[go: up one dir, main page]

WO2020195170A1 - バルーンカテーテル - Google Patents

バルーンカテーテル Download PDF

Info

Publication number
WO2020195170A1
WO2020195170A1 PCT/JP2020/003893 JP2020003893W WO2020195170A1 WO 2020195170 A1 WO2020195170 A1 WO 2020195170A1 JP 2020003893 W JP2020003893 W JP 2020003893W WO 2020195170 A1 WO2020195170 A1 WO 2020195170A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
protective tube
perspective
lumen
tube
Prior art date
Application number
PCT/JP2020/003893
Other languages
English (en)
French (fr)
Inventor
真弘 小嶋
古賀 陽二郎
良紀 中野
昌人 杖田
真太郎 大角
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US17/442,286 priority Critical patent/US12268829B2/en
Priority to JP2021508169A priority patent/JP7482108B2/ja
Priority to CN202080024108.8A priority patent/CN113613702B/zh
Publication of WO2020195170A1 publication Critical patent/WO2020195170A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • A61M2025/1004Balloons with folds, e.g. folded or multifolded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1081Balloon catheters with special features or adapted for special applications having sheaths or the like for covering the balloon but not forming a permanent part of the balloon, e.g. retractable, dissolvable or tearable sheaths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/109Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks

Definitions

  • the present invention relates to a balloon catheter having a protective tube.
  • stenosis of blood vessels which is a flow path for blood circulation in the body, and stenosis of blood circulation.
  • stenosis of the coronary arteries that supply blood to the heart may lead to serious diseases such as angina pectoris and myocardial infarction.
  • As a method for treating such a stenotic part of a blood vessel there is a technique for dilating the stenotic part using a balloon catheter such as angioplasty such as PTA and PTCA.
  • Angioplasty is a minimally invasive therapy that does not require thoracotomy, such as bypass surgery, and is widely practiced.
  • a stenosis hardened due to calcification or the like may be formed on the inner wall of the blood vessel. In such calcified lesions, it is difficult to dilate the hardened stenosis with a general balloon catheter.
  • a method of expanding the stenosis by placing an indwelling dilation device called a stent in the stenosis of the blood vessel is also used, but after this treatment, the new intima of the blood vessel proliferates excessively and the blood vessel again ISR (In-Stent-Restenosis) lesions that cause stenosis may occur.
  • ISR In-Stent-Restenosis
  • the neointima is soft and the surface is slippery, so with a general balloon catheter, the position of the balloon may shift from the lesion when the balloon is expanded, and the blood vessels may be damaged.
  • Japanese Patent Publication No. 2014-506140 Japanese Unexamined Patent Publication No. 2015-104671 Japanese Unexamined Patent Publication No. 2015-163219 Japanese Unexamined Patent Publication No. 2016-2231313 Special Table 2007-518448 Japanese Patent Publication No. 2005-518842
  • a balloon catheter is covered with a protective tube formed of a cylindrical tube whose inner diameter is slightly larger than the outer diameter of the folded balloon in order to protect the folded balloon until use. It has been adopted.
  • a balloon catheter provided with a scoring element as in Patent Documents 1 to 6 may be covered with a protective tube, but in this case, in the balloon air leakage test performed before the shipment inspection as a product. Because the gap between the balloon and the protective tube is large, the balloon swells in the protective tube, and when using the balloon catheter, the balloon expands when the balloon is taken out from the protective tube, and the outer diameter tends to increase. It has been found that problems such as poor passage through blood vessels occur. In addition, if the inner diameter of the protective tube is reduced in order to reduce the gap between the balloon and the protective tube, it becomes difficult to accommodate the balloon in the lumen of the protective tube, and the balloon and the scoring element are damaged. It was confirmed that a problem occurred.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a balloon with a small gap between the balloon and the protective tube in a state where a balloon having a protruding portion is housed in the lumen of the protective tube. It is an object of the present invention to provide a balloon catheter in which the balloon does not easily inflate in the protective tube during the air leakage test and the balloon can be easily accommodated in the lumen of the protective tube.
  • the balloon catheter that was able to solve the above problems includes a shaft extending in the perspective direction and a balloon provided on the distal side of the shaft and having a plurality of blade-shaped portions in a contracted state.
  • the outer surface of the balloon which has a protrusion provided on a portion other than the blade-shaped portion, and a protective tube in which the balloon is arranged in the lumen, and the distance from the top of the protrusion. It is characterized in that there is no blade-shaped portion between the point on the inner surface of the protective tube having the shortest distance and the top of the protruding portion.
  • the inner surface of the protective tube has a protruding portion in contact with the top.
  • the balloon catheter of the present invention has a plurality of protrusions, and the midpoint between the top of the protrusion and the top of the protrusion adjacent to the protrusion and the protective tube in a cross section perpendicular to the perspective direction. It is preferable that the blade-shaped portion has a starting point on one side of the straight line connecting the center of gravity.
  • the balloon catheter of the present invention preferably has the tip of a vane-shaped portion on the other side opposite to one side in a cross section perpendicular to the perspective direction.
  • a plurality of blade-shaped portions are arranged between two adjacent protrusions.
  • the area excluding the protrusion from the balloon is the area of the protrusion from the area of the lumen of the protective tube. It is preferably 20% or more of the area excluding the area.
  • the ratio of the outer circumference of the balloon in contact with the inner surface of the protective tube is the entire outer circumference of the balloon. On the other hand, it is preferably 20% or more.
  • the balloon and the protruding portion are integrally molded products.
  • the shore D hardness of the material constituting the protective tube is preferably lower than the shore D hardness of the material constituting the protrusion.
  • the number of protrusions is plural, and the cross-sectional shape of the lumen of the protective tube perpendicular to the perspective at the midpoint of the perspective length of the protective tube is polygonal.
  • the number of corners of the polygon is preferably a multiple of the number of protrusions.
  • the number of polygonal corners is preferably equal to the number of protrusions.
  • the protruding portion is arranged at the corner of the polygon.
  • the balloon catheter of the present invention it is preferable to have an inner tube through which a guide wire is inserted in the lumen of the balloon.
  • the area excluding the protrusion from the balloon is the inner surface of the protective tube and the outer surface of the balloon. It is preferably 20% or more of the area between.
  • the area of the lumen at one end of the protective tube in a cross section perpendicular to the perspective of the protective tube is the midpoint of the perspective length of the protective tube. It is preferably larger than the area of the lumen in the cross section perpendicular to the perspective.
  • the cross-sectional shape of the lumen of the protective tube perpendicular to the perspective at the midpoint of the perspective length of the protective tube and at one end of the protective tube is polygonal and protective.
  • the number of polygonal corners that are the cross-sectional shape of the lumen of the protective tube perpendicular to the perspective at the midpoint of the perspective length of the tube is perpendicular to the perspective at one end of the protective tube. It is preferably less than the number of polygonal corners, which is the cross-sectional shape of the lumen of the protective tube.
  • the cross-sectional shape of the lumen of the protective tube perpendicular to the perspective direction at one end of the protective tube is preferably circular or elliptical.
  • the protective tube has a transition portion between the midpoint of the perspective length of the protective tube and one end of the protective tube, and the transition portion is inside the transition portion. It is preferable that the shape of the cavity is spirally twisted around the perspective direction.
  • the blade-shaped portion is wound and folded in the circumferential direction of the balloon, and all the blade-shaped portions are folded in one direction in the circumferential direction of the balloon. ..
  • the protective tube is formed by the absence of a vane-shaped portion between the point on the inner surface of the protective tube having the shortest distance from the top of the protruding portion and the top of the protruding portion.
  • the gap between the balloon and the balloon housed in the lumen of the protective tube can be reduced to prevent the balloon from inflating inside the protective tube during the balloon air leakage test. It also has the effect of facilitating the accommodation of balloons.
  • the whole view of the balloon catheter in embodiment of this invention is shown.
  • a cross-sectional view perpendicular to the perspective direction of the balloon in the contracted state in the embodiment of the present invention is shown.
  • the III-III cross-sectional view of the balloon catheter shown in FIG. 1 is shown.
  • the VV cross-sectional view of the balloon catheter shown in FIG. 1 is shown.
  • a cross-sectional view perpendicular to the perspective direction is shown at one end of a protective tube according to still another embodiment of the present invention.
  • FIG. 1 shows an overall view of the balloon catheter 1 according to the embodiment of the present invention
  • FIG. 2 shows a cross-sectional view of the balloon 20 in the contracted state perpendicular to the perspective direction.
  • the balloon catheter 1 is provided with a shaft 10 extending in the perspective direction and a distal side of the shaft 10, and has a plurality of blade-shaped portions 21 in a contracted state.
  • the balloon 20 has a protruding portion 30 provided on the outer surface of the balloon 20, and a protective tube 40 in which the balloon 20 is arranged in the lumen.
  • the distal side refers to the direction of the treatment subject with respect to the extending direction of the shaft 10
  • the proximal side is used with respect to the opposite side of the distal side, that is, the extending direction of the shaft 10.
  • the person that is, the direction of the operator's hand.
  • the direction from the proximal side to the distal side of the shaft 10 is referred to as a perspective direction.
  • FIG. 1 shows a configuration example of a so-called over-the-wire type balloon catheter 1 in which a guide wire for guiding the progress of the balloon catheter 1 is inserted from the distal side to the proximal side of the shaft 10.
  • the present invention can also be applied to a so-called rapid exchange type balloon catheter in which a guide wire is inserted halfway from the distal side to the proximal side of the shaft 10.
  • the balloon catheter 1 is configured so that fluid is supplied to the inside of the balloon 20 through the shaft 10, and the expansion and contraction of the balloon 20 can be controlled by using an indeflator (balloon pressurizer).
  • the fluid may be a pressure fluid pressurized by a pump or the like.
  • the shaft 10 extends in the perspective direction, and a fluid flow path is provided inside. Further, it is preferable that the shaft 10 has a guide wire insertion passage inside.
  • the shaft 10 has an outer tube and an inner tube, and the inner tube functions as a guide wire insertion passage. However, the space between the inner tube and the outer tube functions as a fluid flow path.
  • the inner tube extends from the distal end of the outer tube and penetrates the balloon 20 in the perspective direction, and the distal side of the balloon 20 is joined to the inner tube. It is preferred that the proximal side of the balloon 20 is joined to the outer tube.
  • the hub 2 may be provided on the proximal side of the shaft 10 in order to send the fluid to the shaft 10.
  • the hub 2 preferably has a fluid injection portion 3 communicating with the flow path of the fluid supplied to the inside of the balloon 20 and a guide wire insertion portion 4 communicating with the insertion passage of the guide wire. Since the balloon catheter 1 has the hub 2 provided with the fluid injection portion 3 and the guide wire insertion portion 4, the operation of supplying fluid to the inside of the balloon 20 to expand the balloon 20 and the inside of the balloon 20 are performed. The operation of removing the fluid to contract the balloon 20 and the operation of feeding the balloon catheter 1 to the treatment target site along the guide wire can be easily performed.
  • Examples of the joining between the shaft 10 and the hub 2 include adhesion with an adhesive, welding, and the like. Above all, it is preferable that the shaft 10 and the hub 2 are joined by adhesion.
  • the shaft 10 and the hub 2 are made of a highly flexible material
  • the hub 2 is made of a highly rigid material, and so on. When the materials constituting 2 are different, it is possible to increase the joint strength between the shaft 10 and the hub 2 and increase the durability of the balloon catheter 1.
  • the material constituting the shaft 10 examples include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Above all, the material constituting the shaft 10 is preferably at least one of a polyamide resin, a polyolefin resin, and a fluorine resin. When the material constituting the shaft 10 is at least one of a polyamide resin, a polyolefin resin, and a fluorine resin, the slipperiness of the surface of the shaft 10 can be enhanced. As a result, the insertability of the balloon catheter 1 into the blood vessel can be improved.
  • the balloon 20 is provided on the distal side of the shaft 10.
  • the joining between the balloon 20 and the shaft 10 includes adhesion and welding with an adhesive, and caulking by attaching a ring-shaped member to a portion where the end of the balloon 20 and the shaft 10 overlap.
  • it is preferable that the balloon 20 and the shaft 10 are joined by welding. Since the balloon 20 and the shaft 10 are welded together, it is difficult for the balloon 20 and the shaft 10 to be released from the joint even if the balloon 20 is repeatedly expanded and contracted, and the joint strength between the balloon 20 and the shaft 10 is easily increased. be able to.
  • the balloon 20 preferably has a straight pipe portion, a proximal taper portion connected to the proximal side of the straight pipe portion, and a distal taper portion connected to the distal side of the straight pipe portion. It is preferable that the proximal taper portion and the distal taper portion are formed so as to reduce the diameter as the distance from the straight pipe portion increases. Since the balloon 20 has a straight tube portion, the straight tube portion is sufficiently in contact with the narrowed portion, and the narrowed portion can be easily expanded. Further, since the balloon 20 has a proximal side tapered portion and a distal side tapered portion whose outer diameter becomes smaller as the distance from the straight tube portion is increased, the balloon 20 is contracted and wound around the shaft 10.
  • the balloon 20 can be easily inserted in the perspective direction.
  • the inflatable portion is regarded as the balloon 20.
  • the material constituting the balloon 20 is, for example, a polyolefin resin such as polyethylene, polypropylene or an ethylene-propylene copolymer, a polyester resin such as polyethylene terephthalate or a polyester elastomer, a polyurethane resin such as polyurethane or a polyurethane elastomer, or a polyphenylene sulfide type.
  • a polyolefin resin such as polyethylene, polypropylene or an ethylene-propylene copolymer
  • a polyester resin such as polyethylene terephthalate or a polyester elastomer
  • a polyurethane resin such as polyurethane or a polyurethane elastomer
  • a polyphenylene sulfide type examples thereof include polyamide resins such as resins, polyamides and polyamide elastomers, vinyl chloride resins, fluorine resins, silicone resins, and natural rubbers such as latex rubber. Only one of
  • the material constituting the balloon 20 is preferably a polyamide-based resin, and more preferably nylon 12. Since the material constituting the balloon 20 is a polyamide resin, the flexibility of the balloon 20 can be increased, and the outer diameter can be reduced when the balloon 20 is contracted and folded. Therefore, the balloon 20 can be easily arranged in the lumen of the protective tube 40.
  • the outer diameter of the balloon 20 is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 3 mm or more.
  • the outer diameter of the balloon 20 is preferably 35 mm or less, more preferably 30 mm or less, and even more preferably 25 mm or less.
  • the length of the balloon 20 in the perspective direction is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more.
  • the length of the balloon 20 in the perspective direction is preferably 300 mm or less, more preferably 200 mm or less, and further preferably 100 mm or less.
  • the thickness of the balloon 20 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more.
  • the upper limit of the thickness of the balloon 20 can be set according to the application of the balloon catheter 1. For example, when the balloon 20 is used as a high pressure-resistant balloon 20, the thickness is preferably 30 ⁇ m to 45 ⁇ m. Further, when it is desired to improve the passability of the balloon 20 portion, the upper limit of the thickness of the balloon 20 is preferably 30 ⁇ m or less.
  • the balloon 20 has a plurality of blade-shaped portions 21 in a contracted state.
  • the blade-shaped portion 21 refers to a portion where parts of the inner surface of the balloon 20 are in contact with each other in a state where the balloon 20 is contracted.
  • the protruding portion 30 is provided on the outer surface of the balloon 20 and not on the blade-shaped portion 21.
  • the protruding portion 30 can be sufficiently expanded by cracking the calcified and hardened lesion portion.
  • the protrusion 30 is caught in the new intima which is soft and the surface is slippery, and the position of the balloon 20 is less likely to shift when the ISR lesion is expanded.
  • the number of protrusions 30 may be one, but it is preferably plural. That is, it is preferable that a plurality of protruding portions 30 are provided on the outer surface of the balloon 20.
  • the plurality of protrusions 30 makes it easier to crack the lesion hardened by calcification. Further, when the number of the protrusions 30 is a plurality, the position of the balloon 20 can be made less likely to shift with respect to the ISR lesion.
  • the protruding portion 30 extends in the perspective direction.
  • the perspective length of the protrusion 30 is preferably shorter than the perspective length of the balloon 20. Since the perspective length of the protruding portion 30 is shorter than the perspective length of the balloon 20, the balloon 20 is easily bent because there is a portion of the balloon 20 in the perspective direction in which the protruding portion 30 is not provided. , The insertability of the balloon catheter 1 in a curved blood vessel or the like can be improved.
  • the material constituting the protrusion 30 is, for example, a polyolefin resin such as polyvinyl chloride, polyethylene, polypropylene, or cyclic polyolefin, a polystyrene resin, a polymethylpentene resin such as poly- (4-methylpentene-1), or a polycarbonate.
  • a polyolefin resin such as polyvinyl chloride, polyethylene, polypropylene, or cyclic polyolefin
  • a polystyrene resin such as polystyrene resin
  • a polymethylpentene resin such as poly- (4-methylpentene-1
  • a polycarbonate a polycarbonate
  • Polyolefin resins such as based resins, acrylic resins, ABS resins, polyethylene terephthalates, polyethylene naphthalates and other polyester resins, butadiene-styrene copolymers, nylon 6, nylon 6/6, nylon 6/10 and nylon 12 , Stainless steel, aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, tantalum, cobalt alloy and other synthetic resins such as metals. Only one of these may be used, or two or more thereof may be used in combination.
  • the material constituting the protrusion 30 is the same as the material constituting the balloon 20. Since the material constituting the protrusion 30 and the material constituting the balloon 20 are the same, the protrusion 30 and the balloon 20 can be joined by welding or the like, and the protrusion 30 and the balloon 20 can be joined. The strength can be increased.
  • the balloon 20 and the protruding portion 30 are preferably integrally molded products. That is, it is preferable that the balloon 20 having the protruding portion 30 is integrally molded. Since the balloon 20 and the protruding portion 30 are integrally formed, it is possible to strengthen the bonding of the protruding portion 30 to the balloon 20.
  • the height of the protruding portion 30 is preferably larger than the thickness of the balloon 20. Since the height of the protrusion 30 is larger than the thickness of the balloon 20, even if it is a calcified lesion or an ISR lesion, the protrusion 30 can be easily hooked and fixed to the stenosis.
  • the height of the protruding portion 30 refers to the length from the base portion of the protruding portion 30 to the top portion 31 of the protruding portion 30.
  • the height of the protruding portion 30 is preferably twice or more, more preferably three times or more, and even more preferably five times or more the thickness of the balloon 20.
  • the height of the protruding portion 30 is preferably 100 times or less, more preferably 85 times or less, and even more preferably 70 times or less the thickness of the balloon 20.
  • the upper limit of the ratio of the height of the protrusion 30 and the thickness of the balloon 20 By setting the upper limit of the ratio of the height of the protrusion 30 and the thickness of the balloon 20 to the above range, the outer diameter of the balloon 20 in the contracted state was reduced, and the balloon 20 was housed in the lumen of the protective tube 40. The gap generated between the balloon 20 and the protective tube 40 in the state can be reduced. Therefore, it is possible to prevent the balloon 20 from inflating in the protective tube 40 during the air leakage test of the balloon 20.
  • the protective tube 40 has a balloon 20 arranged in the lumen.
  • the protective tube 40 protects the balloon 20 by covering the balloon 20 until the balloon catheter 1 is used in order to prevent damage such as the protruding portion 30 coming into contact with another object and the protruding portion 30 bending or chipping. ing.
  • the material constituting the protective tube 40 examples include polyamide-based resin, polyester-based resin, polyurethane-based resin, polyolefin-based resin, fluorine-based resin, vinyl chloride-based resin, silicone-based resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Above all, the material constituting the protective tube 40 is preferably a polyolefin resin. Since the material constituting the protective tube 40 is a polyolefin resin, the slidability of the surface of the protective tube 40 is improved, and it becomes easy to arrange the balloon 20 in the lumen of the protective tube 40.
  • the shore D hardness of the material constituting the protective tube 40 is lower than the shore D hardness forming the protrusion 30. Since the shore D hardness of the material constituting the protective tube 40 is lower than the shore D hardness of the material constituting the protrusion 30, the balloon 20 having the protrusion 30 is protected when the balloon 20 having the protrusion 30 is arranged in the lumen of the protection tube 40. Even if the inner surface of the pipe 40 comes into contact with the protruding portion 30, it is possible to prevent the protruding portion 30 from being crushed, bent, or damaged.
  • the Shore D hardness can be measured based on the ISO868: 2003 plastic durometer hardness test method.
  • the length of the protective tube 40 in the perspective direction is preferably longer than the length of the balloon 20 in the perspective direction. Since the perspective length of the protective tube 40 is longer than the perspective length of the balloon 20, the entire balloon 20 can be accommodated in the lumen of the protective tube 40. Therefore, the protruding portion 30 can be sufficiently protected.
  • the perspective length of the protective tube 40 is preferably 1.05 times or more, more preferably 1.1 times or more, and 1.15 times or more the length of the balloon 20 in the perspective direction. Is even more preferable.
  • the length of the protective tube 40 in the perspective direction is preferably 2 times or less, more preferably 1.8 times or less, and 1.6 times or less the length of the balloon 20 in the perspective direction. Is even more preferable.
  • the upper limit of the ratio of the perspective length of the protective tube 40 to the perspective length of the balloon 20 in the above range, it is possible to prevent the protective tube 40 from becoming too long in the perspective direction and protect it. It becomes easy to accommodate the balloon 20 in the lumen of the tube 40 and to remove the protective tube 40 when using the balloon catheter 1.
  • the thickness of the protective tube 40 is preferably larger than the height of the protruding portion 30. Since the thickness of the protective tube 40 is larger than the height of the protruding portion 30, the strength of the protective tube 40 is increased, and even if a force is applied to the balloon 20 from the outside of the protective tube 40, the protruding portion 30 is deformed or damaged. This can be prevented and the protrusion 30 can be sufficiently protected.
  • the thickness of the protective tube 40 is preferably 1.1 times or more, more preferably 1.2 times or more, and even more preferably 1.3 times or more the height of the protruding portion 30.
  • the strength of the protective tube 40 is increased.
  • the thickness of the protective tube 40 is preferably 10 times or less, more preferably 8 times or less, and further preferably 5 times or less the height of the protruding portion 30.
  • the protruding portion 30 and the balloon 20 are protected when the balloon 20 is housed in the lumen of the protective tube 40.
  • the protective tube 40 can be deformed when pressed against the inner surface of the tube 40. Therefore, even if the protrusion 30 or the balloon 20 comes into contact with the inner surface of the protective tube 40, it can be prevented from being damaged.
  • FIG. 3 represents a cross-sectional view of III-III of the balloon catheter 1 shown in FIG. 1, and represents a cross-sectional view perpendicular to the perspective direction at the midpoint P1 of the perspective length of the protective tube 40.
  • a balloon 20 in which a plurality of blade-shaped portions 21 are folded in a contracted state is arranged in the lumen of the protective tube 40.
  • the blade-shaped portion 21 does not exist between the point P4 on the inner surface of the protective tube 40, which has the shortest distance from the top 31 of the protrusion 30, and the top 31 of the protrusion 30. .. Since the blade-shaped portion 21 does not exist between the point P4 on the inner surface of the protective tube 40, which has the shortest distance from the top 31 of the protruding portion 30, and the top 31 of the protruding portion 30, all the blade-shaped portions 21 is accommodated in the space between the protrusion 30 and the protrusion 30 adjacent to the protrusion 30 in the lumen of the protective tube 40, respectively. Therefore, a gap is unlikely to be formed between the inner surface of the protective tube 40 and the outer surface of the balloon 20, and it is possible to prevent the balloon 20 from swelling in the protective tube 40 during the air leakage test of the balloon 20.
  • the inner surface of the protective tube 40 has a protruding portion 30 in which the top portion 31 is in contact. Further, it is more preferable that the tops 31 of all the protruding portions 30 are in contact with the inner surface of the protective tube 40. Since there is a protruding portion 30 in contact with the top 31 on the inner surface of the protective tube 40, a gap is provided between the outer surface of the balloon 20 arranged in the inner cavity of the protective tube 40 and the inner surface of the protective tube 40. It is possible to prevent the balloon 20 from inflating significantly in the protective tube 40 during the air leakage test of the balloon 20.
  • the point P4 on the inner surface of the protective tube 40 which has the shortest distance from the top 31 of the protrusion 30, may be separated from the top 31 of the protrusion 30, but as shown in FIG. 3, the top of the protrusion 30 may be separated. It is preferable that the point P4 on the inner surface of the protective tube 40 having the shortest distance from 31 and the top portion 31 of the protruding portion 30 are in contact with each other. That is, it is preferable that the top portion 31 of the protruding portion 30 is in contact with the inner surface of the protective tube 40.
  • the top 31 of the protruding portion 30 is in contact with the inner surface of the protective tube 40, when the balloon 20 is placed in the lumen of the protective tube 40, it is between the inner surface of the protective tube 40 and the outer surface of the balloon 20. Gap is less likely to occur, and the balloon 20 can be less likely to swell in the protective tube 40 during the air leakage test of the balloon 20.
  • the number of the protrusions 30 is a plurality, and the number of the protrusions 30 is between the top portion 31 of the protrusion 30 and the top portion 31 of the protrusion 30 adjacent to the protrusion 30.
  • the blade-shaped portion 21 has a starting point 22 on one side of the straight line L1 connecting the midpoint P3 and the center of gravity P2 of the protective tube 40.
  • the center of gravity P2 of the protective tube 40 is the center of gravity of the shape of the lumen of the protective tube 40 in the cross section perpendicular to the perspective at the midpoint P1 of the length of the protective tube 40 in the perspective direction.
  • the starting point 22 of the blade-shaped portion 21 is more than the straight line L1 connecting the midpoint P3 between the top portion 31 of the protruding portion 30 and the top portion 31 of the protruding portion 30 adjacent to the protruding portion 30 and the center of gravity P2 of the protective tube 40.
  • the starting point 22 of the blade-shaped portion 21 is closer to one protruding portion 30 of the one protruding portion 30 and the other protruding portion 30 adjacent to the one protruding portion 30, that is, the starting point 22 is in the middle.
  • the blade-shaped portion 21 can be folded and accommodated in the space on one side of the point P3 and on the other side of the midpoint P3.
  • the blade-shaped portion 21 can be easily accommodated in the space from the starting point 22 of the blade-shaped portion 21 to the other protruding portion 30, and the gap formed between the inner surface of the protective tube 40 and the outer surface of the balloon 20 is reduced. Therefore, it is possible to prevent the balloon 20 from inflating in the protective tube 40 during the air leakage test of the balloon 20.
  • the tip 23 of the blade-shaped portion 21 is provided on the other side opposite to one side in the cross section perpendicular to the perspective direction. That is, in a cross section perpendicular to the perspective direction, from the straight line L1 connecting the midpoint P3 between the top 31 of the protrusion 30 and the top 31 of the protrusion 30 adjacent to the protrusion 30 and the center of gravity P2 of the protective tube 40. It is preferable that the blade-shaped portion 21 has a starting point 22 on one side and the tip 23 of the blade-shaped portion 21 on the other side.
  • the blade shape is formed in the space between the protruding portion 30 and the protruding portion 30 adjacent to the protruding portion 30.
  • the distance between the starting point 22 of the portion 21 and the tip 23 can be increased. Therefore, the balloon 20 can be easily accommodated in the protective tube 40.
  • FIG. 4 shows a cross-sectional view perpendicular to the perspective direction at the midpoint P1 of the perspective length of the protective tube 40 in another embodiment of the present invention.
  • the starting point 22 of the blade-shaped portion 21 is located on one side of the point P5 on one side of the distance between two adjacent protrusions 30 divided into three equal parts. It is more preferable that the tip 23 of the blade-shaped portion 21 is provided on the other side of the point P6 on the other side.
  • the starting point 22 of the blade-shaped portion 21 is on one side of the point P5 on one side of the distance between the two adjacent protrusions 30 divided into three equal parts, and the tip 23 of the blade-shaped portion 21 is adjacent to the two protrusions.
  • the tip 23 of the blade-shaped portion 21 is adjacent to the two protrusions.
  • the blade-shaped portion 21 in a neat state in the space from the starting point 22 of the blade-shaped portion 21 to the protruding portion 30 on the side away from the starting point 22 of the blade-shaped portion 21.
  • the balloon 20 can be easily accommodated in the lumen of the protective tube 40.
  • the number of the blade-shaped portions 21 may be a plurality, and the number of the blade-shaped portions 21 provided between the two adjacent projecting portions 30 may be one, but is preferably a plurality. Since a plurality of blade-shaped portions 21 are provided between the two adjacent projecting portions 30, the length of each of the blade-shaped portions 21 can be shortened. As a result, it becomes easy to accommodate the balloon 20 in the lumen of the protective tube 40 in a state where the balloon 20 is contracted and the blade-shaped portion 21 is folded.
  • the area excluding the protrusion 30 from the balloon 20 is the area of the protrusion 30 from the area of the lumen of the protection tube 40. It is preferably 20% or more of the area excluding. Since the area of the balloon 20 excluding the projecting portion 30 is 20% or more of the area of the lumen of the protective tube 40 excluding the area of the projecting portion 30, the projecting portion 30 is provided in the lumen of the protective tube 40.
  • the gap formed between the inner surface of the protective tube 40 and the outer surface of the balloon 20 can be reduced. Therefore, it is possible to prevent the balloon 20 from inflating in the protective tube 40 during the air leakage test of the balloon 20.
  • the area excluding the protrusion 30 from the balloon 20 is the area of the protrusion 30 from the area of the lumen of the protection tube 40. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more of the area excluding.
  • the lumen of the protection tube 40 By setting the lower limit of the ratio of the area excluding the protrusion 30 from the balloon 20 to the area excluding the area of the protrusion 30 from the area of the lumen of the protection tube 40 within the above range, the lumen of the protection tube 40 The ratio of the portion excluding the protruding portion 30 from the balloon 20 to the space obtained by excluding the area of the protruding portion 30 from the area of the balloon 20 is increased to reduce the gap formed between the protective tube 40 and the balloon 20. It is possible to prevent the balloon 20 from swelling greatly inside the protective tube 40 in the air leakage test.
  • the protruding portion from the balloon 20 with respect to the area obtained by subtracting the area of the protruding portion 30 from the area of the lumen of the protective tube 40 is not particularly limited, but may be, for example, 80% or less, 70% or less, and 60% or less.
  • the ratio of the outer circumference of the balloon 20 in contact with the inner surface of the protection tube 40 to the entire outer circumference of the balloon 20 in the cross section perpendicular to the perspective at the midpoint P1 of the perspective length of the protection tube 40 is preferably 20% or more.
  • the ratio of the outer circumference of the balloon 20 in contact with the inner surface of the protective tube 40 is 20% or more with respect to the entire outer circumference of the balloon 20, there is a gap between the inner surface of the protective tube 40 and the outer surface of the balloon 20.
  • the balloon 20 will be placed in the lumen of the protective tube 40 in a state where there is little space. Therefore, it is possible to reduce the gap generated between the balloon 20 and the protective tube 40 and make it difficult for the balloon 20 to inflate in the protective tube 40 during the air leakage test of the balloon 20.
  • the ratio of the outer circumference of the balloon 20 in contact with the inner surface of the protection tube 40 to the entire outer circumference of the balloon 20 in the cross section perpendicular to the perspective at the midpoint P1 of the perspective length of the protection tube 40 is 20%.
  • the above is preferable, but it is more preferably 25% or more, and further preferably 30% or more.
  • the upper limit of the ratio of the outer circumference of the balloon 20 in contact with the inner surface of the protective tube 40 to the entire outer circumference of the balloon 20 is not particularly limited, but may be, for example, 50% or less, 45% or less, or 40% or less. it can.
  • the number of the protrusions 30 is plural, and the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40 is large. It is a square, and the number of corners of the polygon is preferably a multiple of the number of protrusions 30.
  • the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40 is polygonal, and the number of corners of the polygon is the number of protrusions 30.
  • the protruding portion 30 is likely to be located at the corner of the polygon, and between the inner surface of the protective tube 40 and the outer surface of the balloon 20.
  • the gap can be reduced to reduce the space in which the balloon 20 swells in the protective tube 40 during the air leakage test of the balloon 20.
  • the polygon in the present invention includes a so-called rounded polygon in which the corners of the polygon are rounded, in addition to those in which the vertices of the corners of the polygon are clear and the sides are straight. It is assumed that at least a part of the side of the polygon is curved.
  • the radius of the roundness of the corners of the polygon is preferably 3 mm or less, more preferably 2 mm or less, and further preferably 1 mm or less. preferable.
  • the number of corners of the polygon is preferably a multiple of the number of protrusions 30, but more preferably equal to the number of protrusions 30. Since the number of corners of the polygon is equal to the number of protrusions 30, the lumen of the protective tube 40 becomes smaller. As a result, when the balloon 20 is placed in the lumen of the protective tube 40, the distance between the inner surface of the protective tube 40 and the outer surface of the balloon 20 is reduced, and the balloon 20 is protected in the air leakage test of the balloon 20. It can be made difficult to swell in the pipe 40.
  • the protruding portion 30 is arranged at the corner portion of the polygon.
  • the center of gravity of the protective tube 40 in the cross section perpendicular to the perspective direction of the protective tube 40 at the midpoint P1 of the perspective length of the protective tube 40.
  • the protruding portion 30 having a large cross-sectional area is arranged at the corner portion where the distance from P2 is larger than that of other portions. Therefore, it becomes easy to arrange the balloon 20 having the protrusion 30 in the lumen of the protective tube 40.
  • the center of gravity P2 of the protective tube 40 and the top 31 of the protruding portion 30 passes through the center of gravity P2 of the protective tube 40 and the top 31 of the protruding portion 30 in a cross section perpendicular to the perspective of the protective tube 40 at the midpoint P1 of the perspective length of the protective tube 40. It is preferable that the vertices of the corners of the polygon are on the straight line. Since the apex of the corner of the polygon is on a straight line passing through the center of gravity P2 of the protective tube 40 and the top 31 of the protrusion 30, the portion of the corner where the distance from the center of gravity P2 of the protective tube 40 is the largest is located. The top portion 31 having the highest height of the protruding portion 30 is located.
  • the balloon 20 having the protrusion 30 is inserted into the lumen of the protection tube 40. Can be made easier.
  • the balloon catheter 1 has an inner tube 11 through which a guide wire is inserted in the lumen of the balloon 20. Having the inner tube 11 in the lumen of the balloon 20 makes it easier to insert the guide wire into the balloon catheter 1. Further, since the guide wire is inserted into the inner tube 11 by having the inner tube 11 in the lumen of the balloon 20, it is possible to prevent the guide wire from coming into contact with the balloon 20 and damaging the balloon 20.
  • a conventional balloon catheter having an inner tube is provided by a protective tube when a balloon catheter having a protrusion is housed in the protective tube and there is not a sufficient gap between the inner surface of the protective tube and the outer surface of the balloon.
  • the protruding part of the balloon is pushed inward of the balloon and crushes the inner tube, narrowing the space through which the guide wire passes, which reduces the slidability of the guide wire and allows the guide wire to pass through the inner tube. There was a loss (guide wire stack).
  • the protrusion portion 30 Since the blade-shaped portion 21 does not exist between the point P4 on the inner surface of the protective tube 40, which has the shortest distance from the top portion 31 of the protrusion portion 30, and the top portion 31 of the protrusion portion 30, the protrusion portion 30 Is less likely to crush the inner pipe 11, and it is possible to prevent a decrease in the slidability of the guide wire in the inner pipe 11 and a guide wire stack.
  • the inner tube 11 and the inner tube are integrated. Since the inner tube 11 and the inner tube are integrated, the guide wire can be easily inserted into the balloon catheter 1, and the balloon catheter 1 can be easily moved in the perspective direction along the guide wire.
  • one tube member that joins the proximal end of the inner tube 11 and the distal end of the inner tube also serves as the inner tube 11 and the inner tube. And so on.
  • the material constituting the inner tube 11 examples include polyamide resin, polyester resin, polyurethane resin, polyolefin resin, fluorine resin, vinyl chloride resin, silicone resin, and natural rubber. Only one of these may be used, or two or more thereof may be used in combination. Above all, the material constituting the inner tube 11 is preferably at least one of a polyamide resin, a polyolefin resin, and a fluorine resin. Since the material constituting the inner tube 11 is at least one of a polyamide resin, a polyolefin resin, and a fluororesin, the slidability between the inner tube 11 and the guide wire is enhanced, and the perspective is increased along the guide wire. The balloon catheter 1 can be easily moved in a direction.
  • the shape of the lumen of the inner tube 11 in the cross section perpendicular to the perspective direction of the inner tube 11 may be circular, elliptical, polygonal or the like. Above all, as shown in FIG. 3, the shape of the lumen of the inner tube 11 in the cross section perpendicular to the perspective direction of the inner tube 11 is preferably circular. Since the cross-sectional shape of the inner tube 11 is circular, the slidability of the inner surface of the inner tube 11 is improved, and the guide wire arranged in the inner tube 11 is placed in the inner tube 11 in the perspective direction. It becomes easy to move smoothly to.
  • the thickness of the inner tube 11 may be thinner than the thickness of the balloon 20 and may be the same as the thickness of the balloon 20, but is preferably thicker than the thickness of the balloon 20. Since the thickness of the inner tube 11 is thicker than the thickness of the balloon 20, the rigidity of the inner tube 11 can be increased. Therefore, the inner surface of the protective tube 40 is in contact with the outer surface of the balloon 20, and even when a force is applied to the balloon 20, the inner tube 11 is less likely to be deformed, and the guide wire can be inserted into the inner tube 11. Can be enhanced.
  • the thickness of the inner tube 11 is preferably 1.05 times or more, more preferably 1.1 times or more, and further preferably 1.15 times or more the thickness of the balloon 20.
  • the thickness of the inner tube 11 is preferably 5 times or less, more preferably 4 times or less, and further preferably 3 times or less the thickness of the balloon 20.
  • the upper limit of the ratio of the thickness of the inner tube 11 to the thickness of the balloon 20 within the above range, it is possible to prevent the inner tube 11 from becoming too rigid, and the inner tube 11 is also curved according to the curved blood vessel or the like. Therefore, the insertability of the balloon catheter 1 can be improved.
  • the thickness of the inner tube 11 is preferably thinner than the thickness of the protective tube 40. Since the thickness of the inner tube 11 is thinner than the thickness of the protective tube 40, the inner tube 11 can also be curved when the balloon catheter 1 is placed in a curved blood vessel or the like, so that the balloon catheter 1 has good insertability. be able to.
  • the thickness of the inner tube 11 is preferably 50% or less, more preferably 40% or less, and further preferably 30% or less of the thickness of the protective tube 40.
  • the thickness of the inner tube 11 is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more of the thickness of the protective tube 40.
  • the inner surface of the protective tube 40 is in contact with the outer surface of the balloon 20, and the inner tube 11 is passed through the balloon 20.
  • the inner tube 11 is less likely to be deformed even when a force is applied to the inner tube 11, and the guide wire can be smoothly inserted into the inner tube 11.
  • the area excluding the protrusion 30 from the balloon 20 is the inner surface of the protective tube 40 and the outer surface of the inner tube 11. It is preferably 20% or more of the area excluding the protrusion 30 from the area between the two.
  • the area of the balloon 20 excluding the protruding portion 30 is 20% or more of the area between the inner surface of the protective tube 40 and the outer surface of the inner tube 11 excluding the protruding portion 30.
  • the gap generated between the inner surface of the protective tube 40 and the outer surface of the inner tube 11 can be reduced, and during the air leakage test of the balloon 20. It is possible to make it difficult for the balloon 20 to inflate in the protective tube 40.
  • the area excluding the protrusion 30 from the balloon 20 is the inner surface of the protective tube 40 and the outer surface of the inner tube 11. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more of the area excluding the protrusion 30 from the area between the two.
  • the lower limit of the ratio of the area excluding the protruding portion 30 from the balloon 20 to the area excluding the protruding portion 30 from the area between the inner surface of the protective tube 40 and the outer surface of the inner tube 11 is set in the above range.
  • the ratio of the portion of the balloon 20 excluding the protruding portion 30 to the space between the inner surface of the protective tube 40 and the outer surface of the inner tube 11 is increased, and the space between the protective tube 40 and the balloon 20 is increased. It is possible to reduce the gap formed in the balloon 20 and prevent the balloon 20 from inflating significantly inside the protective tube 40 in the air leakage test of the balloon 20. Further, in the cross section perpendicular to the perspective direction at the midpoint P1 of the perspective length of the protective tube 40, the protrusion 30 is excluded from the area between the inner surface of the protective tube 40 and the outer surface of the inner tube 11.
  • the upper limit of the ratio of the area of the balloon 20 excluding the protrusion 30 to the vertical area is not particularly limited, but may be, for example, 80% or less, 70% or less, and 60% or less.
  • the area of the lumen in the cross section perpendicular to the perspective direction of the protective tube 40 at one end of the protective tube 40 is the perspective direction of the protective tube 40 at the midpoint P1 of the perspective length of the protective tube 40. It is preferably larger than the area of the lumen in the cross section perpendicular to. Since the area of the cavity at one end of the protective tube 40 is larger than the area of the cavity at the midpoint P1 of the perspective length of the protective tube 40, the protective tube 40 is provided at one end of the balloon 20. It becomes difficult to crush the protruding portion 30.
  • the balloon 20 is formed from one end of the protective tube 40. It becomes easy to arrange the balloon 20 in the lumen of the protective tube 40 by inserting the balloon 20.
  • the area of the lumen in the cross section perpendicular to the perspective direction of the protective tube 40 at one end of the protective tube 40 is the perspective direction of the protective tube 40 at the midpoint P1 of the perspective length of the protective tube 40. It is preferably 1.05 times or more, more preferably 1.1 times or more, and even more preferably 1.15 times or more the area of the lumen in the cross section perpendicular to.
  • the area of the lumen in the cross section perpendicular to the perspective direction of the protection tube 40 at one end of the protection tube 40 is the area of the protection tube 40 at the midpoint P1 of the perspective length of the protection tube 40. It is preferably 3 times or less, more preferably 2.5 times or less, and even more preferably 2 times or less the area of the lumen in the cross section perpendicular to the perspective direction.
  • the protection tube 40 It prevents the area of the lumen at one end of 40 from becoming excessively large, and as a result, the balloon 20 arranged at one end of the protective tube 40 is less likely to inflate during the air leakage test of the balloon 20.
  • the area of the lumen in the cross section perpendicular to the perspective of the protective tube 40 is larger than the midpoint P1 of the perspective length of the protective tube 40 at at least one end of the protective tube 40.
  • the area of the lumen at one end of the protective tube 40 and the area of the lumen at the other end are greater than the area of the lumen at the midpoint P1 of the perspective length of the protective tube 40. Is more preferable. That is, the area of the lumen in the cross section perpendicular to the perspective direction of the protective tube 40 at both ends of the protective tube 40 is the perspective of the protective tube 40 at the midpoint P1 of the perspective length of the protective tube 40.
  • the balloon 20 is placed in the lumen of the protection tube 40 because the area of the lumens at both ends of the protection tube 40 is larger than the area of the lumen of the midpoint P1 of the perspective length of the protection tube 40.
  • FIG. 5 shows a VV cross-sectional view of the balloon catheter 1 shown in FIG. 1, and shows a cross-sectional view perpendicular to the perspective direction at one end of the protective tube 40.
  • the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40 and one end of the protective tube 40 is ,
  • the number of polygonal corners of the protective tube 40 which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective, at the midpoint P1 of the perspective length of the protective tube 40.
  • the number of polygonal corners which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the end.
  • the number of polygonal corners which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40, is the number of polygonal corners at one end of the protective tube 40.
  • the cross-sectional shape of the lumen at one end of the protective tube 40 is the perspective length of the protective tube 40 because it is less than the number of polygonal corners that are the cross-sectional shape of the lumen of the protective tube 40 perpendicular to.
  • the number of corners is larger than the cross-sectional shape of the lumen at the midpoint P1, and the shape is close to a circular shape. That is, when the balloon 20 is placed in the lumen of the protective tube 40, the cross-sectional shape of the lumen at one end of the protective tube 40, which is the insertion port of the balloon 20, is close to a circular shape, so that the insertion port is wide and protected.
  • the balloon 20 can be easily inserted into the lumen of the tube 40. Therefore, the cross-sectional shape of the lumen at the midpoint P1 of the perspective length of the protective tube 40 has fewer angles than the cross-sectional shape of the lumen at one end of the protective tube 40.
  • the gap formed between the balloon 20 and the outer surface is small, and the balloon 20 can be made difficult to inflate inside the protective tube 40 during the air leakage test of the balloon 20.
  • the number of polygonal corners which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective, at the midpoint P1 of the perspective length of the protective tube 40, which has a plurality of protrusions 30, is
  • the number of polygonal corners which is equal to the number of protrusions 30 and is the cross-sectional shape of the lumen of the protection tube 40 perpendicular to the perspective direction at one end of the protection tube 40, is twice the number of protrusions 30. Is preferable.
  • the number of polygonal corners which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40, is equal to the number of protrusions 30, and the protective tube Since the number of polygonal corners, which is the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective direction at one end of the 40, is twice the number of the protruding portions 30, the protective tube 40 is in the perspective direction. At the midpoint P1 of the length, the gap between the inner surface of the protective tube 40 and the outer surface of the balloon 20 is small, and at one end of the protective tube 40, the size of the insertion port of the balloon 20 is sufficiently widened. be able to. Therefore, it is possible to easily insert the balloon 20 into the protective tube 40 and prevent the balloon 20 from inflating significantly in the protective tube 40 during the air leakage test of the balloon 20.
  • FIG. 6 shows a cross-sectional view perpendicular to the perspective direction at one end of the protective tube 40 in still another embodiment.
  • the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective direction at one end of the protective tube 40 is preferably circular or elliptical. Since the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective direction at one end of the protective tube 40 is circular or elliptical, the inside of one end of the protective tube 40 serving as the insertion port of the balloon 20. It is possible to secure a large cross-sectional shape of the cavity. As a result, the balloon 20 can be easily inserted into the lumen of the protective tube 40.
  • the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective direction at one end of the protective tube 40 is circular or elliptical
  • the perspective direction at the midpoint P1 of the perspective length of the protective tube 40 is preferably a polygon whose number of corners is equal to the number of protrusions 30.
  • the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective at the midpoint P1 of the perspective length of the protective tube 40 is a polygon having the same number of angles as the number of protrusions 30, and Since the cross-sectional shape of the lumen of the protective tube 40 perpendicular to the perspective direction at one end of the protective tube 40 is circular or elliptical, the protective tube 40 is at the midpoint P1 of the perspective length of the protective tube 40. A large gap is unlikely to occur between the inner surface of the 40 and the outer surface of the balloon 20, and the insertion port of the balloon 20 is wide at one end of the protective tube 40, so that the balloon 20 is inserted into the lumen of the protective tube 40. It becomes easy.
  • the protective tube 40 has a transition portion between the midpoint P1 of the perspective length of the protective tube 40 and one end of the protective tube 40, and the transition portion is a transition portion. It is preferable that the shape of the lumen in the above is spirally twisted around the perspective direction. Since the protection tube 40 has a transition portion between the midpoint P1 of the perspective length of the protection tube 40 and one end of the protection tube 40, the protection tube 40 is within the perspective length of the protection tube 40. Even if the shape of the lumen of the protective tube 40 is different at each of the point P1 and one end of the protective tube 40, the internal shape of the protective tube 40 can be smoothly deformed. Therefore, when the balloon 20 is arranged in the protective tube 40, the inner surface of the protective tube 40 and the outer surface of the balloon 20 are less likely to interfere with each other, and the balloon 20 can be easily inserted into the lumen of the protective tube 40.
  • the blade-shaped portion 21 is wound and folded in the circumferential direction of the balloon 20, and all the blade-shaped portions 21 are oriented in one direction in the circumferential direction of the balloon 20. It is preferably folded. That is, it is preferable that all the blade-shaped portions 21 are wound and folded in the same direction. Since all the blade-shaped portions 21 are folded in one direction in the circumferential direction of the balloon 20, the blade-shaped portions 21 can be folded in an orderly manner. As a result, the balloon 20 can be easily inserted into the protective tube 40.
  • an X-ray opaque marker may be placed on the portion of the shaft 10 where the balloon 20 is located.
  • the position of the balloon 20 can be confirmed under fluoroscopy, and the position where the balloon 20 is located in the body can be easily confirmed. It is possible to confirm.
  • the X-ray opaque marker is provided on the shaft 10 of the portion located at the distal end portion and the proximal end portion of the balloon 20.
  • X-ray opaque markers are provided at the distal and proximal ends of the balloon 20 to allow X-ray fluoroscopy of both the distal and proximal ends of the balloon 20. It becomes possible to confirm below, and the position of the balloon 20 in the body can be grasped.
  • an X-ray opaque substance such as lead, barium, iodine, tungsten, gold, platinum, iridium, stainless steel, titanium, and cobalt-chromium alloy can be used.
  • the X-ray opaque substance is preferably platinum. Since the material constituting the X-ray opaque marker is platinum, the contrast medium of X-rays can be improved and the position of the balloon 20 can be easily confirmed.
  • Examples of the shape of the X-ray opaque marker include a cylindrical shape, a polygonal tubular shape, a C-shaped cross section with a notch in the cylinder, and a coil shape in which a wire rod is wound. Above all, the shape of the X-ray opaque marker is preferably cylindrical. Since the shape of the X-ray opaque marker is cylindrical, the visibility of the X-ray opaque marker can be enhanced under fluoroscopy, and the position of the balloon 20 in the body can be quickly confirmed.
  • the balloon catheter has a shaft extending in the perspective direction, a balloon provided on the distal side of the shaft and having a plurality of blade-shaped portions in a contracted state, and a balloon outside the balloon. It has a protrusion provided on the side surface and not a blade-shaped portion, and a protective tube in which the balloon is arranged in the lumen, and the distance from the top of the protrusion is the shortest. There is no blade-shaped portion between the point on the inner surface of the protective tube and the top of the protruding portion.
  • Balloon catheter 2 Hub 3: Fluid injection part 4: Guide wire insertion part 10: Shaft 11: Inner tube 20: Balloon 21: Blade shape part 22: Starting point 23: Tip 30: Protruding part 31: Top 40: Protective tube P1: Midpoint of the perspective length of the protective tube P2: Center of gravity of the protective tube P3: Midpoint between the top of the protrusion and the top of the protrusion adjacent to the protrusion P4: With the top of the protrusion Point on the inner surface of the protective tube with the shortest distance P5: One side of the distance between two adjacent protrusions divided into three equal parts P6: The distance between two adjacent protrusions is divided into three equal parts The other side of the point L1: A straight line connecting the midpoint P3 and the center of gravity P2 of the protective tube.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

保護管の内腔に突出部を有するバルーンを収容した状態にてバルーンと保護管との間の隙間が小さく、バルーンの空気漏れ試験時にバルーンが保護管内にて膨らみにくく、かつ保護管の内腔にバルーンを収容しやすいバルーンカテーテルを提供する。遠近方向に延在しているシャフトと、シャフトの遠位側に設けられており、収縮状態で複数の羽根形状部(21)を有しているバルーン(20)と、バルーン(20)の外側面であって、羽根形状部(21)ではない部分に設けられている突出部(30)と、バルーン(20)が内腔に配置されている保護管(40)と、を有しており、突出部(30)の頂部(31)との距離が最短となる保護管(40)の内表面の点(P4)と、突出部(30)の頂部(31)との間に羽根形状部(21)が存在していないバルーンカテーテル(1)。

Description

バルーンカテーテル
 本発明は、保護管を有するバルーンカテーテルに関するものである。
 体内で血液が循環するための流路である血管に狭窄が生じ、血液の循環が滞ることにより、様々な疾患が発生することが知られている。特に心臓に血液を供給する冠状動脈に狭窄が生じると、狭心症、心筋梗塞等の重篤な疾病をもたらすおそれがある。このような血管の狭窄部を治療する方法として、PTA、PTCAといった血管形成術等の、バルーンカテーテルを用いて狭窄部を拡張させる手技がある。血管形成術は、バイパス手術のような開胸術を必要としない低侵襲療法であり、広く行われている。
 血管内壁には、石灰化等により硬化した狭窄部が形成される場合がある。このような石灰化病変においては、一般的なバルーンカテーテルでは硬化した狭窄部を拡張させにくい。
 また、ステントと称される留置拡張器具を血管の狭窄部に留置することによって狭窄部を拡張させる方法も用いられているが、この治療後に血管の新生内膜が過剰に増殖して再び血管の狭窄が発生してしまう、ISR(In-Stent-Restenosis)病変が起こる場合がある。ISR病変においては、新生内膜が柔らかく、また表面が滑りやすいため、一般的なバルーンカテーテルではバルーンの拡張時にバルーンの位置が病変部からずれてしまい、血管を傷つけてしまうことがある。
 これらのような石灰化病変やISR病変であっても狭窄部を拡張できるバルーンカテーテルとして、バルーンがスコアリングエレメントを有しているバルーンカテーテルがある(例えば、特許文献1~6)。
特表2014-506140号公報 特開2015-104671号公報 特開2015-163219号公報 特開2016-221313号公報 特表2007-518448号公報 特表2005-518842号公報
 通常、バルーンカテーテルは、使用時まで折り畳まれた状態のバルーンを保護しておくために、折り畳まれたバルーンの外径よりも少し内径が大きい円筒形チューブで形成された保護管を被せるという形態が採用されている。特許文献1~6のようなスコアリングエレメントを備えているバルーンカテーテルも同様に、バルーンに保護管を被せることが考えられるが、この場合、製品としての出荷検査前に行うバルーンの空気漏れ試験において、バルーンと保護管との間の隙間が大きいために保護管内でバルーンが膨らみ、バルーンカテーテルの使用時に、保護管からバルーンを取り出した際にバルーンが広がって外径が大きくなりやすく、バルーンカテーテルの血管内の通過性が悪くなってしまうといった問題が生じることが判明した。また、バルーンと保護管との間の隙間を減らすために、保護管の内径を小さくした場合、保護管の内腔へのバルーンの収容が困難となり、バルーンやスコアリングエレメントが破損してしまうという問題が発生することが確認された。
 本発明は、前記の事情に鑑みてなされたものであり、その目的は、保護管の内腔に突出部を有するバルーンを収容した状態にてバルーンと保護管との間の隙間が小さく、バルーンの空気漏れ試験時にバルーンが保護管内にて膨らみにくく、かつ保護管の内腔にバルーンを収容しやすいバルーンカテーテルを提供することにある。
 前記課題を解決することができたバルーンカテーテルは、遠近方向に延在しているシャフトと、シャフトの遠位側に設けられており、収縮状態で複数の羽根形状部を有しているバルーンと、バルーンの外側面であって、羽根形状部ではない部分に設けられている突出部と、バルーンが内腔に配置されている保護管と、を有しており、突出部の頂部との距離が最短となる保護管の内表面の点と、突出部の頂部との間に羽根形状部が存在していないことを特徴とするものである。
 本発明のバルーンカテーテルにおいて、保護管の内表面に頂部が接している突出部があることが好ましい。
 本発明のバルーンカテーテルは、突出部の数は、複数であり、遠近方向に垂直な断面において、突出部の頂部と該突出部に隣接する突出部の頂部との間の中点と保護管の重心とを結ぶ直線よりも一方側に羽根形状部の起点を有していることが好ましい。
 本発明のバルーンカテーテルは、遠近方向に垂直な断面において、一方側とは反対側の他方側に羽根形状部の先端を有していることが好ましい。
 本発明のバルーンカテーテルにおいて、羽根形状部は、隣接する2つの突出部間に複数配置されていることが好ましい。
 本発明のバルーンカテーテルは、保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、バルーンから突出部を除いた面積は、保護管の内腔の面積から突出部の面積を除いた面積の20%以上であることが好ましい。
 本発明のバルーンカテーテルは、保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、保護管の内表面に接しているバルーンの外周の割合は、バルーンの外周全体に対して20%以上であることが好ましい。
 本発明のバルーンカテーテルにおいて、バルーンと突出部とは、一体成形品であることが好ましい。
 本発明のバルーンカテーテルにおいて、保護管を構成する材料のショアD硬度は、突出部を構成する材料のショアD硬度よりも低いことが好ましい。
 本発明のバルーンカテーテルにおいて、突出部の数は、複数であり、保護管の遠近方向の長さの中点での、遠近方向に垂直な保護管の内腔の断面形状は、多角形であり、多角形の角の数は、突出部の数の倍数であることが好ましい。
 本発明のバルーンカテーテルにおいて、多角形の角の数は、突出部の数と等しいことが好ましい。
 本発明のバルーンカテーテルにおいて、突出部は、多角形の角部に配置されていることが好ましい。
 本発明のバルーンカテーテルにおいて、バルーンの内腔に、ガイドワイヤを挿通する内管を有していることが好ましい。
 本発明のバルーンカテーテルは、保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、バルーンから突出部を除いた面積は、保護管の内表面とバルーンの外表面との間の面積の20%以上であることが好ましい。
 本発明のバルーンカテーテルにおいて、保護管の一方端部での、保護管の遠近方向に垂直な断面での内腔の面積は、保護管の遠近方向の長さの中点での、保護管の遠近方向に垂直な断面での内腔の面積よりも大きいことが好ましい。
 本発明のバルーンカテーテルにおいて、保護管の遠近方向の長さの中点、および保護管の一方端部での、遠近方向に垂直な保護管の内腔の断面形状は、多角形であり、保護管の遠近方向の長さの中点での、遠近方向に垂直な保護管の内腔の断面形状である多角形の角の数は、保護管の一方端部での、遠近方向に垂直な保護管の内腔の断面形状である多角形の角の数よりも少ないことが好ましい。
 本発明のバルーンカテーテルにおいて、保護管の一方端部での、遠近方向に垂直な保護管の内腔の断面形状は、円形状または楕円形状であることが好ましい。
 本発明のバルーンカテーテルにおいて、保護管は、保護管の遠近方向の長さの中点と保護管の一方端部との間に遷移部を有しており、遷移部は、遷移部での内腔の形状が、遠近方向を中心として螺旋状にねじれていることが好ましい。
 本発明のバルーンカテーテルにおいて、羽根形状部は、バルーンの周方向に巻回されて折り畳まれており、全ての羽根形状部は、バルーンの周方向において、一方の方向に折り畳まれていることが好ましい。
 本発明のバルーンカテーテルによれば、突出部の頂部との距離が最短となる保護管の内表面の点と、突出部の頂部との間に羽根形状部が存在していないことにより、保護管と、保護管の内腔に収容したバルーンとの間に生じる隙間を小さくして、バルーンの空気漏れ試験の際に保護管内にてバルーンが膨らみにくくすることができ、さらに、保護管の内腔にバルーンを収容することが行いやすくなるという効果も有している。
本発明の実施の形態におけるバルーンカテーテルの全体図を表す。 本発明の実施の形態における収縮状態のバルーンの遠近方向に垂直な断面図を表す。 図1に示したバルーンカテーテルのIII-III断面図を表す。 本発明の他の実施の形態における保護管の遠近方向の長さの中点での、遠近方向に垂直な断面図を表す。 図1に示したバルーンカテーテルのV-V断面図を表す。 本発明のさらに他の実施の形態における保護管の一方端部での、遠近方向に垂直な断面図を表す。
 以下、下記実施の形態に基づき本発明をより具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。
 図1は本発明の実施の形態におけるバルーンカテーテル1の全体図を表し、図2は収縮状態のバルーン20の遠近方向に垂直な断面図を表す。図1および図2に示すように、バルーンカテーテル1は、遠近方向に延在しているシャフト10と、シャフト10の遠位側に設けられており、収縮状態で複数の羽根形状部21を有しているバルーン20と、バルーン20の外側面に設けられている突出部30と、バルーン20が内腔に配置されている保護管40と、を有している。
 本発明において、遠位側とはシャフト10の延在方向に対して処置対象者側の方向を指し、近位側とは遠位側の反対側、すなわちシャフト10の延在方向に対して使用者、つまり術者の手元側の方向を指す。また、シャフト10の近位側から遠位側への方向を遠近方向と称する。
 図1には、シャフト10の遠位側から近位側にわたって、バルーンカテーテル1の進行をガイドするガイドワイヤを挿通する、所謂オーバーザワイヤ型のバルーンカテーテル1の構成例を示している。なお本発明は、シャフト10の遠位側から近位側に至る途中までガイドワイヤを挿通する、所謂ラピッドエクスチェンジ型のバルーンカテーテルにも適用できる。
 バルーンカテーテル1は、シャフト10を通じてバルーン20の内部に流体が供給されるように構成され、インデフレーター(バルーン用加圧器)を用いてバルーン20の拡張および収縮を制御することができる。流体は、ポンプ等によって加圧した圧力流体であってもよい。
 シャフト10は、遠近方向に延在しており、内部に流体の流路が設けられている。また、シャフト10は、内部にガイドワイヤの挿通路を有していることが好ましい。シャフト10が内部に流体の流路およびガイドワイヤの挿通路を有する構成とするには、例えば、シャフト10が外側チューブと内側チューブとを有しており、内側チューブがガイドワイヤの挿通路として機能し、内側チューブと外側チューブの間の空間が流体の流路として機能することが挙げられる。シャフト10が外側チューブと内側チューブとを有している場合、内側チューブが外側チューブの遠位端から延出してバルーン20を遠近方向に貫通し、バルーン20の遠位側が内側チューブに接合され、バルーン20の近位側が外側チューブと接合されることが好ましい。
 シャフト10に流体を送り込むために、シャフト10の近位側にハブ2を有していてもよい。ハブ2は、バルーン20の内部に供給される流体の流路と連通した流体注入部3と、ガイドワイヤの挿通路と連通したガイドワイヤ挿入部4を有することが好ましい。バルーンカテーテル1が流体注入部3とガイドワイヤ挿入部4を備えるハブ2を有していることにより、バルーン20の内部に流体を供給してバルーン20を拡張させる操作、およびバルーン20の内部にある流体を除去してバルーン20を収縮させる操作や、ガイドワイヤに沿ってバルーンカテーテル1を処置対象部位へ送り込む操作を容易に行いやすくなる。
 シャフト10とハブ2との接合は、例えば、接着剤による接着、溶着等が挙げられる。中でも、シャフト10とハブ2は、接着によって接合されていることが好ましい。シャフト10とハブ2とが接着されていることにより、例えば、シャフト10は柔軟性の高い材料から構成され、ハブ2は剛性の高い材料から構成されている等、シャフト10を構成する材料とハブ2を構成する材料とが異なっている場合に、シャフト10とハブ2との接合強度を高めてバルーンカテーテル1の耐久性を高めることが可能となる。
 シャフト10を構成する材料は、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、シャフト10を構成する材料は、ポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることが好ましい。シャフト10を構成する材料がポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることにより、シャフト10の表面の滑り性を高めることができる。その結果、バルーンカテーテル1の血管への挿通性を向上させることができる。
 図1に示すように、バルーン20は、シャフト10の遠位側に設けられている。バルーン20とシャフト10との接合は、接着剤による接着、溶着、バルーン20の端部とシャフト10とが重なっている箇所にリング状部材を取り付けてかしめること等が挙げられる。中でも、バルーン20とシャフト10は、溶着によって接合されていることが好ましい。バルーン20とシャフト10とが溶着されていることにより、バルーン20を繰り返し拡張および収縮させてもバルーン20とシャフト10との接合が解除されにくくなり、バルーン20とシャフト10の接合強度を容易に高めることができる。
 バルーン20は、直管部、直管部の近位側に接続される近位側テーパー部、および直管部の遠位側に接続される遠位側テーパー部を有することが好ましい。近位側テーパー部および遠位側テーパー部は、直管部から離れるにつれて縮径するように形成されていることが好ましい。バルーン20が直管部を有していることにより、直管部が狭窄部と十分に接触して狭窄部の拡張が行いやすくなる。また、バルーン20が直管部から離れるにつれて外径が小さくなる近位側テーパー部および遠位側テーパー部を有していることにより、バルーン20を収縮させてシャフト10に巻き付けた際に、バルーン20の遠位端部および近位端部の外径を小さくして、シャフト10とバルーン20との段差を小さくすることができるため、バルーン20を遠近方向に挿通させやすくなる。なお、本発明においては、膨張可能な部分をバルーン20と見なす。
 バルーン20を構成する材料は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエステルエラストマー等のポリエステル系樹脂、ポリウレタン、ポリウレタンエラストマー等のポリウレタン系樹脂、ポリフェニレンサルファイド系樹脂、ポリアミド、ポリアミドエラストマー等のポリアミド系樹脂、塩化ビニル系樹脂、フッ素系樹脂、シリコーン系樹脂、ラテックスゴム等の天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。バルーン20を構成する材料は、中でも、ポリアミド系樹脂であることが好ましく、ナイロン12であることがより好ましい。バルーン20を構成する材料がポリアミド系樹脂であることにより、バルーン20の柔軟性を高め、バルーン20を収縮させて折り畳んだ際に外径を小さくすることができる。そのため、バルーン20を保護管40の内腔へ配置しやすくなる。
 バルーン20の外径は、0.5mm以上であることが好ましく、1mm以上であることがより好ましく、3mm以上であることがさらに好ましい。バルーン20の外径の下限値を上記の範囲に設定することにより、血管内の狭窄部を十分に拡張することができる。また、バルーン20の外径は、35mm以下であることが好ましく、30mm以下であることがより好ましく、25mm以下であることがさらに好ましい。バルーン20の外径の上限値を上記の範囲に設定することにより、バルーン20の外径が過度に大きくなることを防止し、保護管40の内腔に配置しやすいバルーン20とすることができる。
 バルーン20の遠近方向の長さは、5mm以上であることが好ましく、10mm以上であることがより好ましく、15mm以上であることがさらに好ましい。バルーン20の遠近方向の長さの下限値を上記の範囲に設定することにより、一度に拡張できる狭窄部の面積を大きくして手技にかかる時間を短縮することが可能となる。また、バルーン20の遠近方向の長さは、300mm以下であることが好ましく、200mm以下であることがより好ましく、100mm以下であることがさらに好ましい。バルーン20の遠近方向の長さの上限値を上記の範囲に設定することにより、狭窄部の拡張のためにバルーン20の内部に送り込む流体の量を減らすことができ、バルーン20を十分に拡張させるために必要な時間を短くすることができる。
 バルーン20の厚みは、5μm以上であることが好ましく、7μm以上であることがより好ましく、10μm以上であることがさらに好ましい。バルーン20の厚みの下限値を上記の範囲に設定することにより、バルーン20の強度を高めて狭窄部を十分に拡張することができる。また、バルーン20の厚みの上限値は、バルーンカテーテル1の用途に応じて設定することができ、例えば、高耐圧のバルーン20として用いる場合には、30μmから45μmの厚みとすることが好ましい。また、バルーン20部分の通過性を向上させたい場合は、バルーン20の厚みの上限値を30μm以下とすることが好ましい。
 図2に示すように、バルーン20は、収縮状態で複数の羽根形状部21を有している。羽根形状部21は、バルーン20が収縮している状態において、バルーン20の内表面の一部同士が接している部分を指す。
 突出部30は、バルーン20の外側面であって、羽根形状部21ではない部分に設けられている。石灰化病変においてバルーンカテーテル1のバルーン20を拡張することにより、突出部30が石灰化して硬化した病変部に亀裂を入れて十分に拡張することができる。また、ISR病変においてバルーンカテーテル1のバルーン20を拡張することにより、柔らかく、表面が滑りやすい新生内膜に突出部30が引っ掛かり、ISR病変の拡張時にバルーン20の位置ずれが起こりにくくなる。
 突出部30の数は、1つであってもよいが、複数であることが好ましい。つまり、バルーン20の外側面に複数の突出部30が設けられていることが好ましい。突出部30の数が複数であることにより、石灰化によって硬化した病変部に亀裂を入れやすくなる。また、突出部30の数が複数であることによって、ISR病変に対してバルーン20の位置ずれをさらに起こりにくくすることができる。
 突出部30は、遠近方向に延在している。突出部30の遠近方向の長さは、バルーン20の遠近方向の長さよりも短いことが好ましい。突出部30の遠近方向の長さがバルーン20の遠近方向の長さよりも短いことにより、バルーン20の遠近方向の一部に突出部30が設けられていない箇所があるため、バルーン20が曲がりやすく、湾曲した血管等でのバルーンカテーテル1の挿通性を高めることができる。
 突出部30を構成する材料は、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン系樹脂、ポリスチレン系樹脂、ポリ-(4-メチルペンテン-1)等のポリメチルペンテン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ABS系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ブタジエン-スチレン共重合体、ナイロン6、ナイロン6・6、ナイロン6・10、ナイロン12等のポリアミド系樹脂、ステンレス鋼、アルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、タンタル、コバルト合金等の金属等の合成樹脂が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。
 突出部30を構成する材料は、バルーン20を構成する材料と同じであることが好ましい。突出部30を構成する材料とバルーン20を構成する材料とが同じであることにより、突出部30とバルーン20とを溶着等によって接合することが可能となって突出部30とバルーン20との接合強度を高めることができる。
 バルーン20と突出部30とは、一体成形品であることが好ましい。つまり、突出部30を有するバルーン20を一体成形によって形成されていることが好ましい。バルーン20と突出部30とが一体成形によって形成されていることにより、バルーン20への突出部30の接合を強固なものとすることが可能となる。
 突出部30の高さは、バルーン20の厚みよりも大きいことが好ましい。突出部30の高さがバルーン20の厚みよりも大きいことにより、石灰化病変やISR病変であっても突出部30を狭窄部に引っ掛けて固定しやすくなる。なお、突出部30の高さは、突出部30の基部から突出部30の頂部31までの長さを指す。
 突出部30の高さは、バルーン20の厚みの2倍以上であることが好ましく、3倍以上であることがより好ましく、5倍以上であることがさらに好ましい。突出部30の高さとバルーン20の厚みの比率の下限値を上記の範囲に設定することにより、突出部30を狭窄部に引っ掛けて固定しやすく、狭窄部の拡張が行いやすいバルーン20とすることができる。また、突出部30の高さは、バルーン20の厚みの100倍以下であることが好ましく、85倍以下であることがより好ましく、70倍以下であることがさらに好ましい。突出部30の高さとバルーン20の厚みの比率の上限値を上記の範囲に設定することにより、収縮状態のバルーン20の外径を小さくして、バルーン20を保護管40の内腔に収容した状態にてバルーン20と保護管40との間に生じる隙間を小さくすることができる。そのため、バルーン20の空気漏れ試験時に保護管40内にてバルーン20を膨らみにくくすることが可能となる。
 図1に示すように、保護管40は、内腔にバルーン20が配置されている。保護管40は、突出部30が他物と接触して突出部30が曲がることや欠けること等、破損を防止するために、バルーンカテーテル1の使用時までバルーン20に被せてバルーン20を保護している。
 保護管40を構成する材料は、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、保護管40を構成する材料は、ポリオレフィン系樹脂であることが好ましい。保護管40を構成する材料がポリオレフィン系樹脂であることにより、保護管40の表面の摺動性を向上させ、保護管40の内腔にバルーン20を配置することが容易となる。
 保護管40を構成する材料のショアD硬度は、突出部30を構成するショアD硬度よりも低いことが好ましい。保護管40を構成する材料のショアD硬度が突出部30を構成する材料のショアD硬度よりも低いことにより、保護管40の内腔に突出部30を有するバルーン20を配置する際に、保護管40の内表面と突出部30とが接触しても突出部30が潰れることや曲がること等、破損することを防止できる。なお、ショアD硬度は、ISO868:2003 プラスチック・デュロメータ硬さ試験方法に基づき計測することができる。
 保護管40の遠近方向の長さは、バルーン20の遠近方向の長さよりも長いことが好ましい。保護管40の遠近方向の長さがバルーン20の遠近方向の長さよりも長いことにより、バルーン20の全体を保護管40の内腔に収容することができる。そのため、突出部30を十分に保護することができる。
 保護管40の遠近方向の長さは、バルーン20の遠近方向の長さの1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.15倍以上であることがさらに好ましい。保護管40の遠近方向の長さとバルーン20の遠近方向の長さの比率の下限値を上記の範囲に設定することにより、バルーン20の全体を保護管40によって十分に覆うことができ、突出部30が露出しないように保護管40にて保護することが可能となる。また、保護管40の遠近方向の長さは、バルーン20の遠近方向の長さの2倍以下であることが好ましく、1.8倍以下であることがより好ましく、1.6倍以下であることがさらに好ましい。保護管40の遠近方向の長さとバルーン20の遠近方向の長さの比率の上限値を上記の範囲に設定することにより、保護管40の遠近方向の長さが長くなりすぎることを防ぎ、保護管40の内腔にバルーン20を収容することやバルーンカテーテル1の使用時に保護管40を取り外すことを行いやすくなる。
 保護管40の厚みは、突出部30の高さよりも大きいことが好ましい。保護管40の厚みが突出部30の高さよりも大きいことにより、保護管40の強度を高め、保護管40の外部からバルーン20に力が加わっても、突出部30が変形することや破損することを防止して、突出部30を十分に保護することが可能となる。
 保護管40の厚みは、突出部30の高さの1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、1.3倍以上であることがさらに好ましい。保護管40の厚みと突出部30の高さの比率の下限値を上記の範囲に設定することにより、保護管40の強度が高まる。その結果、保護管40の内腔にバルーン20を収容した際に、突出部30によって保護管40が破損しにくくなる。また、保護管40の厚みは、突出部30の高さの10倍以下であることが好ましく、8倍以下であることがより好ましく、5倍以下であることがさらに好ましい。保護管40の厚みと突出部30の高さの比率の上限値を上記の範囲に設定することにより、バルーン20を保護管40の内腔に収容する際に、突出部30やバルーン20が保護管40の内表面に押し付けられた場合に保護管40が変形することが可能となる。そのため、突出部30やバルーン20と保護管40の内表面とが接触しても破損しにくくすることができる。
 図3は、図1に示したバルーンカテーテル1のIII-III断面図を表しており、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面図を表す。図3に示すように、保護管40の内腔に収縮状態で複数の羽根形状部21が折り畳まれているバルーン20が配置されている。
 図3に示すように、突出部30の頂部31との距離が最短となる保護管40の内表面の点P4と、突出部30の頂部31との間に羽根形状部21が存在していない。突出部30の頂部31との距離が最短となる保護管40の内表面の点P4と突出部30の頂部31との間に羽根形状部21が存在していないことにより、全ての羽根形状部21は、保護管40の内腔において、突出部30と該突出部30に隣接する突出部30との間の空間にそれぞれ収容されることとなる。そのため、保護管40の内表面とバルーン20の外表面との間に隙間が生じにくく、バルーン20の空気漏れ試験の際に保護管40内にてバルーン20が膨らみにくくすることが可能となる。
 図3に示すように、保護管40の内表面に頂部31が接している突出部30があることが好ましい。また、全ての突出部30の頂部31は、保護管40の内表面に接していることがより好ましい。保護管40の内表面に頂部31が接している突出部30があることにより、保護管40の内腔に配置されているバルーン20の外表面と、保護管40の内表面との間に隙間ができにくくなり、バルーン20の空気漏れ試験時に保護管40内にてバルーン20が大きく膨らむことを防止することができる。
 突出部30の頂部31との距離が最短となる保護管40の内表面の点P4と突出部30の頂部31とが離れていてもよいが、図3に示すように、突出部30の頂部31との距離が最短となる保護管40の内表面の点P4と突出部30の頂部31とが接していることが好ましい。つまり、突出部30の頂部31は、保護管40の内表面に接していることが好ましい。突出部30の頂部31が保護管40の内表面に接していることにより、保護管40の内腔にバルーン20を配置した際に保護管40の内表面とバルーン20の外表面との間に隙間が生じにくく、バルーン20の空気漏れ試験の際にバルーン20が保護管40内にて膨らみにくくすることができる。
 図3に示すように、遠近方向に垂直な断面において、突出部30の数は、複数であり、突出部30の頂部31と該突出部30に隣接する突出部30の頂部31との間の中点P3と保護管40の重心P2とを結ぶ直線L1よりも一方側に羽根形状部21の起点22を有していることが好ましい。なお、保護管40の重心P2は、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、保護管40の内腔の形状の重心である。羽根形状部21の起点22が、突出部30の頂部31と該突出部30に隣接する突出部30の頂部31との間の中点P3と保護管40の重心P2とを結ぶ直線L1よりも一方側にあることにより、羽根形状部21の起点22が、一方の突出部30と一方の突出部30に隣接する他方の突出部30のうち一方の突出部30寄り、つまり、起点22が中点P3よりも一方側にあり、中点P3よりも他方側の空間に羽根形状部21を折り畳んで収容することができる。そのため、羽根形状部21の起点22から他方の突出部30までの空間に羽根形状部21を整然と収容しやすく、保護管40の内表面とバルーン20の外表面との間に生じる隙間を小さくして、バルーン20の空気漏れ試験時に保護管40内にてバルーン20を膨らみにくくすることが可能となる。
 図3に示すように、遠近方向に垂直な断面において、一方側とは反対側の他方側に羽根形状部21の先端23を有していることが好ましい。つまり、遠近方向に垂直な断面において、突出部30の頂部31と該突出部30に隣接する突出部30の頂部31との間の中点P3と保護管40の重心P2とを結ぶ直線L1よりも一方側に羽根形状部21の起点22を有しており、他方側に羽根形状部21の先端23を有していることが好ましい。突出部30の頂部31と該突出部30に隣接する突出部30の頂部31との間の中点P3と保護管40の重心P2とを結ぶ直線L1よりも一方側に羽根形状部21の起点22を有しており、他方側に羽根形状部21の先端23を有していることにより、突出部30と該突出部30に隣接する突出部30との間の空間内にて、羽根形状部21の起点22と先端23との距離を離すことができる。そのため、バルーン20を保護管40内に収容しやすくすることができる。
 図4は、本発明の他の実施の形態における保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面図を表す。図4に示すように、遠近方向に垂直な断面において、隣接する2つの突出部30間の距離を3等分したうち、一方側の地点P5よりも一方側に羽根形状部21の起点22を有しており、他方側の地点P6よりも他方側に羽根形状部21の先端23を有していることがより好ましい。羽根形状部21の起点22が隣接する2つの突出部30間の距離を3等分したうちの一方側の地点P5よりも一方側にあり、羽根形状部21の先端23が隣接する2つの突出部30間の距離を3等分したうちの他方側の地点P6よりも他方側にあることにより、隣接する2つの突出部30の間の空間において、羽根形状部21の起点22がない側の空間に羽根形状部21を折り畳んで収容することができる。そのため、羽根形状部21の起点22から、羽根形状部21の起点22と離れている方の突出部30までの空間の中に整った状態で羽根形状部21を収容することが可能となって、バルーン20の保護管40の内腔への収容を行いやすくすることができる。
 羽根形状部21の数は複数であればよく、隣接する2つの突出部30の間に設けられている羽根形状部21の数は、1つであってもよいが複数であることが好ましい。隣接する2つの突出部30の間に複数の羽根形状部21が設けられていることにより、羽根形状部21の1つあたりの長さを短くすることができる。その結果、バルーン20を収縮させて羽根形状部21を折り畳んだ状態において、保護管40の内腔にバルーン20を収容することが容易となる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、バルーン20から突出部30を除いた面積は、保護管40の内腔の面積から突出部30の面積を除いた面積の20%以上であることが好ましい。バルーン20から突出部30を除いた面積が保護管40の内腔の面積から突出部30の面積を除いた面積の20%以上であることにより、保護管40の内腔に突出部30を有するバルーン20を配置した状態において、保護管40の内表面とバルーン20の外表面との間に生じる隙間を小さくすることができる。そのため、バルーン20の空気漏れ試験の際に保護管40内にてバルーン20が膨らみにくくすることが可能となる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、バルーン20から突出部30を除いた面積は、保護管40の内腔の面積から突出部30の面積を除いた面積の20%以上であることが好ましいが、25%以上であることがより好ましく、30%以上であることがさらに好ましい。保護管40の内腔の面積から突出部30の面積を除いた面積に対するバルーン20から突出部30を除いた面積の割合の下限値を上記の範囲に設定することにより、保護管40の内腔の面積から突出部30の面積を除いた空間に対してバルーン20から突出部30を除いた部分が占める割合を大きくして、保護管40とバルーン20との間にできる隙間を減らし、バルーン20の空気漏れ試験にてバルーン20が保護管40の内部にて大きく膨らむことを防ぐことができる。また、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、保護管40の内腔の面積から突出部30の面積を除いた面積に対するバルーン20から突出部30を除いた面積の割合の上限値は特に限定されないが、例えば、80%以下、70%以下、60%以下とすることができる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、保護管40の内表面に接しているバルーン20の外周の割合は、バルーン20の外周全体に対して20%以上であることが好ましい。保護管40の内表面に接しているバルーン20の外周の割合がバルーン20の外周全体に対して20%以上であることにより、保護管40の内表面とバルーン20の外表面との間に隙間が少ない状態で保護管40の内腔にバルーン20が配置されることとなる。そのため、バルーン20と保護管40との間に生じる隙間を減らして、バルーン20の空気漏れ試験の際に保護管40内でバルーン20を膨らみにくくすることが可能となる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、バルーン20の外周全体に対する保護管40の内表面に接しているバルーン20の外周の割合は、20%以上であることが好ましいが、25%以上であることがより好ましく、30%以上であることがさらに好ましい。バルーン20の外周全体に対する保護管40の内表面に接しているバルーン20の外周の割合の下限値を上記の範囲に設定することにより、バルーン20が保護管40の内表面に多く接している状態にて保護管40の内腔に配置されており、バルーン20の外表面と保護管40の内表面との間に生じる隙間を減らしてバルーン20の空気漏れ試験時に保護管40の内部でバルーン20が大きく膨らむことを防止することができる。また、バルーン20の外周全体に対する保護管40の内表面に接しているバルーン20の外周の割合の上限値は特に限定されないが、例えば、50%以下、45%以下、40%以下とすることができる。
 図3に示すように、突出部30の数は、複数であり、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な保護管40の内腔の断面形状は多角形であり、多角形の角の数は、突出部30の数の倍数であることが好ましい。保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な保護管40の内腔の断面形状が多角形であって、多角形の角の数が突出部30の数の倍数であることにより、保護管40の内腔にバルーン20を配置した際に突出部30が多角形の角部に位置しやすく、保護管40の内表面とバルーン20の外表面との間の隙間を減らしてバルーン20の空気漏れ試験時にバルーン20が保護管40の中で膨らむ空間を減らすことができる。
 なお、本発明における多角形は、多角形の角部の頂点が明確であって辺部が直線であるものの他に、多角形の角部が丸みを帯びている所謂角丸多角形や、多角形の辺部の少なくとも一部が曲線となっているものも含まれるものとする。また、多角形の角部が丸みを帯びている場合、多角形の角部の丸みの半径は、3mm以下であることが好ましく、2mm以下であることがより好ましく、1mm以下であることがさらに好ましい。多角形の角部の丸みの半径の上限値を上記の範囲に設定することにより、多角形の角部に突出部30を配置しやすくなり、保護管40の内腔にバルーン20を収容することが容易になる。
 多角形の角の数は、突出部30の数の倍数であることが好ましいが、突出部30の数と等しいことがより好ましい。多角形の角の数が突出部30の数と等しいことにより、保護管40の内腔が小さくなる。その結果、保護管40の内腔へバルーン20を配置した際に、保護管40の内表面とバルーン20の外表面との距離を小さくして、バルーン20の空気漏れ試験にてバルーン20が保護管40内にて膨らみにくくすることができる。
 突出部30は、多角形の角部に配置されていることが好ましい。突出部30が多角形の角部に配置されていることにより、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面において、保護管40の重心P2からの距離が他の箇所よりも大きい角部に、断面積の大きい突出部30を配置することとなる。そのため、保護管40の内腔に突出部30を有するバルーン20を配置することが容易となる。
 図示していないが、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面において、保護管40の重心P2と突出部30の頂部31とを通る直線上に、多角形の角部の頂点があることが好ましい。保護管40の重心P2と突出部30の頂部31とを通る直線上に多角形の角部の頂点があることにより、角部の中でも保護管40の重心P2からの距離が最も大きい部分に、突出部30の高さが最も大きい頂部31が位置する。その結果、保護管40とバルーン20との隙間を小さくするために保護管40の内腔の断面形状の面積を小さくしても、保護管40の内腔に突出部30を有するバルーン20を挿入しやすくすることができる。
 図3に示すように、バルーンカテーテル1は、バルーン20の内腔に、ガイドワイヤを挿通する内管11を有していることが好ましい。バルーン20の内腔に内管11を有していることにより、バルーンカテーテル1にガイドワイヤを挿通しやすくなる。また、バルーン20の内腔に内管11を有していることによって、内管11にガイドワイヤを挿通するため、ガイドワイヤがバルーン20に接触してバルーン20が破損することを防止できる。
 従来の内管を有するバルーンカテーテルは、保護管内へ突出部を備えたバルーンカテーテルを収容した際に、保護管の内表面とバルーンの外表面との間に十分な隙間がない場合、保護管によってバルーンの突出部がバルーンの内方へ押されて内管を押し潰してしまい、ガイドワイヤが通る空間が狭まることにより、ガイドワイヤの摺動性が低下することやガイドワイヤが内管内を通過できなくなること(ガイドワイヤスタック)があった。
 羽根形状部21が、突出部30の頂部31との距離が最短となる保護管40の内表面の点P4と、突出部30の頂部31との間に存在していないことにより、突出部30が内管11を押し潰しにくく、内管11内でのガイドワイヤの摺動性の低下やガイドワイヤスタックを防ぐことができる。
 シャフト10が外側チューブと内側チューブを有する構成である場合、内管11と内側チューブとが一体化されていることが好ましい。内管11と内側チューブとが一体化されていることにより、ガイドワイヤをバルーンカテーテル1に挿通しやすく、かつ、ガイドワイヤに沿ってバルーンカテーテル1を遠近方向に移動させることが容易となる。内管11と内側チューブとを一体化するには、例えば、内管11の近位端と内側チューブの遠位端を接合する、1つのチューブ部材にて内管11と内側チューブとを兼ねること等が挙げられる。
 内管11を構成する材料は、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、塩化ビニル系樹脂、シリコーン系樹脂、天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。中でも、内管11を構成する材料は、ポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることが好ましい。内管11を構成する材料がポリアミド系樹脂、ポリオレフィン系樹脂、およびフッ素系樹脂の少なくとも1つであることにより、内管11とガイドワイヤとの摺動性を高めて、ガイドワイヤに沿って遠近方向に移動させやすいバルーンカテーテル1とすることができる。
 内管11の遠近方向に垂直な断面での内管11の内腔の形状は、円形、楕円形、多角形等が挙げられる。中でも、図3に示すように、内管11の遠近方向に垂直な断面での内管11の内腔の形状は、円形であることが好ましい。内管11の内腔の断面形状が円形であることにより、内管11の内表面の摺動性を高め、内管11の内腔に配置させたガイドワイヤを内管11内にて遠近方向へ円滑に移動させやすくなる。
 内管11の厚みは、バルーン20の厚みよりも薄くてもよく、バルーン20の厚みと同じであってもよいが、バルーン20の厚みよりも厚いことが好ましい。内管11の厚みがバルーン20の厚みよりも厚いことにより、内管11の剛性を高めることができる。そのため、保護管40の内表面とバルーン20の外表面とが接しており、バルーン20に力が加わっている場合でも内管11に変形が生じにくく、内管11へのガイドワイヤの挿通性を高めることができる。
 内管11の厚みは、バルーン20の厚みの1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.15倍以上であることがさらに好ましい。内管11の厚みとバルーン20の厚みの比率の下限値を上記の範囲に設定することにより、ガイドワイヤと接触しても破損しにくい、強度の高い内管11とすることができる。また、内管11の厚みは、バルーン20の厚みの5倍以下であることが好ましく、4倍以下であることがより好ましく、3倍以下であることがさらに好ましい。内管11の厚みとバルーン20の厚みの比率の上限値を上記の範囲に設定することにより、内管11の剛性が高くなりすぎることを防ぎ、湾曲した血管等に合わせて内管11も湾曲してバルーンカテーテル1の挿通性を向上させることができる。
 内管11の厚みは、保護管40の厚みよりも薄いことが好ましい。内管11の厚みが保護管40の厚みよりも薄いことにより、バルーンカテーテル1を湾曲した血管等に配置した際に内管11も湾曲することが可能となり、挿通性のよいバルーンカテーテル1とすることができる。
 内管11の厚みは、保護管40の厚みの50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることがさらに好ましい。内管11の厚みと保護管40の厚みの上限値を上記の範囲に設定することにより、内管11の剛性を適度なものとして、湾曲した血管等にもバルーンカテーテル1を容易に挿通することができる。また、内管11の厚みは、保護管40の厚みの5%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることがさらに好ましい。内管11の厚みと保護管40の厚みの下限値を上記の範囲に設定することにより、保護管40の内表面がバルーン20の外表面と接触している状態となり、バルーン20を通じて内管11に力が加わっていても内管11が変形しにくく、内管11内にガイドワイヤを円滑に挿通させることができる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、バルーン20から突出部30を除いた面積は、保護管40の内表面と内管11の外表面との間の面積から突出部30を除いた面積の20%以上であることが好ましい。バルーン20から突出部30を除いた面積が保護管40の内表面と内管11の外表面との間の面積から突出部30を除いた面積の20%以上であることにより、保護管40の内腔に突出部30を有するバルーン20を配置した状態において、保護管40の内表面と内管11の外表面との間に生じる隙間を小さくすることができ、バルーン20の空気漏れ試験の際に保護管40内にてバルーン20を膨らみにくくすることが可能となる。
 保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、バルーン20から突出部30を除いた面積は、保護管40の内表面と内管11の外表面との間の面積から突出部30を除いた面積の20%以上であることが好ましいが、25%以上であることがより好ましく、30%以上であることがさらに好ましい。保護管40の内表面と内管11の外表面との間の面積から突出部30を除いた面積に対する、バルーン20から突出部30を除いた面積の割合の下限値を上記の範囲に設定することにより、保護管40の内表面と内管11の外表面との間の空間に対してバルーン20から突出部30を除いた部分が占める割合を大きくし、保護管40とバルーン20との間にできる隙間を減らして、バルーン20の空気漏れ試験にてバルーン20が保護管40の内部にて大きく膨らむことを防ぐことができる。また、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な断面において、保護管40の内表面と内管11の外表面との間の面積から突出部30を除いた面積に対するバルーン20から突出部30を除いた面積の割合の上限値は特に限定されないが、例えば、80%以下、70%以下、60%以下とすることができる。
 保護管40の一方端部での、保護管40の遠近方向に垂直な断面での内腔の面積は、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面での内腔の面積よりも大きいことが好ましい。保護管40の一方端部の内腔の面積が、保護管40の遠近方向の長さの中点P1の内腔の面積よりも大きいことにより、保護管40がバルーン20の一方端部に設けられている突出部30を押し潰しにくくなる。また、保護管40の一方端部の内腔の面積が、保護管40の遠近方向の長さの中点P1の内腔の面積よりも大きいことにより、保護管40の一方端部からバルーン20を挿通することによって保護管40の内腔にバルーン20を配置することが容易となる。
 保護管40の一方端部での、保護管40の遠近方向に垂直な断面での内腔の面積は、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面での内腔の面積の1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.15倍以上であることがさらに好ましい。保護管40の一方端部の内腔の面積と、保護管40の遠近方向の長さの中点P1の内腔の面積との比率の下限値を上記の範囲に設定することにより、バルーン20の一方端部に設けられている突出部30を保護管40が押し潰し、突出部30が潰れることを防止できる。また、保護管40の一方端部での、保護管40の遠近方向に垂直な断面での内腔の面積は、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面での内腔の面積の3倍以下であることが好ましく、2.5倍以下であることがより好ましく、2倍以下であることがさらに好ましい。保護管40の一方端部の内腔の面積と、保護管40の遠近方向の長さの中点P1の内腔の面積との比率の上限値を上記の範囲に設定することにより、保護管40の一方端部の内腔の面積が過度に大きくなることを防ぎ、その結果、バルーン20の空気漏れ試験の際に保護管40の一方端部に配置されているバルーン20が膨らみにくくなる。
 保護管40の遠近方向に垂直な断面での内腔の面積は、保護管40の少なくとも一方の端部にて、保護管40の遠近方向の長さの中点P1よりも大きいことが好ましいが、保護管40の一方の端部での内腔の面積および他方の端部での内腔の面積が、保護管40の遠近方向の長さの中点P1での内腔の面積よりも大きいことがより好ましい。つまり、保護管40の両端部での、保護管40の遠近方向に垂直な断面での内腔の面積は、保護管40の遠近方向の長さの中点P1での、保護管40の遠近方向に垂直な断面での内腔の面積よりも大きいことがより好ましい。保護管40の両端部の内腔の面積が、保護管40の遠近方向の長さの中点P1の内腔の面積よりも大きいことにより、保護管40の内腔にバルーン20を配置する際に、保護管40の一方端部と他方端部とを区別する必要がなくなり、バルーンカテーテル1の製造効率を高めることができる。
 図5は、図1に示したバルーンカテーテル1のV-V断面図を表しており、保護管40の一方端部での遠近方向に垂直な断面図を表す。図3および図5に示すように、保護管40の遠近方向の長さの中点P1、および保護管40の一方端部での、遠近方向に垂直な保護管40の内腔の断面形状は、多角形であり、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数は、保護管40の一方端部での、遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数よりも少ないことが好ましい。保護管40の遠近方向の長さの中点P1での遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数が、保護管40の一方端部での遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数よりも少ないことにより、保護管40の一方端部の内腔の断面形状が、保護管40の遠近方向の長さの中点P1での内腔の断面形状よりも角の数が多く、円形状に近い形状となる。つまり、保護管40の内腔にバルーン20を配置する際に、バルーン20の挿入口となる保護管40の一方端部の内腔の断面形状は円形状に近いため、挿入口が広く、保護管40の内腔にバルーン20を挿入しやすくなる。そのため、保護管40の遠近方向の長さの中点P1での内腔の断面形状は保護管40の一方端部の内腔の断面形状よりも角が少ないため、保護管40の内表面とバルーン20の外表面との間に生じる隙間が小さく、バルーン20の空気漏れ試験の際に保護管40の内部にてバルーン20を膨らみにくくすることができる。
 突出部30の数が複数であり、保護管40の遠近方向の長さの中点P1での、遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数は、突出部30の数と等しく、保護管40の一方端部での、遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数は、突出部30の数の2倍であることが好ましい。保護管40の遠近方向の長さの中点P1での遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数が突出部30の数と等しく、かつ、保護管40の一方端部での遠近方向に垂直な保護管40の内腔の断面形状である多角形の角の数が突出部30の数の2倍であることにより、保護管40の遠近方向の長さの中点P1では保護管40の内表面とバルーン20の外表面との間の隙間を小さく、かつ、保護管40の一方端部ではバルーン20の挿入口の大きさを十分に広くすることができる。そのため、保護管40へのバルーン20の挿通を容易としながら、バルーン20の空気漏れ試験時にバルーン20が保護管40内にて大きく膨らむことを防止することができる。
 図6は、さらに他の実施の形態における保護管40の一方端部での、遠近方向に垂直な断面図を表す。図6に示すように、保護管40の一方端部での、遠近方向に垂直な保護管40の内腔の断面形状は、円形状または楕円形状であることも好ましい。保護管40の一方端部での遠近方向に垂直な保護管40の内腔の断面形状が円形状または楕円形状であることにより、バルーン20の挿入口となる保護管40の一方端部の内腔の断面形状の広さを大きく確保することができる。その結果、保護管40の内腔にバルーン20を挿入しやすくすることができる。
 保護管40の一方端部での遠近方向に垂直な保護管40の内腔の断面形状が円形状または楕円形状である場合、保護管40の遠近方向の長さの中点P1での遠近方向に垂直な保護管40の内腔の断面形状は、角の数が突出部30の数と等しい多角形であることが好ましい。保護管40の遠近方向の長さの中点P1での遠近方向に垂直な保護管40の内腔の断面形状が、突出部30の数と等しい数の角を有する多角形であり、かつ、保護管40の一方端部での遠近方向に垂直な保護管40の内腔の断面形状が円形状または楕円形状であることにより、保護管40の遠近方向の長さの中点P1では保護管40の内表面とバルーン20の外表面との間に大きな隙間が生じにくく、また、保護管40の一方端部ではバルーン20の挿入口が広く、保護管40の内腔にバルーン20を挿入することが容易となる。
 図示していないが、保護管40は、保護管40の遠近方向の長さの中点P1と保護管40の一方端部との間に遷移部を有しており、遷移部は、遷移部での内腔の形状が、遠近方向を中心として螺旋状にねじれていることが好ましい。保護管40が保護管40の遠近方向の長さの中点P1と保護管40の一方端部との間に遷移部を有していることにより、保護管40の遠近方向の長さの中点P1および保護管40の一方端部のそれぞれでの保護管40の内腔の形状が異なっていても保護管40の内部の形状を滑らかに変形させることが可能となる。そのため、バルーン20を保護管40内に配置する際に保護管40の内表面とバルーン20の外表面とが干渉しにくく、保護管40の内腔にバルーン20を挿通しやすくすることができる。
 図3および図4に示すように、羽根形状部21は、バルーン20の周方向に巻回されて折り畳まれており、全ての羽根形状部21は、バルーン20の周方向において、一方の方向に折り畳まれていることが好ましい。つまり、全ての羽根形状部21が巻回されて折り畳まれている方向は、同じであることが好ましい。全ての羽根形状部21がバルーン20の周方向において一方の方向に折り畳まれていることにより、羽根形状部21を整然となるように折り畳むことができる。その結果、バルーン20を保護管40内に挿通しやすくなる。
 図示していないが、シャフト10のバルーン20が位置する部分には、X線不透過マーカーを配置してもよい。シャフト10のバルーン20が位置する部分にX線不透過マーカーが配置されていることにより、バルーン20の位置をX線透視下で確認することが可能となり、体内においてバルーン20がある位置を容易に確認することが可能である。
 X線不透過マーカーは、バルーン20の遠位端部および近位端部に位置する部分のシャフト10に設けられていることが好ましい。X線不透過マーカーがバルーン20の遠位端部および近位端部に位置する部分に設けられていることにより、バルーン20の遠位端部と近位端部の両方の位置をX線透視下にて確認することが可能となり、体内でのバルーン20の位置を把握することができる。
 X線不透過マーカーを構成する材料は、例えば、鉛、バリウム、ヨウ素、タングステン、金、白金、イリジウム、ステンレス、チタン、コバルトクロム合金等のX線不透過物質を用いることができる。X線不透過物質は、中でも、白金であることが好ましい。X線不透過マーカーを構成する材料が白金であることにより、X線の造影性を高めることができ、バルーン20の位置を確認しやすくなる。
 X線不透過マーカーの形状は、円筒状、多角筒状、筒に切れ込みが入った断面C字状の形状、線材を巻回したコイル形状等が挙げられる。中でも、X線不透過マーカーの形状は、円筒状であることが好ましい。X線不透過マーカーの形状が円筒状であることにより、X線透視下にてX線不透過マーカーの視認性を高めることができ、体内におけるバルーン20の位置を迅速に確認することができる。
 以上のように、バルーンカテーテルは、遠近方向に延在しているシャフトと、シャフトの遠位側に設けられており、収縮状態で複数の羽根形状部を有しているバルーンと、バルーンの外側面であって、羽根形状部ではない部分に設けられている突出部と、バルーンが内腔に配置されている保護管と、を有しており、突出部の頂部との距離が最短となる保護管の内表面の点と、突出部の頂部との間に羽根形状部が存在していない。突出部の頂部との距離が最短となる保護管の内表面の点と、突出部の頂部との間に羽根形状部が存在していないことにより、保護管と、保護管の内腔に収容したバルーンとの間に生じる隙間を小さくして、バルーンの空気漏れ試験の際に保護管内にてバルーンが膨らみにくくすることができ、さらに、保護管の内腔にバルーンを収容することが行いやすくなるという効果も有している。
 本願は、2019年3月28日に出願された日本国特許出願第2019-063581号に基づく優先権の利益を主張するものである。2019年3月28日に出願された日本国特許出願第2019-063581号の明細書の全内容が、本願に参考のため援用される。
 1:バルーンカテーテル
 2:ハブ
 3:流体注入部
 4:ガイドワイヤ挿入部
 10:シャフト
 11:内管
 20:バルーン
 21:羽根形状部
 22:起点
 23:先端
 30:突出部
 31:頂部
 40:保護管
 P1:保護管の遠近方向の長さの中点
 P2:保護管の重心
 P3:突出部の頂部と該突出部に隣接する突出部の頂部との間の中点
 P4:突出部の頂部との距離が最短となる保護管の内表面の点
 P5:隣接する2つの突出部間の距離を3等分したうちの一方側の地点
 P6:隣接する2つの突出部間の距離を3等分したうちの他方側の地点
 L1:中点P3と保護管の重心P2とを結ぶ直線

Claims (19)

  1.  遠近方向に延在しているシャフトと、
     前記シャフトの遠位側に設けられており、収縮状態で複数の羽根形状部を有しているバルーンと、
     前記バルーンの外側面であって、前記羽根形状部ではない部分に設けられている突出部と、
     前記バルーンが内腔に配置されている保護管と、を有しており、
     前記突出部の頂部との距離が最短となる前記保護管の内表面の点と、前記突出部の頂部との間に前記羽根形状部が存在していないことを特徴とするバルーンカテーテル。
  2.  前記保護管の内表面に頂部が接している前記突出部がある請求項1に記載のバルーンカテーテル。
  3.  前記突出部の数は、複数であり、
     遠近方向に垂直な断面において、前記突出部の前記頂部と該突出部に隣接する前記突出部の前記頂部との間の中点と前記保護管の重心とを結ぶ直線よりも一方側に前記羽根形状部の起点を有している請求項1または2に記載のバルーンカテーテル。
  4.  遠近方向に垂直な断面において、前記一方側とは反対側の他方側に前記羽根形状部の先端を有している請求項3に記載のバルーンカテーテル。
  5.  前記羽根形状部は、隣接する2つの前記突出部間に複数配置されている請求項1~4のいずれか一項に記載のバルーンカテーテル。
  6.  前記保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、前記バルーンから前記突出部を除いた面積は、前記保護管の内腔の面積から前記突出部の面積を除いた面積の20%以上である請求項1~5のいずれか一項に記載のバルーンカテーテル。
  7.  前記保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、前記保護管の内表面に接している前記バルーンの外周の割合は、前記バルーンの外周全体に対して20%以上である請求項1~6のいずれか一項に記載のバルーンカテーテル。
  8.  前記バルーンと前記突出部とは、一体成形品である請求項1~7のいずれか一項に記載のバルーンカテーテル。
  9.  前記保護管を構成する材料のショアD硬度は、前記突出部を構成する材料のショアD硬度よりも低い請求項1~8のいずれか一項に記載のバルーンカテーテル。
  10.  前記突出部の数は、複数であり、
     前記保護管の遠近方向の長さの中点での、遠近方向に垂直な前記保護管の内腔の断面形状は、多角形であり、
     前記多角形の角の数は、前記突出部の数の倍数である請求項1~9のいずれか一項に記載のバルーンカテーテル。
  11.  前記多角形の角の数は、前記突出部の数と等しい請求項10に記載のバルーンカテーテル。
  12.  前記突出部は、前記多角形の角部に配置されている請求項10または11に記載のバルーンカテーテル。
  13.  前記バルーンの内腔に、ガイドワイヤを挿通する内管を有している請求項1~12のいずれか一項に記載のバルーンカテーテル。
  14.  前記保護管の遠近方向の長さの中点での、遠近方向に垂直な断面において、前記バルーンから前記突出部を除いた面積は、前記保護管の内表面と前記内管の外表面との間の面積から前記バルーンから前記突出部を除いた面積の20%以上である請求項13に記載のバルーンカテーテル。
  15.  前記保護管の一方端部での、前記保護管の遠近方向に垂直な断面での内腔の面積は、前記保護管の遠近方向の長さの中点での、前記保護管の遠近方向に垂直な断面背の内腔の面積よりも大きい請求項1~14のいずれか一項に記載のバルーンカテーテル。
  16.  前記保護管の遠近方向の長さの中点、および前記保護管の一方端部での、遠近方向に垂直な前記保護管の内腔の断面形状は、多角形であり、
     前記保護管の遠近方向の長さの中点での、遠近方向に垂直な前記保護管の内腔の断面形状である多角形の角の数は、前記保護管の一方端部での、遠近方向に垂直な前記保護管の内腔の断面形状である多角形の角の数よりも少ない請求項1~15のいずれか一項に記載のバルーンカテーテル。
  17.  前記保護管の一方端部での、遠近方向に垂直な前記保護管の内腔の断面形状は、円形状または楕円形状である請求項1~15のいずれか一項に記載のバルーンカテーテル。
  18.  前記保護管は、前記保護管の遠近方向の長さの中点と前記保護管の一方端部との間に遷移部を有しており、
     前記遷移部は、前記遷移部での内腔の形状が、遠近方向を中心として螺旋状にねじれている請求項1~17のいずれか一項に記載のバルーンカテーテル。
  19.  前記羽根形状部は、前記バルーンの周方向に巻回されて折り畳まれており、
     全ての前記羽根形状部は、前記バルーンの周方向において、一方の方向に折り畳まれている請求項1~18のいずれか一項に記載のバルーンカテーテル。
PCT/JP2020/003893 2019-03-28 2020-02-03 バルーンカテーテル WO2020195170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/442,286 US12268829B2 (en) 2019-03-28 2020-02-03 Balloon catheter
JP2021508169A JP7482108B2 (ja) 2019-03-28 2020-02-03 バルーンカテーテル
CN202080024108.8A CN113613702B (zh) 2019-03-28 2020-02-03 球囊导管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-063581 2019-03-28
JP2019063581 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195170A1 true WO2020195170A1 (ja) 2020-10-01

Family

ID=72608538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003893 WO2020195170A1 (ja) 2019-03-28 2020-02-03 バルーンカテーテル

Country Status (4)

Country Link
US (1) US12268829B2 (ja)
JP (1) JP7482108B2 (ja)
CN (1) CN113613702B (ja)
WO (1) WO2020195170A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116963799A (zh) * 2021-11-09 2023-10-27 株式会社钟化 球囊导管
EP4268881A4 (en) * 2020-12-24 2024-11-13 Kaneka Corporation BALLOON FOR BALLOON CATHETER
WO2024236925A1 (ja) * 2023-05-18 2024-11-21 株式会社グッドマン バルーンカテーテル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305904B1 (ja) * 2021-11-09 2023-07-10 株式会社カネカ バルーンカテーテル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345478B2 (ja) * 2001-08-08 2009-10-14 株式会社カネカ 拡張カテーテル
JP2011245114A (ja) * 2010-05-28 2011-12-08 Nipro Corp バルーンカテーテル
US20120191111A1 (en) * 2011-01-20 2012-07-26 Cook Medical Technologies Llc Scoring balloon with offset scoring elements
JP2016178969A (ja) * 2015-03-23 2016-10-13 テルモ株式会社 保護カバー及び医療デバイスセットの製造方法
JP2017060616A (ja) * 2015-09-25 2017-03-30 テルモ株式会社 バルーン折り畳み方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147302A (en) 1989-04-21 1992-09-15 Scimed Life Systems, Inc. Method of shaping a balloon of a balloon catheter
US5320634A (en) * 1990-07-03 1994-06-14 Interventional Technologies, Inc. Balloon catheter with seated cutting edges
US5196024A (en) * 1990-07-03 1993-03-23 Cedars-Sinai Medical Center Balloon catheter with cutting edge
US6152944A (en) * 1997-03-05 2000-11-28 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
US7186237B2 (en) 2002-02-14 2007-03-06 Avantec Vascular Corporation Ballon catheter for creating a longitudinal channel in a lesion and method
US7985234B2 (en) 2002-02-27 2011-07-26 Boston Scientific Scimed, Inc. Medical device
US7279002B2 (en) * 2003-04-25 2007-10-09 Boston Scientific Scimed, Inc. Cutting stent and balloon
US7008438B2 (en) 2003-07-14 2006-03-07 Scimed Life Systems, Inc. Anchored PTCA balloon
US8088100B2 (en) * 2006-10-20 2012-01-03 Boston Scientific Scimed, Inc. Reinforced rewrappable balloon
EP2636422B1 (en) 2008-03-13 2018-10-31 Cook Medical Technologies LLC Cutting balloon with connector and dilation element
WO2009135125A2 (en) * 2008-05-01 2009-11-05 Bayer Schering Pharma Ag Catheter balloon drug adherence techniques and methods
US20110301565A1 (en) 2010-06-07 2011-12-08 Boston Scientific Scimed, Inc. Medical balloons having a sheath designed to facilitate release of therapeutic agent
GB2485769B (en) 2010-11-22 2012-12-05 Cook Medical Technologies Llc Scoring balloon and method of making same
US20120136367A1 (en) * 2010-11-29 2012-05-31 Abbott Cardiovascular Systems, Inc. Multi-segment protective sheath for expandable medical devices
US8574248B2 (en) * 2011-12-12 2013-11-05 Kassab Kughn Endovascular Devices Catheter system with balloon-mounted plaque-modifying elements
JP2016503330A (ja) * 2012-12-04 2016-02-04 アンジオスライド リミテッド バルーンカテーテル及びその使用方法
CN203001661U (zh) * 2012-12-19 2013-06-19 圣光医用制品有限公司 血管内球囊扩张导管
CA2871300A1 (en) 2013-11-29 2015-05-29 Cook Medical Technologies Llc Medical balloon
GB201419864D0 (en) 2014-11-07 2014-12-24 Cook Medical Technologies Llc Medical balloon
CN204147401U (zh) * 2014-07-24 2015-02-11 深圳市金瑞凯利生物科技有限公司 一种带棘突的球囊导管
GB2529720A (en) 2014-09-01 2016-03-02 Cook Medical Technologies Llc Shaped or textured medical balloon with strengthening elements
EP3281669B1 (en) * 2015-04-10 2020-05-27 Goodman Co., Ltd. Balloon catheter
JP6626646B2 (ja) * 2015-07-06 2019-12-25 テルモ株式会社 バルーンカテーテル、およびバルーンの製造方法
CN104971422B (zh) 2015-07-16 2019-02-05 浙江巴泰医疗科技有限公司 药物球囊导管及其制备方法
WO2017204042A1 (ja) 2016-05-26 2017-11-30 株式会社グッドマン バルーンカテーテル、及び、バルーン体の製造方法
CN106390268A (zh) 2016-10-21 2017-02-15 复旦大学附属中山医院 一种可扩张可灌注的球囊导管
CN112203712B (zh) * 2018-07-09 2023-11-07 株式会社戈德曼 球囊导管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345478B2 (ja) * 2001-08-08 2009-10-14 株式会社カネカ 拡張カテーテル
JP2011245114A (ja) * 2010-05-28 2011-12-08 Nipro Corp バルーンカテーテル
US20120191111A1 (en) * 2011-01-20 2012-07-26 Cook Medical Technologies Llc Scoring balloon with offset scoring elements
JP2016178969A (ja) * 2015-03-23 2016-10-13 テルモ株式会社 保護カバー及び医療デバイスセットの製造方法
JP2017060616A (ja) * 2015-09-25 2017-03-30 テルモ株式会社 バルーン折り畳み方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4268881A4 (en) * 2020-12-24 2024-11-13 Kaneka Corporation BALLOON FOR BALLOON CATHETER
CN116963799A (zh) * 2021-11-09 2023-10-27 株式会社钟化 球囊导管
CN116963799B (zh) * 2021-11-09 2024-04-05 株式会社钟化 球囊导管
WO2024236925A1 (ja) * 2023-05-18 2024-11-21 株式会社グッドマン バルーンカテーテル

Also Published As

Publication number Publication date
US12268829B2 (en) 2025-04-08
JPWO2020195170A1 (ja) 2020-10-01
CN113613702A (zh) 2021-11-05
US20220152361A1 (en) 2022-05-19
JP7482108B2 (ja) 2024-05-13
CN113613702B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2020195697A1 (ja) バルーンカテーテル
ES2902273T3 (es) Vaina expandible con partes de sección transversal elastoméricas
WO2020195170A1 (ja) バルーンカテーテル
JP4985398B2 (ja) カテーテル
US20180140804A1 (en) Balloon catheter
US20080269641A1 (en) Method of using a guidewire with stiffened distal section
JP7490660B2 (ja) バルーンカテーテルの製造方法
JP2005278684A (ja) 拡張体付カテーテル
JP5015772B2 (ja) バルーンカテーテル
US11849967B2 (en) Scoring device and treatment method
US12274467B2 (en) Balloon catheter
US20160000593A1 (en) Delivery system for a living body indwelling member
JP2010525880A (ja) バルーンカテーテル
WO2023080063A1 (ja) バルーンカテーテル用バルーン
JP7557472B2 (ja) バルーンカテーテルの製造方法
JPWO2019107206A1 (ja) バルーンカテーテルおよびその製造方法
WO2022137763A1 (ja) バルーンカテーテル用バルーン
JP6342189B2 (ja) カテーテル
JP7410706B2 (ja) バルーンカテーテル
WO2024262528A1 (ja) バルーンカテーテル
WO2024106402A1 (ja) バルーンカテーテル用バルーン及びそれを備えるバルーンカテーテル、並びにバルーンカテーテルの製造方法
WO2023079906A1 (ja) バルーンカテーテル用バルーン
WO2024262526A1 (ja) バルーンカテーテル
WO2024262527A1 (ja) バルーンカテーテル
JP2024072606A (ja) バルーンカテーテル用バルーン及びそれを備えるバルーンカテーテル、並びにバルーンカテーテルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777815

Country of ref document: EP

Kind code of ref document: A1

WWG Wipo information: grant in national office

Ref document number: 17442286

Country of ref document: US