WO2020166113A1 - 操舵制御装置 - Google Patents
操舵制御装置 Download PDFInfo
- Publication number
- WO2020166113A1 WO2020166113A1 PCT/JP2019/032228 JP2019032228W WO2020166113A1 WO 2020166113 A1 WO2020166113 A1 WO 2020166113A1 JP 2019032228 W JP2019032228 W JP 2019032228W WO 2020166113 A1 WO2020166113 A1 WO 2020166113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- steering angle
- control device
- reaction force
- actual
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 73
- 238000006243 chemical reaction Methods 0.000 claims description 121
- 230000001133 acceleration Effects 0.000 claims description 33
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 82
- 230000008569 process Effects 0.000 description 40
- 238000010586 diagram Methods 0.000 description 32
- 230000005540 biological transmission Effects 0.000 description 19
- 230000008859 change Effects 0.000 description 16
- 238000004891 communication Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/008—Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
Definitions
- the present invention relates to a steering control device that constitutes a steer-by-wire that does not have a physical connection between a steering shaft and a vehicle wheel actual steering angle.
- Patent Document 1 proposes a technique for calculating an actual steering angle based on a steering angle detected by a steering angle detection unit and an angle gain.
- a wheel angle control unit is provided.
- the value of the angle gain ⁇ 11 is set larger than the standard value. For example, in the case of a vehicle whose standard value of the angle gain ⁇ 11 is 1/15, the angle gain ⁇ 11 is set to 1/10 when an obstacle is detected. As a result, it is described that when an obstacle is detected, the vehicle is easily bent about 1.5 times as much as during normal traveling, so that maneuverability (obstacle avoidance) is improved.
- the detected steering angle and the actual steering angle are in a proportional relationship, and although an obstacle can be avoided by changing the proportional angle gain, the driver's operation during normal traveling No consideration is given to ensuring sex. That is, in the configuration disclosed in Patent Document 1, the above-described angle gain ⁇ 11 is changed, which results in a sudden change in the steering feeling of the driver until then, and in some cases, the actual steering angle exceeds the driver's assumption. However, improvement of operability cannot be expected.
- the present invention provides a steering control device capable of reducing the steering amount while ensuring the operability of the driver according to the traveling condition.
- a steering control device is a steering control device that constitutes a steer-by-wire system that does not have a physical coupling between a steering shaft by a driver and a vehicle wheel actual steering angle.
- a calculation unit that determines the actual steering angle based on a steering angle and a steering torque generated on the steering shaft, the calculation unit being based on the steering torque in a region where the steering angle is equal to or less than a predetermined value.
- the actual steering angle is controlled based on a parameter different from the steering torque when the steering angle is larger than a predetermined value or a steering torque gain changed from when the steering angle is smaller than the predetermined value. It is characterized by controlling.
- FIG. 6 is a diagram showing a time history of a steering torque, a steering angle, and an actual steering angle command value in cornering by one-sided steering.
- FIG. 3 is a diagram showing a relationship between a steering torque-based actual steering angle command value, a steering angle-based actual steering angle command value time history, and a final actual steering angle command value based on these in a P2 section shown in FIG. 2. It is a figure which shows the relationship between the gain applied to steering torque at the time of calculation of an actual steering angle command value, and a steering angle.
- FIG. 3 is a diagram showing a relationship between a steering torque, a steering angle, a gain, and a steering torque-based actual steering angle command value in a P2 section shown in FIG. 2.
- FIG. 3 is a diagram showing a relationship between a time history of a steering torque-based target yaw rate and a steering angle-based target yaw rate, and a target yaw rate based on these in a P2 section shown in FIG. 2. It is a conceptual diagram of cornering by continuous steering.
- FIG. 6 is a diagram showing a time history of a steering reaction force command value, a steering angle, a steering angular velocity, and a steering angular acceleration in cornering by continuous steering.
- FIG. 3 is a diagram showing a relationship between a steering torque, a steering angle, a gain, and a steering torque-based actual steering angle command value in a P2 section shown in FIG. 2.
- FIG. 3 is a diagram showing a relationship between a time history of a
- FIG. 1 is a conceptual diagram of a vehicle equipped with a steering control device according to a first embodiment of the present invention.
- FIG. 7 is a functional block diagram of the steering control device shown in FIG. 6.
- 8 is a flowchart used to explain an operation in generating an actual steering angle command value of the steering control device shown in FIG. 7.
- 9 is a flowchart provided for explaining the operation of a steering torque-based actual steering angle control unit that constitutes the steering control device shown in FIG. 9 is a flowchart provided for explaining the operation of a steering angle-based actual steering angle control unit that constitutes the steering control device shown in FIG.
- It is a functional block diagram of a steering control device of Example 2 concerning other examples of the present invention.
- FIG. 13 is a functional block diagram of the steering control device shown in FIG. 12. 13 is a flowchart used to explain an operation of a steering torque-based actual steering angle control unit that constitutes the steering control device shown in FIG. 12. 13 is a flowchart provided for explaining an operation of a steering angle-based actual steering angle control unit that constitutes the steering control device shown in FIG. 12. It is a key map of a vehicle carrying a steering control device of Example 4 concerning other examples of the present invention.
- FIG. 17 is a functional block diagram of the steering control device shown in FIG. 16.
- FIG. 18 is a flowchart used to explain an operation in generating a steering reaction force command value of the steering control device shown in FIG. 17. It is a functional block diagram of a steering control device of Example 5 concerning other examples of the present invention. It is a key map of a vehicle carrying a steering control device of Example 6 concerning other examples of the present invention.
- FIG. 21 is a functional block diagram of the steering control device shown in FIG. 20. 22 is a flowchart provided for explaining an operation in generating a steering reaction force command value of the steering control device shown in FIG. 21.
- FIG. 2 shows a time history of the steering torque and the steering angle at the time of running through the course of FIG. 1 and a time history of the actual steering angle command value calculated based on the steering torque and the steering angle.
- the actual steering angle command value calculation here is not limited to the actual steering angle command value directly calculated from the steering torque and the steering angle.
- the target yaw rate command value may be calculated from the steering torque, the steering angle, and the vehicle model, and the calculated target yaw rate command value may be multiplied by the vehicle speed to finally calculate the actual steering angle command value.
- FIG. 3A shows the relationship between the steering torque base actual steering angle command value and the time history of the steering angle base actual steering angle command value and the final actual steering angle command value based on these in the P2 section shown in FIG.
- FIG. 3B is a diagram showing the relationship between the steering angle and the gain applied to the steering torque when the actual steering angle command value is calculated.
- FIG. 3C is a diagram showing the relationship between the steering torque, the steering angle, the gain, and the steering torque-based actual steering angle command value in the P2 section shown in FIG.
- FIG. 3D is a diagram showing a time history of the steering torque base target yaw rate and the steering angle base target yaw rate in the P2 section shown in FIG. 2, and a relationship between the target yaw rate based on these time histories.
- the driver starts to increase the steering angle in the P2 section of FIG.
- the steering angle is equal to or less than the predetermined steering angle ⁇
- the steering torque rises and the steering angle slightly changes.
- the actual steering angle command value is calculated according to the changes in the steering torque and the steering angle.
- the steering torque based actual steering angle command value ⁇ cmd_trq obtained by multiplying the steering torque by a certain gain Ktrq is set as the actual steering angle command value, and in the dotted line area 21, for example, the gain ⁇ str at the steering angle.
- the steering angle base actual steering angle command value ⁇ cmd_str obtained by multiplying by is set as the actual steering angle command value. Calculation of the actual steering angle command value at this time, as shown in FIG. 3A, in the section P2, the steering torque base actual steering angle command value ⁇ cmd_trq (FIG. 3(a) 30) and the steering angle base actual steering angle.
- the command value ⁇ cmd_str (FIG. 3A 31) is calculated, and the final actual steering angle command value ⁇ cmd (FIG. 3A 32) is calculated from the steering torque base actual steering angle command value 30 to the steering angle around time t0. The calculation is performed so as to transit to the base actual steering angle command value 31.
- the driver maintains the steering angle in the P3 section of FIG. As shown in FIG. 2, the steering angle is greater than or equal to the predetermined steering angle ⁇ , and the actual steering angle command value is calculated by, for example, calculating the actual steering angle command value by multiplying the steering angle gain by the steering angle gain.
- the driver turns back the steering angle in the section P4 of FIG.
- the actual steering angle command value is calculated by, for example, the actual steering angle command value obtained by multiplying the steering angle gain by the steering angle gain. Is calculated.
- the steering torque becomes small, so the actual steering angle command value is calculated based on the steering angle. ..
- the gain Ktrq (FIG. 3B 33) applied to the steering torque at the time of calculating the actual steering angle command value is set to the steering angle.
- the gain Ktrq (FIG. 3(c) 36) is increased as the absolute value of the steering angle increases, and the steering torque base actual steering angle command value ⁇ cmd_trq (FIG. 3(c) 37) is changed.
- a method may be used in which the steering torque based actual steering angle command value ⁇ cmd_trq obtained by the calculation is used as the actual steering angle command value ⁇ cmd (37 in FIG. 3C).
- the yaw rate generated in the vehicle may be created as the target value instead of the actual steering angle itself.
- the target yaw rate rcmd is created from the steering torque base target yaw rate rcmd_trq created based on the steering torque and the steering angle base target yaw rate rcmd_str created based on the steering angle.
- a method of calculating the actual steering angle command value so that the target yaw rate is generated in the vehicle may be used.
- a method of calculating the actual steering angle from the target yaw rate a method of using the vehicle speed and the vehicle model or a method of applying a gain based on the vehicle speed to the target yaw rate may be used.
- the method for creating the target yaw rate is not limited to the above method, and may be a method for creating the target yaw rate by applying a gain corresponding to the steering angle to the steering torque as shown in FIG.
- the actual steering angle command value according to the steering torque is calculated in the region where the steering angle is small, and the actual steering angle command value according to the steering angle is calculated as the steering angle increases. While improving the vehicle turning response at the time of slight steering, it is possible to realize the turning ability according to the steering angle in a region where the steering angle is large, and it is possible to achieve both the initial response and the operability. Further, by improving the turning response at the initial steering, for example, in a driving scene where only a small turning motion is required such as changing lanes during normal driving, it is possible to drive with a minute steering angle operation, and a large turning motion is applied to the vehicle. In the necessary traveling task, it becomes possible to travel by operating the steering angle according to the turning direction.
- FIG. 5 is a diagram showing a time history of a steering reaction force command value, a steering angle, a steering angular velocity, and a steering angular acceleration in cornering by continuous steering. The time history of angular velocity and steering angular acceleration is shown.
- the S-shaped traveling route is divided into the following four sections (P5, P6, P7, P8) as shown in FIG.
- the steering reaction force command value is increased so as to stabilize at.
- the increasing method may be a method of increasing according to the vehicle speed during straight traveling, a method of increasing according to a positive longitudinal acceleration (acceleration), or a method of increasing according to straight traveling time, Any method may be used as long as the steering reaction force command value is increased so that the steering angle stabilizes at the neutral point during straight traveling.
- FIG. 6 is a conceptual diagram of a vehicle equipped with the steering control device according to the first embodiment of the present invention.
- the steering control device 61 is mounted on the vehicle 613, and includes an acceleration sensor 62, a gyro sensor 63, a wheel speed sensor 68 for acquiring information on the vehicle motion state, and operation information from the driver. Based on each information obtained from the steering angle sensor 65 and the steering torque sensor 66, the calculation necessary for steering control is performed, and the actual steering angle control for driving and controlling the actual steering angle actuator 610 based on the calculation result.
- the actual steering angle command value is transmitted to the unit 69 via the communication line.
- the signal sent from the steering control device 61 is not the actual steering angle itself, but may be any control command value (signal) that can realize the steering angle control by the actual steering angle actuator 610.
- the sensors that acquire the above-mentioned vehicle motion state information are not limited to the acceleration sensor 62, the gyro sensor 63, and the wheel speed sensor 68.
- the vehicle speed may be acquired using the position coordinates obtained from the global positioning system, and the longitudinal acceleration and lateral acceleration may be acquired using a sensor for recognizing the outside world such as a camera or sonar.
- the steering control device 61 does not have to have a direct input from the sensor, and may be configured to acquire necessary information from another control unit via a communication line, for example.
- the sensor for acquiring the operation information from the driver is not limited to the steering angle sensor 65 and the steering torque sensor 66, and another sensor may be used as long as the operation amount of the steering wheel 64 can be acquired.
- the steering control device 61 may not have a direct input from a sensor, and may be configured to acquire necessary information from another control unit via a communication line, for example. good.
- the steering reaction force of this embodiment is not calculated by the above-described steering reaction force command value, but is generated by the pseudo steering reaction force generation device 612 having a spring mass damper system with respect to a change in the steering angle.
- the generation of the steering reaction force is not limited to the spring mass damper system with respect to the change of the steering angle, but may be any one having a mechanism for generating a force for restoring the steering angle to the neutral point.
- As the communication line a communication line and a communication protocol that differ depending on the signal may be used.
- Ethernet registered trademark
- CAN Controller Area Network
- FIG. 7 is a functional block diagram of the steering control device 61 shown in FIG.
- the steering control device 61 includes a driver operation acquisition unit 70, a vehicle motion state information acquisition unit 71, a steering torque base actual steering angle control unit 72, and a steering angle base actual steering angle control unit 73. And an actual steering angle calculation unit 74 and a command value transmission unit 75.
- the 75 is realized, for example, by a processor such as a CPU (Central Processing Unit) (not shown), a ROM that stores various programs, a RAM that temporarily stores data in the calculation process, and a storage device such as an external storage device.
- a processor such as a CPU reads and executes various programs stored in the ROM, and stores the operation result, which is the execution result, in the RAM or the external storage device.
- the driver operation acquisition unit 70 acquires operation information (steering angle operation amount, steering torque input amount) from the driver.
- the own vehicle motion state information acquisition unit 71 acquires the above-mentioned vehicle motion state information (vehicle speed, longitudinal acceleration, lateral acceleration, etc.).
- the steering torque-based actual steering angle control unit 72 calculates a steering angle command value by the steering torque and the vehicle speed based on the information obtained by the driver operation acquisition unit 70 and the own vehicle motion state information acquisition unit 71. Then, the calculation result is sent to the actual steering angle calculation unit 74. Even if the steering angle command value here is the target actual steering angle command value calculated by using the actual steering angle itself, which is the turning angle of the tire 67, as the target value, the yaw rate that is the turning speed of the vehicle 613 is used as the target value. It may be the calculated target yaw rate command value.
- the calculation method is, for example, the method shown in FIGS. 1 to 3 described above. Further, the steering angle command value is calculated so that the yaw rate or the lateral acceleration is constant when the steering is held (the torque or the steering angle is constant).
- the steering angle base actual steering angle control unit 73 calculates a steering angle command value based on the information obtained by the driver operation acquisition unit 70 and the own vehicle motion state information acquisition unit 71, and the calculation result is the actual steering angle calculation unit. Send to 74. Even if the steering angle command value here is the target actual steering angle command value calculated by using the actual steering angle itself, which is the turning angle of the tire 67, as the target value, the yaw rate that is the turning speed of the vehicle 613 is used as the target value. The calculated target yaw rate command value may be used, as long as the target value has the same dimension as the target value calculated by the steering torque-based actual steering angle control unit 72.
- the method for calculating the target actual steering angle command value is, for example, the method shown in FIGS. 1 to 3 described above. Further, the steering angle command value is calculated so that the yaw rate or the lateral acceleration is constant when the steering is held (the torque or the steering angle is constant).
- the actual steering angle calculation unit 74 is based on the information obtained by the driver operation acquisition unit 70, the vehicle motion state information acquisition unit 71, the steering torque base actual steering angle control unit 72, and the steering angle base actual steering angle control unit 73.
- a steering torque-based actual steering angle command value is calculated from the steering torque-based actual steering angle control unit 72, and a steering angle-based actual steering angle is calculated from the steering angle-based actual steering angle control unit 73.
- the angle command value is calculated, and the final actual steering angle command value is calculated and sent to the command value transmission unit 75.
- the calculation method is, for example, the method shown in FIGS. 1 to 3 described above.
- the command value transmission unit 75 based on the actual steering angle command value generated by the actual steering angle calculation unit 74, controls the driving of the actual steering angle actuator 610 capable of controlling the actual tire steering angle, and the actual steering angle control unit 69. Send the actual steering angle command value to.
- FIG. 8 is a flowchart used to explain the operation of the actual steering angle command value generation of the steering control device 61 shown in FIG. 7.
- step S801 the driver operation acquisition unit 70 and the vehicle motion state information acquisition unit 71 acquire operation information from the driver and vehicle motion state information, and the process proceeds to step S802.
- step S802 the steering torque-based actual steering angle control unit 72 generates a steering torque-based steering angle command value using the information acquired in step S801, and the steering angle-based actual steering angle control unit 73 determines the control parameter-based steering angle.
- a steering angle command value is generated and output to the actual steering angle calculation unit 74. Then, it progresses to step S803.
- step S803 the actual steering angle calculation unit 74 uses the information acquired in step S801 and the information acquired in step S802 to determine the steering torque base steering angle command value and the steering angle base of the steering torque base actual steering angle control unit 72.
- the actual steering angle command value is generated from the steering angle command value of the actual steering angle control unit 73, and the process proceeds to step S804.
- step S804 the actual steering angle command value acquired in step S803 is output to the command value transmission unit 75, and a series of processes ends.
- FIG. 9 is a flowchart used for explaining the operation of the steering torque-based actual steering angle control section 72 that constitutes the steering control device 61 shown in FIG. 7, and is a detailed flow of step S802 in FIG. 8 described above.
- step S901 information on the steering torque and the vehicle motion state is acquired, and the process proceeds to step S902.
- step S902 the steering torque based actual steering angle control unit 72 generates a steering angle command value from the steering torque using the information acquired in step S901, and the process proceeds to step S903.
- the generated steering angle command value is output to the actual steering angle calculation unit 74, and a series of processing ends.
- FIG. 10 is a flowchart used for explaining the operation of the steering angle-based actual steering angle control section 73 that constitutes the steering control device 61 shown in FIG. 7, and is a detailed flow of step 802 in FIG. 8 described above.
- step S1001 the steering torque and the steering angle are acquired, and the process proceeds to step S1002.
- step S1002 the steering angle base actual steering angle control unit 73 generates a steering angle command value from the steering angle using the information acquired in step S1001, and the process proceeds to step S1005.
- the calculation by the steering angle-based actual steering angle control unit 73 here is not limited to the above-mentioned input parameters based on the steering angle, as long as the steering angle command value according to the steering angle can be generated.
- the steering angle command value may be generated by changing the gain Ktrq applied to the steering torque according to the steering angle and applying the gain Ktrq to the steering torque.
- step S1003 the generated steering angle command value is output to the actual steering angle calculation unit 74, and the series of processes is ended.
- the dead zone for setting the steering angle command value to zero may be used as a parameter for calculating the actual steering angle command value.
- the actual steering angle of the vehicle 613 is controlled by a minute steering torque or/and a minute steering angle that the driver unintentionally inputs to the steering wheel. It is possible to prevent the steering angle from changing. Further, when the steering torque is reduced to a very small amount, it is possible to return the steering angle and the actual steering angle to zero along with the reduction of the steering torque.
- the parameters (gain, dead zone threshold value) for creating the actual steering angle command value may be changed according to the driving scene. For example, when the traveling speed and shift position can be acquired and it is determined from this information that the traveling scene is during parking, steering with a large steering angle is required, and a large actual steering angle is generated with a small number of drivers operating the steering wheel. Increase gain as much as you can.
- the gain is adjusted so that yaw rate is generated linearly with respect to the steering angle change. In this way, the operability of the driver can be improved by adjusting the gain according to the traveling scene.
- the steering control device capable of reducing the steering amount while ensuring the operability of the driver according to the traveling condition. Further, when the steering angle at the timing when the driver applies force to the steering wheel to generate the actual steering angle to the vehicle is still very small, the driver turns the vehicle by calculating the actual steering angle command value based on the steering torque. It is possible to realize a swiveling motion having high responsiveness to the intention to try. Further, as the steering angle increases, the actual steering angle command value based on the steering angle transitions to the calculation, which makes it possible to maintain the conventional operability of turning the steering wheel and cornering.
- FIG. 11 is a functional block diagram of a steering control device 61a according to a second embodiment of the present invention.
- the present embodiment differs from the first embodiment in that the driver operation acquisition unit 70a is configured to input the driver's intention and the like in addition to the operation information from the driver.
- the same components as those in the first embodiment are designated by the same reference numerals, and duplicate description will be omitted below.
- the driver operation acquisition unit 70a acquires the driver's intention in addition to the operation information (steering angle operation amount, steering torque input amount, etc.) from the driver.
- the parameter that reflects the driver's intention is set by the input from the driver through the user interface, or is set in advance for each driver by driver authentication even if it is set by automatic learning and automatic tuning from driving by the driver.
- a method that reflects the calculated value may be used.
- the actual steering angle calculation unit 74a is based on the information obtained by the driver operation acquisition unit 70, the vehicle motion state information acquisition unit 71, the steering torque base actual steering angle control unit 72, and the steering angle base actual steering angle control unit 73. If the steering angle is less than the predetermined steering angle, the actual steering angle command value is calculated from the steering angle command value by the steering torque-based actual steering angle control unit 72, and if the steering angle is greater than or equal to the predetermined steering angle, the steering angle base actual steering angle control unit. The actual steering angle command value is calculated from the steering angle command value by 73. The calculated actual steering angle command value is sent to the command value transmitter 75.
- the calculation method is, for example, the method shown in FIGS. 1 to 3 described above.
- At least one of the gain Ktrq at the time of calculating the steering angle command value based on the predetermined steering angle or the steering torque or at least one of the gains Kstr at the time of calculating the steering angle command value based on the steering angle is set by the driver operation acquisition unit 70. It increases or decreases depending on the parameter that reflects the orientation. For example, when there are two modes of driver orientation, a normal mode and a sports mode, the gain Ktrq and the gain Kstr may be set to be larger in the sports mode than in the normal mode.
- these modes are not limited to the method selected by the driver, and may be a method of directly setting the gain Ktrq, the gain Kstr and/or the steering angle changing from the steering torque base to the steering angle base.
- a method of changing these values based on the driving behavior of the driver may be used. For example, when the steering angle changes more frequently than the reference steering model in the driver operation when turning on a single curved road, the parameters may be changed so that the frequency of the steering angle change decreases.
- the driver changes the switching between the actual steering angle control based on the steering torque and the actual steering angle control based on the steering angle, and the turning response to the steering torque and the steering angle.
- FIG. 12 is a conceptual diagram of a vehicle equipped with a steering control device 61b according to a third embodiment of the present invention
- FIG. 13 is a functional block diagram of the steering control device 61b shown in FIG.
- the present embodiment differs from the first embodiment in that the steering control device 61b further includes an own vehicle traveling road information acquisition unit 76.
- the same components as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted below.
- the steering control device 61b is mounted on a vehicle 613, and an acceleration sensor 62, a gyro sensor 63, and a wheel speed sensor 68 that acquire information on a vehicle motion state, The steering based on each information obtained from the steering angle sensor 65 and the steering torque sensor 66 that obtains the operation information from the driver, and the own vehicle position detection sensor 1200 and the outside world information detection sensor 1201 that obtain the own vehicle travel information.
- the actual steering angle command value is transmitted via a communication line to the actual steering angle control unit 69 that drives and controls the actual steering angle actuator 610 based on the calculation result required for the control.
- a global positioning system is used as the own vehicle position detection sensor 1200 as a sensor for obtaining the own vehicle traveling road information, and obstacle information around the own vehicle such as a camera and sonar is obtained as the outside world information detection sensor 1201 for traveling.
- a sensor that can detect possible areas is used. Further, it is only necessary to obtain the information on the surroundings of the own vehicle and the travelable area, and the present invention is not limited to the above-mentioned sensor.
- the steering control device 61b does not have to have a direct input from the sensor, and may be configured to acquire necessary information from another control unit via a communication line, for example.
- the steering control device 61b includes a driver operation acquisition unit 70, an own vehicle motion state information acquisition unit 71, an own vehicle travel road information acquisition unit 76, a steering torque based actual steering angle control unit 72b, The steering angle base actual steering angle control unit 73b, an actual steering angle calculation unit 74, and a command value transmission unit 75 are included.
- the own vehicle traveling road information acquisition unit 76 acquires the own vehicle traveling road information (the surrounding information of the own vehicle, the travelable area, etc.).
- the steering torque-based actual steering angle control unit 72b steers the steering torque and the vehicle speed based on the information obtained by the driver operation acquisition unit 70, the own vehicle motion state information acquisition unit 71, and the own vehicle traveling road information acquisition unit 76.
- the steering angle command value based on the torque is calculated, and the calculation result is sent to the actual steering angle calculation unit 74.
- the steering angle command value here may be a target actual steering angle command value or a target yaw rate command value.
- the calculation method is, for example, the method shown in FIGS. 1 to 3 described above.
- the torque gain with respect to the steering torque is increased.
- the steering angle base actual steering angle control unit 73b calculates a steering angle command value based on the information obtained by the driver operation acquisition unit 70, the own vehicle motion state information acquisition unit 71, and the own vehicle traveling road information acquisition unit 76. , And sends the calculation result to the actual steering angle calculation unit 74.
- the steering angle command value here may be a target actual steering angle command value or a target yaw rate command value.
- the calculation method is, for example, the method shown in FIGS. 1 to 3 described above. Further, when it is determined that the vehicle is parked based on the vehicle surrounding information of the vehicle traveling road information acquisition unit 76 and the drivable area, the steering angle gain with respect to the steering angle is increased.
- FIG. 14 is a flowchart provided for explaining the operation of the steering torque-based actual steering angle control section 72b that constitutes the steering control device 61b shown in FIG.
- step S1401 the steering torque and the own vehicle traveling road information are acquired, and the process proceeds to step S1402.
- step S1402 based on the information acquired in step S1401, the above-mentioned gain Ktrq is increased or decreased according to the traveling scene from the vehicle traveling road information, and the process proceeds to step S1403.
- step S1403 the steering torque-based actual steering angle control unit 72b generates a steering angle command value from the steering torque and the above-described gain Ktrq using the information acquired in steps S1401 and S1402, and the process proceeds to step S1404.
- step S1404 the generated steering angle command value is output to the actual steering angle calculation unit 74, and a series of processing ends.
- FIG. 15 is a flowchart provided for explaining the operation of the steering angle-based actual steering angle control unit 73b that constitutes the steering control device 61b shown in FIG.
- step S1501 the steering angle and the vehicle travel road information are acquired, and the process proceeds to step S1502.
- step S1502 based on the information acquired in step S1501, the above-mentioned gain Kstr is increased or decreased according to the traveling scene from the vehicle traveling road information, and the process proceeds to step S1503.
- step S1503 the steering angle-based actual steering angle control unit 73b generates a steering angle command value from the steering torque and the above-described gain Kstr using the information acquired in steps S1501 and S1502, and proceeds to step S1504.
- step S1504 the generated steering angle command value is output to the actual steering angle calculation unit 74, and a series of processing ends.
- the gain can be adjusted according to the traveling course information and the obstacle information, and the steering wheel operation amount of the driver can be adjusted according to the traveling scene. ..
- the driver can generate a large actual steering angle with a small steering angle, and thus parking with a reduced steering amount is possible.
- FIG. 16 is a conceptual diagram of a vehicle equipped with a steering control device 61c of a fourth embodiment according to another embodiment of the present invention
- FIG. 17 is a functional block diagram of the steering control device 61c shown in FIG.
- the present embodiment is different from the first embodiment in that the steering control device 61c further includes a steering reaction force calculation unit 170 and a steering reaction force transmission unit 171.
- the same components as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted below.
- a steering control device 61c is mounted on a vehicle 613, and an acceleration sensor 62, a gyro sensor 63, and a wheel speed sensor 68 that acquire information on a vehicle motion state, Based on each information obtained from the steering angle sensor 65 and the steering torque sensor 66 that obtains the operation information from the driver, the calculation necessary for the steering control is performed, and the actual steering angle actuator 610 is operated based on the calculation result.
- the actual steering angle command value is transmitted to the actual steering angle control unit 69 for drive control via a communication line.
- a steering reaction force control unit 1600 that drives and controls the steering reaction force actuator 1601 is operated via a communication line.
- the signal sent from the steering control device 61c is not the steering reaction force itself, but may be the steering reaction force command value (signal) that can realize the steering reaction force control by the steering reaction force actuator 1601.
- the steering control device 61c further includes a steering reaction force calculation unit 170 and a steering reaction force transmission unit 171 as compared with the steering control device 61 according to the first embodiment shown in FIG.
- the steering reaction force calculation unit 170 calculates a steering reaction force command value based on the information obtained by the driver operation acquisition unit 70 and the own vehicle motion state information acquisition unit 71, and sends it to the steering reaction force transmission unit 171.
- the calculation method is, for example, the method shown in FIGS.
- the steering reaction force transmission unit 171 performs drive control of the steering reaction force actuator 1601 capable of controlling the reaction force of the steering wheel 64 in FIG. 16 based on the steering reaction force command value generated by the steering reaction force calculation unit 170.
- the steering reaction force command value is sent to the steering reaction force control unit 1600.
- FIG. 18 is a flowchart used for explaining the operation of the steering control device 61c shown in FIG. 17 in generating the steering reaction force command value.
- step S1801 operation information and vehicle motion state information from the driver are acquired, and the flow advances to step S1802.
- step S1802 it is determined based on the information acquired in step S1801 whether or not the vehicle is traveling straight ahead. If it is determined that the vehicle is traveling straight, the procedure proceeds to step S1803. If it is determined that the vehicle is not traveling straight, the step is performed. Proceeds to S1804.
- step S1803 the steering reaction force command value is increased according to the longitudinal acceleration using the information acquired in step S1801, and the process proceeds to step S1809.
- step S1804 it is determined based on the information acquired in step S1801 whether or not the steering angle, the steering angular velocity, and the steering angular acceleration have the same sign. If it is determined that the codes are the same, the process proceeds to step S1805, and if it is determined that the codes are different, the process proceeds to step S1806.
- step S1805 the steering reaction force command value is decreased using the information acquired in step S1801, and the process proceeds to step S1809.
- step S1806 based on the information acquired in step S1801, it is determined whether the steering angle and the steering angular acceleration have the same sign and the steering angular velocity has a different sign. If the steering angle and the steering angular acceleration have the same sign and the steering angular velocity has a different sign, the process proceeds to step S1807, and otherwise, the process proceeds to step S1808.
- step S1807 the steering reaction force command value is increased using the information acquired in step S1801, and the process proceeds to step S1809.
- step S1808 the steering reaction force command value is maintained, and the process proceeds to step S1809.
- step S1809 with respect to the steering reaction force command value acquired in step S1803, step S1805, step S1807, or step S1808, if the steering reaction force minimum predetermined value is less than the predetermined value, the process proceeds to step S1810.
- the command value is output to the steering reaction force transmission unit 171, and the series of processes is ended. Note that the minimum steering reaction force predetermined value is assumed to change according to the vehicle speed.
- step S1810 with respect to the steering reaction force command value acquired in step S1809, the steering reaction force command value is corrected to the steering reaction force minimum predetermined value and output to the steering reaction force transmission unit 171, and a series of processes is ended. ..
- the steering reaction force command value increases when the driver drives the vehicle straight by controlling the steering reaction force of the steering wheel. Provides a strong response to the driver. As a result, the driver can obtain stability when traveling straight. Further, since the steering reaction force command value decreases in accordance with the steering angle when the driver turns the vehicle, the steering wheel reduces the resistance to the driver. Therefore, the driver can ensure the conventional operability of turning the steering wheel and cornering.
- FIG. 19 is a functional block diagram of a steering control device 61d according to a fifth embodiment of the present invention.
- the driver operation acquisition unit 70d inputs the driver's intention and the like in addition to the operation information from the driver, and the steering reaction force calculation unit 170d and the steering reaction force transmission unit 171 are provided. Different from 1.
- the same components as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted below.
- the driver operation acquisition unit 70d acquires operation information (steering angle operation amount, steering torque input amount, driver orientation, etc.) from the driver.
- the parameter reflecting the driver's intention included in the operation information from the driver is set by the input from the driver through the user interface, or even the setting by the automatic learning and automatic tuning from the driving by the driver.
- a method of reflecting a value preset for each driver by driver authentication may be used.
- the steering reaction force calculation unit 170d calculates a steering reaction force command value based on the information obtained by the driver operation acquisition unit 70d and the own vehicle motion state information acquisition unit 71, and sends it to the steering reaction force transmission unit 171.
- the calculation method is, for example, the method shown in FIGS.
- the amount of change in the steering reaction force command value during straight traveling and/or the amount of change in the steering reaction force command value according to the steering angle change during cornering increases or decreases depending on the parameter reflecting the driver's intention by the driver operation acquisition unit 70d. ..
- the steering reaction force command value may be set to be larger in the sports mode than in the normal mode.
- a method of changing these values based on the driving behavior of the driver may be used. For example, if the steering angle change occurs more frequently than the reference steering model during driver operation when turning on a single curved road, the steering reaction force command value changes according to the steering angle change so that the steering reaction force command value becomes low. You may change the amount.
- the driver's intention is reflected in the reaction force generation associated with the steering wheel operation, and thus the steering wheel It becomes possible to adjust operability and steering responsiveness to settings suitable for the driver's intention.
- FIG. 20 is a conceptual diagram of a vehicle equipped with a steering control device 61e of a sixth embodiment according to another embodiment of the present invention
- FIG. 21 is a functional block diagram of the steering control device 61e shown in FIG.
- the present embodiment is different from the first embodiment in that the steering control device 61e includes a host vehicle traveling road information acquisition unit 76e, a steering reaction force calculation unit 170e, and a steering reaction force transmission unit 171.
- the same components as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted below.
- a steering control device 61e is mounted on a vehicle 613, and an acceleration sensor 62, a gyro sensor 63, and a wheel speed sensor 68 that acquire information on a vehicle motion state, The steering based on each information obtained from the steering angle sensor 65 and the steering torque sensor 66 that obtains the operation information from the driver, and the own vehicle position detection sensor 1200 and the outside world information detection sensor 1201 that obtain the own vehicle travel information.
- the actual steering angle command value is transmitted via the communication line to the actual steering angle control unit 69 that drives and controls the actual steering angle actuator 610 based on the calculation result required for the control.
- a steering reaction force control unit 1600 that drives and controls the steering reaction force actuator 1601 is operated via a communication line. Send the reaction force command value.
- the signal sent from the steering control device 61e is not the steering reaction force itself, but the steering reaction force is generated by the pseudo steering reaction force generation device 612 having a spring mass damper system in response to a change in the steering angle.
- the own-vehicle travel road information acquisition unit 76e included in the steering control device 61e acquires the own-vehicle travel road information (own-vehicle surrounding information, drivable area, etc.).
- the steering reaction force calculation unit 170e based on the information obtained by the driver operation acquisition unit 70, the own vehicle motion state information acquisition unit 71, the actual steering angle calculation unit 74, and the own vehicle traveling road information acquisition unit 76e.
- the command value is calculated and sent to the steering reaction force transmitter 171.
- the calculation method is performed, for example, by the method shown in FIGS.
- FIG. 22 is a flow chart used for explaining the operation of the steering control device 61e shown in FIG. 21 in generating the steering reaction force command value.
- step S2201 operation information and vehicle motion state information from the driver are acquired, and the flow advances to step S2202.
- step S2202 it is determined based on the information acquired in step S2201 whether the vehicle is parked and the actual steering angle command value is larger than a predetermined value. If it is determined that the actual steering angle command value is larger than the predetermined value when the vehicle is parked, the process proceeds to step S2203, and if it is determined to be different, the process proceeds to step S2204.
- step S2203 a steering reaction force command value simulating the stroke end is generated, and the process proceeds to step S2211.
- step S2204 it is determined based on the information acquired in step S2201 whether the vehicle is traveling straight ahead. If it is determined that the vehicle is traveling straight, the process proceeds to step S2205, and if it is determined that the vehicle is not traveling straight, the process proceeds to step S2206.
- step S2205 the steering reaction force command value is increased according to the longitudinal acceleration using the information acquired in step S2201, and the process proceeds to step S2211.
- step S2206 it is determined whether the steering angle, the steering angular velocity, and the steering angular acceleration have the same sign based on the information acquired in step S2201. When it is determined that they have the same code, the process proceeds to step S2207, and when it is determined that they have the different code, the process proceeds to step S2208.
- step S2207 the steering reaction force command value is decreased using the information acquired in step S2201, and the process proceeds to step S2211.
- step S2208 it is determined based on the information acquired in step S2201 whether or not the steering angle and the steering angular acceleration have the same sign and the steering angular velocity has a different sign. If the steering angle and the steering angular acceleration have the same sign and the steering angular velocity has a different sign, the process proceeds to step S2209; otherwise, the process proceeds to step S2210.
- step S2209 the steering reaction force command value is increased using the information acquired in step S2201, and the process proceeds to step S2211.
- step S2210 the steering reaction force command value is maintained, and the flow proceeds to step S2211.
- step S2211 with respect to the steering reaction force command value acquired in step S2203, step S2205, step S2207, step S2209, or step S2210, if the steering reaction force minimum predetermined value is less than the predetermined value, the process proceeds to step S2212, and if it exceeds, it is acquired.
- the steering reaction force command value is output to the steering reaction force transmission unit 171, and the series of processes is ended. Note that the minimum steering reaction force predetermined value is assumed to change according to the vehicle speed.
- step S2212 with respect to the steering reaction force command value acquired in step S2211, the steering reaction force command value is corrected to the steering reaction force minimum predetermined value and output to the steering reaction force transmission unit 171, and a series of processes is ended. ..
- the driver can recognize that the current actual steering angle has reached the stroke end. Becomes
- the present invention is not limited to the above-described embodiments, but includes various modifications.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the citation of other claims in the dependent claims is a single citation in order to make the description of the dependent claims easier to understand, but the present invention refers to a plurality of claims in the dependent claims, and Including a form in which a plurality of multiple reference items are cited.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
本発明の課題は、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供することである。 ドライバによる操舵軸と、車両車輪実舵角の間に物理的な結合を有さないステアバイワイヤシステムを構成する操舵制御装置61であって、操舵軸に発生する操舵角および操舵トルクに基づいて、実舵角を決定する実舵角演算部74を備え、実舵角演算部74は、操舵角が所定値以下の領域では操舵トルクに基づいて実舵角を制御し、操舵角が所定値よりも大きい場合は操舵トルクとは異なるパラメータまたは操舵角が所定値よりも小さい場合から変更された操舵トルクゲインに基づいて実舵角を制御する。
Description
本発明は、操舵軸と車両車輪実舵角の間に物理的な結合を有さないステアバイワイヤを構成する操舵制御装置に関する。
車両の操舵制御を実現する技術として、ハンドルに連結した操舵軸と車両の車輪に実舵角を発生させる機構とを物理的に結合させず、電気的信号で結合することでそれぞれを独立に制御可能なステアバイワイヤシステムが提案されている。
このようなステアバイワイヤに関し、例えば、特許文献1に記載される技術が知られている。特許文献1には、操舵角検出部によって検出した操舵角と、角度ゲインに基づいて実舵角を算出する技術が提案されている。また、特許文献1には、ステレオカメラ、レーザレーダ、或いは赤外線レーダ等の監視センサによって自車両の前方に障害物が検出され、緊急回避が必要と判断された場合には、車輪角制御部が角度ゲインα11の値を標準値よりも大きく設定する。例えば、角度ゲインα11の標準値が1/15の車両の場合、障害物検出時には角度ゲインα11を1/10に設定する。これにより、障害物検出時には、通常走行時よりも1.5倍ほど車両が曲がりやすくなるため、操縦性(障害物の回避性)が向上する旨記載されている。
このようなステアバイワイヤに関し、例えば、特許文献1に記載される技術が知られている。特許文献1には、操舵角検出部によって検出した操舵角と、角度ゲインに基づいて実舵角を算出する技術が提案されている。また、特許文献1には、ステレオカメラ、レーザレーダ、或いは赤外線レーダ等の監視センサによって自車両の前方に障害物が検出され、緊急回避が必要と判断された場合には、車輪角制御部が角度ゲインα11の値を標準値よりも大きく設定する。例えば、角度ゲインα11の標準値が1/15の車両の場合、障害物検出時には角度ゲインα11を1/10に設定する。これにより、障害物検出時には、通常走行時よりも1.5倍ほど車両が曲がりやすくなるため、操縦性(障害物の回避性)が向上する旨記載されている。
しかしながら特許文献1に開示される構成では、検出した操舵角と実舵角とは比例関係にあり、この比例する角度ゲインを変更することで障害物を回避できるものの、通常走行時におけるドライバの操作性の確保については考慮されていない。すなわち、特許文献1に開示される構成では、上述の角度ゲインα11が変更されることにより、それまでのドライバの操舵感覚に対し急変することとなり、場合によってはドライバの想定を超える実舵角となり、操作性の向上は望めない。
そこで、本発明は、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供する。
上記課題を解決するため、本発明に係る操舵制御装置は、ドライバによる操舵軸と、車両車輪実舵角の間に物理的な結合を有さないステアバイワイヤシステムを構成する操舵制御装置であって、前記操舵軸に発生する操舵角および操舵トルクに基づいて、前記実舵角を決定する演算部を備え、前記演算部は、前記操舵角が所定値以下の領域では前記操舵トルクに基づいて前記実舵角を制御し、前記操舵角が所定値よりも大きい場合は前記操舵トルクとは異なるパラメータまたは前記操舵角が所定値よりも小さい場合から変更された操舵トルクゲインに基づいて前記実舵角を制御することを特徴とする。
本発明によれば、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、本発明の実施形態について説明する。なお、本発明は、下記の実施形態に限定されず、様々な実施形態にて実施することが可能である。
具体的な実施形態の説明に先立ち、本発明の理解が容易になるよう、図1~図3を用いて、実舵角指令値生成について説明する。図1は片側操舵によるコーナリングの概念図であり、コーナーにおいて一定速度V0で時刻t=T1にて片側操舵によるコーナリングを開始し、時刻t=T4にて片側操舵によるコーナリングを終了する車両の概念図である。図2は、図1のコース走破時の操舵トルクおよび操舵角の時間履歴と、これら操舵トルクおよび操舵角に基づいて演算される実舵角指令値の時間履歴を示す。また、ここでの実舵角指令値演算は、上述の操舵トルクと操舵角から直接演算する実舵角指令値に限定するものではない。例えば、上記操舵トルクと上記操舵角と車両モデルから目標ヨーレイト指令値を演算し、演算した目標ヨーレイト指令値に車両速度を掛け合わせて実舵角指令値を最終的に演算する方法でも良い。
図3(a)は、図2に示すP2区間において、操舵トルクベース実舵角指令値と操舵角ベース実舵角指令値の時間履歴、及び、これらに基づく最終実舵角指令値との関係を示す図である。図3(b)は、実舵角指令値演算時の操舵トルクにかけるゲインと操舵角との関係を示す図である。図3(c)は、図2に示すP2区間における、操舵トルク、操舵角、ゲイン、及び、操舵トルクベース実舵角指令値との関係を示す図である。図3(d)は、図2に示すP2区間において、操舵トルクベース目標ヨーレイトと操舵角ベース目標ヨーレイトの時間履歴、及び、これらに基づく目標ヨーレイトとの関係を示す図である。
また、本説明では、走行経路を図1に示すように、以下4つの区間(P1,P2,P3,P4)に分け、それぞれの区間の終了時刻をT1,T2,T3,T4とする。
時刻t=0~T1のとき、車両(自車両)は図1のP1区間にて直進状態であり、図2に示すようにドライバからの入力である操舵トルクおよび操舵角は0になる。したがって、この区間(P1区間)の実舵角指令値は0となる。
時刻t=0~T1のとき、車両(自車両)は図1のP1区間にて直進状態であり、図2に示すようにドライバからの入力である操舵トルクおよび操舵角は0になる。したがって、この区間(P1区間)の実舵角指令値は0となる。
時刻t=T1~T2のとき、図1のP2区間にてドライバは操舵角の切り増しを始める。図2に示すように、操舵角が所定操舵角θ以下であるt=T1~t0では、操舵トルクが立ち上がり、操舵角は微小変化になる。ドライバからの操舵トルク入力が継続されて時間が経過したt=t0~T2になると、操舵角は所定操舵角θ以上になり、変化量も大きくなる。この操舵トルクおよび操舵角の変化に応じて、実舵角指令値が演算される。
図2に示す縦ストライプ領域20において例えば操舵トルクに、あるゲインKtrqを掛け合わせた、操舵トルクベース実舵角指令値δcmd_trqを実舵角指令値とし、点線領域21において例えば操舵角にあるゲインδstrを掛け合わせた操舵角ベース実舵角指令値δcmd_strを実舵角指令値とする。この時の実舵角指令値の演算は、図3(a)に示すように、P2区間において、操舵トルクベース実舵角指令値δcmd_trq(図3(a)30)と操舵角ベース実舵角指令値δcmd_str(図3(a)31)をそれぞれ演算し、最終実舵角指令値δcmd(図3(a)32)が、時間t0前後において、操舵トルクベース実舵角指令値30から操舵角ベース実舵角指令値31に遷移するように演算する。
時刻t=T2~T3のとき、図1のP3区間にてドライバは操舵角を保舵している。図2に示すように、操舵角は所定操舵角θ以上であり、実舵角指令値の演算は例えば操舵角に操舵角ゲインを掛け合わせた実舵角指令値の演算を行う。
時刻t=T3~T4のとき、図1のP4区間にてドライバは操舵角を切り戻している。図2に示すように、操舵角は所定操舵角θ以上である時刻t=T3~t1では、実舵角指令値の演算は、例えば操舵角に操舵角ゲインを掛け合わせた実舵角指令値の演算を行う。また、操舵角は所定操舵角θ以下である時刻t=t1~T4では、操舵トルクが微小になるため、実舵角指令値の演算は操舵角に基づいた実舵角指令値の演算を行う。
時刻t=T3~T4のとき、図1のP4区間にてドライバは操舵角を切り戻している。図2に示すように、操舵角は所定操舵角θ以上である時刻t=T3~t1では、実舵角指令値の演算は、例えば操舵角に操舵角ゲインを掛け合わせた実舵角指令値の演算を行う。また、操舵角は所定操舵角θ以下である時刻t=t1~T4では、操舵トルクが微小になるため、実舵角指令値の演算は操舵角に基づいた実舵角指令値の演算を行う。
なお、上記の方法以外に、図3(b),図3(c)に示すように、例えば実舵角指令値演算時の操舵トルクにかけるゲインKtrq(図3(b)33)を操舵角に応じて変化させ、操舵角の絶対値が増加するのに応じてゲインKtrq(図3(c)36)を増加させ、操舵トルクベース実舵角指令値δcmd_trq(図3(c)37)を演算し、演算により得られた操舵トルクベース実舵角指令値δcmd_trqを実舵角指令値δcmd(図3(c)37)とする方法であっても良い。
実舵角指令値の作成方法として、実舵角そのものではなく、車両に発生させるヨーレイトを目標値として作成しても良い。具体的には図3(d)に示すように、操舵トルクに基づいて作成される操舵トルクベース目標ヨーレイトrcmd_trqおよび操舵角に基づいて作成される操舵角ベース目標ヨーレイトrcmd_strから目標ヨーレイトrcmdを作成し、本目標ヨーレイトが車両に発生するように実舵角指令値を演算する方法であっても良い。目標ヨーレイトから実舵角を演算する方法としては、車両速度と車両モデルを用いる方法であっても、目標ヨーレイトに車両速度に基づくゲインをかけることで作成する方法であっても良い。また目標ヨーレイトの作成方法に関しては、上述の方法に限らず、図3(d)に示したように、操舵トルクに操舵角に応じたゲインをかけることで作成する方法であっても良い。
以上の方法により、操舵角が小さい領域では操舵トルクに応じた実舵角指令値が演算され、操舵角が大きくなるに応じて、操舵角に応じた実舵角指令値が演算されることにより、微小操舵時の車両旋回応答性を向上させながら、操舵角が大きい領域では操舵角に応じた旋回性を実現でき、初期の応答性と操作性を両立することができる。また操舵初期の旋回応答性向上により、例えば通常走行時の車線変更のように小さな旋回運動のみが必要な走行シーンでは、微小な操舵角操作で走行することができ、また車両に大きな旋回運動が必要な走行タスクでは、旋回の方向に応じた操舵角操作で走行することが可能となる。
次に図4および図5を用いて操舵反力指令値生成について説明する。
図4は連続操舵によるコーナリングの概念図であり、連続S字コーナーにおいて時刻t=T1にてS字コーナリングを開始し、時刻t=T4にてS字コーナリングを終了する車両の概念図である。図5は連続操舵によるコーナリングにおける操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示した図であり、図4のコース走破時における操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示す。
本説明では、S字走行経路を図4に示すように以下4つの区間(P5,P6,P7,P8)に分け、それぞれの区間の終了時刻をT1,T2,T3,T4とする。
時刻t=0~T1のとき、図4のP5区間において、操舵角および操舵角速度および操舵角加速度が微小な場合、ドライバが操舵角を変化させず直進するシーンと判断し、操舵角が中立点で安定するように、操舵反力指令値を増加させる。増加方法は、直進走行時の車両速度に応じて増す方法であっても、正の前後加速度(加速)に応じて増やす方法であっても、直進走行時間に応じて増す方法であって良く、操舵角が直進走行時に中立点で安定するように操舵反力指令値が増加する方法であれば良い。
図4は連続操舵によるコーナリングの概念図であり、連続S字コーナーにおいて時刻t=T1にてS字コーナリングを開始し、時刻t=T4にてS字コーナリングを終了する車両の概念図である。図5は連続操舵によるコーナリングにおける操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示した図であり、図4のコース走破時における操舵反力指令値および操舵角および操舵角速度および操舵角加速度の時間履歴を示す。
本説明では、S字走行経路を図4に示すように以下4つの区間(P5,P6,P7,P8)に分け、それぞれの区間の終了時刻をT1,T2,T3,T4とする。
時刻t=0~T1のとき、図4のP5区間において、操舵角および操舵角速度および操舵角加速度が微小な場合、ドライバが操舵角を変化させず直進するシーンと判断し、操舵角が中立点で安定するように、操舵反力指令値を増加させる。増加方法は、直進走行時の車両速度に応じて増す方法であっても、正の前後加速度(加速)に応じて増やす方法であっても、直進走行時間に応じて増す方法であって良く、操舵角が直進走行時に中立点で安定するように操舵反力指令値が増加する方法であれば良い。
時刻t=T1~T2のとき、図4のP6区間において、図5の二点鎖線で囲われた領域50のように操舵角および操舵角速度および操舵角加速度の符号が一致する場合、ドライバが操舵角を変化させようと操舵角を切り増し始めているシーンと判断し、ハンドル操作がしやすいように、例えば操舵角に応じて操舵反力指令値を減少させる。
時刻t=T2~T3のとき、図4のP7区間において、図5の点線で囲われた領域51のように操舵角および操舵角加速度の符号が一致しない場合、ドライバが連続操舵しているシーンと判断し、連続操舵し易いように操舵反力指令値を維持する。
時刻t=T2~T3のとき、図4のP7区間において、図5の点線で囲われた領域51のように操舵角および操舵角加速度の符号が一致しない場合、ドライバが連続操舵しているシーンと判断し、連続操舵し易いように操舵反力指令値を維持する。
時刻t=T3~T4のとき、図4のP8区間において、図5の一点鎖線で囲われた領域52のように操舵角および操舵角加速度の符号が一致かつ操舵角および操舵角速度が符号一致しない場合、ドライバが操舵角を中立点に戻そうと操舵角を切り戻し始めているシーンと判断し、操舵角が中立点で安定するように、操舵角応じて操舵反力指令値を増加させる。
このように、操舵角増加時には操舵反力指令値を小さくし、操舵角減少時には操舵反力指令値を大きくすることにより、操舵角の変化が増えるコーナリング時にはハンドル操作が容易となり、直進走行時は操舵角の中立点付近での保舵が容易となる。
以下、図面を用いて本発明の実施例について説明する。
図6は、本発明の一実施例に係る実施例1の操舵制御装置を搭載した車両の概念図である。図6に示すように、操舵制御装置61は、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。
また、操舵制御装置61から送る信号は実舵角そのものではなく、実舵角アクチュエータ610により、舵角制御を実現し得る制御指令値(信号)であれば良い。
また、操舵制御装置61から送る信号は実舵角そのものではなく、実舵角アクチュエータ610により、舵角制御を実現し得る制御指令値(信号)であれば良い。
上述の車両運動状態の情報を取得するセンサは、加速度センサ62およびジャイロセンサ63および車輪速センサ68に限定するものではない。グローバルポジショニングシステムから得られる位置座標を用いて車両速度を取得しても良く、カメラやソナーのような外界認識のセンサを用いて前後加速度や横加速度を取得しても良い。さらに、操舵制御装置61がセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
上述のドライバからの操作情報を取得するセンサは、操舵角センサ65および操舵トルクセンサ66に限定するものでなく、ステアリングホイール64の操作量を取得できれば他のセンサでも良い。また、上述の車両運動状態の情報と同様に、操舵制御装置61がセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
本実施例の操舵反力は、上述した操舵反力指令値の演算ではなく、操舵角の変化に対してバネマスダンパ系を有する疑似操舵反力発生装置612によって操舵反力を生成する。また、操舵反力生成は操舵角の変化に対するバネマスダンパ系に限るものではなく、操舵角を中立点に復元する力を発生する機構を有するものであれば良い。
通信ラインとして、信号によって異なる通信ラインおよび通信プロトコルを用いても良い。例えば、大容量のデータをやり取りする必要のある自車両走行路情報を取得するセンサとの通信にイーサネット(登録商標)を用い、各アクチュエータとの通信にはController Area Network(CAN)を用いる構成であっても良い。
通信ラインとして、信号によって異なる通信ラインおよび通信プロトコルを用いても良い。例えば、大容量のデータをやり取りする必要のある自車両走行路情報を取得するセンサとの通信にイーサネット(登録商標)を用い、各アクチュエータとの通信にはController Area Network(CAN)を用いる構成であっても良い。
図7は、図6に示す操舵制御装置61の機能ブロック図である。図7に示すように、操舵制御装置61は、ドライバ操作取得部70と、自車両運動状態情報取得部71と、操舵トルクベース実舵角制御部72と、操舵角ベース実舵角制御部73と、実舵角演算部74と、指令値送信部75と、で構成される。ここで、ドライバ操作取得部70、自車両運動状態情報取得部71、操舵トルクベース実舵角制御部72、操舵角ベース実舵角制御部73、実舵角演算部74、および指令値送信部75は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
ドライバ操作取得部70は、ドライバからの操作情報(操舵角操作量,操舵トルク入力量)を取得する。
自車両運動状態情報取得部71は、上記車両運動状態の情報(車両速度,前後加速度,横加速度,など)を取得する。
自車両運動状態情報取得部71は、上記車両運動状態の情報(車両速度,前後加速度,横加速度,など)を取得する。
操舵トルクベース実舵角制御部72は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて、操舵トルクおよび車両速度によって上記操舵トルクによる舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、タイヤ67の転舵角である実舵角そのものを目標値として演算した目標実舵角指令値であっても、車両613の旋回速度であるヨーレイトを目標値として演算した、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、保舵時(トルク,または操舵角が一定)にはヨーレイトまたは横加速度が一定になるように舵角指令値を演算する。
操舵角ベース実舵角制御部73は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、タイヤ67の転舵角である実舵角そのものを目標値として演算した目標実舵角指令値であっても、車両613の旋回速度であるヨーレイトを目標値として演算した、目標ヨーレイト指令値であっても良く、操舵トルクベース実舵角制御部72にて演算される目標値と同じ次元の目標値であれば良い。目標実舵角指令値の演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、保舵時(トルク,または操舵角が一定)にはヨーレイトまたは横加速度が一定になるように舵角指令値を演算する。
実舵角演算部74は、ドライバ操作取得部70および自車両運動状態情報取得部71および操舵トルクベース実舵角制御部72および操舵角ベース実舵角制御部73により得られた情報に基づいて、操舵トルクベース実舵角制御部72による舵角指令値から操舵トルクベースの実舵角指令値を演算し、操舵角ベース実舵角制御部73による舵角指令値から操舵角ベースの実舵角指令値を演算し、最終的な実舵角指令値を演算して指令値送信部75に送る。演算方法は、例えば上述の図1~図3で示した方法によって行われる。
指令値送信部75は、実舵角演算部74により生成された実舵角指令値に基づいて、タイヤ実舵角を制御可能な実舵角アクチュエータ610の駆動制御を行う実舵角制御ユニット69に実舵角指令値を送る。
次に、フローチャートを用いて操舵制御装置61の処理手順を説明する。図8は図7に示す操舵制御装置61の実舵角指令値生成における動作説明に供されるフローチャートである。ステップS801では、ドライバ操作取得部70および自車両運動状態情報取得部71によりドライバからの操作情報および車両運動状態の情報を取得し、ステップS802へ進む。
ステップS802では、ステップS801で取得した情報を用いて、操舵トルクベース実舵角制御部72が操舵トルクベースの舵角指令値を生成し、操舵角ベース実舵角制御部73が制御パラメータベースの舵角指令値を生成し、実舵角演算部74へ出力する。その後、ステップS803へ進む。
ステップS803では、ステップS801で取得した情報およびステップS802で取得した情報を用いて、実舵角演算部74が操舵トルクベース実舵角制御部72の操舵トルクベースの舵角指令値および操舵角ベース実舵角制御部73の操舵角ベースの舵角指令値から実舵角指令値を生成し、ステップS804へ進む。
ステップS804では、ステップS803で取得した実舵角指令値を指令値送信部75に出力し、一連の処理を終了する。
ステップS804では、ステップS803で取得した実舵角指令値を指令値送信部75に出力し、一連の処理を終了する。
次にフローチャートを用いて操舵トルクベース実舵角制御部72の処理手順を説明する。図9は図7に示す操舵制御装置61を構成する操舵トルクベース実舵角制御部72における動作説明に供されるフローチャートであって、上述の図8におけるステップS802の詳細フローである。
図9に示すように、ステップS901では、操舵トルクおよび車両運動状態の情報を取得し、ステップS902へ進む。
ステップS902では、ステップS901で取得した情報を用いて、操舵トルクより操舵トルクベース実舵角制御部72が舵角指令値を生成し、ステップS903へ進む。
ステップS903では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
図9に示すように、ステップS901では、操舵トルクおよび車両運動状態の情報を取得し、ステップS902へ進む。
ステップS902では、ステップS901で取得した情報を用いて、操舵トルクより操舵トルクベース実舵角制御部72が舵角指令値を生成し、ステップS903へ進む。
ステップS903では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
次にフローチャートを用いて操舵角ベース実舵角制御部73の処理手順を説明する。図10は図7に示す操舵制御装置61を構成する操舵角ベース実舵角制御部73における動作説明に供されるフローチャートであって、上述の図8におけるステップ802の詳細フローである。
図10に示すように、ステップS1001では、操舵トルクと、操舵角と、を取得し、ステップS1002へ進む。
ステップS1002では、ステップS1001で取得した情報を用いて、操舵角より操舵角ベース実舵角制御部73が舵角指令値を生成し、ステップS1005へ進む。また、ここでの操舵角ベース実舵角制御部73による演算は、操舵角に応じた舵角指令値を生成できれば良く、上述の操舵角による入力パラメータに限定するものではない。例えば、操舵トルクに掛けるゲインKtrqを操舵角に応じて変更し、このゲインKtrqを操舵トルクに掛けることで舵角指令値を生成しても良い。
ステップS1003では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
図10に示すように、ステップS1001では、操舵トルクと、操舵角と、を取得し、ステップS1002へ進む。
ステップS1002では、ステップS1001で取得した情報を用いて、操舵角より操舵角ベース実舵角制御部73が舵角指令値を生成し、ステップS1005へ進む。また、ここでの操舵角ベース実舵角制御部73による演算は、操舵角に応じた舵角指令値を生成できれば良く、上述の操舵角による入力パラメータに限定するものではない。例えば、操舵トルクに掛けるゲインKtrqを操舵角に応じて変更し、このゲインKtrqを操舵トルクに掛けることで舵角指令値を生成しても良い。
ステップS1003では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
また、操舵トルクおよび/または操舵角が所定値より小さい場合、舵角指令値をゼロにする不感帯を、実舵角指令値を演算する際のパラメータとしてもっていても良い。
このような構成で車両の実舵角およびステアリングホイールの操舵反力を制御することにより、ドライバがステアリングホイールに意図せず入力した微小な操舵トルクまたは/および微小な操舵角によって、車両613の実舵角が変動することを防止することが可能となる。また、操舵トルクが微小量に減少した場合、操舵トルクの減少に併せて操舵角および実舵角をゼロに戻すことが可能になる。
また本実施例において、上記実舵角指令値を作成する際のパラメータ(ゲイン、不感帯しきい値)を走行シーンに応じて変更しても良い。例えば、走行速度およびシフトポジションを取得でき、これら情報から走行シーンが駐車時であると判定される場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
また操舵角が連続的に変化している状態を検出し、ワンディング路を走行していると判定された場合、操舵角変化に対して線形的にヨーレイトが発生するよう前記ゲインを調整する。このように、走行シーンに応じてゲイン調整することにより、ドライバの操作性を向上することができる。
以上の通り本実施例によれば、走行条件に応じて、ドライバの操作性を確保しながら操舵量を低減し得る操舵制御装置を提供することが可能となる。
また、ドライバが車両に実舵角を生じさせようとステアリングホイールに力を入れたタイミングでの操舵角がまだ微小な場合において、操舵トルクに基づく実舵角指令値の演算により、ドライバが曲がろうとする意図に対して応答性の高い旋回運動を実現できる。また、操舵角が増加していくと、操舵角に基づく実舵角指令値の演算に遷移するため、ステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる.
また、ドライバが車両に実舵角を生じさせようとステアリングホイールに力を入れたタイミングでの操舵角がまだ微小な場合において、操舵トルクに基づく実舵角指令値の演算により、ドライバが曲がろうとする意図に対して応答性の高い旋回運動を実現できる。また、操舵角が増加していくと、操舵角に基づく実舵角指令値の演算に遷移するため、ステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる.
図11は、本発明の他の実施例に係る実施例2の操舵制御装置61aの機能ブロック図である。本実施例では、ドライバ操作取得部70aがドライバからの操作情報に加え、更にドライバの志向等を入力する構成とした点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図11に示すように、ドライバ操作取得部70aは、ドライバからの操作情報(操舵角操作量,操舵トルク入力量など)に加え、ドライバの志向を取得する。ここでドライバの志向を反映するパラメータは、ユーザーインターフェースによるドライバからの入力によって設定される、または、ドライバによる運転からの自動学習および自動チューニングによる設定であっても、ドライバ認証によりドライバ毎に予め設定された値を反映する方法であっても良い。
実舵角演算部74aは、ドライバ操作取得部70および自車両運動状態情報取得部71および操舵トルクベース実舵角制御部72および操舵角ベース実舵角制御部73により得られた情報に基づいて、操舵角が所定舵角未満なら操舵トルクベース実舵角制御部72による舵角指令値から実舵角指令値を演算し、操舵角が所定操舵角以上なら前記操舵角ベース実舵角制御部73による舵角指令値から実舵角指令値を演算する。演算した実舵角指令値を指令値送信部75に送る。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、所定舵角、もしくは操舵トルクに基づいた舵角指令値演算時のゲインKtrq、もしくは操舵角に基づいた舵角指令値演算時のゲインKstrの少なくとも一つを、ドライバ操作取得部70によるドライバ志向を反映するパラメータによって増加または減少する。例えば、ドライバ志向としてノーマルモードとスポーツモードの二つのモードがある場合、スポーツモードではノーマルモードよりもゲインKtrq、ゲインKstrが大きくなるように設定しても良い。またこれらモードはドライバが選択する方法に限らず、ゲインKtrq、ゲインKstrおよび/もしくは操舵トルクベースから操舵角ベースに変わる操舵角を直接設定する方法であっても良い。またドライバの運転行動に基づいてこれらの値を変更する方法であっても良い。例えば単一カーブ路旋回時のドライバ操作において操舵角変化が、規範操舵モデルよりも頻繁に行われる場合は、操舵角変化の頻度が下がるよう前記各パラメータを変更しても良い。
以上の通り本実施例によれば、実施例1の効果に加え、操舵トルクに基づく実舵角制御と操舵角に基づく実舵角制御との切り替わりや操舵トルクや操舵角に対する旋回応答性にドライバ志向を反映することで、ステアリングホイールの操作性と操舵の応答性をドライバ志向に適した設定に調整することが可能になる。
図12は、本発明の他の実施例に係る実施例3の操舵制御装置61bを搭載した車両の概念図であり、図13は、図12に示す操舵制御装置61bの機能ブロック図である。本実施例では操舵制御装置61bが、更に自車両走行路情報取得部76を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図12に示すように、本実施例に係る操舵制御装置61bは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、自車両走行情報を取得する自車両位置検出センサ1200および外界情報検出センサ1201と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて,実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。
上記自車両走行路情報を取得するセンサとして、グローバルポジショニングシステムを自車両位置検出センサ1200として用い、外界情報検出センサ1201として、カメラやソナーのような自車両周辺の障害物情報を取得し、走行可能な領域を検出可能なセンサを用いる。また、自車両周辺情報や走行可能領域が取得でれば良く、上述のセンサに限定するものではない。更に、車両運動状態の情報と同様に、操舵制御装置61bがセンサからの直接入力を持たなくても良く、例えば別の制御ユニットから通信ラインを介して必要な情報を取得する構成としても良い。
図13に示すように操舵制御装置61bは、ドライバ操作取得部70と、自車両運動状態情報取得部71と、自車両走行路情報取得部76と、操舵トルクベース実舵角制御部72bと、操舵角ベース実舵角制御部73bと、実舵角演算部74と、指令値送信部75と、で構成される。
自車両走行路情報取得部76は、自車両走行路情報(自車両周辺情報,走行可能領域,など)を取得する。
操舵トルクベース実舵角制御部72bは、ドライバ操作取得部70および自車両運動状態情報取得部71および自車両走行路情報取得部76により得られた情報に基づいて、操舵トルクおよび車両速度によって操舵トルクによる舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、目標実舵角指令値であっても、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、自車両走行路情報取得部76の自車両周辺情報および走行可能領域によって駐車時と判断した場合、操舵トルクに対するトルクゲインを増加する。
操舵トルクベース実舵角制御部72bは、ドライバ操作取得部70および自車両運動状態情報取得部71および自車両走行路情報取得部76により得られた情報に基づいて、操舵トルクおよび車両速度によって操舵トルクによる舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、目標実舵角指令値であっても、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、自車両走行路情報取得部76の自車両周辺情報および走行可能領域によって駐車時と判断した場合、操舵トルクに対するトルクゲインを増加する。
操舵角ベース実舵角制御部73bは、ドライバ操作取得部70および自車両運動状態情報取得部71および自車両走行路情報取得部76により得られた情報に基づいて、舵角指令値を演算し、その演算結果を実舵角演算部74に送る。ここでの舵角指令値は、目標実舵角指令値であっても、目標ヨーレイト指令値であっても良い。演算方法は、例えば上述の図1~図3で示した方法によって行われる。また、自車両走行路情報取得部76の自車両周辺情報および走行可能領域によって駐車時と判断した場合、操舵角に対する操舵角ゲインを増加する。
次に、フローチャートを用いて操舵トルクベース実舵角制御部72bの処理手順を説明する。図14は、図12に示す操舵制御装置61bを構成する操舵トルクベース実舵角制御部72bにおける動作説明に供されるフローチャートである。
図14に示すように、ステップS1401では、操舵トルクと、自車両走行路情報と、を取得し、ステップS1402へ進む。
ステップS1402では、ステップS1401で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKtrqを増減し、ステップS1403へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1403では、ステップS1401およびステップS1402で取得した情報を用いて、操舵トルクおよび上述のゲインKtrqより操舵トルクベース実舵角制御部72bは舵角指令値を生成し、ステップS1404へ進む。
ステップS1404では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
図14に示すように、ステップS1401では、操舵トルクと、自車両走行路情報と、を取得し、ステップS1402へ進む。
ステップS1402では、ステップS1401で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKtrqを増減し、ステップS1403へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1403では、ステップS1401およびステップS1402で取得した情報を用いて、操舵トルクおよび上述のゲインKtrqより操舵トルクベース実舵角制御部72bは舵角指令値を生成し、ステップS1404へ進む。
ステップS1404では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
次に、フローチャートを用いて操舵角ベース実舵角制御部73bの処理手順を説明する。図15は、図12に示す操舵制御装置61bを構成する操舵角ベース実舵角制御部73bにおける動作説明に供されるフローチャートである。
図15に示すように、ステップS1501では、操舵角と、記自車両走行路情報と、を取得し、ステップS1502へ進む。
ステップS1502では、ステップS1501で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKstrを増減し、ステップS1503へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1503では、ステップS1501およびステップS1502で取得した情報を用いて、操舵トルクおよび上述のゲインKstrより操舵角ベース実舵角制御部73bは舵角指令値を生成し、ステップS1504へ進む。
ステップS1504では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
図15に示すように、ステップS1501では、操舵角と、記自車両走行路情報と、を取得し、ステップS1502へ進む。
ステップS1502では、ステップS1501で取得した情報に基づいて、自車両走行路情報より走行シーンに合わせて上述のゲインKstrを増減し、ステップS1503へ進む。ここでのゲイン設定において、例えば走行シーンが駐車時の場合、大舵角による操舵が必要になるため、ドライバが少ないハンドル操作で大きな実舵角を発生できるようにゲインを増加する。
ステップS1503では、ステップS1501およびステップS1502で取得した情報を用いて、操舵トルクおよび上述のゲインKstrより操舵角ベース実舵角制御部73bは舵角指令値を生成し、ステップS1504へ進む。
ステップS1504では、生成した舵角指令値を実舵角演算部74に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、走行するコース情報や障害物情報に応じてゲインが調整可能となり、走行シーンに応じたドライバのハンドル操作量が調整可能になる。例えば、大舵角による操舵が必要になる駐車時において、ドライバは少ない操舵角で大きな実舵角を発生することができるため、操舵量を低減した駐車が可能になる。
図16は、本発明の他の実施例に係る実施例4の操舵制御装置61cを搭載した車両の概念図であり、図17は、図16に示す操舵制御装置61cの機能ブロック図である。本実施例では操舵制御装置61cが、更に操舵反力演算部170および操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図16に示すように、本実施例に係る操舵制御装置61cは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。また、得られる各情報に基づいて、操舵反力制御に必要な演算を行い、その演算結果に基づいて、操舵反力アクチュエータ1601を駆動制御する操舵反力制御ユニット1600に通信ラインを介して操舵反力指令値を送信する。また、操舵制御装置61cから送る信号は操舵反力そのものではなく、操舵反力アクチュエータ1601により操舵反力制御を実現し得る操舵反力指令値(信号)であれば良い。
図17に示すように、操舵制御装置61cは、図7に示す実施例1に係る操舵制御装置61に比べ、更に、操舵反力演算部170および操舵反力送信部171を備える。
操舵反力演算部170は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。
操舵反力演算部170は、ドライバ操作取得部70および自車両運動状態情報取得部71により得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。
操舵反力送信部171は、操舵反力演算部170により生成された操舵反力指令値に基づいて、図16におけるステアリングホイール64の反力を制御可能な操舵反力アクチュエータ1601の駆動制御を行う操舵反力制御ユニット1600に操舵反力指令値を送る。
次にフローチャートを用いて操舵反力演算部170の処理手順を説明する。図18は、図17に示す操舵制御装置61cの操舵反力指令値生成における動作説明に供されるフローチャートである。
図18に示すように、ステップS1801では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS1802へ進む。
ステップS1802では、ステップS1801で取得した情報に基づいて、直進時であるか否かを判定し、直進時であると判定した場合はステップS1803へ進み、非直進時であると判定した場合はステップS1804へ進む。
図18に示すように、ステップS1801では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS1802へ進む。
ステップS1802では、ステップS1801で取得した情報に基づいて、直進時であるか否かを判定し、直進時であると判定した場合はステップS1803へ進み、非直進時であると判定した場合はステップS1804へ進む。
ステップS1803では、ステップS1801で取得した情報を用いて、前後加速度に応じて操舵反力指令値を増加し、ステップS1809へ進む。
一方、ステップS1804では、ステップS1801で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS1805へ進み、異符号であると判定した場合はステップS1806へ進む。
一方、ステップS1804では、ステップS1801で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS1805へ進み、異符号であると判定した場合はステップS1806へ進む。
ステップS1805では、ステップS1801で取得した情報を用いて、操舵反力指令値を減少し、ステップS1809へ進む。
一方、ステップS1806では、ステップS1801で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS1807へ進み、それ以外の場合はステップS1808へ進む。
一方、ステップS1806では、ステップS1801で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS1807へ進み、それ以外の場合はステップS1808へ進む。
ステップS1807では、ステップS1801で取得した情報を用いて、操舵反力指令値を増加し、ステップS1809へ進む。
一方、ステップS1808では、操舵反力指令値を維持し、処理S1809へ進む。
一方、ステップS1808では、操舵反力指令値を維持し、処理S1809へ進む。
ステップS1809では、ステップS1803またはステップS1805或いはステップS1807またはステップS1808で取得した操舵反力指令値に対して、操舵反力最低所定値を下回る場合はステップS1810へ進み、上回る場合は取得した操舵反力指令値を操舵反力送信部171に出力し、一連の処理を終了する。なお、操舵反力最低所定値は車両速度に応じて変化するものとする。
ステップS1810では、ステップS1809で取得した操舵反力指令値に対して、操舵反力指令値を操舵反力最低所定値に補正して操舵反力送信部171に出力し、一連の処理を終了する。
ステップS1810では、ステップS1809で取得した操舵反力指令値に対して、操舵反力指令値を操舵反力最低所定値に補正して操舵反力送信部171に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ドライバが車両を直進させる場合において操舵反力指令値は増加するため、ステアリングホイールはドライバに対して力強い手ごたえを提供する。その結果、ドライバは直進時の安定性を得ることが可能となる。
また、ドライバが車両をコーナリングさせる場合において操舵反力指令値は操舵角に応じて減少するため、ステアリングホイールはドライバに対する手ごたえを軽減する。そのため、ドライバはステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる。
また、ドライバが車両をコーナリングさせる場合において操舵反力指令値は操舵角に応じて減少するため、ステアリングホイールはドライバに対する手ごたえを軽減する。そのため、ドライバはステアリングホイールを切ってコーナリングする従来の操作性を確保することが可能になる。
図19は、本発明の他の実施例に係る実施例5の操舵制御装置61dの機能ブロック図である。本実施例では、ドライバ操作取得部70dがドライバからの操作情報に加え、更にドライバの志向等を入力する点、および、操舵反力演算部170dおよび操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図19に示すように、ドライバ操作取得部70dは、ドライバからの操作情報(操舵角操作量,操舵トルク入力量,ドライバ志向,など)を取得する。ここでのドライバからの操作情報に含まれるドライバの志向を反映するパラメータは、ユーザーインターフェースによるドライバからの入力によって設定される、または、ドライバによる運転からの自動学習および自動チューニングによる設定であっても、ドライバ認証によりドライバ毎に予め設定された値を反映する方法であっても良い。
操舵反力演算部170dは、ドライバ操作取得部70dおよび自車両運動状態情報取得部71により得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。また、直進時における操舵反力指令値および/またはコーナリング時における操舵角変化に応じた操舵反力指令値の変化量は、ドライバ操作取得部70dによるドライバの志向を反映するパラメータによって増加または減少する。例えばドライバの志向としてノーマルモードとスポーツモードの二つのモードがある場合、スポーツモードではノーマルモードよりも操舵反力指令値が大きくなるように設定しても良い。またドライバの運転行動に基づいてこれらの値を変更する方法であっても良い。例えば単一カーブ路旋回時のドライバ操作において操舵角変化が、規範操舵モデルよりも頻繁に行われる場合は、操舵反力指令値が低くなるよう操舵角変化に応じた操舵反力指令値の変化量を変更しても良い。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ハンドル操作に伴う反力生成にドライバの志向を反映することで、ステアリングホイールの操作性と操舵の応答性をドライバの志向に適した設定に調整することが可能となる。
図20は、本発明の他の実施例に係る実施例6の操舵制御装置61eを搭載した車両の概念図であり、図21は、図20に示す操舵制御装置61eの機能ブロック図である。本実施例では操舵制御装置61eが、自車両走行路情報取得部76eおよび操舵反力演算部170eおよび操舵反力送信部171を有する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では重複する説明を省略する。
図20に示すように、本実施例に係る操舵制御装置61eは、車両613に搭載されるものであり、車両運動状態の情報を取得する加速度センサ62およびジャイロセンサ63および車輪速センサ68と、ドライバからの操作情報を取得する操舵角センサ65および操舵トルクセンサ66と、自車両走行情報を取得する自車両位置検出センサ1200および外界情報検出センサ1201と、から得られる各情報に基づいて、操舵制御に必要な演算を行い、その演算結果に基づいて、実舵角アクチュエータ610を駆動制御する実舵角制御ユニット69に通信ラインを介して実舵角指令値を送信する。また、得られる各情報に基づいて、操舵反力制御に必要な演算を行い、その演算結果に基づいて、操舵反力アクチュエータ1601を駆動制御する操舵反力制御ユニット1600に通信ラインを介して操舵反力指令値を送信する。また、操舵制御装置61eから送る信号は操舵反力そのものではなく、操舵角の変化に対してバネマスダンパ系を有する疑似操舵反力発生装置612によって操舵反力を生成する。
図21に示すように、操舵制御装置61eを構成する自車両走行路情報取得部76eは、自車両走行路情報(自車両周辺情報,走行可能領域,など)を取得する。
操舵反力演算部170eは、ドライバ操作取得部70および自車両運動状態情報取得部71および実舵角演算部74および自車両走行路情報取得部76eにより得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。また、自車両走行路情報取得部76eの自車両周辺情報および走行可能領域によって駐車時と判断した場合かつ実舵角演算部74の実舵角が所定値より大きい場合、ストロークエンドを模擬する操舵反力指令値を演算する。
操舵反力演算部170eは、ドライバ操作取得部70および自車両運動状態情報取得部71および実舵角演算部74および自車両走行路情報取得部76eにより得られた情報に基づいて、操舵反力指令値を演算し、操舵反力送信部171に送る。演算方法は、例えば上述の図4,図5で示した方法によって行われる。また、自車両走行路情報取得部76eの自車両周辺情報および走行可能領域によって駐車時と判断した場合かつ実舵角演算部74の実舵角が所定値より大きい場合、ストロークエンドを模擬する操舵反力指令値を演算する。
次にフローチャートを用いて操舵反力演算部170eの処理手順を説明する.図22は図21に示す操舵制御装置61eの操舵反力指令値生成における動作説明に供されるフローチャートである。
図22に示すように、ステップS2201では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS2202へ進む。
ステップS2202では、ステップS2201で取得した情報に基づいて、駐車時かつ実舵角指令値が所定値より大きいか否かを判定する。駐車時かつ実舵角指令値が所定値より大きいと判定した場合はステップS2203へ進み、異なると判定した場合はステップS2204へ進む。
ステップS2203では、ストロークエンドを模擬する操舵反力指令値を生成し、ステップS2211へ進む。
図22に示すように、ステップS2201では、ドライバからの操作情報,車両運動状態の情報を取得し、ステップS2202へ進む。
ステップS2202では、ステップS2201で取得した情報に基づいて、駐車時かつ実舵角指令値が所定値より大きいか否かを判定する。駐車時かつ実舵角指令値が所定値より大きいと判定した場合はステップS2203へ進み、異なると判定した場合はステップS2204へ進む。
ステップS2203では、ストロークエンドを模擬する操舵反力指令値を生成し、ステップS2211へ進む。
ステップS2204では、ステップS2201で取得した情報に基づいて、直進時であるか否かを判定する。直進時であると判定した場合はステップS2205へ進み、非直進時であると判定した場合はステップS2206へ進む。
ステップS2205では、ステップS2201で取得した情報を用いて、前後加速度に応じて操舵反力指令値を増加し、ステップS2211へ進む。
一方、ステップS2206では、ステップS2201で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS2207へ進み、異符号であると判定した場合はステップS2208へ進む。
ステップS2205では、ステップS2201で取得した情報を用いて、前後加速度に応じて操舵反力指令値を増加し、ステップS2211へ進む。
一方、ステップS2206では、ステップS2201で取得した情報に基づいて、操舵角および操舵角速度および操舵角加速度が同符号か否かを判定する。同符号であると判定した場合はステップS2207へ進み、異符号であると判定した場合はステップS2208へ進む。
ステップS2207では、ステップS2201で取得した情報を用いて、操舵反力指令値を減少し、ステップS2211へ進む。
一方、ステップS2208では、ステップS2201で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS2209へ進み、それ以外の場合はステップS2210へ進む。
一方、ステップS2208では、ステップS2201で取得した情報に基づいて、操舵角および操舵角加速度が同符号かつ操舵角速度が異符号であるか否かを判定する。操舵角および操舵角加速度が同符号かつ操舵角速度が異符号である場合はステップS2209へ進み、それ以外の場合はステップS2210へ進む。
ステップS2209では、ステップS2201で取得した情報を用いて、操舵反力指令値を増加し、ステップS2211へ進む。
一方、ステップS2210では、操舵反力指令値を維持し、ステップS2211へ進む。ステップS2211では、ステップS2203またはステップS2205またはステップS2207またはステップS2209またはステップS2210で取得した操舵反力指令値に対して、操舵反力最低所定値を下回る場合は処理S2212へ進み、上回る場合は取得した操舵反力指令値を操舵反力送信部171に出力し、一連の処理を終了する。なお、操舵反力最低所定値は車両速度に応じて変化するものとする。
一方、ステップS2210では、操舵反力指令値を維持し、ステップS2211へ進む。ステップS2211では、ステップS2203またはステップS2205またはステップS2207またはステップS2209またはステップS2210で取得した操舵反力指令値に対して、操舵反力最低所定値を下回る場合は処理S2212へ進み、上回る場合は取得した操舵反力指令値を操舵反力送信部171に出力し、一連の処理を終了する。なお、操舵反力最低所定値は車両速度に応じて変化するものとする。
ステップS2212では、ステップS2211で取得した操舵反力指令値に対して、操舵反力指令値を操舵反力最低所定値に補正して操舵反力送信部171に出力し、一連の処理を終了する。
以上の通り本実施例によれば、実施例1の効果に加え、ステアリングホイールの操舵反力を制御することにより、ドライバは現在の実舵角がストロークエンドに到達したことを認識することが可能となる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
また、従属請求項における他の請求項の引用は、従属請求項の記載を分かり易くするために単項引用としているが、本発明は、従属項において、複数の請求項を引用する形態、及び、複数の多項引用項を引用する形態を含む。
また、従属請求項における他の請求項の引用は、従属請求項の記載を分かり易くするために単項引用としているが、本発明は、従属項において、複数の請求項を引用する形態、及び、複数の多項引用項を引用する形態を含む。
61,61a,61b,61c,61d,61e…操舵制御装置、62…加速度センサ、63…ジャイロセンサ、64…ステアリングホイール、65…操舵角センサ、66…操舵トルクセンサ、67…タイヤ、68…車輪速センサ、69…実舵角制御ユニット、70,70a,70d…ドライバ操作取得部、71…自車両運動状態情報取得部、72,72b…操舵トルクベース実舵角制御部、73,73b…操舵角ベース実舵角制御部、74,74a…実舵角演算部、75…指令値送信部、76,76e…自車両走行路情報取得部、170,170d,170e…操舵反力演算部、171…操舵反力送信部、610…実舵角アクチュエータ、612…疑似操舵反力発生装置、613…車両、1200…自車両位置検出センサ、1201…外界情報検出センサ、1600…操舵反力制御ユニット、1601…操舵反力アクチュエータ
Claims (16)
- ドライバによる操舵軸と、車両車輪の実舵角の間に物理的な結合を有さないステアバイワイヤシステムを構成する操舵制御装置であって、
前記操舵軸に発生する操舵角および操舵トルクに基づいて、前記実舵角を決定する演算部を備え、
前記演算部は、前記操舵角が所定値以下の領域では前記操舵トルクに基づいて前記実舵角を制御し、前記操舵角が所定値よりも大きい場合は前記操舵トルクとは異なるパラメータまたは前記操舵角が所定値よりも小さい場合から変更された操舵トルクゲインに基づいて前記実舵角を制御することを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
前記操舵トルクとは異なるパラメータとは、前記操舵角であることを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
前記演算部は、前記操舵角が所定値未満は前記操舵トルクを制御し、それ以上は舵角を制御することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記所定値は車両の状態やドライバの志向により変更することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記演算部は、前記操舵トルクがゼロに戻ったときは前記実舵角がゼロに戻るよう制御することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記演算部は、前記操舵トルクがゼロに戻ったときはヨーレイトがゼロに戻るように制御することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記演算部は、前記操舵トルクまたは前記操舵角が一定のときにはヨーレイトが一定になるように制御することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記演算部は、前記操舵トルクまたは前記操舵角が一定のときには横加速度が一定になるように制御することを特徴とする操舵制御装置。 - 請求項3に記載の操舵制御装置において、
前記演算部は、駐車時と判断した場合、前記操舵トルクの制御と前記舵角の制御共に高いゲインに変更することを特徴とする操舵制御装置。 - 請求項9に記載の操舵制御装置において、
前記演算部は、ストロークエンドを模擬する操舵反力制御を行うことを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
車両の状態に応じて操舵反力を制御する操舵反力演算部を備え、
前記操舵反力演算部は、前後加速度に基づき反力を制御することを特徴とする操舵制御装置。 - 請求項11に記載の操舵制御装置において、
前記操舵反力演算部は、直進時のみ反力を制御することを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
車両の状態および/または前記操舵角に応じて反力を制御する操舵反力演算部を備え、
反力の最低値は所定値以下にはならないことを特徴とする操舵制御装置。 - 請求項13に記載の操舵制御装置において、
前記反力の最低所定値は車両速度に応じて変化することを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
車両の状態および/または前記操舵角に応じて反力を制御する操舵反力演算部を備え、
前記操舵反力演算部は、前記操舵角、操舵角速度、操舵角加速度が同符号の時のみ反力を減少させることを特徴とする操舵制御装置。 - 請求項1に記載の操舵制御装置において、
車両の状態および/または前記操舵角に応じて反力を制御する操舵反力演算部を備え、
前記操舵反力演算部は、前記操舵角、操舵角加速度が同符号、操舵角速度が異符号の時は反力を増加させることを特徴とする操舵制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019006222.0T DE112019006222B4 (de) | 2019-02-14 | 2019-08-19 | Lenksteuervorrichtung |
CN201980084382.1A CN113382916B (zh) | 2019-02-14 | 2019-08-19 | 操舵控制装置 |
US17/425,379 US11939013B2 (en) | 2019-02-14 | 2019-08-19 | Steering control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019024361A JP7488632B2 (ja) | 2019-02-14 | 2019-02-14 | 操舵制御装置 |
JP2019-024361 | 2019-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020166113A1 true WO2020166113A1 (ja) | 2020-08-20 |
Family
ID=72043899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032228 WO2020166113A1 (ja) | 2019-02-14 | 2019-08-19 | 操舵制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11939013B2 (ja) |
JP (1) | JP7488632B2 (ja) |
CN (1) | CN113382916B (ja) |
DE (1) | DE112019006222B4 (ja) |
WO (1) | WO2020166113A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11753027B2 (en) | 2021-01-27 | 2023-09-12 | Aptiv Technologies Limited | Vehicle lateral-control system with adjustable parameters |
US12252127B2 (en) | 2022-04-19 | 2025-03-18 | Aptiv Technologies AG | Dynamically calculating lane change trajectories |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019204857A1 (de) * | 2019-04-04 | 2020-10-08 | Thyssenkrupp Ag | Verfahren zur Steuerung eines Steer-by-Wire-Lenksystems und Steer-by-Wire-Lenksystem für ein Kraftfahrzeug |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004082862A (ja) * | 2002-08-27 | 2004-03-18 | Fuji Heavy Ind Ltd | 電動式パワーステアリング装置 |
JP2006015811A (ja) * | 2004-06-30 | 2006-01-19 | Toyota Motor Corp | 車両の操舵装置 |
JP2006248308A (ja) * | 2005-03-09 | 2006-09-21 | Honda Motor Co Ltd | 車両用操舵装置 |
JP2008087680A (ja) * | 2006-10-03 | 2008-04-17 | Fuji Heavy Ind Ltd | 車両運動制御装置 |
JP2011001041A (ja) * | 2009-06-22 | 2011-01-06 | Fujitsu Ten Ltd | 操舵装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09254803A (ja) * | 1996-03-25 | 1997-09-30 | Nissan Motor Co Ltd | 操舵角制御装置 |
JP3940056B2 (ja) * | 2002-10-11 | 2007-07-04 | アイシン精機株式会社 | 路面状態推定装置、及び該装置を備えた車両の運動制御装置 |
JP4340096B2 (ja) * | 2003-06-02 | 2009-10-07 | 本田技研工業株式会社 | 車両用の操舵装置 |
JP4379261B2 (ja) * | 2004-08-30 | 2009-12-09 | 日産自動車株式会社 | 車両用操舵装置 |
JP4729907B2 (ja) * | 2004-11-22 | 2011-07-20 | 日産自動車株式会社 | 車両用操舵装置およびその操舵トルク制御方法 |
JP4581651B2 (ja) * | 2004-11-29 | 2010-11-17 | 日産自動車株式会社 | 車両用操舵装置 |
JP4367383B2 (ja) * | 2005-07-08 | 2009-11-18 | トヨタ自動車株式会社 | 車両の操舵アシスト装置 |
JP4894388B2 (ja) * | 2006-07-21 | 2012-03-14 | 日産自動車株式会社 | 操舵機構制御装置及び自動車 |
JP5297037B2 (ja) * | 2007-12-25 | 2013-09-25 | 富士重工業株式会社 | 車両の操舵制御装置 |
DE102008008835B4 (de) * | 2008-02-13 | 2010-04-22 | Zf Friedrichshafen Ag | Vorrichtung zum Ermitteln eines Drehmoments |
IT1392732B1 (it) | 2009-01-27 | 2012-03-16 | Palmarix Ltd | Sistema per il controllo della guida di un veicolo. |
JP5233738B2 (ja) * | 2009-02-25 | 2013-07-10 | 日産自動車株式会社 | 車両用操舵装置、車両用操舵装置付き車両 |
JP5338491B2 (ja) | 2009-06-05 | 2013-11-13 | 日産自動車株式会社 | 車両用操舵装置および車両用操舵方法 |
JP5532295B2 (ja) * | 2009-11-12 | 2014-06-25 | 株式会社ジェイテクト | モータ制御装置および車両用操舵装置 |
JP5829585B2 (ja) * | 2012-08-07 | 2015-12-09 | 株式会社デンソー | 制御システム及び車両操舵制御システム |
JP6187090B2 (ja) * | 2013-09-25 | 2017-08-30 | 日産自動車株式会社 | 車両用運転制御装置及び車両用運転制御方法 |
SE542604C2 (en) * | 2014-08-22 | 2020-06-16 | Scania Cv Ab | A method for controlling an electrical steering system and an electrical steering system |
JP6662188B2 (ja) * | 2016-05-12 | 2020-03-11 | 日産自動車株式会社 | 運転支援方法及び運転支援装置 |
US10494018B2 (en) * | 2016-09-16 | 2019-12-03 | Jtekt Corporation | Steering device |
JP2019127237A (ja) | 2018-01-26 | 2019-08-01 | 株式会社ジェイテクト | 操舵制御装置 |
JP2019127214A (ja) * | 2018-01-26 | 2019-08-01 | 株式会社ジェイテクト | 転舵制御装置 |
JP6543393B1 (ja) * | 2018-06-29 | 2019-07-10 | 株式会社ショーワ | ステアリング制御装置及びステアリング装置 |
-
2019
- 2019-02-14 JP JP2019024361A patent/JP7488632B2/ja active Active
- 2019-08-19 DE DE112019006222.0T patent/DE112019006222B4/de active Active
- 2019-08-19 CN CN201980084382.1A patent/CN113382916B/zh active Active
- 2019-08-19 WO PCT/JP2019/032228 patent/WO2020166113A1/ja active Application Filing
- 2019-08-19 US US17/425,379 patent/US11939013B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004082862A (ja) * | 2002-08-27 | 2004-03-18 | Fuji Heavy Ind Ltd | 電動式パワーステアリング装置 |
JP2006015811A (ja) * | 2004-06-30 | 2006-01-19 | Toyota Motor Corp | 車両の操舵装置 |
JP2006248308A (ja) * | 2005-03-09 | 2006-09-21 | Honda Motor Co Ltd | 車両用操舵装置 |
JP2008087680A (ja) * | 2006-10-03 | 2008-04-17 | Fuji Heavy Ind Ltd | 車両運動制御装置 |
JP2011001041A (ja) * | 2009-06-22 | 2011-01-06 | Fujitsu Ten Ltd | 操舵装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11753027B2 (en) | 2021-01-27 | 2023-09-12 | Aptiv Technologies Limited | Vehicle lateral-control system with adjustable parameters |
US12252127B2 (en) | 2022-04-19 | 2025-03-18 | Aptiv Technologies AG | Dynamically calculating lane change trajectories |
Also Published As
Publication number | Publication date |
---|---|
CN113382916B (zh) | 2023-06-02 |
JP2020131783A (ja) | 2020-08-31 |
DE112019006222T5 (de) | 2021-09-09 |
DE112019006222B4 (de) | 2024-06-13 |
US11939013B2 (en) | 2024-03-26 |
CN113382916A (zh) | 2021-09-10 |
JP7488632B2 (ja) | 2024-05-22 |
US20220097758A1 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6573643B2 (ja) | 車両の走行制御装置 | |
CN107817791B (zh) | 车辆控制装置 | |
JP4042979B2 (ja) | 車両操作支援装置 | |
CN104709348B (zh) | 与eps控制器结合的碰撞避免控制 | |
EP3517408B1 (en) | Steering control device | |
WO2018055916A1 (ja) | 車両運動制御装置 | |
US20180297638A1 (en) | Lane change assist apparatus for vehicle | |
WO2020166113A1 (ja) | 操舵制御装置 | |
JP2009096273A (ja) | 衝突回避制御装置 | |
WO2011080830A1 (ja) | 運転支援装置 | |
JP6825081B2 (ja) | 車両制御装置及び車両制御方法 | |
JP2005327117A (ja) | 車両操作支援装置 | |
KR20110134402A (ko) | 회피 기동을 실행하기 위한 방법 및 디바이스 | |
JP2008290648A (ja) | 車両操作支援装置 | |
CN114954632B (zh) | 车辆控制方法、车辆控制系统以及车辆 | |
JP2018154174A (ja) | 衝突回避装置 | |
JP2018103713A (ja) | 車両走行制御装置及び自動運転制御方法 | |
JP2018167734A (ja) | 車両の走行制御装置 | |
JP7052745B2 (ja) | 車両制御システム | |
JP2003341501A (ja) | 運転支援制御システム | |
US12116060B2 (en) | Method and control circuit for controlling an active rear axle steering of a motor vehicle when steering out from straight travel, and a motor vehicle having the control circuit | |
JP7275646B2 (ja) | 車両の走行制御方法及び走行制御装置 | |
JP4384952B2 (ja) | 車両操作支援装置 | |
JP4414274B2 (ja) | 車両操作支援装置 | |
JP2007022232A (ja) | 車両操作支援装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19914996 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19914996 Country of ref document: EP Kind code of ref document: A1 |