[go: up one dir, main page]

WO2020199110A1 - 一种用于海洋勘测的声呐机器人组 - Google Patents

一种用于海洋勘测的声呐机器人组 Download PDF

Info

Publication number
WO2020199110A1
WO2020199110A1 PCT/CN2019/080897 CN2019080897W WO2020199110A1 WO 2020199110 A1 WO2020199110 A1 WO 2020199110A1 CN 2019080897 W CN2019080897 W CN 2019080897W WO 2020199110 A1 WO2020199110 A1 WO 2020199110A1
Authority
WO
WIPO (PCT)
Prior art keywords
sonar
sealing body
sonar robot
robot
control device
Prior art date
Application number
PCT/CN2019/080897
Other languages
English (en)
French (fr)
Inventor
刘浩源
郑瑞云
孙立晶
田丙奇
Original Assignee
唐山哈船科技有限公司
唐山圣因海洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山哈船科技有限公司, 唐山圣因海洋科技有限公司 filed Critical 唐山哈船科技有限公司
Priority to PCT/CN2019/080897 priority Critical patent/WO2020199110A1/zh
Publication of WO2020199110A1 publication Critical patent/WO2020199110A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Definitions

  • the invention relates to the technical field of seabed monitoring, in particular to a sonar robot group for marine surveying.
  • the ocean is rich in resources and contains a large number of organisms.
  • the research on seabed organisms can bring a lot of help to civilization. Therefore, it is very necessary to monitor seabed organisms.
  • the special point is that the continuous monitoring of the coastal waters is conducive to the simulation of ocean operating conditions.
  • the present invention proposes a sonar robot group for marine surveying, which can lie in the seabed and monitor the seabed environment.
  • a sonar robot group for ocean survey the sonar robot group includes a pair of sonar robots connected by a connecting line
  • the sonar robot includes:
  • An asymmetric spherical sealing body the inner side of the sealing body is connected to the inner side of another sealing body through the connecting line;
  • a sonar device is arranged on the inner side of the sealing body, and a solar cell is arranged on the outer side;
  • the volume of the sealing body is variable, the sealing body is adjusted to sink into water or rise to the water surface, and the density of the outer side end of the sealing body is adjusted to be greater or less than the density of the inner side end.
  • the sealing body includes an air bag, a gas compressor, and a control device.
  • the sealing body is provided with a high-pressure gas cavity. Both ends of the gas compressor are respectively connected to the high-pressure gas cavity and the airbag.
  • An air duct with a regulating valve is also provided between the high-pressure gas chamber and the airbag.
  • the high-pressure gas cavity, the gas compressor, the airbag and the air duct constitute a gas circulation channel; the airbag is fixed at the On the outer wall of the sealing body, the sonar device is connected with the control device arranged in the sealing body, and the gas compressor is connected with the control device.
  • a high-pressure gas tank is provided in the sealing body, the output end of the gas compressor is communicated with the high-pressure gas tank, the inlet end is provided in the sealing body, and the high-pressure gas tank is connected with a purge valve
  • the sealing body is composed of a two-part sealed movable connection: the two parts sink into the seabed when they are close, and float on the water surface when they are far away; the sonar device is connected with the control device provided in the sealing body, and the gas is compressed The machine is connected with the control device.
  • the sealing body further includes a pusher, and the pusher is fixed on the sealing body and connected with the control device.
  • the line functions to communicate with the two sonar robots.
  • control device includes a controller that collects the signals collected by the sonar device and controls the operation of the thruster.
  • control device further includes a rechargeable battery, a memory and a communication device, and the rechargeable battery, the memory and the communication device are all connected to the controller.
  • an infrared camera connected to the control device is provided on the sealed body.
  • the pusher is provided with at least one, and the controlled rotation is connected to the sealing body.
  • the airbag is fixed at the outer end of the sealing body.
  • the outer cover of the infrared camera device is provided with a transparent window.
  • controlled rotation connection is horizontal 0-180 degree rotation.
  • the sealing body is composed of two hemispheres with asymmetric density distribution.
  • the sealing body further includes a pressure gauge, which measures the pressure in the sealing body and communicates with the air release valve through the control device.
  • the present invention also provides a detection method of a sonar robot group for ocean surveying, the method comprising using the sonar robot group according to any one of claims 1-7 to:
  • the first sonar robot of the two sonar robots floats on the water, the second sonar robot sinks into the water, and the sonar devices located inside the two sonar robots operate simultaneously Detection, while the solar battery charges the first sonar robot;
  • the second sonar robot adjusts its sealing body to float to the surface, while the first sonar robot adjusts its sealing body to sink into the water to complete the position Exchange, realize that the solar battery can charge the second sonar robot.
  • the thruster of the sonar device pushes it to remain in a fixed position.
  • the sonar robot located in the water transmits the detected signal to the sonar robot floating on the water through the connecting line.
  • the sonar robot group of the present invention adjusts the density of the outer side end of the sealing body to be greater or less than the density of the inner side end by changing the volume, so that two oppositely symmetrical Sonar robots constantly change positions for solar charging, realizing uninterrupted monitoring, and automatically realizing continuous monitoring of seabed conditions.
  • Figure 1 is a schematic diagram of the structure of the sonar robot group of the present invention.
  • Fig. 3 is another embodiment of the sonar robot of the sonar robot group of the present invention.
  • FIG. 4 is a schematic diagram of the density adjustment method on the outer side end and the inner side end of the sonar robot including the sonar robot group according to the present invention.
  • the directional indication is only used to explain that it is in a specific posture (as shown in the drawings). If the specific posture changes, the relative positional relationship, movement, etc. of the components below will also change the directional indication accordingly.
  • FIG 1 shows the structure of the sonar robot group of the present invention.
  • the sonar robot group includes a pair of sonar robots connected by a connecting line 4.
  • the sonar robot includes: an asymmetric spherical sealing body 1, and the inner side of the sealing body 1 is connected to another sealing body through a connecting line 4
  • the inner side of 1 is connected, preferably the connecting line 4 plays the role of two sonar robots communicating, the sonar robot in the water transmits the detected signal to the sonar robot floating on the water through the connecting line 4; the inner side of the sealing body 1
  • the sonar device 3 is provided, and the outer side is provided with solar cells 2; the volume of the sealed body 1 is variable, and the density of the outer side end of the sealed body 1 is greater or less than the density of the inner side end by adjusting the changed volume, so that the two opposite sides
  • the symmetrical sonar robot continuously changes its position for solar charging, realizing uninterrupted monitoring.
  • Fig. 2 shows an embodiment of the sonar robot of the sonar robot group of the present invention.
  • the sonar robot includes a sealed body 1.
  • the sealed body 1 includes a solar cell 2, a sonar device 3, an air bag 6, and a gas compressor 9.
  • the sealed body 1 is provided with a high-pressure gas chamber 5, and both ends of the gas compressor 9 are connected to the high-pressure
  • the gas chamber 5 is in communication with the airbag 6, and an air duct 11 with a regulating valve 7 is also provided between the high-pressure gas chamber 5 and the airbag 6.
  • the high-pressure gas chamber 5, the gas compressor 9, the airbag 6 and the air duct 11 constitute a gas cycle Channel; the airbag 6 is fixed on the outer wall of the sealing body 1, the sonar device 3 is connected to the control device 10 provided in the sealing body 1, and the gas compressor 9 is connected to the control device 10.
  • a high-pressure gas chamber 5 and a gas compressor 9 are provided in the sealed body 1.
  • the inlet of the gas compressor 9 is connected to the airbag 6, and the gas in the airbag 6 is compressed and transported to the high-pressure gas chamber 5, where the airbag 6 needs to be filled.
  • the compressed gas in the high-pressure gas chamber 5 is sent to the airbag 6 through the air guide tube 11, and the specific operation is to open the regulating valve 7 on the air guide tube 11.
  • the above-mentioned gas circulation operation is to adjust the rising or falling of the sealing body 1 and changing the volume of the airbag 6 to change the buoyancy of the sealing body 1.
  • the gas compressor 9 sucks out the gas of the airbag 6 cleanly, and the formed high-pressure gas is transported to the high-pressure gas chamber 5 until the airbag 6 is reduced to the minimum volume, and then the main body 1 is sealed.
  • the buoyancy is less than its own weight, and it will sink to the bottom of the sea.
  • the regulating valve 7 is opened, and the high-pressure gas in the high-pressure gas chamber 5 is discharged into the airbag 6 through the air duct 11, and the exhaust volume of the regulating valve 7 can be adjusted to control the volume of the airbag 6. So as to achieve the ascent speed and height control.
  • the high-pressure gas chamber 5 is a metal sealed chamber with a fixed volume, with a pressure resistance of 30MPa, such as bottle-shaped, can-shaped, and other pressure-resistant shapes, with a one-way inlet and outlet, the inlet is connected with the gas compressor 9, and the outlet Connect with the air duct 11.
  • the airbag 6 is a cavity made of elastic material, such as rubber, which can be deformed, and the volume is 15-25 times that of the high-pressure gas cavity 5.
  • the regulating valve 7 can be set as an electric type, such as a solenoid valve, and the switch can be controlled by the control device 10.
  • a sonar device 3 is provided on the upper part of the sealing body 1, and the sonar device 3 is used to monitor the submarine environment.
  • the sonar device 3 specifically includes passive sonar and active sonar.
  • the active sonar emits sound waves into the water, finds the target by receiving the echoes reflected by underwater objects, and measures its parameters; the target distance can be estimated by the time difference between the original sound wave and the arrival of the echo ; The target azimuth is obtained by measuring the difference between the two sub-arrays in the receiving sound array.
  • Active sonar is composed of transmitter, sound array, receiver (including signal processing), and display console.
  • the passive sonar detects the target by receiving the radiated noise of the target and determines its parameters; it is composed of three parts: receiving sound array, receiver (signal processing) and display console.
  • the sonar device 3 is connected to the control device 10, and the operation of the sonar device 3 and the collected information are all controlled by the control device 10.
  • the sealing body 1 itself is a sphere with an asymmetrical density distribution, which is light up and down heavy to ensure that the sonar device 3 above it can always be up to monitor the surrounding seabed environment.
  • the high-pressure gas chamber 5 is arranged in the upper part of the spherical body of the sealing body 1, and the other equipment is arranged in the lower part.
  • a thruster 8 is provided under the sonar robot, and the thruster 8 is used to drive the sonar robot to move back and forth in the sea, especially the thruster 8 is connected to the lower part of the sonar robot via a rotating shaft 81, and the rotation angle of the thruster 8 around the rotating shaft 81 is 0-180 This means that the thruster 8 can adjust the forward direction of the sonar robot at will.
  • the propeller 8 is of a rotating blade type or a water spray type. One side is connected to the rotating shaft 81 via a bearing seat, and the rotation of the propeller 8 on the rotating shaft 81 is driven by a motor.
  • the above-mentioned propeller 8 and the motor are all connected to the control device 10, and the control device 10 controls the operation.
  • At least one propeller 8 is provided, and the optimal number is three, which are distributed under the sealing body 1.
  • the control device 10 includes a controller for collecting signals collected by the sonar device 3 and controlling the operation of the thruster 8. It also includes a rechargeable battery, memory and communication equipment, and the rechargeable battery, memory and communication equipment are all connected to the controller.
  • the sealed main body 1 is also provided with an infrared camera device to monitor the biological condition of the seabed through infrared mode, and a transparent window is provided on the outer cover of the infrared camera device.
  • the rechargeable battery provides power for all electrical equipment and can be fully charged in advance; the memory is convenient for storing the information collected by the sonar device 3 and the infrared camera device; the communication equipment can send the collected information to the service station.
  • Fig. 3 is another embodiment of the sonar robot of the sonar robot group of the present invention.
  • the sonar robot includes a sealing body 1, a sonar device 3, a gas compressor 9 and a control device 10.
  • the sealing body 1 is provided with a high-pressure gas tank 5, the output end of the gas compressor 9 is in communication with the high-pressure gas tank 5, and the inlet end is provided In the sealed body 1, the high-pressure gas tank 5 is connected with a gas release pipe 11', and the gas release pipe 11' is provided with a gas release valve 7;
  • the sealing body 1 is a two-part sealed movable connection: when the two parts are close, they sink into the seabed, and when they are far away Floating on the surface of the water;
  • the sonar device 3 is fixed on the upper surface of the sealing body 1, and is connected to the control device 10 provided in the sealing body 1, and the gas compressor 9 is connected to the control device 10.
  • the sealing body 1 is set as two parts that can be movably and sealedly connected. When the two parts are separated, the volume of the sealing body 1 is increased, and there will be a greater buoyancy effect in the water, while floating on the water; When closed, the volume of the entire sealing body 1 is the smallest, and the buoyancy force received is less than its own weight, so that the sealing body 1 will sink to the bottom of the sea; a high-pressure gas tank 5 and a gas compressor 9 are arranged in the sealing body 1, according to the sealing body 1. The volume changes required at different depths are used to control the gas distribution in the high-pressure gas tank 5 and the sealing body 1.
  • the gas compressor 9 extracts the gas from the sealing body 1 and sends it to the high-pressure gas tank 5; On the contrary, when floating, the high-pressure gas in the high-pressure gas tank 5 is output to the sealing body 1 through the air release valve.
  • a barometer is provided in the sealing body 1 to measure the air pressure in the sealing body 1; it is connected to the air release valve 7 through a control device to ensure that the air pressure in the sealing body 1 is stable. Especially when there are workers in the sealing body 1, the pressure inside should be maintained at normal pressure.
  • the high-pressure gas tank 5 is a metal sealed cavity with a fixed volume, with a pressure resistance of 30MPa, such as bottle-shaped, can-shaped and other pressure-resistant shapes, with a one-way inlet and outlet, the inlet is connected with the gas compressor 9, and the outlet An air release valve is connected to communicate with the inside of the sealing body 1.
  • a sonar device 3 is provided on the upper part of the sealing body 1, and the sonar device 3 is used to monitor the submarine environment.
  • the sonar device 3 specifically includes passive sonar and active sonar.
  • the active sonar emits sound waves into the water, finds the target by receiving the echoes reflected by underwater objects, and measures its parameters; the target distance can be estimated by the time difference between the original sound wave and the arrival of the echo ; The target azimuth is obtained by measuring the difference between the two sub-arrays in the receiving sound array.
  • Active sonar is composed of transmitter, sound array, receiver (including signal processing), and display console.
  • the passive sonar detects the target by receiving the radiated noise of the target and determines its parameters; it is composed of three parts: receiving sound array, receiver (signal processing) and display console.
  • the sonar device 3 is connected to the control device 10, and the operation of the sonar device 3 and the collected information are all controlled by the control device 10.
  • the sealing body 1 itself is two hemispheres with asymmetrical density distribution, which is light up and heavy to ensure that the sonar device 3 above it can always be up and monitor the surrounding seabed environment.
  • the high-pressure gas tank 5 is arranged in the upper part of the spherical body of the sealing body 1, and the other equipment is arranged in the lower part.
  • a number of electric push rods 13 are set at the joint of the two hemispheres, and a folding pressure-resistant film 12 is arranged on the periphery of the plurality of electric push rods 13. Under the action of the electric push rod 13, the pressure-resistant film is driven to expand, and the two hemispheres mutually interact. Far away, the volume of the sealing body 1 is enlarged; if the pressure-resistant membrane is driven to contract, the two hemispheres gradually close together, reducing the volume of the sealing body 1.
  • the upper and lower ends of the folded pressure-resistant film are respectively connected to the two hemispheres in a sealed manner, and the folded pressure-resistant film itself is a ring structure, so that the two hemispheres are far away or closed to ensure that seawater will not enter the seal from the folded pressure-resistant film In the main body 1.
  • a thruster 8 is provided under the sonar robot, and the thruster 8 is used to drive the sonar robot to move back and forth in the sea, especially the thruster 8 is connected to the lower part of the sonar robot via a rotating shaft 81, and the rotation angle of the thruster 8 around the rotating shaft 81 is 0-180 This means that the thruster 8 can adjust the forward direction of the sonar robot at will.
  • the propeller 8 is of a rotating blade type or a water spray type. One side is connected to the rotating shaft 81 via a bearing seat, and the rotation of the propeller 8 on the rotating shaft 81 is driven by a motor.
  • the above-mentioned propeller 8 and the motor are all connected to the control device 10, and the control device 10 controls the operation.
  • At least one propeller 8 is provided, and the optimal number is three, which are distributed under the sealing body 1.
  • the control device 10 includes a controller for collecting signals collected by the sonar device 3 and controlling the operation of the thruster 8; it also includes a rechargeable battery, a memory, and communication equipment, and the rechargeable battery, memory and communication equipment are all connected to the controller.
  • the sealed main body 1 is also provided with an infrared camera device to monitor the biological condition of the seabed through infrared mode, and a transparent window is provided on the outer cover of the infrared camera device.
  • the rechargeable battery provides power for all electrical equipment and can be fully charged in advance; the memory is convenient for storing the information collected by the sonar device 3 and the infrared camera device; the communication equipment can send the collected information to the service station.
  • the detection method of the sonar robot group for ocean surveying of the present invention is as follows:
  • the first sonar robot of the two sonar robots floats on the water, the second sonar robot sinks into the water, and the sonar devices 3 located inside the two sonar robots are simultaneously Perform detection, while the solar battery 2 charges the first sonar robot;
  • the second sonar robot adjusts its sealing body 1 to float to the surface, while the first sonar robot adjusts its sealing body 1 to sink into the water, The position exchange is completed, so that the solar battery 2 can charge the second sonar robot.
  • the thruster 8 of the sonar robot pushes it to remain in a fixed position.
  • the sonar robot located in the water transmits the detected signal to the sonar robot floating on the water through the connecting line 4.
  • the sonar robot group of the present invention uses the gas channel to circulate and changes its own buoyancy. It can sink to the bottom of the sea or float on the water surface.
  • the density of the outer surface of the sealing body is adjusted to be greater or less than that of the inner surface by changing the volume.
  • the density of the side ends enables the two reversely symmetrical sonar robots to continuously change positions for solar charging, realizing uninterrupted monitoring and automatically realizing continuous monitoring of the seabed conditions.
  • the sealing body 1 itself is two hemispheres with asymmetrical density distribution, the upper part is light and the lower is heavy. Ensure that the sonar device 3 can be up when it is in the water to monitor the surrounding seabed environment. When on the water, the solar cell 2 is located above and receives sunlight.
  • the sealing body 1 is provided with a controller 10, a gas compressor 9 and other control devices, as well as a vertical sliding rod 14. The control device can slide up and down on the sliding rod 14 to adjust the upper surface of the sealing body 1.
  • the end density is greater than or less than the density of the lower surface end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种用于海洋勘测的声呐机器人组,声呐机器人组包括通过连接线(4)进行连接的一对声呐机器人,声呐机器人包括:不对称球形密封主体(1),密封主体(1)的内侧面通过连接线(4)与另一密封主体(1)的内侧连接;密封主体(1)的内侧面设置有声呐装置(3),外侧面设置有太阳能电池(2);密封主体(1)的体积可变,调节密封主体沉入水中或升向水面,并且调节密封主体(1)的外侧面端密度大于或小于内侧面端的密度,声呐机器人组通过两个反向对称的声纳机器人不断变换位置进行太阳能充电,实现持续监测海底情况。

Description

一种用于海洋勘测的声呐机器人组 技术领域
本发明涉及海底监测技术领域,尤其是一种用于海洋勘测的声呐机器人组。
背景技术
海洋中资源丰富,含有大量的生物,对海底生物的研究,能为人类带来很多的帮助,因此对海底生物进行监测,是非常必要的。特对是对于近海的持续监测有利于对海洋运行状态进行模拟。
但由于海底本身阳光少,在监测中无法利用太阳能发电为设备供电,而更换电池不但麻烦,不容易实现,无法准确地监测到海底真实情况。
发明内容
本发明针对现有技术的不足,提出一种用于海洋勘测的声呐机器人组,能潜伏在海底,监测海底环境。
为了实现上述发明目的,本发明提供以下技术方案:一种用于海洋勘测的声呐机器人组,所述声呐机器人组包括通过连接线进行连接的一对声呐机器人,所述声呐机器人包括:
不对称球形密封主体,所述密封主体的内侧面通过所述连接线与另一密封主体的内侧连接;
所述密封主体的内侧面设置有声纳装置,外侧面设置有太阳能电池;
所述密封主体的体积可变,调节所述密封主体沉入水中或升向水面,并且调节所述密封主体的外侧面端密度大于或小于所述内侧面端的密度。
进一步地,所述密封主体包括气囊、气体压缩机和控制装置,所述密封主体内设有高压气体腔,所述气体压缩机两端分别与所述高压气体腔与所述气囊连通,所述高压气体腔与所述气囊之间还设有带调节阀的导气管,所述高压气体腔、所述气体压缩机、所述气囊与所述导气管构成气体循环通道;所述气囊固定在所述密封主体外壁上,所述声呐装置与设在所述密封主体内的所述控制装置连接,所述气体压缩机与所述控制装置连接。
进一步地,所述密封主体内设有高压气体罐,所述气体压缩机的输出端与所述高压气体罐连通,入口端设在所述密封主体内,所述高压气体罐连接有放气阀;所述密封主体为两部分密封活动连接构成:两部分靠近时沉入海底,远离时浮于水面;所述声呐装置与设在所述密封主体内的所述控制装置连接,所述气体压缩机与所述控制装置连接。
进一步地,所述密封主体还包括有推进器,所述推进器固定在所述密封主体上,与所述控制装置连接。
进一步地,所述线起所述两个声纳机器人通信的作用。
进一步地,所述控制装置包括控制器,收集所述声呐装置收集的信号,以及控制所述推进器运作。
进一步地,所述控制装置还包括充电电池、存储器和通讯设备,所述充电电池、存储器和通讯设备均与所述控制器连接。
进一步地,所述密封主体上设有与所述控制装置连接的红外摄像装置。
进一步地,所述推进器设有至少一个,受控转动连接在所述密封主体上。
进一步地,所述气囊固定在所述密封主体的外侧端。
进一步地,所述红外摄像装置外罩设有透明窗。
进一步地,所述受控转动连接为水平0-180度旋转。
进一步地,所述密封主体由密度分布高低不对称的两个半球构成。
进一步地,述密封主体还包括压力计,测定所述密封主体内的压力,经所述控制装置与所述放气阀连通。
本发明还提供了一种用于海洋勘测的声呐机器人组的探测方法,所述方法包括使用如权利要求1-7任一项的声呐机器人组进行:
(1)在工作状态下,所述两个声纳机器人的第一声纳机器人浮在水面上,第二声纳机器人沉入水中,位于所述两个声纳机器人内侧的声纳装置同时进行探测,同时太阳能电池对所述第一声纳机器人充电;
(2)在所述第二声纳机器人电量不足时,所述第二声纳机器人调节其密封主体以浮向水面,同时所述第一声纳机器人调节其密封主体以沉入水中,完成位置调换,实现太阳能电池对所述第二声纳机器人充电。
进一步地,所述声纳装置的推进器推动其保持在固定位置。
进一步地,位于水中的声纳机器人通过所述连接线将探测到信号传输至浮在水面的声纳机器人。
与现有技术相比,本发明具有以下优点:本发明的声呐机器人组通过变化的体积调节所述密封主体的外侧面端密度大于或小于所述内侧面端的密度,使得两个反向对称的声纳机器人不断变换位置进行太阳能充电,实现不间断监测,自动实现持续监测海底情况。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明的声呐机器人组的结构示意图;
图2为本发明的声呐机器人组的声纳机器人的一个实施例;
图3为本发明的声呐机器人组的声纳机器人的另一个实施例。
图4为本发明包括声呐机器人组的声纳机器人的外侧面端密度和内侧面端的密度调节方式的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
图1示出了本发明的声呐机器人组的结构。如图1所示,所述声呐机器人组包括通过连接线4进行连接的一对声呐机器人,声呐机器人包括:不对称球形密封主体1,密封主体1的内侧面通过连接线4与另一密封主体1的内侧连接,优选连接线4起两个声纳机器人通信的作用,将位于水中的声纳机器人通过连 接线4将探测到信号传输至浮在水面的声纳机器人;密封主体1的内侧面设置有声纳装置3,外侧面设置有太阳能电池2;密封主体1的体积可变,通过变化的体积调节密封主体1的外侧面端密度大于或小于所述内侧面端的密度,使得两个反向对称的声纳机器人不断变换位置进行太阳能充电,实现不间断监测。
图2示出了本发明的声呐机器人组的声纳机器人的一个实施例。声纳机器人,包括密封主体1,密封主体1包括太阳能电池2、声纳装置3、气囊6、气体压缩机9,密封主体1内设有高压气体腔5,气体压缩机9两端分别与高压气体腔5与所述气囊6连通,高压气体腔5与气囊6之间还设有带调节阀7的导气管11,高压气体腔5、气体压缩机9、气囊6与导气管11构成气体循环通道;气囊6固定在密封主体1外壁上,声呐装置3与设在密封主体1内的控制装置10连接,气体压缩机9与控制装置10连接。
在密封主体1内设置高压气体腔5和气体压缩机9,气体压缩机9的入口与气囊6连通,将气囊6内的气体进行压缩处理,输送至高压气体腔5内,在需要填充气囊6时,将高压气体腔5内的压缩气经导气管11送至气囊6中,具体操作是将导气管11上调节阀7打开。
上述气体循环操作,是调控密封主体1上升或下降,利用改变气囊6的体积变化,使得密封主体1所受浮力发生变化。具体为,在需要将本声呐机器人送至海底时,气体压缩机9将气囊6的气体吸出干净,形成的高压气输送至高压气体腔5,直至气囊6缩小至最小体积,此时密封主体1所受浮力小于其自重,会下沉至海底。反之,声呐机器人回升或升至海面时,打开调节阀7,高压气体腔5内的高压气经导气管11排放至气囊6中,可调控调节阀7的排气量,控制气囊6的体积,从而达到上升速度和高度的调控。
上述零部件具体分别为:高压气体腔5为容积固定的金属密封腔,耐压 30MPa,如瓶状、罐状等耐压形状,带单向导通的出入口,入口与气体压缩机9连通,出口与导气管11连接。气囊6为弹性材质制成的腔体,如橡胶,能发生形变,容积为高压气体腔5的15-25倍。调节阀7可设为电动式的,如电磁阀,可由控制装置10来调控开关。
在密封主体1的上部设有声呐装置3,利用声呐装置3对海底环境进行监测。其中声呐装置3具体包括被动声呐、主动声呐,主动声呐向水中发射声波,通过接收水下物体反射的回波发现目标,并测量其参量;目标距离可通过发射原声波与回波到达的时间差估计;目标方位则通过测量接收声阵中两子阵间的差异得到。主动声呐由发射机、声阵、接收机(包括信号处理)、显示控制台几个部分组成。而被动声呐通过接收目标的辐射噪声探测目标,并测定其参量;它由接收声阵、接收机(信号处理)和显示控制台三部分组成。声呐装置3与控制装置10连接,声呐装置3工作以及所收集到的信息均由控制装置10来调控。
密封主体1本身为密度分布高低不对称的球体,上轻下重,确保其上方的声呐装置3能始终处于上方,对周围的海底环境进行监测。在实际设置时,在密封主体1球体内,高压气体腔5设在上部,其余设备设在下部。
在声呐机器人的下方设有推进器8,利用推进器8驱动声呐机器人在海中前后移动,尤其是推进器8经转轴81连接在声呐机器人下部,推进器8绕转轴81的转动角度为0-180度,即意味着推进器8可随意调整声呐机器人的前进方向。
推进器8为旋转叶片式或喷水式,一侧经轴承座与转轴81连接,而推进器8在转轴81上的转动,由电机驱动完成。上述推进器8及电机均与控制装置10连接,由控制装置10来调控运行。
推进器8设有至少一个,最佳数量为三个,分布在密封主体1下方。
控制装置10包括控制器,用于收集声呐装置3收集的信号,并控制推进器 8的运行;还包括充电电池、存储器和通讯设备,充电电池、存储器和通讯设备均与控制器连接。
密封主体1上还设有红外摄像装置,通过红外方式监测海底的生物情况,在红外摄像装置外罩设有透明窗。
充电电池提供所有用电设备的电源,可事先充满;存储器便于储存声呐装置3以及红外摄像装置收集的信息;通讯设备可将上述收集的信息发送给服务站。
图3为本发明的声呐机器人组的声纳机器人的另一个实施例。所述声呐机器人包括密封主体1、声呐装置3、气体压缩机9和控制装置10,密封主体1内设有高压气体罐5,气体压缩机9的输出端与高压气体罐5连通,入口端设在密封主体1内,高压气体罐5连接有放气管11’,放气管11’上设有放气阀7;密封主体1为两部分密封活动连接构成:两部分靠近时沉入海底,远离时浮于水面;声呐装置3固定在密封主体1上表面上,与设在密封主体1内的控制装置10连接,气体压缩机9与控制装置10连接。
将密封主体1设为两个可活动密封连接的部分,在两部分分开时,使得密封主体1的容积增大,在水内会存在较大的浮力作用,而浮于水面;而在两部分合拢时,整个密封主体1的容积最小,受到的浮力小于其自身重量,而使得密封主体1会下沉至海底;在密封主体1内设置高压气体罐5和气体压缩机9,根据密封主体1所在不同深度所需的容积变化,来调控高压气体罐5与密封主体1内的气体分布:若需要下沉时,气体压缩机9抽取密封主体1内的气体,送入高压气体罐5中;反之,上浮时,高压气体罐5内的高压气经放气阀输出到密封主体1中。
优选的,在密封主体1内设有气压计,测量密封主体1内的气压;经控制 装置来与放气阀7连接,确保密封主体1内的气压稳定。尤其是在密封主体1内有工作人员时,其内的压力应该维持在常压下。
上述零部件具体分别为:高压气体罐5为容积固定的金属密封腔,耐压30MPa,如瓶状、罐状等耐压形状,带单向导通的出入口,入口与气体压缩机9连通,出口连接有放气阀与密封主体1内连通。
再在密封主体1的上部设有声呐装置3,利用声呐装置3对海底环境进行监测。其中声呐装置3具体包括被动声呐、主动声呐,主动声呐向水中发射声波,通过接收水下物体反射的回波发现目标,并测量其参量;目标距离可通过发射原声波与回波到达的时间差估计;目标方位则通过测量接收声阵中两子阵间的差异得到。主动声呐由发射机、声阵、接收机(包括信号处理)、显示控制台几个部分组成。而被动声呐通过接收目标的辐射噪声探测目标,并测定其参量;它由接收声阵、接收机(信号处理)和显示控制台三部分组成。声呐装置3与控制装置10连接,声呐装置3工作以及所收集到的信息均由控制装置10来调控。
密封主体1本身为密度分布高低不对称的两个半球,上轻下重,确保其上方的声呐装置3能始终处于上方,对周围的海底环境进行监测。在实际设置时,在密封主体1球体内,高压气体罐5设在上部,其余设备设在下部。
两个半球对接处设置若干个电动推杆13,在若干个电动推杆13的外围设置折叠耐压膜12,在电动推杆13的作用下,驱动耐压膜伸展开,同时两个半球相互远离,扩大了密封主体1的容积;若驱动耐压膜收缩,两个半球逐渐合拢,减小密封主体1的容积。折叠耐压膜的上下端分别与两个半球密封连接,而折叠耐压膜自身为环状结构,这样使得两个半球处在远离或合拢情况下,确保海水不会由折叠耐压膜进入密封主体1中。
在声呐机器人的下方设有推进器8,利用推进器8驱动声呐机器人在海中前后移动,尤其是推进器8经转轴81连接在声呐机器人下部,推进器8绕转轴81的转动角度为0-180度,即意味着推进器8可随意调整声呐机器人的前进方向。
推进器8为旋转叶片式或喷水式,一侧经轴承座与转轴81连接,而推进器8在转轴81上的转动,由电机驱动完成。上述推进器8及电机均与控制装置10连接,由控制装置10来调控运行。
推进器8设有至少一个,最佳数量为三个,分布在密封主体1下方。
控制装置10包括控制器,用于收集声呐装置3收集的信号,并控制推进器8的运行;还包括充电电池、存储器和通讯设备,充电电池、存储器和通讯设备均与控制器连接。
密封主体1上还设有红外摄像装置,通过红外方式监测海底的生物情况,在红外摄像装置外罩设有透明窗。
充电电池提供所有用电设备的电源,可事先充满;存储器便于储存声呐装置3以及红外摄像装置收集的信息;通讯设备可将上述收集的信息发送给服务站。
本发明的用于海洋勘测的声呐机器人组的探测方法如下:
(1)在工作状态下,所述两个声纳机器人的第一声纳机器人浮在水面上,第二声纳机器人沉入水中,位于所述两个声纳机器人内侧的声纳装置3同时进行探测,同时太阳能电池2对所述第一声纳机器人充电;
(2)在所述第二声纳机器人电量不足时,所述第二声纳机器人调节其密封主体1以浮向水面,同时所述第一声纳机器人调节其密封主体1以沉入水中,完成位置调换,实现太阳能电池2对所述第二声纳机器人充电。优选地,所述声纳机器人的推进器8推动其保持在固定位置。优选地,位于水中的声纳机器 人通过所述连接线4将探测到信号传输至浮在水面的声纳机器人。
本发明的声呐机器人组,利用气体通道循环流动,改变了自身所受浮力大小,可沉入海底或浮于水面,通过变化的体积调节所述密封主体的外侧面端密度大于或小于所述内侧面端的密度,使得两个反向对称的声纳机器人不断变换位置进行太阳能充电,实现不间断监测,自动实现持续监测海底情况。
图4为本发明包括声呐机器人组的声纳机器人的外侧面端密度和内侧面端的密度调节方式的示意图。密封主体1本身为密度分布高低不对称的两个半球,上轻下重。确保在水中时声呐装置3能处于上方,对周围的海底环境进行监测。在水上时,太阳能电池2位于上方,接受阳光。图4中示出了,密封主体1中设置有控制器10、气体压缩机9等控制装置,以及竖向滑杆14,控制装置可以在滑杆14上上下滑动,调节密封主体1的上表面端密度大于或小于所述下表面端的密度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种用于海洋勘测的声呐机器人组,其特征在于:所述声呐机器人组包括通过连接线进行连接的一对声呐机器人,所述声呐机器人包括:
    不对称球形密封主体,所述密封主体的内侧面通过所述连接线与另一密封主体的内侧连接;
    所述密封主体的内侧面设置有声纳装置,外侧面设置有太阳能电池;
    所述密封主体的体积可变,调节所述密封主体沉入水中或升向水面,并且调节所述密封主体的外侧面端密度大于或小于所述内侧面端的密度。
  2. 如权利要求1所述的声呐机器人组,其特征在于:所述密封主体包括气囊、气体压缩机和控制装置,通过所述气囊调节所述密封主体的体积;所述密封主体内设有高压气体腔,所述气体压缩机两端分别与所述高压气体腔与所述气囊连通,所述高压气体腔与所述气囊之间还设有带调节阀的导气管,所述高压气体腔、所述气体压缩机、所述气囊与所述导气管构成气体循环通道;所述气囊固定在所述密封主体外壁上,所述声呐装置与设在所述密封主体内的所述控制装置连接,所述气体压缩机与所述控制装置连接。
  3. 如权利要求1所述的声呐机器人组,其特征在于:所述密封主体内设有高压气体罐,所述气体压缩机的输出端与所述高压气体罐连通,入口端设在所述密封主体内,所述高压气体罐连接有放气阀;所述密封主体为两部分密封活动连接构成:两部分靠近时所述上表面端密度大于所述下表面端的密度,远离时所述上表面端密度小于所述下表面端的密度;所述声呐装置与设在所述密封主体内的所述控制装置连接,所述气体压缩机与所述控制装置连接。
  4. 如权利要求2或3所述的声呐机器人组,其特征在于:所述密封主体还包括有推进器,所述推进器固定在所述密封主体上,与所述控制装置连接。
  5. 如权利要求2或3所述的声呐机器人组,其特征在于:所述线起所述两个声纳机器人通信的作用。
  6. 如权利要求2或3所述的声呐机器人组,其特征在于:所述控制装置还包括充电电池、存储器和通讯设备,所述充电电池、存储器和通讯设备均与所述控制器连接。
  7. 如权利要求2或3所述的声呐机器人组,其特征在于:所述气囊固定在所述密封主体的外侧端。
  8. 一种用于海洋勘测的声呐机器人组的探测方法,其特征在于:所述方法包括使用如权利要求1-7任一项的声呐机器人组进行:
    (1)在工作状态下,所述两个声纳机器人的第一声纳机器人浮在水面上,第二声纳机器人沉入水中,位于所述两个声纳机器人内侧的声纳装置同时进行探测,同时太阳能电池对所述第一声纳机器人充电;
    (2)在所述第二声纳机器人电量不足时,所述第二声纳机器人调节其密封主体以浮向水面,同时所述第一声纳机器人调节其密封主体以沉入水中,完成位置调换,实现太阳能电池对所述第二声纳机器人充电。
  9. 如权利要求8所述的方法,其特征在于:所述声纳装置的推进器推动其保持在固定位置。
  10. 如权利要求8或9所述的方法,其特征在于:位于水中的声纳机器人通过所述连接线将探测到信号传输至浮在水面的声纳机器人。
PCT/CN2019/080897 2019-04-01 2019-04-01 一种用于海洋勘测的声呐机器人组 WO2020199110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080897 WO2020199110A1 (zh) 2019-04-01 2019-04-01 一种用于海洋勘测的声呐机器人组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080897 WO2020199110A1 (zh) 2019-04-01 2019-04-01 一种用于海洋勘测的声呐机器人组

Publications (1)

Publication Number Publication Date
WO2020199110A1 true WO2020199110A1 (zh) 2020-10-08

Family

ID=72664606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080897 WO2020199110A1 (zh) 2019-04-01 2019-04-01 一种用于海洋勘测的声呐机器人组

Country Status (1)

Country Link
WO (1) WO2020199110A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129089A (zh) * 2010-01-19 2011-07-20 上海海洋大学 海洋自持式剖面循环探测浮标
CN203005697U (zh) * 2012-12-27 2013-06-19 上海海洋大学 沉浮式海洋安全装置
RU2492508C1 (ru) * 2012-03-14 2013-09-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ Устройство гидроакустического обнаружения
CN103538701A (zh) * 2013-11-05 2014-01-29 中国人民解放军海军航空工程学院青岛校区 一种自带发电装置的被动声纳浮标
CN205229473U (zh) * 2015-12-03 2016-05-11 上海云灵信息技术有限公司 通用双球自沉浮式海底地震仪
CN207513737U (zh) * 2017-12-12 2018-06-19 青岛环海海洋工程勘察研究院 一种海底声呐探测装置
KR20180130123A (ko) * 2017-05-29 2018-12-07 권기복 실시간 수질 감시 및 수질 개선 로봇
CN109001819A (zh) * 2018-05-07 2018-12-14 哈尔滨工程大学 一种用于水下监测的海洋磁力探测装置及探测网
CN109353454A (zh) * 2018-09-21 2019-02-19 中国人民解放军91388部队 浮标自动浮力救助保护装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129089A (zh) * 2010-01-19 2011-07-20 上海海洋大学 海洋自持式剖面循环探测浮标
RU2492508C1 (ru) * 2012-03-14 2013-09-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ Устройство гидроакустического обнаружения
CN203005697U (zh) * 2012-12-27 2013-06-19 上海海洋大学 沉浮式海洋安全装置
CN103538701A (zh) * 2013-11-05 2014-01-29 中国人民解放军海军航空工程学院青岛校区 一种自带发电装置的被动声纳浮标
CN205229473U (zh) * 2015-12-03 2016-05-11 上海云灵信息技术有限公司 通用双球自沉浮式海底地震仪
KR20180130123A (ko) * 2017-05-29 2018-12-07 권기복 실시간 수질 감시 및 수질 개선 로봇
CN207513737U (zh) * 2017-12-12 2018-06-19 青岛环海海洋工程勘察研究院 一种海底声呐探测装置
CN109001819A (zh) * 2018-05-07 2018-12-14 哈尔滨工程大学 一种用于水下监测的海洋磁力探测装置及探测网
CN109353454A (zh) * 2018-09-21 2019-02-19 中国人民解放军91388部队 浮标自动浮力救助保护装置

Similar Documents

Publication Publication Date Title
WO2020177037A1 (zh) 一种包括环形气囊的可浮潜声呐机器人
CN103318381B (zh) 一种自主移动式监测浮标及其监测方法
CN103612723B (zh) 一种深远海全自主海洋环境监测浮标
CN109795651A (zh) 一种包括环形气囊的可浮潜声呐机器人
CN114771737B (zh) 一种Argo浮标及基于Argo浮标的海洋声学及环境参数协同观测方法
CN110282102B (zh) 圆饼型无人水下滑翔声学探测器
CN105346692A (zh) 一种多能互补供电的海洋观测装置
CN109115979A (zh) 便携式多功能立体水质探测装置
CN109774897A (zh) 一种具有活动腔体的可浮潜声呐机器人
CN108545163A (zh) 一种仿水母运动的水下机器人
CN209946384U (zh) 一种用于海洋勘测的声呐机器人组
CN110371253A (zh) 一种用于剖面浮标的姿态调节及水平驱动机构
CN104443278A (zh) 虚拟锚泊剖面浮标
CN109501965B (zh) 一种笼式波浪能浮标
CN209043886U (zh) 一种便携式多功能立体水质探测装置
CN105539784A (zh) 一种蹼翼型波浪能水下滑翔测量平台及测量方法
CN109870696A (zh) 一种用于海洋勘测的声呐机器人组
CN205203318U (zh) 一种多能互补供电的海洋观测装置
WO2020199110A1 (zh) 一种用于海洋勘测的声呐机器人组
CN204323651U (zh) 虚拟锚泊剖面浮标
CN109827549A (zh) 一种可利用太阳能充电的剖面测量浮标
WO2020199109A1 (zh) 一种翻转式可浮潜声纳机器人
CN109878670A (zh) 一种翻转式可浮潜声纳机器人
CN109828279A (zh) 一种全天候声呐监测设备
CN209581821U (zh) 一种包括环形气囊的可浮潜声呐机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922454

Country of ref document: EP

Kind code of ref document: A1