WO2020209295A1 - Vehicle lamp and lighting circuit for same - Google Patents
Vehicle lamp and lighting circuit for same Download PDFInfo
- Publication number
- WO2020209295A1 WO2020209295A1 PCT/JP2020/015845 JP2020015845W WO2020209295A1 WO 2020209295 A1 WO2020209295 A1 WO 2020209295A1 JP 2020015845 W JP2020015845 W JP 2020015845W WO 2020209295 A1 WO2020209295 A1 WO 2020209295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor light
- target amount
- temperature sensor
- lighting circuit
- light source
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 66
- 230000008859 change Effects 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 18
- 101100219315 Arabidopsis thaliana CYP83A1 gene Proteins 0.000 description 16
- 101100269674 Mus musculus Alyref2 gene Proteins 0.000 description 16
- 101100140580 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) REF2 gene Proteins 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 12
- 241000083869 Polyommatus dorylas Species 0.000 description 10
- YXZRCLVVNRLPTP-UHFFFAOYSA-J turquoise blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Cu+2].NC1=NC(Cl)=NC(NC=2C=C(NS(=O)(=O)C3=CC=4C(=C5NC=4NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)NC=4NC(=C6C=C(C=CC6=4)S([O-])(=O)=O)NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)N5)C=C3)C(=CC=2)S([O-])(=O)=O)=N1 YXZRCLVVNRLPTP-UHFFFAOYSA-J 0.000 description 10
- 101000806846 Homo sapiens DNA-(apurinic or apyrimidinic site) endonuclease Proteins 0.000 description 9
- 101000835083 Homo sapiens Tissue factor pathway inhibitor 2 Proteins 0.000 description 9
- 102100026134 Tissue factor pathway inhibitor 2 Human genes 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000010981 turquoise Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
- H05B45/28—Controlling the colour of the light using temperature feedback
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
Definitions
- the present invention relates to a vehicle lamp used for an automobile or the like.
- Turquoise blue is defined as (0.0292, 0.3775), (0.2050, 0.3775), (0.1965, 0.3380), (0.0370, 0.3380) in the CIExy chromaticity diagram. It is included in the range surrounded by 4 points.
- the present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a vehicle lamp capable of emitting light in turquoise blue.
- One aspect of the present invention relates to a lighting circuit that drives a blue first semiconductor light emitting device and a green second semiconductor light emitting device.
- the lighting circuit consists of a first drive circuit that supplies a first drive current stabilized to the first target amount to the first semiconductor light emitting element, and a second drive stabilized to the second target amount to the second semiconductor light emitting element.
- a second drive circuit for supplying an electric current is provided.
- the required turquoise light can be generated with high efficiency by mixing blue and green.
- the lighting circuit may further include a temperature sensor. At least one of the first target amount and the second target amount may change according to the output of the temperature sensor.
- the amount of light and the emission wavelength when the same drive current is supplied change according to the temperature. Therefore, by monitoring the temperature and correcting the balance between the first target amount and the second target amount according to the temperature fluctuation, the required turquoise blue can be generated even when the temperature fluctuation occurs.
- the first target amount is invariant with respect to the output of the temperature sensor, and the second target amount may change according to the output of the temperature sensor. Comparing the blue semiconductor light emitting device and the green semiconductor light emitting device, the latter has worse temperature characteristics. Therefore, the turquoise blue light can be stabilized by changing the second target amount according to the temperature so that the light amount and wavelength of the second semiconductor light emitting element do not change.
- the second target amount may be changed by analog dimming.
- Analog dimming is more advantageous than PWM (Pulse Width Modulation) dimming from the viewpoint of noise.
- the second target amount may be changed by PWM dimming.
- PWM dimming is advantageous.
- the first target amount and the second target amount may change with opposite polarities according to the output of the temperature sensor.
- this control is effective when the wavelength of the semiconductor light emitting device changes according to the temperature.
- the lighting circuit may further include a pulse modulator that generates a first pulse signal and a second pulse signal whose duty ratio changes complementarily according to the output of the temperature sensor.
- the first drive circuit may switch the first drive current according to the first pulse signal
- the second drive circuit may switch the second drive current according to the second pulse signal.
- the vehicle lamp may include a blue first semiconductor light emitting element, a green second semiconductor light emitting element, and any of the above-mentioned lighting circuits.
- the vehicle lighting equipment may be an LED socket.
- a turquoise light source can be provided.
- FIG. 6 (a) and 6 (b) are operation waveform diagrams of the vehicle lamp of FIG. It is a circuit diagram of the vehicle lighting equipment which concerns on Example 4.
- FIG. 6 (a) and 6 (b) are operation waveform diagrams of the vehicle lamp of FIG. It is a circuit diagram of the vehicle lighting equipment which concerns on Example 4.
- FIG. It is an operation waveform figure of the vehicle lamp of FIG. It is a circuit diagram of the vehicle lighting equipment which concerns on Example 5.
- the "state in which the member A is connected to the member B” means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes the case of being indirectly connected via other members, which does not substantially affect the connection state, or does not impair the functions and effects performed by the combination thereof.
- a state in which the member C is provided between the member A and the member B means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes the case of being indirectly connected via other members, which does not substantially affect the connection state, or does not impair the functions and effects performed by the combination thereof.
- the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values and capacitance values as required. It shall be represented.
- FIG. 1 is a circuit diagram of a vehicle lamp 200 according to an embodiment.
- the vehicle lighting device 200 is mounted on an autonomous driving vehicle and emits light in turquoise blue, which indicates that the vehicle is being autonomously driven.
- the switch 4 is turned on during the automatic operation, and the DC voltage (input voltage) VIN from the battery 2 is supplied to the vehicle lamp 200.
- the vehicle lamp 200 lights up when the input voltage VIN is supplied.
- the vehicle lamp 200 includes a first semiconductor light source 202, a second semiconductor light source 204, and a lighting circuit 300.
- the first semiconductor light source 202 includes one or a plurality of blue semiconductor light emitting elements connected in series.
- the second semiconductor light source 204 includes one or a plurality of green semiconductor light emitting elements connected in series.
- the semiconductor light emitting element is preferably an LED (light emitting diode), but may be an LD (laser diode) or an organic EL (Electro Luminescence) element.
- a preferred aspect of the vehicle lamp 200 is a semiconductor light source that can be replaced with a normal product in the event of a failure such as a disconnection, like a conventional general-purpose light bulb type, and is called an LED socket.
- the vehicle lamp 200 is an LED socket in which a first semiconductor light source 202, a second semiconductor light source 204, a lighting circuit 300, a circuit board and a heat sink (not shown) are housed in one package, and is attached to and detached from a lamp body (not shown). Has a possible shape. Since the LED socket is a consumable item as well as a long life, it is strongly required to reduce the cost.
- the lighting circuit 300 includes a first drive circuit 310, a second drive circuit 320, and a temperature sensor 330.
- the first drive circuit 310 supplies the first semiconductor light source 202 with the first drive current I LED1 stabilized to the first target amount.
- the second drive circuit 320 supplies the second semiconductor light source 204 with the second drive current I LED2 stabilized to the second target amount.
- the temperature sensor 330 detects the temperature of at least one of the first semiconductor light source 202 and the second semiconductor light source 204.
- a thermistor, a thermocouple, a diode using a constant current biased diode in the forward direction, or the like can be used.
- the first drive circuit 310 and the second drive circuit 320 change at least one of the first target amount I REF1 and the second target amount I REF2 according to the output of the temperature sensor 330.
- the required turquoise light can be generated with high efficiency by mixing blue and green that can be generated with high efficiency.
- the amount of light and the emission wavelength when the same drive current is supplied change according to the temperature. Therefore, if the same drive current is supplied regardless of the temperature, the balance between blue and green will be lost, and the required turquoise blue cannot be obtained. Therefore, by providing a temperature sensor 330 that monitors the temperature of the semiconductor light emitting element and correcting the balance between the first target amount I REF1 and the second target amount I REF2 according to the temperature fluctuation of the light emitting element, the temperature fluctuation occurs. It will also be possible to generate the required turquoise blue.
- the present invention extends to various devices and methods grasped as a block diagram or a cross-sectional view of FIG. 1 or derived from the above description, and is not limited to a specific configuration.
- more specific configuration examples and examples will be described not to narrow the scope of the present invention but to help understanding the essence and operation of the invention and to clarify them.
- FIG. 2 is a circuit diagram of the vehicle lamp 200A according to the first embodiment.
- the vehicle lamp 200A includes a first drive circuit 310, a second drive circuit 320, a temperature sensor 330, and a voltage source 340.
- the voltage source 340 produces a dimming voltage Vdim.
- Vdim dimming voltage
- the first drive circuit 310 includes a current source 312 and a conversion circuit 314.
- the current source 312 is a current source type driver and a V / I conversion circuit that is connected to the anode of the first semiconductor light source 202 and supplies the first drive current I LED1 proportional to the dimming voltage Vdim.
- the current source 312 includes a resistor R11, a transistor M11, and an error amplifier EA11.
- the target amount I REF1 of the first drive current I LED1 generated by the current source 312 is represented by the equation (1).
- I REF1 (V IN- Vy1) / R11 ... (1)
- the conversion circuit 314 converts the voltage Vdim with reference to the ground 304 into the voltage Vy1 with reference to the input line 302.
- the conversion circuit 314 includes a V / I conversion circuit 316 and a resistor R13.
- the V / I conversion circuit 316 includes a transistor Q12, a resistor R12, and an error amplifier EA12, and converts a voltage Vdim into a current Ix1.
- Ix1 Vdim / R12 ... (2)
- the second drive circuit 320 is configured in the same manner as the first drive circuit 310. Specifically, the second drive circuit 320 includes a current source 322 and a conversion circuit 324.
- the current source 322 has the same circuit configuration as the current source 312, and the conversion circuit 324 has the same circuit configuration as the conversion circuit 314.
- the target amount I REF2 of the second drive current I LED2 generated by the second drive circuit 320 is represented by the equation (5).
- I REF2 R23 / (R21 ⁇ R22) ⁇ Vdim... (5)
- the resistance value of the resistor R12 is individually adjusted in order to absorb the individual difference of the first semiconductor light source 202.
- the resistance value of the resistor R22 is individually adjusted in order to absorb the individual difference of the second semiconductor light source 204.
- the resistors R12 and R22 are chip parts, the resistors R12 and R22 having different resistance values are mounted for each vehicle lamp 200 (LED socket).
- the resistors R12 and R22 are integrated on an IC (Integrated Circuit) chip, they are adjusted to the optimum resistance value by a method such as laser trimming.
- the first target amount I REF1 of the first drive circuit 310 is invariant to the output of the temperature sensor 330, and the second target amount I REF2 of the second drive circuit 320 corresponds to the output of the temperature sensor 330. Change.
- the second target amount I REF2 is changed by analog dimming.
- the temperature sensor 330 is a thermistor 332 having a negative temperature coefficient and is arranged close to the second semiconductor light source 204 so that the temperature of the second semiconductor light source 204 can be detected.
- the thermistor 332 is connected in parallel with the resistor R22 of the second drive circuit 320.
- the target amount I REF2 of the second drive current I LED2 is represented by the equation (6).
- I REF2 R23 / (R21 x R22') x Vdim ... (6)
- R22' is the combined resistance of the resistor R22 and the thermistor 332.
- FIG. 3 is a diagram illustrating the operation of the vehicle lamp 200A of FIG.
- the resistance value of the thermistor 332 decreases, and thus the combined resistance R22 decreases.
- the second target amount I REF2 of the formula (6) becomes larger as the temperature rises.
- the amount of light of the second semiconductor light source 204 when the same drive current I LED2 is supplied decreases as the temperature rises.
- the negative temperature coefficient of the amount of light of the second semiconductor light source 204 shown by the broken line in FIG. 3) can be offset, and the amount of light can be kept constant.
- the balance of the amount of light of the first semiconductor light source 202 and the second semiconductor light source 204 is maintained, and the color of turquoise blue obtained by mixing green and blue is defined in the specifications. It can be stored within the color range.
- the dimming voltage Vx may be constant regardless of the temperature, but in order to improve the reliability of the circuit at high temperature, the vehicle lamp 200A has a derating function at high temperature.
- the voltage source 340 lowers the dimming voltage Vdim as the temperature rises.
- the configuration of the voltage source 340 is not particularly limited, and includes, for example, resistors R31 to R33, a transistor Q31, and a thermistor RTH having a negative temperature coefficient. When the temperature rises, the resistance value of the thermistor RTH decreases, the collector current of the transistor Q31 increases, and the dimming voltage Vdim decreases.
- the dimming voltage Vdim decreases, the drive currents I LED1 and I LED2 decrease while maintaining their ratios. As a result, further temperature rise can be suppressed and the circuit can be protected.
- the ratio of the two drive currents I LED1 and I LED2 is maintained, so that the color of the turquoise light obtained by mixing the colors can be maintained.
- FIG. 4 is a circuit diagram of the vehicle lamp 200B according to the second embodiment.
- the second target amount I REF2 was changed by analog dimming, but in Example 2, the second target amount I REF2 was changed by PWM dimming.
- the vehicle lamp 200B includes a pulse modulator 350.
- Pulse modulator 350 generates a pulse signal S PWM2 having a duty ratio d 2 corresponding to the output of the temperature sensor 330.
- the second drive circuit 320 is configured to be able to switch the second drive current I LED2 supplied to the second semiconductor light source 204 in response to the pulse signal S PWM2 .
- a switch SW2 is provided between the gate of the transistor M21 and the input line 302 so that the switch SW2 is switched according to the pulse signal S PWM2 . It should be noted that the on period of the switch SW2 corresponds to the lighting of the second semiconductor light source 204, and the off period of the switch SW2 corresponds to the extinguishing of the second semiconductor light source 204. Therefore, the pulse signal S PWM2 is generated so that the higher the temperature detected by the temperature sensor 330, the longer the off time of the switch SW2.
- the position of the switch SW2 is not limited to that shown in FIG.
- the switch SW2 may be provided in parallel with the resistor R23.
- the dimming voltage Vdim may be individually generated for the first drive circuit 310 and the second drive circuit 320, and the dimming voltage Vdim for the second drive circuit 320 may be switched.
- a switch SW2 may be provided in parallel with the second semiconductor light source 204, and the switch SW2 may be switched according to the pulse signal S PWM2 .
- the target amount I REF2 of the drive current I LED2 is represented by the equation (7).
- I REF2 R23 / (R21 ⁇ R22) ⁇ Vdim ⁇ d... (7) Therefore, by changing the duty ratio d, the time average value of the amount of light of the second semiconductor light source 204 can be changed, thereby canceling out the temperature characteristics of the second semiconductor light source 204.
- the emission wavelength may shift according to the amount of current. If analog dimming is performed in such a case, not only the amount of light of the second semiconductor light source 204 but also the wavelength of green shifts, which may deviate from the specifications of turquoise blue. In such a case, by adopting PWM dimming, it is possible to change only the amount of light while keeping the wavelength (spectral distribution) constant.
- FIG. 5 is a circuit diagram of the vehicle lamp 100C according to the third embodiment.
- the first target amount I REF1 changes according to the output of the temperature sensor 330. More specifically, the first target amount I REF1 and the second target amount I REF2 are complementarily changed by PWM dimming.
- the pulse modulator 350C generates a first pulse signal S PWM1 and a second pulse signal S PWM2 in which the duty ratio changes complementarily according to the output of the temperature sensor 330. Specifically, the duty ratio d 1 of the first pulse signal S PWM1 has a negative correlation with temperature, the duty ratio d 2 of the second pulse signal S PWM2 has a positive correlation with temperature.
- the pulse modulator 350C includes an oscillator 352, a PWM comparator 354, an inverter 356, R41, and R42.
- the thermistor 332, which is the temperature sensor 330, is connected in parallel with the resistor R42.
- a duty ratio setting voltage Vduty having a negative correlation with temperature is generated at the connection node of the resistors R41 and R42.
- Oscillator 352 produces a periodic or sawtooth wave periodic signal V OSC .
- the PWM comparator 354 slices the periodic signal V OSC with the voltage Vduty to generate the second pulse signal S PWM2 .
- the inverter 356 inverts the second pulse signal S PWM2 to generate the first pulse signal S PWM1 .
- the first drive circuit 310C includes a first switch SW21 for PWM dimming in addition to the first drive circuit 310 of FIG. The first switch SW21 switches in response to the first pulse signal S PWM1 . Further, the second drive circuit 320C includes a second switch SW22 for PWM dimming in addition to the second drive circuit 320 of FIG. The second switch SW22 switches in response to the second pulse signal S PWM2 .
- connection location of the switch SW21 is not limited to that shown in FIG. 5, and may be provided in parallel with the resistor R11 (R21) or in parallel with the resistor R13 (R23). Alternatively, it may be provided between the gate of the transistor 11 (M21) and the input line 302.
- the first drive circuit 310 switches the first drive current I LED1 in response to the first pulse signal S PWM1
- the second drive circuit 320 switches the second drive current I LED2 in response to the second pulse signal S PWM2. To do.
- FIG. 6A and 6 (b) are operation waveform diagrams of the vehicle lamp 200C of FIG.
- FIG. 6A shows the operation at low temperature
- FIG. 6B shows the operation at high temperature.
- FIG. 7 is a circuit diagram of the vehicle lamp 200D according to the fourth embodiment.
- the first drive circuit 310D further includes a capacitor C11 in parallel with the resistor R32 and a resistor R14 in series with the switch SW21.
- the second drive circuit 320D further includes a capacitor C21 in parallel with the resistor R34 and a resistor R24 in series with the switch SW22.
- FIG. 8 is an operation waveform diagram of the vehicle lamp 200D of FIG. 7.
- FIG. 9 is a circuit diagram of the vehicle lamp 200E according to the fifth embodiment.
- temperature sensors 330_1 and 330_1 that monitor the temperatures of the first semiconductor light source 202 and the second semiconductor light source 204 are provided.
- Pulse modulator 350_1 generates a first pulse signal S PWM1 having a duty ratio d 1 in accordance with the output of the temperature sensor 330_1.
- the pulse modulator 350_2 generates a second pulse signal S PWM2 having a duty ratio d 2 corresponding to the output of the temperature sensor 330_2.
- the first drive circuit 310 switches the first drive current I LED1 in response to the first pulse signal S PWM1
- the second drive circuit 320 switches the second drive current I LED2 in response to the second pulse signal S PWM2.
- the arrangement of the switches SW21 and SW22 for PWM dimming is not limited to that shown in FIG.
- the green second semiconductor light source 204 and the second drive circuit 320 may be omitted, and instead, a phosphor that is excited by the output of the first semiconductor light source 202 and emits green light may be provided. Turquoise blue can be obtained by mixing the green light emitted by the phosphor and the blue light that is the output of the first semiconductor light source 202.
- the target amount I REF2 of the second semiconductor light source 204 may be constant regardless of the output of the temperature sensor 330, and the target amount I REF1 of the first semiconductor light source 202 may be changed according to the output of the temperature sensor 330.
- the present invention relates to a vehicle lamp used for an automobile or the like.
- Vehicle lighting equipment 202 1st semiconductor light source 204 2nd semiconductor light source 300 Lighting circuit 310 1st drive circuit 312 Current source 314 Conversion circuit 316 V / I conversion circuit 320 2nd drive circuit 322 Current source 324 Conversion circuit 330 Temperature sensor 332 Thermista 340 Voltage source 350 Pulse modulator 352 Oscillator 354 PWM comparator
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
Description
本発明は、自動車などに用いられる車両用灯具に関する。 The present invention relates to a vehicle lamp used for an automobile or the like.
近年、自動車の自動運転の開発が進められている。自動車が自動運転中であることを周囲の交通参加者に示すために、ターコイズブルーのランプを点灯することが、国際規格で議論されている。 In recent years, the development of autonomous driving of automobiles has been promoted. It is being discussed in international standards to turn on a turquoise lamp to show surrounding traffic participants that the vehicle is driving autonomously.
ターコイズブルーは、CIExy色度図において、(0.0292,0.3775),(0.2050,0.3775),(0.1965,0.3380),(0.0370,0.3380)の4点で囲まれた範囲に含まれる。 Turquoise blue is defined as (0.0292, 0.3775), (0.2050, 0.3775), (0.1965, 0.3380), (0.0370, 0.3380) in the CIExy chromaticity diagram. It is included in the range surrounded by 4 points.
しかしながら、現在、この狭い色範囲内で、実用的なコスト、実用的な効率で発光できる光源が存在しない。 However, at present, there is no light source that can emit light at a practical cost and a practical efficiency within this narrow color range.
本発明はかかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、ターコイズブルーで発光可能な車両用灯具の提供にある。 The present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a vehicle lamp capable of emitting light in turquoise blue.
本発明のある態様は、青色の第1半導体発光素子および緑色の第2半導体発光素子を駆動する点灯回路に関する。点灯回路は、第1半導体発光素子に第1目標量に安定化された第1駆動電流を供給する第1駆動回路と、第2半導体発光素子に第2目標量に安定化された第2駆動電流を供給する第2駆動回路と、を備える。 One aspect of the present invention relates to a lighting circuit that drives a blue first semiconductor light emitting device and a green second semiconductor light emitting device. The lighting circuit consists of a first drive circuit that supplies a first drive current stabilized to the first target amount to the first semiconductor light emitting element, and a second drive stabilized to the second target amount to the second semiconductor light emitting element. A second drive circuit for supplying an electric current is provided.
この態様によれば、青色と緑色を混色することにより、要求されるターコイズブルーの光を高効率に生成できる。 According to this aspect, the required turquoise light can be generated with high efficiency by mixing blue and green.
点灯回路は、温度センサをさらに備えてもよい。温度センサの出力に応じて、第1目標量と第2目標量の少なくとも一方が変化してもよい。半導体発光素子は、同じ駆動電流を供給したときの光量や発光波長が温度に応じて変化する。そこで、温度を監視し、温度変動に応じて、第1目標量と第2目標量のバランスを補正することにより、温度変動が生じたときにも、要求されるターコイズブルーを生成できる。 The lighting circuit may further include a temperature sensor. At least one of the first target amount and the second target amount may change according to the output of the temperature sensor. In the semiconductor light emitting element, the amount of light and the emission wavelength when the same drive current is supplied change according to the temperature. Therefore, by monitoring the temperature and correcting the balance between the first target amount and the second target amount according to the temperature fluctuation, the required turquoise blue can be generated even when the temperature fluctuation occurs.
第1目標量は温度センサの出力に対して不変であり、温度センサの出力に応じて、第2目標量が変化してもよい。青色半導体発光素子と緑色半導体発光素子を比較すると、後者の方が温度特性が悪い。そこで、第2半導体発光素子の光量および波長が変化しないように、温度に応じて、第2目標量を変化させることで、ターコイズブルーの光を安定化できる。 The first target amount is invariant with respect to the output of the temperature sensor, and the second target amount may change according to the output of the temperature sensor. Comparing the blue semiconductor light emitting device and the green semiconductor light emitting device, the latter has worse temperature characteristics. Therefore, the turquoise blue light can be stabilized by changing the second target amount according to the temperature so that the light amount and wavelength of the second semiconductor light emitting element do not change.
温度が高いほど第2目標量が増大してもよい。アナログ調光により、第2目標量を変化させてもよい。アナログ調光はPWM(Pulse Width Modulation)調光に比べてノイズの観点から有利である。 The higher the temperature, the larger the second target amount may be. The second target amount may be changed by analog dimming. Analog dimming is more advantageous than PWM (Pulse Width Modulation) dimming from the viewpoint of noise.
PWM調光により、第2目標量を変化させてもよい。特に、半導体発光素子の波長(スペクトル分布)が、駆動電流の大きさ(電流量)に大きく依存する場合、PWM調光が有利である。 The second target amount may be changed by PWM dimming. In particular, when the wavelength (spectral distribution) of the semiconductor light emitting device largely depends on the magnitude (current amount) of the drive current, PWM dimming is advantageous.
温度センサの出力に応じて、第1目標量と第2目標量が逆極性で変化してもよい。特に、温度に応じて、半導体発光素子の波長が変化する場合に、この制御が有効である。 The first target amount and the second target amount may change with opposite polarities according to the output of the temperature sensor. In particular, this control is effective when the wavelength of the semiconductor light emitting device changes according to the temperature.
点灯回路は、温度センサの出力に応じてデューティ比が相補的に変化する第1パルス信号と第2パルス信号を生成するパルス変調器をさらに備えてもよい。第1駆動回路は、第1パルス信号に応じて第1駆動電流をスイッチングし、第2駆動回路は、第2パルス信号に応じて第2駆動電流をスイッチングしてもよい。 The lighting circuit may further include a pulse modulator that generates a first pulse signal and a second pulse signal whose duty ratio changes complementarily according to the output of the temperature sensor. The first drive circuit may switch the first drive current according to the first pulse signal, and the second drive circuit may switch the second drive current according to the second pulse signal.
本発明の別の態様は、車両用灯具に関する。車両用灯具は、青色の第1半導体発光素子と、緑色の第2半導体発光素子と、上述のいずれかの点灯回路と、を備えてもよい。 Another aspect of the present invention relates to a vehicle lamp. The vehicle lamp may include a blue first semiconductor light emitting element, a green second semiconductor light emitting element, and any of the above-mentioned lighting circuits.
車両用灯具は、LEDソケットであってもよい。 The vehicle lighting equipment may be an LED socket.
本発明のある態様によれば、ターコイズブルーの光源を提供できる。 According to an aspect of the present invention, a turquoise light source can be provided.
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on a preferred embodiment with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In the present specification, the "state in which the member A is connected to the member B" means that the member A and the member B are physically directly connected, and the member A and the member B are electrically connected to each other. It also includes the case of being indirectly connected via other members, which does not substantially affect the connection state, or does not impair the functions and effects performed by the combination thereof.
同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state in which the member C is provided between the member A and the member B" means that the member A and the member C, or the member B and the member C are directly connected, and their electricity. It also includes the case of being indirectly connected via other members, which does not substantially affect the connection state, or does not impair the functions and effects performed by the combination thereof.
また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。 Further, in the present specification, the reference numerals attached to electric signals such as voltage signals and current signals, or circuit elements such as resistors and capacitors have their respective voltage values, current values, resistance values and capacitance values as required. It shall be represented.
図1は、実施の形態に係る車両用灯具200の回路図である。車両用灯具200は、自動運転車両に搭載され、自動運転中であることを示すターコイズブルー色に発光する。自動運転中にスイッチ4がオンとなり、車両用灯具200には、バッテリ2からの直流電圧(入力電圧)VINが供給される。車両用灯具200は、入力電圧VINが供給されると点灯する。
FIG. 1 is a circuit diagram of a
車両用灯具200は、第1半導体光源202、第2半導体光源204および点灯回路300を備える。第1半導体光源202は、ひとつ、または直列に接続された複数の青色の半導体発光素子を含む。第2半導体光源204は、ひとつ、または直列に接続された複数の緑色の半導体発光素子を含む。半導体発光素子はLED(発光ダイオード)が好適であるが、LD(レーザダイオード)や有機EL(Electro Luminescence)素子であってもよい。
The
車両用灯具200の好適な一態様は、従来の汎用的な電球タイプのように、断線時などの故障時に正常品との交換を可能とした半導体光源であり、LEDソケットと称する。具体的には車両用灯具200は、第1半導体光源202、第2半導体光源204、点灯回路300、図示しない回路基板やヒートシンクが1パッケージに収容されたLEDソケットであり、図示しないランプボディに着脱可能な形状を有する。LEDソケットは、長寿命化はもちろんのこと、消耗品であるが故に低コスト化が強く求められる。
A preferred aspect of the
点灯回路300は、第1駆動回路310、第2駆動回路320、温度センサ330を備える。第1駆動回路310は、第1半導体光源202に第1目標量に安定化された第1駆動電流ILED1を供給する。第2駆動回路320は、第2半導体光源204に第2目標量に安定化された第2駆動電流ILED2を供給する。
The
温度センサ330は、第1半導体光源202と第2半導体光源204の少なくとも一方の温度を検出する。温度センサ330は、サーミスタや熱電対、定電流バイアスされたダイオードの順方向の温度特性を利用したものなどを用いることができる。
The
第1駆動回路310と第2駆動回路320は、温度センサ330の出力に応じて、第1目標量IREF1と第2目標量IREF2の少なくとも一方を変化させる。
The
以上が車両用灯具200の基本構成である。この車両用灯具200によれば、高効率に生成可能な青色と緑色を混色することにより、要求されるターコイズブルーの光を高効率に生成できる。
The above is the basic configuration of the
また、半導体光源202,204は、同じ駆動電流を供給したときの光量や発光波長が温度に応じて変化する。したがって、温度にかかわらず同じ駆動電流を供給すると、青と緑のバランスが崩れ、要求されるターコイズブルーが得られなくなる。そこで半導体発光素子の温度を監視する温度センサ330を設けて、発光素子の温度変動に応じて、第1目標量IREF1と第2目標量IREF2のバランスを補正することにより、温度変動が生じたときにも、要求されるターコイズブルーを生成できるようになる。
Further, in the
本発明は、図1のブロック図や断面図として把握され、あるいは上述の説明から導かれるさまざまな装置、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。 The present invention extends to various devices and methods grasped as a block diagram or a cross-sectional view of FIG. 1 or derived from the above description, and is not limited to a specific configuration. Hereinafter, more specific configuration examples and examples will be described not to narrow the scope of the present invention but to help understanding the essence and operation of the invention and to clarify them.
(実施例1)
図2は、実施例1に係る車両用灯具200Aの回路図である。車両用灯具200Aは、第1駆動回路310、第2駆動回路320、温度センサ330、電圧源340を備える。電圧源340は、調光電圧Vdimを生成する。実施例1は、第1半導体光源202の光量が、温度に対して一定であり、第2半導体光源204の光量が温度依存性(負の温度係数)を有するものとする。
(Example 1)
FIG. 2 is a circuit diagram of the
第1駆動回路310は、電流源312および変換回路314を備える。電流源312は、第1半導体光源202のアノードと接続され、調光電圧Vdimに比例する第1駆動電流ILED1を供給する電流ソース型のドライバであり、V/I変換回路である。
The
電流源312は、抵抗R11、トランジスタM11、エラーアンプEA11を含む。電流源312が生成する第1駆動電流ILED1の目標量IREF1は、式(1)で表される。
IREF1=(VIN-Vy1)/R11 …(1)
The
I REF1 = (V IN- Vy1) / R11 ... (1)
変換回路314は、接地304を基準とする電圧Vdimを、入力ライン302を基準とする電圧Vy1に変換する。変換回路314は、V/I変換回路316と抵抗R13を含む。
The
V/I変換回路316は、トランジスタQ12、抵抗R12、エラーアンプEA12を含み、電圧Vdimを、電流Ix1に変換する。
Ix1=Vdim/R12 …(2)
The V /
Ix1 = Vdim / R12 ... (2)
抵抗R13の一端は入力ライン302と接続され、電流Ix1の経路上に設けられる。抵抗R13の他端の電圧Vy1は、式(3)で表される。
Vy1=VIN-Ix1×R13 …(3)
One end of the resistor R13 is connected to the
Vy1 = V IN −Ix1 × R13… (3)
式(2)、(3)を式(1)に代入すると、式(4)を得る。
IREF1=R13/(R11×R12)×Vdim …(4)
Substituting equations (2) and (3) into equation (1) gives equation (4).
I REF1 = R13 / (R11 × R12) × Vdim… (4)
第2駆動回路320は、第1駆動回路310と同様に構成される。具体的には第2駆動回路320は、電流源322、変換回路324を含む。電流源322は電流源312と同じ回路構成を有し、変換回路324は、変換回路314と同じ回路構成を有する。
The
第2駆動回路320が生成する第2駆動電流ILED2の目標量IREF2は、式(5)で表される。
IREF2=R23/(R21×R22)×Vdim …(5)
The target amount I REF2 of the second drive current I LED2 generated by the
I REF2 = R23 / (R21 × R22) × Vdim… (5)
第1半導体光源202の個体差を吸収するために、抵抗R12の抵抗値が個別に調節される。同様に、第2半導体光源204の個体差を吸収するために、抵抗R22の抵抗値が個別に調節される。
The resistance value of the resistor R12 is individually adjusted in order to absorb the individual difference of the first
抵抗R12、R22がチップ部品の場合、車両用灯具200(LEDソケット)ごとに、抵抗値が異なる抵抗R12、R22が実装される。抵抗R12、R22がIC(Integrated Circuit)チップに集積化される場合には、レーザトリミングなどの手法によって、最適な抵抗値に調節される。 When the resistors R12 and R22 are chip parts, the resistors R12 and R22 having different resistance values are mounted for each vehicle lamp 200 (LED socket). When the resistors R12 and R22 are integrated on an IC (Integrated Circuit) chip, they are adjusted to the optimum resistance value by a method such as laser trimming.
この実施例において、第1駆動回路310の第1目標量IREF1は温度センサ330の出力に対して不変であり、第2駆動回路320の第2目標量IREF2が温度センサ330の出力に応じて変化する。実施例1では、アナログ調光により第2目標量IREF2を変化させる。
In this embodiment, the first target amount I REF1 of the
温度センサ330は、負の温度係数を有するサーミスタ332であり、第2半導体光源204の温度を検出できるように、第2半導体光源204に近接して配置される。サーミスタ332は、第2駆動回路320の抵抗R22と並列に接続される。サーミスタ332の抵抗値を考慮すると、第2駆動電流ILED2の目標量IREF2は式(6)で表される。
IREF2=R23/(R21×R22’)×Vdim …(6)
ここでR22’は、抵抗R22とサーミスタ332の合成抵抗である。
The
I REF2 = R23 / (R21 x R22') x Vdim ... (6)
Here, R22'is the combined resistance of the resistor R22 and the
図3は、図2の車両用灯具200Aの動作を説明する図である。温度が上昇すると、サーミスタ332の抵抗値が低下し、したがって合成抵抗R22が小さくなる。その結果、式(6)の第2目標量IREF2は、温度が上昇するほど大きくなる。同じ駆動電流ILED2を供給したときの第2半導体光源204の光量は、温度が高くなるほど低下する。高温時に、駆動電流ILED2を増加させることで、第2半導体光源204の光量の負の温度係数(図3において破線で示す)を相殺することができ、光量を一定に保つことができる。
FIG. 3 is a diagram illustrating the operation of the
これにより、温度が変動した場合であっても、第1半導体光源202と第2半導体光源204の光量のバランスが維持され、緑と青を混色して得られるターコイズブルーの色を、仕様で定めた色域内に収めることができる。
As a result, even when the temperature fluctuates, the balance of the amount of light of the first
実施例1において、調光電圧Vxは温度によらずに一定としてもよいが、高温時の回路の信頼性を高めるために、車両用灯具200Aは、高温時のディレーティング機能を備える。具体的には電圧源340は、温度が高くなるほど、調光電圧Vdimを低下させる。電圧源340の構成は特に限定されないが、たとえば抵抗R31~R33、トランジスタQ31、負の温度係数を有するサーミスタRTHを含む。温度が上昇すると、サーミスタRTHの抵抗値が低下し、トランジスタQ31のコレクタ電流が増加し、調光電圧Vdimが低下する。
In the first embodiment, the dimming voltage Vx may be constant regardless of the temperature, but in order to improve the reliability of the circuit at high temperature, the
調光電圧Vdimが低下すると、駆動電流ILED1とILED2は、それらの比を維持しつつ小さくなる。これにより、さらなる温度上昇を抑制し、回路を保護できる。なお共通の調光電圧Vdimを変化させることで、2つの駆動電流ILED1、ILED2の比が保たれるため、混色して得られるターコイズブルーの光の色を維持することができる。 When the dimming voltage Vdim decreases, the drive currents I LED1 and I LED2 decrease while maintaining their ratios. As a result, further temperature rise can be suppressed and the circuit can be protected. By changing the common dimming voltage Vdim, the ratio of the two drive currents I LED1 and I LED2 is maintained, so that the color of the turquoise light obtained by mixing the colors can be maintained.
(実施例2)
図4は、実施例2に係る車両用灯具200Bの回路図である。実施例1では、アナログ調光によって、第2目標量IREF2を変化させたが、実施例2では、PWM調光によって、第2目標量IREF2を変化させる。
(Example 2)
FIG. 4 is a circuit diagram of the
車両用灯具200Bは、パルス変調器350を備える。パルス変調器350は、温度センサ330の出力に応じたデューティ比d2を有するパルス信号SPWM2を生成する。第2駆動回路320は、パルス信号SPWM2に応じて、第2半導体光源204に供給する第2駆動電流ILED2をスイッチング可能に構成される。この実施例では、トランジスタM21のゲートと入力ライン302の間に、スイッチSW2を設け、スイッチSW2をパルス信号SPWM2に応じてスイッチングするようにしている。なお、スイッチSW2のオン期間が、第2半導体光源204の点灯に対応し、スイッチSW2のオフ期間が、第2半導体光源204の消灯に対応することに留意されたい。したがって、温度センサ330が検出する温度が高いほど、スイッチSW2のオフの時間が長くなるように、パルス信号SPWM2が生成される。
The
スイッチSW2の位置は、図4のそれに限定されない。たとえば、抵抗R23と並列に、スイッチSW2を設けてもよい。あるいは実施例3のように、第1駆動回路310と第2駆動回路320に対して、調光電圧Vdimを個別に生成し、第2駆動回路320に対する調光電圧Vdimをスイッチングしてもよい。
The position of the switch SW2 is not limited to that shown in FIG. For example, the switch SW2 may be provided in parallel with the resistor R23. Alternatively, as in the third embodiment, the dimming voltage Vdim may be individually generated for the
あるいは第2半導体光源204と並列に、スイッチSW2を設け、スイッチSW2をパルス信号SPWM2に応じてスイッチングしてもよい。
Alternatively, a switch SW2 may be provided in parallel with the second
パルス信号SPWM2のデューティ比をd(d<1)とするとき、駆動電流ILED2の目標量IREF2は、式(7)で表される。
IREF2=R23/(R21×R22)×Vdim×d …(7)
したがってデューティ比dを変化させることで、第2半導体光源204の光量の時間平均値を変化させることができ、これにより第2半導体光源204の温度特性を相殺できる。
When the duty ratio of the pulse signal S PWM2 is d (d <1), the target amount I REF2 of the drive current I LED2 is represented by the equation (7).
I REF2 = R23 / (R21 × R22) × Vdim × d… (7)
Therefore, by changing the duty ratio d, the time average value of the amount of light of the second
半導体光源の種類によっては、発光波長が、電流量に応じてシフトする場合がある。このような場合にアナログ調光を行うと、第2半導体光源204の光量のみでなく、緑の波長がシフトし、ターコイズブルーの仕様から逸脱するおそれがある。このような場合には、PWM調光を採用することにより、波長(スペクトル分布)を一定にしつつ、光量のみを変化させることができる。
Depending on the type of semiconductor light source, the emission wavelength may shift according to the amount of current. If analog dimming is performed in such a case, not only the amount of light of the second
(実施例3)
図5は、実施例3に係る車両用灯具100Cの回路図である。実施例3では、第2目標量IREF2に加えて、第1目標量IREF1が、温度センサ330の出力に応じて変化する。より具体的には、第1目標量IREF1と第2目標量IREF2が、PWM調光によって相補的に変化する。
(Example 3)
FIG. 5 is a circuit diagram of the vehicle lamp 100C according to the third embodiment. In the third embodiment, in addition to the second target amount I REF2 , the first target amount I REF1 changes according to the output of the
パルス変調器350Cは、温度センサ330の出力に応じてデューティ比が相補的に変化する第1パルス信号SPWM1と第2パルス信号SPWM2を生成する。具体的には、第1パルス信号SPWM1のデューティ比d1は温度に対して負の相関を有し、第2パルス信号SPWM2のデューティ比d2は温度に対して正の相関を有する。
The
たとえばパルス変調器350Cは、発振器352、PWMコンパレータ354、インバータ356、R41,R42を含む。温度センサ330であるサーミスタ332は、抵抗R42と並列に接続される。抵抗R41とR42の接続ノードには、温度と負の相関を有するデューティ比設定電圧Vdutyが発生する。
For example, the
発振器352は、三角波あるいはのこぎり波の周期信号VOSCを生成する。PWMコンパレータ354は、周期信号VOSCを電圧Vdutyでスライスし、第2パルス信号SPWM2を生成する。インバータ356は、第2パルス信号SPWM2を反転して、第1パルス信号SPWM1を生成する。
第1駆動回路310Cは、図2の第1駆動回路310に加えて、PWM調光用の第1スイッチSW21を備える。第1スイッチSW21は、第1パルス信号SPWM1に応じてスイッチングする。また第2駆動回路320Cは、図2の第2駆動回路320に加えて、PWM調光用の第2スイッチSW22を備える。第2スイッチSW22は、第2パルス信号SPWM2に応じてスイッチングする。
The
スイッチSW21(SW22)の接続箇所は、図5のそれに限定されず、抵抗R11(R21)と並列に設けてもよいし、抵抗R13(R23)と並列に設けてもよい。あるいは、トランジスタ11(M21)のゲートと入力ライン302の間に設けてもよい。
The connection location of the switch SW21 (SW22) is not limited to that shown in FIG. 5, and may be provided in parallel with the resistor R11 (R21) or in parallel with the resistor R13 (R23). Alternatively, it may be provided between the gate of the transistor 11 (M21) and the
第1駆動回路310は、第1パルス信号SPWM1に応じて第1駆動電流ILED1をスイッチングし、第2駆動回路320は、第2パルス信号SPWM2に応じて第2駆動電流ILED2をスイッチングする。
The
図6(a)、(b)は、図5の車両用灯具200Cの動作波形図である。図6(a)は低温時の動作が、図6(b)は高温時の動作が示される。
6 (a) and 6 (b) are operation waveform diagrams of the
(実施例4)
図7は、実施例4に係る車両用灯具200Dの回路図である。第1駆動回路310Dは、抵抗R32と並列なキャパシタC11と、スイッチSW21と直列な抵抗R14をさらに含む。第2駆動回路320Dは、抵抗R34と並列なキャパシタC21と、スイッチSW22と直列な抵抗R24をさらに含む。
(Example 4)
FIG. 7 is a circuit diagram of the
図8は、図7の車両用灯具200Dの動作波形図である。調光電圧Vdim#(#=1,2)は、抵抗R#4とキャパシタC#1の時定数に応じて変化する。したがって駆動電流ILED#も、時定数にしたがって時間とともに緩やかに変化する。
FIG. 8 is an operation waveform diagram of the
この車両用灯具200Dによれば、PWM調光を行う際に、スイッチングにともなう電磁ノイズを抑制することができる。
According to this
(実施例5)
図9は、実施例5に係る車両用灯具200Eの回路図である。実施例5では、第1半導体光源202、第2半導体光源204それぞれの温度を監視する温度センサ330_1、330_2を備える。パルス変調器350_1は、温度センサ330_1の出力に応じたデューティ比d1を有する第1パルス信号SPWM1を生成する。パルス変調器350_2は、温度センサ330_2の出力に応じたデューティ比d2を有する第2パルス信号SPWM2を生成する。第1駆動回路310は、第1パルス信号SPWM1に応じて第1駆動電流ILED1をスイッチングし、第2駆動回路320は、第2パルス信号SPWM2に応じて第2駆動電流ILED2をスイッチングする。すでに説明したように、PWM調光のためのスイッチSW21,SW22の配置は、図9のそれに限定されない。
(Example 5)
FIG. 9 is a circuit diagram of the
(実施例6)
緑色の第2半導体光源204および第2駆動回路320を省略し、その代わりに、第1半導体光源202の出力により励起され、緑色に発光する蛍光体を設けてもよい。蛍光体が発する緑色の光と、第1半導体光源202の出力である青色の光を混色することで、ターコイズブルーを得ることができる。
(Example 6)
The green second
以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 The present invention has been described above based on the embodiments. This embodiment is an example, and it will be understood by those skilled in the art that various modifications are possible for each of these components and combinations of each processing process, and that such modifications are also within the scope of the present invention. is there. Hereinafter, such a modification will be described.
(変形例1)
実施の形態では、電流ソース型の構成を説明したが、天地を反転して電流シンク型で構成してもよい。
(Modification example 1)
In the embodiment, the current source type configuration has been described, but the top and bottom may be inverted to form the current sink type configuration.
(変形例2)
第2半導体光源204の目標量IREF2を、温度センサ330の出力にかかわらず一定として、第1半導体光源202の目標量IREF1を温度センサ330の出力に応じて変化させてもよい。
(Modification 2)
The target amount I REF2 of the second
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms and phrases based on the embodiments, the embodiments merely indicate the principles and applications of the present invention, and the embodiments are defined in the claims. Many modifications and arrangement changes are permitted without departing from the ideas of the present invention.
本発明は、自動車などに用いられる車両用灯具に関する。 The present invention relates to a vehicle lamp used for an automobile or the like.
200 車両用灯具
202 第1半導体光源
204 第2半導体光源
300 点灯回路
310 第1駆動回路
312 電流源
314 変換回路
316 V/I変換回路
320 第2駆動回路
322 電流源
324 変換回路
330 温度センサ
332 サーミスタ
340 電圧源
350 パルス変調器
352 発振器
354 PWMコンパレータ
200
Claims (9)
前記第1半導体発光素子に第1目標量に安定化された第1駆動電流を供給する第1駆動回路と、
前記第2半導体発光素子に第2目標量に安定化された第2駆動電流を供給する第2駆動回路と、
を備えることを特徴とする点灯回路。 A lighting circuit that drives a blue first semiconductor light emitting element and a green second semiconductor light emitting element.
A first drive circuit that supplies a first drive current stabilized to a first target amount to the first semiconductor light emitting device, and
A second drive circuit that supplies a second drive current stabilized to a second target amount to the second semiconductor light emitting device, and
A lighting circuit characterized by being provided with.
前記温度センサの出力に応じて、前記第1目標量と前記第2目標量の少なくとも一方が変化することを特徴とする請求項1に記載の点灯回路。 Equipped with a temperature sensor
The lighting circuit according to claim 1, wherein at least one of the first target amount and the second target amount changes according to the output of the temperature sensor.
前記温度センサの出力に応じて、前記第2目標量が変化することを特徴とする請求項2に記載の点灯回路。 The first target amount is invariant with respect to the output of the temperature sensor.
The lighting circuit according to claim 2, wherein the second target amount changes according to the output of the temperature sensor.
前記第1駆動回路は、前記第1パルス信号に応じて前記第1駆動電流をスイッチングし、
前記第2駆動回路は、前記第2パルス信号に応じて前記第2駆動電流をスイッチングすることを特徴とする請求項6に記載の点灯回路。 Further, a pulse modulator for generating a first pulse signal and a second pulse signal whose duty ratio changes complementarily according to the output of the temperature sensor is provided.
The first drive circuit switches the first drive current in response to the first pulse signal.
The lighting circuit according to claim 6, wherein the second drive circuit switches the second drive current in response to the second pulse signal.
緑色の第2半導体発光素子と、
請求項1から7のいずれかに記載の点灯回路と、
を備えることを特徴とする車両用灯具。 The blue first semiconductor light emitting device and
The green second semiconductor light emitting device and
The lighting circuit according to any one of claims 1 to 7.
A vehicle lamp characterized by being equipped with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021513675A JP7353358B2 (en) | 2019-04-11 | 2020-04-08 | Vehicle lights and their lighting circuits |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-075858 | 2019-04-11 | ||
JP2019075858 | 2019-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020209295A1 true WO2020209295A1 (en) | 2020-10-15 |
Family
ID=72751303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015845 WO2020209295A1 (en) | 2019-04-11 | 2020-04-08 | Vehicle lamp and lighting circuit for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7353358B2 (en) |
WO (1) | WO2020209295A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022090430A1 (en) * | 2020-10-30 | 2022-05-05 | Valeo Vision | Method for operating an automotive lighting device and automotive lighting device |
WO2023286545A1 (en) * | 2021-07-16 | 2023-01-19 | 株式会社小糸製作所 | Lamp |
JP2023013626A (en) * | 2021-07-16 | 2023-01-26 | 株式会社小糸製作所 | lamp |
JP2023017175A (en) * | 2021-07-26 | 2023-02-07 | 株式会社小糸製作所 | Lamp fitting |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003178611A (en) * | 2001-12-12 | 2003-06-27 | Koito Mfg Co Ltd | Lamp assembling device |
JP2006171693A (en) * | 2004-11-19 | 2006-06-29 | Sony Corp | Backlight device, backlight driving method, and liquid crystal display device |
JP2012164594A (en) * | 2011-02-09 | 2012-08-30 | Panasonic Corp | Lighting device for semiconductor light-emitting element, and illuminating fixture using the same |
JP2017010810A (en) * | 2015-06-23 | 2017-01-12 | ローム株式会社 | Luminaire, control circuit for the same, control method and display device using the same |
JP2017054799A (en) * | 2015-09-10 | 2017-03-16 | パナソニックIpマネジメント株式会社 | LIGHTING DEVICE, LIGHTING SYSTEM HAVING THE SAME, AND MOBILE BODY |
JP2017143692A (en) * | 2016-02-12 | 2017-08-17 | ローム株式会社 | LED driving circuit for LCD backlight, its control circuit, electronic equipment |
-
2020
- 2020-04-08 WO PCT/JP2020/015845 patent/WO2020209295A1/en active Application Filing
- 2020-04-08 JP JP2021513675A patent/JP7353358B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003178611A (en) * | 2001-12-12 | 2003-06-27 | Koito Mfg Co Ltd | Lamp assembling device |
JP2006171693A (en) * | 2004-11-19 | 2006-06-29 | Sony Corp | Backlight device, backlight driving method, and liquid crystal display device |
JP2012164594A (en) * | 2011-02-09 | 2012-08-30 | Panasonic Corp | Lighting device for semiconductor light-emitting element, and illuminating fixture using the same |
JP2017010810A (en) * | 2015-06-23 | 2017-01-12 | ローム株式会社 | Luminaire, control circuit for the same, control method and display device using the same |
JP2017054799A (en) * | 2015-09-10 | 2017-03-16 | パナソニックIpマネジメント株式会社 | LIGHTING DEVICE, LIGHTING SYSTEM HAVING THE SAME, AND MOBILE BODY |
JP2017143692A (en) * | 2016-02-12 | 2017-08-17 | ローム株式会社 | LED driving circuit for LCD backlight, its control circuit, electronic equipment |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022090430A1 (en) * | 2020-10-30 | 2022-05-05 | Valeo Vision | Method for operating an automotive lighting device and automotive lighting device |
FR3115859A1 (en) * | 2020-10-30 | 2022-05-06 | Valeo Vision | Method of operation of automotive lighting device and automotive lighting device |
JP2023545146A (en) * | 2020-10-30 | 2023-10-26 | ヴァレオ ビジョン | Method for operating a motor vehicle lighting system and motor vehicle lighting system |
JP7575587B2 (en) | 2020-10-30 | 2024-10-29 | ヴァレオ ビジョン | Method for operating a lighting device of a motor vehicle and lighting device of a motor vehicle - Patents.com |
US12289809B2 (en) | 2020-10-30 | 2025-04-29 | Valeo Vision | Method for operating an automotive lighting device and automotive lighting device |
WO2023286545A1 (en) * | 2021-07-16 | 2023-01-19 | 株式会社小糸製作所 | Lamp |
JP2023013626A (en) * | 2021-07-16 | 2023-01-26 | 株式会社小糸製作所 | lamp |
EP4373217A4 (en) * | 2021-07-16 | 2024-10-23 | Koito Manufacturing Co., Ltd. | LAMP |
JP2023017175A (en) * | 2021-07-26 | 2023-02-07 | 株式会社小糸製作所 | Lamp fitting |
JP7535017B2 (en) | 2021-07-26 | 2024-08-15 | 株式会社小糸製作所 | Lighting fixtures |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020209295A1 (en) | 2020-10-15 |
JP7353358B2 (en) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7353358B2 (en) | Vehicle lights and their lighting circuits | |
KR101806533B1 (en) | Method and apparatus for controlling dimming levels of leds | |
US8274237B2 (en) | LED driver circuit with over-current protection during a short circuit condition | |
JP6436775B2 (en) | Self-tuning lighting driver for driving a light source and lighting unit including a self-tuning lighting driver | |
JP7182925B2 (en) | vehicle lamp | |
JP2015153526A (en) | Vehicle lamp, drive device for the same, and control method for the same | |
US10485075B2 (en) | Automotive lamp with compensation of the luminous flux of the light source | |
US20090058318A1 (en) | Driving Device for Providing Light Dimming Control of Light-Emitting Element | |
US20140361685A1 (en) | Vehicular headlamp | |
WO2021206145A1 (en) | Vehicle lamp fitting, and lighting circuit | |
JP5963079B2 (en) | LED driving device, lighting device and vehicle lighting device | |
US20210153314A1 (en) | Lighting circuit and vehicle lamp | |
JP5416356B2 (en) | Vehicle lighting | |
US9462652B2 (en) | Device for LED operation | |
JP6481246B2 (en) | Light emitting device control circuit and light emitting device | |
WO2021149558A1 (en) | Ignition circuit and vehicle lamp | |
JP6336871B2 (en) | Lighting circuit and vehicle lamp using the same | |
CN115399071B (en) | Vehicle lamp and lighting circuit | |
JP5945819B2 (en) | LED lighting device, vehicle lighting device and lighting fixture using the same | |
KR20150072125A (en) | Lightening apparatus and method for driving the same | |
JP2024062291A (en) | Lighting circuit and vehicle light | |
KR101067976B1 (en) | Light emitting device driving device | |
JP2007015579A (en) | Vehicle lighting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20787630 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513675 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20787630 Country of ref document: EP Kind code of ref document: A1 |