化についても連続したレーザ光のスポットの走査によりなされるので、ワイヤを溶融させてなる溶滴を堆積させ、その後にレーザ光の照射を再開して溶融池の表面を平坦化する上記特許文献1に開示の技術よりも、高い作業効率を実現することができる。
Further, in the laser welding apparatus 1 according to the present embodiment and the laser welding method using the laser welding apparatus 1, the molten metal in which the wire 20 is melted by irradiation with laser light is also combined with the molten metal in which the plate materials 501 and 502 are melted. The surface of the molten pool is flattened by stirring by orbiting the spot of the laser beam. As described above, in the present embodiment, since the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, the droplets formed by melting the wires are deposited, and then the irradiation of the laser beam is restarted. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, which flattens the surface of the molten pool.
本実施形態に係るレーザ溶接装置1およびこれを用いたレーザ溶接方法では、ワイヤ20を溶接部100の外縁100bよりも内周側の外周部分100aに供給することにより、レーザ光のスポットがワイヤ20の先端に照射されることによりレーザ光の照射部分でワイヤ20が溶断されることになる。よって、ワイヤ20の供給量の多少にかかわらず、溶融池からのワイヤ20の離間を容易に制御することができる。
In the laser welding apparatus 1 according to the present embodiment and the laser welding method using the same, the spot of the laser beam is spotted on the wire 20 by supplying the wire 20 to the outer peripheral portion 100a on the inner peripheral side of the outer edge 100b of the welded portion 100. By irradiating the tip of the wire 20, the wire 20 is welded at the irradiated portion of the laser beam. Therefore, the separation of the wire 20 from the molten pool can be easily controlled regardless of the supply amount of the wire 20.
[第2実施形態]
図7は、第2実施形態に係るレーザ溶接方法を説明する模式断面図である。 [Second Embodiment]
FIG. 7 is a schematic cross-sectional view illustrating the laser welding method according to the second embodiment.
図7は、第2実施形態に係るレーザ溶接方法を説明する模式断面図である。 [Second Embodiment]
FIG. 7 is a schematic cross-sectional view illustrating the laser welding method according to the second embodiment.
図7に示すように、本実施形態に係るレーザ溶接方法では、板材(金属部材)506と板材(金属部材)507とを略直交する方向に突き合わせ、突き合わせに係るコーナー部分をレーザ溶接して突合体505を形成する、所謂、隅肉溶接方法である。なお、本実施形態においても、溶接前の状態で板材506と板材507との間には、例えば最大1mm程度の隙間Gが存在する。
As shown in FIG. 7, in the laser welding method according to the present embodiment, the plate material (metal member) 506 and the plate material (metal member) 507 are butted in substantially orthogonal directions, and the corner portion related to the butting is laser welded to abut. This is a so-called fillet welding method for forming a coalescence 505. Also in this embodiment, there is a gap G of, for example, a maximum of about 1 mm between the plate material 506 and the plate material 507 in the state before welding.
本実施形態に係るレーザ溶接方法では、板材506の延在方向(Z方向)と板材507の延在方向(X方向)の両方向に交差する周回中心AxLB2を中心としてその周りをスポットが周回するようにレーザ光を照射する。
In the laser welding method according to the present embodiment, the spot orbits around the orbital center Ax LB2 that intersects both the extending direction (Z direction) of the plate material 506 and the extending direction (X direction) of the plate material 507. The laser beam is irradiated so as to.
本実施形態でも、先端がレーザ光のスポットの走査領域(形成しようとする溶接部105)の外縁よりも内周側の外周部分105aにワイヤ20を供給する。特に、本実施形態のレーザ溶接方法では、隅肉溶接を行うことからワイヤ20の供給量が少量であるので、ワイヤ20の挿入(前進)および引き離し(後退)に係るワイヤ20の移動量が極わずかであるが、ワイヤ20を外縁よりも内周側の外周部分105aに供給することでレーザ光の照射によりワイヤ20をカットする(切り離す)ことができるので、制御が容易である。
Also in this embodiment, the wire 20 is supplied to the outer peripheral portion 105a whose tip is on the inner peripheral side of the outer edge of the scanning region (welded portion 105 to be formed) of the laser beam spot. In particular, in the laser welding method of the present embodiment, since the fillet welding is performed, the supply amount of the wire 20 is small, so that the amount of movement of the wire 20 related to the insertion (advance) and the separation (reverse) of the wire 20 is extremely large. Although it is slight, by supplying the wire 20 to the outer peripheral portion 105a on the inner peripheral side of the outer edge, the wire 20 can be cut (cut off) by irradiation with a laser beam, so that control is easy.
本実施形態では、以上のようなレーザ溶接方法を採用することにより、ベース部106と増肉部107とからなる溶接部105を形成することができる。なお、本実施形態においても、溶融金属の一部が隙間Gに流れ込んでいる。
In the present embodiment, by adopting the laser welding method as described above, it is possible to form a welded portion 105 composed of a base portion 106 and a thickened portion 107. Also in this embodiment, a part of the molten metal has flowed into the gap G.
隅肉溶接を行う本実施形態においても上記第1実施形態と同様の効果を得ることができる。
The same effect as that of the first embodiment can be obtained in this embodiment in which fillet welding is performed.
[第3実施形態]
図8は、第3実施形態に係るレーザ溶接装置2の概略構成を示す模式図である。 [Third Embodiment]
FIG. 8 is a schematic view showing a schematic configuration of thelaser welding apparatus 2 according to the third embodiment.
図8は、第3実施形態に係るレーザ溶接装置2の概略構成を示す模式図である。 [Third Embodiment]
FIG. 8 is a schematic view showing a schematic configuration of the
図8に示すように、本実施形態に係るレーザ溶接装置2は、上記第1実施形態に係るレーザ溶接装置1と同様に、レーザ発振器10、光路11、集光部(走査部)12、溶接ロボット13、駆動回路部14、ワイヤ供給機(溶加材供給部)15、およびコントローラ(制御部)16を備える。
As shown in FIG. 8, the laser welding apparatus 2 according to the present embodiment has a laser oscillator 10, an optical path 11, a condensing portion (scanning portion) 12, and welding, similarly to the laser welding apparatus 1 according to the first embodiment. It includes a robot 13, a drive circuit unit 14, a wire feeder (weld material supply unit) 15, and a controller (control unit) 16.
さらに、本実施形態に係るレーザ溶接装置2は、撮像カメラ(隙間測定部)25を備える。撮像カメラ25は、積層体510を構成する板材(金属部材)511と板材(金属部材)512との間の境界部分を撮像し、隙間の有無、および隙間がある場合にはその大きさを測定して測定結果をコントローラ16に送出する。
Further, the laser welding apparatus 2 according to the present embodiment includes an imaging camera (gap measuring unit) 25. The image pickup camera 25 takes an image of the boundary portion between the plate material (metal member) 511 and the plate material (metal member) 512 constituting the laminated body 510, and measures the presence or absence of a gap and its size if there is a gap. Then, the measurement result is sent to the controller 16.
本実施形態に係るレーザ溶接装置2では、コントローラ16が、撮像カメラ25からの隙間測定結果を受けて、板材511と板材512との間に隙間がある場合に選択的にワイヤ20を供給するようにワイヤ供給機15を制御する。換言すると、コントローラ16は、板材511と板材512との間に隙間がない場合にはワイヤ20の供給を行わないようにワイヤ供給機15を制御する。
In the laser welding apparatus 2 according to the present embodiment, the controller 16 receives the gap measurement result from the image pickup camera 25 and selectively supplies the wire 20 when there is a gap between the plate material 511 and the plate material 512. Controls the wire feeder 15. In other words, the controller 16 controls the wire feeder 15 so that the wire 20 is not supplied when there is no gap between the plate member 511 and the plate member 512.
また、本実施形態に係るレーザ溶接装置2では、コントローラ16が、板材511と板材512との間の隙間の大きさに応じてワイヤ20の供給量を調整するようにワイヤ供給機15を制御する。具体的に、コントローラ16は、板材511と板材512との間の隙間が相対的に大きいほどワイヤ20の供給量を相対的に多く、隙間が相対的に小さいほどワイヤ20の供給量を相対的に少なくするように、ワイヤ供給機15を制御する。
Further, in the laser welding apparatus 2 according to the present embodiment, the controller 16 controls the wire feeder 15 so as to adjust the supply amount of the wire 20 according to the size of the gap between the plate material 511 and the plate material 512. .. Specifically, the controller 16 relatively increases the supply amount of the wire 20 as the gap between the plate material 511 and the plate material 512 is relatively large, and the supply amount of the wire 20 is relatively small as the gap is relatively small. The wire feeder 15 is controlled so as to reduce the number of wires.
本実施形態に係るレーザ溶接装置2およびこれを用いたレーザ溶接方法では、上記第1実施形態および上記第2実施形態と同様の効果を得ることができるのに加えて、次のような効果を得ることができる。
In the laser welding apparatus 2 according to the present embodiment and the laser welding method using the same, the same effects as those of the first embodiment and the second embodiment can be obtained, and the following effects can be obtained. Obtainable.
本実施形態に係るレーザ溶接装置2およびこれを用いたレーザ溶接方法では、板材511,512間に隙間がなく、溶接部にえぐれ(アンダーフィル)や溶け落ちの問題が生じ難い場合にワイヤ20が供給されるような事態を避けることができる。これにより、必要に応じてワイヤ20を供給することで、板材511,512間の隙間の有無にかかわらず、高い接合強度を確保することができる。
In the laser welding apparatus 2 according to the present embodiment and the laser welding method using the same, the wire 20 is used when there is no gap between the plate members 511 and 512 and the problem of gouge (underfill) or melt-through is unlikely to occur in the welded portion. It is possible to avoid the situation where it is supplied. As a result, by supplying the wire 20 as needed, high bonding strength can be ensured regardless of the presence or absence of a gap between the plate members 511, 512.
また、本実施形態に係るレーザ溶接装置2およびこれを用いたレーザ溶接方法では、板材511,512間の隙間の大小に応じてワイヤ20の供給量を調整することで、隙間が互いに異なる領域同士の間で、レーザ光の照射側から見た場合の溶接部の形態を揃えることができる。よって、本実施形態では、例えば、隙間が小さいにもかかわらず多くの溶加材を供給することで溶接部の表面が大きく盛り上がるようなことを抑制できる。なお、板材511,512間の隙間が大きい場合に、ワイヤ20の供給量が多くなるように制御することで、十分な量の溶融金属で当該隙間を充填することが可能となり、板材同士の高い接合強度を確保することができる。
Further, in the laser welding apparatus 2 and the laser welding method using the laser welding apparatus 2 according to the present embodiment, the supply amount of the wires 20 is adjusted according to the size of the gap between the plate members 511, 512, so that the regions having different gaps are different from each other. The form of the welded portion when viewed from the irradiation side of the laser beam can be aligned between the two. Therefore, in the present embodiment, for example, it is possible to prevent the surface of the welded portion from being greatly raised by supplying a large amount of filler metal even though the gap is small. When the gap between the plate materials 511, 512 is large, by controlling the supply amount of the wire 20 to be large, it is possible to fill the gap with a sufficient amount of molten metal, and the plate materials are high. The joint strength can be ensured.
[第4実施形態]
図9Aは、第4実施形態に係るレーザ溶接方法を説明するための模式平面図である。 [Fourth Embodiment]
FIG. 9A is a schematic plan view for explaining the laser welding method according to the fourth embodiment.
図9Aは、第4実施形態に係るレーザ溶接方法を説明するための模式平面図である。 [Fourth Embodiment]
FIG. 9A is a schematic plan view for explaining the laser welding method according to the fourth embodiment.
図9Aに示すように、本実施形態に係るレーザ溶接方法においても、溶接しようとする板材(金属部材)のうちの一方の板材表面に対して、周回中心(所定箇所)AxLB3を中心としてその周りを周回するようにレーザ光のスポットを走査してレーザ光を照射する。これにより、レーザ光を照射した部分の金属部材を溶融・攪拌し、平面視で略角丸多角形(本実施形態では、一例として角丸四角形)の溶接部110を形成する。そして、本実施形態においても、レーザ光のスポットを走査する領域(溶接部110)の外周部分にワイヤ20を供給する。
As shown in FIG. 9A, also in the laser welding method according to the present embodiment, with respect to the surface of one of the plate materials (metal members) to be welded, the circumferential center (predetermined location) Ax LB3 is the center. The spot of the laser beam is scanned so as to go around and the laser beam is irradiated. As a result, the metal member of the portion irradiated with the laser beam is melted and agitated to form a welded portion 110 having a substantially rounded polygonal shape (in this embodiment, a rounded quadrangle as an example) in a plan view. Then, also in this embodiment, the wire 20 is supplied to the outer peripheral portion of the region (welded portion 110) for scanning the spot of the laser beam.
本実施形態に係るレーザ溶接方法では、レーザ光のスポットを角丸多角形に走査する点で上記第1実施形態から上記第3実施形態とは異なっている。
The laser welding method according to the present embodiment is different from the first embodiment to the third embodiment in that the spot of the laser beam is scanned into a polygon with rounded corners.
以上のようなレーザ溶接方法でも、上記第1実施形態などと同様の効果を得ることができる。
Even with the laser welding method as described above, the same effect as that of the first embodiment can be obtained.
[第5実施形態]
図9Bは、第5実施形態に係るレーザ溶接方法を説明するための模式平面図である。 [Fifth Embodiment]
FIG. 9B is a schematic plan view for explaining the laser welding method according to the fifth embodiment.
図9Bは、第5実施形態に係るレーザ溶接方法を説明するための模式平面図である。 [Fifth Embodiment]
FIG. 9B is a schematic plan view for explaining the laser welding method according to the fifth embodiment.
図9Bに示すように、本実施形態に係るレーザ溶接方法においても、溶接しようとする板材(金属部材)のうちの一方の板材表面に対して、周回中心(所定箇所)AxLB4を中心としてその周りを周回するようにレーザ光のスポットを走査してレーザ光を照射する。これにより、レーザ光を照射した部分の金属部材を溶融・攪拌し、平面視略楕円形の溶接部115を形成する。そして、本実施形態においても、レーザ光のスポットを走査する領域(溶接部115)の外周部分にワイヤ20を供給する。
As shown in FIG. 9B, also in the laser welding method according to the present embodiment, with respect to the surface of one of the plate materials (metal members) to be welded, the circumferential center (predetermined location) Ax LB4 is the center. The spot of the laser beam is scanned so as to go around and the laser beam is irradiated. As a result, the metal member of the portion irradiated with the laser beam is melted and agitated to form the welded portion 115 having a substantially elliptical plan view. Then, also in the present embodiment, the wire 20 is supplied to the outer peripheral portion of the region (welded portion 115) for scanning the spot of the laser beam.
以上のようなレーザ溶接方法でも、上記第1実施形態などと同様の効果を得ることができる。
Even with the laser welding method as described above, the same effect as that of the first embodiment can be obtained.
[第6実施形態]
図10Aは、第6実施形態に係る溶接形態を示す模式図である。 [Sixth Embodiment]
FIG. 10A is a schematic view showing a welding mode according to the sixth embodiment.
図10Aは、第6実施形態に係る溶接形態を示す模式図である。 [Sixth Embodiment]
FIG. 10A is a schematic view showing a welding mode according to the sixth embodiment.
図10Aに示すように、本実施形態に係るレーザ溶接方法では、レーザ溶接を行うことにより、平面視略円形のスクリュ部121と、スクリュ部121に連続しX方向に平面視線状に延びる線状部122と、線状部122に連続し平面視略円形のスクリュ部123と、からなる溶接部(ナゲット)120を形成する。
As shown in FIG. 10A, in the laser welding method according to the present embodiment, by performing laser welding, a screw portion 121 having a substantially circular shape in a plan view and a linear shape continuous with the screw portion 121 and extending in a plane line of sight in the X direction. A welded portion (nugget) 120 composed of a portion 122, a screw portion 123 which is continuous with the linear portion 122 and has a substantially circular shape in a plan view, is formed.
スクリュ部121およびスクリュ部123の形成については、上記第1実施形態などと同様に、所定箇所周りに周回するようにレーザ光のスポットを走査することによりなされる。なお、本実施形態では、スクリュ部121の金属部材が凝固する前に、線状部122へのレーザ光の照射を連続して行い、線状部122の金属部材が凝固する前に、他方のスクリュ部123へのレーザ光の照射を連続して行う。
The screw portion 121 and the screw portion 123 are formed by scanning the spot of the laser beam so as to orbit around a predetermined location, as in the first embodiment. In the present embodiment, the linear portion 122 is continuously irradiated with the laser beam before the metal member of the screw portion 121 solidifies, and the other one is performed before the metal member of the linear portion 122 solidifies. Irradiation of the laser beam to the screw portion 123 is continuously performed.
図10Aでは、詳細な図示を省略しているが、レーザ光のスポットの走査領域内に先端が配されるようにワイヤ(溶加材)の供給を行う。
Although detailed illustration is omitted in FIG. 10A, the wire (filler) is supplied so that the tip is arranged in the scanning region of the spot of the laser beam.
本実施形態に係るレーザ溶接方法では、上記第1実施形態などと同様の効果を得ることができるのに加えて、次のような効果を得ることができる。
In the laser welding method according to the present embodiment, in addition to the same effect as that of the first embodiment and the like, the following effects can be obtained.
本実施形態に係るレーザ溶接方法では、スクリュ部121の金属部材が凝固する前に、線状部122へのレーザ光の照射を連続して行い、線状部122の金属部材が凝固する前に、スクリュ部123へのレーザ光の照射を連続して行うので、溶接前の状態において重ね合わせた金属部材同士の間に隙間が空いている場合にあっても、スクリュ部121の形成で溶融された金属部材に加えて、ワイヤが溶融してなる溶融金属が線状部122を形成しようとする部分の部材間の隙間に流れ込む。よって、本実施形態では、金属部材間に隙間が空いる場合であっても、スクリュ部のみならず、線状部についても高い強度で接合することが可能である。
In the laser welding method according to the present embodiment, before the metal member of the screw portion 121 solidifies, the linear portion 122 is continuously irradiated with the laser beam, and before the metal member of the linear portion 122 solidifies. Since the laser beam is continuously irradiated to the screw portion 123, even if there is a gap between the overlapped metal members in the state before welding, the screw portion 121 is formed and melted. In addition to the metal member, the molten metal formed by melting the wire flows into the gap between the members of the portion where the linear portion 122 is to be formed. Therefore, in the present embodiment, even when there is a gap between the metal members, not only the screw portion but also the linear portion can be joined with high strength.
また、本実施形態に係るレーザ溶接方法でも、上記第1実施形態などと同様に、スクリュ部121,123の形成に際してワイヤ(溶加材)を供給し、溶融させたワイヤを溶接部120の一部とするので、凝固した後の溶接部120にえぐれ(アンダーフィル)や溶け落ちが発生するのを抑制することができる。
Further, also in the laser welding method according to the present embodiment, as in the first embodiment and the like, a wire (filler) is supplied at the time of forming the screw portions 121 and 123, and the melted wire is one of the welded portions 120. Since it is a portion, it is possible to suppress the occurrence of gouge (underfill) or melt-off in the welded portion 120 after solidification.
また、本実施形態に係るレーザ溶接方法でも、レーザ光のスポットを走査している間に、スポットの走査軌跡上にワイヤを供給して当該ワイヤの先端を溶融させるので、板材(金属部材)の溶融とは別ステップでワイヤの溶融を行う上記特許文献1に開示の技術よりも高い作業効率を実現することができる。
Further, also in the laser welding method according to the present embodiment, since the wire is supplied on the scanning locus of the spot and the tip of the wire is melted while scanning the spot of the laser beam, the plate material (metal member) can be used. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, in which the wire is melted in a step different from the melting.
さらに、本実施形態に係るレーザ溶接方法でも、レーザ光の照射によりワイヤが溶融されてなる溶融金属も、板材(金属部材)が溶融されてなる溶融金属とともに、レーザ光のスポットの周回走査により攪拌され溶融池の表面が平坦化される。
Further, in the laser welding method according to the present embodiment, the molten metal obtained by melting the wire by irradiating the laser beam is also stirred together with the molten metal formed by melting the plate material (metal member) by orbiting scanning the spot of the laser beam. The surface of the molten pool is flattened.
[第7実施形態]
図10Bは、第7実施形態に係る溶接形態を示す模式図である。 [7th Embodiment]
FIG. 10B is a schematic view showing a welding mode according to the seventh embodiment.
図10Bは、第7実施形態に係る溶接形態を示す模式図である。 [7th Embodiment]
FIG. 10B is a schematic view showing a welding mode according to the seventh embodiment.
図10Bに示すように、本実施形態に係るレーザ溶接方法では、レーザ溶接を行うことにより、平面視略円形のスクリュ部126と、スクリュ部126に連続し平面視線状に延びる線状部127と、線状部127に連続し平面視略円形のスクリュ部128と、からなる溶接部(ナゲット)125を形成する。
As shown in FIG. 10B, in the laser welding method according to the present embodiment, by performing laser welding, a screw portion 126 having a substantially circular shape in a plan view and a linear portion 127 continuous with the screw portion 126 and extending in a plane line of sight , A welded portion (nugget) 125 composed of a screw portion 128 which is continuous with the linear portion 127 and has a substantially circular shape in a plan view is formed.
本実施形態に係るレーザ溶接方法は、基本的に上記第6実施形態と同様である。
The laser welding method according to this embodiment is basically the same as that of the sixth embodiment.
ただし、図10Bに示すように、本実施形態に係る溶接部125の線状部127は、スクリュ部126およびスクリュ部128に対する接続箇所が上記第6実施形態とは異なっている。即ち、本実施形態に係る溶接部125においては、線状部127がスクリュ部126およびスクリュ部128の各々における径方向の一方側端部(Y方向外縁部)において接線を形成するように接続されている。
However, as shown in FIG. 10B, the linear portion 127 of the welded portion 125 according to the present embodiment is different from the sixth embodiment in the connection points with respect to the screw portion 126 and the screw portion 128. That is, in the welded portion 125 according to the present embodiment, the linear portion 127 is connected so as to form a tangent line at one radial end portion (outer edge portion in the Y direction) of each of the screw portion 126 and the screw portion 128. ing.
本実施形態に係る溶接方法では、上記第6実施形態と同様の効果を得ることができる。
The welding method according to the present embodiment can obtain the same effect as that of the sixth embodiment.
[第8実施形態]
図10Cは、第8実施形態に係る溶接形態を示す模式図である。 [8th Embodiment]
FIG. 10C is a schematic view showing a welding mode according to the eighth embodiment.
図10Cは、第8実施形態に係る溶接形態を示す模式図である。 [8th Embodiment]
FIG. 10C is a schematic view showing a welding mode according to the eighth embodiment.
図10Cに示すように、本実施形態に係るレーザ溶接装置では、レーザ溶接を行うことにより、平面視略円形のスクリュ部131と、スクリュ部131に連続し平面視線状に延びる線状部132と、線状部132に連続し平面視略円形のスクリュ部133と、スクリュ部133に連続し平面視線状に延びる線状部134と、線状部134に連続し平面視略円形のスクリュ部135と、を含む溶接部(ナゲット)130を形成する。なお、図10Cでは、3か所のスクリュ部131,133,135と2つの線状部132,134からなる溶接部130を形成する一例を示しているが、スクリュ部および線状部がさらに連続する形態とすることも勿論可能である。
As shown in FIG. 10C, in the laser welding apparatus according to the present embodiment, by performing laser welding, a screw portion 131 having a substantially circular shape in a plan view and a linear portion 132 continuous with the screw portion 131 and extending in a plane line of sight , The screw portion 133 which is continuous with the linear portion 132 and is substantially circular in plan view, the linear portion 134 which is continuous with the screw portion 133 and extends in a plane line of sight, and the screw portion 135 which is continuous with the linear portion 134 and is substantially circular in plan view. And the welded portion (nugget) 130 including. Although FIG. 10C shows an example of forming a welded portion 130 composed of three screw portions 131, 133, 135 and two linear portions 132, 134, the screw portion and the linear portion are further continuous. Of course, it is also possible to form a screw.
各スクリュ部131,133,135および各線状部132,134の形成については、上記第6実施形態および上記第7実施形態と同様の方法である。
The formation of the screw portions 131, 133, 135 and the linear portions 132, 134 is the same method as in the sixth embodiment and the seventh embodiment.
本実施形態に係るレーザ溶接方法でも、上記第6実施形態および上記第7実施形態と同様の効果を得ることができる。また、本実施形態では、上記第6実施形態および上記第7実施形態よりも多くのスクリュ部131,133,135および線状部132,134を含む溶接部130を形成することで、溶接速度の高速化を図りながら、より高い接合強度を確保することができる。
The laser welding method according to the present embodiment can also obtain the same effects as those of the sixth embodiment and the seventh embodiment. Further, in the present embodiment, the welding speed is increased by forming the welded portion 130 including more screw portions 131, 133, 135 and linear portions 132, 134 than in the sixth embodiment and the seventh embodiment. It is possible to secure higher joint strength while increasing the speed.
[第9実施形態]
図11Aは、第9実施形態に係る溶接形態を示す模式図である。 [9th Embodiment]
FIG. 11A is a schematic view showing a welding mode according to the ninth embodiment.
図11Aは、第9実施形態に係る溶接形態を示す模式図である。 [9th Embodiment]
FIG. 11A is a schematic view showing a welding mode according to the ninth embodiment.
図11Aに示すように、本実施形態に係るレーザ溶接装置では、レーザ溶接を行うことにより、平面視略円形のスクリュ部141と、スクリュ部141に連続し平面視線状に延びる線状部142と、からなる溶接部(ナゲット)140を形成する。
As shown in FIG. 11A, in the laser welding apparatus according to the present embodiment, by performing laser welding, a screw portion 141 having a substantially circular shape in a plan view and a linear portion 142 continuous with the screw portion 141 and extending in a plane line of sight , To form a welded portion (nugget) 140 composed of.
スクリュ部141および線状部142のそれぞれの形成については、上記第6実施形態から上記第8実施形態と同様の方法によりなされる。また、本実施形態に係るレーザ溶接方法においても、上記第6実施形態から上記第8実施形態と同様に、溶接部140の形成に際して、スクリュ部141の金属部材が凝固する前に、線状部142へのレーザ光の照射を連続して行う。
Each of the screw portion 141 and the linear portion 142 is formed by the same method as in the sixth to eighth embodiments. Further, also in the laser welding method according to the present embodiment, similarly to the sixth to eighth embodiments, when the welded portion 140 is formed, the linear portion is formed before the metal member of the screw portion 141 solidifies. Irradiation of the laser beam to 142 is continuously performed.
本実施形態に係るレーザ溶接方法では、上記第6実施形態などと同様の効果を得ることができる。
In the laser welding method according to the present embodiment, the same effect as that of the sixth embodiment can be obtained.
[第10実施形態]
図11Bは、第10実施形態に係る溶接形態を示す模式図である。 [10th Embodiment]
FIG. 11B is a schematic view showing a welding mode according to the tenth embodiment.
図11Bは、第10実施形態に係る溶接形態を示す模式図である。 [10th Embodiment]
FIG. 11B is a schematic view showing a welding mode according to the tenth embodiment.
図11Bに示すように、本実施形態に係るレーザ溶接装置では、レーザ溶接を行うことにより、平面視略円形のスクリュ部146と、スクリュ部146に連続し平面視線状に延びる線状部147と、からなる溶接部(ナゲット)145を形成する。
As shown in FIG. 11B, in the laser welding apparatus according to the present embodiment, by performing laser welding, a screw portion 146 having a substantially circular shape in a plan view and a linear portion 147 continuous with the screw portion 146 and extending in a plane line of sight , To form a welded portion (nugget) 145.
本実施形態に係るレーザ溶接方法では、溶接部145の線状部147の、スクリュ部146に対する接続箇所が上記第9実施形態とは異なり、スクリュ部146における径方向の一方側端部(Y方向外縁部)において接線方向に延びるように接続されている。
In the laser welding method according to the present embodiment, the connection portion of the linear portion 147 of the welded portion 145 to the screw portion 146 is different from that of the ninth embodiment, and one end portion (Y direction) in the radial direction of the screw portion 146 is provided. It is connected so as to extend in the tangential direction at the outer edge).
なお、スクリュ部146および線状部147のそれぞれの形成については、上記第6実施形態から上記第9実施形態と同様の方法によりなされる。また、本実施形態に係るレーザ溶接方法においても、上記第6実施形態から上記第9実施形態と同様に、溶接部145の形成に際して、スクリュ部146の金属部材が凝固する前に、線状部147へのレーザ光の照射を連続して行う。
The screw portion 146 and the linear portion 147 are formed by the same method as in the sixth to ninth embodiments. Further, also in the laser welding method according to the present embodiment, as in the case of the sixth to ninth embodiments, when the welded portion 145 is formed, the linear portion is formed before the metal member of the screw portion 146 solidifies. Irradiation of the laser beam to the 147 is continuously performed.
本実施形態に係るレーザ溶接方法では、上記第6実施形態などと同様の効果を得ることができる。
In the laser welding method according to the present embodiment, the same effect as that of the sixth embodiment can be obtained.
[第11実施形態]
図11Cは、第11実施形態に係る溶接形態を示す模式図である。 [11th Embodiment]
FIG. 11C is a schematic view showing a welding mode according to the eleventh embodiment.
図11Cは、第11実施形態に係る溶接形態を示す模式図である。 [11th Embodiment]
FIG. 11C is a schematic view showing a welding mode according to the eleventh embodiment.
図11Cに示すように、本実施形態に係るレーザ溶接装置では、レーザ溶接により、平面視略円形のスクリュ部152と、該スクリュ部152から当該スクリュ部152の径方向の一方側に向けて離間するように(矢印B2で示すように)延びる平面視線状の線状部151と、スクリュ部152から径方向の他方側に向けて離間するように(矢印B1で示すように)延びる平面視線状の線状部153と、からなる溶接部150を形成する。
As shown in FIG. 11C, in the laser welding apparatus according to the present embodiment, the screw portion 152 having a substantially circular shape in a plan view is separated from the screw portion 152 toward one side in the radial direction of the screw portion 152 by laser welding. a flat sight line shape of the line portion 151 as extending (as indicated by the arrow B 2) is, (as indicated by arrow B 1) to be separated toward the screw portion 152 on the other side of the radially extending plane A line-of-sight linear portion 153 and a welded portion 150 composed of the linear portion 153 are formed.
なお、スクリュ部152および線状部151,153のそれぞれの形成については、上記第6実施形態から上記第10実施形態と同様の方法によりなされる。また、本実施形態では、線状部151でのレーザ溶接の開始および線状部153でのレーザ溶接の開始との両方を、スクリュ部152の溶融金属が凝固する前に行う。
The screw portions 152 and the linear portions 151 and 153 are formed by the same method as in the sixth to tenth embodiments. Further, in the present embodiment, both the start of the laser welding at the linear portion 151 and the start of the laser welding at the linear portion 153 are performed before the molten metal of the screw portion 152 solidifies.
本実施形態に係るレーザ溶接方法では、上記第6実施形態などと同様の効果を得ることができる。
In the laser welding method according to the present embodiment, the same effect as that of the sixth embodiment can be obtained.
[変形例]
以下では、変形例に係るレーザ溶接装置およびこれを用いたレーザ溶接方法について、説明する。 [Modification example]
Hereinafter, a laser welding apparatus according to a modified example and a laser welding method using the same will be described.
以下では、変形例に係るレーザ溶接装置およびこれを用いたレーザ溶接方法について、説明する。 [Modification example]
Hereinafter, a laser welding apparatus according to a modified example and a laser welding method using the same will be described.
本変形例に係るレーザ溶接装置は、上記第1実施形態に係るレーザ溶接装置1または上記第2実施形態に係るレーザ溶接装置2が採用される。
As the laser welding apparatus according to this modification, the laser welding apparatus 1 according to the first embodiment or the laser welding apparatus 2 according to the second embodiment is adopted.
本変形例では、溶接対象である金属部材が共に炭素を含む金属材料からなる。具体的には、炭素鋼からなる金属部材を溶接対象としている。また、本変形例では、溶加材であるワイヤも炭素を含む金属材料からなる。
In this modification, the metal member to be welded is made of a metal material containing carbon. Specifically, a metal member made of carbon steel is targeted for welding. Further, in this modification, the wire as a filler material is also made of a metal material containing carbon.
そして、本変形例では、溶接対象である金属部材の炭素当量に応じて炭素当量が設定されてなるワイヤが供給される。具体的には、溶接対象である金属部材の炭素当量が相対的に大きい場合に炭素当量が相対的に小さいワイヤが供給され、金属部材の炭素当量が相対的に小さい場合に炭素当量が相対的に大きいワイヤが供給される。
Then, in this modification, a wire whose carbon equivalent is set according to the carbon equivalent of the metal member to be welded is supplied. Specifically, a wire having a relatively small carbon equivalent is supplied when the carbon equivalent of the metal member to be welded is relatively large, and the carbon equivalent is relative when the carbon equivalent of the metal member is relatively small. Is supplied with a large wire.
本変形例では、溶接対象である金属部材の炭素当量が相対的に大きい場合には炭素当量が相対的に小さいワイヤを供給することで溶融池の炭素量を希釈して組織が脆くなるのを抑制することができ、逆に金属部材の炭素当量が相対的に小さい場合には炭素当量が相対的に大きい溶加材を供給することで溶融池の炭素量を増やして溶接部の強度向上を図ることができる。
In this modification, when the carbon equivalent of the metal member to be welded is relatively large, the carbon content of the molten pool is diluted by supplying a wire with a relatively small carbon equivalent, and the structure becomes brittle. On the contrary, when the carbon equivalent of the metal member is relatively small, the carbon content of the molten pool is increased by supplying a filler material having a relatively large carbon equivalent to improve the strength of the weld. Can be planned.
なお、本変形例においては、一例として、金属部材の炭素当量が0.25%の場合を閾値として、ワイヤの炭素当量の大小を変化させる。
In this modification, as an example, the magnitude of the carbon equivalent of the wire is changed with the case where the carbon equivalent of the metal member is 0.25% as a threshold value.
[その他の変形例]
上記第1実施形態から上記第11実施形態では、レーザ光のスポットを走査するために集光部12を制御することとしたが、本発明は、これに限定を受けるものではない。例えば、溶接ロボット13の先端部分を駆動制御することでレーザ光のスポットを走査してもよいし、X-Yテーブルなどを用いてレーザ光のスポットを走査させることとしてもよい。また、上記第1実施形態から上記第11実施形態では、集光部12を制御してレーザ光のスポットを移動させることとしたが、本発明は、これに限定を受けるものではない。例えば、溶接に供される金属部材を移動させてレーザ光のスポットを走査することとしてもよい。また、一定範囲の溶接であれば、溶接ロボット13を用いず、集光部12の走査のみによっても所望位置への溶接が可能である。 [Other variants]
In the first to eleventh embodiments, the condensingunit 12 is controlled to scan the spot of the laser beam, but the present invention is not limited thereto. For example, the laser beam spot may be scanned by driving and controlling the tip portion of the welding robot 13, or the laser beam spot may be scanned using an XY table or the like. Further, in the first to eleventh embodiments, the condensing unit 12 is controlled to move the spot of the laser beam, but the present invention is not limited to this. For example, the metal member to be welded may be moved to scan the spot of the laser beam. Further, if the welding is in a certain range, welding to a desired position can be performed only by scanning the light collecting unit 12 without using the welding robot 13.
上記第1実施形態から上記第11実施形態では、レーザ光のスポットを走査するために集光部12を制御することとしたが、本発明は、これに限定を受けるものではない。例えば、溶接ロボット13の先端部分を駆動制御することでレーザ光のスポットを走査してもよいし、X-Yテーブルなどを用いてレーザ光のスポットを走査させることとしてもよい。また、上記第1実施形態から上記第11実施形態では、集光部12を制御してレーザ光のスポットを移動させることとしたが、本発明は、これに限定を受けるものではない。例えば、溶接に供される金属部材を移動させてレーザ光のスポットを走査することとしてもよい。また、一定範囲の溶接であれば、溶接ロボット13を用いず、集光部12の走査のみによっても所望位置への溶接が可能である。 [Other variants]
In the first to eleventh embodiments, the condensing
また、上記第1実施形態から上記第11実施形態では、2つの金属部材同士の接合を行うこととしたが、本発明は、これに限定を受けるものではない。例えば、3つ以上の金属部材を接合するのにも本発明を適用すれば上記同様の効果を得ることができる。
Further, in the first to eleventh embodiments, the two metal members are joined to each other, but the present invention is not limited to this. For example, if the present invention is applied to join three or more metal members, the same effect as described above can be obtained.
また、上記第3実施形態に係るレーザ用溶接装置2では、撮像カメラ25により隙間の有無および隙間の大小を測定することとしたが、本発明は、これに限定を受けるものではない。例えば、超音波などにより隙間を測定することとしてもよい。
Further, in the laser welding apparatus 2 according to the third embodiment, the presence or absence of a gap and the size of the gap are measured by the imaging camera 25, but the present invention is not limited to this. For example, the gap may be measured by ultrasonic waves or the like.
また、溶接部に測定用のレーザ光を照射し、溶接部表面の溶接によって形成される窪みの深さ(溶接前の状態の金属部材のレーザ光照射表面と溶接中の溶接池表面との距離)をリアルタイムに測定する(測定ステップを実行する)深さ測定部を更に具備しておき、測定した窪みの深さ(ワイヤにレーザ光が照射される前の状態での深さ)に合わせて供給するワイヤ(溶加材)の量を制御することとしてもよい。
Further, the welded portion is irradiated with a laser beam for measurement, and the depth of the depression formed by welding the surface of the welded portion (distance between the laser beam irradiation surface of the metal member in the state before welding and the surface of the welding pond during welding). ) Is further provided in a depth measuring unit for measuring (performing a measurement step) in real time, and is adjusted to the measured depth of the recess (the depth before the wire is irradiated with the laser beam). The amount of wire (weld material) to be supplied may be controlled.
また、本発明では、上記第1実施形態から上記第11実施形態を相互に組み合わせて適用することも可能である。
Further, in the present invention, it is also possible to apply the above-mentioned first embodiment to the above-mentioned eleventh embodiment in combination with each other.
[まとめ]
本発明の一態様に係るレーザ溶接方法は、複数の金属部材をレーザ溶接により接合するレーザ溶接方法であって、レーザ光を発振し、当該発振されたレーザ光を溶接箇所に集光するレーザ光照射ステップと、前記レーザ光のスポットを走査する走査ステップと、金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給ステップと、を備え、前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給するとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材を前記金属部材の溶融により形成された溶融池から離間させる。 [Summary]
The laser welding method according to one aspect of the present invention is a laser welding method in which a plurality of metal members are joined by laser welding, and the laser light is oscillated and the oscillated laser light is focused on a welded portion. It includes an irradiation step, a scanning step for scanning the spot of the laser beam, and a filler material supply step which is made of metal and supplies a filler material which is melted by the irradiation of the laser beam into the scanning region of the spot. The laser beam spot is scanned so as to orbit around the predetermined location to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the laser beam spot passes through. The filler metal is supplied to the portion of the above, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
本発明の一態様に係るレーザ溶接方法は、複数の金属部材をレーザ溶接により接合するレーザ溶接方法であって、レーザ光を発振し、当該発振されたレーザ光を溶接箇所に集光するレーザ光照射ステップと、前記レーザ光のスポットを走査する走査ステップと、金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給ステップと、を備え、前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給するとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材を前記金属部材の溶融により形成された溶融池から離間させる。 [Summary]
The laser welding method according to one aspect of the present invention is a laser welding method in which a plurality of metal members are joined by laser welding, and the laser light is oscillated and the oscillated laser light is focused on a welded portion. It includes an irradiation step, a scanning step for scanning the spot of the laser beam, and a filler material supply step which is made of metal and supplies a filler material which is melted by the irradiation of the laser beam into the scanning region of the spot. The laser beam spot is scanned so as to orbit around the predetermined location to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the laser beam spot passes through. The filler metal is supplied to the portion of the above, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
先ず、上記態様に係るレーザ溶接方法では、複数の金属部材をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属部材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
First, in the laser welding method according to the above aspect, since a plurality of metal members are joined by laser welding, the welding speed is faster, the thermal influence is less, and the metal member is less affected than the case where resistance welding or the like is used. Welding can be performed in a non-contact manner, processing efficiency is high, and rigidity can be increased by continuous welding.
次に、上記態様に係るレーザ溶接方法では、走査ステップの実行により、レーザ光のスポットを所定箇所を中心としてその周りを周回させて当該部分の金属部材を溶融・攪拌して、溶接部を形成するので、溶接前の状態で金属部材同士の間に隙間が空いている場合であっても、溶融金属が金属部材間の隙間に流れ込むことになる。
Next, in the laser welding method according to the above aspect, by executing the scanning step, the spot of the laser beam is circulated around the predetermined portion to melt and stir the metal member of the portion to form the welded portion. Therefore, even if there is a gap between the metal members in the state before welding, the molten metal will flow into the gap between the metal members.
また、上記態様に係るレーザ溶接方法では、溶加材供給ステップの実行により、走査中のレーザ光により溶加材を溶融させて溶接部の一部とするので、凝固した後の溶接部にえぐれ(アンダーフィル)や溶け落ちが発生するのを抑制することができる。
Further, in the laser welding method according to the above aspect, by executing the filler material supply step, the filler metal is melted by the laser beam during scanning to be a part of the welded portion, so that the welded portion is scooped out after solidification. It is possible to suppress the occurrence of (underfill) and melting off.
また、上記態様に係るレーザ溶接方法では、レーザ光のスポットを走査している間に(走査ステップの実行中に)、スポットの走査軌跡上に溶加材を供給して溶加材を溶融させるので(溶加材供給ステップを実行するので)、金属部材の溶融とは別ステップで溶加材の溶融を行う上記特許文献1に開示の技術よりも高い作業効率を実現することができる。
Further, in the laser welding method according to the above aspect, the filler metal is supplied on the scanning locus of the spot while scanning the spot of the laser beam (during the execution of the scanning step) to melt the filler metal. Therefore (because the filler material supply step is executed), it is possible to realize a higher work efficiency than the technique disclosed in Patent Document 1 above, in which the filler metal is melted in a step different from the melting of the metal member.
さらに、上記態様に係るレーザ溶接方法では、レーザ光の照射により溶加材が溶融されてなる溶融金属も、金属部材が溶融されてなる溶融金属とともに、レーザ光のスポットの周回走査により攪拌され溶融池の表面が平坦化される。このように、上記態様に係るレーザ溶接方法では、溶融池の平坦化についても連続したレーザ光のスポットの走査によりなされるので、溶加材を溶融させてなる溶滴を堆積後にレーザ光の照射を再開して表面の平坦化を行う上記特許文献1に開示の技術よりも、高い作業効率を実現することができる。
Further, in the laser welding method according to the above aspect, the molten metal obtained by melting the filler metal by irradiating the laser beam is also agitated and melted by orbiting scanning of the spot of the laser beam together with the molten metal formed by melting the metal member. The surface of the pond is flattened. As described above, in the laser welding method according to the above aspect, the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, so that the laser beam is irradiated after the droplets formed by melting the filler metal are deposited. It is possible to realize higher work efficiency than the technique disclosed in the above-mentioned Patent Document 1 in which the above-mentioned is restarted to flatten the surface.
従って、上記態様に係るレーザ溶接方法では、溶接前の状態で互いの間に隙間が空いている場合であっても、金属部材同士を高い接合強度で且つ高い作業効率を以って接合することが可能である。
Therefore, in the laser welding method according to the above aspect, the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
上記態様に係るレーザ溶接方法において、前記溶接部を前記レーザ光の照射方向から平面視する場合に、前記溶加材の供給は、前記溶接部の外縁よりも内周側になされ、前記溶加材の先端は、前記レーザ光のスポットが通過することにより溶融して当該先端よりも根元側の部分から切り離される、との構成を採用することもできる。
In the laser welding method according to the above aspect, when the welded portion is viewed in a plan view from the irradiation direction of the laser beam, the fillering material is supplied to the inner peripheral side of the outer edge of the welded portion, and the fillering material is supplied. It is also possible to adopt a configuration in which the tip of the material is melted by passing the spot of the laser beam and is separated from the portion on the root side of the tip.
上記のような構成を採用する場合には、溶加材を溶接部の外縁よりも内周側に供給することにより、レーザ光のスポットが当該溶加材を通過することにより通過部分で溶加材が溶断されることになる。よって、溶加材の供給量の多少にかかわらず、溶融池からの溶加材の離間を容易に制御することができる。
When the above configuration is adopted, the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion, so that the spot of the laser beam passes through the filler metal and is welded at the passing portion. The material will be welded. Therefore, the separation of the filler metal from the molten pool can be easily controlled regardless of the amount of the filler metal supplied.
上記態様に係るレーザ溶接方法において、前記金属部材同士の間の隙間を測定する隙間測定ステップをさらに備え、前記溶加材の供給は、前記隙間が空いている場合に選択的になされる、との構成を採用することもできる。
In the laser welding method according to the above aspect, a gap measuring step for measuring a gap between the metal members is further provided, and the filler metal is selectively supplied when the gap is open. It is also possible to adopt the configuration of.
上記のような構成を採用する場合には、金属部材間に隙間がなく、溶接部にえぐれや溶け落ちの問題が生じ難い場合にまで不所望に溶加材が供給されるような事態を避けることができる。
When the above configuration is adopted, it is possible to avoid a situation in which the filler metal is undesirably supplied even when there is no gap between the metal members and the problem of gouge or melt-through is unlikely to occur in the welded portion. be able to.
上記態様に係るレーザ溶接方法において、前記溶加材供給ステップでは、前記隙間が相対的に大きいほど前記溶加材の供給量を相対的に多くする、との構成を採用することもできる。
In the laser welding method according to the above aspect, in the filler material supply step, it is possible to adopt a configuration in which the supply amount of the filler metal is relatively large as the gap is relatively large.
上記のような構成を採用する場合には、隙間が相対的に大きいほど溶加材の供給量を相対的に多くする、換言すると、隙間の大小に応じて溶加材の供給量を調整するので、隙間が互いに異なる領域同士の間で、レーザ光の照射側から見た場合の溶接部の形態を揃えることができる。よって、上記のような構成を採用する場合には、高い接合強度を確保しながら、溶接部の高い外観品質を実現することができる。例えば、隙間が小さいにもかかわらず多くの溶加材を供給してしまった場合には、表面が大きく盛り上がった溶接部が形成されてしまうこととなるが、上記構成を採用することでこのような事態が避けられる。
When the above configuration is adopted, the supply amount of the filler material is relatively increased as the gap is relatively large, in other words, the supply amount of the filler material is adjusted according to the size of the gap. Therefore, the form of the welded portion when viewed from the irradiation side of the laser beam can be made uniform between the regions having different gaps. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength. For example, if a large amount of filler metal is supplied even though the gap is small, a welded portion having a large raised surface will be formed. By adopting the above configuration, such a welded portion will be formed. You can avoid such a situation.
上記態様に係るレーザ溶接方法において、前記金属部材の溶融により形成された溶融池表面までの深さを測定する測定ステップをさらに備え、前記溶加材供給ステップでは、前記溶加材に対して前記レーザ光が照射される前の状態での前記深さが相対的に深いほど、前記溶加材の供給量を相対的に多くする、との構成を採用することもできる。
In the laser welding method according to the above aspect, a measuring step for measuring the depth to the surface of the molten pool formed by melting the metal member is further provided, and in the fillering material supply step, the filler metal is described as described above. It is also possible to adopt a configuration in which the supply amount of the filler metal is relatively increased as the depth is relatively deep before the laser beam is irradiated.
ここで、上記における「溶融池表面までの深さ」とは、溶接前の状態の金属部材のレーザ光照射表面と溶接中の溶接池表面との距離である。
Here, the "depth to the surface of the molten pool" in the above is the distance between the laser beam irradiation surface of the metal member in the state before welding and the surface of the welding pond during welding.
上記のような構成を採用する場合には、溶加材にレーザ光が照射される前の状態、換言すると、溶加材が溶融される前の状態の上記深さの大小に応じて溶加材の供給量を調整するので、金属部材同士の間の隙間の大小などにかかわらず、上記深さを予め設定した所定の深さとすることができる。よって、上記のような構成を採用する場合には、高い接合強度を確保しながら、溶接部の高い外観品質を実現することができる。
When the above configuration is adopted, the filler metal is welded according to the magnitude of the depth before the laser beam is irradiated to the filler metal, in other words, the state before the filler metal is melted. Since the supply amount of the material is adjusted, the depth can be set to a predetermined predetermined depth regardless of the size of the gap between the metal members. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength.
上記態様に係るレーザ溶接方法において、前記溶加材および前記金属部材のそれぞれには、炭素を含む金属が用いられ、前記溶加材の炭素当量は、前記母材の炭素当量が相対的に大きいほど相対的に小さく、前記母材の炭素当量が相対的に小さいほど相対的に大きくなるように設定されている、との構成を採用することもできる。
In the laser welding method according to the above aspect, a metal containing carbon is used for each of the filler metal and the metal member, and the carbon equivalent of the filler metal has a relatively large carbon equivalent of the base metal. It is also possible to adopt a configuration in which the carbon equivalent of the base metal is set to be relatively small, and the carbon equivalent of the base metal is set to be relatively large.
上記のような構成を採用する場合には、母材の炭素当量が相対的に大きいほど炭素当量を少ない溶加材を供給することにより、溶融池の炭素量を希釈して組織が脆くなるのを抑制することができ、逆に母材の炭素当量が相対的に小さいほど炭素当量が多い溶加材を供給することにより、溶融池の炭素量を増やして接合部(溶接部)の強度向上を図ることができる。
When the above configuration is adopted, the carbon equivalent of the base metal is relatively large, the carbon equivalent is reduced by supplying the filler material, so that the carbon content of the molten pool is diluted and the structure becomes brittle. On the contrary, by supplying a filler material having a larger carbon equivalent as the carbon equivalent of the base material is relatively smaller, the carbon content of the molten pool is increased and the strength of the joint (welded portion) is improved. Can be planned.
本発明の一態様に係るレーザ溶接装置は、複数の金属部材をレーザ溶接により接合するレーザ溶接装置であって、レーザ光を発振するレーザ発振器と、前記レーザ光を溶接箇所に集光する集光部と、前記レーザ光のスポットを走査する走査部と、金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給部と、前記レーザ発振器、前記走査部、および前記溶加材供給部を制御する制御部と、を備え、前記制御部は、前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するように前記レーザ発振器および前記走査部を制御するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給させるとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材が前記金属部材の溶融により形成された溶融池から離間するように前記溶加材供給部を制御する。
The laser welding apparatus according to one aspect of the present invention is a laser welding apparatus that joins a plurality of metal members by laser welding, and is a laser oscillator that oscillates a laser beam and a condensing device that focuses the laser beam on a welded portion. A unit, a scanning unit that scans the spot of the laser beam, a filler material supply unit that is made of metal and supplies a filler material that is melted by irradiation of the laser beam into the scanning region of the spot, and the laser oscillator. The scanning unit and the control unit for controlling the filler material supply unit are provided, and the control unit scans the spot of the laser beam around a predetermined location so as to orbit the metal. The laser oscillator and the scanning portion are controlled so as to form a dot-shaped welded portion in a plan view in which the members are melted, and the filler metal is supplied to a portion before the spot of the laser beam passes. Before the irradiation of the laser beam to the welded portion is completed, the filler material supply portion is controlled so that the filler metal is separated from the molten pool formed by melting the metal member.
先ず、上記態様に係るレーザ溶接装置は、複数の金属部材をレーザ溶接により接合するので、抵抗溶接などを用いる場合に比べて、溶接速度が速く、熱影響が少なく、また、金属部材に対して非接触で溶接を行うことができ、加工効率が高く、連続溶接による剛性アップを図ることが可能である。
First, in the laser welding apparatus according to the above aspect, since a plurality of metal members are joined by laser welding, the welding speed is faster, the thermal influence is less, and the metal members are less affected than in the case of using resistance welding or the like. Welding can be performed in a non-contact manner, processing efficiency is high, and rigidity can be increased by continuous welding.
次に、上記態様に係るレーザ溶接装置では、レーザ光のスポットを所定箇所を中心としてその周りを周回させて当該部分の金属部材を溶融・攪拌して、溶接部を形成するので、溶接前の状態で金属部材同士の間に隙間が空いている場合であっても、溶融金属が金属部材間の隙間に流れ込むことになる。
Next, in the laser welding apparatus according to the above aspect, the spot of the laser beam is circulated around the predetermined portion to melt and stir the metal member of the portion to form the welded portion. Even if there is a gap between the metal members in this state, the molten metal will flow into the gap between the metal members.
また、上記態様に係るレーザ溶接装置では、走査中のレーザ光により溶加材を溶融させて溶接部の一部とするので、凝固した後の溶接部にえぐれ(アンダーフィル)や溶け落ちが発生するのを抑制することができる。
Further, in the laser welding apparatus according to the above aspect, since the filler metal is melted by the laser beam during scanning to be a part of the welded portion, gouge (underfill) or melt-through occurs in the welded portion after solidification. It can be suppressed.
また、上記態様に係るレーザ溶接装置では、レーザ光のスポットを走査している間に、スポットの走査軌跡上に溶加材を供給して溶加材を溶融させるので、金属部材の溶融とは別ステップで溶加材の溶融を行う上記特許文献1に開示の技術よりも高い作業効率を実現することができる。
Further, in the laser welding apparatus according to the above aspect, while scanning the spot of the laser beam, the filler material is supplied on the scanning locus of the spot to melt the filler metal. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, in which the filler metal is melted in another step.
さらに、上記態様に係るレーザ溶接装置では、レーザ光の照射により溶加材が溶融されてなる溶融金属も、金属部材が溶融されてなる溶融金属とともに、レーザ光のスポットの周回走査により攪拌され溶融池の表面が平坦化される。このように、上記態様に係るレーザ溶接装置では、溶融池の平坦化についても連続したレーザ光のスポットの走査によりなされるので、溶加材を溶融させてなる溶滴を堆積後にレーザ光の照射を再開して表面の平坦化を行う上記特許文献1に開示の技術よりも、高い作業効率を実現することができる。
Further, in the laser welding apparatus according to the above aspect, the molten metal obtained by melting the filler metal by irradiating the laser beam is also agitated and melted by orbiting scanning of the spot of the laser beam together with the molten metal formed by melting the metal member. The surface of the pond is flattened. As described above, in the laser welding apparatus according to the above aspect, the flattening of the molten pool is also performed by scanning the spots of the laser beam continuously, so that the laser beam is irradiated after the droplets formed by melting the filler metal are deposited. It is possible to realize higher work efficiency than the technique disclosed in Patent Document 1 above, in which the above is resumed to flatten the surface.
従って、上記態様に係るレーザ溶接装置では、溶接前の状態で互いの間に隙間が空いている場合であっても、金属部材同士を高い接合強度で且つ高い作業効率を以って接合することが可能である。
Therefore, in the laser welding apparatus according to the above aspect, the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
上記態様に係るレーザ溶接装置において、前記溶接部を前記レーザ光の照射方向から平面視する場合に、前記溶加材の供給は、前記溶接部の外縁よりも内周側になされ、前記溶加材の先端は、前記レーザ光のスポットが通過することにより溶融して当該先端よりも根元側の部分から切り離される、との構成を採用することもできる。
In the laser welding apparatus according to the above aspect, when the welded portion is viewed in a plan view from the irradiation direction of the laser beam, the filler material is supplied to the inner peripheral side of the outer edge of the welded portion, and the fillering material is supplied. It is also possible to adopt a configuration in which the tip of the material is melted by passing the spot of the laser beam and is separated from the portion on the root side of the tip.
上記のような構成を採用する場合には、溶加材を溶接部の外縁よりも内周側に供給することにより、レーザ光のスポットが当該溶加材を通過することにより通過部分で溶加材が溶断されることになる。よって、溶加材の供給量の多少にかかわらず、溶融池からの溶加材の離間を容易に制御することができる。
When the above configuration is adopted, the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion, so that the spot of the laser beam passes through the filler metal and is welded at the passing portion. The material will be welded. Therefore, the separation of the filler metal from the molten pool can be easily controlled regardless of the amount of the filler metal supplied.
上記態様に係るレーザ溶接装置において、前記金属部材同士の間の隙間を測定し、測定結果を前記制御部に送出する隙間測定部をさらに備え、前記制御部は、前記隙間が空いていると判断した場合に、前記溶加材供給部に対して前記溶加材を供給させる、との構成を採用することもできる。
The laser welding apparatus according to the above aspect further includes a gap measuring unit that measures a gap between the metal members and sends the measurement result to the control unit, and the control unit determines that the gap is open. In this case, it is possible to adopt a configuration in which the filler metal is supplied to the filler metal supply unit.
上記のような構成を採用する場合には、金属部材同士の間に隙間がなく、溶接部にえぐれ(アンダーフィル)や溶け落ちの問題が生じ難い場合にまで不所望に溶加材が供給されるような事態を避けることができる。
When the above configuration is adopted, the filler metal is undesirably supplied even when there is no gap between the metal members and the problem of gouge (underfill) or melt-through is unlikely to occur in the welded portion. You can avoid such a situation.
上記態様に係るレーザ溶接装置において、前記制御部は、前記隙間が相対的に大きいほど前記溶加材の供給量が相対的に多くなるように、前記溶加材供給部を制御する、との構成を採用することもできる。
In the laser welding apparatus according to the above aspect, the control unit controls the filler material supply unit so that the supply amount of the filler material becomes relatively large as the gap is relatively large. A configuration can also be adopted.
上記のような構成を採用する場合には、隙間が相対的に大きいほど溶加材の供給量を相対的に多くする、換言すると、隙間の大小に応じて溶加材の供給量を調整するので、隙間が互いに異なる領域同士の間で、レーザ光の照射側から見た場合の溶接部の形態を揃えることができる。よって、上記のような構成を採用する場合には、高い接合強度を確保しながら、溶接部の高い外観品質を実現することができる。例えば、隙間が小さいにもかかわらず多くの溶加材を供給してしまった場合には、表面が大きく盛り上がった溶接部が形成されてしまうこととなるが、上記構成を採用することでこのような事態が避けられる。
When the above configuration is adopted, the supply amount of the filler material is relatively increased as the gap is relatively large, in other words, the supply amount of the filler material is adjusted according to the size of the gap. Therefore, the form of the welded portion when viewed from the irradiation side of the laser beam can be made uniform between the regions having different gaps. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength. For example, if a large amount of filler metal is supplied even though the gap is small, a welded portion having a large raised surface will be formed. By adopting the above configuration, such a welded portion will be formed. You can avoid such a situation.
上記態様に係るレーザ溶接装置において、前記金属部材の溶融により形成された溶融池表面までの深さを測定する深さ測定部をさらに備え、前記制御部は、前記溶加材に対して前記レーザ光が照射される前の状態での前記深さが相対的に深いほど、前記溶加材の供給量が相対的に多くなるように、前記溶加材供給部を制御する、との構成を採用することもできる。
The laser welding apparatus according to the above aspect further includes a depth measuring unit for measuring the depth to the surface of the molten pool formed by melting the metal member, and the control unit provides the laser with respect to the filler metal. The structure is such that the filler metal supply unit is controlled so that the supply amount of the filler metal is relatively large as the depth is relatively deep before the light is irradiated. It can also be adopted.
上記のような構成を採用する場合には、溶加材にレーザ光が照射される前の状態、換言すると、溶加材が溶融される前の状態の上記深さの大小に応じて溶加材の供給量を調整するので、金属部材同士の間の隙間の大小などにかかわらず、上記深さを予め設定した所定の深さとすることができる。よって、上記のような構成を採用する場合には、高い接合強度を確保しながら、溶接部の高い外観品質を実現することができる。
When the above configuration is adopted, the filler metal is welded according to the magnitude of the depth before the laser beam is irradiated to the filler metal, in other words, the state before the filler metal is melted. Since the supply amount of the material is adjusted, the above depth can be set to a predetermined predetermined depth regardless of the size of the gap between the metal members. Therefore, when the above configuration is adopted, it is possible to realize high appearance quality of the welded portion while ensuring high joint strength.
以上のように、上記の各態様では、溶接前の状態で互いの間に隙間が空いている場合であっても、金属部材同士を高い接合強度で且つ高い作業効率を以って接合することが可能である。
As described above, in each of the above embodiments, the metal members are joined together with high joining strength and high working efficiency even when there is a gap between them in the state before welding. Is possible.
Claims (11)
- 複数の金属部材をレーザ溶接により接合するレーザ溶接方法であって、
レーザ光を発振し、当該発振されたレーザ光を溶接箇所に集光するレーザ光照射ステップと、
前記レーザ光のスポットを走査する走査ステップと、
金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給ステップと、
を備え、
前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給するとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材を前記金属部材の溶融により形成された溶融池から離間させる、
レーザ溶接方法。 A laser welding method in which a plurality of metal members are joined by laser welding.
A laser beam irradiation step that oscillates the laser beam and condenses the oscillated laser beam on the welded part.
A scanning step of scanning the spot of the laser beam and
A filler material supply step made of metal and supplying a filler metal which is melted by irradiation with a laser beam into the scanning region of the spot,
With
The spot of the laser beam is scanned so as to orbit around the predetermined portion to form a dot-shaped welded portion in a plan view in which the metal member is melted, and before the spot of the laser beam passes through. The filler metal is supplied to the portion, and the filler metal is separated from the molten pool formed by melting the metal member before the irradiation of the laser beam to the welded portion is completed.
Laser welding method. - 請求項1に記載のレーザ溶接方法において、
前記溶接部を前記レーザ光の照射方向から平面視する場合に、前記溶加材の供給は、前記溶接部の外縁よりも内周側になされ、
前記溶加材の先端は、前記レーザ光のスポットが通過することにより溶融して当該先端よりも根元側の部分から切り離される、
レーザ溶接方法。 In the laser welding method according to claim 1,
When the welded portion is viewed in a plan view from the irradiation direction of the laser beam, the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion.
The tip of the filler metal is melted by passing the spot of the laser beam and separated from the portion on the root side of the tip.
Laser welding method. - 請求項1または請求項2に記載のレーザ溶接方法において、
前記金属部材同士の間の隙間を測定する隙間測定ステップをさらに備え、
前記溶加材の供給は、前記隙間が空いている場合に選択的になされる、
レーザ溶接方法。 In the laser welding method according to claim 1 or 2.
A gap measurement step for measuring the gap between the metal members is further provided.
The filler material is selectively supplied when the gap is open.
Laser welding method. - 請求項3に記載のレーザ溶接方法において、
前記溶加材供給ステップでは、前記隙間が相対的に大きいほど前記溶加材の供給量を相対的に多くする、
レーザ溶接方法。 In the laser welding method according to claim 3,
In the filler material supply step, the larger the gap is, the larger the supply amount of the filler metal is.
Laser welding method. - 請求項1または請求項2に記載のレーザ溶接方法において、
前記金属部材の溶融により形成された溶融池表面までの深さを測定する測定ステップをさらに備え、
前記溶加材供給ステップでは、前記溶加材に対して前記レーザ光が照射される前の状態での前記深さが相対的に深いほど、前記溶加材の供給量を相対的に多くする、
レーザ溶接方法。 In the laser welding method according to claim 1 or 2.
Further provided with a measuring step for measuring the depth to the surface of the molten pool formed by melting the metal member.
In the filler material supply step, the relatively deeper the filler metal in the state before the laser beam is irradiated to the filler metal, the larger the supply amount of the filler metal. ,
Laser welding method. - 請求項1から請求項5の何れかに記載のレーザ溶接方法において、
前記溶加材および前記金属部材のそれぞれには、炭素を含む金属が用いられ、
前記溶加材の炭素当量は、前記母材の炭素当量が相対的に大きいほど相対的に小さく、前記母材の炭素当量が相対的に小さいほど相対的に大きくなるように設定されている、
レーザ溶接方法。 In the laser welding method according to any one of claims 1 to 5.
A metal containing carbon is used for each of the filler metal and the metal member.
The carbon equivalent of the filler metal is set to be relatively small as the carbon equivalent of the base material is relatively large, and to be relatively large as the carbon equivalent of the base material is relatively small.
Laser welding method. - 複数の金属部材をレーザ溶接により接合するレーザ溶接装置であって、
レーザ光を発振するレーザ発振器と、
前記レーザ光を溶接箇所に集光する集光部と、
前記レーザ光のスポットを走査する走査部と、
金属からなり、前記レーザ光の照射によって溶融する溶加材を前記スポットの走査領域内に供給する溶加材供給部と、
前記レーザ発振器、前記走査部、および前記溶加材供給部を制御する制御部と、
を備え、
前記制御部は、前記レーザ光のスポットを、所定箇所を中心としてその周りを周回するように走査して金属部材を溶融させた平面視ドット状の溶接部を形成するように前記レーザ発振器および前記走査部を制御するとともに、前記レーザ光のスポットが通過する前の箇所に前記溶加材を供給させるとともに、前記溶接部への前記レーザ光の照射が終了する前に、前記溶加材が前記金属部材の溶融により形成された溶融池から離間するように前記溶加材供給部を制御する、
レーザ溶接装置。 A laser welding device that joins multiple metal members by laser welding.
A laser oscillator that oscillates laser light and
A condensing unit that collects the laser light on the welded part,
A scanning unit that scans the spot of the laser beam,
A filler material supply unit made of metal and supplying a filler material melted by irradiation with a laser beam into the scanning region of the spot,
A control unit that controls the laser oscillator, the scanning unit, and the filler material supply unit,
With
The control unit scans the spot of the laser beam around a predetermined location so as to orbit around the spot, and forms the welded portion in the shape of dots in a plan view in which the metal member is melted. While controlling the scanning unit, the filler metal is supplied to a portion before the spot of the laser beam passes, and the filler metal is supplied to the welded portion before the irradiation of the laser beam to the welded portion is completed. The filler metal supply unit is controlled so as to be separated from the molten pool formed by melting the metal member.
Laser welding equipment. - 請求項7に記載のレーザ溶接装置において、
前記溶接部を前記レーザ光の照射方向から平面視する場合に、前記溶加材の供給は、前記溶接部の外縁よりも内周側になされ、
前記溶加材の先端は、前記レーザ光のスポットが通過することにより溶融して当該先端よりも根元側の部分から切り離される、
レーザ溶接装置。 In the laser welding apparatus according to claim 7.
When the welded portion is viewed in a plan view from the irradiation direction of the laser beam, the filler metal is supplied to the inner peripheral side of the outer edge of the welded portion.
The tip of the filler metal is melted by passing the spot of the laser beam and separated from the portion on the root side of the tip.
Laser welding equipment. - 請求項7または請求項8に記載のレーザ溶接装置において、
前記金属部材同士の間の隙間を測定し、測定結果を前記制御部に送出する隙間測定部をさらに備え、
前記制御部は、前記隙間が空いていると判断した場合に、前記溶加材供給部に対して前記溶加材を供給させる、
レーザ溶接装置。 In the laser welding apparatus according to claim 7 or 8.
A gap measuring unit that measures the gap between the metal members and sends the measurement result to the control unit is further provided.
When the control unit determines that the gap is open, the control unit supplies the filler material to the filler material supply unit.
Laser welding equipment. - 請求項9に記載のレーザ溶接装置において、
前記制御部は、前記隙間が相対的に大きいほど前記溶加材の供給量が相対的に多くなるように、前記溶加材供給部を制御する、
レーザ溶接装置。 In the laser welding apparatus according to claim 9,
The control unit controls the filler material supply unit so that the supply amount of the filler material becomes relatively large as the gap is relatively large.
Laser welding equipment. - 請求項7または請求項8に記載のレーザ溶接装置において、
前記金属部材の溶融により形成された溶融池表面までの深さを測定する深さ測定部をさらに備え、
前記制御部は、前記溶加材に対して前記レーザ光が照射される前の状態での前記深さが相対的に深いほど、前記溶加材の供給量が相対的に多くなるように、前記溶加材供給部を制御する、
レーザ溶接装置。 In the laser welding apparatus according to claim 7 or 8.
A depth measuring unit for measuring the depth to the surface of the molten pool formed by melting the metal member is further provided.
In the control unit, the deeper the filler material is in the state before the laser beam is irradiated, the larger the supply amount of the filler metal is. Controlling the filler material supply unit,
Laser welding equipment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019085348A JP7289509B2 (en) | 2019-04-26 | 2019-04-26 | LASER WELDING METHOD AND LASER WELDING APPARATUS |
JP2019-085348 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020217760A1 true WO2020217760A1 (en) | 2020-10-29 |
Family
ID=72942460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010405 WO2020217760A1 (en) | 2019-04-26 | 2020-03-10 | Laser welding method, and laser welding device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7289509B2 (en) |
WO (1) | WO2020217760A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098463A1 (en) * | 2013-12-24 | 2015-07-02 | 株式会社アマダホールディングス | Laser welding method and device |
WO2015129231A1 (en) * | 2014-02-25 | 2015-09-03 | パナソニックIpマネジメント株式会社 | Laser welding method |
JP2016043409A (en) * | 2014-08-27 | 2016-04-04 | 国立研究開発法人産業技術総合研究所 | Laser welding apparatus and welding method thereof |
WO2016189855A1 (en) * | 2015-05-28 | 2016-12-01 | パナソニックIpマネジメント株式会社 | Laser welding method |
US20170106470A1 (en) * | 2015-10-15 | 2017-04-20 | GM Global Technology Operations LLC | Laser beam welding with a spiral weld path having a first order of continuity |
JP2018537288A (en) * | 2015-12-18 | 2018-12-20 | オートテック・エンジニアリング・アグルパシオン・デ・インテレス・エコノミコAutotech Engineering A.I.E. | Method for joining two blanks and method for forming a product |
WO2019039528A1 (en) * | 2017-08-24 | 2019-02-28 | 株式会社Ihi検査計測 | Tack welding method and tack welding device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108890132A (en) | 2018-07-25 | 2018-11-27 | 亚琛联合科技(天津)有限公司 | A kind of spot welding method of laser arc swing |
-
2019
- 2019-04-26 JP JP2019085348A patent/JP7289509B2/en active Active
-
2020
- 2020-03-10 WO PCT/JP2020/010405 patent/WO2020217760A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098463A1 (en) * | 2013-12-24 | 2015-07-02 | 株式会社アマダホールディングス | Laser welding method and device |
WO2015129231A1 (en) * | 2014-02-25 | 2015-09-03 | パナソニックIpマネジメント株式会社 | Laser welding method |
JP2016043409A (en) * | 2014-08-27 | 2016-04-04 | 国立研究開発法人産業技術総合研究所 | Laser welding apparatus and welding method thereof |
WO2016189855A1 (en) * | 2015-05-28 | 2016-12-01 | パナソニックIpマネジメント株式会社 | Laser welding method |
US20170106470A1 (en) * | 2015-10-15 | 2017-04-20 | GM Global Technology Operations LLC | Laser beam welding with a spiral weld path having a first order of continuity |
JP2018537288A (en) * | 2015-12-18 | 2018-12-20 | オートテック・エンジニアリング・アグルパシオン・デ・インテレス・エコノミコAutotech Engineering A.I.E. | Method for joining two blanks and method for forming a product |
WO2019039528A1 (en) * | 2017-08-24 | 2019-02-28 | 株式会社Ihi検査計測 | Tack welding method and tack welding device |
Also Published As
Publication number | Publication date |
---|---|
JP2020179418A (en) | 2020-11-05 |
JP7289509B2 (en) | 2023-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3415264B1 (en) | Laser-beam welding method | |
JP6799755B2 (en) | Laser welding method | |
CN105149786B (en) | A kind of narrow gap laser photoscanning multilamellar self-melting and welding method based on prefabricated wlding | |
JP5061836B2 (en) | Impeller welding method and impeller | |
US11786989B2 (en) | Method for splash-free welding, in particular using a solid-state laser | |
CN110560895A (en) | laser welding method | |
JP2011036883A (en) | Method and apparatus for welding t-joint | |
JP2019123008A (en) | Manufacturing method of joining body | |
WO2020246504A1 (en) | Laser welding device and laser welding method using same | |
WO2021230070A1 (en) | Laser welding method and laser welding device | |
WO2022075211A1 (en) | Laser welding method and laser welding device | |
WO2020217760A1 (en) | Laser welding method, and laser welding device | |
JP6999946B2 (en) | Laser welding equipment and laser welding method | |
JP5000982B2 (en) | Laser welding method for differential thickness materials | |
US20230068401A1 (en) | Laser welding method and laser welding device | |
JP7443661B2 (en) | Laser welding method and laser welding device | |
JP5587918B2 (en) | Impeller welding method, welding apparatus, and impeller | |
WO2022075209A1 (en) | Laser welding method and laser welding device | |
WO2022075210A1 (en) | Laser welding method and laser welding device | |
WO2020115942A1 (en) | Joining method | |
WO2020213302A1 (en) | Laser welding method and laser welding apparatus | |
JP2002283078A (en) | Method for laser beam welding | |
JP7633615B2 (en) | Laser welding method and laser welding apparatus | |
WO2024135538A1 (en) | Laser welding method | |
JP2023128922A (en) | Plate, joint body, joining method of plate, and production method of plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20794803 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20794803 Country of ref document: EP Kind code of ref document: A1 |