[go: up one dir, main page]

WO2020177758A1 - 用于电梯的运行系统及多轿厢电梯运行系统 - Google Patents

用于电梯的运行系统及多轿厢电梯运行系统 Download PDF

Info

Publication number
WO2020177758A1
WO2020177758A1 PCT/CN2020/078116 CN2020078116W WO2020177758A1 WO 2020177758 A1 WO2020177758 A1 WO 2020177758A1 CN 2020078116 W CN2020078116 W CN 2020078116W WO 2020177758 A1 WO2020177758 A1 WO 2020177758A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
running
track
elevator
braking
Prior art date
Application number
PCT/CN2020/078116
Other languages
English (en)
French (fr)
Inventor
周立波
Original Assignee
湖南大举信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910172657.9A external-priority patent/CN110155826A/zh
Priority claimed from CN201911023262.9A external-priority patent/CN110817645A/zh
Application filed by 湖南大举信息科技有限公司 filed Critical 湖南大举信息科技有限公司
Priority to US17/593,051 priority Critical patent/US11840424B2/en
Priority to JP2021551877A priority patent/JP7395199B2/ja
Publication of WO2020177758A1 publication Critical patent/WO2020177758A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/022Guideways; Guides with a special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0035Arrangement of driving gear, e.g. location or support
    • B66B11/0045Arrangement of driving gear, e.g. location or support in the hoistway
    • B66B11/005Arrangement of driving gear, e.g. location or support in the hoistway on the car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0226Constructional features, e.g. walls assembly, decorative panels, comfort equipment, thermal or sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/26Positively-acting devices, e.g. latches, knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/003Kinds or types of lifts in, or associated with, buildings or other structures for lateral transfer of car or frame, e.g. between vertical hoistways or to/from a parking position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable

Definitions

  • the invention relates to the technical field of elevator structures, in particular to an operation system for an elevator and a multi-car elevator operation system.
  • the elevator car Since the invention of the elevator in 1854, the elevator car has always been driven by wire rope sheaves. This drive mode makes it usually only possible to run one car in a single hoistway.
  • the elevator in single-car operation mode is used in low-rise buildings and passenger flow. The floor with a small volume can still meet the demand. With the rapid development of modern cities, high-rise buildings and super high-rise buildings with large population density have emerged. The shortcomings of long waiting time and low transportation efficiency of elevators in single-car operation mode have been continuously magnified. The operation mode of the car elevator has been difficult to adapt to the needs of the rapid development of modern urban buildings.
  • the wire rope traction drive mode runs, by setting the machine room, traction motor and deceleration device on the top of the building, driving the wire rope to pull the car and counterweight to run on the track in the hoistway.
  • the brake of the steel rope traction drive elevator adopts the method of matching the traction machine brake and the safety gear mechanical brake.
  • the traction machine brake is realized by circuit control. When the elevator runs overspeed, the power supply circuit is cut off to stop the traction machine. When the brake of the traction machine fails, and the elevator is going down at this time, the speed limiter will jam the wire rope, forcing the safety gear to move, and forcibly stopping the elevator on the guide rail.
  • the present invention provides an elevator operation system and a multi-car elevator operation system, which can enhance the safety of the elevator during operation and can realize The high-speed operation of the car satisfies the speed requirements of high-rise elevators.
  • the technical solution proposed by the present invention is:
  • An operation system for an elevator includes a car, a running track, and a driving mechanism.
  • the car moves on the running track through the driving mechanism.
  • the running system does not include a traction part.
  • the driving mechanism is provided with a climbing module, the climbing module is close to the running track, and the car runs on the running track through the climbing module.
  • the climbing module includes a pressure component and at least one set of attachment components, the attachment component moves on the running track, and the attachment component is pressed against the running track by the pressure component.
  • a sliding friction force is generated between the attachment assembly and the running track to make the car run.
  • the attachment component rolls on the running track.
  • G is the car gravity
  • m is the car mass
  • a is the car acceleration
  • the attachment component moves on a running track, and the friction coefficient f between the running track and the attachment component is greater than 0.4.
  • the pressure applied by the pressing component to the attachment component is not less than F/f, where F is the friction between the attachment component and the running track.
  • the attachment component is made of rubber, which may be solid rubber.
  • the attachment assembly may be provided with circular rolling elements.
  • the attachment component may be a tire.
  • the attachment assembly may also be provided with a non-circular member for rolling and moving on the running track.
  • the attachment assembly can be a crawler.
  • the attachment assembly includes a driving part and at least two running parts, the running part moves on the running track, and the driving part drives the running part through a rotating shaft.
  • the pressing component changes the rolling friction force between the running member and the running track through the rotating shaft.
  • the moving part is provided with a limiting part.
  • each running track corresponds to a running part
  • the running part is driven by a rotating shaft
  • each running part is provided with a pressure part
  • the running part passes through the extension of the pressure part. Lengthen or shorten to increase or decrease the pressure between the running track.
  • each running track corresponds to two running parts.
  • the two running parts of the same running track are driven by different rotating shafts.
  • the two running parts of the same running track are provided with one corresponding Pressure components.
  • the operating system is provided with a brake mechanism, and the car stops moving or reduces the moving speed through the brake mechanism.
  • the running system is provided with a brake track, the brake track and the running track are the same track, or the brake track is separately arranged and does not intersect the running track.
  • the braking mechanism is provided with at least one set of braking devices, the braking device is installed on the car, the braking device clamps the running track when the car is working, and the braking device is connected with the car when the car is working normally.
  • the brake track does not touch.
  • the braking mechanism is provided with at least one set of self-locking device, the self-locking device is installed on the car, and the self-locking device locks when the braking device fails to work normally or the car does not move. Tighten the brake track.
  • the brake track is provided with at least one locking member, and the self-locking device is in cooperation with the locking member when in use.
  • the braking device is provided with a clamping part, and when the car is working normally, the clamping part releases the braking track; when the braking device is working, the clamping part clamps the braking track.
  • the driving mechanism is provided with an attitude adjustment assembly for adjusting the balance of the car.
  • the present invention also provides a multi-car elevator operation system, the operation system is provided with a plurality of cars and at least two sets of running rails, each of the running rails can be used for car movement; the running system is also provided There is at least one switching mechanism and the above-mentioned driving mechanism.
  • the car moves on the running track through the driving mechanism, and different running tracks are connected by a switching mechanism, and the car is switched to different running tracks through the switching mechanism.
  • the operating system is provided with the above braking mechanism.
  • the switching mechanism includes a rotating part and a switching track, and the switching track is connected or disconnected with two running tracks through the rotation of the rotating part.
  • the driving mechanism is further provided with a control system, and the control system includes an electrically connected monitoring module and a processing module;
  • the monitoring module is used to monitor the operation data of the car and transmit the data to the processing module;
  • the processing module sends instructions to the pressure component according to the data monitored by the monitoring module.
  • the monitoring module is used to monitor the weight, speed, and balance of the car.
  • the operating system for elevators and the multi-car elevator operating system of the present invention have the following advantages:
  • the operating system of the present invention is applicable to all elevators, and is not limited to whether the elevator system is equipped with a traction part. It has a wide range of applications and can be applied to any elevator system; it is driven by a motor and preset linear operation in the elevator shaft
  • the rail-fitted attachment component relies on the friction between the attachment component and the running track to achieve the lifting of the car.
  • the driving mechanism of the present invention has high safety performance because there is no risk of traction rope breakage of the traction elevator; the driving mechanism has low operating noise and low vibration.
  • the driving mechanism of the present invention can realize the high-speed operation of the car and meet the speed requirements of high-rise elevators; it can realize that multiple cars can run in a hoistway at the same time, which solves the problem that conventional elevators can only operate in a single hoistway and a single car. problem.
  • the brake mechanism of the present invention can make the car not equipped with a traction part, reduce the structure of the elevator system, reduce the cost, and reduce the engineering construction time.
  • the braking device is simple to drive, easy to control, stable in braking performance, not easy to be damaged, and simple to maintain; the self-locking device has good reliability and high safety.
  • Fig. 1 is a schematic diagram of the structure of the driving mechanism of the present invention.
  • Fig. 2 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Fig. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • Fig. 4 is a schematic structural diagram of Embodiment 3 of the present invention.
  • Figure 5 is a schematic structural diagram of Embodiment 4 of the present invention.
  • Fig. 6 is a schematic structural diagram of Embodiment 5 of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the brake mechanism of the sixth embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a brake mechanism in Embodiment 7 of the present invention.
  • Fig. 9 is a working schematic diagram of the braking mechanism during operation in Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of the structure of the running track in Embodiment 7 of the present invention.
  • Figure 11 is a schematic diagram of the structure of the brake device of the present invention.
  • Figure 12 is a schematic structural diagram of the self-locking device of the present invention.
  • Figure 13 is a schematic diagram of the operation of multiple cars of the present invention.
  • FIGS 1 and 2 show an embodiment of the present invention for an elevator operating system.
  • the elevator operating system includes a car 21, a running track 1 and a driving mechanism.
  • the car 21 is driven by the driving mechanism to move up or down on the running track.
  • the running system may not be provided with the traction part in the prior art, that is, not provided with the wire rope traction drive.
  • the operating system is provided with a hoistway
  • the running track 1 is installed in the hoistway
  • the car 21 is up and down in the hoistway.
  • the car 21 includes a box body 23 and a platform 24.
  • the box body 23 is installed in the platform frame 24.
  • the driving mechanism is provided with a climbing module.
  • the climbing module includes a pressure component and at least one set of attachment components.
  • the attachment components are installed on the platform 24 ,
  • the box body 23 is used for loading passengers, the attachment assembly moves on the running track, and the attachment assembly is tightly attached to the running track 1 through the pressing assembly.
  • each hoistway The car 21 runs on the running track 1 by a driving mechanism.
  • the running track 1 is made of steel.
  • the running parts 5 are made of solid rubber. In this embodiment, rubber tires are used.
  • a rotating shaft 61 is connected to the driving member.
  • the driving part is a motor 53 and the attachment assembly is also provided with a reducer 54.
  • the motor 53 and the reducer 54 are fixed on the platform 24 by bolts.
  • the motor 53 drives the two rotating shafts 61 to rotate through the reducer 54 to drive the tires to rotate.
  • the four tires are respectively closely attached to the four preset running rails 1 of the hoistway, and the running rail 1 of the hoistway is fixed on the wall.
  • Each pressure component includes a thrust piece and two pressure pieces.
  • the thrust piece uses a hydraulic pump 52, and the pressure piece is composed of a hydraulic cylinder 51 and a pressure rod 55.
  • the pressure rod 55 is connected to the rotating shaft 61, and a universal joint is provided between the pressure rod 55 and the rotating shaft 61, so that the reducer 54 and the motor 53 can be fixed, the pressure component can apply pressure to the tire, so that the tire can have Sufficient frictional force moves on the running track 1 to drive the car up or down.
  • the hydraulic cylinders 51 at both ends of the hydraulic pump 52 are connected to two rotating shafts 61 with opposite rotation speeds.
  • the hydraulic pump 7 drives the hydraulic cylinder 51 and the pressure rod 55 to extend or shorten, and the pressure rod 55 is extended or shortened to increase or decrease the pressure on the rotating shaft 61 to ensure the safe operation of the car.
  • the solid tire is made of polyurethane microporous elastomer.
  • the raw materials for the synthesis of microporous elastomers include polyols, diisocyanates, chain extenders, catalysts, blowing agents, foam leveling agents and other additives. Other additives include flame retardants, antioxidants and colorants.
  • Polyurethane microcellular elastomer solid tires are available in two types: unreinforced and reinforced. The former is light-duty and the latter is heavy-duty. In this embodiment, the solid tire adopts a heavy-duty type and is composed of an elastomer, a reinforcing material and a traveler.
  • the cumulative bonding width between the outer surface of the tire and the running track is at least 145mm.
  • the tire surface is provided with anti-skid patterns.
  • a rim 6 is provided on the inner side of the tire, and the rim 6 is attached to the running track 1 to guide the movement of the tire on the running track 1 while limiting the lateral displacement of the car.
  • the friction coefficient of the dry friction condition of rubber and steel is as follows:
  • the coefficient of static friction is 0.8 to 0.9.
  • the weight of the passenger car is about 2t, and the highest acceleration of the car is 1m/s 2 .
  • the width of the hoistway is 2m*2m
  • the width of the running track 1 is 200mm
  • the distance between adjacent running tracks in the same hoistway is at least 860mm
  • the distance between adjacent hoistway running tracks 1 is at least 1940mm. Therefore, the width of the tire should be smaller than the width of the running track 1.
  • the cumulative bonding width between the outer surface of the tire and the running track 1 is at least 145mm
  • the tire diameter is 300mm. Then the friction between the wall and the tire (theoretically, the friction between the running track 1 and the tire) is
  • the friction force needs to be greater than the car's gravity and inertia force. Taking the friction coefficient of 0.8 as an example, it can be concluded that the pressure component at least needs to exert pressure on the tire under the condition of ensuring safety, which is:
  • each tire receives a pressure of 6875N.
  • the hydraulic components currently on the market in the prior art can fully meet this pressure requirement.
  • the driving mechanism is also provided with an attitude adjustment assembly, and the attitude adjustment assembly is provided with 4 hydraulic parts 56 and a balancer 25 to maintain the balance of the car.
  • the hydraulic component 56 is composed of a hydraulic cylinder 51 and a hydraulic pump 52 with adjustable stroke.
  • the operating system is also provided with a brake mechanism.
  • the brake mechanism may be a brake commonly used in elevator systems in the prior art, or the brake mechanism in Embodiment 4 or Embodiment 5 may be used.
  • the brake adopts the guide rail brake 12, and the bottom of the platform 24 is provided with two pairs of guide rail brakes 12 to impose constraints on the car 21 during operation, so that the car will not shake.
  • the monitoring module detects a safety problem in the car 21, for example, when the speed of the car is greater than the rated speed or the acceleration of the car exceeds 1.2 times the rated acceleration, the guide rail brake 12 will clamp the running track 1 to give an emergency to the car.
  • the role of braking is a safety problem in the car 21, for example, when the speed of the car is greater than the rated speed or the acceleration of the car exceeds 1.2 times the rated acceleration.
  • the driving mechanism is also provided with a control system, and the control system includes a monitoring module and a processing module that are electrically connected.
  • the monitoring module is used to monitor the car operating data and transmit the data to the processing module; the processing module sends instructions to the pressure component according to the data monitored by the monitoring module.
  • the monitoring module is used to monitor the weight, speed, and balance of the car.
  • the processing module is the processor 8, and the monitoring module includes a weight sensor, a speed sensor, and a balancer 25 installed in the car.
  • the tyre may cause the box 23 to tilt slightly in the horizontal direction.
  • the balancer 25 measures the tilt angle of the box 23 and transmits the data to the processor 8, which controls the attitude Adjust the four hydraulic components 56 of the assembly to stretch or compress the hydraulic cylinder of the hydraulic component 56 to adjust the relative angular position of the platform 24 and the box 23, so that the car can always remain stable and vertical, thereby improving the comfort of elevator passengers degree.
  • Figure 3 shows a second embodiment of the present invention applied to an elevator operating system.
  • the main difference between this embodiment and the first embodiment is that there are two running rails 1 in a hoistway, and two tires are correspondingly equipped, and they are in close contact with the corresponding running rails 1 respectively.
  • Each tire is equipped with a drive and a set of pressure components. The two pressure components apply pressure to the corresponding tire at the same time, so that it can have sufficient friction to drive it. The up or down of the car.
  • Figure 4 shows a third embodiment of the present invention applied to an elevator operating system.
  • the main difference between this embodiment and embodiment 1 is that there are two running rails 1 in a hoistway, four tires are equipped, two tires are tightly attached to one running rail 1, and the two running rails 1 are respectively Located in the middle of both sides of the car.
  • the pressure component provides sufficient tension to the two rubber tires.
  • the driving member makes the two tires rotate toward each other at the same time to drive the car up or down. The forces exerted by the two tires on the running track 1 cancel each other out, which greatly reduces the force on the wall.
  • a rim 6 is provided on the inner side of the tire to guide the movement of the tire on the running track 1 and at the same time limit the lateral displacement of the car.
  • Figure 5 shows a fourth embodiment of the driving mechanism of the present invention used in an elevator operating system.
  • the running member 5 of this embodiment adopts rubber crawlers.
  • the rubber track is tightly attached to the running track 1.
  • Each rubber track is equipped with a set of pressure components, so that it can have enough friction to drive the car up or down.
  • the driving mechanism for the elevator operation system of the present invention provides a new elevator driving mode, and compared with the traditional traction elevator, there is no need to set up a machine room. Moreover, it is easier to realize the mode of simultaneous operation of multiple cars in a single shaft, which greatly improves the operation efficiency of the elevator.
  • the number of running tracks 1 in the hoistway and the way of matching the tires can be changed according to actual use.
  • the pressure component can also be driven by a motor to drive a tie rod to apply pressure to the tire, or electromagnetically to apply pressure to the tire.
  • Fig. 6 shows a fifth embodiment of the driving mechanism of the present invention for an elevator operating system.
  • the running member 5 of this embodiment adopts solid tires
  • the running track adopts a single track as the rear side of the system.
  • the solid tire fits tightly with the running track 1.
  • the solid tire is equipped with a set of pressure components, so that it can have enough friction to drive the car up or down.
  • the driving mechanism for the elevator operation system of the present invention provides a new elevator driving mode, and compared with the traditional traction elevator, there is no need to set up a machine room. Moreover, it is easier to realize the mode of simultaneous operation of multiple cars in a single shaft, which greatly improves the operation efficiency of the elevator.
  • the number of running tracks 1 in the hoistway and the way in which the tires fit can be changed with actual use.
  • the pressure component can also be driven by a motor to drive a tie rod to apply pressure to the tire, or electromagnetically to apply pressure to the tire or use an elastic element directly put pressure on.
  • Figures 7, 11 and 12 show an embodiment of the braking mechanism in the operating system of the present invention.
  • the running system is equipped with a braking mechanism.
  • the elevator is equipped with a car system 2 and a running track 1.
  • the car 21 is up or down on the running track 1.
  • the braking mechanism includes a brake device 3 and a self-locking device 4.
  • the brake device 3 is provided with at least A group.
  • the brake rail is composed of two rigid rails 9 and a helical toothed rail 13 to prevent the car 21 from falling. All the rails are installed in the hoistway, and the brake rail 9 and the helical toothed rail 13 are installed. On the multiple supporting beams arranged longitudinally, the beams are fixed in the hoistway.
  • the brake device 3 is installed on the car 21. There are four sets of brake devices 3, which are located at the four corners of the car 21, and are arranged in two rows. Each brake device 3 and the edge of the car 21 are the smallest The distance is the same, and the brakes are arranged symmetrically.
  • the driving part of the brake device is an electric cylinder 31, and there are two electric cylinders 31.
  • the brake device 3 is provided with a clamping portion 33.
  • the clamping portion 33 includes a mounting seat 33-1 and two clamping pieces.
  • the first clamping piece 33-2 is hinged with the piston rod of the electric cylinder 31, and the second clamping
  • the piece 33-4 is mounted on the mounting base 33-1.
  • the clamping portion 3 further includes a guide assembly, which includes a sliding assembly and two guide seats, and the guide seats are fixed on the mounting seat.
  • the second clamping piece 33-4 is provided with a through hole
  • the sliding assembly is provided with a connecting rod assembly and two sliding blocks
  • the sliding block 33-6 is slidably arranged in the groove of the first guide seat 33-8.
  • the connecting rod assembly includes a first connecting rod 33-5 and a second connecting rod group. One end of the first connecting rod 33-5 is fixedly connected to the first clamping piece 33-2, and the other end passes through the through hole to connect to the second connecting rod group. Articulated.
  • the second connecting rod group is provided with two groups of rotating connecting rods, each group of rotating connecting rods is provided with two third connecting rods 33-7, which are in a "V" shape, and one end of the third connecting rod 33-7 is connected to the first connecting rod. The other end is hinged with the slider 33-6.
  • the second guide seat 33-9 is provided with two guide grooves, the second clamping piece 33-4 is fixed to the second guide seat 33-9, and both ends of the first clamping piece 33-2 are provided with protrusions. Sliding in the guide groove.
  • the first clamping piece 33-2 and the second clamping piece 33-4 are provided with friction blocks 33-3.
  • the first clamping piece 33-2 When braking, the first clamping piece 33-2 is driven by the electric cylinder 31 to approach the second clamping piece 33-4 along the guide groove to clamp the brake track 9 while the two sliding blocks 33-6 slide to both sides.
  • the clamping of the two clamping pieces has a locking effect.
  • the first clamping piece 33-2 must be driven by the electric cylinder 31 to move away from the second clamping piece 33-4.
  • the self-locking device 4 includes a self-locking piece 41, a mounting block and a driving component.
  • the mounting block has two pieces and is fixedly connected to the car 21.
  • the self-locking component and the driving component are installed on the car through different mounting blocks. on.
  • One end of the self-locking member 41 is hinged with the mounting block, and the other end is provided with a locking hook.
  • the driving assembly includes a push rod 45, a moving block 43 and a connecting rod 42.
  • the moving block 43 is slidably arranged in the groove of the mounting block.
  • the middle of the push rod is hinged to the car 21.
  • There are two connecting rods. One end of the first connecting rod 42 is connected with The self-locking member 41 is hinged, the other end is hinged with the moving block 43, one end of the second connecting rod 44 is hinged with the moving block 43, and the other end is hinged with the push rod 45.
  • the self-locking device further includes a limit block and a limit pin 46, the limit block is fixed on the car 21, the limit pin 46 passes through the hole on the limit block, and one end of the push rod 45 is connected to the second The rod 44 is hinged, and the other end is detachably inserted into the limit pin 46.
  • the limit pin 46 is fixedly connected to the limit block.
  • the push rod 45 is driven to insert or leave the limit pin through a driving member.
  • the driving part can be an electric cylinder, an air cylinder, etc., any power source that can realize the movement of the push rod in the prior art.
  • the push rod 45 is driven by the driving member to rotate around the central hinge point, pushing the moving block 43 to slide, and then the self-locking member 41 is driven to rotate through the first connecting rod 42.
  • the locking member is a helical tooth-shaped track 13 with helical teeth.
  • the push rod 45 is pushed so that the locking hook of the self-locking member 41 matches with the helical tooth-shaped track 13, that is, the hook-shaped teeth and the helical tooth on the brake track
  • the track 13 cooperates to lock the car on the track to ensure the safety of passengers.
  • Figures 8 to 10 show the second embodiment of the braking mechanism in the operating system of the present invention.
  • the operating system in this embodiment is also provided with a guide rail 11, 11 can be arranged separately, parallel to the running track 1, or the guiding track 11 and the running track 1 are the same track.
  • the guide rail 11, the brake rail 9 and the helical toothed rail 13 are installed on a plurality of supporting beams arranged longitudinally, and the beams are fixed in the hoistway.
  • the car is provided with four fixing seats, and the fixing seats are fixed on the car and located at the four corners of the car 21 respectively.
  • the fixed seat is provided with three guide wheels 22 which are respectively attached to the three surfaces of the guide rail 11 on the running track 1 to ensure that the car 21 will never derail.
  • the braking mechanism of this embodiment can be applied to the existing elevator structure, and is also used in the multi-car elevator structure.
  • the running track 1 and the braking track can be located on the same side of the car or on different sides.
  • the fixing seat and the running rail 1 are provided on the same side.
  • Figure 13 shows an embodiment of the multi-car elevator operating system of the present invention.
  • the operating system includes a car 21, a running track 1, a driving mechanism and a switching mechanism.
  • the operating system does not include a traction part, and the switching mechanism includes multiple rotations.
  • Department and switching track 7, and a set of running track 1 is set in each hoistway.
  • the structure of the car 21, the driving mechanism and the running track are the same as in the first embodiment.
  • the turning part adopts a switch 71, each well is provided with a switch 71, and the switching rail 7 is connected or disconnected with the running rails 1 in the two wells through the rotation of the switch 71.
  • the switching principle of the turnout is the same as the switching principle of the train track, and the equipment that can switch the train track in the prior art can be used in the switching mechanism of this embodiment.
  • multiple cars of the elevator system are in parallel on the preset running track 1.
  • the car will switch to the switching track 7 in advance to continue moving forward.
  • the guide formed by the contact between the switch 71 and the running track 1 guides the car forward, and the switch 71 cooperates with the rim 6 to forcibly change the running track of the car and switch to a different running track.
  • the principle of realizing track cutting is similar to that of a train, so I won't describe it too much here.
  • the platform 24 when the car is changing tracks, the platform 24 gradually tilts along with the switching process.
  • the balancer 25 measures the tilt angle of the box 23 and transmits the data to the processor 8 and the processor 8 Control the hydraulic parts of the posture adjustment assembly to stretch or compress the hydraulic cylinders of the hydraulic parts to adjust the relative angular position of the platform 24 and the box 23, so that the car can always be kept level.
  • the operating system is also provided with a braking mechanism.
  • the braking mechanism can be the rail brake 12, the braking mechanism of Embodiment 5 or the braking mechanism of Embodiment 6, wherein the braking mechanism is installed on the platform 24 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Types And Forms Of Lifts (AREA)

Abstract

一种用于电梯的运行系统,运行系统包括轿厢(21)、运行轨道(1)、驱动机构,轿厢(21)通过驱动机构在运行轨道移动,运行系统不包括曳引部。还公开了一种多轿厢电梯运行系统,运行系统设有多个轿厢(21)以及至少两套运行轨道(1),每套运行轨道(1)均可用于轿厢(21)移动;运行系统还设有至少一个切换机构以及驱动机构,轿厢(21)通过驱动机构在运行轨道(1)移动,不同的运行轨道(1)之间通过切换机构衔接,轿厢(21)通过切换机构切换于不同的运行轨道(1)。通过上述设置,能够增强电梯运行过程中的安全性,可实现轿厢的高速运行,满足高层电梯的速度要求。

Description

用于电梯的运行系统及多轿厢电梯运行系统 技术领域
本发明涉及电梯结构技术领域,尤其涉及一种用于电梯的运行系统及多轿厢电梯运行系统。
背景技术
在现代社会和经济活动中,电梯已成为不可或缺的载人或载物垂直运输工具,据统计,我国电梯数量需求的年平均增长率在20%以上,中国已经成为全世界最大的电梯市场,但在市场占有率方面,国内70%左右的市场份额为奥的斯、迅达、通力、蒂森克虏伯、三菱、日立等外资品牌占据,民族品牌只占极少部分的份额。民族品牌的电梯在技术水平、售后服务等方面都大幅度落后于发达国家,加上国外厂商对一些关键技术的封锁,使得我国电梯行业的发展举步维艰。增强电梯行业技术水平的创新能力,打破国外厂商的技术垄断,提高民族品牌电梯的市场占有率已成为当前额待解决的问题。
自1854年电梯发明以来,电梯轿厢一直采用钢丝绳轮曳引驱动的方式运行,这种驱动方式使得在单个井道内通常仅能运行一个轿厢,单轿厢运行模式的电梯在低层建筑、客流量小的楼层尚且能满足使用需求。随着现代城市的快速发展,大人口密度的高层建筑、超高层建筑拔地而起,单轿厢运行模式的电梯其候梯时间长、运送效率低的缺点被不断放大,这种传统的单轿厢电梯运行模式已难以适应现代城市建筑快速发展的需求。
钢丝绳曳引驱动的方式运行,通过在大楼顶层设置机房、曳引电机及减速装置,带动钢丝绳以拉动轿厢及配重在井道内的轨道上运行。钢丝绳曳引驱动电梯的制动则是采用曳引机制动与安全钳机械制动相配合的方式,曳引机制动通过电路控制实现,当电梯运行超速时切断供电电路使得曳引机停转。当曳引机制动失灵时,此时电梯下行,限速器将卡住钢丝绳,迫使安全钳动作,将电梯强制停在导轨上。
随着电梯的运行使用,以上钢丝绳曳引形式的制动方式存在钢丝绳磨损严重、打滑以及断裂的风险,制动越频繁,对钢丝绳的冲击越大,其使用寿命也就越低,并且钢丝绳需要定期的润滑维护及更换,其成本也较高。钢丝绳磨损严重时,如不能及时更换,则会导致刹车系统无法将轿厢刹停的问题。
随着工程技术水平的不断发展,出现了液压驱动式电梯、螺杆驱动式电梯。其中液压驱动式电梯油缸活塞的使用寿命到期以后,容易磨损或破裂,使得液压油渗漏,造成污染,其 维修性也较差。螺杆驱动式电梯因自身结构的限制主要应用在一些别墅建筑中,在高层楼层环境无法安装,并且也存在速度慢,噪音大的缺点。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种用于电梯的运行系统及多轿厢电梯运行系统,能够增强电梯运行过程中的安全性,可实现轿厢的高速运行,满足高层电梯的速度要求。
为解决上述技术问题,本发明提出的技术方案为:
一种用于电梯的运行系统,所述运行系统包括轿厢、运行轨道、驱动机构,所述轿厢通过驱动机构在运行轨道移动,所述运行系统不包括曳引部。
作为上述技术方案的进一步改进为:
上述技术方案中,所述驱动机构与运行轨道之间产生摩擦力,所述摩擦力为轿厢的驱动力。
所述驱动机构设有攀附模块,所述攀附模块贴紧于运行轨道,所述轿厢通过攀附模块在运行轨道上运行。
所述攀附模块包括施压组件和至少一组附着组件,所述附着组件移动于运行轨道上,所述附着组件通过施压组件被压紧于运行轨道。
所述附着组件与运行轨道之间产生使轿厢运行的滑动摩擦力。
所述附着组件滚动于运行轨道上。
上述技术方案中,所述附着组件与运行轨道之间的摩擦力F满足以下公式:
F=G+ma
其中,G为轿厢重力,m为轿厢质量,a为轿厢加速度。
上述技术方案中,所述附着组件移动于运行轨道上,所述运行轨道与附着组件的摩擦系数f大于0.4。
所述施压组件对附着组件施加的压力不小于F/f,其中F为附着组件与运行轨道之间的摩擦力。
上述技术方案中,所述附着组件采用橡胶制成,可以为实心橡胶。
所述附着组件可以设有圆形滚动件。
所述附着组件可以采用轮胎。
另一种方案中,所述附着组件也可以设有用于在运行轨道上滚动移动的非圆形件。
所述附着组件可以采用履带。
上述技术方案中,所述附着组件包括驱动件和至少两个运行件,所述运行件移动于运行轨道,所述驱动件通过一转轴带动运行件。
所述施压组件通过转轴改变运行件与运行轨道之间的滚动摩擦力。
所述运行件设有限位件。
所述运行轨道设有至少两个,每个所述运行轨道对应一个运行件,所述运行件通过转轴带动,所述每个运行件均设有一压力件,所述运行件通过压力件的伸长或缩短来增加或者减少与运行轨道之间的压力。
所述运行轨道设有至少两个,每个所述运行轨道对应两个运行件,同一个运行轨道的两个运行件通过不同的转轴带动,同一个运行轨道的两个运行件对应设有一个施压组件。
上述技术方案中,所述运行系统设有制动机构,所述轿厢通过制动机构停止移动或者降低移动速度。
上述技术方案中,所述运行系统设有制动轨道,所述制动轨道与运行轨道为同一轨道,或者所述制动轨道单独设置,且与运行轨道不相交。
上述技术方案中,所述制动机构设有至少一组的刹车装置,所述刹车装置安装于轿厢上,所述刹车装置工作时夹紧运行轨道,所述轿厢正常工作时刹车装置与制动轨道不接触。
上述技术方案中,所述制动机构设有至少一组自锁装置,所述自锁装置安装于轿厢上,所述刹车装置不能正常工作或者轿厢不移动时,所述自锁装置锁紧制动轨道。
所述制动轨道设有至少一个锁止件,所述自锁装置使用时,与锁止件配合连接。
所述刹车装置设有夹持部,所述轿厢正常工作时,所述夹持部松开制动轨道;所述刹车装置工作时,所述夹持部夹紧制动轨道。
上述技术方案中,所述驱动机构设有用于调整轿厢平衡度的姿态调整组件。
本发明还提出了一种多轿厢电梯运行系统,所述运行系统设有多个轿厢以及至少两套运行轨道,所述每套运行轨道均可用于轿厢移动;所述运行系统还设有至少一个切换机构以及上述的驱动机构,所述轿厢通过驱动机构在运行轨道移动,不同的运行轨道之间通过切换机构衔接,所述轿厢通过切换机构切换于不同的运行轨道。
上述技术方案中,所述运行系统设有上述的制动机构。
上述技术方案中,所述切换机构包括转动部和切换轨道,所述切换轨道通过转动部的转动与两个运行轨道连接或者断开。
上述技术方案中,所述驱动机构还设有控制系统,所述控制系统包括电连接的监测模块和处理模块;
所述监测模块用于监测轿厢运行数据,并将数据传送给处理模块;
所述处理模块根据监测模块监测的数据发送指令给施压组件。
所述监测模块用于监测轿厢的重量、速度,以及平衡度。
本发明的用于电梯的运行系统及多轿厢电梯运行系统,和现有技术相比具有以下优点:
(1)本发明的运行系统,适用于所有电梯,并且不局限于电梯系统是否设有曳引部,适用范围广,可以适用于任何电梯系统;通过电机驱动与电梯井道内预设的线性运行轨道贴合的附着组件,依靠附着组件与运行轨道之间的摩擦力来实现轿厢的升降。
(2)本发明的驱动机构由于没有曳引式电梯曳引绳断裂风险,安全性能高;驱动机构,运行噪音低,振动小。
(3)本发明的驱动机构可实现轿厢的高速运行,满足高层电梯的速度要求;可实现多台轿厢同时在一个井道内运行,解决了常规电梯通常只能单井道单轿厢运行的问题。
(4)本发明的制动机构,可以使轿厢不配备曳引部,减少电梯系统的结构,降低成本,并且减少工程施工时间。
(5)本发明的制动机构,刹车装置驱动简单,控制容易,并且刹车性能稳定,不易损坏,维护简单;自锁装置可靠性好,安全性高。
附图说明
图1是本发明驱动机构的结构示意图。
图2是本发明实施例1的结构示意图。
图3是本发明实施例2的结构示意图。
图4是本发明实施例3的结构示意图。
图5是本发明实施例4的结构示意图。
图6是本发明实施例5的结构示意图。
图7为本发明实施例6制动机构的结构示意图。
图8为本发明实施例7制动机构的结构示意图。
图9为本发明实施例7中运行时制动机构的工作示意图。
图10为本发明实施例7运行轨道的结构示意图。
图11为本发明刹车装置的结构示意图。
图12为本发明自锁装置的结构示意图。
图13是本发明多轿厢的运行示意图。
图中标号说明:
1、运行轨道;11、导向轨道;12、导轨制动器;13、斜齿形轨道;2、轿厢系统;21、轿厢;22、导向轮;23、箱体;24、台架;25、平衡仪;3、刹车装置;31、电动缸;32、连杆;33、夹持部;33-1、安装座;33-2、第一夹持片;33-3、摩擦块;33-4、第二夹持片;33-5、第一连杆;33-6、滑块;33-7、第三连杆;33-8、第一导向座;33-9、第二导向座;4、自锁装置;41、自锁件;42、第一连接杆;43、移动块;44、第二连接杆;45、推杆;46、限位销;5、运行件;51、液压缸;52、液压泵;53、电机;54、减速器;55、压力杆;56、液压件;6、轮缘;61、转轴;7、切换轨道;71、道岔;8、处理器;9、刹车轨道。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
图1和图2示出了本发明用于电梯运行系统的一种实施方式,电梯运行系统包括轿厢21、运行轨道1和驱动机构,轿厢21通过驱动机构带动在运行轨道上行或下行,运行系统可以不设置现有技术中的曳引部,即不设置钢丝绳曳引驱动。
本实施例中,运行系统设有井道,运行轨道1安装于井道内,轿厢21在井道内上下行。轿厢21包括箱体23和台架24,箱体23安装于台架24内,驱动机构设有攀附模块,攀附模块包括施压组件和至少一组附着组件,附着组件安装于台架24上,箱体23用于装载乘客,附着组件移动于运行轨道上,附着组件通过施压组件贴紧于运行轨道1。
本实施例中,每个井道内设有4个运行轨道1。轿厢21通过驱动机构在运行轨道1上运行。运行轨道1为钢铁制作,附着组件设有两组,每组附着组件包括一个驱动件和两个运行件5,运行件5采用实心橡胶制成,本实施例中采用橡胶轮胎,每个轮胎通过一个转轴61连接驱动件。驱动件为电机53,附着组件还设有减速器54,电机53、减速器54通过螺栓固定在台架24上。电机53通过减速器54带动两个转轴61转动,从而带动轮胎转动,四个轮胎分别与井道预设的四根运行轨道1紧紧贴合,井道的运行轨道1固定在墙壁上。
本实施例中,施压组件设有两组,为液压组件,每组施压组件包括一个推力件和两个压力件,推力件采用液压泵52,压力件由液压缸51与压力杆55构成,压力杆55与转轴61连接,压力杆55与转轴61之间设有万向节,使得减速器54和电机53能够在固定的情况下,施压组件可以对轮胎施加压力,使轮胎能够有足够的摩擦力在运行轨道1上进行运动而带动轿厢的上行或下行。液压泵52两端的液压缸51与转速相反的两个转轴61连接。液压泵7带动液压缸51和压力杆55伸长或者缩短,通过压力杆55的伸长或者缩短,以给予转轴61增 加压力或者缩小压力,保证轿厢的安全运行。
本实施例中,实心轮胎由聚氨酯微孔弹性体制成。合成微孔弹性体的原材料包括多元醇、二异氰酸酯、扩链剂、催化剂、发泡剂、均泡剂及其他添加剂。其他添加剂包括了阻燃剂、抗氧化剂和着色剂等。聚氨酯微孔弹性体的实心轮胎有非增强型和增强型两种,前者为轻载型,后者为重载型。本实施例中实心轮胎采用重载型,由弹性体、增强材料和钢丝圈构成。轮胎外表面与运行轨道的累计贴合宽度至少为145mm。轮胎表面设有防滑花纹。
本实施例中,在轮胎内侧面设置有轮缘6,轮缘6与运行轨道1贴合,对轮胎在运行轨道1上的运动起导向作用,同时限制轿厢的横向位移。
橡胶与钢铁的干摩擦条件的摩擦系数如下:
静摩擦系数为0.8~0.9。
通常情况下,载人轿厢的重量约为2t,轿厢的最高加速度为1m/s 2。现有电梯运行系统的设计中,井道的宽度是2m*2m,运行轨道1的宽度为200mm,同一井道内相邻运行轨道的间距最少为860mm,相邻井道的运行轨道1间距至少为1940mm,因此轮胎的宽度要小于运行轨道1的宽度,为了保证摩擦力,根据结构强度要满足安全性能要求,轮胎外表面与运行轨道1的累计贴合宽度至少为145mm,轮胎直径为300mm。则墙壁对轮胎的摩擦力(理论上即运行轨道1与轮胎的摩擦力)为
F=G+ma
其中
G=20000N
m=2000kg
a=1m/s 2
所以F=22000N
摩擦力需要大于轿厢重力及惯性力,以摩擦系数0.8为例进行计算,可以得出压力组件在保证安全的情况下至少需要对轮胎施加的压力,为:
F =22000÷0.8=27500N
则每个轮胎受到6875N的压力。目前现有技术中市面上出售的液压件完全能满足此压力要求。
本实施例中,驱动机构还设有姿态调整组件,姿态调整组件设有4个液压件56和一个平衡仪25来维持轿厢的平衡。液压件56由可调节行程的液压缸51和液压泵52组成。
本实施例中,运行系统还设有制动机构,制动机构可以采用现有技术中电梯系统常用的 制动器,也可以采用实施例4或者实施例5中的制动机构。
采用现有技术中电梯系统常用的制动器时,制动器采用导轨制动器12,台架24的底部设有两对导轨制动器12,在运行时对轿厢21施加约束,使轿厢不会发生晃动。当监测模块检测到轿厢21发生安全问题时,例如轿厢的速度大于额定速度或者轿厢的加速器超过1.2倍额定加速度时,导轨制动器12会对运行轨道1进行钳制,对轿厢起一个紧急制动的作用。
本实施例中,驱动机构还设有控制系统,控制系统包括电连接的监测模块和处理模块。监测模块用于监测轿厢运行数据,并将数据传送给处理模块;处理模块根据监测模块监测的数据发送指令给施压组件。监测模块用于监测轿厢的重量、速度,以及平衡度。处理模块为处理器8,监测模块包括安装于轿厢的重量传感器、速度传感器,以及平衡仪25。
轮胎在驱动上如果有差速的问题,可能导致箱体23在水平方向上的略微倾斜,平衡仪25测出箱体23的倾斜角度,并将数据传给处理器8,处理器8控制姿态调整组件的4个液压件56,使液压件56的液压缸拉伸或压缩从而调节台架24与箱体23的相对角度位置,使轿厢能够始终保持平稳竖直,从而提高电梯乘客的舒适度。
实施例2
图3示出了本发明用于电梯运行系统的第二种实施方式。本实施例与实施例1的区别主要在于:一个井道内的运行轨道1设有两根,轮胎相应配设有两个,分别与相应的运行轨道1紧紧贴合。每个轮胎的两侧均设有轮缘6,每个轮胎配设一个驱动件以及一组施压组件,两组施压组件同时施加压力给对应的轮胎,使之能够有足够的摩擦力带动轿厢的上行或下行。
实施例3
图4示出了本发明用于电梯运行系统的第三种实施方式。本实施例与实施例1的区别主要在于:一个井道内的运行轨道1设有两根,轮胎配设有四个,两个轮胎与一个运行轨道1紧紧贴合,两个运行轨道1分别位于轿厢的两侧中间位置。施压组件设有两组,每组施压组件分别连接两个同侧轮胎的转轴61。施压组件提供足够的拉力给两个橡胶轮胎。驱动件使两个轮胎同时相向转动带动轿厢的上行或下行。两个轮胎对运行轨道1的作用力相互抵消,大幅降低了对墙壁的作用力。
本实施例中,轮胎内侧设有轮缘6,对轮胎在运行轨道1上的运动起导向作用,同时限制轿厢的横向位移。
实施例4
图5示出了本发明用于电梯运行系统的驱动机构的第四种实施方式。本实施例与实施例1的区别主要在于:本实施例的运行件5采用橡胶履带。橡胶履带与运行轨道1紧紧贴合。每组橡胶履带配设一组施压组件,使之能够有足够的摩擦力带动轿厢的上行或下行。
本发明所述的用于电梯运行系统的驱动机构提供了一种新的电梯驱动方式,相比于传统曳引式电梯而言,不需要设立机房。并且可较容易的实现单井道多轿厢同时运行的模式,大幅提升电梯的运行效率。此外,井道中运行轨道1的数量与轮胎的配合方式可随实际使用作出改变,施压组件也可采用电动机带动拉杆从而对轮胎施加压力,或采用电磁的方式对轮胎施加压力。此类显而易见的改变均应是为了适应电梯在井道内的运行,且在本专利保护范围内所做的微小调整和改变。
实施例5
图6示出了本发明用于电梯运行系统的驱动机构的第五种实施方式。本实施例与实施例1的区别主要在于:本实施例的运行件5采用实心轮胎,且运行轨道采用单根轨道至于系统后侧。实心轮胎与运行轨道1紧紧贴合。实心轮胎配设一组施压组件,使之能够有足够的摩擦力带动轿厢的上行或下行。
本发明所述的用于电梯运行系统的驱动机构提供了一种新的电梯驱动方式,相比于传统曳引式电梯而言,不需要设立机房。并且可较容易的实现单井道多轿厢同时运行的模式,大幅提升电梯的运行效率。此外,井道中运行轨道1的数量与轮胎的配合方式可随实际使用作出改变,施压组件也可采用电动机带动拉杆从而对轮胎施加压力,或采用电磁的方式对轮胎施加压力或采取弹性元件直接施加压力。此类显而易见的改变均应是为了适应电梯在井道内的运行,且在本发明保护范围内所做的微小调整和改变。
实施例6
图7、图11、图12示出了本发明运行系统中制动机构的一种实施方式。运行系统设有制动机构,电梯设有轿厢系统2和运行轨道1,轿厢21在运行轨道1上行或者下行,制动机构包括刹车装置3、自锁装置4,刹车装置3设有至少一组。本实施例中,制动轨道设有两条为刚性轨道的刹车轨道9以及防止轿厢21下坠的斜齿形轨道13组成,所有轨道安装在井道内,刹车轨道9和斜齿形轨道13安装在纵向布置的多根支撑横梁上,横梁固定于井道内。
本实施例中,刹车装置3安装于轿厢21上,刹车装置3设有四组,分别位于轿厢21的四个角,分两排布设,每个刹车装置3与轿厢21边缘的最小距离相同,刹车装置对称布设。刹车装置的驱动件为电动缸31,电动缸31设有2件。刹车装置3设有夹持部33,夹持部33 包括安装座33-1,以及两个夹持片,第一夹持片33-2与电动缸31的活塞杆铰接,第二个夹持片33-4安装于安装座33-1。
本实施例中,夹持部3还包括导向组件,导向组件包括滑动组件和两个导向座,导向座固定于安装座上。第二个夹持片33-4开设有通孔,滑动组件设有连杆组件和两个滑块,滑块33-6滑设于第一导向座33-8的槽中。连杆组件包括第一连杆33-5和第二连杆组,第一连杆33-5一端与第一夹持片33-2固定连接,另一端穿过通孔与第二连杆组铰接。第二连杆组设有两组转动连杆,每组转动连杆设有两件第三连杆33-7,呈“V”字形,一个第三连杆33-7一端与第一连杆铰接,另一端与滑块33-6铰接。第二导向座33-9设有两个导向槽,第二个夹持片33-4固定于第二导向座33-9,第一夹持片33-2两端设有凸起,凸起滑动于导向槽中。第一夹持片33-2和第二个夹持片33-4夹持片设有摩擦块33-3。刹车时,第一夹持片33-2通过电动缸31的驱动沿导向槽靠近第二个夹持片33-4,将刹车轨道9夹紧,同时两个滑块33-6向两边滑动,对两个夹持片的夹紧起到锁定的效果。第一夹持片33-2要通过电动缸31的驱动才能远离第二个夹持片33-4。
本实施例中,自锁装置4包括自锁件41、安装块和带动组件,安装块设有两件,与轿厢21固定连接,自锁件和带动组件通过不同的安装块安装于轿厢上。自锁件41一端与安装块铰接,另一端设有锁紧钩。
带动组件包括推杆45、移动块43和连接杆42,移动块43滑设于安装块的槽内,推杆中部铰接于轿厢21,连接杆设有两件,第一连接杆42一端与自锁件41铰接,另一端与移动块43铰接,第二连接杆44一端与移动块43铰接,另一端与推杆45铰接。
本实施例中,自锁装置还包括限位块和限位销46,限位块固定于轿厢21上,限位销46穿过限位块上的孔,推杆45一端与第二连接杆44铰接,另一端与限位销46可拆卸插接。
本实施例中,限位销46与限位块固定连接。推杆45通过一驱动件驱动插入或者离开限位销。驱动件可以使电动缸、气缸等,现有技术中能实现推杆移动的动力源都可以。推杆45离开限位销46后,推杆45通过驱动件驱动,绕中部铰接点转动,推动移动块43滑动,再通过第一连接杆42带动自锁件41转动。
本实施例中,锁止件为斜齿形轨道13,带有斜齿。
当刹车装置3失效时,轿厢21会下坠,此时推动推杆45,使得自锁件41的锁紧钩与斜齿形轨道13配合,即钩型齿与制动轨道上的斜齿形轨道13配合,将轿厢锁止在轨道上,保证乘客的安全。
实施例7
图8至图10示出了本发明运行系统中制动机构的第二种实施方式,本实施例与实施例4的区别主要在于:本实施例中运行系统还设有导向轨道11,导向轨道11可以单独设置,与运行轨道1平行,或者导向轨道11与运行轨道1为同一轨道。导向轨道11、刹车轨道9和斜齿形轨道13安装在纵向布置的多根支撑横梁上,横梁固定于井道内。
本实施例中,轿厢设有四个固定座,固定座固定于轿厢上分别位于轿厢21的四个角。固定座设有三个导向轮22,分别与运行轨道1上的导向轨道11三个面贴合,能够保证轿厢21始终不会脱轨。
本实施例的制动机构即可适用于现有电梯结构,也是用于多轿厢电梯结构。
运行轨道1和制动轨道可以位于轿厢的同一侧,也可以位于不同侧。运行轨道1和制动轨道位于轿厢的不同侧时,固定座与运行轨道1设于同一侧。
实施例8
图13示出了本发明多轿厢电梯运行系统的一种实施方式,运行系统包括轿厢21、运行轨道1、驱动机构和切换机构,运行系统不包括曳引部,切换机构包括多个转动部和切换轨道7,每个井道内设置一套运行轨道1。轿厢21、驱动机构和运行轨道的结构与实施例1相同。
本实施例中,转动部采用道岔71,每个井道内均设有道岔71,切换轨道7通过道岔71的转动与两个井道内的运行轨道1连接或者断开。道岔的切换原理与火车轨道的切换原理相同,现有技术中可以实现火车轨道切换的设备都可以用于本实施例的切换机构。
本实施例中,电梯系统的多个轿厢并行在预设的运行轨道1上,当轿厢运行前方有其他轿厢减速或停止时,此轿厢便预先切换至切换轨道7继续前进,通过道岔71和运行轨道1接触形成的导向来引导轿厢前进,道岔71与轮缘6配合从而强行改变轿厢的运行轨迹,切换至不同的运行轨道。实现切轨的原理与火车类似,在此不做过多的描述。
本实施例的运行系统,轿厢在换轨的过程中,台架24随着切换过程逐渐倾斜,平衡仪25测出箱体23的倾斜角度,并将数据传给处理器8,处理器8控制姿态调整组件的液压件,使液压件的液压缸拉伸或压缩从而调节台架24与箱体23的相对角度位置,使轿厢能够始终保持水平。
本实施例中,运行系统还设有制动机构,制动机构可以采用导轨制动器12、实施例5的制动机构或者实施例6的制动机构,其中,制动机构安装于台架24上。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容, 依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (22)

  1. 一种用于电梯的运行系统,所述运行系统包括轿厢、运行轨道、驱动机构,其特征在于,所述轿厢通过驱动机构在运行轨道移动,所述运行系统不包括曳引部。
  2. 根据权利要求1所述的用于电梯的运行系统,其特征在于,所述驱动机构与运行轨道之间产生摩擦力,所述摩擦力为轿厢的驱动力。
  3. 根据权利要求2所述的用于电梯的运行系统,其特征在于,所述驱动机构设有攀附模块,所述攀附模块贴紧于运行轨道,所述轿厢通过攀附模块在运行轨道上运行。
  4. 根据权利要求3所述的用于电梯的运行系统,其特征在于,所述攀附模块包括施压组件和至少一组附着组件,所述附着组件移动于运行轨道上,所述附着组件通过施压组件被压紧于运行轨道。
  5. 根据权利要求4所述的用于电梯的运行系统,其特征在于,所述附着组件与运行轨道之间产生使轿厢运行的摩擦力。
  6. 根据权利要求5所述的用于电梯的运行系统,其特征在于,所述附着组件滚动于运行轨道上。
  7. 根据权利要求5所述的用于电梯的运行系统,其特征在于,所述附着组件设有圆形滚动件。
  8. 根据权利要求7所述的用于电梯的运行系统,其特征在于,所述附着组件设有轮胎。
  9. 根据权利要求5所述的用于电梯的运行系统,其特征在于,所述附着组件设有用于在运行轨道上滚动移动的非圆形件。
  10. 根据权利要求9所述的用于电梯的运行系统,其特征在于,所述附着组件设有履带。
  11. 根据权利要求5所述的用于电梯的运行系统,其特征在于,所述附着组件移动于运行轨道上,所述运行轨道与附着组件的摩擦系数f大于0.4。
  12. 根据权利要求8所述的用于电梯的运行系统,其特征在于,所述施压组件对附着组件施加的压力不小于F/f,其中F为附着组件与运行轨道之间的摩擦力。
  13. 根据权利要求1所述的用于电梯的运行系统,其特征在于,所述运行系统设有制动机构,所述轿厢通过制动机构停止移动或者降低移动速度。
  14. 根据权利要求13所述的用于电梯的运行系统,其特征在于,所述运行系统设有制动轨道,所述制动轨道与运行轨道为同一轨道,或者所述制动轨道单独设置,且与运行轨道不相交。
  15. 根据权利要求13所述的用于电梯的运行系统,其特征在于,所述制动机构设有至少一组的刹车装置,所述刹车装置安装于轿厢上,所述刹车装置工作时夹紧运行轨道,所述轿厢正常工作时刹车装置与制动轨道不接触。
  16. 根据权利要求15所述的用于电梯的运行系统,其特征在于,所述制动机构设有至少一组自锁装置,所述自锁装置安装于轿厢上,所述刹车装置不能正常工作或者轿厢不移动时,所述自锁装置锁紧制动轨道。
  17. 根据权利要求16所述的用于电梯的运行系统,其特征在于,所述制动轨道设有至少一个锁止件,所述自锁装置使用时,与锁止件配合连接。
  18. 根据权利要求15所述的用于电梯的运行系统,其特征在于,所述刹车装置设有夹持部,所述轿厢正常工作时,所述夹持部松开制动轨道;所述刹车装置工作时,所述夹持部夹紧制动轨道。
  19. 根据权利要求1所述的用于电梯的运行系统,其特征在于,所述驱动机构设有用于调整轿厢平衡度的姿态调整组件。
  20. 一种多轿厢电梯运行系统,其特征在于,所述运行系统设有多个轿厢以及至少两套运行轨道,所述每套运行轨道均可用于轿厢移动;所述运行系统还设有至少一个切换机构以及权利要求1~12任一项所述的驱动机构,所述轿厢通过驱动机构在运行轨道移动,不同的运行轨道之间通过切换机构衔接,所述轿厢通过切换机构切换于不同的运行轨道。
  21. 根据权利要求20所述的多轿厢电梯运行系统,其特征在于,所述运行系统设有权利要求13~18任一项所述的制动机构。
  22. 根据权利要求20所述的多轿厢电梯运行系统,其特征在于,所述切换机构包括转动部和切换轨道,所述切换轨道通过转动部的转动与两个运行轨道连接或者断开。
PCT/CN2020/078116 2019-03-07 2020-03-06 用于电梯的运行系统及多轿厢电梯运行系统 WO2020177758A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/593,051 US11840424B2 (en) 2019-03-07 2020-03-06 Running system for elevator, and multi-car elevator running system
JP2021551877A JP7395199B2 (ja) 2019-03-07 2020-03-06 エレベータ用の運行システム及びマルチカーエレベータ運行システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910172657.9 2019-03-07
CN201910172657.9A CN110155826A (zh) 2019-03-07 2019-03-07 用于电梯运行系统的驱动机构及多轿厢电梯运行系统
CN201911023262.9A CN110817645A (zh) 2019-10-25 2019-10-25 电梯制动系统
CN201911023262.9 2019-10-25

Publications (1)

Publication Number Publication Date
WO2020177758A1 true WO2020177758A1 (zh) 2020-09-10

Family

ID=72338367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078116 WO2020177758A1 (zh) 2019-03-07 2020-03-06 用于电梯的运行系统及多轿厢电梯运行系统

Country Status (3)

Country Link
US (1) US11840424B2 (zh)
JP (1) JP7395199B2 (zh)
WO (1) WO2020177758A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115384648A (zh) * 2022-08-25 2022-11-25 中际联合(北京)科技股份有限公司 攀爬设备和攀爬系统
WO2023045529A1 (zh) * 2021-09-24 2023-03-30 中际联合(北京)科技股份有限公司 模块化升降设备和升降系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220063958A1 (en) * 2020-08-25 2022-03-03 Otis Elevator Company Ropeless elevator building to building mobility system
EP4001196A1 (en) * 2020-11-13 2022-05-25 Philippe Henneau Sustainable pneumatic elevator system and methods
US12319542B2 (en) * 2022-03-10 2025-06-03 Hyprlift, Inc. Dynamic tractive drive for vertical transportation system
JP7307901B1 (ja) 2022-05-02 2023-07-13 フジテック株式会社 移動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2692115Y (zh) * 2004-04-12 2005-04-13 苏州东南液压电梯有限公司 无机房摩擦驱动电梯
JP2008230790A (ja) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp 自走式エレベータ装置
CN101973478A (zh) * 2010-10-22 2011-02-16 湖南海诺电梯有限公司 一种托架式滚轮摩擦驱动系统
CN203922382U (zh) * 2014-07-08 2014-11-05 吴伟继 一种循环电梯
US9856111B1 (en) * 2009-04-24 2018-01-02 Paul Anderson Elevator structure and brake system therefor
CN109422161A (zh) * 2017-08-19 2019-03-05 周立波 一种智能多轿厢电梯
CN110155826A (zh) * 2019-03-07 2019-08-23 湖南大举信息科技有限公司 用于电梯运行系统的驱动机构及多轿厢电梯运行系统
CN110817645A (zh) * 2019-10-25 2020-02-21 湖南大举信息科技有限公司 电梯制动系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272987A (ja) * 1990-03-22 1991-12-04 Takenaka Komuten Co Ltd エレベータ装置
JP2756185B2 (ja) * 1990-11-26 1998-05-25 株式会社竹中工務店 エレベータ装置
HU213428B (en) * 1992-10-27 1997-06-30 Inventio Ag Self propelled device mainly for passanger carriing
JP3090809B2 (ja) * 1993-03-05 2000-09-25 株式会社東芝 自走式エレベータ
JP2686046B2 (ja) * 1994-08-29 1997-12-08 火森 黄 車両などの昇降装置
DE69921567D1 (de) * 1998-08-24 2004-12-09 Daido Kogyo Kk Selbstangetriebener Gerät zur Treppenüberschreitung
AR018972A1 (es) * 2000-01-13 2001-12-12 Serrano Jorge DISPOSICIoN AUToNOMA DE TRANSPORTE Y VEHíCULO AUToNOMO DE TRANSPORTE.
JP2002193567A (ja) 2000-12-28 2002-07-10 Ishikawajima Plant Construction Co Ltd 橋梁の橋塔用エレベータ
JP2002338175A (ja) 2001-04-27 2002-11-27 Otis Elevator Co 自走式エレベータ
JP2007131402A (ja) 2005-11-10 2007-05-31 Toshiba Elevator Co Ltd マルチカーエレベータ
WO2007080626A1 (ja) * 2006-01-10 2007-07-19 Mitsubishi Denki Kabushiki Kaisha エレベータ装置
CN205709299U (zh) 2016-04-20 2016-11-23 康达电梯有限公司 一种新型电梯防坠落装置
CN109466995B (zh) * 2017-09-08 2020-11-27 奥的斯电梯公司 简单支撑的再循环电梯系统
US20230060525A1 (en) * 2021-08-27 2023-03-02 George Bergman Green Elevator System Using Weightless Ropes Traction Concept And Related Applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2692115Y (zh) * 2004-04-12 2005-04-13 苏州东南液压电梯有限公司 无机房摩擦驱动电梯
JP2008230790A (ja) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp 自走式エレベータ装置
US9856111B1 (en) * 2009-04-24 2018-01-02 Paul Anderson Elevator structure and brake system therefor
CN101973478A (zh) * 2010-10-22 2011-02-16 湖南海诺电梯有限公司 一种托架式滚轮摩擦驱动系统
CN203922382U (zh) * 2014-07-08 2014-11-05 吴伟继 一种循环电梯
CN109422161A (zh) * 2017-08-19 2019-03-05 周立波 一种智能多轿厢电梯
CN110155826A (zh) * 2019-03-07 2019-08-23 湖南大举信息科技有限公司 用于电梯运行系统的驱动机构及多轿厢电梯运行系统
CN110817645A (zh) * 2019-10-25 2020-02-21 湖南大举信息科技有限公司 电梯制动系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045529A1 (zh) * 2021-09-24 2023-03-30 中际联合(北京)科技股份有限公司 模块化升降设备和升降系统
CN115384648A (zh) * 2022-08-25 2022-11-25 中际联合(北京)科技股份有限公司 攀爬设备和攀爬系统
CN115384648B (zh) * 2022-08-25 2024-03-15 中际联合(北京)科技股份有限公司 攀爬设备和攀爬系统

Also Published As

Publication number Publication date
US20220185627A1 (en) 2022-06-16
US11840424B2 (en) 2023-12-12
JP7395199B2 (ja) 2023-12-11
JP2022522801A (ja) 2022-04-20

Similar Documents

Publication Publication Date Title
WO2020177758A1 (zh) 用于电梯的运行系统及多轿厢电梯运行系统
CN110155826A (zh) 用于电梯运行系统的驱动机构及多轿厢电梯运行系统
WO2021018235A1 (zh) 多轿厢无缆电梯系统
CN108382942B (zh) 一种双层轿厢电梯
US11261056B2 (en) Elevator safety actuator systems
CN111204623A (zh) 一种电梯系统
CN107933599B (zh) 一种轨道车辆防脱轨防倾覆装置及轨道车辆转向架
CN113979261A (zh) 一种自锁保护型电梯升降机
US20160137458A1 (en) Transportation system
CN114249190B (zh) 用于多轿厢智能电梯系统的轨道结构
CN212581308U (zh) 一种电梯对重曳引轮
CN213294354U (zh) 一种用于箱式电梯升降的起升机构
CN111362094B (zh) 一种电梯用安全钳和夹绳器联动机构及其使用方法
CN210366474U (zh) 电梯超速下滑检测与保护装置
CN208454198U (zh) 一种电梯急停装置
CN219449159U (zh) 一种电梯曳引轮
CN212425053U (zh) 一种电梯紧急缓冲保护机构
CN218579378U (zh) 一种电梯机房布置结构
CN220011774U (zh) 一种无机房下提拉安全钳
CN221140782U (zh) 一种升降机电缆导向滑车
CN214141151U (zh) 一种电梯的安全系统
CN217732391U (zh) 别墅电梯门防夹装置
CN214298828U (zh) 无绳电梯
CN216444845U (zh) 一种电梯坠落抱死固定装置
CN219859986U (zh) 一种电梯失速保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766647

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20766647

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20766647

Country of ref document: EP

Kind code of ref document: A1